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Optimal Design of the Suspension System
of Railway Vehicles

In the present chapter the dynamic response of rail vehicles due to ran-
dom excitation is dealt with by deriving very simple analytical formulae.
The optimisation of railway vehicle suspension system is proposed by using
multi-objective programming. Basic hints are given on how to select the
railway vehicle suspension design variables to obtain the best trade-off be-
tween standard deviation of vertical acceleration at the body and standard
deviation of secondary suspension stroke.

In the literature the authors have not found papers dealing with the prob-
lem of deriving simple analytical formulae for the estimation of the dynamic
response of railway vehicles to random excitations generated by vertical track
irregularity. With reference to vehicle–bogie vibrations and to vehicle–track
interaction, a number of authors have dealt with the problem of deriving ba-
sic concepts useful for rail vehicle design [60, 76, 99, 199]. They usually have
resorted to numerical simulations even when dealing with simple models.

Successful applications of multi-objective programming in the field of rail-
way vehicle design are reported in [51,147,151].

In the first section of the chapter analytical formulae are derived [151] to
describe the dynamic behaviour of a railway vehicle. These formulae are then
used in the second section of the chapter to derive the best trade-off between
the standard deviations of body acceleration and secondary suspension stroke
[151].

10.1 System Model

10.1.1 Equations of Motion and Responses to Stochastic
Excitation

The adopted system model is shown in Fig. 10.1. The system has two de-
grees of freedom. The mass m1 represents one-fourth of the mass of the bogie
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Fig. 10.1. Railway vehicle system model

and the mass m2 represents one-eighth of the mass of the body. The exci-
tation comes from the displacement (ξ) which represents the motion of the
axle-box, the track being regarded as an uneven and infinitely stiff structure.
This hypothesis had to be forcedly introduced to preserve both the analyti-
cal formulation and the analytical solution to the problem. In Sect. 9.2.3 the
accuracy of the response of the model will be discussed.

The equations of motion may be written in matrix form as

M z̈ + Rż + Kz = F (10.1)

M, R, K are the mass, damping and stiffness matrixes, respectively

M =
(
m1 0
0 m2

)
(10.2)

R =
(
r1 + r2 −r2
−r2 r2

)
(10.3)

K =
(
k1 + k2 −k2
−k2 k2

)
(10.4)

F is the vector of external forces related to excitation from the uneven track

f =
(
r1ξ̇ + k1ξ

0

)
(10.5)

z is the vector of the independent variables
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z =
(
z1
z2

)
(10.6)

The displacement ξ (track irregularity) is assumed to be a random variable
defined by a stationary and ergodic stochastic process. This assumption is
consistent with the results of the studies, performed by many authors and or-
ganisations (see, e.g. [108,188]), on the stochastic properties of track (vertical)
irregularity. A number of analytical formulae have been adopted (see [76,199])
to interpolate the measured data referring to the power spectral density (PSD)
of the stochastic process defining ξ. In the present chapter two of those ana-
lytical formulae have been considered

Sξ (ω) =
Ab (2π v)3

ω4
(10.7)

Sξ (ω) =
Avω

2
cv

ω2 (ω2 + ω2
c )

(10.8)

In a log–log scaled plot (abscissa ω), the spectrum in Eq. (10.7) (reported
in [199]) takes the shape of a line sloped at rate 4. In the following, it will be
indicated as one-slope power spectral density (1S-PSD). The PSD in Eq. (10.8)
has been reported in [76], and is widely used in railway vehicle dynamics
simulations. In the log–log scaled plot shown in Fig. 10.2, Eq. (10.8) takes
approximately the shape of a two-slope curve, thus reference to it will be
made by the acronym 2S-PSD.

Fig. 10.2. Power spectral density (PSD) of the irregularity of the track in the
vertical plane. Two slope PSD (2S-PSD, Eq. 10.8), at 177 km/h, (adapted from
Ref. [76]).
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The system (10.1) can be rewritten in a more convenient form

ż = A z + B u
y = C z + D u

(10.9)

z is the vector of state variables

z =



ż1
ż2
z1
z2


 (10.10)

A and B are the state matrixes

A =




− r1+r2
m1

r2
m1

−k1+k2
m1

k2
m1

r2
m2

− r2
m2

k2
m2

− k2
m2

1 0 0 0
0 1 0 0


 B =




1/m1

0
0
0


 (10.11)

u is the input variable, related with track irregularity ξ

u =
(
r1ξ̇ + k1ξ

)
(10.12)

y is the vector of output variables

y =


 Fz

z̈2
z2 − z1


 (10.13)

The output variables represent, respectively, the force on the axle-box (Fz),
the vertical acceleration of the body (z̈2), the (vertical) relative displacement
body–bogie (stroke of the secondary suspension) (z2 − z1).

