
Chapter

15.1	 Introduction

Several diagnostic methods are necessary in the exami­
nation of patients in whom Hirschsprung’s disease (HD) 
is suspected. These are clinical examination, contrast en­
ema, anorectal manometry and rectal biopsy. It has been 
shown that rectal suction biopsies (RSB) have the highest 
sensitivity (93%) and specificity (100%) rates in diagnos­
ing HD [1].

Nevertheless the introduction of RSB, whilst making 
the procedure less traumatic for the patient, has made the 
diagnosis of HD more difficult for the pathologist. Many 
histopathologists are reluctant to make a positive diag­
nosis of HD on the basis of rectal biopsy results, using 
conventional hematoxylin-eosin stains. This reluctance 
is due to the doubt as to the amount of submucosa that 
must be scanned before the absence of ganglion cells can 
be confirmed as well as the relative difficulty of accurately 
identifying smaller and sparse submucosal ganglion cells 
by comparison with the more compact ganglion cells of 
the myenteric plexus.

The development of histochemical techniques for the 
detection of acetylcholinesterase (AChE) was a consid­
erable advance in the investigation of HD [2, 3]. HD is 
histologically characterized by the association between 
the congenital absence of colonic ganglion cells and an 
increased AChE expression in the affected bowel. Al­
though a high degree of histochemical accuracy exists in 
performing AChE histochemistry, results are not always 
uniform, and false-positive and false-negative results 
have been reported [4, 5]. Possible causes of false AChE 
tests may be variability in biopsy site, immaturity of the 
enzyme system and technical variations [1]. Moreover, 
in the very young age group investigated for HD, the 
ganglion cells of the submucosa could be immature and 
hyperplastic nerve fibers of the lamina propria and mus­
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cularis mucosa are not always detectable. Furthermore, 
ganglion cells may be difficult to distinguish from en­
dothelial or other submucosal cells. Other major factors 
are first that AChE histochemistry requires fresh-frozen 
tissue, and second that the interpretation of AChE histo­
chemistry needs a certain level of expertise.

Therefore, alternative diagnostic neuronal markers 
have been sought to ensure the proper diagnosis of HD 
on rectal biopsies. These include various new immuno­
histochemical and histochemical neuronal markers for 
use in the investigation of bowel specimens, i.e. rectal 
biopsies and resected bowel.

Generally, immunohistochemistry is a powerful tool 
for investigation of various antigens using specific anti­
body–antigen reaction. The basic immunohistochemical 
methods are direct and indirect immunofluorescence 
or direct and indirect enzyme immunohistochemistry. 
Various immunohistochemical markers and special his­
tochemical stains have also been used for research and 
clinical diagnosis of HD and allied gastrointestinal motil­
ity disorders in childhood. A list of neuronal markers dis­
cussed in this chapter, and a summary of their distribu­
tion and physiological role, are presented in Table 15.1.

Table 15.1  Neuronal markers

Marker Distribution/physiological role

Cathepsin D General marker

Neuron-specific enolase (NSE) General marker: mature and immature neurons, 
their perikarya and axonal fibers

Protein gene product (PGP) 9.5 General marker: mature and immature neuron 
cells (enteric ganglia), and nerve fiber

Neurofilament General marker

Peripherin General marker of the peripheral nervous 
system; marker of neuronal differentiation

Microtubule associated proteins General marker

Calretinin General marker

Neural cell adhesion molecule General marker

Nerve growth factor receptor General marker

Ca-activated K channels General marker

Neuropeptide Y Neuropeptide; sympathetic ganglia in 
myenteric and submucosal

Vasoactive intestinal peptide (VIP) Neuropeptide; marker of (inhibitory) NANC innervation

