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Introduction to the Optimal Design
of Complex Mechanical Systems

When a designer is able to simulate the physical behaviour of a system by
means of a validated mathematical model, the subsequent task is that of defin-
ing the system model parameters (also called design variables, see Chap. 2) in
order to obtain the desired system performances (also called objective func-
tions, see Chap. 2).

Often such performances are conflicting, i.e. improving one implies the
worsening of another, so a compromise has to be reached.

When the system model parameters are more than four or five and the
system’s objective functions are more than five or six, both the definition of
parameters and the balancing of conflicting performances may become cum-
bersome or even impossible unless a special approach is adopted.

This Chapter will deal with the above-stated problem, i.e. the definition of
system model parameters of complex systems, when conflicting performances
have to be balanced. The design of complex systems will be accomplished
by exploiting multi-objective programming (MOP), an optimisation theory
pertaining to operational research (OR).

1.1 On the Optimal Design of Complex Systems

In order to introduce to the reader what is meant exactly by optimisation
of a complex system, let us resort to an example. Let us imagine that a
cantilever has to be optimally designed1. The example actually deals with a
simple system, however, in this apparently simple problem, the main features
pertaining to the optimisation of complex systems are present.

The cantilever, shown in Fig. 1.1, has a rectangular cross-section and a
force acts at the free end. Let us assume that the optimisation problem to be
solved is
1An effective design process should always produce an optimal solution, so optimi-

sation and design are reputed to be the same process by the authors



4 1 Introduction to the Optimal Design of Complex Mechanical Systems

Fig. 1.1. Cantilever whose rectangular cross-section is to be defined in order to
minimise both the cantilever mass and the cantilever deflection at the free end

• finding the values of the design variables (length b and length h) defining
the cantilever cross-section2

in order to

• minimise the cantilever mass
• minimise the cantilever deflection at its free end,

subject to the following conditions

• the maximum stress at the fixed end must be little than (or equal to) the
admissible stress

• elastic stability must be guaranteed (i.e. buckling must be avoided).

A designer should chose the values defining the cross-section of the can-
tilever in order to get it as light and stiff as possible, avoiding both a failure
(due to too high stress) and elastic instability.

2b and h may vary, respectively, within two well-defined ranges
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In mathematical form, the above optimisation problem may be stated as
follows:

� Given
l the cantilever length (m)
b the beam cross-section width (m)
h the beam cross-section height (m)
J = 1

12bh
3, the flexural moment of inertia of the section

(n–n axis) (m4)
F the force applied at the cantilever free end (see Fig. 1.1) (N)
σE the material yield stress (MPa)
η safety coefficient (≥1)
σadm = σE/η the admissible stress at the cantilever fixed end (MPa)
E the material modulus of elasticity (Young’s modulus) (MPa)
G the material modulus of tangential elasticity (MPa)
ρ the material density (kg/m3)

� and defining
m = ρbhl the cantilever mass (kg)

y =
1
3
Fl3

EJ
= 4

Fl3

Ebh3
the deflection at the free end due to

load F (m)

σmax = 6
Fl

bh2
the maximum stress located at the top

of the cross-section
at the fixed end of the cantilever (MPa)

Fcr =
k1b

3h

l2

√(
1 − k2

b

h

)
EG the critical load (see [270]) (N)

� find b and h such that

bmin ≤ b ≤ bmax

hmin ≤ h ≤ hmax

� and such that

min
(
m(b, h)
y(b, h)

)
=
(
ρbhl

4 Fl3

Ebh3

)
(1.1)

� subject to

σmax = 6
Fl

bh2
≤ σadm = σE/η (1.2)

F < Fcr =
k1b

3h

l2

√(
1 − k2

b

h

)
EG (1.3)
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Fig. 1.2. (a) The cantilever cross-section width b and height h that are considered
for the optimisation. (b) Cantilever mass m(b, h) and cantilever deflection at the
free end y(b, h). The manifold in b accounts for the constraints on the maximum
stress (1.2) and on the critical load (1.3). Data (symbols referring to (1.2) , (1.3),
and Fig. 1.1): bmin = 0.001 m, bmax = 0.020 m, hmin = 0.001 m, hmax = 0.200 m,
ρ = 2, 700 kg/m3 E = 70, 000 MPa, G = 27, 000 MPa, σE = 160MPa, η = 1,
F = 1, 000 N, l = 1 m, k1 = 0.669, k2 = 0.63

The optimisation problem aims to minimise3 the objective functions
(m(b, h), y(b, h)) by selecting properly the design variables4 (b, h) and by
satisfying the constraints on Fcr and σadm.

