
Chapter

2.1	 Introduction

The enteric nervous system (ENS) is the largest and the 
most complex division of the peripheral nervous system 
[1]. The ENS contains more neurons than the spinal cord 
and is capable of mediating reflex activity in the absence 
of central nervous system. About 80–100 million enteric 
neurons can be classified into functional distinct sub-
populations, including intrinsic primary neurons, inter-
neurons, motor neurons, secretomotor and vasomotor 
neurons [2]. The ENS plays a crucial role in normal gas-
trointestinal motility. Therefore insights into the devel-
opment of the gastrointestinal tract and the ENS are rel-
evant for the understanding of the pathophysiology and 
treatment of infants and children with motility disorders.

2.2	 Embryonic Origin of ENS

There are two major steps in the development of the gas-
trointestinal tract: (1) formation of the gut tube, and (2) 
formation of individual organs, each with their special-
ized cell types (Table 2.1) [3].

Gastrulation is an early step in the development of all 
multicellular organisms. During gastrulation the axes 
of the embryo are determined and the development of 
the gastrointestinal tract starts. Gastrulation gives rise to 
three germ layers, endoderm, mesoderm, and ectoderm 
[3]. The mammalian gastrointestinal system originates 
from all three embryonic germ layers. The epithelial lin-
ing of the gastrointestinal tube and the parenchymal cells 
of the liver and pancreas are formed by the endoderm. 
The mesoderm provides mesenchymal elements includ-
ing smooth muscle and stromal cells. The neurons of the 
ENS which regulates gastrointestinal motility are derived 
from ectoderm.

The ectoderm divides into three types of cells; outer 
ectoderm, neural tube, and neural crest (NC). The NC 
arises from the dorsal region of the neural tube. Mela-
nocytes, the adrenal medulla, the dentine of teeth, the 
sympathetic and parasympathetic arms of the peripheral 
nervous system, and the neurons of the ENS are derived 
form the NC. These tissues and cell types originate from 
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Table 2.1  Developmental milestones of human gastrointestinal 
tract

Developmental stage Gestation week

Gastrulation 3

Gut tube largely closed 4

Liver and pancreas buds 4

Growth of intestines into cord 7

Intestinal villus formation 8

Retraction of intestines into 
abdominal cavity

10

Organ formation complete 12

Parietal cells detectable, pancreatic 
islets appear, bile secretion, 
intestinal enzymes detectable

12

Swallowing detectable 16 and 17

Mature motility 36
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different regions of the NC, which means that the cells 
need to migrate to the site of the mature organs. The gene 
mutations that result in disrupted NC cell migration to 
one region also cause altered migration of other NC-de-
rived tissues [4].

2.3	 Origin and Development of Neural Crest-
Derived Cells

The NC is located along the entire length of the body axis. 
Two groups of undifferentiated cells, derived from NCs, 
colonize the gut wall and migrate in craniocaudal and 
caudocranial directions.

The embryonic NC arises in the neural tube, originat-
ing with the central nervous system, but NC cells detach 
from this tissue via reduction of cell–cell and cell–matrix 
adhesion. The epitheliomesenchymal transformation al-
lows NC cells to migrate along pathways of defined routes 
to various tissues, where they stop moving and differen-
tiate into various cell types. Pathway selection is most 
likely achieved by balanced combinations of molecules 
that promote and reduce adhesions [5, 6]. NC cells give 
rise to neuronal, endocrine and paraendocrine, cranio-
facial, conotruncal heart, and pigmentary tissues. Neu-
rocristopathies encompass tumors, malformations, and 
single or multiple abnormalities of tissues, mentioned 
above in various combinations [7].

In the human fetus, NC-derived cells first appear in the 
developing esophagus at the 5th week of gestation, and 
then migrate down to the anal canal in a craniocaudal 
direction during the 5th and 12th week of gestation. The 
NC cells first form the myenteric plexus just outside the 
circular muscle layer. The mesenchymally derived longi-
tudinal muscle layer then forms, sandwiching the myen-
teric plexus after it has been formed in the 12th week of 
gestation. In addition, after the craniocaudal migration 
has ended, the submucous plexus is formed by the neu-
roblasts, which migrate from the myenteric plexus across 
the circular muscle layer and into the submucosa; this 
progresses in a craniocaudal direction during the 12th to 
16th week of gestation [5]. The absence of ganglion cells 
in Hirschsprung’s disease has been attributed to a failure 
of migration of NC cells. The earlier the arrest of migra-
tion, the longer the aganglionic segment is.

