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Optimal Design of the Tyre-Suspension System
of a Racing Car

A racing car should be designed to improve the performance of the driver–
vehicle system. Unfortunately, at present no readily exploitable driver models
seem to be available. So the optimisation of a racing car refers mainly to the
car itself. Contemporary tuning of both tyre characteristics and suspesnion
system is of crucial importance. One of the main technical challenges is to
achieve maximum cornering speed while balancing tyre forces at front and
rear axles, improving handling ability.

In order to design effectively a racing car, one may be requested to tune
the entire set of design variables related to tyres, aerodynamics and chassis
characteristic (stiffness, damping and kinematics of the suspension system).
This is not a straightforward problem especially if one exploits very sophis-
ticated models defined by many parameters. In fact, when many design vari-
ables have to be changed, their tuning has to be performed by using adequate
optimisation theories (see Sect. 2.10) and related software tools. Tradition-
ally, the process of tuning the car has been performed by a trial-and-error
approach based on professional drivers’ feedback. A sensitivity analysis [32] is
of limited help to the designer if the number of design variables is high.

A more rational approach compared to a trial-and-error procedure is de-
sirable. Multi-objective optimisation is the most effective way for optimising
complex systems, i.e. systems, which are described by many design variables
and which perform many functions [149] (see Chap. 3).

In the literature, several papers [93,94,141] have dealt with the problem of
the optimisation of a car suspension system by means of the multi-objective
approach.

This chapter, derived from [161], presents a procedure that can be used
for the integrated design (tuning) of tyres and suspensions of a racing car.

A complete model of a racing car has been developed and implemented
through a series of programming codes. Elasto-kinematics of the suspen-
sion system, powertrain and braking systems have been described in de-
tail. Tyre characteristics have been identified and implemented by means of
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Pacejka’s Magic Formulæ. The aerodynamic characteristics of the body have
been measured in wind tunnel and included into the model.

A number of ground tests, according to the ISO standards, have been
performed to validate the vehicle model. The main dynamic responses of the
car have been recorded and compared with the computed responses, with fully
satisfactory results.

Proper objective functions have been defined after a subjective–objective
correlation analysis. Many different driving situations (steady-state, J-turn,
lane-change, power on–off while steering, braking on a bend, passing over a
kerb while steering) have been considered. By means of a multi-objective
(Sect. 2.10) approach, 26 objective functions, defined after a subjective–
objective correlation analysis, have been optimised by changing 18 design vari-
ables related with the suspension system and the tyre characteristics. A global
approximation model (see Sect. 4) has been followed (the original physical car
model has been substituted by another purely numerical model), allowing fast
optimisations.

7.1 System Model

A vehicle model, divided into modules, has been constructed on the ba-
sis of one presented in [93]. Each module represents a vehicle sub-system
(Fig. 7.1) which interacts with the other sub-systems by means of input/output
variables.

The result is an 18 d.o.f.s model that simulates satisfactorily the actual
vehicle dynamic behaviour (Table 7.2).

7.1.1 Vehicle Model

Car chassis is considered as a rigid body. Tyre forces are transmitted to
the front and rear axle modules respectively (Fig. 7.1). Front and rear axle
modules apply two resultant forces and two resultant torques to points A and
B respectively (Fig. 7.1). Aerodynamic forces are modeled assuming front lift,
rear lift and drag coefficients depending on front and rear vertical position of
points A and B with respect to the ground.

Front and rear independent suspension systems have a double wishbone
layout, different layouts can be easily considered referring to available li-
braries [158]. Shock absorbers are modeled as non-linear components; forces
transmitted by the shock absorber are function of the deformation speed.
Non-linearity due to bump-stop characteristics has been included.

The torque-speed characteristic of the differential has been derived exper-
imentally and accurately modeled. The braking system is modeled by consid-
ering the different distribution of braking force between front and rear axle.
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Fig. 7.1. Vehicle model. Dotted arrows refer to input–output variables describing
the dynamics of each module

7.1.2 Tyre Model

A model that allows to estimate tyre forces with a good accuracy has
been implemented on the basis of Pacejka’s Magic Formulæ [10, 110, 194–
196]. Tyre characteristics have been measured on a flat-track machine [208].
Experimental measurements have been used to identify Pacejka’s model co-
efficients by applying the procedure reported in [187]. The model enables to
simulate tyre behaviour at high slip angles and high level of longitudinal slip.
The transient tyre behaviour is given by

χ (Fz)
dFy

dt
+ vw Fy = vw Fy,stat (α, Fz, γ) (7.1)

This formulation allows to include the relaxation length effect. Combined
effects of longitudinal and lateral slip have been considered [225].