C and D matrixes read respectively

C =


−r1 0 −k1 0

r2
m2

− r2
m2

k2
m2

− k2
m2

0 0 −1 1


 (10.14)

D =


 1

0
0


 (10.15)

The frequency response of the linear dynamic system (10.9) is

Hy,u (s) = C (sI − A)−1 B + D (10.16)

where I is the identity matrix. The input is represented by u, the output is
represented by vector y.
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Given the PSD, PSDu of the excitation input, the PSDj of the jth element
of vector y, can be computed as (see, e.g. Sect. 5.1.1)

PSDj (s) = Hj (s) Hj (−s) PSDu (s) (10.17)

H (s) =


H1 (s)
H2 (s)
H3 (s)


 =


 HFz,u (s)

Gz̈2,u (s)
Gz2−z1,u (s)


 (10.18)

Hj(s), being a frequency response function of a mechanical system, is obvi-
ously a ratio of two polynomials (of variable s), i.e. Hj (s)=N(s)/D(s). PSDu

and PSDξ are linked by the following expression:

PSDu (s) = Lu,ξ (s) Lu,ξ (−s) PSDξ (s) (10.19)

where Lu,ξ (s) = k1 + s r1.
In order to write PSDj(s) (Eq. (10.17)) in a form matching with that of

following Eq. (10.24) (the reason for this need will be explained in the next
section), PSDξ(s) has to be written as

PSDξ (s) =WqS LqS (s) LqS (−s) , q = 1, 2 (10.20)

where for q = 1 reference is made to the 1S-PSD, and it follows from
Eq. (10.7) that s = jω (j =

√
−1), L1S (s) = 1/s2 and W1S = Ab (2πv)3;

for q = 2 reference is made to the 2S-PSD (Eq. (10.8) ), so L2S (s) =
1/{s (s+ ωc)} and W2S = Avω

2
cv.

The PSDj of the jth element of vector y can be finally written as

PSDj (s) =WqS LqS (s)Lu,ξ (s) Hj (s) Hj (−s)Lu,ξ (−s)LqS (−s) (10.21)

This form is convenient for computations that will be presented in the next
section (Eqs. (10.23) and (10.24)).

The (vertical) relative displacement bogie–axle box (stroke of the primary
suspension) (z1− ξ) and the force on the axle-box are related by the following
expression:

Lz1−ξ,Fz
(s) = − 1

k1 + sr1
= − 1

Lu,ξ (s)

So, the PSD of (z1 − ξ) reads

PSD z1−ξ (s) =WqSLqS (s) HFz,u (s)HFz,u (−s)LqS (−s) (10.22)

10.1.2 Derivation of Standard Deviations in Analytical Form

By definition (see Sect. 5.1.1) the variance of a random variable described by
a stationary and ergodic stochastic process is
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σ2
j =

1
2

+∞∫
−∞

PSDj (s) ds (10.23)

In [180] it is shown that an analytical solution exists for σ2
j if PSDj can be

written as

PSDj =
Nk−1 (s) Nk−1 (−s)
Dk (s) Dk (−s) (10.24)

where Dk is a polynomial of degree k, and Nk−1 is a polynomial of maximum
degree k − 1 (k�1 ). This is actually the case, in fact it can be verified that
PSDj may be written as in Eq. (10.24) both by inspection of Eqs. (10.21) and
(10.22) and by analysing the expressions of Hj and HFz,u.

For example, considering the vertical acceleration of the vehicle body (z̈2),
the following expression for Nk−1(s)/Dk(s) can be obtained:

• for the 1S-PSD (q = 1, Eqs. (10.20), (10.7)), k = 4

N3 (s)
D4 (s)

=
√
W1sL1S (s) Lu,ξ (s) Hz̈2,u (s)

where (setting r1 = 0) assuming

W1S = Ab (2πv)3 , L1S (s) =
1
s2
, Lu,ξ (s) = k1,

Hz̈2,u (s) = (k2 + r2s) s2/
(
k1k2 + k1r2s+ k2m1s

2 + k1m2s
2 + k2m2s

2

+m1r2s
3 +m2r2s

3 +m1m2s
4
)

we obtain

N3(s) = (Ab)1/2(2πv)3/2(k1k2 + k1r2s)

D4(s) = (k1k2 + k1r2s+ k2m1s
2 + k1m2s

2

+k2m2s
2 +m1r2s

3 +m2r2s
3 +m1m2s

4)

• for the 2S-PSD (q = 2, Eqs. (10.20), (10.8)), k = 5

N4 (s)
D5 (s)

=
√
W2sL2S (s) Lu,ξ (s) Hz̈2,u (s)

where (setting r1 = 0) assuming

W2S = Avω
2
cv, L2S (s) =

1
s (s+ ωc)

we obtain
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N4(s) = (Avω
2
cv)

1/2(k1k2s+ k1r2s2)

D5(s) = (k1k2 + k1r2s+ k2m1s
2 + k1m2s

2 + k2m2s
2 +

m1r2s
3 +m2r2s

3 +m1m2s
4)(s+ ωc)

The analytical formulae presented in the following subsections have been
derived by means of the analytical solutions of the integral (10.22) reported
in Sect. 5.6.