Substance P Neuropeptide; marker of (excitatory) NANC innervation

Enkephalin/gastrin-releasing peptide Markers of excitatory NANC innervation

Calcitonin gene-related peptide (CGRP) Marker of intrinsic afferent neurons

Galanin General marker

S-100 protein Marker of neuronal supporting (glial) cells

Glial fibrillary acidic protein Marker of glial cells

Choline acetyltransferase Marker of cholinergic neurons

Vesicular acetylcholine transporter Marker of cholinergic neurons

Dopamine β-hydroxylase Marker of (nor)adrenergic nerve fibers

Tyrosine hydroxylase Marker of (nor)adrenergic neurons

Synaptophysin Synaptic marker

171B5 Synaptic marker

Nitric oxide synthase Marker of inhibitory NANC innervation

Carbon monoxide Marker of inhibitory NANC innervation

Capsaicin/purinergic receptors Marker of sensory nerves
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15.2	 General Markers

15.2.1	 Neuron-specific Enolase

Neuron-specific enolase (NSE) is exclusively localized 
within neurons of mammalian nervous tissue [6, 7]. 
NSE is supposed to be a selective marker of the degree 
of neuronal maturity since this molecule is expressed by 
neurons when they have initiated their specific metabolic 
and synaptic activities [8]. NSE immunohistochemistry 
leads to intense staining of ganglia which allows the rec­
ognition of small ganglion cells and the overall pattern of 
microinnervation since it also stains nerve fibers within 
the circular muscle of the bowel [9, 10]. Therefore NSE 
immunoreactivity has even been used for the diagnosis 
of hypoganglionosis and intestinal neuronal dysplasia 
(IND) on rectal biopsies [11]. On the other hand, it has 
been stated that immunohistochemical positivity of gan­
glion cells for NSE is lower than that for protein gene 
product 9.5 (PGP9.5) [12]. Different results have been 
reported regarding the usefulness of NSE immunohisto­
chemistry in the detection of hypertrophic fibers in the 
lamina propria of HD specimens [11, 12]. A most recent 
study has revealed that NSE stains the increased network 
of coarse, thickened, and irregular nerve fibers within 
the affected aganglionic segments [10]. A comprehensive 

study of selected markers for the staining of the enteric 
nervous system (ENS) has revealed that NSE and S-100 
are most suitable for clinical application [13].

15.2.2	 Protein Gene Product 9.5

The brain-specific protein PGP9.5 is one of the most sen­
sitive markers for identifying ganglion cells. Therefore 
PGP9.5 is a reliable marker for ganglion cells and nerve 
fibers of the mucosal and submucosal plexus in bowel bi­
opsies [14]. PGP9.5 staining of the ganglion cell is more 
intense than NSE staining and PGP9.5 staining of nerve 
fibers is more intense than S-100 staining [12]. There are 
significantly reduced numbers of PGP9.5-positive fibers 
in the smooth muscle of HD as shown by a morphomet­
ric evaluation of PGP9.5-positive fibers in paraffin section 
immunohistochemistry [15]. On the other hand PGP9.5 
stains the increased network of coarse, thickened, and ir­
regular nerve fibers within the affected segments of HD 
[10]. PGP9.5 clearly stains the myenteric plexus in nor­
mal bowel and the hypertrophic fibers in HD (Fig. 15.1). 
PGP9.5 antibody was applied to whole-mount prepara­
tions of aganglionic bowel. This study revealed thick 
PGP9.5-immunoreactive nerve strands mixed with S-100 
and neurofilament between the longitudinal and circular 

Fig. 15.1  PGP9.5 immunostaining: a myenteric ganglia in normal bowel; b hypertrophic fibers in HD bowel
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muscle as well as within the submucosal layer [16]. The 
same study showed that immunohistochemical staining 
of whole-mount preparations enables the differentiation 
of oligoganglionic segments in HD and hypogangliono­
sis [16].

