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18Neurocristopathies 
and Particular Associations 
with Hirschsprung’s Disease

S. W. Moore

18.1 Introduction

Primitive	neural	cells	migrate	from	the	neural	crest	dur-
ing	 embryogenesis	 to	 reach	 their	 target	 organs.	 They	
then	 undergo	 differentiation	 into	 melanocytes,	 adrenal	
medulla	cells,	C	cells	of	the	thyroid,	sympathetic	ganglia	
and	the	enteric	nervous	system	(ENS)	of	visceral	ganglia,	
sensory	tracts	of	cranial	and	spinal	nerves,	as	well	as	the	
membranous	bones	of	the	face	and	palate.

Neurocristopathies	(a	unifying	concept	of	conditions	
which	arise	from	a	common	site	of	neural	crest	develop-
ment	[13])	arise	from	disturbance	of	cellular	development	
and	tissue	of	neural	crest	origin	and	result	in	a	number	of	
clinical	 phenotypes,	 which	 include	 a	 variety	 of	 tumors.	

These	tumors	occur	largely	from	disturbances	in	the	on-
cogenes	and	tumor	suppressor	genes	involved	in	cellular	
development.	The	combination	of	Hirschsprung’s	disease	
(HSCR)	 with	 a	 neurocristopathy	 strongly	 indicates	 the	
need	to	investigate	the	sympathetic	amine	precursor	up-
take	decarboxylase	system	for	associated	lesions.

18.2 Neurocristopathies Associated with HSCR

Because	the	etiology	of	HSCR	is	thought	to	be	largely	ge-
netic	in	nature,	the	observed	genetic	variation	in	HSCR	
has	become	an	emerging	resource	for	studying	the	com-
plex	 pathophysiology	 of	 this	 multifaceted	 condition	 as	
well	as	understanding	reported	clinical	associations.	At	a	
molecular	level,	HSCR	appears	to	arise	as	the	result	of	a	
disruption	of	normal	developmental	molecular	signaling.	
Major	susceptibility	genes	known	to	be	involved	include	
the	 RET	 (REarranged	 during	 Transfection)	 protoonco-
gene,	 at	 10q11.2,	 the	 recessive	 EDNRB	 gene,	 located	 at	
13q22	and	its	ligand	endothelin	3	(EDN3),	and	the	glial	
cell	line-derived	neurotrophic	factor	(GDNF)	[1,	129].

The	resulting	neurocristopathies	include	the	following:
•	 Neurocristopathies	associated	with	 the	RET	protoon-

cogene
•	 Neurocristopathies	 associated	 with	 the	 endothelin	

system	(EDNRB,	EDN3)	and	SOX10
•	 Congenital	 central	 hypoventilation	 syndrome	

(CCHS)
•	 Other	rarer	neurocristopathies

18.2.1 Neurocristopathies Associated 
with the RET Protooncogene

The	 relationship	 to	 the	 major	 susceptibility	 gene	 RET	
protooncogene,	 at	10q11.2	and	multiple	 endocrine	neo-
plasia	(MEN)	syndromes	appears	to	be	highly	significant.	
The	association	is	now	clearly	understood	to	be	genetic	in	
nature	and	early	identification	may	have	implications	for	
preventative	and	early	intervention	strategies.
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18.2.1.1	 The	Role	of	the	RET	Protooncogene	
in	HSCR	and	MEN	Syndromes

The	 RET	 protooncogene	 appears	 to	 be	 the	 most	 signifi-
cant	susceptibility	gene	in	HSCR	where	it	appears	to	result	
from	loss	of	 function.	Although	major	mutations	appear	
to	 account	 for	 up	 to	 50%	 of	 familial	 and	 30%	 of	 nonfa-
milial	 cases	 [145],	 a	 number	 of	 lesser	 genetic	 variations	
have	 been	 identified	 in	 RET	 which	 also	 appear	 to	 play	
a	 significant	 role.	 These	 include	 specific	 alleles	 at	 RET-
1VS,	certain	single	nucleotide	polymorphisms	(SNPs;	e.g.	
A45A)	as	well	as	specific	haplotypes	(haplotype	0)	[1,	17,	
18,	98,	131].	It	is	not	yet	clear	whether	these	variations	can	
give	rise	to	HSCR	by	haploinsufficiency	per	se	or	whether	
lesser	mutations	require	the	multiplicative	effects	of	other	
disturbed	signaling	pathways.

The	pathophysiology	involved	in	the	MEN	and	related	
syndromes	appears	to	be	reliant	upon	completely	differ-
ent	sites	on	the	RET	protooncogene	and	results	in	a	RET-
activating	rather	than	a	RET	loss	of	function	action.	RET	
protooncogene	mutations	have	now	been	associated	with	
MEN	2A	and	2B	syndromes,	familial	medullary	thyroid	
carcinoma	 (MTC),	 and	 (partly)	 papillary	 thyroid	 carci-
noma.	The	position	of	mutations	seems	to	be	important	
in	terms	of	the	phenotypic	expression.	For	example,	those	
RET	variations	associated	with	the	six	cysteine	positions	
in	 the	 extracellular	 region	 of	 the	 RET	 protooncogene	
[20,	66]	plus	exon	14	SNP	S826S	[126]	and	the	918	muta-
tion	in	exon	16	[79,	132]	have	been	strongly	associated	
with	MTC.

18.2.1.2	 The	Multiple	Endocrine	
Neoplasia	Syndromes

The	 association	 between	 HSCR	 and	 MEN-related	 syn-
dromes	 concerns	 mainly	 the	 MEN2	 syndromes	 (A	 and	
B)	 and	 HSCR.	 MEN1	 is	 a	 clinical	 syndrome	 consisting	
of	 pituitary,	 parathyroid,	 pancreatic	 neuroendocrine	 tu-
mors	 not	 genetically	 related	 to	 RET	 mutations,	 its	 cur-
rent	association	being	with	chromosome	11q13,	and	it	is	
usually	not	associated	with	HSCR.

MEN2	Syndromes

MEN2A	 is	 an	 autosomal	 dominant	 genetic	 condition	
characterized	by	the	development	of	a	number	of	tumors	
including	 pheochromocytoma,	 MTC,	 thyroid	 C	 cell	
hyperplasia	 and	 parathyroid	 tumors.	 There	 are	 distinct	
genotype–phenotype	 correlations	 in	 MEN2.	 The	 most	
common	 subtype	 is	 MEN2A	 (Sipple	 syndrome),	 which	
includes	 two	 known	 variants:	 associations	 with	 HSCR,	
and	associations	with	cutaneous	lichen	amyloidosis.

The	association	of	aganglionic	megacolon	with	mega-
loureter,	 pheochromocytoma	 and	 neuromatosis	 [139]	

actually	preceded	the	landmark	report	by	Sipple	of	a	14	
times	 higher	 association	 between	 pheochromocytoma	
and	thyroid	tumors	[86,	142].	A	diffuse	ganglioneuroma-
tosis	(GN)	within	the	wall	of	the	stomach,	and	small	and	
large	 intestine	was	 then	 identified	at	autopsy	 in	 two	pa-
tients	with	MTC	and	pheochromocytoma	[166],	thus	ex-
panding	the	concept	of	a	neurocristopathy.	Steiner	et	al.	
[147]	introduced	the	term	multiple	endocrine	neoplasia	
syndrome	 which	 is	 transmitted	 in	 an	 autosomal	 domi-
nant	manner	[69].	The	association	of	MEN2	syndromes	
with	 the	 RET	 protooncogene	 subsequently	 appeared	 in	
the	literature	and	is	discussed	later	in	this	chapter.