It is generally accepted that the enteric ganglion cells 
are derived primarily from the NC cells [8–11]. Studies 
in the avian system provide strong evidence for the con-
tribution of the sacral NC to the hindgut ENS [12–14]. 
Whether the sacral NC contributes to the ENS in the 
mammalian hindgut is less clear. Failure of the vagal de-
rived NC cells to colonize the hindgut results in failure 
of hindgut ENS development, suggesting that interaction 
between sacral and vagal enteric NC cells may be neces-
sary for sacral NC cell contribution to the ENS [15].

Yntma and Hammond first performed NC ablations 
in chick embryos and identified the vagal NC (somites 1 

to 7) as the source of the ENS stem cells [11]. Le Douarin 
and Teillet showed an additional source of NC stem cells 
originating from the lumbosacral region to colonize the 
gut [12]. Later the lumbosacral derived crest cells were 
found principally in the myenteric plexus, with very few 
in the submucous plexus. The number of these cells de-
clines rostrally. Cells derived from the lumbosacral NC 
were never observed in any gut region above the umbi-
licus [14].

The colonization of the gut by sacral NC-derived cells 
and the contribution of the cells to the development of 
the ENS is controversial [16]. The dual origin of enteric 
neurons has been negated by studies on chick embryo as 
well as human embryo. Allen and Newgreen [17] isolated 
bowel segments from fowl embryos at various stages of 
development, and grew these segments in the chorio
allantoic membrane and found that enteric neurons 
appeared in a craniocaudal sequence, showing a vagal 
source. Meijers et al. [18] transected the chicken bowel 
in ovo at an early stage, before the passage of NC cells 
had occurred, preventing craniocaudal migration of va-
gal NC cells. They found that the hindgut remained agan-
glionic, showing that there was no colonization by sacral 
NC cells.

Some studies have shown that sacral NC-derived cells 
migrate from the neural plate early in development and 
extraenteric pelvic ganglia. Later these cells are able to 
colonize the gut and contribute to the ENS, coincident 
with the migration of vagal NC-derived cells [14, 19–21]. 
In contrast, other studies suggest that sacral NC-derived 
cells invade the hindgut mesenchyme several days before 
the colonization of the hindgut by vagal NC cells and 
contribute to the development of ENS [13, 22–24].

In contrast the mouse ENS is derived embryologi-
cally from cells of the vagal, truncal, and sacral regions 
of the NC. The vagal NC originates in somites 1 to 5 in 
the mouse, the truncal NC from somites 6 and 7, and 
the sacral NC posterior to somite 28. Cells from each of 
these regions of the NC migrate into the developing gut 
by defined pathways. Cells of the vagal and truncal NC 
enter the foregut, migrating in a proximal to distal direc-
tion. Truncal NC cells populate only the foregut, whereas 
those of the vagal NC migrate more distally to colonize 
the rest of the gastrointestinal tract. Cells arising from 
the sacral crest seem first to colonize pelvic autonomic 
ganglia, from which they then migrate into the distal gut, 
colonizing it from distal to proximal [19].

The current concept is that the development of the 
ENS in humans is derived primarily from cells of the va-
gal segment of the NC [2, 12]. Fujimoto et al. [25] studied 
NC cell migration in the developing gut in the human 
embryo using antineurofilament protein triplet antibody 
and found that enteric ganglia originated from a single 
vagal NC source. The vast majority of studies have re-
vealed that vagal NC cells provide the main source of en-
teric neurons and sacral NC additionally innervates the 
distal bowel [12–14, 26–28].
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The final requirement for development and matu-
ration of the ENS is the formation of ganglia. Several 
days after NC cells have colonized the gut these cells are 
evenly distributed, with no indication of cell clustering, 
except the cecum. As the gut later increases in length and 
diameter, the cells start forming ganglionic groups [29]. 
A previous study has shown that cells forming a ganglion 
do not arise from a single precursor cell [30]. A recent 
study used human fetal intestine to investigate nitrergic 
neurons in the developing myenteric plexus. The distri-
bution of nitrergic neurons was found to change mark-
edly between 14 and 22 weeks of gestation. Nitrergic neu-
rons were randomly distributed at week 14 and were later 
aggregated in the plexus and within individual ganglia at 
week 19 [31]. It is currently not known what factors in-
duce cells to cluster into ganglia.