Four d.o.f.s are used to simulate vertical motions of unsprung masses and
four d.o.f.s refer to the rolling of the wheels.

7.1.3 Validation

Results given by simulations have been compared with track test measures
on a test vehicle. The test vehicle is equipped with a data acquisition
computer, wheel speed sensors, throttle position sensor, gear position sen-
sor, brake circuit pressure sensors, steering wheel angle sensor, vehicle body
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Fig. 7.2. Severe lane-change manoeuvre, numerical and experimental data. The
measured steering wheel angle is used as input for the simulation code (throttle and
selected gear are constant during the manoeuvre). Non-dimensional values on the
y-axes (yactual/ymax,measured)

accelerometers and gyroscopes, optical vector speed sensor. Measurements are
matched directly with computed data. A parameter identification procedure
is not needed. Comparisons considering a severe lane-change manoeuvre (ISO
3888) are shown in Fig. 7.2. The agreement is good. A test run on track is
shown in Fig. 7.3. Again the model proves to represent fairly the dynamic
behaviour of the car under consideration.

7.2 Design Variables

Eighteen design variables have been considered for the optimisation process.
Design variables are related to suspension springs, anti-roll bars, hydraulic
dampers, static toe angles, static camber angles and tyre characteristics. These
design variables have been chosen as they are reputed to influence the behav-
iour of the vehicle taken under consideration. Moreover, these design variables
can be easily modified on the considered vehicle.

Three types of optimisation strategies have been performed:

(1) Changing the stiffness of the front and rear suspension springs, the front
anti-roll bar and the static toe and camber angles of front and rear wheels
according to a grid (see Sect. 3.4.2).
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Fig. 7.3. Test run on track. The measured steering wheel angle, throttle position,
gear and brake position are used as inputs for the simulation code. Non-dimensional
values on y-axes (yactual/ymax,measured). The only relevant discrepancy between
measured and computed data (at t = 10–13 s) is due to the hitting of a kerb



196 7 Tyre-Suspension System of a Racing Car

(2) Changing suspension characteristics (stiffness, damping, toe and camber)
by varying design variables continuously within specified ranges.

(3) Changing tyre and suspension characteristics by varying design variables
continuously within specified ranges.

The design variables variations are shown in Table 7.1.

Table 7.1. Variation of the design variables values with respect to the reference
vehicle

Design variable 1st optimisation 2nd optimisation 3rd optimisation

ks,F −20%, ref. [−50%, +10%] [−50%, +10%]

ks,R −20%, ref. [−60%, +10%] [−60%, +10%]

kr,F −40%, ref. [−80%, +60%] [−80%, +60%]

kr,R Ref. [−80%, +100%] [−80%, +100%]

rb,l,F Ref. [−60%, +90%] [−60%, +90%]

rb,l,R Ref. [−60%, +90%] [−60%, +90%]

rr,l,F Ref. [−50%, +50%] [−50%, +50%]

rr,l,R Ref. [−50%, +50%] [−50%, +50%]

δst,F −130%, −65%, ref., +65%, +130% [−130%, +130%] [−130%, +130%]

δst,R −80%, −40%, ref., +40%, +80% [−80%, +80%] [−80%, +80%]

γst,F −30%, −15%, ref., +15%, +30% [−30%, +30%] [−30%, +30%]

γst,R −30%, −15%, ref., +15%, +30% [−30%, +30%] [−30%, +30%]

p1,F Ref. Ref. [−15%, +15%]

p1,R Ref. Ref. [−15%, +15%]

p2,F Ref. Ref. [−15%, +15%]

p2,R Ref. Ref. [−15%, +15%]

CF Ref. Ref. [−15%, +15%]

CR Ref. Ref. [−15%, +15%]

Three optimisation strategies are considered. Design variables referring to the first
optimisation have only discrete values (‘ref.’ means ‘reference value’)

7.2.1 Suspension System

Twelve design variables (system’s model parameters) are tuned (Table 7.1)
referring to