10.1.3 Complete Formulae Using the 1S-PSD (Eq. (10.7))

The 1S-PSD (Eq. (10.7)) has been considered because it allows a full and
compact analytical solution of the problem. For the standard deviations of
interest, by solving analytically Eq. (10.23) one gets

σFz
= 2π2v3/2

√
Ab

√
n1

d1
(10.25)

n1 = r21m1m2

(
r1r

2
2k1 + r21r2k2 + r1k2

2m1 + r2k2
1m2 + r1k2

2m2

)
+

(m1 +m2) (r2m1 + r1m2 + r2m2)
[
(m1 +m2)

(
r22k

2
1 + r21k

2
2

)
−

2k2
1k2m1m2

]
+ k1k2 (m1 +m2)

2 [−m1m2 (r2k1 + r1k2) +
(r2m1 + r1m2 + r2m2) (r1r2 + k2m1 + k1m2 + k2m2)] +

(r2k1 + r1k2)
[
−2r1 (r2k1 + r1k2)m1m2 (m1 +m2) +

(r1r2m1 + r1r2m2 + k1m1m2)
2

]

d1 =
[
−m1m2 (r2k1 + r1k2)

2 − k1k2 (r2m1 + r1m2 + r2m2)
2 +

(r2k1 + r1k2) (r2m1 + r1m2 + r2m2) (r1r2 + k2m1 + k1m2 + k2m2)
]

σz̈2 = 2π2v3/2
√
Ab

√
n2

d2
(10.26)

n2 = r21r
2
2 (r2k1 + r1k2) +

(
r22k

2
1 + r21k

2
2

)
(r2m1 + r1m2 + r2m2) +

k1k2 [−m1m2 (r2k1 + r1k2) + (r2m1 + r1m2 + r2m2) (r1r2+
k2m1 + k1m2 + k2m2)]

d2 =
[
−m1m2 (r2k1 + r1k2)

2 − k1k2 (r2m1 + r1m2 + r2m2)
2 +

(r2k1 + r1k2) (r2m1 + r1m2 + r2m2) (r1r2 + k2m1 + k1m2 + k2m2)
]



270 10 Optimal Design of the Suspension System of Railway Vehicles

σz2−z1 = 2π2v3/2
√
Ab

√
m2

2

n3

d3
(10.27)

n3 = r21k2 (r2m1 + r1m2 + r2m2) + k1 [−m1m2 (r2k1 + r1k2) +
(r2m1 + r1m2 + r2m2) (r1r2 + k2m1 + k1m2 + k2m2)]

d3 = k2

[
−m1m2 (r2k1 + r1k2)

2 − k1k2 (r2m1 + r1m2 + r2m2)
2 +

(r2k1 + r1k2) (r2m1 + r1m2 + r2m2) (r1r2 + k2m1 + k1m2 + k2m2)
]

σz1−ξ = 2π2v3/2
√
Ab

√
n4

d4
(10.28)

n4 = k1 (r2k1 + r1k2)m2
1m

2
2 + k1 (m2 +m1) (r2m1 + r1m2+

r2m2)
(
r22m1 + r22m2 − 2k2m1m2

)
+

+k2 (m1 +m2)
2 [− (r2k1 + r1k2)m1m2+

(r2m1 + r1m2 + r2m2) (r1r2 + k2m1 + k1m2 + k2m2)]

d4 = k1

[
−m1m2 (r2k1 + r1k2)

2 − k1k2 (r2m1 + r1m2 + r2m2)
2 +

(r2k1 + r1k2) (r2m1 + r1m2 + r2m2) (r1r2 + k2m1 + k1m2 + k2m2)
]

The above-mentioned standard deviations (σz̈2 , σz2−z1 , σFz
) depend on the

cube of the square root of the power of vehicle speed v, on the square root
of track irregularity coefficient Ab, and on analytical functions of the model’s
parameters. These analytical expressions are rather complex. As the square
roots do not depend on v, according to this formulation, the optimal settings
of suspension design variables do not depend on vehicle speed.

10.1.4 Formulae for Vanishing Primary Damping Using
the 1S-PSD (Eq. (10.7))

Primary dampers are commonly not fitted into the bogies of urban and sub-
urban railway vehicles. This is due to the fact that, the primary stiffness (k1)
being relatively high (due to the high ratio payload/tare mass), the pitching
of the bogie is already limited by the primary stiffness itself and dampers are
not necessarily needed to limit the dynamic pitching oscillations. However,
primary dampers can be adopted for reducing track wear.

Setting the primary damping to zero, i.e. r1 = 0, the standard deviations
(10.25), (10.26), (10.27), (10.28) assume relatively simple expressions

– Force on the axle-box
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σFz
= 2π2v3/2

√
Ab·√

k2
1m2

1m2
2+k1(m1+m2)

2[r2
2(m1+m2)−2k2m1m2]+k2(m1+m2)

2[k2(m1+m2)
2+k1m2

2]
r2k1m2

2

(10.29)
– Body acceleration

σz̈2 = 2π2v3/2
√
Ab

√
r22k1 (m1 +m2) + k2

2 (m1 +m2)
2 + k1k2m2

2

r2k1m2
2

(10.30)

– Secondary stroke

σz2−z1 = 2π2v3/2
√
Ab

√
k2 (m1 +m2)

2 + k1m2
2

r2k1k2
(10.31)

The primary stroke is obviously σz1−ξ = σFz
/k1.

