
6 Heat Transfer Fundamentals

In this chapter, the basics of heat conduction and transfer are discussed.
The chapter contains 29 exercises, which illustrate Fourier Law, the solv­
ing of heat transfer coefficients for multi-layered flat and cylindrical parti­
tions, the determination of a quasi-steady-state temperature field and the
computation of a radiant tube temperature in boilers. Critical thickness of
thermal insulation on the surface of the cylindrical tube is first determined
analytically, then calculated. The methods for solving selected inverse
steady-state heat conduction problems, which occur during heat flux
measurement carried out by means of different types of sensors, are pre­
sented here. A great deal of attention is paid to the determination of tem­
perature distribution and the efficiency of simple, circular, rectangular and
hexagonal fins. The calculation results of efficiency in complex-shape fins,
determined by means of an equivalent circular fin method and segment
method, are compared with the results obtained from FEM. Examples that
illustrate the computation of a heat transfer coefficient in pipes finned lon­
gitudinally and crosswise are presented here as welL Three exercises deal
with the way steady-state temperature distribution is determined using con­
trol volume method. These exercises present the methods for solving prob­
lems and the computational programs used. In the last exercise of this
chapter, temperature distribution and circular fin efficiency is determined
under the assumption that thermal conductivity of the fin's material is
temperature dependent. The problem is reduced to a two-point boundary
problem for the system of two ordinary differential equations.

Exercise 6.1 Fourier Law
in a Cylindrical Coordinate System

A radiant tube with an outer diameter d = 32 mm, wall thickness g =
5 mm and length L =20 m is made of a steel with a thermal conductivity
A, =47 W/(m·K) (Fig. 6.1). Water-vapour mixture, heated by combustions
gases that surround the tube on the outside, flows inside the tube. Inner
surface temperature is T

w
= 200°C, while the outer surface temperature

is T, = 250°C. The aim is to compute the heat flow transferred from the
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Fig. 6.1. Tube cross-section

combustion gases to the water-vapour mixture and the heat flux on the in­
ner and outer surface.

Solution

Heat flux across the tube's wall thickness is formulated using Fourier Law

q(r)=A dT .
dr

Heat flow conducted through a flat wall can be written in the form

. dT
Q=A(r)q=A(r)A-,

dr
where A(r) =2JrrL.

The separation of variables in (2), gives

dT=~dr .
2JrLA r

(1)

(2)

(3)

On the basis of known inner and outer surface temperature, one can write
the boundary conditions as

T(r) = T ,z z T(r) = T .w w (4)

Once (3) is integrated, temperature distribution across the wall thickness of
the tube is obtained
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T=~lnlrl+C, (5)
2rcLA

where Q and C are constants computed from boundary conditions (4).

Unknown value Qis equal to

Q= (T: -Tw)·2;rLJ. .
In(rz / rw )

Substituting of the data gives

Q= 2;r· 20· 47· (250- 200) = 788100W .

In(0.016)
0.011

Inner surface heat flux is

Outer surface heat flux is

Exercise 6.2 The Equivalent Heat Transfer Coefficient
Accounting for Heat Exchange by Convection
and Radiation

A non-insulated tube (Fig. 6.2) with a nominal diameter d
n
= 38 mm (1Y2") ,

and the following measurements: d =38 mm, wall thickness g =2.6 mm,
length L =5; the tube is kept in a room whose temperature is Tot = 20ae.
Water with temperature 80aC flows inside the tube. The tube's outer sur­
face emissivity is e = 0.8. Lets assume that outer surface temperature is
identical to the temperature of a flowing medium inside and that heat
transfer coefficient by means of convection is formulated as

5° ~ -~t 1 21~~Tak = . 4 or ak =. 4 - ,

i». dz
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Fig. 6.2. Tube cross-section

where, d is the tube's outer diameter in meters, while T is the temperaturez ot

of surroundings in Kelvin [9]. The aim is to calculate heat loss Q, which

is related to heat transfer from hot water to surroundings by convection
and radiation and to determine the equivalent heat transfer coefficient ac­
counting for to convection and radiation.

Solution

Heat loss Q is the sum of losses from convection and radiation heat ex­

change

Heat flow transferred by convection is

where A = mdL is an outer surface of the tube.
z z

By substituting the data, one obtains

o, =Jr.O.038·5·7.627·(353.15-293.15)=273.2 W.

Heat flow transferred by radiation is given by

where (J =5.67 .10-8 W/(m2·K4
) is the Stefan-Boltzmann constant.
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Thus

o. = lZ"' 0,038· 5· 0.8· 5.67.10-8
.(353.154

- 293.154
) =221.17 W.

Total heat loss amounts to

Total heat coefficient can be expressed as

as = a, +8lT( J:2 + J:,~ )(J: + Tot) ·

Substitution of the numerical values yields

as = 7.63 +0.8·5.67 .10-8 (353.15 2 + 293.15 2
) ( 353.15 + 293.15) =

=13.803 W/(m 2
• K).

Exercise 6.3 Heat Transfer Through a Flat Single-Layered
and Double-Layered Wall

A flat wall (Fig. 6.3) with a thickness of g =0.4 m and surface area A =
15.6 m' is made of a material whose thermal conductivity equals A =
1 W/(m·K). Air temperature in front of the wall is T, = 20°C, behind the
wall T2 =-20°C. Heat transfer coefficients for both wall surfaces are, cor­
respondingly, al =5 W/(m2·K) and a

2
=15 W/(m2·K). The aim is to calcu­

late heat transfer coefficient, heat flux and heat flow transferred through
the wall and the surface temperature of the walL The question is how the
heat flow transferred by the wall will be changed, if the wall is thermally
insulated on its outer side by a layer of foamed polystyrene, which is 10 em
thick ts; =10 em) and whose thermal conductivity is A

iz
=0.04 W/(m·K)?

The second aim is to calculate surface temperature of the wall and the
foamed polystyrene.

Solution

a) Non-insulated wall (Fig. 6.4)
Heat transfer coefficient through the flat wall :

1
k= 1 g l'

-+-+-
a1 A a2
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g

Fig. 6.3. Flat wall

Thus

1 2

k = 1 0.4 1 =1.5 W/(m ·K).
-+-+-
5 1 15

Heat flux transferred by the flat wall can be determined from the follow­
ing formula:

q=k(~-r;),

q= 1.5· (20 +20) = 60 W/m2

a) b)
gT 14----__~~

o o
x x

Fig. 6.4. Temperature distribution: (a) non-insulated wall, (b) insulated wall
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Heat flow conducted by the flat wall can be determined as follows:

Q=A.k(~ -1;)=15.6.1.5.(20+20)=936 W.

Temperature T
s1

is (Fig. 6.4)

T = T _.!L = 20 - 60 = 20-12 = 8°C .
sl 1 5a 1

Temperature T
s2

is calculated using similar expression

T =T +~=-20+60 =-16°C.
s2 2 a

2
15

b) Thermally insulated wall
Heat transfer coefficient

1 1 2

k= 1 1 = 1 004 0.1 1 =0.3158 W/(m ·K).
_+ g + giz +_ _+_+ __ +_
a 1 A Aiz a 2 5 1 0.04 15

Heat flux transferred by the wall is computed in the following way:

q=k(1; -Tz)=0.3158 [20-(-20)J=12.632 W/m
2

•

Heat flow transferred by an insulated wall is:

Q=Aq=Ak(~ -T2 )=15.6 .12.632 =197.06 W.

Surface temperature T
s1

is:

'F.l =1; -.!L=20- 12.632 =17047°C.
a 1 5

Temperature Ts2 is calculated by subtracting a temperature drop across
the wall thickness from temperature T

s1

T =T _qg=1747_12.632.0.4=1242°C
s2 sl A· 1 ..

Temperature T
s3

is calculated as follows:

T'3 =1; +~=-20+12.632 =-19.16°C.
a 2 15

One can observe that insulating a wall with a foamed polystyrene has a
significant effect on the heat flow transferred by the wall and on the wall's
temperature. In the case when there is a lack of insulation, heat flow Q. is
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n = 936/197.06 = 4.75 times larger than when the wall is insulated. When in­
sulation is applied, the wall does not freeze, since its outer surface tem-
perature increases from T

S2
= -16°C to Ts2=I2.42°C.