In order to solve the problem, one may compute m(b, h) and y(b, h) as
function of all possible combinations of b and h.

This is a naive but reasonable approach. In other words, if a couple of val-
ues b, h are selected, then, correspondingly, a couple of values m(b, h), y(b, h)
can be computed. The values of b and h have to be varied, respectively, within
the prescribed ranges bmin ≤ b ≤ bmax and hmin ≤ h ≤ hmax. The inequali-
ties (1.2) and (1.3) have to be evaluated for all possible combinations of b and
h: if the inequalities are satisfied, the couple of values m(b, h), y(b, h) is kept,
otherwise it is discarded.

In Fig. 1.2 the results of such a computation are shown. At one point
in the rectangle on the plane b–h corresponds a point in the manifold on the
plane y–m. The rectangular manifold on the plane b–h is transformed into the
3If, for a generic optimisation problem, the objective functions were to be max-

imised, changing their signs would transform the maximisation problem into a
minimisation one, so the presented example dealing with minimisation is quite
general

4b and h are precisely parameters, with the property that they have to be varied,
thus they are variable parameters, which is a nonsense as parameters do have fixed
values. To avoid misunderstanding these variable parameters are named design
variables to distinguish them from actual parameters having fixed values
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Fig. 1.3. Definition of the Pareto-optimal set in the objective functions domain.
Data in Fig. 1.2

manifold on the plane y–m. In other words, a transformation is established
between the domain of design variables and the domain of objective functions.

As all the possible combinations of design variables b, h have been used
to generate m(b, h) y(b, h) (having verified that m(b, h), y(b, h) do satisfy the
constraints (1.2) and (1.3)), the question is now how to find the values of b, h
which minimise concurrently the mass m and the deflection y at the free end
of the cantilever.

The definition of the solution of the addressed optimisation problem is not
straightforward and requires a special reasoning.

Let us consider the couple of values mA(bA, hA), yA(bA, hA) referring to
point A in Fig. 1.3. The couple of values bA, hA defines a cantilever cross-
section which should not be considered by a designer, that is, the cantilever
A is a wrong solution for the addressed optimisation problem.

The reason for this is readily explained. Let us consider point B(mB(bB ,
hB), yB(bB , hB)). It is mA(bA, hA) = mB(bB , hB) but yB(bB , hB) < yA(bA,
hA): the two cantilevers have the same mass m but the deflection of the can-
tilever B is smaller than that of the cantilever A. Thus, the cantilever B is bet-
ter than cantilever A. Similarly, for cantilever C, mC(bC , hC) < mA(bA, hA)
and yA(bA, hA) = yC(bC , hC). Also the cantilever C is better than cantilever
A because they have the same deflection but the mass of the cantilever C is
smaller than that of the cantilever A. Point A is said to be dominated by B
and C, i.e. B and C dominate A. By inspection of Fig. 1.3, A is also domi-
nated by all the design solutions between B and C on the bold line, i.e. the
solutions on the bold line between B and C are better at least in one objective
function than A.

Given a (wrong) solution A, there exist (right) solutions which are better
than A at least in one objective function. All the solutions corresponding to
points in Fig. 1.3 which do not lie on the bold line (defined by the two end
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points ymin and mmin) are wrong solutions to be discarded by a designer.
Conversely, the good or optimal solutions are those and only those which are
represented by points lying on the said bold line, the set of these solutions is
called Pareto-optimal set5.

The task of the designer is that of choosing a solution only from the Pareto-
optimal set.

It is evident that the designer can choose among an unlimited number of
solutions, i.e. the solution is not unique.