15.2.3	 Cathepsin D

Cathepsin D is a member of a family of lysosomal acidic 
proteinases which play a major role in the intracellular 
catabolism of proteins [17]. Cathepsin D catabolizes 
neuropeptides such as substance P (SP), somatostatin, 
β-lipoprotein, and angiotensinogen. Mature and im­
mature ganglion cell bodies within the submucosal and 
myenteric plexus of the human intestine showed intense 
granular cytoplasmatic immunoreactivity for cathepsin 
D [14]. No cathepsin D-immunoreactive cells were de­
tected in aganglionic bowel [18]. Cathepsin D does not 
stain hypertrophic nerve fibers in aganglionic bowel [13]. 
Since cathepsin D stains exclusively ganglion cells (ma­
ture and immature) is has been suggested as a valuable 
tool in diagnosing HD.

15.2.4	 Neurofilament Proteins

Low (NF-L, 68 kDa), medium (NF-M, 160 kDa) and 
high (NF-H, 200 kDa) molecular neurofilament proteins 
(NF) form the neurofilaments, which, together with neu­
rotubules, constitute the cytoskeleton of the neurons [19]. 
Neurofilament cytoskeleton matures during development 
and shows an upregulation during late embryonic stages 
and after birth [20, 21]. NF-H immunoreactivity is not 
intense in ganglion cells. Nevertheless, antineurofilament 
antibodies have been used as one of the first immunohis­
tochemical tests in the study and diagnosis of HD. Since 
some antibodies only recognize specific NF subunits dif­
ferent staining results have been achieved. Normal colon 
and ganglionic bowel of HD patients show partial stain­
ing of some axon bundles within the myenteric and sub­
mucosal plexus. In contrast heavily stained hyperplastic 
nerve bundles are evident in aganglionic bowel in HD 
[22]. NF-H and NF-M stain the increased network of 
coarse, thickened, and irregular nerve fibers within the 
mucosal and submucosal layers of aganglionic segments 
in HD [10, 23, 24].

15.2.5	 Peripherin

The neuronal intermediate filament protein peripherin is 
expressed in developing and differentiated neurons from 
birth up to adulthood [25]. A comparative investigation 
using various antibodies revealed that peripherin is the 
best for the detection of human submucosal ganglion 

cells [14]. Peripherin was used to show histopathological 
differences between classical rectosigmoid HD and total 
colonic aganglionosis [26].

15.2.6	 Microtubule-associated Proteins

Microtubules are major components of the neuronal cy­
toskeleton [27]. These microtubules are associated with 
proteins that control tubulin polymerization, regulate 
microtubule assembly and function and mediate cross-
bridge formation with NFs [28]. Microtubule-associated 
protein 5 (MAP5) immunohistochemistry has revealed 
the features of the normal ENS [27].

MAP5 and microtubule-associated tau protein (tau) 
were excellent markers of the ENS since they were spe­
cifically located in nerve cell bodies and nervous pro­
cesses of normal intestine as well as aganglionic segments 
[29]. MAP5 and tau expression was slightly reduced in 
aganglionic bowel and was evident in the hypertrophied 
nerve fibers of aganglionic bowel. MAP5 stained the in­
creased network of coarse, thickened, and irregular nerve 
fibers within the affected segments of HD [10, 27].

15.2.7	 Microtubule-associated Tau Protein

Anti-tau staining was achieved in normal ganglion cells 
of both myenteric and submucosal plexus and within 
intrinsic nerve fibers of normal controls. Intrinsic nerve 
fibers were positively stained by anti-tau also in oligogan­
glionic and aganglionic bowel of HD whereas the hyper­
trophic (extrinsic) intermuscular, submucosal and subse­
rosal nerve fibers did not stain with anti-tau [24].

15.2.8	 Calretinin

Calretinin is a calcium-binding protein which plays a an 
important role in the organization and functioning of 
the ENS [30]. Calcium-binding proteins (calretinin, cal­
bindin) are involved in physiological calcium hemostasis. 
Ganglion cells and their projections express calretinin 
within the submucosal and myenteric plexus of normal 
bowel and ganglionic bowel of HD whereas in aganglio­
nic segments of HD a lack of calretinin expression has 
been shown. The absence of calretinin immunostaining 
in the nerve fibers also represents a lack of calretinin in 
related nerve cells, which may serve as a diagnostic tool in 
the diagnosis of aganglionic segments [10].