10.1.5 Simplified Formulae Using the 1S-PSD (Eq. (10.7))

Equations (10.29)–(10.31) can be simplified by neglecting those terms which
vanish when parameter values refer to actual railway vehicles1:

σFz
= B

√
k1m2

1

r2
(1 + βµ2 + β2µ2) +m1r2(3 + µ) (10.32)

σz̈2 = B
√
r2
m2

+
k2
r2

(10.33)

σz2−z1 = B

√
m2

2

r2k2
(10.34)

A comparison has been made between the standard deviations σz̈2 , σz2−z1 , σFz

computed by Eqs. (10.29)–(10.31) and the corresponding standard deviations
σz̈2 , σz2−z1 , σFz

computed by Eqs. (10.32)–(10.34) (vehicle parameters in
Table 10.1.). The absolute value of the error was 0.49% for the force on the
axle-box (Eq. (10.32)), 1.7% for the body vertical acceleration (Eq. (10.33)),
0.37% for the secondary stroke (Eq. (10.34)).

1For actual railway vehicles usually one finds

5 < µ < 10, 0.01 < β < 0.2

with µ = m2/m1 and β = k2/k1. Assuming that (1+µ)/µ ≈ 1 and
√

β + 1 ≈ 1
Eqs. (10.29)–(10.31) and Eqs. (10.39)–(10.41) can be simplified
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Table 10.1. Data of the reference railway vehicle taken into consideration (data
from [76])

m1r 773 kg
m2r 5,217 kg
k1r 28,240,000 N/m
k2r 162,000 N/m
r1r 21,890 Ns/m
r2r 14,600 Ns/m

10.1.6 Complete Formulae Using the 2S-PSD (Eq. (10.8))

The analytical expressions of the standard deviations of the force on the
axle-box (Fz), of the vertical acceleration of the body (z̈2), of the (vertical)
relative displacement body–bogie have been derived by solving analytically
Eq. (10.23). They are not reported here because of their extreme complexity.
In this case it is more convenient to solve Eq. (10.23) numerically. It has to
be noticed that, due to the employed spectrum, contrary to what happens in
Eqs. (10.25)–(10.28), the speed v is mixed among the parameters Av, ωc, mi,
ri, ki. According to this formulation the optimal suspension design variables
do depend on vehicle speed v.

σFz
= l1DS (v,Av, ωc,m1,m2, r1, k1, r2, k2) (10.35)

σz̈2 = l2DS (v,Av, ωc,m1,m2, r1, k1, r2, k2) (10.36)

σz2−z1 = l3DS (v,Av, ωc,m1,m2, r1, k1, r2, k2) (10.37)

σz1−ξ = l4DS (v,Av, ωc,m1,m2, r1, k1, r2, k2) (10.38)

10.1.7 Formulae for Vanishing Primary Damping
Using the 2S-PSD (Eq. (10.8))

If the primary damping vanishes (i.e. r1 = 0) the standard deviations in
Eqs. (10.35)–(10.38) assume relatively simple expressions

– Force on the axle-box

σFz
= ωc

√
π v Av

√
nv1

dv1
(10.39)

nv1 = k2
1m

2
1m

2
2

(
k2 + r2ωc +m2ω

2
c

)
+ k1 (m1 +m2) (−2k2m1m2+

m1r
2
2 +m2r

2
2

) (
k2m1 + k2m2 +m1r2ωc +m2r2ωc +m1m2ω

2
c

)
+

+k2
2 (m1 +m2)

2 (
k2m

2
1 + 2k2m1m2 + k1m2

2 + k2m2
2+

m2
1r2ωc + 2m1m2r2ωc +m2

2r2ωc +m2
1m2ω

2
c +m1m

2
2ω

2
c

)
dv1 = 2m2

2r2
(
k1k2 + k1r2ωc + k2m1ω

2
c + k1m2ω

2
c + k2m2ω

2
c+

m1r2ω
3
c +m2r2ω

3
c +m1m2ω

4
c

)
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– Body acceleration

σz̈2 = ωc

√
π v Av

√
nv2

dv2
(10.40)

nv2 =
[
k1r

2
2 (k2m1 + k2m2 +m1r2ωc + r2m2ωc+

m1m2ω
2
c

)
+ k2

2

(
k2m

2
1 + 2k2m1m2 + k1m2

2 + k2m2
2+

m2
1r2ωc + 2m1m2r2ωc +m2

2r2ωc +m2
1m2ω

2
c +m2

2m1ω
2
c

)]
dv2 =

[
2m2

2r2
(
k1k2 + k1r2ωc + k2m1ω

2
c + k1m2ω

2
c + k2m2ω

2
c+

m1r2ω
3
c +m2r2ω

3
c +m1m2ω

4
c

)]
– Secondary stroke

σz2−z1 = ωc

√
π v Av

√
nv3

dv3
(10.41)

nv3 = k2m2
1 + 2k2m1m2 + k1m2

2 + k2m2
2 +m2

1r2ωc+
2m1m2r2ωc +m2

2r2ωc +m2
1m2ω

2
c +m1m

2
2ω

2
c

dv3 = 2r2
(
k1k2 + k1r2ωc + k2m1ω

2
c + k1m2ω

2
c + k2m2ω

2
c+

m1r2ω
3
c +m2r2ω

3
c +m1m2ω

4
c

)
The primary stroke is obviously σz1−ξ = σFz

/k1.