This is due to the fact that the addressed optimisation problem required
to minimise concurrently m(b, h) and y(b, h), i.e. the minimisation of a vector
function minimisation of a vector function had to be performed.

The minimisation of a vector function is an issue typical in the optimisation
of complex systems. Presently, it does not seem to be very well known by
designers, even if the theory was developed more than one century ago. On
the contrary, the minimisation of a scalar function6 of one or more variables
is generally reputed as a relatively simple task.

In order to explain what does it mean ‘minimising a vector function’, let us
start to minimise a scalar function, i.e. let us separately minimise m(b, h) and
y(b, h). These two scalar functions are obviously to be minimised by taking
into account that constraints (1.2) and (1.3), i.e. a constrained minimisation
has to be performed.

If only one objective function was considered, e.g. m(b, h), the problem
could be formulated mathematically as follows:

• Find b and h
• such that

bmin ≤ b ≤ bmax

hmin ≤ h ≤ hmax

• and such that

minm(b, h) = min ρbhl

� subject to

σmax = 6
Fl

bh2
≤ σadm = σE/η

F < Fcr =
k1b

3h

l2

√(
1 − k2

b

h

)
EG

5Vilfredo Pareto (1848–1923) was an Italian engineer, who later became a famous
sociologist and economist at the University of Lousanne

6for example, minimising only m(b, h) or only y(b, h))
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The solution to this optimisation problem in which only one objective
function is to be minimised can be denoted by

mmmin
(bmmin

, hmmin
), ymmin

(bmmin
, hmmin

)

Similarly, by minimising y(b, h) the solution can be written as

mymin
(bymin

, hymin
), yymin

(bymin
, hymin

)

It has to be noticed that if a scalar function has to be minimised, the
solution is unique

minm(b, h) → mmmin
(bmmin

, hmmin
), ymmin

(bmmin
, hmmin

) → 1 solution

min y(b, h) → mymin
(bymin

, hymin
), yymin

(bymin
, hymin

) → 1 solution

but, if a vector function has to be minimised, the solution is not unique

min
(
m(b, h)
y(b, h)

)
→ Pareto-optimal set → ∞1optimal solutions

The minimisation of a vector function involves the definition of solutions.
So the concurrent optimisation of more than two objective functions involves
finding infinite solutions.

This occurrence is very important and may be reputed as the key issue of
multi-objective programming.

The Pareto-optimal set is the set which contains all the infinite solutions
coming from the minimisation of a vector function.

The designer has to select one solution from the Pareto-optimal set, and
this selection is inherently somewhat subjective. The Pareto-optimal set does
contain (by definition) all the best compromise solutions between conflicting
objective functions. All of the Pareto-optimal solutions do have the status of
the best compromise solutions. The degree or level of the compromise varies
in a fuzzy way among solutions. Selecting the desired level of the compromise
is the primary or ultimate task of the designer.

The designer has to act as a decision maker, actually, by selecting a solution
from the Pareto-optimal set, he decides his desired best compromise between
conflicting objective functions.

In our example, the designer has to chose (from the Pareto-optimal set,
and from this set only) the preferred couple of values m(b, h), y(b, h). It is
clear that the designer will disregard all of the so-called dominated solutions
(the solutions corresponding to points lying inside the manifold in Fig. 1.2
(b)), and will chose one solution from the dominating ones (belonging to the
Pareto-set).
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Fig. 1.4. Definition of the utopia or ideal point U (coordinates are mmin, ymin). The
objective functions (m, y) referring to point D cannot be attained by the considered
system. Data in Fig. 1.2

In the literature [59, 238], many attempts have been made to help the
designer to make a choice. The results are often questionable, mainly because
it is assumed that the designer knows perfectly the desired compromise to be
reached among conflicting objective functions. This is not always the case, or
better, in the design of complex systems, it is never the case.

For example, even in our case, it is not easy to answer the questions how
small the deflection should be and how light the cantilever should be? It is a
matter which might involve additional considerations which were not taken
into account at the stage of problem formulation.

What actually happens during the optimisation of a complex system is
that the designer, before making his choice, acquires an in–depth knowledge
of the system performances under investigation. Particularly, he understands
what are the limit performances of the system.