From the conducted analysis, one can deduce that buildings should be
insulated on the outside surface, since the temperature of the walls remains
then positive (is above zero).

Exercise 6.4 Overall Heat Transfer Coefficient
and Heat Loss Through a Pipeline Wall

Pipeline (Fig. 6.5) with an outer diameter d = 273 mm, wall thickness
g = 16 mm and length L =70 m is made of a material whose thermal con-
ductivity is A = 45 W/(m·K). The pipeline is thermally insulated by a
layer, which is 10 ern thick is, =10 em) and made of a material with A

iz
=

0.08 W/(m·K). A medium with temperature Tw = 400°C flows inside the
pipeline, while on the inner surface a heat transfer coefficient is aw =
500 W/(m2·K). Air temperature, which surrounds the pipeline on the out­
side, is T = 20°C, while a heat transfer coefficient on an outer surface is
a = 10 W/(m2.K). The aim here is to compute:

z

1. overall heat transfer coefficient related to:
a) outer insulation surface
b) inner surface of the pipeline
c) tube's length

2. heat loss

•
r

Fig. 6.5. Longitudinal cross-section of a pipeline
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Solution

a) Total drop in temperature is equal to the sum of temperature decreases
due to, correspondingly, convectional heat exchange on an outer surface of
the insulation, the heat conduction in the insulation, the pipeline conduc­
tion and the convectional inner surface heat exchange

From the equation above, one can determine the overall heat transfer coef­
ficient related to the outer surface of the tube

Substitution of the numerical values gives

k = 1
z 1 0.2365

1
0.2365 0.2365

1
0.1365 1 0.2365

-+ n + n +
10 0.08 0.1365 45 0.1205 500 0.1205

=0.5782 W/(m 2
• K).

Heat flow conducted by the pipeline and the insulation heat loss is given
by:

Q= Aizkz(Tw - r:) = 21r1jzLkz(Tw - r:).
Thus

Q=2·1r· 0.2365.70.0.5782.(400 - 20) = 22855 W .

b) In order to compute the heat transfer coefficient for the pipeline's inner
surface, one should begin by adding up all temperature decreases from the
inner surface. Total temperature drop equals the sum of temperature de­
creases connected with, correspondingly, convectional inner surface heat
exchange, pipeline heat conduction, heat conduction in an insulation and
the insulation's convectional outer surface heat exchange:

Thus, the overall heat transfer coefficient related to inside tube surface is
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Thus

k = 1 =
w 1 0.1205

1
0.1365 0.1205

1
0.2365 1 0.1205

-+ n + n +
500 45 0.1205 0.08 0.1365 100.2365

=1.1348 W/(m 2
• K).

Heat flow transferred by the pipeline and the insulation (heat loss) is

Substitution of the numerical values gives

Q=2·ff· 0.1205·70 ·1.1348· (400 - 20) =22855W .

c) Heat transfer coefficient related to the tube's length can be calculated
from the following equation:

The simple transformation gives

k = Q 22855 = 0.8592 W/(m.K).
L L(Tw - I: ) 70 · (400 - 20)

Exercise 6.5 Critical Thickness of an Insulation
on an Outer Surface of a Pipe

The aim is to calculate thermal loss within the length of 1 m long copper
pipe (Fig. 6.6) whose outer diameter measures d = 12 mm and wall thick-
ness 1 mm. Water with a temperature of 90°C flows inside the pipe. Ther­
mal conductivity of an insulating material equals A

iz
= 0.05 W/(m·K). Tem­

perature of surroundings is 20°C. Heat transfer coefficient from the outer
surface of the pipe, or an insulation, to surroundings is the same as above
and measures a

z
= 5 W/(m2·K). The aim is to calculate the following quan­

tities:
a) critical thickness of the insulation,
b) heat loss in the function of insulation thickness (draw a diagram).



Exercise 6.5 Critical Thickness of an Insulation on an Outer Surface 63

r

Fig. 6.6. Longitudinal cross-section of a pipeline

In both cases, inner surface thermal resistance and the copper wall resis­
tance should be neglected.

Solution

Heat loss per unit of length:

Q 2ff'iz (Tw - T: )
L

r. (r.) 1~ln .s: +-
Aiz rz a z

or

Q 2ff(Tw - T:)
L

1 (r.) 1-In .s: +--
Aiz rz r»,

Heat loss Q/L will reach its peak, when denominator will reach a minimal

value

1 (r.) 1M==-ln -.E..- +--
Aiz rz r»,
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From the necessary minimum condition, one obtains a critical inner in­
sulation surface radius

dM =0
d1jz '

c Aiz
~z =-.

o;

a) critical insulation thickness:

c 0.05 0 006giz =--. =0.01-0.006=0.004m=4mm.
5

b) Fig. 6.7. shows the relevant graph.

Q/L [W/m]

15

gfz=4 mm
o

13,194
13 --+------+--------+--~~

Fig. 6.7. Heat loss through the insulation-thickness function

One should emphasize here that the problem of critical insulation thick­
ness, marked by the largest thermal loss, occurs only in pipes with very
small diameters, for example, when heat transfer coefficients on an outer
surfaces of an insulation are small and when thermal conductivity for insu­
lation materials are relatively large. In other cases, thermal loss decreases
when the thickness of an insulation increases.
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Exercise 6.6 Radiant Tube Temperature

The aim is to calculate the temperature of a steel-made radiant tube with a
thermal conductivity A =40 W/(m·K) and the following dimensions: d =
=32 mm, g =6 mm, t =39.6 mm (Fig. 6.8). The temperature of a medium
inside the tube is T =350°C. Heat transfer coefficient from an inner sur-

w

face of the tube to the medium is a
w

= 20000 W/(m2·K). Thermal load of
the tube (heat flux transferred by the tube at point P) is q= 350000 W/m2

•

The temperature at point P should be calculated in a simplified way under
the assumption that the tube is uniformly heated. Also, an accurate tem­
perature should be calculated on the basis of the provided diagram in Fig.
6.9, with a consideration given to a heat flow from the front-part of the
pipe to its unheated rear-side.

I~

~q

Fig. 6.8. Diagram of a smooth radiant (water-wall) tube

Solution

Tube wall temperature is described by the equation below

~(rdT)=o
dr dr

and by boundary conditions

J. dTI =a(TI -T ),dr r=rw w
r-r; '

(1)

(2)

(3)
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The solution is obtained by integrating (1) twice in r:

T = Cllnr + C2 • (4)

After substituting (4) for boundary condition (2) and (3) and determining
constants, temperature distribution is formulated as

qrz ( r 1 JT=Tw +- In-+-. '
A r; BI

(5)

where Bi= a r r):
w

The tube temperature at point P is calculated by means of an approxi-
mate formula (5)

Bi = 20000·0.01 = 5
40 '

T = TI =350°C+ 350000.0.016(ln 0.016 +.!.J=443.8°C.
P r-r. 40 0.01 5

Real temperature at point P is lower, since heat flows from the tube's
front-side to its unheated rear-side from the brickwork side. According to
paper [6], the radiant tube's real temperature at point P can be calculated
from the formula below

T' T . r 1 2 g
P = w + f.1q--3- -+--- ,

rw «, 1+ rz A
rw

where f.1 is a so called heat dissipation coefficient, which is determined
from Fig. 6.9. For Bi =5, /3= r Ir = 32/20 =1.6 and tid =1.2375, one ob-z w z

tains f.1 =0.89. Thus, temperature T; is

T' = 350°C + 0.89.350000 0.016 _1_ + 2 0.006 = 43rC.
p 0.01 20000 1+ 0.016 40

0.01

Temperature calculated by means of the approximate formula (5) equals
Tp=443.8°C. It is, therefore, higher than the real temperature T;= 432°C.