10.1.8 Simplified Formulae Using the 2S-PSD (Eq. (10.8))

Equations (10.39)–(10.41) can be simplified by neglecting those terms which
vanish when parameter values refer to actual railway vehicles (see footnote 1).

– Force on the axle-box

σFz
= ωc

√
π v Av

√
na1

da1
(10.42)

na1 = k2
1m

2
1

(
β k1 + r2ωc +m1µ ω

2
c +

1
k1m1

(
−2β k1m1 + r22

)
·(

β k1µ+ r2ωcµ+m1µ ω
2
c

))
da1 = 2r2

(
β k2

1 + k1r2ωc +m1k1ω
2
cµ+ r2m1ω

3
cµ+m2

1µ ω
4
c

)
– Body acceleration

σz̈2 = ωc

√
π v Av ·√√√√ k1r2

m1µ (β k1 + r2ωc +m1ω2
c ) + β2 k2

1
r2

(k1 + r2ωc +m1ω2
c )

2 (β k2
1 + k1r2ωc +m1k1ω2

cµ+ r2m1ω3
cµ+m2

1µ ω
4
c )

(10.43)
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– Secondary stroke

σz2−z1 = ωc

√
π v Av ·√

m2
1µ

2 (k1 + r2ωc +m1ω2
c )

2r2 (β k2
1 + k1r2ωc +m1k1ω2

cµ+ r2m1ω3
cµ+m2

1µ ω
4
c )

(10.44)

The primary stroke is obviously σz1−ξ = σFz
/k1.

A comparison has been made between the σz̈2 , σz2−z1 , σFz
computed by

Eqs. (10.39)–(10.41) and the σz̈2 , σz2−z1 , σFz
computed by Eqs. (10.42)–

(10.44) (vehicle parameters in Table 10.1.). In the vehicle speed range 20–100
m/s, the error varies from −1.5 to 0.3% for the force on the axle-box (Eq.
(10.42)), from −2.2 to 1.2% for the body vertical acceleration (Eq. (10.43)),
from −0.2 to −1.4 for the secondary stroke (Eq. (10.44)).

10.2 Validation

In order to validate the simple model described in Sect. 10.1, a comparison
with the data presented in [76] is performed. In [76] a model for the study
of the vertical dynamics of railway vehicles has been proposed. The model
is rather complex as it accounts for the heave, pitch and roll of body and
bogies. Vehicle body bending and torsional modes of vibration have been
also included. From [76] it is argued that the output model responses were
validated experimentally with satisfactory results. The data of the vehicle
studied in [76] are reported in Table 10.1.

In [76] the adopted PSD of the stochastic process defining track irregularity
in the vertical plane (2S-PSD, see Eq. (10.8)) is

PSDξ (ω) =
Avω

2
cv

ω2 (ω2 + ω2
c )

=
AvΩ

2
cv

3

ω2 (ω2 + v2Ω2
c )

(10.45)

where Av=0.035 cm2 rad/m is the track quality coefficient and ΩC = 0.99
rad/m is the break wave number. PSDξ (ω) is plotted in Fig. 10.2.

In [76] an in-depth sensitivity analysis was performed referring to the stan-
dard deviations of body acceleration and of secondary stroke. Unfortunately,
no data are available on primary stroke and force on the axle-box.

The following validation has been performed by considering Eqs. (10.36)
and (10.37) which refer to the model shown in Fig. 10.1 and described in
Sect. 10.1. The adopted PSD of the track irregularity is given by Eq. (10.45).
A steady speed v equal to 177 km/h has been considered.

10.2.1 Primary Stiffness

In [76] the primary suspension stiffness k1 was at first increased by a fac-
tor 4, then decreased by the same factor relatively to the reference value
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Table 10.2. Comparison between computed results and data referring to an actual
vehicle (adapted from [76])

k1 σz̈2(m/s2), σz̈2(m/s2), σz2−z1(mm), σz2−z1(mm),
from [76] Eq. (10.36) from [76] Eq. (10.37)

k1r/4 0.56 0.62 9.6 9.8
k1r 0.72 0.68 9.5 9.6
4k1r 0.67 0.69 9.5 9.5

Variation of the primary stiffness k1 (k1r is reported in Table 10.1)

(Table 10.1). In Table 10.2 the values of standard deviations σz̈2 and σz2−z1

computed by means of Eqs. (10.36) and (10.37) are compared with the corre-
sponding values reported in [76]. Body acceleration is substantially unaffected
by primary stiffness variation: The error given by the model with respect to
the corresponding data in [76] is always less than 10%. For the secondary
stroke the error is always less than 2%.