15.2.9	 Neural Cell Adhesion Molecule

Neural cell adhesion molecule (NCAM) is a cell-surface 
glycoprotein involved in cell–cell adhesion during devel­
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opment [31]. NCAM appears on early embryonic cells 
and is important in the formation of cell collectives and 
their boundaries at the sites of morphogenesis [32]. It is 
involved in adhesion between several types of neural cells 
and their processes and the formation of initial contacts 
between nerve and muscle.

Strong NCAM activity is found in normal and gan­
glionic bowel from HD patients, both in the submucous 
and myenteric nerve plexuses and also in the abundant 
nerve fibers within the longitudinal and circular muscle 
layers and in the internal sphincter (Fig. 15.2) [33, 34]. 
In contrast, in the aganglionic colon NCAM activity is ei­
ther absent or markedly decreased within both the circu­
lar and longitudinal muscles. Hypertrophic nerve trunks 
express strong NCAM immunoreactivity. The lack of ex­
pression of NCAM on nerve fibers within the aganglionic 
smooth muscle suggests a developmental abnormality of 
the innervation of the muscle [15].

NCAM staining is a valuable general neuronal marker 
for the staining of submucous and myenteric plexus and 
we have found it particularly useful in the diagnosis of 
allied gastrointestinal motility disorders such as IND 
(Fig. 15.3) and hypoganglionosis [35]. Furthermore 
NCAM has been used to stain resected HD bowel speci­
mens in order to discriminate between different staining 
results within short type, rectosigmoid type and long 
type HD [36].

15.2.10	 Nerve Growth Factor Receptor

Nerve growth factor (NGF) is the best-characterized pro­
tein of a family of chemically related molecules (neuro­
trophins) that play an essential role in the development 
and function of neurons in the peripheral and central 
nervous systems [37, 38]. The effects of NGF are trans­
mitted via receptors localized within the cholinergic neu­
rons [39–41]. Nerve growth factor receptor (NGFR) is 
the transmembrane protein that binds NGF and brings 
it into the cell [42].

NGFR immunostaining of normal colon demonstrates 
numerous NGFR-positive nerve fibers in the circular and 
longitudinal muscle layers and strong NGFR staining of 
submucosal and myenteric ganglia. NGFR activity is ab­
sent or markedly reduced in the muscle layers of agan­
glionic colon, whereas the hypertrophic nerve trunks 
are surrounded by a thick NGFR-immunoreactive ring. 
The NGFR staining technique is useful for the diagnosis 
of HD and other innervation disorders (Figs. 15.4 and 
15.5).

15.2.11	 Ca2+-activated K+ Channels

Small conductance Ca2+-activated K+ (SK) channels play 
a fundamental role in all excitable cells. SK2 and SK3 are 

Fig. 15.2  NCAM immunostaining: a myenteric ganglia in normal bowel; b hypertrophic fibers in HD bowel
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strongly expressed in normal bowel. Decreased expres­
sion of SK3 channels in the aganglionic bowel may con­
tribute to motility dysfunction in HD [43].

15.2.12	 Bcl2

In colon biopsies of patients with different bowel dys­
motility syndromes, Bcl2 was found to be the best bio­
marker to discriminate immature small neurons in the 
diagnosis of hypoganglionosis and IND [44] since it was 
clearly expressed in immature small ganglion cells but did 
not stain, or only faintly stained, mature ganglion cells.