The difference, however (T
p

- T;) is small.
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Exercise 6.7 Quasi-Steady-State of Temperature
Distribution and Stresses in a Pipeline Wall

The aim is to calculate the difference between inner surface temperature
and average temperature across the thickness of a steel pipe wall with an
outer diameter of d =324 mm and wall thickness g =65 mm, made of a fer­
ritic steel 10CrMo910 with thermal conductivity A= 35.5 W/(m·K) and
thermal diffusivity a = Alcp= 7.137.10-6 m2/s. The outer surface of the
pipe is thermally insulated. The pipe heating (the steam superheater cham-
ber) takes place at constant temperature rate equal to vr = 10 K/min. Lets
assume that a quasi-stationary state forms itself in the pipe wall (Fig. 6.10)
and is characterized by a stable heating rate equal to vr. Quasi-stationary
state usually occurs for F0 = atlg2> 0.5 during the heating or cooling of an
element, if a temperature change rate of a medium or of an inner surface
wall temperature remains constant. We will also calculate thermal stresses
(axial) on an inner surface of the pipe under the assumption that the pipe
ends can be easily elongated (are free). The following material constants
apply for the computation: elastic modulus E = 181600 MPa, thermal ex­
pansion coefficient f3 = 1.35.10-5 11K, Poisson ratio v = 0.301.

r

g

Fig. 6.10. Quasi-steady-state temperature field in the pipe wall (cylindrical chamber)
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Solution

Due to a stable temperature change rate within a whole body volume equal
to aTfat = v

T
' the heat conduction equation assumes the following form:

~~(r dT) =vr .
r dr dr a

Equation (1) will be solved using the following boundary conditions:

Tlr=r
w

=Tw =vrt ,

(1)

(2)

(3)

(4)

The solution is obtained by integrating (1) twice in r:

1 Vr 2 IT =--r +C1 nr+C2 •

4 a

Constants C
1
and C

2
are determined from the boundary conditions (2) and

(3). Substitution of the C
1
and C

2
into (4) yields

T(r,t)=vrt+ ::(r
2-r; -2r}ln ~). (5)

Average temperature T
m
(r) across the wall thickness is given by

(6)

from which, after substitution of (5) for (6) and subsequent integration, one
gets

r
In~

( )
vr 1( 2 2) 1 4 rwT t =v t +-. - 3r - r - - r .

m r a 8 Z w 2 Z r 2 _ r 2

Z w

Equation (7) can be also transformed into the following form:

_ vrg2(3u2-1)(u2-1)-4u4lnu
Tm (t)- vrt+ () 2 •

a 8 u2 -1 (u -1)

(7)

(8)
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The unknown temperature difference

IS

vrg 2 (3u 2 -1)(u2 -1)-4u4lnu

~T = () 2 'a 8 u2 -1 (u -1)

where u =r / r .z w

The inner surface axial stress is given by

Ef3
aT =--~T,

I-v

where ~T is expressed using (9).
Temperature difference ~T is

u =324/194 =1.6701,

10 (0.065)2 (3.1.672-1)(1.672-1)-4.1.6741n1.67

~T= . =
607.137.10-6 8(1.672-1)(1.67 _1)2

=-42.6444 K.

The inner surface axial stress is

(J"r = EfJ I1T = 181600 .1.35.10-
5

(-42.6444) =-149.57 MPa .
I-v 1-0.301

Exercise 6.8 Temperature Distribution
in a Flat Wall with Constant
and Temperature Dependent Thermal Conductivity

(9)

The aim is to determine temperature distribution in a flat wall with thick­
ness g heated by a heat flow with density q and cooled on the opposite

side by water at temperature Tcz (Fig. 6.11). Heat transfer coefficient from
the plate surface to water a is constant. Lets assume that the thermal con­
ductivity of the plate material changes with temperature in a linear manner:

A(T)=a+bT,

where a and b are constants; temperature T is expressed in "C.

(1)
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We will also calculate temperature distribution with an assumption that
the thermal conductivity is constant and equals

1[( ) ( )JA ==- A T +A T
m 2 Ix=o Ix=g' (2)

where T!x=o and T!x=g are front-side and rear-side surface temperatures,

calculated using temperature-dependent thermal conductivity. The follow­
ing values are adopted for the calculation: g=0.016 m, q=274800 W/m 2

,

a =2400 W/(m2·K), Tcz= 20°C, a =14.64 W/(m·K), b =0.0144 W/(m·K2
) .

Calculation results will be presented in a tabular and graphical form.

T(x)

.
q"?
¢

o

g

x

(3)

Fig. 6.11. Plate heating

Solution

First apply Fourier Law:

4=-A,(T): =-(a+bT):.

Note that heat flux qis constant within the entire plate thickness, since

heat flow Q== Aq is constant for steady-state heat conduction. Separation

of variables in (3) gives

qdx == -(a + bT)dT .

By integrating (4), one obtains a quadratic equation with respect to T

(4)
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whose solution is thefunction

(5)

(_a
b

J2T(x)=-~+
b

2(qx-C)
b

(6)

Constant C is determined from condition

After substituting (7) for (5), one obtains

C=q·g+aTI +!b(TI )2,
x=g 2 x=g

(7)

where T!x=g is expressed by (7).

In order to determine temperature distribution, constant C is calculated
first:

TI = 274800 +20=129.5°C
x=g 2400 '

C = 274800·0.016 + 14.65 ·129.5 + !0.0144 .129.52 = 6414.7208 W/m.
2

Temperature distribution is expressed by the following function:

T(x)= 14.65 + (14.65 J2 _2(274800x-6414.7208) .
0.0144 0.0144 0.0144

Table 6.1 and Fig. 6.12 shows the determined T (x) distribution. Mean
thermal conductivity Am determined from (2) is:

T!x=o = 370.4274°C, T!x=g =129SC,

..1.(T!x=o) = ..1.(370.4274° C) = 19.9842W/(m· K),

2(TL=g) = 2(129SC) = 16.5148 W/(m· K),

Am =0.5· (19.9842 + 16.5148) = 18.2495 W/(m· K).
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No.

Table6.1. Temperature distribution rex) across the plate thickness

[ ]
Non-linear Problem Linear Problem

x m T T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

0.000 370.4274 370.4271
0.001 356.6077 355.3692
0.002 342.6476 340.3112
0.003 328.5427 325.2533
0.004 314.2884 310.1953
0.005 299.8799 295.1374
0.006 285.3119 280.0794
0.007 270.5793 265.0215
0.008 255.6761 246.9635
0.009 240.5964 234.9056
0.010 225.3337 219.8476
0.011 209.8812 204.7897
0.012 194.2317 189.7317
0.013 178.3773 174.6738
0.014 162.3099 159.6158
0.015 146.0206 144.5579
0.016 129.5000 129.5000

0.016

A(T)

0.008 0.012
x [m]

0.004

380-r------------------,
360

340

320

300
U
2..... 280

Q.)

~ 260
[) 240
0..

a 220
~

200

180

160

140
120 -+---r--r------r-----r---..,.....-----,r--~----t

0.000

Fig. 6.12. Temperature distribution across a wall thickness for constant and temp­
erature dependent thermal conductivity
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In the case of a linear problem, when the thermal conductivity is con­
stant and equals Am' temperature distribution across the plate thickness is
formulated as

After substitution of the numerical values, function T(x) has the form

T(x) =-15057.9468· x+ 370.4271°C.

Temperature distribution of T(x) for the linear problem is presented in
Table 6.1 and Fig. 6.12. It is clear from the analysis of results presented
there that the variable conductivity causes discernible temperature differ­
ences with regard to the linear problem.

Exercise 6.9 Determining Heat Flux on the Basis
of Measured Temperature at Two Points Using
a Flat and Cylindrical Sensor

Flat or cylindrical conductometric sensors are used to measure heat flux
q. The sensors operate by measuring temperature at two selected points:

PI i P
2

(see Fig. 6.13). The known values are the thermal conductivity A
tT), coordinates of measured temperature points Xl and x

2
(Fig. 6.13a) or

(Fig. 6.13b) and measured temperatures T
I

and T
2

• The aim is to determine
unknown heat fluxes, assuming that the thermal conductivity of the sen­
sor's material is a function of temperature and formulated as

(1)

where a, b, C and d are known coefficients.
The following values are assumed for the computation:
g =0.016 m; Xl =0.002 m; x2 =0.012 m;
a = 14.99 W/(m·K);
b =1.35.10-2 W/(m·K

2
) ;

C = - 4.51.10-6 W/(m·K3
) ;

d = 3.59.10-9 W/(m·K4
) ;

T
I
=330°C; T2=180°C.