2.4	 Functional Development of the ENS

The complexity of mature ENS is exemplified by many 
different functional types of neurons containing vari-
ous neurotransmitters occurring in various combina-
tions. Types of neurotransmitters vary according to the 
time of their appearance [29, 32]. The development of 
the human enteric nervous system is characterized by the 
early appearance (between 9 and 12 weeks’ gestation) of 
adrenergic and cholinergic nerves. Strong evidence has 
emerged that the enteric nervous system is not only com-
posed of adrenergic and cholinergic nerves but also non-
adrenergic, noncholinergic (NANC) autonomic nerves, 
which contain different peptides. These peptides act as 
neurotransmitters, or neuromodulators, or both. These 
nerves have been termed peptidergic nerves. The develop-
ment of peptidergic innervation occurs much later.

In recent years, pharmacologic and physiologic stud-
ies have provided evidence that nitric oxide (NO) is the 
most important mediator in nonadrenergic, noncholin-
ergic relaxation of the gastrointestinal tract. By 12 weeks’ 
gestation, nitrergic neurons appear in the myenteric gan-
glia, at all levels of the gut, and begin plexus formation. 
Nitrergic innervation in the submucous plexus becomes 
evident after 14 weeks. As gestational age increases, ni-
trergic innervation becomes richer and more organized. 
Increasing numbers of nitrergic nerve fibers are seen in 
the circular muscle; some of these fibers project from the 
myenteric plexus. Thus, the onset and pace of develop-
ment of nitrergic innervation are similar to adrenergic 
and cholinergic innervation and occur before peptider-
gic innervation [33].

Serotonin (5-HT) together with glucagon, insu-
lin, peptide XY, gastrin, and somatostatin are the earli-
est neurohumoral substances to be expressed at about 
8 weeks of gestation. By 24 weeks of gestation, most of 
the known gastrointestinal neurohumoral substances can 
be identified.

Further contacts between enteric nerves and effectors 
are developed at 26 weeks and the first signs of motility 
can be detected at 25 weeks of gestation [3].

2.5	 Development of Intestinal Motility

The innervation of the gastrointestinal tract in utero is 
accompanied by functional activity of increasing com-
plexity. The first studies to measure intestinal transit in 
humans used amniography; aboral transport of con-
trast agent did not occur in the intestinal tract of fetuses 
younger than 30 weeks of gestation [34]. With increasing 
gestational age, increasing aboral transit and rate of prop-
agation develops. Subsequent studies of gastrointestinal 
motility in premature infants have been performed using 
intraluminal catheters [35]. The data from these studies 
reveal no regular periodicity or rhythmicity at 25 weeks 
of gestation. Further development occurs during the 
next 15 weeks, so that by term, mature motor patterns of 
the gastrointestinal tract are well established. Responses 
to feeding vary considerably among preterm infants; in 
general, intestinal motility studies can predict feeding in-
tolerance [36].

Enteric nerve cells continue to differentiate through-
out the first couple of years of life, which means that 
the infant’s nervous system is plastic and developing 
[37]. There is clear evidence that the development of the 
ENS continues after birth. In rats, NO synthase-express-
ing neurons are already present at birth but increase in 
number and location during the first 3 weeks of postna-
tal life [32]. Normal ganglion cell distribution is present 
at 24 weeks of gestation in humans. These ganglia con-
tinue to mature on into childhood. Previous studies on 
human bowel specimens have revealed that the density 
of NADPH-diaphorase-positive ganglion cells decreases 
in the submucous plexus of the human distal colon and 
the myenteric plexus of human small bowel, colon and 
rectum [38, 39].

2.6	 Genes Involved in ENS Development

Normal development of ENS is related to migration, pro-
liferation, differentiation and survival of NC-derived cells 
[40]. Several genes and signaling molecules have been 
identified that control morphogenesis and differentiation 
of the ENS. These genes, when mutated or deleted, inter-
fere with ENS development (Table 2.2) [7, 42–44].

