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Interactive Optimisation of a Flywheel

The first aim of this chapter is to present how multi-objective optimisation
(MOO) (see Chap. 3) and global approximation (GA) (see Chap. 4) can be
employed in order to speed up and improve the design of complex mechanical
system. The second aim of this chapter is to propose a multi-objective inter-
active design methodology (see Sect. 3.6) based on Pareto surface sensitivity
analysis. This methodology has been implemented by a software where the
designer interacts with the multi-objective programming software to choose
the preferred final solution especially suited for applications where computer
simulations can reliably predict the properties of a system.

Many real-world engineering design problems involve the simultaneous op-
timisation of several conflicting objectives. Design engineers are often inter-
ested in identifying the Pareto-optimal set [166] when exploring a design space.

By considering Definition (2.7) of non-dominated solution the outcome of
a MOO is not one optimal point but a set of Pareto-optimal solutions that
represent the trade-off between objectives. A solution in a Pareto-optimal set
cannot be considered better with respect to others in the set without including
preference information to rank competing attributes. Interactive optimisation
tasks (see Sect. 3.6) can help the designer (i.e. the decision maker) to define
this ranking function.

This chapter develops a Pareto-optimisation method for use in real-world
optimisation problems. This method is based on coupling design performances,
expressed by objective functions and obtained by simulating the process to op-
timise, with approximation concepts [88,104,159,202] (see Chap. 4). Often the
numerical analysis to obtain the objective function considered is computation-
ally expensive, especially for large complex systems. Approximation concepts
may help to limit the required analyses during the optimisation. The basic
idea is to build approximation of the response-based objective functions and
constraints that can be easily evaluated by the optimiser, without resorting
to numerical analysis.
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The approximating model may be an interface that may also open new
ways to make the design optimisation of engineering system more controllable
and accessible compared with a direct coupling of optimisation and analysis.

Another important remark that should be stressed is that the method
presented gives a strong importance to the sampling of design variables to
generate good approximation models. The techniques presented are based on
Quasi-Monte Carlo sampling methods [183,246] (see Sect. 3.4.2). The sampling
plain of design variables is a somewhat well-distributed plain to maximise the
amount of information that can be obtained from a single numerical analysis.

This chapter shows how the Pareto-optimal set can be locally analysed
through Pareto sensitivity analysis to eventually restrict the field of search
of the final solution by the decision maker. This information is used by an
interactive method [166] that allows the designer to compare the first solution
with an alternative solution obtained by moving locally around the first solu-
tion. The final solution results from an interaction between the designer and
the optimisation software. During this process the designer learns the possible
performances of his system and can formulate in a satisfactory manner the
target of his project.

This chapter will be dedicated to explain the interactive optimisation
method and an illustrative example, based on the optimisation of a flywheel,
will be shown.

13.1 System Model

The example illustrates the use of the proposed interactive optimisation
strategies (Sect. 3.6). It deals with the design of a flywheel for enhanced
dynamic, cost and structural performance.

The general aim of the optimal design of this mechanical component is
to reduce, at a given rotational speed, the mass, the maximum stress and to
increase the energy stored by the flywheel. This problem has been studied
extensively in design literature [18, 84, 121, 131]. In this example the flywheel
profile is defined by a spline curve. Complete structural analyses of the fly-
wheel should be comprehensive both for the analysis of the shaft and the
analysis of the flywheel. For reasons of simplicity the analyses are confined
to wheel. The computation of the stresses of the structure is performed by
considering the axis-symmetric properties of the structure. The variable fly-
wheel thickness h(r) is considered small, so the stresses σz, τzr and τzθ can
be considered as null (see Fig. 13.1).

The forces acting on an infinitesimal volume of the structure are (see
Fig. 13.1) as follows:

Fr = σrhrdθ (13.1)
Fθ = σθ(h+ dh/2)dr (13.2)
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Fig. 13.1. Forces acting on a infinitesimal element of a flywheel having variable
thickness

Fm = ρω2r(h+ dh/2)dr(r + dr/2)dθ (13.3)

The equilibrium along the radial direction gives

−Fr + Fr +
dFr

dr
dr − 2Fθ sin

dθ

2
+ Fm = 0 (13.4)

by substituting Eqs. (13.1)–(13.3) and neglecting the second-order terms

d

dr
(σrhr) − σθh+ ρω2r2h = 0 (13.5)

that are identically satisfied by introducing a stress function [249]:

σr =
Γ

hr
(13.6)

σθ =
1
h

dΓ

dr
+ ρω2r2

By considering the relations between strain and displacements we have

εr =
du

dr

εθ =
u

r

that, by eliminating u, becomes

εr −
d

dr
(εθr) = 0 (13.7)

Consider the relationship between stress and strain
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εr =
1
E
σr −

ν

E
σθ

εθ =
1
E
σθ −

ν

E
σr

E is the Young’s modulus and ν the Poisson’s ratio. We can write Eq. (13.7)
as a function of σr and σθ.