In the case of a cylindrical wall:
r

2
=0.020 m; r l =0.030 m and r =0.032 m.

Remaining values are the same as the values for a flat wall.
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a)

x

g

o

/)
. I

b)

i .
0'

I

r;

r ...

PI

.
a

<;:5

Fig. 6.13. Conductometric sensors: (a) flat sensor, (b) cylindrical sensor

Solution

a) Flat sensor (Fig. 6.13a)
Once the Fourier Law variables are separated

and subsequently the integration is carried out from Xl to x2' one obtains

Xz Tz

Jqdx=- J-i(T)dT.
Xl 11

(2)

(3)

Introducing the mean thermal conductivity

1 11
Am=- J-i(T)dT,

~-I;Tz

(4)

and transforming (3), one obtains an expression which can be used to cal­
culate heat flux q

(5)

After substitution of (1) into (4) and integration, one obtains

Am =_l_[a(~ -1;)+!b(~2 - Tn+.!.C( ~3 - Tn +!d(~4 - T2
4

) ] . (6)
~-I; 2 3 4
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Mean thermal conductivity Am is

Am = 1 [14.99.(330-180)+L1.35.1O-Z .(3302 -1802)+
330-180 2

1 ( -6) (3 3) 1 -9 (4 4)]+"3. -4.51·10 · 330 -180 +"4.3.59.10 · 330 -180 =

= 14.99+ 3.4425- 0.301719 + 0.1184796 = 18.25 W/(m· K).

Thus, heat flux qis

. =18.25 330-180 = 273750W/m2
•

q 0.012 - 0.002

b) Cylindrical sensor (Fig. 6.13b)

Heat flow Q is given by

(7)

(8)

. dT
Q=2;rrrLA(T)-,

dr
(9)

where L is the length of the sensor. After the separation of variables

».dr =A(T)dT
2;rrL r

and integration (10), one obtains

iLJdr = fA(T)dT,
2;rrL r2 r T

2

Q 'i ( )-In-=A 1:-T
2 L

m 1 2';rr r
2

(10)

(11)

(12)

where Am is expressed by (4). Since on the outer surface, heat flux qz is

given by the expression

. Q
qz = 2;rrr L '

z

one obtains from (12):

18.25.(330-180) 2q = =210984.55W/m.
z 0.032 ·In(0.030 / 0.020)
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Exercise 6.10 Determining Heat Flux By Means of Gardon
Sensor with a Temperature Dependent Thermal
Conductivity

A thin-walled measuring device called the Gardon sensor was applied to
measure heat flux in a furnace chamber of a boiler; the sensor is a cylindri­
cal plate insulated on the back surface Fig. 6.14). Since the plate is con­
stantly utilized to measure heat flux, it is cooled on the edges by water
(Fig. 6.15).

Assume that the circular measuring plate is made of austenitic steel
(18% Cr, 8% Ni) with thermal conductivity dependent on temperature

A(T)=15.1+0.0136·T, (1)

I 2Rr------.-------..--..

Where Ais expressed in W/(m·K) and temperature Tin -c The thickness
of the measuring plate is 1.8 mm. Coordinates of the installation points of
thermoelements are ,}=0 mm and '2 = 10 mm. Measured temperatures at
points ,} and '2 are, respectively T(,}) = T} = 420aC and T('2) = T2= 250aC.

The aim is to derive a formula for calculating temperature distribution in
Gardon sensor and heat flux q on the basis of measured temperatures T}

and T
2

•

Fig. 6.14. The longitudinal section Fig. 6.15. The operation principle of Gar­
of Gardon's measuring device: 1 - don's measuring device: 1 - measuring
constantan foil, 2 - protective plate, 2 - water coolant, q - heat flux, T]
shield, 3 - copper block, 4 - copper and T

2
- measured temperatures

ends



(2)

(4)

(5)

(6)
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Solution

In order to derive a differential equation, which describes heat conduction
in a sensor of Gardon's measuring device, the energy balance equation will
be written for an elementary volume dV = 2 rg

c
r (Fig. 6.15)

( ) ( ) aT···
C T P T 21rrg/lrii = QI - Q2+ Q3'

where

Ql =-21[rgc[A(T) ~~]Ir' Q2 =-21[(r + Sr )gc [A(T) aT] ,
ar r+tJ.r (3)

Q3 =-21[r~rq.

By substituting (3) into (2), one obtains the following for I1r~ 0

C(T)p(T) aT =!~[A(T)r aT] +!L.
at r ar ar S;

In the case of steady-state problems aT/at = 0, and temperature distribu­
tion is only a function of a single variable r; therefore,

1 a [ aT] q-- A(T)r- =--.
r ar ar S;

Boundary conditions have the following form:

~~ Ir=o =0, Tlr='i = t; , TL=r2 =t;.

In order to linearize problem (5)-(6), Kirchhoff's transformation will be
used

T

U= fA(T)dT.
o

Since

dU =dU dT =A(T)dT,
dr dT dr dr

Equation (5) and boundary conditions (6) become linear

!~(rdU) =_!L
r dr dr gc '

dUI =0 UL='i =U" UL=r, =U2 ,dr r=O '

(7)

(8)

(9)

(10)
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where

(11)

From (9) with boundary conditions (10), one obtains

1 q(r2 -,n
U= +U1o

4 gc

From the third boundary condition (10) it follows that

1 qh2 -,n
U2 = +U1o

4 gc

(12)

(13)

After simple transformations of (13) we obtain a formula for heat flux q
. 4(U1 -v.».
q = 2 2 0 (14)

r2 -'1

Since
~ ~ ~

U1 -U2 = f.l(T)dT- fA(T)dT= fA(T)dT=Am(J; -T2 ) , (15)
o 0 T2

where
~

fA(T)dT
A =~T2 _

m ~_~

Equation (14) can be written in the following form:

o 4Am(~ -1;)gc
q = 2 2 0

r2 -'1

(16)

(17)

(18)

If A(n =a + bT, then the average thermal conductivity given by (16) is
~

f(a+bT)dT a(1'. -T )+!b(1'.2 _r 2 )
T 1 2 2 1 2

A = 2 = =
m ~_~ ~_~

1
=a+-b(~ +I;)=A(Tm ) ,

2
1

where Tm =-(~ +~)o
2
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On the basis of the derived formulae, one can determine the heat flux
value. Average temperature T

m
measures

Tm =!(~ + 1;) =!(420+ 250) =335°C.
2 2

After calculating the average thermal conductivity

Am = A(Tm) = a + bTm= 15,1+ 0.0136·335 = 19.656 W/(m·K),

one can calculate heat flux from (17):

. 4Am(~ -r;)gc 4.19.656·(420-250).0.0018
q= r

2
2 -li2 = 0.0102 _02 =

=240589.44 W/m 2
•

Exercise 6.11 One-Dimensional Steady-State Plate
Temperature Distribution Produced by Uniformly
Distributed Volumetric Heat Sources

A round plate with a diameter d, =200 mm and thickness g =20 mm is
electrically heated. The aim is to calculate the upper and lower surface
temperature of the plate under the assumption that heat is uniformly gener­
ated within the entire plate volume. The bottom and side parts of the plate
surface are thermally insulated.

Heat transfer coefficient on the plate surface is a =300 W/(m2·K). Sur­
rounding air temperature is T

p
=20°C. The plate's thermal conductivity is

A = 30 W/(m·K). The second aim is to calculate temperature distribution
within the entire plate thickness under the assumption that the plate's

thermal power is Q=6 kW.