15.3	 Cholinergic Markers

15.3.1	 Choline Acetyltransferase and Peripheral 
Choline Acetyltransferase

Acetylcholine (Ach) is the major neurotransmitter in the 
ENS. Cholinergic nerves mediate increased gut activity, 

such as contraction [45], and are associated with muco­
sal ion transport [46]. AChE activity is the usual marker 
of cholinergic nerves and has become a widely accepted 
technique for diagnosis of HD since it stains the extrin­
sic fibers which penetrate the aganglionic segment in HD 
[27, 47, 48]. However it has been shown that AChE stains 
a variety of cholinergic and noncholinergic peripheral 
neurons [49, 50]. Choline acetyltransferase (ChAT) is a 
more specific and reliable marker of cholinergic nerves. 
ChAT is an enzyme which has been found in relatively 
small amounts in neural tissue [51]. To date immuno­
cytochemistry for ChAT has been applied to frozen sec­
tions, whole-mounts and conventional formalin-fixed, 
paraffin-embedded human tissue sections [51–54]. Re­
cently a splice variant, peripheral type of ChAT (pChAT) 
has been described and seems to be especially useful for 
studying the enteric cholinergic system [55].

Weakly stained ChAT-immunoreactive cells within 
the lamina propria as well as more strongly stained sub­
mucosal and myenteric ganglia are evident in normal 
human large bowel [54]. Aganglionic bowel sections 
have very strong ChAT-immunoreactive bundles in the 

Fig. 15.3  NCAM immunostaining. Suction rectal biopsy with 
giant ganglion in IND

Fig. 15.4  NGFR immunostaining. Suction rectal biopsy with 
giant ganglion in IND
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submucosal and muscularis externa, but mucosal fibers 
are not ChAT-immunoreactive [54]. This finding is sur­
prising since the increased number of AChE-positive 
nerve fibers in the mucosal layers serves usually as a di­
agnostic marker in HD. A recent study using a rapid im­
munohistochemical technique has revealed that AChE 
and ChAT antibodies fail to determine cholinergic in­
nervation [56].

15.3.2	 Vesicular Acetylcholine Transporter

A very recent study has clearly shown that vesicular Ach 
transporter (VAChT) is a reliable marker of cholinergic 
neurons and nerve fibers within the ENS [57]. Further­
more, it has been shown that VAChT-positive choliner­
gic innervation is far more extensive than previously de­
scribed in humans [57, 58]. VAChT offers the advantage 
of investigating cholinergic neurons of the ENS in paraf­
fin-embedded tissue. So far no detailed study has been 
published using this antibody in the study of HD.

15.4	 (Nor)Adrenergic markers (Tyrosine 
Hydroxylase/Dopamine β-Hydroxylase)

The (nor)adrenergic enzyme tyrosine hydroxylase (TH) 
has been shown to stain nerve fibers within normal 
bowel as well as HD bowel [59, 60]. Furthermore, abun­
dant TH-positive hyperplastic fibers have been found 
in whole-mount preparations of aganglionic bowel [16]. 
A very recent study has revealed that TH stains normal 
perikarya of the human ENS whereas dopamine β-hy­
droxylase is absent from normal ganglion cells, but pres­
ent in nerve fibers [57].

15.5	 Non-adrenergic Non-cholinergic Markers

15.5.1	 Nitric Oxide Synthase

Nitric oxide (NO) is the major inhibitory nonadrenergic 
noncholinergic (NANC) neurotransmitter in the gastro­
intestinal tract. NO is synthesized by the activation of 
neuronal NO synthase (NOS) [61]. NOS is abundant in 

Fig. 15.5  Suction rectal biopsy. Staining with NGFR, NCAM, AChE and HE reveals submucous hypertrophic nerve trunk with 
perineurium only stained with NGFR
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normal colon and ganglionic bowel of HD. Many nitrer­
gic cells are localized in the myenteric plexus and within 
nerve fibers of the circular muscle. Submucosal nitrergic 
cells are mainly localized within the Schabadasch plexus 
[62]. NOS is colocalized with vasoactive intestinal poly­
peptide (VIP) in many of the ganglion cells of the myen­
teric plexus. In contrast, NOS is selectively absent from 
the plexus area and from the musculature of aganglionic 
bowel in HD, whereas moderate staining is observed in 
the hypertrophic nerve bundles in the submucosal layer 
[63]. These hypertrophic nerves also contain colocalized 
NOS/VIP-immunoreactive nerve fibers [62]. Numerous 
studies have shown the almost complete lack of neuro­
nal NOS-immunoreactive nerve fibers in the agangli­
onic segment in patients with HD, which could prevent 
smooth muscle relaxation and might cause the lack of 
peristalsis in HD [61, 64–68].