MEN2B,	on	the	other	hand,	is	an	association	of	pheo-
chromocytoma,	MTC,	C	cell	hyperplasia,	and	ocular	and	
gastrointestinal	 ganglioneuromata	 in	 patients	 with	 mar-
fanoid	features.	Isolated	cases	of	GN	probably	represent	
incomplete	gene	penetrance.

Familial	MTC	represents	the	familial	transmission	of	
MTC	 without	 the	 full	 features	 of	 MEN	 2,	 and	 is	 some-
times	referred	to	as	MEN3	(Froboese	syndrome)

Clinical	Features	of	the	MEN	Syndromes

MEN2	syndromes	are	defined	by	the	presence	or	absence	
of	pheochromocytomas,	hyperparathyroidism,	MTC	and	
other	characteristic	clinical	 features.	It	has	not	yet	been	
possible	to	differentiate	between	the	thyroid	carcinomas	
or	 pheochromocytomas	 of	 the	 MEN2A	 and	 MEN2B	
syndromes	 on	 histological	 grounds,	 and	 patients	 with	
MEN2A	 are	 generally	 completely	 asymptomatic	 in	 the	
preclinical	phase.	Similar	to	other	genetically	determined	
premalignant	conditions	(e.g.	familial	polyposis	coli	and	
the	APC	gene),	the	prevention	of	the	resulting	neoplasms	
depends	 entirely	 on	 familial	 pedigree,	 genetic	 analysis	
and	 timely	 removal	 of	 the	 target	 organ.	 It	 is	 important	
to	identify	patients	with	MEN2	early	as	52–75%	of	MTC	
have	lymph	node	metastases	at	the	time	of	clinical	diag-
nosis.	 The	 high	 morbidity	 and	 associated	 mortality	 in	
these	radio-	and	chemoresistant	 tumors	makes	surgical	
preventative	removal	of	the	target	organ	an	essential	goal	
of	treatment.

The	 clinical	 presentation	 of	 pheochromocytoma	 is	
well	described.	It	may	be	asymptomatic	or	missed	where	
patients	 present	 early.	 Because	 of	 the	 association	 with	
MEN2,	 patients	 with	 pheochromocytoma	 should	 be	
screened	for	blood	chemistry	and	calcitonin	levels	and,	if	
necessary,	referred	for	genetic	evaluation

MEN2B	 on	 the	 other	 hand	 presents	 with	 marfanoid	
features	 as	 well	 as	 the	 classical	 ganglioneuromas	 of	 the	
oral	 cavity	 and	 gastrointestinal	 system.	 The	 gastrointes-
tinal	involvement	associated	with	the	MEN2B	syndrome	
means	 that	 patients	 not	 uncommonly	 present	 with	 in-
tractable	chronic	constipation	and	megacolon.	Intestinal	
obstruction	 resulting	 from	 a	 colonic	 mucosal	 neuroma	
has	also	been	described	[119].
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Genetic	Aspects	of	the	MEN2	Syndromes

The	MEN2	syndromes	result	from	gene	upregulation	as	
a	result	of	germline	activating	mutations	in	the	RET	pro-
tooncogene.	In	general,	HSCR	and	MTC	affect	different	
parts	 of	 the	 RET	 gene	 but	 a	 certain	 amount	 of	 genetic	
overlap	 leads	 to	 therapeutic	 dilemmas	 in	 apportioning	
risk	 (see	 18.2.1.4	 HSCR	 and	 MEN-related	 RET	 Muta-
tions).

Activating	 mutations	 of	 RET	 appear	 to	 be	 of	 the	 or-
der	of	1:500,000	 in	 the	general	population	 [127].	Many	
are	 de	 novo	 genetic	 variations	 which	 involve	 germline	
mutations	in	exons	10,	11,	13,	14,	15,	and	16	of	the	RET	
protooncogene	 in	 at	 least	 92%	 of	 patients	 with	 MEN2	
presenting	 with	 MTC	 [21].	 MEN2B	 is	 a	 less	 common	
subtype,	but	is	mostly	associated	with	exon	16	(M918T)	
RET	mutations	[24].

Recent	advances	have	resulted	in	a	clearer	understand-
ing	of	RET	function	and	the	effect	of	RET	mutations	on	
RET	signaling	and	activation	(e.g.	MTC)	or	inactivation	
(e.g.	 HSCR)	 by	 means	 of	 a	 number	 of	 different	 mecha-
nisms.	 As	 the	 resulting	 mutant	 proteins	 appear	 to	 de-
termine	 the	 phenotypic	 expression,	 the	 higher	 the	 pen-
etrance	 of	 the	 MEN2	 phenotype,	 the	 earlier	 and	 more	
aggressive	the	cancer.	The	method	by	which	RET	muta-
tions	produce	cancer	is	less	clear,	as	mutations	are	mostly	
de	novo	and	the	cause	unknown.	Radiation	exposure	is	
the	only	clear	 factor	associated	with	 thyroid	carcinoma	
and	can	actually	be	capable	of	inducing	RET	mutations	
[32],	but	is	usually	absent	from	the	patient’s	history.

MEN	is	caused	by	“gain	of	function”	variations	in	the	
cysteine-rich	extracellular	domain	of	RET	and	is	associ-
ated	with	variations	at	one	of	the	six	cysteine	residues	(viz.	
609,	611,	618,	620,	630	and	634	positions).	The	MEN2A	
mutations	 probably	 activate	 RET	 by	 inducing	 disulfide-
linked	homodimerization	[8,	133].	 In	addition,	RET	ex-
tracellular	 domain	 mutations	 may	 result	 in	 the	 unfold-
ing	of	RET	by	affecting	polarity	(e.g.	C620S).	The	RET2B	
mutation	(significantly	more	than	the	RET2A	mutation)	
results	 in	 an	 increase	 in	 Ret-MEN	 specific	 potentiated	
phosphorylation	 of	 tyro	 1062	 (Y1062;	 a	 RET	 multiple	
effector	 docking	 site	 that	 mediates	 the	 recruitment	 of	
the	 Shc	 adaptor	 and	 of	 phosphatidinylinositol-3	 kinase,	
P13K,	at	the	Y1062	docking	site)	[27,	130].	RET	MEN2B	
has	been	shown	to	be	more	active	in	associating	Shc	and	
in	causing	constitutive	activation	of	the	Ras/mitogen-ac-
tivated	protein	and	P13K/Akt	cascades	[27].