Solution

The problem under consideration is shown in Fig. 6.16.
Since the power of internal heat sources remains constant

. Q 4Q
qv = V =Jrd;g ,

temperature field is determined using the heat conduction equation

(1)
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x

o

a = 300 W/(m2. K)

A= 30 W/(m·K)

~Q=6kW

I

ss
o
N
II
c.o

dz=200 mm

Fig. 6.16. Plate heating

and boundary conditions

dTI =0
dx x=o '

-A dTI =a(TI -T).dx x=g P
x=g

The solution is obtained by integrating (2) twice in x

T 1 4v 2 C C=---x + x+ .2 A 1 2

(2)

(3)

(4)

(5)

Once constants C
1

and C2 are determined from boundary conditions (3) and
(4) and substituted into (5), one obtains

T(x)= tlvg
2

[1_(~)2]+ 4vg +T .
2A gaP

Insulated surface temperature (x = 0) is

• 2 •

T(O)= qvg + qvg +T .
2A a P

The upper part plate surface temperature (x = g) is

T(g) = tlvg +T
p

•

a

(6)

(7)

(8)
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Substitution of the numerical values into (1), (7) and (8) yields

. = 4·6000 =9.5493 .106W/m3 •

qv JT.0.22.O,02

Temperature of the lower part of the plate surface is

T(0) = 9.5493.10
6

• (0.02 )2 + 9.5493.10
6

• 0.02 + 20 = 720.28 0C.
2·30 300

Temperature of the upper part is slightly lower:

T(0.02) = 9.5493.10
6

• 0.02 + 20 = 656.62°C.
300

Exercise 6.12 One-Dimensional Steady-State Pipe
Temperature Distribution Produced by Uniformly
Distributed Volumetric Heat Sources

Electric current flows at an intensity of 300 A through a pipe made of an
alloy steel pipe (Fig. 6.17) with an inner diameter d

w
= 7.2 mm and outer di­

ameter d =8 mm. Thermal conductivity of this steel is A= 18.4 W/(m·K),
while its specific resistance p =0.85 (n . rnm'j/m, The aim is to calculate
temperature distribution within the entire wall thickness under the assump­
tion that the outer surface of the pipe is thermally insulated and that total
heat generated by the pipe flows inside it. The inner surface temperature of
the pipe is T

w
= 300°C. The second aim is to calculate the heat transfer co­

efficient on the inner surface of the pipe, if the temperature of a medium is
T = 20oe.cz

l thermal insulation

L

Fig. 6.17. Electrically heated steel pipe
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Solution

Firstly, we will determine temperature distribution within the pipe wall
under the assumption that heat is uniformly generated within the entire
body volume. The heat conduction equation

~~(r dTJ =_ i.Jv
rdr dr A

will be solved using the following boundary conditions:

TI =Tr-r; w'

dTI =0
dr r-r. .

The solution is obtained by integrating (1) twice in r

dT iIvr C1-=--+-
dr 2,.1 r

and

(1)

(2)

(3)

(4)

(5)
• 2

()
qvr

T r =---+C1lnr+C2 •
4,.1

By substituting (5) into (2) and (4) into (3), one gets two algebraic
equations

whose solution are constants C
1
and C

2
:

• 2

C = qvrz
1 2,.1'

C =~(r; -r21nr J+T .
2 2,.1 2 z w w

(6)

(7)

(8)

(9)

By substituting constants C
1
and C

2
into (5), one obtains the following,

after simple transformations:
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. ( 2 2)r r-r
T(r)=:.T +~ r2 In- + w •

w 2A z r
w

2
(10)

(11)

(12)

Outer surface temperature is obtained from (10) by substituting r =r

q. ( r r
2 2)T(r )=:.T +_v r2 In2..+ w -rz •

z w 2A z r; 2

The power of internal heat sources with respect to a unit of volume is

. Q 12R

qv =V = lZ"(r; - r,nL ·

Since electrical resistance R is formulated as

therefore, from (12) one obtains

. 12p
qv =:. 2(2 2)2'

1r rz - rw

(13)

(14)

(15)

Heat transfer coefficient on the pipe's inner surface will be calculated
using the Newton's Law of Cooling:

A~~Ir=ra=:. w ,

(Tw - J:z)

where the heat flux on the inner surface is given by

Heat flux on the pipe's inner surface can also be calculated from energy
balance equation. The entire heat flow produced inside the pipe penetrates
the inner surface; hence, we get

tivlZ" (rz
2

- r~)L = tiw 2lZ"rwL. (17)

From (17), one obtains
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Therefore, the heat transfer coefficient on the pipe's inner surface is ex­
pressed as

(19)

By substituting the numerical values into (12), (11) and (19), one obtains

iJv = 300
2

• 8.5.10-
7

2 = 8.38715 .108 W/m3 ,

Jr2 (0.0042- 0.00362)

T(r )=300+ 8.38715.10
8

(0.0042ln 0.004 + 0.0036
2

-0.004
2)=

z 2 ·18.4 0.0036 2

=303.77805 "C,

a = 8.38715.10
8

• 0.0036 [( 0.004 )2 -1] 1 = 1264.73 W/(m2K).
2 0.0036 300 - 20

Exercise 6.13 Inverse Steady-State HeatConduction
Problem in a Pipe

The aim here is to solve the problem formulated in Ex. 6.12. In contrast to
Ex. 6.12, both conditions, i.e. heat flux and temperature T

z
= 303.77805°C,

are set on an outer surface. It is thus an inverse steady-state heat conduc­
tion problem characterized by the fact that temperature distribution across
the wall thickness can be determined on the basis of known temperature
values and heat flux at a single body point.

Solution

In a given case, heat conduction equation

!~(r dT) =_ 4v
rdr dr A

will be solved when both conditions are assigned on the outer surface

(1)
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TI =Tr=rz z '

dTI =0
dr r=r

z
•

Integrating (1) twice, yields

dT 4vr C1-=--+-
dr 2A r

• 2

T(r)=-qJ +C\lnr+Cz •
4A

By substituting (4) into (3) and (5) into (2), one gets
• 2

C = qvrz
1 2A'

(2)

(3)

(4)

(5)

(6)

• 2 • 2

C =T + qvrz - qvrz lnr . (7)
2 z 4A 2A z

Substituting (6) and (7) into (5), gives the temperature distribution T(r)

q. [r2 r
2

r )T(r)=T +_v z - -r2In.2....
z 2A 2 z r

Inner surface temperature is

. [2 2 )T =T(r )=T +~ rz -rw -r2In~ .
w w z 2 1 2 z

/I" rw

(8)

(9)

Temperature drop across within the wall thickness, determined from (9)
is given by

. [ 2 2)r r-r
T - T =~ r 2 In2.. + w z •

z w 2A z r; 2

The same result is obtained from (11) in Ex. 6.12.
Inner surface temperature determined from (9) is

T =303.77805 + 8.38715.10
8

(- 0.0042 In 0.004 +
w 2 ·18.4 0.0036

+ 0.004
2

~0.0036
2

) = 300 0 C.

The remaining results are identical to the results from Ex. 6.12.

(10)
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Exercise 6.14 General Equation of Heat Conduction
in Fins

The aim is to derive a differential equation to describe heat transfer in fins
with arbitrary shapes (Fig. 6.18) under the assumption that temperature
across the fin thickness is constant. In other words, one should disregard
temperature drop across the fin thickness and derive a formula for fin effi­
ciency.

x Ax

Fig. 6.18. Heat flow through fins with arbitrary shapes

Solution

By assuming that fin temperature remains constant within the fin's cross­
section and changes only in the direction of x axis, the heat balance for
control volume A(x)Ax has the form

(1)

Heat flows Qare expressed by the following formulas:

By substituting (2) for (1), one obtains

AA dTI -AA dTI
dx x+<lx dx x -aP(T - J:J =0, (3)

Ax

where A(x) is a cross-section area of a fin perpendicular to the direction of
heat flow through a fin, P is the fin circumference at a point with x coordi­
nate. If & ~ 0, then (3) assumes the form:
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d( dT)dx ).,A dx -aP(T-Tcz}=O. (4)

For a constant thermal conductivity A and constant cross-section A, (4) can
be written in the form

where

d2T
2

--m tt -r )=0dx' cz'

2 aP
m =-.