15.5.2	 Carbon Monoxide

Carbon monoxide (CO) is a neurotransmitter produced 
by heme oxygenase-2 (HO-2) in NANC neurons [69]. 
HO-2 immunoreactivities are found within the gan­
glion plexuses and intramuscular nerve fibers in normal 
bowel and normoganglionic HD bowel. HO-2-immu­
noreactive neurons have been specifically shown in the 
myenteric plexus. HO-2 is absent from the submucous 
and myenteric plexus of aganglionic bowel in HD which 
suggests that CO is involved in the pathophysiology of 
HD [70].

15.5.3	 Pituitary Adenylyl-cyclase-activating 
Peptide

Pituitary adenylyl-cyclase-activating peptide (PACAP) 
acts via some of the VIP receptors [71]. PACAP-27 is ca­
pable of causing smooth muscle relaxation in the gut wall 
[72] and is a marker of NANC innervation.

15.5.4	 Capsaicin and Purinergic Receptors

Capsaicin receptor has been isolated and named vanil­
loid receptor 1 (VR1). VR1 and the purinergic receptor 
(P2X3) are expressed by sensory neurons. Normal bowel 
contains VR1-immunoreactive fibers and nerve fascicles, 
but not cells. Hypertrophic nerves in HD display intense 
VR1-immunreactivity. P2X3-immunoreactive cell bodies 
have been detected in normal submucosal and myenteric 
plexus, whereas only weak P2X3 staining of hypertrophic 
nerves in HD has been found [73].

15.6	 Neuropeptides

15.6.1	 Vasoactive Intestinal Polypeptide

VIP is a NANC neurotransmitter [74]. Histological and 
physiological studies of the human colon have shown 
that VIP-positive nerve fibers in the circular and longi­
tudinal muscle are inhibitory [75–78]. In a more detailed 
study, the population of VIP-immunoreactive fibers was 
39% in the cecum and 63–65% in the transverse, de­
scending, and sigmoid colon [79]. Further VIP-immuno­
reactive nerve cell bodies, nerve fibers and nerve endings 
are found throughout the ganglionic and oligoganglionic 
bowel in HD. The aganglionic segment of HD contains 
no VIP-immunoreactive nerve endings and the number 
of fibers is markedly reduced, and this might contribute 
to the constriction in the HD colon [80–83].

15.6.2	 Substance P

Primary neurotransmitters of the motor neurons in the 
ENS are Ach and SP for excitatory, and VIP and NO 
for inhibitory functions [84]. SP has been identified as 
an excitatory neurotransmitter in human colon [85, 86]. 
The population of SP-immunoreactive fibers has been 
reported to be 15–21% throughout the human colon in 
humans [79]. SP seems to be absent from aganglionic 
bowel and reduced in IND [83, 87]. The defect of NANC 
innervation contributes to the motility disorder in HD 
and allied disorders.

15.6.3	 Enkephalin and Gastrin-releasing 	
Peptide

Enkephalin (Enk) and gastrin-releasing peptide (GRP) 
are part of the excitatory NANC neurotransmission [88]. 
These two neurotransmitters are moderately expressed 
in circular and longitudinal muscle of normal bowel. In 
contrast Enk and GRP are absent from aganglionic bowel 
and reduced in IND bowel [82, 83]. The reduced expres­
sion of NANC excitatory nerves may contribute to the 
disturbed muscle function in HD and IND.