For example, in our case, he will realise that an objective function defined
by pointD in Fig. 1.4 will never be attained, unless the system is changed. Also
ymin and mmin are important boundaries to the performances (i.e. objective
functions). These boundaries, depending on the problem under investigation,
could be changed by varying the design variable ranges (i.e. the ranges into
which the design variables are varied during the optimisation process).

An important reference point is the utopia or ideal point. In our example,
it is the point whose coordinates are (mmin, ymin). Obviously, a cantilever
having such performances (i.e. objective functions) does not exist, however
if it existed, it would be the best solution. The utopia point can be used to
choose Pareto-optimal solutions. Empirical reasoning suggests to choose those
Pareto-optimal solutions which are closer to the utopia point.

If the system is complex (tenth of objective functions and tenth of design
variables) the knowledge and understanding process (necessary for an effective
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(a) (b)

Fig. 1.5. The two Pareto-optimal sets defined, respectively, in the design variable
domain (a) and in the objective function domain (b). Data in Fig. 1.2

optimisation) may be heavy and time-consuming. Sometimes the time for op-
timising a complex system may require as much time as that which was spent
to develop the validated mathematical model of the system under investiga-
tion. When a designer has at his disposal a validated mathematical model of
a system, he might be only half way (or less!) from the complete (optimal)
design of the system.

As the designer has chosen the preferred compromise among conflicting
objective functions by selecting a solution from the Pareto-optimal set, then
the problem is to define or identify the values of the design variables related
to those objective functions. In other words, the designer has to define the
design variables that allow the system to perform according to his wishes.
So we have to consider that, having a set of Pareto-optimal solutions, what we
really want are the values of design variables corresponding to those Pareto-
optimal solutions. It can be useful to represent the Pareto-optimal solutions
both in the objective functions domain or conversely, in the design variables
domain (see Fig. 1.5).

With reference to our optimisation problem, in Fig. 1.5, the Pareto-optimal
set defined in the design variable domain is shown. As it could be expected,
the stiffer cantilever has the highest cross-section height h.
There is a direct relationship between the points of the two Pareto-optimal
sets represented in Fig. 1.5. It is obvious that the designer will always select
the design variables from the Pareto-optimal set represented in Fig. 1.5(a).

The shapes of the cross-sections of three Pareto-optimal cantilevers are
shown in Fig. 1.6. Two of them refer respectively to points mmin and ymin.
The intermediate cantilever in Fig. 1.6 has both the minimum mass m and
the minimum deflection y, according to the definition of the best compromise
addressed before.
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Fig. 1.6. Cross-sections of cantilevers belonging to the Pareto-optimal set. Dimen-
sions in mm. Left : Minimum deflection cantilever (point ymin in Fig. 1.5). Centre:
A generic Pareto-optimal cantilever. Right : Minimum mass cantilever (point mmin

in Fig. 1.5). Data are shown in Fig. 1.2

1.2 Finding the Pareto-optimal Sets

From the above considerations, it is clear that a designer should always try
to find the Pareto-optimal sets (both in the design variable space and in the
objective function space) to obtain the best solutions. The existence of the
Pareto-optimal set is stated by a theorem which guarantees non-empty Pareto-
optimal sets under broad conditions7, holding for the majority of engineering
problems.

In the engineering practice, very rarely problems are solved by resorting to
the computation of the Pareto-optimal sets (Fig. 1.7). In fact, the computa-
tions to find the Pareto-optimal sets are rather involved and time-consuming8.
However, in the last years, the ever-increasing power of computers has allowed
to attempt the optimal design of complex systems on the basis of Pareto
theory.

1.2.1 Exhaustive Method

There are many methods to find Pareto-optimal sets (see Sect. 3.4.1). The
one, called exhaustive method, which has been used in the presented example
referring to the cantilever, is the simplest, but unmanageable due to the huge
7The assumptions are that the design variable space is closed and the objective

functions are continuous functions of the design variables [166]
8This seems the main reason why, presently, very few designers are instructed to

apply the optimisation theory based on Pareto-optimality
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Fig. 1.7. Pareto-optimal cross-section width b and Pareto-optimal cross-section
height h as function of Pareto-optimal deflection y. By these two graphs, the direct
relationship between the points of the two Pareto-optimal sets in Fig. 1.5 can be
obtained

amount of computations required. To explain why the exhaustive method is
unmanageable, let us resort to an example.