AA

(5)

(6)

Two boundary conditions are necessary in order to determine tempera­
ture distribution in a fin of height L. The first condition is assigned at point
x = 0 in the base of the fin, the second at the end of the fin at point x = L.
In practical computations, it is usually assumed that fin base temperature
T; is constant and equal to a temperature of a surface on which the fin is
mounted; i.e. it is assumed that fins do not disturb temperature distribution
in a construction element to which they are attached. The fin tip is usually
regarded as being thermally insulated, since the surface area of the tip is
considerably smaller than the area of fin's side surfaces; therefore, one can
neglect the heat flow transmitted by the tip. Assuming that heat exchange
takes place on the tip of the fin, the boundary conditions have the form

where a
w

is the heat transfer coefficient from the tip to surroundings, while
temperature Tcz is the temperature of a medium that surrounds the fin. It is
usually assumed that a

w
= a or a

w
=0, when a fin tip is thermally insu­

lated.
Fin efficiency is a ratio of a heat flow Q, transferred by an actual fin, to

a maximal heat flow Qmax' which the fin could transfer. Maximal heat flow

Q. occurs when temperature of the fin is uniform within its entire vol-max

ume and is equal to the base temperature T
b

• Heat flow Q can be calcu-

lated as a flow that is conducted through the base of the fin or as a dissi­
pated flow by lateral surfaces of the fin and the tip:



(1)
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Q=-(AA dT)1 = fa(T - t; )Pdx,
dx x=O 0

L

c, = Ja(I;, -Tcz)Pdx.
o

Fin efficiency is formulated as

Q
1]=-.-.c,

Assuming that a, P and T
cz

are independent of their position, formulas for
efficiency in fins with standard shapes are not very complicated.

Exercise 6.15 Temperature Distribution and Efficiency
of a Straight Fin with Constant Thickness

The aim is to determine temperature distribution and efficiency of a
straight fin with constant thickness under the assumption that fin tip is
thermally insulated. Next, to consider heat exchange through the fin tip,
the fin height will be increased by half of the fin's thickness. Then, the fin
temperature, heat flow dissipated by the fin and fin efficiency should also
be calculated. The following values are assumed for the calculation: fin
material - copper with the thermal conductivity A = 390 W/(m·K), fin
thickness t =0.5 mm, height L =7.5 em, width w =0.7 m, fin base tem-
perature T,=80°C, air temperature Tcz =20°C, heat transfer coefficient a =
10 W/(m2 ·K).

Solution

Differential (5) from Ex. 6.14, which describes thermal exchange in a fin,
has the following form:

d 2T 2
--m (T-T )=0.
dx' cz

If fin base temperature is T
b

, while fin tip is thermally insulated, the
boundary conditions have the form

(2)
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== O.
dx x=L

Lc

o
x

Fig. 6.19. Straight fin of constant cross-section

(3)

In the case of a straight fin, shown in Fig. 6.19, circumference P, on
which thermal exchange takes place, is P = 2(w + t), while the cross­
section area with regard to the direction of thermal conduction is A = wt.
Fin parameter m

2 ((6), Ex. 6.14) has, in the given case, the form

2 2a(w+t) 2a
m = ~-

Awt At '

since usually t « w. Once the new variable is introduced

(4)

(5)

Equation (1) and boundary conditions (2), (3) can be rewritten in the follo­
wing way

(6)

(7)

dOl =0
dx x=L •

Solution of the homogenous (6) has the following form:

e C mx C -mx== Ie + 2e .

(8)

(9)

From boundary conditions (7)and (8), two algebraic equations are obtained
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mC1emL
- mc.«:' =o. (11)

Once constants C
1
and C

2
are determined from (10) and (11) and sub­

stituted into (9), one obtains the following after transformations:

B(x) T(x)-J:z

Bb T;; - T;

coshm(L -x)

coshmL
(12)

Flow Q and Qmax will be determined in order to define fin efficiency:

Q=_:tAdTI =-[:twt(1;, -T )-mSinhm(L-X)]
dx x=o cz cosh mL

x=o (13)

=:twt~~~ (1;, - Tcz )tgh mL,

Qmax =a2wL(T;; - J:z)· (14)

Efficiency of a straight fin with constant cross-section is

o :twt~~at (T;; - J:z )tgh mL
'7 - - - /l, tgh mL (15)

- Qmax - a2wL(T;; - ~z) mL '

h
sinh x eX_e-x

tg x=--=--­
coshx e' + e-x

e' + e-x

coshx=---
2

where m is formulated in (4).
Hyperbolic trigonometric functions are expressed using the following for­

mulas:
x -x. e -e

slnhx=---
2

In (12) and (15), fin tip heat exchange is not taken into considera­
tion. It can be considered only when the fin height is increased by tl2 (Fig.
6.19). Once the fin height substitute is introduced, L,

t
L =L+-

c 2

temperature distribution and fin efficiency are expressed as

B(x) _ T(x)-J:z _ coshm(Lc -x)
- -

Bb T;; - T; cosh mLc
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tgh mLe

17= L 'm e

where m = -J2a / AI .
After substitution of the numerical values, one obtains the following re­

sults:

m= 2·10 =1O.127411m
390· 0.0005 '

I 1
L; = L + - = 0.075 + -·0.0005 =0.07525 m ,

2 2

- fin tip temperature

1 1
T (L ) = (1', - T ) + T = (80 - 20) +

e b ez coshmL
e

ez cosh(10.1274.0.07525)

+20 = 65.97°C.

- fin efficiency

tgh mL tgh(10.1274. 0.07525)
17 = e = = 0.8428 .

mLe 10.1274·0.07525

- heat flow to-surrounding air

Q = 17Qrnax = 17a2wL(~ - ~z) = 0.8428 ·10·2·0.7·0.07525· (80 - 60) =

=53.275 W

Exercise 6.16 Temperature Measurement Error Caused by
Thermal Conduction Through Steel Casing that Contains
a Thermoelement as a Measuring Device

The aim is to calculate temperature measurement error of combustion
gases by means of a thermoelement installed inside a steel casing (Fig.
6.20). The following data are used for the calculation: d = 12 mm, go =
3 mm, L =120 mm, A =50 W/(m·K), T =20°C, T =210°C. Heat transfer

o p ~

coefficient from combustion gases to casing is a
o
=45 W/(m

2·K).
Heat

transfer coefficient on an outer and inner side of the combustion channel is
a

p
=15 W/(m

2·K) and a
sc
=30 W/(m2.K), respectively. Lets assume that the

base temperature of a steel casing T, is equal to an average temperature Tsc

of a wall, which the thermometer casing is welded onto (Fig. 6.20).
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o

x

·0)=20')C

•.................~g() combustion

fl..o

Fig. 6.20. Thermoelement installation

Solution

First wall temperature T
sc

will be calculated. From the heat flux equality
condition on an inner and outer surface of the combustion channel, one ob­
tains

(1)

(2)

hence,

T; = ascT.p+apTp = 30·210+15·20 =146.7°C.
«: +ap 30+15

Thermoelement-indicated temperature T, can be calculated in the same
way as the fin tip temperature (insulated on the tip). Fin temperature distri­
bution is expressed by the function ((12), Ex. 6.15):
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i. = T - T'.p = coshm(L -x)

(}b t; - T:p cosh mL
(3)

where
T,=T

sc
- wall temperature, which the casing is welded onto,

T
sp

- temperature of combustion gases,
T = T(x) - temperature of a casing within distance x from the channel

wall,
m - fin parameter, defined as follows

m =~aoP/AoA,

where a
o

- heat transfer coefficient on an outer surface of the casing, P =
nd - outer surface of the casing,

A = ; (d; -d;) = 7ldsrgo '

Parameter m:

d = dw +dz =d _
sr 2 z g .