In	the	light	of	the	apparent	genotype–phenotype	cor-
relation	between	RET	and	MEN2	[23,	168]	and	the	iden-
tification	of	specific	sites	on	chromosome	10q11.2	associ-
ated	with	MEN2A	[106]	and	MEN2B	[76,	104],	predictive	
DNA	testing	for	MEN2	is	now	possible.	Genetic	screen-
ing	for	RET	has	been	shown	to	be	an	extremely	sensitive	
marker	in	MEN2	syndromes	[106]	with	the	majority	of	
mutations	relating	to	the	cysteine	radicals	in	exons	10,	11	
and	16.	As	a	result,	 the	diagnosis	of	MEN2	is	currently	

mostly	confirmed	on	the	basis	of	the	genetic	features,	al-
though	the	clinical	phenotype	remains	important.	Effec-
tive	 management	 therefore	 depends	 on	 early	 diagnosis	
and	 the	 gene	 carriers	 can	 now	 be	 identified	 before	 any	
clinical	or	biochemical	abnormalities	are	present.	These	
children	can	therefore	be	offered	a	prophylactic	thyroid-
ectomy	 which	 is	 successful	 in	 preventing	 the	 develop-
ment	of	MTC	with	its	associated	high	rate	of	metastatic	
disease	(Fig.	18.1).

It	 is	 therefore	clear	 that	genetic	 screening	 should	oc-
cur	prior	to	the	onset	of	any	clinical	symptoms	to	allow	
adequate	early	risk	assessment	and	prophylactic	manage-
ment.	 It	 has	 been	 established	 that	 RET	 testing	 is	 vastly	
superior	 to	 calcitonin	 in	 identifying	 preclinical	 cases	
with	 specificity	 approaching	95–100%	[106].	Mutations	
of	codons	634	and	618	have	been	found	in	the	youngest	
patients	(3	and	7	years,	respectively)	making	this	a	high-
risk	age	group	[91].	On	the	other	hand,	codons	790,	620	
and	 611	 appear	 to	 be	 associated	 with	 an	 intermediate	
risk,	and	codons	768	and	804	with	a	relatively	low	risk	of	
	developing	MTC.	Nevertheless,	a	12-year-old	patient	 in	
an	intermediate	risk	group	has	been	reported	with	MTC,	
stressing	its	relevance	in	the	prepubertal	age	group	[91].

In	most	patients	with	MEN2B	a	methionine	to	threo-
nine	substitution	occurs	at	position	918	(M918T)	of	the	

Fig.	18.1	 Familial	MEN2A	and	C634S	RET.	Mother	had	pheo-
chromocytoma	plus	MTC.	Two	affected	children	were	 treated	
by	total	thyroidectomy
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RET-kinase	 domain.	 This	 currently	 appears	 to	 be	 the	
most	significant	alteration	in	oncogenesis,	and	may	be	of	
prognostic	significance.	The	tumors	display	aggressive	be-
havior	and	distant	metastatic	spread	[10,	58–60,	76,	104].

In	addition	to	the	known	sites,	there	is	also	over-rep-
resentation	 of	 the	 variant	 S836S	 in	 patients	 with	 MTC	
[71,	126].	Associations	with	RET	polymorphisms	L769L,	
V804M	and	S904S	have	also	been	reported	[93],	although	
not	consistently	[165].	The	role	of	these	other	RET	varia-
tions	 is	 unclear	 as	 many	 authors	 of	 the	 various	 studies	
fail	 to	state	whether	all	21	exons	of	 the	RET	gene	were	
investigated	in	a	systematic	manner	or	whether	only	the	
specific	exons	known	to	be	associated	were	probed.

Patients	with	phenotypic	features	resembling	MEN2B	
require	 genetic	 testing	 in	 spite	 of	 a	 negative	 family	 his-
tory	because	of	the	high	incidence	of	spontaneous	muta-
tions	(approximately	50%)	[29,	153].

Treatment	of	MEN	Syndromes

The	multiple	neoplasias	encountered	in	MEN	are	treated	
on	their	own	merits.	Prophylactic	total	thyroidectomy	is	
performed	on	gene	carriers	in	accordance	with	their	risk	
stratification.	 Screening	 should	 at	 least	 include	 the	 cys-
teine-containing	codons	10,	11	and	16,	but	 should	also	
include	 exons	 13	 and	 14.	 It	 is	 now	 established	 that	 the	
risk	groups	are	determined	by	the	genotype	and	should	
be	used	to	dictate	timing	of	prophylactic	surgery	[92].	In	
MEN2B	it	is	recommended	that	testing	should	be	done	
before	1	year	of	age	(particularly	in	883/918	codon	muta-
tions)	and	before	5	years	in	MEN2A	(especially	in	the	pres-
ence	of	mutations	of	codons	611,	618,	620	and	634).	The	
assessment	of	risk	in	patients	with	isolated	intestinal	GN	
with	the	same	genetic	background	without	other	features	
of	MEN2B	then	remains	problematic,	and	is	addressed	in	
section	18.2.1.4	Intestinal	Ganglioneuromatosis.

As	it	is	difficult	to	entirely	predict	tumor	risk	in	affected	
individuals,	it	has	been	recommended	that	children	with	
HSCR	plus	RET	abnormalities	undergo	prophylactic	thy-
roidectomy	 in	 accordance	 with	 their	 risk	 profile	 [141].	
A	high	 incidence	of	early	aggressive	 tumors	 in	MEN2B	
warrants	an	aggressive	surgical	approach	with	early	pro-
phylactic	thyroidectomy	in	gene	carriers	(less	than	1	year	
of	age).	Colonic	disease	in	MEN2B	is	generally	managed	
conservatively	where	possible.	A	localized	segment	of	af-
fected	 colon	 may	 be	 resected,	 but	 more	 commonly,	 es-
pecially	where	the	small	bowel	 is	affected,	 there	 is	 little	
therapeutic	benefit	to	be	gained	from	such	surgery.

18.2.1.3	 HSCR	and	MEN-Related	RET	Mutations

The	 uncommon	 association	 between	 HSCR	 and	 MEN2	
in	the	same	patient	is	extremely	interesting,	as	opposite	

effects	have	to	occur	in	the	RET	protooncogene	for	this	
to	take	place.	“Gain	of	function”	variations	result	in	MEN	
syndromes,	 and	 “loss	 of	 function”	 mutations	 result	 in	
HSCR	[151],	 and	 these	would	have	 to	 take	place	 simul-
taneously.	Mulligan	et	al.	[105]	suggested	that	mutations	
at	RET	codons	618	and	620	not	only	give	rise	to	MEN2A	
and	familial	MTC	but	also	may	predispose	to	a	low	pen-
etrance	way	to	HSCR.

Although	 cosegregation	 of	 these	 two	 conditions	 is	
uncommon,	 there	 are	 reports	 in	 at	 least	 24	 families	 of	
documented	RET	mutations	associated	with	HSCR	and	
MEN2A	[12,	19,	22,	31,	47,	78,	105,	114,	115,	125,	134,	
141,	 159].	 Recorded	 RET	 mutations	 in	 patients	 with	
cosegregation	of	HSCR	with	MEN	include	C609Y	(n=2)	
[9,	109],	C611S	(n=1)	[109],	C618R	(n=5),	C618S	(n=3)	
[22,	31,	115],	C620R	(n=8),	C620S	(n=4)	[16,	78,	109,	125,	
134]	and	C620W	(n=1).	We	have	reported	a	further	case	
of	a	C620W	mutation	occurring	 in	a	patient	with	 long-
segment	HSCR	but	without	yet	developing	MTC.