10.2.2 Natural Frequency

The natural frequencies of the body rigid modes (heave, pitch and roll) were
varied in [76] without changing their damping ratios. This was achieved by
suitable variations in the secondary suspension stiffness, k2 and damping
r2. The effect of halving and doubling the reference natural frequencies was
investigated. The results are reported in Table 10.3. The effect is relevant both
on body acceleration and on secondary suspension stroke. Again the simple
model is able to give the responses of the reference vehicle with a limited
error.

10.2.3 Damping Ratio

The effect of the secondary damping on body acceleration and secondary
stroke was studied by varying the coefficient r2, such that body’s heave
damping ratio ς = r2/

(
2
√
k2m2

)
was increased from the reference value (0.25)

Table 10.3. Effect of the vehicle body natural frequency

Natural fh k2 r2 σz̈2 (m/s2), σz̈2 (m/s2), σz2−z1 (mm), σz2−z1 (mm),

frequency (Hz) (N/m) (Ns/m) from [76] Eq. (10.36) from [76] Eq. (10.37)

Halved 0.445 162,000/4 14,600/2 0.39 0.41 15.1 13.8

Base 0.885 162,000 14,600 0.72 0.68 9.5 9.6

Double 1.769 162,000·4 14,600·2 1.17 1.27 5.3 6.6

Comparison between computed results and data referring to an actual vehicle
(adapted from [76])



276 10 Optimal Design of the Suspension System of Railway Vehicles

Table 10.4. Comparison between computed results and data referring to an actual
vehicle (adapted from [76])

Damping ratio ς r2 σz̈2 (m/s2), σz̈2 (m/s2), σz2−z1 (mm), σz2−z1 (mm),
(Ns/m) from [76] Eq. (10.33) from [76] Eq. (10.34)

r2 0.250 14,600 0.72 0.68 9.5 9.6
r2·1.5 0.375 14,600 · 1.5 0.85 0.81 7.5 7.7
r2·2 0.50 14,600 · 2 1.02 0.96 6.4 6.6

r2·2
√

2 0.707 14,600 · 2
√

2 1.20 1.19 5.4 5.5

Variation of the secondary suspension damping r2 (r2r is reported in Table 10.1)

to 0.375, 0.50 and 0.707 (Table 10.4) (ς is defined as if k1 were infinity). Refer-
ring to the vertical body acceleration, the error given by the model is always
less than 6%. For the secondary stroke the error is always less than 3%.

10.3 Parameter Sensitivity Analysis

The dynamic response of the railway vehicle system model in Fig. 10.1 is
analysed on the basis of Eqs. (10.29)–(10.31) and Eqs. (10.39)–(10.41). The
same analysis (not reported here for sake of space) has been performed by
means of Eqs. (10.32)–(10.34) and Eqs. (10.42)–(10.44). The discrepancies
were negligible.

A typical railway passenger vehicle for intercity service is taken into
consideration (Table 10.1). The results of the parameter sensitivity analysis
are shown in Figs. 10.3–10.5. The parameters are varied within wide ranges.
The data are presented in non-dimensional form, i.e. the standard deviation of
interest σ is divided by the corresponding one (σr) computed by considering
the parameters at their reference values (see Table 10.1)

σFzr = σFz
(m1r,m2r, r1r, r2r, k1r, k2r) (10.46)

σz̈2r = σz̈2(m1r,m2r, r1r, r2r, k1r, k2r) (10.47)

σz2−z1r = σz2−z1(m1r,m2r, r1r, r2r, k1r, k2r) (10.48)

The non-dimensional standard deviations derived from Eqs. (10.29)–(10.31)
do not depend on vehicle speed. The opposite occurs for the non-dimensional
standard deviations derived from Eqs. (10.39)–(10.41) (referring to 2S-PSD,
Eq. (10.8)). For this reason the last non-dimensional standard deviations are
analysed at two different vehicle speeds, low speed (10 m/s) and high speed
(100 m/s).

10.3.1 Standard Deviation of Force on Axle-box

Figure 10.3 shows that
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Fig. 10.3. σFz /σFzr, non-dimensional standard deviation of force on the axle-box
as function of model parameters. Data of the reference vehicle in Table 10.1. Each
diagram has been obtained by varying one single parameter, the other ones being
constant and equal to those of the reference vehicle

– σFz
depends almost linearly on the primary suspension stiffness k1,

– σFz
does not depend significantly on the secondary suspension stiffness k2,

– σFz
depends almost linearly on m1 (non-linear at start),

– σFz
does not depend significantly on m2 if the excitation is given by Eq.

(10.8) (2S-PSD),
– the secondary suspension damping r2 has an important influence on the

standard deviation σFz
.

Some of the above considerations can be derived by a simple inspection of
Eqs. (10.32) and (10.42).