Let us imagine that a complex system is defined by 10 design variables
ndv and that 30 objective functions nof have to be taken into account. Each
design variable may assume nv = 10 different values within its definition
range. Let us assume that, given a combination of design variables, the time ts
for performing a simulation to obtain the value of one single objective function
is 1 s. By the exhaustive method, the number of all possible combinations of
design variables values is

ncdv = nndv
v (1.4)

and the total time tt for computing all of the objective functions as function
of all possible combinations of design variables is

tt = tsnofn
ndv
v (1.5)

Substituting the numerical values

tt = tsnofn
ndv
v = 1 × 30 × 1010 s = 3 × 1011 s = 9, 645 years (1.6)

the total time tt for computing all the objective functions is clearly a time
too long to solve an engineering problem (10,000 years seems to be the age of
homo sapiens sapiens). Additionally if, for some practical reason, the number
of design variables should be increased by two (from 10 to 12), the total time
requested for simulations would be 100 times longer

tt = tsnofn
ndv
v = 1× 30× 1010+2 s = 100× 9,645 years = 96,4500 years (1.7)
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These figures are startling and state evidently that an exhaustive construc-
tion9 of the Pareto-optimal set is, in general, not possible, unless the system
under consideration is very simple.

The critical factors in (1.5) are the number of design variables ndv, the
number of values the design variables may assume within their respective de-
finition ranges nv, and the simulation time for computing one single objective
function ts. Often, the number of objective functions nof is not critical.

1.2.2 Uniformly Distributed Sequences and Random Search

There have been conceived many methods (see Sect. 3.4.2) to reduce the
above-addressed total number of simulations nv

ndv , in fact, it is not absolutely
necessary to explore all the possible design configurations to construct the
Pareto-optimal sets.

Sometimes it is sufficient to reduce (to a considerable extent) the number
of simulations to estimate properly the Pareto-optimal set both in the space
of objective functions and in the space of design variables.

For example, in Fig. 1.8(a) a regular grid representing an ordered combi-
nation of design variables values is compared with two different combinations
(centre and right) which are still ordered (in the sense that points are not ran-
domly distributed) but the number of points is greatly reduced with respect
to the previous combination. Points related to the combination in Fig. 1.8
(centre) are somehow ‘equally’ distributed along vertical planes. Every square
of the three vertical planes contains one point. Points along these planes are
somehow ‘well distributed’. For each vertical plane, one out of the three co-
ordinates of a point is fixed. So – in order to reconstruct the relationships
between the design variables and the objective functions – the informative
contribution given by the design variable, which is kept fixed, might be nearly
the same for all points lying on the same plane. This causes a computational
inefficiency as many simulations will be performed at a given (fixed) value of
a design variable.

The distribution in Fig. 1.8(c) overcomes this problem, the information on
the relationships between the objective functions and the design variables is
complete and less redundant. From a mathematical point of view, the above
explanation is very rough, anyway it gives some hint on how and why simu-
lations can be reduced to estimate the Pareto-optimal sets.

Orthogonal arrays and low discrepancy sequences10 are particularly suited
to be used to reduce as much as possible the number of combinations of
design variables used as input data for simulations. These sequences are called
9When all the simulations have been made on the basis of all possible combinations

of design variables, the construction of all Pareto-optimal sets is performed by
selecting the so-called dominating solutions from the dominated ones. This is
mathematically performed by applying a proper definition that will be presented
in Chap. 2

10Proper information on this will be given in Sect. 3.4.2
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(a) (b) (c)

Fig. 1.8. Three different combinations of design variables values. Number of design
variables: ndv = 3. (a) Regular grid, number of values the design variables may
assume within their respective definition ranges: nv = 3, total number of design
variable combinations: 27. (b) Low-discrepancy grid, total number of design vari-
able combinations: 12. (c) Low discrepancy grid, total number of design variable
combinations: 8

uniformly distributed sequences and are said to have low discrepancy as the
points are uniformly distributed in the space. In multi-dimensional spaces (>3
up to 30 or more dimensions), the low discrepancy placement of points is a
peculiar mathematical matter which requires a special theoretical background.