The	 620	 mutation	 has	 been	 named	 the	 Janus	 muta-
tion	 and	 is	 of	 interest	 as	 it	 accounts	 for	 approximately	
half	 of	 the	 reported	 cases	 of	 cosegregating	 MTC	 and	
HSCR,	although	 it	makes	up	only	12%	of	genetic	varia-
tions	 associated	 with	 MTC	 itself	 [65].	 The	 importance	
of	this	mutation	is	demonstrated	by	the	reported	case	of	
familial	MTC	occurring	in	a	patient	with	a	C620S	muta-
tion	12	years	after	surgical	correction	of	HSCR	[134],	the	
mother	 having	 developed	 MTC	 7	years	 after	 the	 child’s	
birth.	On	the	other	hand,	Fernandes	et	al.	[63]	reported	a	
kindred	with	a	C620S	mutation	MTC	but	without	HSCR	.	
They	suggested	that	the	observed	RET	mutation	had	little	
to	 do	 with	 the	 development	 of	 HSCR	 in	 these	 patients	
and	hypothesized	that	another	area	of	RET	is	responsible	
for	the	HSCR	phenotype.	Our	patient	had	total	colonic	
aganglionosis	and	other	genetic	variations	apart	from	the	
C620W	in	exon	10,	namely	a	further	RET	SNP	in	exon	
13	plus	an	exon	4	(831	G/A)	SNP	in	EDNRB	(which	was	
probably	neutral).

The	hypothesis	that	the	620	mutation	has	a	dual	func-
tion	 is	 supported	by	 the	report	of	Arighi	et	al.	 [7]	who	
have	 provided	 an	 theoretical	 explanation	 for	 the	 dual	
phenotypic	 Janus	mutation	at	cys	620	of	RET.	Working	
with	Madin-Darby	canine	kidney	cells	 (MDCK)	with	a	
transfected	 C620S	 mutation,	 they	 demonstrated	 that	 al-
though	the	mutation	impairs	the	GDNF-induced	effects	
on	cell	migration,	differentiation	and	cell	survival,	it	also	
simultaneously	 results	 in	 increased	 rapid	 cell	 prolifera-
tion.	This	dual	action	may	also	be	 true	of	certain	other	
RET	 genetic	 variations.	 Borst	 et	 al.	 [22]	 suggested	 that	
the	618	RET	codon	could	also	predispose	patients	with	
MEN	 to	 HSCR	 in	 a	 similar	 manner.	 More	 information	
is	required	before	 this	picture	becomes	clear,	but	based	
on	current	knowledge	it	does	appear	as	if	the	620	codon	
mutation	has	a	dual	or	Janus	potential.

256 S. W. Moore



18.2.1.4	 Intestinal	Ganglioneuromatosis

GN	 is	 an	 uncommon	 condition	 affecting	 peripheral	
nerves	 in	the	 intestinal	wall.	 It	 is	 important	to	note	the	
transmural	nature	of	the	hypertrophied	nerves	(Fig.	18.2)	
to	 distinguish	 it	 from	 the	 thickened	 peripheral	 nerves	
seen	in	association	with	HSCR	and	the	thickened	nerves	
sometimes	visible	on	 low	rectal	biopsy.	Although	 it	dis-
plays	 similarities	 to	 the	 circumscribed	 or	 diffuse	 neu-
romatosis	 encountered	 in	 certain	 patients	 with	 neurofi-
bromatosis,	GN	usually	presents	as	an	isolated	condition	
with	 pseudoobstruction	 (presumably	 related	 to	 incom-
plete	penetrance	of	the	genetic	defect	[61].

GN	 is	 known	 to	 occur	 in	 association	 with	 MEN2B	
where	there	are	also	GN	of	the	lips	and	tongue.	This	as-
sociation	with	 the	MEN	syndromes	 links	 it	 to	 the	RET	
protooncogene	and	as	a	result,	 it	potentially	carries	 the	
risk	 of	 MTC	 and	 pheochromocytoma.	 Further	 ganglio-
neuromas	(GN)	of	 the	ENS	are	also	a	possibility.	 In	ad-
dition,	GN	may	also	be	associated	with	abnormal	neuro-
peptide	secretion	(e.g.	VIP)	[49,	123,	140]	and	diarrhea	
especially	when	it	involves	the	small	bowel	and	pancreas	
[140].	Although	it	has	been	described	in	animals	[39],	as	
part	 of	 intestinal	 neuronal	 dysplasia	 [43,	 62]	 or	 part	 of	
intermuscular	plexus	hyperplasia	[123],	 it	must	be	seen	
as	a	separate	entity,	preferably	with	its	identity	being	con-
firmed	genetically.

Although	 often	 asymptomatic,	 initially	 patients	 may	
present	with	constipation	or	diarrhea	[30]	or	in	a	similar	
manner	 to	 those	with	HSCR	[94].	Other	reported	clini-
cal	features	include	failure	to	thrive,	chronic	diarrhea	and	
abdominal	 distension.	 Radiological	 features	 include	 ab-
normal	haustral	patterns	of	the	colon	with	thick	mucosal	
folds,	 defective	 peristaltic	 movements	 and	 possible	 co-
lonic	diverticulae	[5,	52].	In	addition,	areas	of	spasm	and	
dilatation	of	the	colon	are	often	present	[94],	and	it	may	
even	 mimic	 Crohn’s	 disease	 on	 radiological	 assessment	
[35].	Esophageal	dysmotility	has	also	been	reported	[48].

Rectal	 biopsy	 may	 show	 the	 massive	 transmural	 hy-
pertrophy	of	nerve	fibers	among	autonomic	ganglia	of	the	
ENS.	Ganglion	cells	are	usually	present	in	normal	num-
bers	and	in	our	own	studies	PGP9.5	staining	was	within	
normal	 limits	 [83].	 On	 the	 other	 hand,	 neural	 markers	
neurofilament	 protein	 and	 S100	 protein	 demonstrated	
some	variation	with	a	marked	increase	in	S100	staining	
being	observed	in	the	muscularis	propria	(but	not	in	the	
lamina	propria)	as	well	as	a	mild	reduction	in	neurofila-
ment	protein	staining	in	both	layers.

Patients	 with	 MEN2B	 often	 present	 with	 symptoms	
related	 to	 the	 ganglioneuromas	 of	 the	 intestinal	 wall	
[30].	 Gastrointestinal	 symptoms	 may	 precede	 the	 clini-
cal	presentation	and	may	lead	to	the	diagnosis.	There	is	
a	 clear	 association	 with	 diarrhea	 (possibly	 on	 the	 basis	
of	excessive	VIP	secretion).	The	relationship	to	constipa-
tion	and	recurrent	episodes	of	pseudoobstruction	and	a	

Hirschsprung-like	 clinical	 picture	 is	 a	 definite	 mode	 of	
presentation.	 Verdy	 et	 al.	 [159]	 reported	 a	 connection	
with	MEN	syndromes	in	9	out	of	92	patients	in	their	se-
ries	which	is	the	highest	on	record.