After substitution, one obtains

m== 45·0.012 == 20 11m.
50· (0.012 - 0.006).0.003

Tip temperature of the casing T; indicated by the thermoelement, is de­
termined from (3) for x =L

Since

coshmL'

1', -T
T == T + b sp

t coshmL

mL =20·0.12 =2.4,

then

1;=210+146.7-210=210_ 63.3 =198.61 0C.

cosh(2.4) 5.5569

Relative temperature measurement error for combustion gases is

e = T'.p - 1; .100 % = 210 -198.61 5.42% .
T:p 210
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Exercise 6.17 Temperature Distribution and Efficiency
of a Circular Fin of Constant Thickness

The aim is to derive an equation for a circular fin of constant thickness
from a general equation of heat transfer in fins (Ex. 6.14) and to determine
formulas for temperature distribution in fins, for a fin-transferred heat
flow and for fin efficiency. Following that calculate fin tip temperature, fin
efficiency and dissipate heat flow using the following data: fin-base tem-
perature T,=90°C, temperature of surroundings Tcz =20°C, r1 = 12.5 mm,
'2 = 28.5 mm, t = 0.4 mm, material of a fin - aluminium with thermal con­
ductivity A= 205 W/(m·K), heat transfer coefficient on the fin surface a =
70 W/(m2·K). Take into account heat exchange on a fin tip by increasing
fin height L to L,= L + t/2.

Solution

In the case of a circular fin shown in Fig. 6.21, surface area of a fin cross­
section is A =Tnrt, while circumference, on which thermal exchange oc­
curs is P =4;rr. Parameter m is defined as

~ap a471T ~2am- -- --- -
- AA - A2;rrt - At'

Differential equation (4) in Ex. 6.14 assumes the following form:

(1)

-·f·_·_·_·_·
I

1
I r,

Tb=T(rl) 1
I

1
I_. -I'_. _. _. _.

rw

L

A(r)

t/2

Fig. 6.21. Circular fin with constant thickness



(2)

(3)
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1 d ( dTJ 2a-- r- --(T-J:z)=O.
r dr dr At

Once excess temperature B = T - Tcz and parameter m given by (1) are in­
troduced, (2) can be written in a form

d2~ +.!.. dB _ m2B=O.
dr r dr

It is a modified Bessel equation, for which general solution has the form

Constants C
1
and C

2
will be determined from boundary conditions

BI_ =Bb , Bb =1;; - J:z'
r-fj

dBI =0
dr r=r2 •

(4)

(5)

(6)

Once constants are determined and substituted into (4), one obtains a for­
mula for temperature distribution B(r) in a fin:

B T (r) - J:z K o ( mr)II (mr2 ) +10 ( mr)K 1 ( mr2 )

0b 1;; - ~z 10 (mil )K}(mr2 ) + Ko (mil )I} (mr2 ) •

Heat flow Qdissipated by the fin

. _ dT I - K} (mJI ) I} (mr2 ) - I} (mJI )K} (mr2 )Q- -/LAb - - 21Z"/LJItBbm .
dr r=1j K o(mJI )1} (mr2 ) + 10 (mJI )K} (mr2 )

Since maximal flow Qrnax is

(7)

(8)

(9)

fin efficiency, then, can be determined as:

Q 211 K1 ( mil) II (mr2 ) - II (mil)K1 ( mr2 )
1]--- (10)

- c, - m(r22-rnKo(mlj)II(mr2)+Io(mlj)Kl(mr2)'

Fin tip heat exchange can be taken into account by substituting radius r2

in (7)-(10) for a slightly larger radius r
2c

= r
2
+ t/2. As in the case of a

straight fin, fin length is larger: L. = L + t/2.
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After substitution of the numerical values, one obtains

mil =41.32·0.0125=0.5165,

t
r2c = r2 +- = 0.0285 + 0.0002 = 0.0287 m,

2

mr2c =1.1859

The values of the Bessel functions are [5]

10 (mr2C) = 10 (1.1859) = 1.3837, K 1 (mr2C) = K 1 (1.1859) = 0.4443,

«,(mr2C ) = x, (1.1859) = 0.3247,

11 (mr2C) = 11 (1.1859) = 0.7035, 10 (mil) = 10 (0.5165) = 1.0678,

Ko(mil) = Ko(0.5165) = 0.8977,

one obtains

T(r2C)-20 = 0.3247·0.7035+1.3837·0.4443 =0.7624

90 - 20 1.0678·0.4443 + 0.8977 ·0.7035 '

T(r2C) = 73.38°C.

In order to determine fin efficiency, two additional Bessel functions are
needed:

K 1(mil) = K1 (0.5165) = 1.5887,

II (mlj) = II (0.5165) = 0.2670.

Heat flow dissipated by the fin is

= 2·0.0125 1.5887·0.7035-0.2670·0.4443 =0.8188.
'7 41.32(0.0287 2

- 0.0125 2
) 0.8977. 0.7035 + 1.0678·0.4443

Fin-diffused heat flow:

Q= '7Qmax = '7a 2Jl" (rz2c -In(J;, - ~J =

= 0.8188· 70·2· Jl"(0.0287 2 -0.01252 )(90 - 20) = 16.82 W.

Bessel function values, present in formulas for temperature distribution
and circular fin efficiency, can be read from table [5] or calculated by
means of library procedures [4, 7].
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Exercise 6.18 Approximated Calculation
of a Circular Fin Efficiency

Calculate circular fin efficiency from Ex. 6.17 using the following ap­
proximation formulas:

a) according to Schmidt [11, 12]

tghmLeCfJ
178 = L '

m eCfJ

where

CP=I+0.35ln(l+ ~c). m=~~~.

(1)

(2)

If 17 > 0.5, then efficiency 17 calculated using (1) does not differ more
than ±1% from the real value.

b) according to Brandt [2]

'lB = 2fj tgh mLc [1 + tgh mLc _ C (tgh mLJP ] ,
2'i + i, ml., Zmr; (»v. )n

(3)

where
C =0.071882, p =3.7482, n = 1.4810. (4)

Maximal error from efficiency determination by means of (3) is smaller
than 0.6% from an error made when determining efficiency by means of
(1).

c) formula according to [3]
1

(5)

Equation (5) gives good results, when 17 > 0.75. For the calculation, use
the values from Ex. 6.17.

Solution

a) according to Schmidt

m = 41.32 11m, 'i = 0.0125 m,

L; = r2e - '1 =0.0162 m, CfJ =1.2909,

r2e =0.0287 m,
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tgh(41.32.0.0162.1.2909)
17 = = 0.8082 .

s 41.32.0.0162.1.2909

Since a real value of the efficiency is 17 = 0.8188, relative error, then,
comes to

&s = ('Is -'1)100%= 0.8082-0.8188 .100%=-1.295%.
17 0.8188

b) according to Brandt [2]

2·0.0125 0.584575

17B = 2.0.0125+0.0162' 41.32.0.0162 x

[
(0 584575)3.7482 J

x 1+ 0.584575 0.071882·' =0.8162.
2·41.32·0.0125 (41.32.0.0125)1.4810

Relative error is:

&8 = 'IE - '1 .100% = 0.8162- 0.8188 .100% = -0.312% .
17 0.8188

c) formula according to [3]

1
17H= =0.8155.

1+!(41.32.0.0162)2 0.0287
3 0.0125

Relati ve error is:

&H = '1H -'1. 100% = 0.8155-0.8188 .100%=-0.409%.
17 0.8188

From the comparison of the results presented above, one can see that the
least accurate result is given by Schmidt formula. Brandt formula allows
for the most accurate calculation of circular fin efficiency; however, the
amount of work required to obtain the results is not much smaller than in
the case of the analytical formula. Equation (5) is both simple, yet accurate.

Exercise 6.19 Calculating Efficiency of Square
and Hexagonal Fins

Calculate fin efficiency (equivalent fins) in a fin-plate exchanger made of
pipes with an outer diameter of d = 10 mm and wall thickness S, = 1 mm.
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Distance between pipes in a hexagonal system is constant and is equal to
2s (Fig. 6.22b). Perpendicular and longitudinal pitch 2s, with pipes ar­
ranged in rows, is assumed constant (Fig. 6.22a). Calculations are to be
made for a

a) in-line
b) hexagonal

pipe configuration for two fin-plates of different thickness: t = 0.33 mm
and t =0.13 mm, assuming that 2s =25 mm. Fin plates are made of alumin-
ium alloy with thermal conductivity of A=165 W/(m·K). Heat transfer co­
efficient is a = 50 W/(m2·K).