1.2.3 Genetic Algorithms

Another well-known method to optimise complex systems is based on Genetic
algorithms (GAs)(see Sect. 3.4.4). This approach mimics what has happened
during the evolution of living creatures. Living creatures evolve by adapting
as much as possible to the environment. It is assumed that

• individuals have a chance to reproduce themselves according to their fitness
(reproduction step),

• an individual cross its genes with the ones of its partner to generate a new
individual (crossover step),

• some mutation of the genes always acts during the previous crossover
process (mutation step)

The generated individuals start a new three-step generation process (re-
production, crossover, mutation). A number of generations are necessary to
select fit individuals belonging to Pareto-optimal sets.

A design project evolves by adapting as much as possible both to the
designer aims and to the design constraints.

An individual corresponds to a design solution, the genes correspond to a
design variable combination which identifies a single design solution. A direct
mathematical relationship is established between genes and design variables:
the design variables values are expressed in binary form and these binary
strings correspond to the genes. Each design variable can be converted into
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its binary equivalent, and thereby mapped into a fixed length of zeros and
ones.

An individual/design solution is selected for crossover according to its fit-
ness. The fitness is related to the values of the objective functions. If the
fitness is high, the individual/design solution will have more chances to repro-
duce, i.e. crossing its genes with those of a partner. The crossover process just
mixes the binary strings pertaining to genes/design variables of two parents
to generate one new individual. The genes/design variables of the new indi-
vidual/design solution may slightly vary due to mutation. GAs do have many
variants which are often developed to solve particular optimisation problems.

GAs are very useful especially when the design variables values take dis-
crete values. Unfortunately, they are not very simple to be used (with respect
to other methods such as global approximation, see next subsection) especially
when dealing with the optimisation of (very) complex systems. In fact they
often require the exact definition of some algorithm parameters that influence
the efficiency of the search.

1.2.4 Comparison of Broadly Applicable Methods
to Solve Optimisation Problems

In Table 1.1 four general and broadly applicable methods to solve optimisa-
tion problems are presented together with their optimisation properties and
performances. All the four methods have been introduced in the preceding sub-
sections. They allow a vectorial formulation, i.e. they permit the optimisation
of all the objective functions concurrently (direct derivation of Pareto-optimal
sets).

The computational efficiency refers to how fast an optimisation can be.
For simple problems (number of design variables less than 5 or 6) all the four
presented methods work well. Complex problems are handled well by GAs;
on the contrary, the exhaustive method is absolutely unsuited for this kind of
problems.

The accuracy in the definition of the Pareto-sets is best for the exhaustive
method in which design variables may vary in non-continuous ranges (discrete
values). All the four methods in Table 1.1 do have the following important
properties:

• they can deal with design variables which vary within non-continuous
ranges (discrete values)

• objective functions can be non-continuous functions of the design variables.

1.2.5 Global Approximation

The multi-objective optimisation of very complex systems may require still
a prohibitive simulation effort, even reducing the number of combinations
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of design variables by means of the mentioned techniques. To optimise the
performances of complex systems, the relationship between design variables
and objective functions can be approximated by means of a pure mathematical
model (see Chap. 4). The parameters of the purely mathematical model (which
can be either an artificial neural network (ANN) or a piecewise quadratic
function, or others) are defined on the basis of a limited number of simulations
performed by means of the originally validated mathematical model of the
system under consideration.

In other words, there are two models, the first which is the original vali-
dated mathematical model that the designer uses to simulate the actual phys-
ical behaviour of the system to be optimised, and the second mathematical
model which is a purely mathematical model, able to approximate the outputs
of the first model (Fig. 1.9).