2.6.1	 RET/GDNF/GFRα1 Signaling System

This signaling pathway is of importance for subpopula-
tions of both peripheral and central neurons, having been 
shown by in vitro and in vivo assays to promote survival 
of neurons, mitosis of neuronal progenitor cells, and dif-
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ferentiation of neurons and neurite extension [41, 45, 46]. 
The RET receptor is the signaling component of receptor 
complexes with four ligands, glial derived neurotropic 
factor (GDNF), neurturin (NTN), artemin (ATM), and 
persephin (PSP) [45, 47]. The complete receptor complex 
includes the RET receptor tyrosine kinase and a glyco-
sylphosphatidylinositol-anchored binding component 
(GFRα1, GFRα2, GFRα3, and GFRα4) [47–49]. In vivo 
the absence of GDNF/GFRα1-mediated signaling leads 
to the failure of ENS development, whereas the absence 
of NTN/GFRα2-mediated signaling leads to more subtle 
abnormalities in ENS development [47]. The importance 
of RET in mammalian organogenesis has been further il-
lustrated by the generation of RET knockout mice [50]. 
These mice exhibit total intestinal aganglionosis and renal 
agenesis. The RET protooncogene has been demonstrated 
to be a major gene causing Hirschsprung’s disease [51–55]. 
Mutations of RET account for 50% of familial and 15% to 
20% of sporadic cases of Hirschsprung’s disease [55, 56].

The development of the ENS is dependent upon the 
actions of GDNF, which stimulates the proliferation and 
survival of NC-derived precursor cells in the embryonic 
gut [57–60]. It has been reported that GDNF is the li-
gand of RET [61]. Mice carrying the homozygous null 
mutation in GDNF have been generated, and these mice 
demonstrate the lack of kidneys and ENS, confirming the 
crucial role of GDNF in the development of the ENS [62, 
63]. Although a causative role for GDNF mutations in 
some patients with Hirschsprung’s disease has been sug-
gested, the occurrence of such cases is uncommon, and 
it is more likely that the GDNF mutations are involved 
in modulation of the Hirschsprung’s disease phenotype 
via its interaction with other susceptibility loci such as 
RET [7, 64].

2.6.2	 Endothelin Signaling Pathway

The endothelins (EDN1, EDN2, and EDN3) are inter-
cellular local messengers that act via the cell surface 
receptors, EDNRA and EDNRB [45]. EDN is initially 
produced as an inactive preproendothelin that under-
goes two proteolytic steps to produce an active peptide. 
The first cleavage produces inactive big endothelins, and 
these are finally cleaved by a specific protease, endothelin-
converting enzyme (ECE) to produce biologically active 
EDN [7, 16, 45].

EDN3 and EDNRB have a role in the migration and 
development of the ENS [65–67]. In mice in which the 
EDN3 or EDNRB gene is disrupted, intestinal aganglio
nosis has been demonstrated experimentally. Several re-
ports suggest that the downregulation of EDN3 expres-
sion may play a role in the pathogenesis of Hirschsprung’s 
disease in the sporadic cases [68–74].

ECE1 knockout mice show craniofacial and cardiac 
abnormalities in addition to colonic aganglionosis [75].

2.6.3	 SOX10

The SOX10 (sex determining region Y-box) gene is ex-
pressed in neuronal crest derivates that contribute to 
the formation of the peripheral nervous system during 
embryogenesis [76, 77]. The involvement of SOX10 in 
the development of enteric neurons was demonstrated 
in the Dom (dominant megacolon) mouse model of 
Hirschsprung’s disease which exhibits distal intestinal 
aganglionosis [76]. Mutations in SOX10 have been iden-
tified as a cause of the dominant megacolon mouse and 
Waardenburg-Shah syndrome in humans, both of which 
include defects in the ENS and pigmentation abnormali-
ties [78, 79].

2.6.4	 PHOX2B

The PHOX2B gene is a homeodomain-containing tran-
scription factor that is involved in neurogenesis and reg-
ulates RET expression in mice, in which disruption of the 
PHOX2B gene results in a Hirschsprung’s disease-like 
phenotype [80, 81]. Enteric PHOX2B expression begins 
in vagal and truncal NC-derived cells as they invade the 
foregut mesenchyme and is contained in the adult sub-
mucosal and myenteric plexus [81].