σr − νσθ −
d

dr
(r(σθ − νσr)) = 0 (13.8)

We can perform the structural analysis by considering Eq. (13.8) only in the
stress function

r2
d2Γ

dr2
+ r
dΓ

dr
− Γ + (3 + ν)ρω2hr3 =

r

h

dh

dr

(
r
dΓ

dr
− νΓ

)
(13.9)

This equation cannot be solved analytically. This differential equation has
been solved by using a fourth-order Runge–Kutta method and imposing the
contour conditions at inner and outer radius (Γ (ri) = 0, Γ (re) = 0). All
integration points (h, dh/dr) necessary for the integration of Eq. (13.9) are
obtained by considering h as a spline function of the radius. The failure cri-
terion refers to Von Mises reference stress and is calculated by

σV M =
√

((σr − σθ)2 + σ2
r + σ2

θ)/2 (13.10)

If the stresses in the disk exceed the admissible value, failure occurs. The mass
M is given by

M = 2πρ
∫ re

ri

hrdr (13.11)

The kinetic energy K stored by the flywheel is obtained by the equation

K = πρω2

∫ re

ri

hr3dr (13.12)

13.2 Objective Functions

Optimising the flywheel design requires to maximise the kinetic energy and
to minimise weight and stress level (near the admissible value). The multi-
objective optimisation problem described is realised by transforming the ob-
jective function related to the maximum σV M = σV MM , the minimum mass
M and the maximum kinetic energy K into a vector to be optimised.
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Fig. 13.2. Cross-section of the flywheel. Definition of design variables and design
bounds

13.3 Design Variables

The design variables are defined as the coordinates of the control points of a
cubic spline (see Fig. 13.2). These control points define the thickness of the
flywheel over the entire area of the disk.

So we have the design variables vector (see Fig. 13.2)

xT = (x1, . . . , x8)
= (ri, re, rb, hi, he, hb, (dh/dr)i, (dh/dr)e)

by defining the smallest and the largest disk thickness respectively by hm and
hM we can formulate the multi-objective optimisation problem as

min
x


 f1f2
f3


 = min

x


 M

−K
σV MM




g1 = −hm + hmin ≤ 0
g2 = hM − hmax ≤ 0
g3 = −rb + ri −∆r ≤ 0
g4 = rb − re −∆r ≤ 0
g5 = σV MM − σadm ≤ 0 (13.13)

with design variables bounds:

0.02m ≤ ri ≤ 0.05m
0.1m ≤ re ≤ 0.2m
0.02m ≤ rb ≤ 0.2m
0.02m ≤ hi ≤ 0.05m
0.02m ≤ he ≤ 0.05m
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0.02m ≤ hb ≤ 0.05m

−1 ≤
(
dh

dr

)
i

≤ 0

−1 ≤
(
dh

dr

)
e

≤ 0

Problem (13.13) refers to a flywheel that must be constrained to stay in a
bounded volume and with maximum stress level equal to σadm(Table 13.1)
The objective function f2 has been defined equal to −K because the kinetic
energy has to be maximised.

Table 13.1. Flywheel problem data

hmin (m) 0.02
hmax (m) 0.05
∆r (m) 0.025
σadm (MPa) 280
ν 0.3
ω (rad/s) 1,570

ρ (kg/m3) 7,800

13.4 Results

The global approximation model was based on a radial basis function neural
network (RBFNN) (see Sect. 4.6.2). By using 2,048 points a Quasi-Monte
Carlo sequence has been integrated into the interactive Optimisation loop
(see Fig. 3.22).

The accuracy of the global approximation model is shown in Figs. 13.3–
13.5, where the comparison of the profile of a flywheel computed by using the
global approximation model is compared with that of the original physical
model.

As much as 106 extrapolated points were obtained from the global approx-
imation model to derive a set of non-dominated points close to the Pareto-
optimal set. This set has been used in the first step of the design process, to
choose a preferential starting solution for the interactive optimisation process
through a utility function. In this example, the utility function is defined (see
Sect. 3.5.1) by using as target values

• f̃1 the value of the mass of the flywheel (
∫

V
ρ dV ) with the minimum mass.

(x = (50mm, 100mm, 75mm, 20mm, 20mm, 20mm, 0, 0)). f0
1 = 3.678 kg.

• f̃2 the value of the maximum kinetic energy of the flywheel with maximum
kinetic energy ( 1

2

∫
V
ρr2ω2 dV )not considering boundaries on stresses. x =

(20mm, 200mm, 110mm, 50mm, 50mm, 50mm, 0, 0).
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Fig. 13.3. Cross-section of the flywheel with the minimum mass obtained by opti-
mising the global approximation model (‘-’) and the physical model (‘- -’)
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Fig. 13.4. Cross-section of the flywheel with the maximum kinetic energy obtained
by optimising the global approximation model (‘-’) and the physical model (‘- -’)

f0
2 = 120.9 × 1010 J.