Fig. 1.9. Global approximation approach to solve optimisation problems. The orig-
inal model based on physical laws is substituted by another purely mathematical
model based on interpolation/approximation algorithms

Obviously it is supposed, as it always happens in actual applications, that
the first model requires time-consuming simulations and the second model
provides quick simulation outputs. Typically the simulation time of the second
model is a small fraction (1/10 – 1/10,000) of the simulation time requested
by the first model.

The accuracy in the approximation of the outputs depends on the approx-
imation model employed. In Table 1.2, known methods for global approxi-
mation are presented. Linear and quadratic interpolation are well suited to
approximate locally, i.e. in the neighbourhood of a single point, the objective
functions. They are suited for very simple optimisation problems, and the
tuning (i.e. the process for defining the parameters of the pure mathematical
model) is relatively easy. The evaluation accuracy, i.e. the ability to reproduce
the original values of objective functions given the values of design variables,
is not very high. Response surface methodologies use linear and quadratic
approximation models.

Radial basis functions neural networks seem to be accurate, easy to be
tuned with appropriate algorithms (as will be exposed in Chap. 4) and effi-
cient in the evaluation of objective functions. Multi-layer perceptron neural
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Table 1.2. Approximation methods for solving optimization problems ( –: bad; +:
good; + +: very good)

Evaluation
Approximation accuracy Tuning

domain Simple Complex effort
model model

Linear interpolation local + − ++

Quadratic interpolation local + − ++

Radial basis functions
Neural networks local/global ++ + +

Multi–layer perceptron neural networks global ++ ++ −
Statistical approximation global ++ + −

networks perform better than previous radial basis functions neural networks
but require more effort in tuning. These approximation methods are particu-
lary suited for complex design optimisation problems.

1.2.6 Multi-objective Programming via Non-linear Programming

Historically, multi-objective optimisation problems were numerically solved
resorting to non-linear programming (NLP), i.e. by transforming the original
vector problem into a scalar one (see Sect. 3.4.5). Obviously this transforma-
tion is still effective but it is not recommended any longer for solving general
complex optimisation problems, i.e. finding Pareto-optimal sets.

A well-known method for transforming a vector optimisation problem into
a scalar one is the constraints method (see Sect. 3.4.10). Given the multi-
objective optimisation problem as a vector function to be minimised

min f(x) = min



f1(x)
f2(x)
. . .

fnof
(x)


 x =



x1

x2

. . .
xndv


 (1.8)

subject to nc constraints

g(x) =



g1(x)
g2(x)
. . .
gnc

(x)


 ≤ 0 (1.9)

the original vector problem is transformed into the new scalar one

min f1(x) x =



x1

x2

. . .
xndv


 (1.10)
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subject to the nc + (nof − 1) constraints

g(x) =




f2(x) − ε2
. . .

fnof
(x) − εnof

g1(x)
g2(x)
. . .
gnc

(x)




≤ 0 (1.11)

By varying the values of the elements of the vector

ε =



ε2
. . .
εnof


 ≤ 0 (1.12)

the Pareto-optimal set can be found.
This scalarisation can be applied to any kind of optimisation problem. It

is not straightforward how to vary ε, so this method is only used to refine a
Pareto-optimal solution. In other words, if a Pareto-optimal solution is known
approximately, by applying the constraints method in the neighbourhood of
the approximately known solution, the approximation can be significantly
improved to the desired extent.

Another widespread method for scalarisation is the weight method (see
Sect. 3.4.9). Given the multi-objective optimisation problem as a vector func-
tion to be minimised

min f(x) = min



f1(x)
f2(x)
. . .

fnof
(x)


 x =



x1

x2

. . .
xndv


 (1.13)

subject to nc constraints

g(x) =



g1(x)
g2(x)
. . .
gnc

(x)


 ≤ 0 (1.14)

the original vector problem is transformed into the new scalar one

min(w1f1(x) + w2f2(x) + . . .+ wnof
fnof

(x)) x =



x1

x2

. . .
xndv


 (1.15)

subject to the nc + (nof − 1) constraints
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g(x) =



g1(x)
g2(x)
. . .
gnc

(x)


 ≤ 0 (1.16)

by varying the elements of the vector

w =



w1

w2

. . .
wnof


 (1.17)

the Pareto-optimal set can be found both in the space of objective func-
tions and in the space of design variables, provided that the Hessian of
w1f1(x) + w2f2(x) + . . . + wnof

fnof
(x) is a semi-definite positive matrix

in the design variable space (a sufficient condition [166] for this is that
w1f1(x)+w2f2(x)+ . . .+wnof

fnof
(x) is globally convex in the design variable

space).
This scalarisation can be applied to any kind of convex optimisation prob-

lem, for other problems it might fail in finding all Pareto-optimal solutions.