When	associated	with	the	MEN	syndromes,	the	risk	of	
thyroid	carcinoma	is	increased	but	there	is	little	available	
information	 as	 to	 the	 risk	 of	 developing	 MEN-related	
tumors	in	patients	presenting	with	an	isolated	intestinal	
GN	 during	 childhood.	 The	 answer	 to	 this	 conundrum	
must	 surely	 lie	 in	 the	 genetic	 abnormalities	 associated	
with	the	condition.	There	is	at	least	one	reported	patient,	
a	 27-year-old	 man,	 who	 developed	 the	 phenotypic	 ex-
pression	afterwards	and	diagnosis	and	prevention	could	
have	 been	 obtained	 from	 earlier	 genetic	 investigation	
[11].	There	is	also	a	report	of	another	patient	with	typical	
ganglioneuromas	 in	whom	the	diagnosis	was	not	made	
until	 tumors	 were	 present	 [111].	 Shekitka	 et	 al.	 [138]	
concluded	that	the	solitary	polypoid	ganglioneuroma	of	
the	gastrointestinal	 tract	did	not	carry	 the	 same	risk	of	
neurofibromatosis	or	RET	as	the	diffuse	type.

The	histological	 features	of	ganglioneuromatosis	and	
its	 place	 in	 the	 neurocristopathies	 are	 of	 interest.	 Gan-
glioneuromas	of	the	ENS	are	rare	tumors,	which	consist	
of	ganglion	cells,	nerve	fibers	and	supporting	cells.	There	
are	at	 least	two	morphological	patterns	of	GN	[43],	 the	
polypoid	and	diffuse	types.	Transmural	GN	affects	all	lay-
ers	of	the	bowel	wall	which	show	neural	hyperplasia	with	
predominantly	the	myenteric	plexus	being	involved,	and	
is	 the	 form	 generally	 associated	 with	 MEN	 syndromes.	
The	other	form,	mucosal	GN	(often	as	polyps	[34,	100]),	
is	more	associated	with	von	Recklinghausen’s	disease,	ad-
enocarcinoma	of	the	colon	and	multiple	adenomas	with	
megacolon.	The	significance	of	GN	is	 that	 it	may	be	an	
indicator	of	the	genetic	background	which	may	carry	the	
risk	of	eventual	cancer	[111].

A	 germline	 RET	 codon	 918	 mutation	 has	 been	 re-
ported	 in	apparently	 isolated	GN	of	 the	 intestine	 [144].	
Many	 series	 on	 intestinal	 dysplastic	 conditions	 contain	

Fig.	18.2	 Section	 of	 bowel	 wall	 demonstrating	 the	 massive	
transmural	hypertrophy	of	nerve	fibers	typical	of	ganglioneuro-
matosis	(H&E,	×25)	(Photo	P	Beale,	used	with	permission)
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similar	 patients	 without	 the	 phenotypic	 features	 of	 a	
MEN	syndrome,	but	with	GN	of	 the	bowel.	The	risk	of	
MTC	is	unclear	(and	hence	its	prevention	by	prophylac-
tic	 thyroidectomy).	The	question	as	 to	whether	 the	risk	
to	patients	with	GN	but	without	the	features	of	a	MEN	
syndrome	can	be	predicted	genetically	has	not	yet	been	
answered.	 Little	 is	 known	 about	 the	 way	 in	 which	 the	
exon	16	(M918T)	germline	mutation	relates	to	GN,	but	
it	was	present	in	all	 three	patients	reported	by	Smith	et	
al.	[144].	What	is	known	is	that	pheochromocytoma	cells	
transfected	 with	 RET	 M918T	 mutation	 are	 resistant	 to	
nerve	growth	factor	 inhibition	[26],	which	may	well	ex-
plain	the	overgrowth	of	nerve	elements.	This	study	sup-
ports	 earlier	 findings	 of	 increased	 nerve	 growth	 stimu-
lating	activity	acting	preferentially	on	sympathetic	nerve	
terminals	[49].

It	 is	 well	 documented	 that	 the	 RET/GFR-alpha-1/
GDNF	 complex	 is	 responsible	 for	 a	 signal	 which	 is	 es-
sential	 for	the	survival	of	early	crest	derived	neural	pre-
cursors	which	in	turn	colonize	the	gut	giving	rise	to	the	
ENS	[70,	151].	The	RET	2B	mutation	(significantly	more	
than	the	RET	2A	mutation)	results	in	an	increase	in	Ret-
MEN-specific	potentiated	phosphorylation	of	tyro	1062	
(Y1062).	 Y1062	 is	 a	 RET	 multiple	 effector	 docking	 site	
that	mediates	the	recruitment	of	the	Shc	adaptor	and	of	
P13K	 at	 the	 Y1062	 docking	 site.	 The	 MEN	 mutations	
convert	RET	 into	a	dominant	mutant	protein	which	 re-
sults	 in	 activation	 of	 its	 tyrosine	 kinase	 activity	 and	 tu-
mor	formation	via	the	downstream	mediator	Shp-2	[42].

18.2.2 Neurocristopathies Associated 
with Endothelin System (EDNRB, EDN3) 
and SOX10

18.2.2.1	 Waardenburg	Syndrome

Waardenburg	 syndrome	 (WS)	 is	 a	 human	 genetic	 con-
dition	 characterized	 by	 defective	 melanocyte	 function	
(with	pigmentation	anomalies	of	 the	skin,	hair	and	iris;	
Fig.	18.3),	cochlear	sensorineural	deafness	and	craniofa-
cial	abnormalities	[160].	It	occurs	in	association	with	in-
testinal	aganglionosis	as	the	uncommon	Shah-Waarden-
burg	 subtype	 (WS4)	 [137].	 EDNRB-deficient	 cells	 have	
been	shown	not	to	develop	into	differentiated	pigmented	
melanocytes	[77]	and	mutations	of	the	EDN3	gene	also	
appear	to	be	important	in	WS	[33,	64].

The	Waardenburg-HSCR	association	is	uncommon	in	
most	series	and	we	have	encountered	only	1	patient	out	
of	more	than	500	patients	with	HSCR.	It	does	appear	in	
kindreds,	however	[120,	121],	where	no	 increasing	pen-
etrance	 of	 aganglionosis	 was	 observed	 between	 genera-
tions	in	25	unrelated	kindreds	(i.e.	almost	identical	agan-
glionic	length)	[15,	85,	113].

This	 Waardenburg-HSCR	 association	 is	 transmitted	
in	 an	 autosomal	 recessive	 manner	 and	 appears	 to	 be	

related	 to	 genes	 at	 13q22	 (EDNRB)	 [121]	 and	 other	
related	 genes	 required	 for	 the	 normal	 development	
of	 the	 neural	 crest	 cells	 migrating	 to	 the	 eye,	 inner	 ear	
and	 colon.	 Experiments	 with	 Sp	 (Splotch)	 mutation	 on	
chromosome	 1	 in	 mouse	 models	 have	 provided	 a	 link	
to	 a	 PAX3	 deletion	 (a	 transcription	 factor	 with	 two	
highly	 conserved	 DNA	 motifs)	 [54].	 It	 has	 since	 been	
shown	that	PAX3	functions	with	SOX10	to	activate	c-ret	
transcription	and	that	interruption	of	these	pathways	at	
various	stages	will	result	in	intestinal	aganglionosis	[87].	
To	emphasize	 the	role	of	EDNRB,	a	mouse	model	with	
exon	2	and	3	mutations	has	been	reported	to	demonstrate	
the	features	of	WS4	[97].