10.3.2 Standard Deviation of Body Acceleration

By inspection of Fig. 10.4 one may notice that

– k1 does not influence significantly σz̈2 ,
– m1 does not influence significantly σz̈2 if the excitation is given by Eq. (10.7)

(1S-PSD),
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Fig. 10.4. σz̈2/σz̈2r, non-dimensional standard deviation of body acceleration as
function of model parameters. Data of the reference vehicle in Table 10.1. Each
diagram has been obtained by varying one single parameter, the other ones being
constant and equal to those of the reference vehicle

– σz̈2 may decrease strongly as m2 increases,
– the parameters of secondary suspension (k2, r2) have a remarkable

influence on the σz̈2 . For a 2S-PSD excitation the effect of an increase
of the secondary suspension damping r2 is positive at low speed but nega-
tive at high speed. For a 1S-PSD excitation the effect of an increase of the
secondary suspension damping r2 is positive at any speed.

Some of the above considerations can be derived by a simple inspection of
Eqs. (10.33) and (10.43).

10.3.3 Standard Deviation of Secondary Stroke

By inspection of Fig. 10.5, one may notice that

– σz2−z1 is not influenced by primary suspension stiffness k1,
– the stiffness of the secondary suspension k2 has a remarkable influence on

the σz2−z1 . For a 2S-PSD excitation the effect of a variation of k2 is less
relevant increasing the vehicle speed,
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– σz2−z1 is not influenced significantly by m1,
– σz2−z1 depends almost linearly onm2 considering a 1S-PSD excitation. The

relationship is non-linear considering the 2S-PSD excitation,
– σz2−z1 is influenced remarkably by secondary suspension damping r2.

Some of the above considerations can be derived by a simple inspection of
Eqs. (10.34) and (10.44).

10.3.4 Optimal Secondary Suspension Design Variables

The constraints method introduced in Sect. 3.7.1 has been used to optimise
the design variables of the secondary suspension of a railway vehicle described
by the simple system model in Fig. 10.1. The design variables to be optimised
were the stiffness k2 and the damping r2 of the secondary suspension, the
objective functions were σz̈2and σz2−z1 .

Fig. 10.5. σz2−z1/σz2−z1r, non–dimensional standard deviation of secondary stroke
as function of model parameters. Data of the reference vehicle in Table 10.1. Each
diagram has been obtained by varying one single parameter, the other ones being
constant and equal to those of the reference vehicle.
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Derivation of Optimal σz̈2 , σz2−z1 and Optimal k2, r2 Using
1S-PSD

The objective functions are defined by Eqs. (10.33) and (10.34). The optimi-
sation procedure based on constraints method and described in Sect. 3.7.1 is
applied as follows:

a) from Eq. (10.34) the expression of r2 as function of σz2−z1 and k2 is derived

r2 =
B2m2

2

k2 · σ2
z2−z1

(10.49)

b) the expression of σz̈2 as function of r2 and σz2−z1 by substituting the
expression of r2 (Eq. (10.49)) in Eq. (10.33)

σz̈2 = B

√
B2m2

k2σ2
z2−z1

+
k2
2σ

2
z2−z1

B2m2
2

= B
√

(·) (10.50)

c) the following derivative equal to zero gives the stationary solution

dσz̈2

dk2
= B

d
√

(·)
dk2

= B
1

2
√

(·)
d(·)
dk2

= 0 (10.51)

the term 1

2
√

(·)
is always greater than zero, so solving with respect to k2

− B2m2

σ2
z2−z1

k2
2

+ 2
k2
B2m2

2

σ2
z2−z1

= 0 (10.52)

thus

k2 = 3

√
B4m3

2

2σ4
z2−z1

(10.53)

d) finally, by substituting Eq. (10.53) in Eq. (10.49) and Eq. (10.33), the
expression of σz̈2 as function of σz2−z1 is obtained

σz̈2 = 6

√
27
4

B8

σ2
z2−z1

(10.54)

this equation defines the relationship between the standard deviation of
the acceleration of the body and the standard deviation of the secondary
suspension stroke when both the standard deviations are minimised.

e) The equation which defines the optimal design variable set is

r2 = r2ott =
√

2k2m2 (10.55)
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For the system composed by the mass m2 , the damper r2, and the spring k2
(mass m1 fixed), the critical damping may be defined as

r2crit =
√

4k2m2 (10.56)

it follows
r2ott =

1√
2
· r2crit (10.57)

By setting the stiffness and the damping of the secondary suspension as indi-
cated above, the best compromise between the standard deviation of the body
acceleration and the standard deviation of the secondary stroke is obtained.

Derivation of Optimal σz̈2 , σz2−z1 and Optimal k2, r2 Using 2S-PS

On the basis of Eqs. (10.40) and (10.41), a numerical search has been under-
taken to find both the optimal set σz̈2 ,σz2−z1 and the optimal set k2, r2. The
corresponding plots are reported in Figs. 10.6 and 10.7, respectively.