– the suspension spring characteristic (front and rear);
– the anti-roll bar characteristic (front and rear);
– the characteristic of the hydraulic dampers (front and rear) (four design

variables);
– the suspension geometry (front and rear) (four design variables)
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Table 7.2. List of main parameters values used in the presented simulations

lF Distance ofbody centre of mass from 1.497 m
the front axle

lF + lR Wheelbase 2.568 m
cF /cR Half track front/rear 0.85 m/0.80 m
h Height of the vehicle body centre of mass 0.428 m
m Vehicle body mass 1,020 kg
mF /mR Wheel mass (right + left) front and rear 80 kg/100 kg
Jx/Jy/Jz Moments of inertia of the vehicle 330 kgm2, 1,600 kgm2,

body about x-, y-, z-axis 1,800 kgm2

CdS Drag 0.71 m2

ETmax Engine maximum torque 400 Nm@6,000 rpm
Cα,F /Cα,R Cornering stiffness front/rear tyres 121,000 N/rad,

182,000 N/rad

Suspension Springs

Front and rear stiffness of the suspension springs, have been varied. The values
of the design variables during the optimisation process are shown in Table 7.1.

Anti-roll Bars

Stiffness of front and rear anti-roll bar have been varied. These design variables
during optimisation process are shown in Table 7.1.

Hydraulic Dampers

The force transmitted as a function of damper speed is modeled as shown in
Fig. 7.4. Forces are given by

b,l
r

v

b,h

v0,r

v0,b

rr,h

r

F

d

d

r
r,l

Fig. 7.4. Non-linear hydraulic damper characteristic, force vs. damper speed
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Fig. 7.5. A typical tyre characteristic (see Eq. (7.3))



Fd = rr,h (vd − v0,r) + rr,l v0,r vd > v0,r

Fd = rr,l vd vd > 0, vd ≤ v0,r

Fd = rb,l vd vd > v0,b, vd ≤ 0
Fd = rb,h (vd − v0,b) + rb,l v0,b vd ≤ v0,b

(7.2)

Four design variables rb,l, rr,l, rb,h, rr,h describe the shock absorber
characteristic [87]. Velocities v0,b and v0,r are kept fixed, only rb,l and rr,l

are varied during the optimisation process. Values assumed by these design
variables are shown in Table 7.1.

Suspension Geometry

Suspension geometry is optimised by changing the static values of camber and
toe angles. Values assumed by these design variables are shown in Table 7.1.

7.2.2 Tyre Characteristic

For pure lateral slip Pacejka’s Magic Formulæ express the side force Fy,stat

as a function of the side slip angle α. The general form for a given value of
vertical load and camber reads (Fig. 7.5)

Fy,stat = D sin {C arctan [B(α+ Sh) − E (B(α+ Sh)
− arctan (B(α+ Sh)))]} + Sv (7.3)

Figure 7.5 shows the meaning of coefficients BCD and D for a typical
tyre force characteristic. Coefficient D represents the peak value of the lateral
force (if Sv = 0) and the product BCD corresponds to slope at the origin of
the curve (if Sh = 0 and Sv = 0). The factor C controls the domain of the
sine function in Eq. (7.3), and determines the shape of the resulting curve.
The function of the cornering stiffness BCD reads



7.3 Running Situations and Objective Functions 199

p
2

p
1

B
C

D

Fz

Fig. 7.6. Cornering stiffness as a function of vertical load according to expression
(7.4) at camber zero

BCD = p1 sin
[
2 arctan

(
Fz

p2

)]
(1 − p3 |γ|) (7.4)

For zero camber, the cornering stiffness has a maximum p1 at Fz = p2. Figure
7.6 shows the relationship given in (7.4).
C, p1 and p2 are chosen as design variables their variations are reported

in Table 7.1.

7.3 Running Situations and Objective Functions

The vehicle–driver system and the external environment constitute a com-
plex closed-loop system. The evaluation of the handling behaviour is made
difficult by the human–vehicle interaction. Only a limited number of standard
manoeuvres and running conditions have been defined by ISO and generally
no evaluation criteria are given. In the following application a total number
of six running situations (26 objective functions) are at first introduced.