2.6.5	 HOX11L1

HOX11L1 is a homeobox gene involved in peripheral 
nervous system development and is reported to play 
a role in the proliferation or differentiation of NC cell 
lines. Two different HOX11L1 knockout mouse models 
have been generated [82, 83]. In both cases, homozygous 

Table 2.2  Genes involved in the morphogenesis and differen-
tiation of the ENS

Genes Chromosomal 
assignment

Function

RET 10q11.2 Tyrosine kinase receptor

GDNF 5p12–13.1 Glial cell-derived 
neurotropic factor

NTN 19q13.3 Neurturin, RET ligand

GFRα 10q26 GDNF family receptor alpha 1

EDNRB 13q22 Endothelin-B receptor

EDN-3 20q13.2–13.3 Endothelin-B

ECE-1 1p36.1 Endothelin-converting enzyme

SOX 10 22q13.1 Sry/HMG box 
transcription factor

PHOX2B 4p12 Paired-like homeobox 2b

PAX3 2q35 Paired box gene 3

SIP1 2q22 Siah-interacting protein
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mutant mice were viable but developed megacolon at the 
age of 3 to 5 weeks. Histologic and immunohistochemi-
cal analysis showed hyperplasia of myenteric ganglia, a 
phenotype similar to that observed in human intestinal 
neuronal dysplasia.

2.7	 Other Factors Implicated in the Control 
of ENS Development

Kit, another receptor with tyrosine kinase activity, is in-
volved in the development of the interstitial cells of Cajal 
(ICCs) [84]. These are nonneuronal cells that serve as 
pacemaker cells and are responsible fro the spontaneous, 
rhythmic, electrical excitatory activity of gastrointestinal 
smooth muscle. Recent studies have found that the c-kit 
receptor is essential for the development of the ICCs. 
Mesenchymal ICC precursors that carry the c-kit recep-
tor require the kit ligand (KL), which can be provided 
by neuronal cells or smooth muscle cells. According to 
the influence of the KL from either neuronal or smooth 
muscle cells, the ICCs develop as either myenteric ICCs 
or muscular ICCs [85]. These cells are also important in 
modulating communications between nerve and muscle. 
Mice with mutations in the KIT gene lack ICCs and have 
changes in skin pigment and abnormal intestinal motility 
[86]. No such mutations have been reported in humans 
so far, but several studies have shown disturbed expres-
sion of ICCs in patients with motility disorders [87–91]

Further studies have indicated the importance of the 
gut microenvironment during development of ENS. Mice 
lacking EDN-3 show increased expression of laminin, 
one of extracellular matrix (ECM) proteins, which leads 
to the conclusion that EDN-3 also affects the environ-
ment through which the NC cells migrate [92]. Altered 
ECM proteins such as tenascin, fibronectin and nidogen 
have been shown in patients with Hirschsprung’s disease 
which suggests the importance of ECM molecules during 
development of ENS [93, 94].

2.8	 Conclusions

During the past decade there has been an explosion of in-
formation about genes that control the development of NC. 
Molecular-genetic analysis has identified several genes 
that have a role in the development of Hirschsprung’s 
disease. The major susceptibility gene is RET, which is 
also involved in multiple endocrine neoplasia type 2. Re-
cently, genetic studies have provided strong evidence in 
animal models that intestinal neuronal dysplasia (IND) 
is a real entity. HOX11L1 knockout mice and endothelin 
B receptor-deficient rats demonstrated abnormalities of 
the ENS resembling IND type B in humans. These find-
ings support the concept that IND may be linked to a ge-
netic defect [95]. The development of the ENS requires 
the complex interaction of genes encoding transcription 

factors, signaling molecules, and their receptors. Normal 
ENS development is based on survival of NC-derived 
cells and their coordinated proliferation, movement and 
differentiation into neurons and glia. These processes are 
influenced by the microenvironment of the developing 
gut. Alterations in gene function, defects in NC cells or 
changes in the gut microenvironment may result in ab-
normal development of the ENS.
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