¨¨

Fig. 10.6. Optimal σz̈2 and optimal σz2−z1 plotted in non-dimensional form. The
curves are obtained by varying k2 and r2, the points highlighted by using special
symbols (triangle, square, . . . .) refer to the points in Fig. 10.7. Vehicle parameters
in Table 10.1.
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Optimal σz̈2 , σz2−z1 and Optimal k2, r2

Both for the 1S-PSD (Eqs. (10.54), (10.55)) and for the 2S-PSD excitations,
optimal σz̈2 , σz2−z1and optimal k2, r2 are plotted in non-dimensional form
in Figs. 10.6 and 10.7, respectively. To obtain non-dimensional values, refer-
ence is made to a railway passenger vehicle whose relevant parameters are
reported in Table 10.1. σz̈2 increases when σz2−z1 decreases, i.e. these two
standard deviations are conflicting. The designer should choose, on the ba-
sis of given technical specifications, the desired compromise between σz̈2 and
σz2−z1 by selecting one point lying on the curves plotted in Fig. 10.6, e.g. one
of those marked with special symbols (triangle, square, . . . ). Having chosen
the preferred compromise between σz̈2and σz2−z1 , the corresponding values of
the design variables k2, r2 are uniquely defined. This correspondence between
the points of the curves plotted in the σz̈2 , σz2−z1 plane (Fig. 10.6) and the
points of the curves in the k2, r2 plane (Fig. 10.7) are highlighted by special
symbols in Figs. 10.6 and 10.7. By inspection of Fig. 10.6 one may notice
that for the 1S-PSD the non-dimensional σz̈2 and σz2−z1 do not depend on
vehicle speed. This is consequence of the fact that for this excitation spec-
trum, the speed parameter v is not mixed with those of the vehicle system k2,
r2, . . . (see Sect. 10.1). On the contrary, for the 2S-PSD, which is very fre-
quently found in actual applications, the non-dimensional σz̈2and σz2−z1 do
depend on vehicle speed (see Sect. 10.1). This suggests that vehicle suspension
design variables should vary with vehicle speed in order to keep the optimal-
ity conditions. This is technically easily achievable and hopefully in the future
adaptive suspensions could be adopted for railway vehicles.

Fig. 10.7. Optimal k2 and optimal r2 plotted in non-dimensional form for min-
imising σz̈2 and σz2−z1 , the points highlighted by using special symbols (triangle,
square, . . . .) refer to the points in Fig. 10.6. Vehicle parameters in Table 10.1.
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In Fig. 10.7 the relationship between optimal stiffness k2 and optimal
damping r2 is highlighted. To keep the best compromise between σz̈2 and
σz2−z1 , the damping r2 has to increase with the stiffness k2, both for the 1S-
PSD and for the 2S-PSD excitation. The rate of change of r2 with respect to
k2 does not depend on vehicle speed for the 1S-PSD and varies considerably
with the vehicle speed for the 2S-PSD excitation.

10.4 Conclusion

Analytical formulae have been derived in order to estimate the response of
railway vehicles to random excitations generated by the vertical track irregu-
larity. The accuracy of the derived formulae has been assessed by comparison
with data presented in the literature. The analytical formulae should estimate
with reasonable accuracy the dynamic behaviour of an actual railway vehicle
running on rigid track. Referring to the performed validation, the sensitivity of
body acceleration and secondary stroke to vehicle suspension design variables
(primary and secondary stiffness, secondary damping) is captured satisfacto-
rily by the analytical formulae. It has been found that analytical formulae (in
complete form) predicted the standard deviations of both body acceleration
and secondary stroke with an error always less than 10%, and often less than
2%. On the basis of the validated analytical formulae, a theoretical parameter
sensitivity analysis has been performed with reference to the standard devia-
tions of force on the axle-box, of body acceleration, of secondary suspension
stroke. All these standard deviations are influenced by secondary suspension
design variables. Particularly, the secondary damping affects significantly the
body acceleration. A general result (confirmed by common experience) is the
strong influence of the type of track irregularity on all the considered standard
deviations. The bogie mass and the primary stiffness do not seem to influence
considerably the secondary stroke.

By using the derived analytical formulae in the second part of the chapter,
the constraints method has been applied to find the best trade-off between
conflicting objective functions such as σz̈2 (standard deviation of the body ac-
celeration) and σz2−z1(the standard deviation of the secondary stroke). The
design variables of the secondary suspension (stiffness k2 and damping r2)
of a railway vehicle have been optimised with the aim of minimising both
σz̈2 and σz2−z1 . Simple analytical formulae have been derived for the optimal
σz̈2 ,σz2−z1 and correspondingly optimal k2, r2. Optimal σz̈2 increases when
both optimal k2 and optimal r2 increase, the opposite occurs for optimal
σz2−z1 . If the excitation is defined by the 1S-PSD the optimal secondary sus-
pension settings do not depend on vehicle speed. The opposite occurs for the
more realistic 2S-PSD excitation, thus it seems reasonable to recommend, for
future research, comprehensive studies on the application of adaptive stiffness
and damping elements to railway vehicle secondary suspension systems.