7.3.1 Steady-state Turning

The simulation of the steady-state turning manoeuvre is based on ISO 4138
standard. The vehicle has to be driven on a known circular path at different
speeds. This manoeuvre can be used to assess the tendency of the vehicle to
understeer–oversteer by computing understeer/oversteer gradient:

dδ

dac
(7.5)

This parameter is strictly related to driver perception. Oversteering vehi-
cles at high levels of lateral acceleration will be discarded during the search
procedure. Considered objective functions are reported in Table 7.3.
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Table 7.3. Optimisation scheme

Symbol Objective function Goal

Steady-state turning

ac,50m Maximum ac (ρ = 50 m) Maximise

β1.3 g,50m β (ac = 13 m/s2, ρ = 50 m) Minimise

P1.3 g,50m Power required (ac = 13m/s2, Minimise
ρ = 50m)

ac,120m Maximum ac (ρ = 120 m) Maximise

β1.3 g,120m β (ac = 13 m/s2, ρ = 120 m) Minimise

P1.3 g,120m Power required (ac = 13m/s2, Minimise
ρ = 120m)

J-turn

tψ̇ ψ̇ peak response time Minimise

Oψ̇ ψ̇ overshoot Minimise

ψ̇s,s Steady-state ψ̇ Maximise
tβ β peak response time Minimise
Oβ β overshoot Minimise

βmax Maximum β Minimise
βs,s Steady-state β Minimise
tac ac peak response time Minimise
Oac ac overshoot Minimise

ac,max Maximum ac Maximise
ac,s,s Steady-state ac Maximise

RMS(β̇)J turn Root mean-square of β̇ Minimise
ypath deviation from straight path Maximise

tac − tψ̇ time delay between ac and ψ̇ Minimise

TB TB factor Minimise

Power on–off

RMS(β̇)Pwr on−off Root mean-square of β̇ Minimise

Braking on a bend
Fz,max,left Minimum vertical load on left

rear wheel
Maximise

Fz,max,right Minimum vertical load on right
rear wheel

Maximise

Passing on a kerb while steering

RMS(Fz,f,left) Root mean-square of the front left
wheel vertical load

Minimise

RMS(Fz,r,left) Root mean square of the right left
wheel vertical load

Minimise
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7.3.2 J-Turn

The simulation of the J-turn manoeuvre (based on ISO 7401 standard with
some minor adaptations due to the fact that a racing car is considered)
provides information on transient vehicle response. The time histories of the
centripetal acceleration, of the sideslip angle and of the yaw rate are con-
sidered as responses to a standard steering-wheel ramp input. The objective
functions are the peak response time of the responses to a steering wheel step
input and the overshoots of the responses (related to damping level of the
system). In Fig. 7.7 a typical yaw velocity response to a steering step input is
shown. Peak response time (tψ̇) is highlighted. The expression of the overshoot
is

Oψ̇ =
ψ̇Max − ψ̇steady state

ψ̇steady state

(7.6)

The peak response time and the overshoot for β and ac are defined similarly
as in (7.6). The TB factor [167] is an important objective function referring
to a J-turn manoeuvre. TB is calculated as the product of the yaw velocity
peak response time and the steady-state sideslip angle at the vehicle centre
of gravity:

TB = tψ̇ · βs,s (7.7)

A low value of the TB factor seems implying good vehicle handling
characteristics. Objective functions for this manoeuvre are reported in
Table 7.3.

7.3.3 Power On–Off while Steering

This manoeuvre is included in order to analyse the vehicle reactions to a
power on–off input during turning. This type of input could excite undesirable
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reactions that are perceived negatively by the driver. The vehicle runs into
a bend in a steady-state condition at a high level of lateral acceleration and
suddenly the throttle is fully opened (< 0.3 s), after 3 s it is fully released and
then reopened (< 0.3 s). The steering-wheel angle is kept constant during the
whole manoeuvre. Root mean square of β̇ is the variable taken as a objective
function during this manoeuvre (Table 7.3). This variable shows the tendency
of the vehicle to oscillate around the centre of gravity.

7.3.4 Braking into a Bend

A typical braking manoeuvre before negotiating a bend is simulated. Load
transfer in this running situation drives to unstability. This manoeuvre is
composed by a sudden release of the throttle and subsequent full brake
application. During the turning the brake is released gradually. The steer,
brake and throttle inputs are shown in Fig. 7.8. The objective functions for
this manoeuvre are reported in Table 7.3.
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Fig. 7.8. Braking into a bend steer, brake and throttle inputs (non-dimensional
values on y-axes (yactual/ymax))

7.3.5 Passing over a Kerb While Steering

Passing over a kerb while steering provides information of both low-frequency
and high-frequency vehicle responses. The obstacle is asymmetric and excites
the roll motion of the vehicle body. The maximum height of the obstacle is
50 mm. The vertical shape of the kerb is shown in Fig. 7.9. The objective
functions are indicated in Table 7.3.
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7.4 Search Method

The optimisation method [87,88] is based on two different mathematical mod-
els of the same car whose design variables have to be optimised. The first is
a physical model, i.e. it is derived on the basis of a mechanical model strictly
related to the vehicle system (the model is described in Sect. 7.1.1). The sec-
ond model (‘global approximation’ see Chap. 4) is just a set of functions that
are able to approximate many different relationships that exist between the
design variables and the objective functions, describing the vehicle system
responses.