• f̃3 the limit stress of the flywheel considering as flywheel material C40
steel (UNI 7845 maximum admissible stress 420 MPa) and a safety margin
of 1.5. So f0

3 = 280MPa.

An optimal flywheel shape has been found by using the global approxima-
tion model (Fig. 13.6, the stresses are also plotted).

After that an optimal solution was found, this optimal solution will be
taken into account as the reference optimal solution (‘R’). The interactive
optimisation procedure has been used where the designer explores the Pareto
set in the neighbourhood of the current optimal solution. The interactive
optimisation framework has been implemented in Matlab [153]. The solutions
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Fig. 13.5. Cross-section of the flywheel with the minimum level of stress (minimum
σrM ) obtained by optimising the global approximation model (‘-’) and the physical
model (‘- -’)
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Fig. 13.6. Cross-section and stresses of the flywheel that optimise the utility func-
tion (see Sect. 3.5.1) by using the global approximation model. This optimal solution
is taken as the reference optimal solution (‘R’ solution)

shown in Table 13.2 are those obtained by finding Pareto-optimal directions
that minimise mass, maximise the stored kinetic energy and minimise the
maximum stress.

Table 13.2 shows the results of the Pareto-optimal local sensitivity analysis
of the solution shown in Fig. 13.6. The designer can look at this value to have
an idea on how the direction in the predictor step (see Fig. 3.22) can influence
the original solution.
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Table 13.2. Pareto-optimal solutions obtained through utility function sensitivity
analysis (remember that ∆f2 > 0 means a kinetic energy decrease)

∆f1 (kg) ∆f2(J × 1010) ∆f3 (MPa)

Solution 1 –0.161 0.280 –4.844
Solution 2 0.044 –0.076 0.935
Solution 3 –0.111 0.194 –7.319

The ∆f1, ∆f2, ∆f3 (see 13.13) are variations with respect to the
reference optimal solution in Fig. 13.6
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Fig. 13.7. Design variables of the reference solution (R) found during the interactive
Pareto-optimal sensitivity analysis (Fig. 13.6). Solutions 1–3 refer to the correspond-
ing solutions 1–3, in Table 13.2

The reference optimal solution (together with the solutions 1–3 in Table
13.2) is finally presented with bar charts (Figs. 13.7 and 13.8). This way of
presenting the Pareto-optimal solutions clearly offers a better understanding
on the trade-offs.

Following the procedure introduced in Sect. 3.6, the designer can find
solutions 1–3 in Table 13.2 in a quick way, i.e. avoiding to complete the com-
putation of the Pareto-optimal solutions by means of the physical system
model but exploiting the global approximation model. In Figs. 13.9–13.11 a
comparison is presented between Pareto-optimal solutions obtained by using



340 13 Interactive Optimisation of a Flywheel

R 1 2 3
0

1

2

3

4

5

6

7

8
f 1

 (
kg

)

f 2
 (

J)

f 3
 (

M
P

a)
R 1 2 3

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x10

10

R 1 2 3
0

50

100

150

200

250

300

Fig. 13.8. Objective functions of the reference solution (R found during the in-
teractive Pareto-optimal sensitivity analysis (Fig. 13.6). Solutions 1–3 refer to the
corresponding solutions 1–3, in Table 13.2
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Fig. 13.9. Cross-section of the flywheel of Fig. 13.6 that optimises the utility func-
tion (see Sect. 3.5.1) by using the global approximation model compared to the
solution obtained by using the prediction solution expressed by Eq. (3.58) choosing
the direction that minimises more the flywheel mass and to the corrected solution
obtained by solving the problem (3.59)
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Fig. 13.10. Cross-section of the flywheel of Fig. 13.6 that optimises the utility
function (see Sect. 3.5.1) by using the global approximation model compared to the
solution obtained by using the prediction solution expressed by Eq. (3.58) choosing
the direction that maximises more the flywheel kinetic energy and to the corrected
solution obtained by solving the problem (3.59)
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Fig. 13.11. Cross-section of the flywheel of Fig. 13.6 that optimises the utility
function (see Sect. 3.5.1) by using the global approximation model compared to the
solution obtained by using the prediction solution expressed by Eq. (3.58) choosing
the direction that minimises more the flywheel maximum stress and to the corrected
solution obtained by solving the problem (3.59)
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Fig. 13.12. Cross-section of the flywheel of Fig. 13.6 that optimise the utility
function (see Sect. 3.5.1) by using the global approximation model compared to the
alternative solution of Figs. 13.7 and 13.8.

the prediction framework presented in Sect. 3.6 (and shown in Figs. 13.7 and
13.8, also see Fig. 13.12) and Pareto-optimal solutions obtained by the global
approximation model.

The designer can choose one of the solutions and eventually continue the
Pareto sensitivity process proposed until a satisfying solution has been ob-
tained.