Thus,	 at	 least	 four	 genetic	 links	 are	 currently	 associ-
ated	with	the	Waardenburg-Shah	phenotype	(viz.	a	tran-
scription	 factor	 from	 SOX10,	 EDN3,	 the	 EDNRB	 gene	
[98],	and	a	possible	link	to	the	MITF	gene)	[161].

18.2.2.2	 The	Role	of	SOX10

It	 is	 now	 understood	 that	 SOX10	 activity	 (correspon-
ding	 to	 the	 animal	 dominant	 megacolon	 DOM	 trait)	
modulates	 a	 number	 of	 critical	 signaling	 pathways	 con-
trolling	the	differentiation	of	neural	crest-derived	nerve	
cells	 and	 melanocytes	 [101].	 In	 addition	 to	 the	 known	
PAX3–SOX10–c-ret	 functions,	 interaction	 between	
SOX10	and	the	severity	of	aganglionosis	has	been	shown	
in	an	animal	model	[28].	The	presence	of	certain	EDNRB	
mutations	 was	 shown	 to	 increase	 penetrance.	 In	 addi-
tion	 to	 EDNRB,	 further	 links	 have	 been	 demonstrated	
between	 SOX10	 and	 RET	 (MOLa)	 binding	 sites	 in	 the	
RET	promoter	region	where	SOX10	has	been	shown	to	
regulate	 transcription	 from	the	RET	M	promoter	 [161].	
Lack	of	the	normal	SOX10-mediated	RET	activation	may	
therefore	also	lead	to	intestinal	aganglionosis.	In	addition,	

Fig.	18.3	 Waardenburg-Shah	 association	 of	 HSCR	 with	 WS4.	
Note	the	white	forelock
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overexpression	of	other	genes	coding	for	myelin	proteins	
may	result	in	some	of	the	syndromic	neurological	associa-
tions	of	HSCR.	A	report	of	a	patient	with	pseudoobstruc-
tion	and	SOX10	(without	EBNRB	and	EDN3)	mutations,	
and	 no	 pigmentation	 disorder	 [118],	 demonstrates	 its	
importance	in	intestinal	neuronal	development.

It	is	clear	therefore	that	dosage-sensitive	heterozygos-
ity	 with	 incomplete	 penetrance	 of	 SOX10	 could	 predis-
pose	 to	 HSCR,	 whereas	 homozygosity	 would	 result	 in	
more	complex	neurocristopathies	 associated	 features	of	
HSCR	and	WS	[2].	WS	has	also	been	associated	with	mu-
tations	 of	 the	 MITF	 (microphthalmia-associated	 tran-
scription	 factor)	 gene	 [88,	 161]	 which	 encodes	 a	 tran-
scription	 factor	 with	 the	 basic	 helix-loop-helix	 leucine	
zipper	 (bHLH-zip)	 motif,	 which	 has	 been	 shown	 to	 be	
involved	in	melanocyte	differentiation	[110].

18.2.3 Congenital Central 
Hypoventilation Syndrome 

Congenital	 central	 hypoventilation	 (CCHS,	 Ondine’s	
curse)	is	an	uncommon	syndrome	occasionally	associated	
with	HSCR	(14–20%	of	cases),	as	well	as	with	tumors	of	
neural	origin	and	autonomic	dysfunction	HSCR-CCHS	
(Haddad’s	 syndrome).	 It	 is	 mostly	 associated	 with	
long-segment	 aganglionosis.	 CCHS	 involves	 a	 loss	 of	
autonomic	 control	 and	 is	 often	 associated	 with	 other	
autonomic	 nervous	 system	 abnormalities	 such	 as	 tonic	
pupil	and	other	ophthalmic	anomalies,	 especially	when	
it	occurs	in	association	with	HSCR	[40].	It	is	a	life-threat-
ening	condition	as	it	results	in	an	impaired	ventilatory	re-
sponse	to	hypercarbia	and	hypoxemia,	and	patients	often	
spend	long	periods	on	mechanical	ventilatory	support.

It	has	been	reported	to	occur	in	1	in	every	200,000	live	
births	 in	 France	 [157].	 It	 affects	 boys	 and	 girls	 equally	
and	may	be	familial	[73],	the	recurrence	risk	to	sibs	being	
4%.	These	sib	pairs	together	with	identified	genetic	links	
with	HSCR	and	associated	tumors	suggest	a	genetic	basis	
for	 this	 syndrome.	 The	 pathogenesis	 of	 CCHS	 is	 most	
likely	multigenic,	 although	novel	mutations	of	 the	RET	
and	EDN3	genes	have	been	reported	[14].	A	novel	RET	
mutation	(R114H)	has	been	described	[81,	128]	as	well	as	
a	corresponding	GDNF	variation	[2].	Variations	in	brain-
derived	 neurotrophic	 factor	 gene	 have	 been	 reported	
[162].	The	CCHS-like	picture	resulting	from	a	disrupted	
RNX	gene	(HOX11)	in	an	animal	model,	 in	embryonic	
stem	cells	[96],	has	not	been	replicated	in	humans.	Other	
workers	have	reported	PHOX2B	as	a	candidate	[3],	and	
more	recently,	heterozygous	mutations	of	the	paired-like	
homeobox	 gene	 PHOX2B	 have	 been	 identified	 in	 91%	
of	patients.	It	is	not	infrequently	associated	with	tumors	
such	 as	 neuroblastomas	 [124],	 ganglioneuromas	 and	
ganglioneuroblastomas.	 Because	 of	 the	 known	 genetic	
associations,	 it	 is	 reasonable	 to	 speculate	 that	 the	 latter	
two	arise	in	situations	of	lower	gene	penetrance.

18.2.4 Other Rarer Neurocristopathies

18.2.4.1	 Extended	Plasticity	of	the	Enteric	
Nervous	System

This	 group	 of	 conditions	 incorporates	 those	 variants	 of	
HSCR	in	which	plasticity	of	the	ENS	appears	to	not	fol-
low	the	usual	course	and	the	plasticity	of	the	ENS	is	pro-
longed.	 These	 conditions	 include	 prolonged	 or	 delayed	
maturity	of	ganglion	cells,	 segmental	aganglionosis	and	
acquired	postoperative	aganglionosis.

Immaturity	of	Ganglion	Cells

A	wide	spectrum	of	dysplastic	features	occur	in	the	bowel	
in	HSCR,	one	of	which	 is	 immaturity	of	cells.	This	has	
been	seen	mostly	in	neonates	and	premature	infants,	the	
so-called	“immaturity	of	prematurity”.	The	ENS	function	
in	these	patients	appears	to	improve	with	maturation	and	
is	mostly	managed	conservatively.	 It	may,	however,	per-
sist	giving	rise	to	clinical	problems.