The global approximation model has been constructed by means of an
artificial neural network. Multi-layer perceptron neural networks have been
used to approximate (within a very small computation time) complex non-
linear functions with an arbitrary degree of accuracy [88, 113] (see Chap. 4).
To avoid overtraining, a cross-validation procedure (see Chap. 4) [127] has
been implemented.

7.4.1 Reduction of Objective Functions

N (<103) solutions have been analysed in order to reduce the number of objec-
tive functions that have to be taken into account. This has been done by using
the ‘Spearman rank correlation coefficient’ (see Chap. 3) [182]. Some strongly
correlated objective functions were found (even non-linear correlations were
detected, Fig. 7.10), so the existence of redundancy was discovered (see Table
7.4) and the number of objective functions could be reduced [87,182].

7.4.2 Pareto-optimal Solutions

The ‘global approximation’ model is used during the search procedure for the
computation of the Pareto-optimal set (see Sect. 2.10).

The main advantage of multi-objective programming is that it provides a
rational approach to decision making in the presence of conflicting criteria.

The global approximation allows a quick computation of the optimal sets
of design variables, generally much faster than the computation by using the
physical model.
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Fig. 7.10. Example of correlation between two objective functions in non-
dimensional form. Spearman Rank Correlation Coefficient = 0.971

Table 7.4. Objective functions eliminated by using the Spearman rank correlation
analysis

Eliminated
objective function

Correlated
objective function

rs

β1.3 g,50 m β1.3 g,120 m 0.997

P1.3 g,50 m P1.3 g,120 m 0.996

tψ̇ TB 0.926

tβ TB 0.950

βmax TB 0.964

βs,s TB 0.963

ac,max ψ̇s,s 0.947

ac,s,s ψ̇s,s 0.991

RMS(β̇)Jturn TB 0.971

ypath ψ̇s,s 0.974

Fz,max,right Fz,max,left 0.997

A large number (>106) of uniformly distributed solutions can be generated
by the neural net approximation within a short time (see Chap. 4). Condition
(2.11) can be checked and the Pareto-optimal solutions can be stored.

The designer can choose a preferred solution among those (and only those)
belonging to the Pareto-optimal set.
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7.5 Results

Two thousand uniformly distributed design variable vectors have been
generated and used to compute the responses of the physical model.

By applying the procedure described in Sect. 7.4.1 only 15 objective func-
tions were selected and considered for the subsequent optimisation. In fact
they resulted fully representative of the 26 objective functions initially con-
sidered.

A multi-layer perceptron neural network has been trained approximating
the 15 objective functions as a function of 18 design variables. The mean error
of the trained neural network is less than 3%.The network architecture has two
layers of 70 and 40 neurons respectively. The training set is composed of only
1,000 responses of the physical model out of the 1,200 generated. A number of
candidate optimal solutions have been selected from the Pareto-optimal set.

Figures 7.11 and 7.12 show two projections of the Pareto-optimal set onto
two planes. Data are reported in non-dimensional form. Improvements are
obtained for all the objective functions.

A preferred solution has been chosen from the Pareto-optimal set and
it has been denoted as optimised car. The results of the third optimisation
(Table 7.1) are reported, because the improvements obtainable by varying a
reduced set of design variables (first and second optimisation) were not fully
satisfactory. The improvements with respect to the reference car are shown in
Table 7.5.

The mean improvement (on all the 26 objective functions) is about 10%.
The handling behaviour is significantly improved. The reference car does not
seem belonging to the Pareto-optimal set. Comparisons between reference car
and optimised car are shown in Figs. 7.13–7.15, referring to a J-turn ma-
noeuvre, a steady-state turning manoeuvre and a power on–off while steering
manoeuvre. Steady-state turning manoeuvres (Fig. 7.14) show higher level of
centripetal acceleration that can be achieved by the optimised car with re-
spect to the reference car. This is due to a better load transfer distribution
between front and rear axles. Moreover, in this manoeuvre the sideslip angle is
reduced because of the higher cornering stiffness of the rear tyres. The power
required is reduced (up to 12% at the highest lateral acceleration) because the
slippages of the optimised vehicle are less than the slippage of the reference
vehicle. J-turn manoeuvre reveals (Fig. 7.13) a more damped motion of the
optimised vehicle with respect the reference vehicle due to a different stiffness
and damping distribution between front and rear axles. This is done by main-
taining the TB factor at about the same level. The same damping effect holds
for Power on–off manoeuvre (Fig. 7.15). Fz,max,left is improved because rb,l,F