15.6.4	 Calcitonin Gene-related Peptide

The 37 amino acid neuropeptide calcitonin gene-related 
peptide (CGRP) plays a major role in many physiological 
and pathological regulatory functions of the ENS includ­
ing the regulation of gastrointestinal smooth muscles and 
motility [89–92], sensory functions [93, 94], intestinal 
microcirculation [95, 96], secretion [97], amino acid ab­
sorption [98], lymphatic microcirculation and lympho­
cyte function [99, 100].
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CGRP immunoreactivity is found in the ENS of sheep 
ileum, human small intestine and pig ileum in only one 
defined type of neuron, Dogiel type II cells, which are 
probably intrinsic primary afferent neurons [101]. There 
is moderate expression of CGRP-positive nerve fibers 
within normal bowel which does not differ substantially 
between ganglionic and aganglionic bowel [82].

15.6.5	 Neuropeptide Y

The 36 amino acid peptide neuropeptide Y (NPY) is one 
of the major peptides in sympathetic neurotransmission 
[102, 103]. NPY-positive cells are observed in normal hu­
man submucosal and myenteric plexus, and a few addi­
tional NPY-positive fibers are found within the circular 
muscle. In contrast, much higher numbers of NPY-posi­
tive nerve fibers have been found in aganglionic bowel 
compared than in normal bowel, particularly in the cir­
cular muscle [82, 104]. Furthermore, in HD the concen­
tration of NPY has been shown to be increased in both 
in the mucosa-submucosa and muscularis externa. These 
findings illustrate the hyperplasia of extrinsic NPY-posi­
tive aminergic fibers in HD [105].

15.6.6	 Galanin

The neuropeptide galanin (GAL) is a 29 to 30 amino 
acid peptide which was originally isolated from porcine 
small intestine and is distributed within the central and 
peripheral nervous system [106–108]. In the ENS, GAL 
immunoreactivity is restricted to enteric nervous cells 
and nerve fibers [109, 110]. Galanin binds to specific 
receptors which subsequently causes relaxation and/or 
contraction [111–113] and regulation of intestinal fluid 
homeostasis [114, 115]. The expression of GAL-positive 
nerve fibers has been found to be not different or slightly 
reduced in HD bowel compared to normal bowel whereas 
a significant lack of GAL-positive structures has been 
observed in IND colon biopsies [82, 116, 117]. A recent 
study revealed an increased population of GAL receptor-
positive, parasympathetic nerve fibers in the aganglionic 
segments of HD as compared to normal controls and 
IND [117]. This higher GAL receptor density especially 
in the submucosal layer of HD-affected segments seems 
to be due to increased parasympathetic activity.

15.7	 Markers of Neuron-supporting Cells

15.7.1	 S-100 Protein

S-100 proteins belong to a large subfamily of calcium-
binding proteins which are evident in the cytoplasm and 
nucleus within several nervous and non-nervous tissues. 

As for many segments of the peripheral nervous system, 
the expression of S-100 proteins has been demonstrated 
mostly in the glial cells and Schwann cells of the enteric 
plexus [118]. Thus S-100 immunohistochemistry displays 
ganglion cells as prominent negatively stained cells sur­
rounded by immunopositive Schwann cells (Fig. 15.6) [9, 
10, 44]. S-100 antibody heterogeneously stains the whole 
hypertrophic nerve plexus in aganglionic bowel [119]. 
Although both S-100 and PGP9.5 antibodies detect nerve 
fibers in the mucosal layers of aganglionic bowel in HD, 
S-100 immunostaining appears to be more sensitive [12].

15.7.2	 Glial Fibrillary Acidic Protein

Supportive cells of the ENS express glial fibrillary acidic 
protein (GFAP). GFAP immunoreactivity occurs pre­
dominantly in association with the myenteric plexus and 
to a lesser extent with the submucosal plexus of healthy 
colon. It has been suggested that the myenteric glia share 
the astroglial character of the central nervous system [44]. 
The extrinsic, hypertrophic nerve fasciculi of aganglionic 
bowel are selectively immunostained with GFAP. There­
fore the demonstration of GFAP favors the diagnosis of 
HD [120].