1.2.7 Algorithms to Solve Optimisation Problems in Scalar Form

In Table 1.3, the more used algorithms for solving multi-objective optimisa-
tion problems via scalar formulation are presented and compared. Solving the
optimisation problem in scalar form deals with the minimisation of one func-
tion of many design variables subject to constraints (on design variables) (see
Chap. 3).

Obviously, the algorithms that could solve the optimisation problem in
vector form are still available for solving the scalar problem.

The simplex algorithm performs well and does not require the computation
of the derivatives of the function.

Sequential unconstrained minimisation technique (SUMT) is a kind of gra-
dient method and requires the function to be continuous together with its first
derivative. Discrete values are not permitted because the search is based on
gradient evaluation.

Sequential quadratic programming (SQP) performs better than SUMT, and
requires the same conditions on the functions to be minimised.

The main disadvantage of these methods are that they are all local meth-
ods. So the finding of global minima are all influenced by the starting point
that must be close to the global solution.

1.3 Understanding Pareto-optimal Solutions

After Pareto-optimal sets have been computed, the designer can make a choice
and select from these sets the preferred solution featuring the desired com-
promise among objective functions.
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This process can be preceded and even accelerated by special analyses
allowing the designer to have an insight into the physical phenomena he is
trying to analyse (see Sect. 3.3.3). In other words there are some analyses by
which the designer may understand the reason why a Pareto-optimal solution
requires such a design variable combination. In particular, these analyses may
show which is

• the relationship between two Pareto-optimal objective functions,
• the relationship between two Pareto-optimal design variables,
• the relationship between a Pareto-optimal design variable and a Pareto-

optimal objective function.

In Fig. 1.10 these different relationships are shown. The Pareto-optimal set
is defined in an nof-dimensional domain, so the Pareto-optimal values pro-
jected onto a bidimensional domain (fi, fj) appear in a picture like the one
in Fig. 1.10. Thus, the addressed analyses can be performed on the basis of a
statistical approach possibly combined with the plotting of graphs like those
represented in Fig. 1.10. The Spearman rank–order correlation coefficient can
be used to assess the above-introduced relationships and thus is particularly
suited to discover significant relationships. This coefficient is able to identify
monotonic non-linear relationships and thus is particularly suited to discover
significant relationships that may suggest important engineering solutions. If

Fig. 1.10. Relationships between Pareto-optimal objective functions (fi–fj), be-
tween Pareto-optimal design variables (xi–xj), and between Pareto-optimal objec-
tive functions and Pareto-optimal design variable (fi–xi). The values can be either
directly correlated (a), uncorrelated (b), or indirectly correlated (c)
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Fig. 1.11. Partition of the fi domain to obtain two monotonic interpolation func-
tions fi. The Spearman rank–order correlation coefficient can be computed sepa-
rately for cases (b) and (c)

the relationships are not monotonic a partition of the domain could be per-
formed as shown in Fig. 1.11.

By compusting the Spearman rank–order correlation coefficient, very use-
ful information on the system under consideration can be gained. In fact, a
kind of sensitivity analysis focused on the Pareto-optimal solutions can be
performed. In conventional sensitivity analysis, the relationships between ob-
jective functions and design variables are computed in the neighbourhood of
one simple reference design solution. The analysis does not distinguish dom-
inated from non-dominated solutions, i.e. the analysis is not restricted to
Pareto-optimal solutions. So very poor information can be gained with con-
ventional parameter sensitivity analysis. An analysis restricted to the very
special Pareto-optimal values only may give significant hints to the designer.
Actually, the relationships between Pareto-optimal objective functions and
Pareto-optimal design variables can be highlighted.