is augmented and rr,l,R is reduced. RMS(Fz,r,left) is less because damping of
the rear shock absorbers are greatly decreased, being ks,R equal.
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7.5.1 Comparison of the Performances of Global Approximation
Methods

Three approximation methods, polynomial approximation, RBFNN and
MLPNN (see Chap. 4) are trained using a sample of 2,023 point obtained
from a (t, 16)-sequence in base 17 (see Sect. 3.4.2). The design variables and
the objective functions are normalised before the application of the methods.
The set of 2,023 design points is split into two set D(nD) and V(nV ) to train
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Table 7.5. Design variables and objective functions of a preferred car denoted as
‘optimised vehicle’

Design variable Variation with resp-
ect to the reference
car (%)

ks,F −10

ks,R 0

kr,F −15

kr,R +73

rb,l,F +83

rb,l,R −38

rr,l,F −18

rr,l,R −49

δst,F −43

δst,R +31

γst,F +9

γst,R +18

p1,F +1

p1,R +8

p2,F +12

p2,R −2

CF +3

CR +10

Objective function index Improvement
with respect
to the
reference car
(%)

ac, 50 m 3

ac, 120 m 3

β1.3 g,120 m 6

P1.3 g,120 m 2

Oψ̇ 24

ψ̇s,s 1

Oβ 16

tac 0

Oac 32

tac − tψ̇ 1

TB 0

RMS(β̇)Pwr on−off 36

Fz,max,left 15

RMS(Fz,f,left) 0

RMS(Fz,r,left) 16
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Fig. 7.13. J-turn manoeuvre. Comparisons between reference and optimised vehicle.
(Data are normalised with respect to the steady-state values of the reference vehicle)
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Fig. 7.14. Steady-state turning. Comparisons between reference and optimised ve-
hicle. (Data are normalised with respect to the maximum values of the reference
vehicle).

the multi-layer perceptron neural network. The D(ND) is the training set and
nD = 1,734, V(NV ) is the validation set used for cross-validation (see Sect.
4.6.1) and NV = 289. The models are tested on a set T(NT ) of NT = 14,739
points.

Different types of error estimators are considered.

1. The mean relative error is defined by

∆j =
1
NT

NT∑
i=1

|ŷij − yij |
|yij |

(7.8)

lower ∆j refers to a good approximation.
2. The normalised standard deviation is defined by

Σj =

√√√√∑NT

i=1 (ŷij − yij)2∑NT

i=1

(
yij − ¯̄yj

)2 (7.9)

where ¯̄yj = 1
NT

∑NT

i=1 yij . Lower Σj refers to good a approximation.
3. The correlation coefficient between the estimated ŷij output and the test

output yij
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Fig. 7.15. Power on–off manoeuvre (see Sect. 7.3.3). Comparisons between reference
and optimised vehicle. (Data are normalised with respect to the maximum values of
the reference vehicle)

Rj =

∑NT

i=1

(
ŷij − ˆ̄̄yj

) (
yij − ¯̄yj

)
√∑NT

i=1

(
ŷij − ˆ̄̄yj

)2∑NT

i=1

(
yij − ¯̄yj

)2 (7.10)

where ˆ̄̄yj = 1
NT

∑NT

i=1 ŷij . Value of Rj closer to 1 refers to a good
approximation.

Four approximation models have been compared in terms of accuracy:

1. linear approximation (Sect. 4.3.1). The number r of function employed is
17 for every objective function;

2. polynomial quadratic approximation (Sect. 4.3.1). The number r of func-
tion employed is 153 for every objective function;

3. radial basis function neural network regularised and trained using regres-
sion trees (Sect. 4.6.2) with Gaussian basis functions. Nmin is 2 (Nmin is
the unique parameter to be set by the user and refers to the number of
points that are considered to stop the generation of the regression tree);

4. Radial basis function neural network regularised and trained using regres-
sion trees (Sect. 4.6.2) with thin plate spline basis functions. Nmin is 2;

5. Multi-layer perceptron neural network (MLPNN) trained using early stop-
ping (Sect. 4.6.1). The final network architecture is composed by two hid-
den layers with 98 and 105 neurons.