15.8	 Synaptic Markers

15.8.1	 Synaptophysin

Synaptophysin is an integral membrane protein of the 
synaptic vesicles facing their cytoplasmatic surface [121]. 
This protein is an index of specific neuronal function 
such as storage and release of neurotransmitters. Synap­
tophysin is a marker of differentiating neuronal cells dur­
ing prenatal life [19]. Synaptophysin stains submucosal 
ganglion cells [14].

There is markedly reduced immunoreactivity (i.e. a 
decreased number of SY-positive synapses) seen in the 
intestinal smooth muscle layers of transitional, agangli­
onic, and IND bowel segments, whereas immunoreactive 
synapses are abundant in the smooth muscle layers of 
ganglionic colon in HD. SY immunoreactivity also shows 
ganglion cells and hypertrophic nerve trunks clearly. 
Rapid SY staining is a simple and consistently reliable 
method for the intraoperative evaluation of the distribu­
tion of synapses in myenteric plexuses as well as smooth 
muscle layers [122].

Synaptophysin has also been used to study the intrin­
sic innervation in colonic dysganglionosis. This study 
showed a markedly decreased number of SY-immunore­
active nerve fibers within the aganglionic bowel and only 
weak staining of hypertrophic fibers with SY [35]. A later 
study also failed to detect synaptophysin immunoreactive 
hypertrophic fibers in aganglionic bowel of HD [119].

215Chapter 15  Immunohistochemical Studies



15.8.2	 171B5 Protein

Synaptophysin and 171B5 proteins are specific mem­
brane proteins of synaptic vesicles within synapses of the 
central and peripheral nervous system [121, 123]. Nor­
mal bowel shows a dense 171B5-immunoreactive inner­
vation within the circular muscle and a rather weak in­
nervation of nerve fibers within the longitudinal muscle 
[83]. In contrast, in aganglionic bowel 171B5 immuno­
reactivity can occasionally be demonstrated in synapses 
within the lamina propria but in none in the muscularis 
mucosae [124].

15.9	 Specific Staining of Hypertrophic Nerve 
Fibers in HD

Enlarged submucosal nerve trunks are positively stained 
by VIP, galanin, NPY, and CGRP immunohistochemistry 
[125].  VR1 and P2X3 receptor antibodies stain a signifi­
cant proportion of sensory nerves within the hypertro­
phic innervation of HD bowel [73].

15.10	 Diagnostic and Clinical Use: 
Recommendations for Diagnosis

It seems to be important to discriminate between the use 
of immunohistochemistry in diagnosis and research into 
HD. The potential of immunohistochemistry in morpho­
logical and functional research of HD is almost unlim­
ited. In contrast, the true value of immunohistochemistry 
in the diagnosis of HD seems to be limited. The major as­
pect of the histological diagnosis of HD is to display the 
defective innervation. For this reason a marker is needed 
which stains all existing ganglion cells, even immature 
and small cells. Furthermore, a reliable marker for hyper­
trophic extrinsic nerve fibers is necessary. Both of these 
markers are still missing.

The use of PGP9.5 and S-100 together has been rec­
ommended for immunohistochemical diagnosis of HD 
in formalin-fixed biopsies [12]. The combination of 
peripherin and S-100 staining has been recommended 
since peripherin reliably stains submucosal ganglia and S-
100 enables the measurement of nerve fiber caliber [14]. 
Several antibodies, including neurofilament, synaptophy­
sin, peripherin, neural cell adhesion molecule, positively 
stain ganglion cells [56].

Fig. 15.6  S-100 immunostaining: a glial cells surrounding normal myenteric plexus; b glial cells around hypertrophic nerve fibers 
in HD
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A recent study has shown that the rapid immunohis­
tochemical technique on frozen sections is not suitable 
for detection of ganglion cells or cholinergic innervation 
and is therefore not helpful in shortening the diagnosis 
time during surgery for HD [56]. VAChT antibodies 
have proved to be very effective in the staining of cholin­
ergic ganglion cells and nerve fibers in paraffin sections. 
Therefore VAChT should be used in the diagnosis of HD 
if no frozen material is available.
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