It	has	been	observed	that,	although	differentiation	of	
ENS	neurons	occurs	early,	a	significant	pool	of	precursor	
cells	persists	in	the	ENS,	and	the	numbers	of	enteric	neu-
rons	continue	to	increase	until	well	after	birth	or	hatch-
ing	[67].	Immaturity	of	ganglion	cells	has	been	reported	
to	influence	the	function	of	the	intestine	[25,	57].	Imma-
turity	must	be	interpreted	in	the	light	of	the	gestational	
age,	 postnatal	 age	 and	 knowledge	 of	 the	 variations	 in	
normal	postnatal	development.	In	addition,	the	recogni-
tion	 of	 immature	 cells	 is	 not	 always	 easy	 as	 other	 cells	
such	as	hypertrophied	glial	cells	and	fibroblasts	may	lead	
to	misinterpretation	[6].	These	 immature	ganglion	cells	
have	 a	 smaller,	 darker	 nucleus	 without	 a	 recognizable	
nucleolus	[6].	Special	staining	methods	may	be	necessary	
to	clarify	the	ganglion	cell	morphology	and	identify	im-
mature	cells	[108,	135].

To	 a	 certain	 extent,	 ENS	 immaturity	 may	 also	 ex-	
plain	 the	 relatively	 low	 levels	 of	 acetylcholinesterase	
(AChE)	not	 infrequently	observed	in	neonatal	ganglion	
cells	 [45],	 and	 the	 increase	 in	 staining	 patterns	 over	
time.	 The	 immature	 or	 developing	 cells	 would	 express	
AChE	as	they	attempt	to	differentiate,	and	the	timing	of	
this	would	depend	on	the	proportion	of	immature	cells	
present.

18.2.4.2	 Segmental	Aganglionosis	(Zonal	
Aganglionosis	or	Skip	Lesions)

HSCR	is	normally	defined	as	a	functional	obstruction	re-
sulting	from	congenital	absence	of	ganglion	cells	 in	the	
myenteric	plexuses	of	the	distal	segment	of	the	gastroin-
testinal	tract.	A	single	distal	aganglionic	region	therefore	
extends	 from	 the	 anal	 margin	 to	 the	 level	 of	 the	 proxi-
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mal	 ganglionated	 bowel.	 Segmental	 aganglionosis,	 on	
the	other	hand,	involves	only	a	limited	segment	of	bowel	
interposed	 between	 segments	 of	 normally	 innervated	
bowel.	Understanding	this	phenomenon	poses	consider-
able	theoretical	and	practical	challenges.

Despite	it	being	reported	very	early	on	in	HSCR	[75,	
85,	146,	152],	the	existence	of	zonal	aganglionosis	is	often	
questioned	on	theoretical	grounds	[170].	It	has.	however,	
been	described	in	both	children	[4,	46,	72,	74,	89,	95,	116,	
136,	149,	170]	and	adults	[68],	as	well	as	in	a	number	of	
animals	[148].	It	has	been	reported	as	including	both	the	
small	bowel	and	the	large	bowel,	and	occasionally	the	ap-
pendix	[4].

Munakata	 and	 Holschneider	 [107]	 classified	 the	 re-
ported	cases	into:
•	 Single	 zonal	 aganglionosis	 or	 hypoganglionosis	 with	

distal	normal	innervation	(ten	patients)
•	 Double	zonal	analysis	with	distal	normal	innervation	

(four	patients)
•	 Zonal	 normoganglionic	 or	 hypoganglionic	 colon	

within	aganglionic	intestine	(eight	patients)

The	generally	held	view	that	all	enteric	neuroblasts	arise	
from	the	vagal	crest	[117]	and	populate	the	bowel	in	a	cra-
niocaudal	wave	gives	rise	to	certain	theoretical	difficulties	
in	 understanding	 how	 zonal	 aganglionosis	 could	 come	
about.	Possible	etiologic	causes	include	the	following:
•	 Anoxic	damage	to	the	myenteric	plexus
•	 Migratory	theory:	a	meeting	point	of	the	craniocaudal	

neuroblast	migration	as	well	as	the	neuroblasts	arising	
from	the	sacral	outflow

•	 Unfavorable	microenvironment	hypothesis
•	 Intrauterine	inflammation	or	viral	infection
•	 A	primary	abnormality	of	the	developing	gastrointes-

tinal	anlage

The	 hypoxic	 theory	 is	 discussed	 in	 the	 next	 section	
(18.2.4.3	 Acquired	 Aganglionosis).	 The	 migratory	 hy-
pothesis	lacks	support	and	there	is	little	evidence	that	the	
sacral	outflow	produces	a	significant	contribution	to	the	
ganglionation	of	the	terminal	bowel.	In	fact,	the	contrary	
appears	to	be	the	case	[117].	In	contrast	to	the	migratory	
theory,	a	localized	defect	in	the	microenvironment	of	the	
specific	segment	of	bowel	resulting	in	a	failure	of	enteric	
neurons	 to	 differentiate	 and	 undergo	 normal	 develop-
ment	and	undergo	apoptosis	appears	a	distinct	possibility.	
The	 pathogenesis	 of	 this	 condition	 would	 then	 depend	
upon	 developing	 and	 migrating	 neural	 crest	 cells	 con-
fronting	a	segmental	abnormal	and	hostile	and	microen-
vironment	as	a	result	of	deranged	intracellular	signaling	
systems	relating	to	the	specific	genes	and	gene	protein.

The	plasticity	of	the	ENS	after	birth	has	long	been	the	
subject	of	debate.	Current	concepts	include	the	idea	that	
average	neuronal	activity	levels	are	maintained	by	a	set	of	
homeostatic	 plasticity	 mechanisms,	 which	 adjust	 levels	
to	 achieve	 stability	 [158].	 Recent	 findings	 demonstrate	

the	important	role	of	Hox	genes	(e.g.	SOX10)	in	promot-
ing	 the	 survival	 of	 neural	 crest	 precursors	 prior	 to	 dif-
ferentiation	[101].	Mutations	may	lead	to	apoptosis,	thus	
offering	a	further	explanation	of	ENS	plasticity.

A	primary	abnormality	of	the	developing	gastrointes-
tinal	anlage	appears	to	be	a	real	possibility.	It	is	currently	
supported	by	recent	animal	experiments	on	embryos	of	
ls/ls	minus	mice	(a	model	of	classic	short-segment	agan-
glionosis)	 [82]	 in	which	a	 transient	phase	 in	 the	migra-
tory	pattern	has	been	demonstrated.	It	would	seem	that	
ganglion	cells	appear	in	the	middle	colon	of	these	mice	as	
a	result	of	an	extramural	phase	of	neuroblast	migration	
at	a	stage	when	they	are	still	absent	from	the	ascending	
colon	and	distal	large	intestine.	This	unique	observation	
suggests	some	sort	of	theoretical	understanding	of	zonal	
aganglionosis.	Should	ENS	development	be	arrested	and	
persist	 after	 birth,	 it	 would	 give	 rise	 to	 the	 same	 clini-
cal	 picture	 as	 reported	 by	 Martin	 et	 al.	 [95],	 where	 the	
ascending	 and	 descending	 colon	 were	 aganglionic	 with	
ganglion	cells	present	in	the	middle	colon.	There	are	also	
similarities	 to	 one	 of	 the	 cases	 reported	 by	 Yunis	 et	 al.	
[170]	and	Taguchi	et	al.	[149],	and	the	zonal	hypogangli-
onosis	reported	by	Kadair	et	al.	[80]	could	probably	also	
be	explained	in	this	way.