It is important to notice that the approximations model based on NN needs
to be designed and trained properly. This procedure is time-consuming and the
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generation of the approximation model requires more time than other methods
(see Table 7.11). Actually, a trial-and-error procedure has to be completed for
the setting of the number of neurons and hidden layers. In contrast to the
complex setting of parameters referring to the architecture of MLPNN, the
RBFNN requires to set only one parameter: Nmin that defines the regression
tree structure (see Sect. 4.6.2).

By inspection of Table 7.6, one may easily notice that the MLPNN is
superior with respect to other methods for approximation purposes (see mean
∆j values). The same could be stated for the other test criteria (Eqs. (7.9) and
(7.10); Tables 7.7 and 7.8). In these cases RBFNN methods show performance
(both with Gaussian basis functions and with thin plate spline basis functions)
close to MLPNN, confirming the results presented in [229]. The results (Tables
7.6–7.8) show also that the linear approximation model is inadequate for the
problem under consideration. The quadratic approximation model may be
good for the approximation of some objective functions but for other objective
functions the approximation is insufficient (see maximum values in Tables 7.6–
and minimum values in Table 7.8)1.

Table 7.6. Relative errors

Method 1(%) 2(%)

Linear 5.67 27.92
Quadratic 4.16 26.52
RBFNN gaussian 2.87 9.49
RBFNN thin plate spline 2.91 9.38
MLPNN 2.44 15.46

(1) Mean	j over all the considered objective functions.
(2) Maximum	j over all the objective functions

Table 7.7. Normalised standard deviation

Method 1 2

Linear 0.270 0.482
Quadratic 0.175 0.402
RBFNN gaussian 0.156 0.385
RBFNN thin plate spline 0.158 0.386
MLPNN 0.132 0.298

(1) Mean Σj over all the considered objective functions.
(2) Maximum Σj over all the objective functions

1We must emphasise that this is only the time needed for a single training of
the MLPNN; MLPNN needs multiple training to determine the optimal network
architecture
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Table 7.8. Correlation coefficient between estimated ŷ and real y of different
methods

Method 1 2

Linear 0.898 0.732
Quadratic 0.948 0.809
RBFNN gaussian 0.971 0.877
RBFNN thin plate spline 0.970 0.881
MLPNN 0.980 0.960

(1) Mean Rj over all the considered objective functions.
(2) Minimum Rj over all the objective functions

Table 7.9. Pareto-optimal solutions classified correctly: solutions that in terms of
design variables are identical to the ones directly computed by means of the vehicle
model

Method PO(%)

Linear 66.60
Quadratic 67.60
RBFNN gaussian 73.01
RBFNN thin plate spline 74.55
MLPNN 77.10

PO is the ratio between the number of Pareto-optimal
solutions obtained by means of the approximated model
f̂ and the number of Pareto-optimal solutions obtained
by means of the vehicle model (expressed in percentage)

The ultimate purpose of multi-objective optimisation methods integrated
by global approximation is to compute a good approximation of the Pareto-
optimal set. The Pareto-optimal set has been computed for the test set T(NT )
by using Definition 2.7. The test set T(NT ) has been obtained directly by us-
ing the vehicle model. In the same way the approximated Pareto-optimal set
has been obtained by using the approximated models by considering the same
design variables vectors which define the test set T(NT ). Table 7.9 shows
the comparisons. By using the MLPNN, 77.1% of the points belonging to
the approximated Pareto-optimal set are the same Pareto-optimal points (in
terms of design variables) found directly by using the vehicle model. This is
the best performance even if the two RBFNN obtain 73.01 and 74.55%, not
so far from MLPNN. The Pareto-optimal set has been computed also for a
test set F(NF ), obtained from T(NT ) considering the solution that improve
all the objective functions with respect to the reference vehicle (NF = 787)
(see Table 7.10). In this case for the MLPNN, 71.00% of the points belong-
ing to the approximated Pareto-optimal set are coincident with the solutions
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Table 7.10. Pareto-optimal solutions correctly classified on the subset of the set
solutions that improve all the objective functions with respect to a reference vehicle:
solutions that in terms of design variables are identical to the ones directly computed
by means of the vehicle model

Method PO(%)

Linear 37.73
Quadratic 64.26
RBFNN gaussian 69.86
RBFNN thin plate spline 70.37
MLPNN 71.00

PO is the ratio between the number of Pareto-optimal
solutions obtained by means of the approximated model
f̂ and the number of Pareto-optimal solutions obtained
by means of the vehicle model (expressed in percentage)

obtained by using the vehicle model; in this case too this is the best perfor-
mance even if the two RBFNN (69.86 and 70.37%) perform in similar way as
MLPNN.