18.2.4.3	 Acquired	Aganglionosis

Secondary	 aganglionosis	 following	 pull-through	 proce-
dures	for	HSCR	is	a	rare	event.	We	previously	reported	
an	 incidence	 of	 1.5%	 in	 our	 series	 (5	 patients	 out	 of	
324	 HSCR	 patients	 with	 pull-through	 operations)	 [38].	
All	 the	 patients	 had	 a	 satisfactory	 initial	 postoperative	
course,	 but	 developed	 recurrent	 symptoms	 such	 as	 ab-
dominal	distension,	pain	and	constipation,	and	in	some	
cases	 soiling,	 several	 months	 later.	 Carefully	 controlled	
rectal	biopsies	above	the	level	of	the	original	anastomosis	
in	 these	patients	 indicated	 that	 the	previously	histologi-
cally	proven	ganglionic	pulled-through	segment	had	be-
come	aganglionic.

Previous	 studies	have	been	criticized	because	of	pos-
sible	sampling	errors	whereby	the	biopsy	may	have	been	
taken	from	the	 level	of	residual	aganglionic	bowel	 inad-
vertently	 or	 deliberately	 retained	 at	 the	 original	 proce-
dure	(e.g.	Rehbein’s	procedure	or	the	anterior	rectal	wall	
following	a	Duhamel	procedure).	Nevertheless,	acquired	
aganglionosis	has	been	reported	following	the	Swenson	
[44,	 55,	 56],	 Duhamel	 [90,	 122,	 164]	 and	 Soave	 proce-
dures	 [37,	 41].	 As	 in	 our	 patients,	 the	 aganglionosis	 in	
all	 these	 patients	 seems	 to	 have	 been	 acquired	 postop-
eratively,	 the	 pulled-through	 bowel	 being	 ganglionated	
at	 the	 time	of	 surgery.	The	pathogenetic	mechanism	by	
which	 aganglionosis	 may	 be	 acquired	 following	 pull-
through	procedures	remains	uncertain,	but	a	number	of	
possibilities	exist.	These	include	vascular	insufficiency	as	
well	as	a	number	of	other	possible	mechanisms.
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Since	the	first	description	of	this	condition	by	Ehren-
preis	 in	 1965	 [55],	 vascular	 impairment	 of	 the	 pulled-
through	 segment	 with	 consequent	 neuronal	 hypoxia	
has	been	postulated.	The	evidence	attributing	a	vascular	
cause	to	HSCR	still	seems	to	be	largely	based	on	circum-
stantial	 evidence,	 however	 [103].	 The	 fact	 that	 hyaline	
fibrosis	 was	 observed	 in	 certain	 vascular	 walls	 together	
with	 an	 increase	 in	 fibrous	 tissue	 in	 the	 submucosa	
in	 two	 of	 our	 patients	 [38]	 and	 in	 one	 reported	 by	 Eh-
renpreis	 in	 1965	 [55,	 56]	 would	 appear	 to	 support	 this	
hypothesis.	 On	 the	 other	 hand,	 fibrosis	 has	 not	 been	 a	
feature	of	other	studies	[37].	There	is	some	experimental	
data	supporting	a	vascular	accident	in	the	pathogenesis	
of	HSCR	[53],	and	abnormal	arteries	have	been	found	in	
aganglionic	areas	and	in	the	transitional	zone	of	resected	
bowel	[90,	150].	Although	it	is	a	stated	view	that	marked	
regional	differences	in	the	sensitivity	of	the	neuromuscu-
lar	system	to	hypoxia	 in	experiments	on	the	 large	 intes-
tine	of	piebald	mice	[167]	could	possibly	account	for	the	
divergent	experimental	results	 [37,	51,	53,	55,	164],	 the	
possibility	still	exists	that	hypoxia	of	the	pulled-through	
segment	could	lead	to	degeneration	or	a	failure	of	differ-
entiation	of	developing	or	 immature	ganglion	cells.	On	
the	 other	 hand,	 in	 other	 animal	 experiments	 [50,	 99],	
selective	ischemia	failed	to	cause	aganglionosis	and	gan-
glion	cells	were	still	clearly	identifiable	after	the	hypoxic	
event	in	spite	of	other	features	of	hypoxia	in	the	mucosa	
and	muscle.	Meijers	et	al.	[99]	concluded	that	the	induc-
tion	 of	 such	 ischemia	 at	 an	 early	 stage	 of	 development	
results	 in	 stenosis	 or	 intestinal	 atresia	 without	 selec-
tive	loss	of	enteric	neurons.	It	is	also	possible	that	other	
pathogenetic	mechanisms	such	as	environmental	toxins	
play	a	part	in	acquired	aganglionosis.	Degeneration	and	
destruction	of	colonic	ganglia	have	been	experimentally	
produced	 in	 animals	 by	 injection	 or	 administration	 of	
various	toxins	[55,	112,	169],	but	the	hypothesis	appears	
to	 lack	 clinical	 support.	 Acquired	 intestinal	 agangliono-
sis	has	also	been	reported	in	association	with	circulating	
immunoglobulin	G	class	enteric	neuronal	antibodies	 in	
high	titer	[143].	This	is	of	particular	interest	due	to	other	
observations	 of	 increased	 immunoglobulins	 in	 congeni-
tal	aganglionosis	[102],	and	raises	the	question	as	to	the	
role	 played	 by	 the	 immune	 system	 in	 the	 pathophysiol-
ogy	of	aganglionosis.

In	 addition	 to	 acquired	 aganglionosis	 following	 pull-
through	 procedures,	 there	 are	 a	 number	 of	 reports	 of	
acquired	 aganglionosis	 occurring	 without	 surgery	 [155,	
156,	163].	In	all	these	patients	the	diagnosis	of	HSCR,	al-
though	clinically	 suspected,	was	eliminated	by	 the	pres-
ence	 of	 distinctive	 ganglion	 cells	 on	 rectal	 biopsy.	 Fol-
lowing	 several	months	of	 clinical	 intestinal	obstruction,	
repeat	 rectal	biopsies	 revealed	hypertrophic	nerves	and	
an	absence	of	ganglion	cells	typical	of	HSCR.	Touloukian	
and	Duncan	[154],	reporting	acquired	aganglionosis	in	a	
stressed	premature	baby	with	enterocolitis,	attributed	 it	
to	 ischemia	generated	by	the	redistribution	of	 the	capil-

lary	circulation	away	from	the	gut	during	a	state	of	shock.	
Chow	 et	 al.,	 reporting	 a	 patient	 with	 degenerated	 gan-
glion	cells	and	a	mononuclear	infiltrate	in	the	submucosa	
of	the	rectum	at	the	age	of	5	days	and	subsequent	agan-
glionosis	at	7	months	[36],	speculated	that	a	viral	 infec-
tion,	 probably	 acquired	 in	 utero,	 could	 be	 the	 cause	 of	
HSCR	in	some	patients.	Smith	et	al.	[143]	reported	two	
patients	with	enteric	ganglionitis	with	a	loss	of	neurons	
together	with	vacuolated	nerve	cells	surrounded	by	CD3+	
and	CD4+	T	lymphocytes.

We	emphasize	 the	need	 for	repeated	sequential	biop-
sies	 in	 patients	 with	 recurrent	 symptoms	 and	 features	
of	 HSCR	 following	 pull-through	 procedures.	 The	 spe-
cific	etiology	and	pathogenesis	of	this	entity	needs	to	be	
elucidated.
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