Finally, Table 7.11 shows respectively the time needed to generate the
training set, the time needed to obtain the parameters of the approximation
model to generate the approximated objective functions from the test set and
the time needed to complete the optimisation process on a Pentium PIII 800
using a sample of 100,000 solutions. The time needed to generate the Pareto-
optimal set from the test set by obtaining the objective functions directly from
the vehicle model without using global approximation is more than 1·107 s. In
all the cases the optimisation process obtained by using global approximation
is by far cheaper in terms of computation time with respect to the optimisation
process obtained without using the approximation method. The time needed
to the global approximation methods is mainly due to the evaluation of the
training set. For the MLPNN, the time needed for the determination of the
net architecture is relevant. RBFNN can be successfully used when a trade-off
between accuracy and computation time is required.

7.6 Conclusion

In order to achieve the best performances from a racing car, the contemporary
tuning of tyre and suspension design variables has proved to be necessary. To
optimise a racing car, the multi-objective optimisation approach has been
followed (see Chap. 3). This approach requires both validated models and a
well-defined experimental activity aimed to derive the design variables that
influence the dynamic behaviour of the car, namely tyre characteristics and
other chassis parameters.
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Table 7.11. Computation time, expressed in seconds, obtained using a Pentium
PIII 800 processor

Method 1 (s) 2 (s) 3 (s) Total (s)

Linear 1.4 × 105 6 2.4 × 102 1.4 × 105

Quadratic 1.4 × 105 7.0 × 101 7.0 × 102 1.4 × 105

RBFNN Gaussian 1.4 × 105 1.9 × 104 1.3 × 103 1.6 × 105

RBFNN thin pl. spl. 1.4 × 105 2.5 × 104 1.3 × 103 1.7 × 105

MLPNN 1.4 × 105 1.5 × 104 1.7 × 103 � 2.1 × 105

(1) Time needed to generate the training set.
(2) Time needed to generate the approximation model.
(3) Time needed to generate the Pareto-optimal set using the Quasi-Monte

Carlo method (100, 000 evaluations). The time needed to generate the Pareto-
optimal set using the quasi-Monte Carlo method without global approxima-
tion is >107 s

According to the global approximation procedure, the complex physical
model of the vehicle has been substituted by an artificial neural network that is
able to approximate very closely the relationships between tyre/chassis design
variables and objective functions. By means of the neural network many (>106)
simulations have been performed within an extremely short time (24 h). From
these simulations the optimal solutions have been selected according to Pareto
theory. The dynamic behaviour of a preferred optimal car has been discussed
in detail. Sensible improvements of the whole objective functions describing
the vehicle dynamic behaviour have been obtained for this optimised car, with
respect to the reference one.

Professional drivers have tested a number of cars fitted with the opti-
mal suspension/tyre settings. The simulation results have been confirmed by
ground tests.

The presented results showed that multi-layer perceptron neural network
gives the highest accuracy. A similar performance in approximating objective
functions is provided by radial basis function neural network. This result seems
very encouraging because the training of RBFNN require the user to set only
one parameter, contrary to MLPNN which requires much expertise to set
the number of hidden layers and the number of neurons in order to obtain
the best global approximation performance. Obviously, the presented results
are not intended to be a general comparison between the considered global
approximation methods, although the testing has been performed on an actual
and very complex engineering problem. The results can be reputed valid only
for similar optimisation problems.

The global approximation procedure may be used to analyse a large num-
ber of optimal solutions. The approach based on the presented low discrep-
ancy sequences allows not only to build good approximation models but also
to improve the knowledge of the designer about the relationships between
design variables and objective functions. From the analysis of the presented
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simulations, it appears that the Pareto-optimal set can be computed ade-
quately by using high accuracy approximators.

With reference to the design of a vehicle tyre/suspension system, the
adopted procedure has proved to be reliable and effective for obtaining higher
car performance reducing the time needed in expensive ground tests.

The method allowed both to synthesise and analyse the optimal solutions
in order to improve not only the performances of the car under consideration
but also the know-how and the skills of designers.