Solution

Pipe configuration is shown in Fig. 6.22. Fin efficiency will be calculated
using (5) from Ex. 6.18.

1
1]= ,

1+!(mL)2 r;;
3 V--;;

where L = r;- '1' '1 =dJ2, r;- equivalent radius of a circular fin, calcu­

lated from a condition of equality of a conventional and circular fin surface
area, as shown in Fig. 6.22. Fin parameter is calculated using formula

air-How
direction

a)

f~~~1~~IJ(q71'471'47I
I J. J. .1

: :-$:-$:I t I
I I I____ .!. l ...1

""--+--+--+-4- : :Ltl :
I : :'+7:
I ----T----T----'
: : :-$:
I I t I
I I I I

t-----2~---- ... ---- ...
lamella of thickness 1

air-flow
direction

b)

lamella of thickness t

Fig. 6.22. Pipe lay-out in a fin-plate exchanger: (a) in-line pipe configuration,
(b) hexagonal (staggered) pipe configuration
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m=~~~ .

a) In-line pipe configuration is shown in Fig. 6.22a

Equivalent radius r2* is calculated from a condition of equality of circular

and square fin surface area, whose side is 2s

2s ·2s - 1rtj2 =Jr(rnZ
- 1rtJ

2
,

* 2s
rz =.j;'

After substitution, one obtains

* = 2s = 0.025 = 0 0141rz .j; .j; . m.

Parameter m:

when t ==0.33 mm,
2·50

=42.85 11m,m==
165 ·0.00033

when t =0.13 mm,
2·50

= 68.28 11m.m=
165·0.00013

Since,

L = r2* - 'i = 0.0141- 0.005 = 0.0091 m ,

fin efficiency is

when t = 0,33 mm,

when t = 0.13 mm,

1
1] = = 0.9216,

1+!(42.85'0.0091)Z 0.0141
3 0.005

1
1] = = 0.8223 .

1+!(68.28. 0.0091)Z 0.0141
3 0.005

b) Hexagonal pipe configuration is shown in Fig. 6.22b

Area of triangle ABC:
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Fin surface area: Si =2SABC and

2 (*)2 22SABC - Jr't =Jr r2 - Jr't ,

One obtains then

Equivalent radius:

(
hJ1I2 ( J

1/2
r; = 2~3 .s= 2~ .0.0125=0.0131m.

Since,

L=r2* -'t =0.0131-0.005=0.0081 m,

one obtains the following efficiency values:

when, t = 0.33 mID,

when, t = 0.13mm,

1
17 = = 0.9390 ,

1+!(42.85.0.0081)2 0.0131
3 0.005

1
17 = =0.8583 .

1+!(68.28.0.0081t 0.0131
3 0.005

From the comparison of results given, it is clear that hexagonal configu­
ration ensures greater fin efficiency; therefore, the flow of transferred heat
is larger than it is in the case of a in-line pipe configuration.

Exercise 6.20 Calculating Efficiency of Hexagonal Fins
by Means of an Equivalent Circular Fin Method
and Sector Method

The aim is to calculate efficiency of an equivalent fin in a fin-plate ex­
changer with a staggered fin configuration (Fig. 6.23). Pipes with an outer
diameter of d, = 7.59 mm arranged together with the following pitches:
P, = 21 mm and PI = 12.7 mm (Fig. 6.23). The thickness of aluminium
alloy based fin plates is t = 0.115 mm. Thermal conductivity of the fin
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Fig. 6.23. Fin-plateheat exchangerwith a staggeredpipe configuration

material is A= 165 W/(m·K). Heat transfer coefficient on a fin-plate sur­
face is equal to a = 40 (W/m2·K). Calculate efficiency of fins with an
equivalent outer radius by means of a simplified Brandt formula and sector
method.

Solution

a) Method I

First, we will calculate an equivalent outer radius of a circular fin, whose
surface area equals a surface area of a equivalent fin shown in Fig. 6.24.
The equivalent fin surface area is

where AoBe is an area of triangle OBC.
The above formula took into account the fact that thermal exchange occurs

on both sides of fin plates. Surface area of a circular fin A 0 with an equiva­
lent outer '2* and inner radius substitute and '1' respectively, is
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flow
direction

Fig. 6.24. Calculation of anequivalent fin surface area

From theequality

Oneobtains,

2[ (2AoAB + 4AaBC ) - 1Z7j2 ] =2Jr [ h*t -1j
2l

hence,

Area of a triangle DAB is formulated as (Fig. 6.24)

1
AOAB =-IABI· hOAB '

2
where

p
IABI =2~tgr =~tgr,

2

. ~
sm~= 2IODI'

h ~
DAB =2'

. ~
tp = arcsin -1-1 '20D

Jr
r=2-2~,

IODI= (~J +112
•
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Area of a triangle aBC is formulated as

1 1 1 1
AOBC=-IBClhoBC =-IBCI-IODI=-IBCIIODI,

2 2 2 4

IBCI =2!OD! tgqJ =IODI tgqJ.
2

According to a simplified Brandt formula, fin efficiency is expressed us­
ing (3) from Ex. 6.18

1J = 2'1 tghmLc [1 + tghmLc _ C(tghmL:Y],
2'i + i, mLe Lmr; (m'i)

where

c =0.071882, p = 3.7482, n =1.481,

m =~~at.L=r;-'1, /L

After substitution of the numerical values, one obtains

IODI= (~J +p/ = (0.~21J +0.0127
2

=0.01648m,

sin =~= 0.021 =0.6372
qJ 210D! 2·0.01648 '

(jJ= arcsin-I~I=0.6909 rad,
20D

Jr Jr
r =-- 2cp =-- 2·0.6909 =0.1890 rad,

2 2

IABI = ~tgr = 0.021· 0.19128 =0.004017m,

h _~_0.021_00105
OAB - 2 - 2 -. m,

11 I 1 -5 2AOAB= - AB hOAB= -·0.004017·0.0105 =2.1089 ·10 m,
2 2

IBCI = IODI· tgcp = 0.01648· tgO.6909 == 0.01363,

11 II I 1 -5 2AOBC== - BC OD == -·0.01363·0.01648 == 5.6156 ·10 m,
4 4
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2.2.1089.10-5 +4.5.6156.10-5

3 ~2a 2·40=9.2155 ·10- m, m = - = =64.93 11m,
At 165·0.000115

L = r2* - 'i =9.2155 .10-3
- 3.795.10-3 =5.4205 .10-5 m,

mL =0.35195,

2.3.795.10-3 tgh 0.35195

b) Sector method

In keeping with the sector method, a triangular fin OAB will be substituted
by an equivalent circular fin sector (with an equivalent surface area).

2r 2 2r 2 2r 2
AOAB - -Ii = -Jrr2 1 - -Jrli '

2Jr 2Jr ' 2Jr
hence,

1', =JAOAB = 2.1089 ·10~5 =0.010563 ill.
2,1 r 0.189

Circular fin efficiency with an outer radius '2,1 and inner radius '1

amounts to

L; = r2 l - 'i =0.010563 - 3.795.10-3 =6.768.10-3 m,

ml; =0.43945,

2.3.795.10-3 tghO.43945
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Radius r
2 2

of a circular fin sector with a surface area identical to a sur­
face area of'a triangular fin OBC is calculated in a similar way.

L2 = r2,2 - 'i = 5.2205 .10-3 m,

mL2 =64.93.5.2205.10-3 =0.33897,

2.3.795.10-3 tghO.33897

Fin efficiency calculated by means of a sector method comes to

After substitution of the numerical values, one obtains

2( 2.1089.10-5- 0.189· 0.003795 2 )0.9034 + 4(5.6156.10-5- 0.6909

tt, = 2(2.1089.10-5 -0.189.0.0037952)+4(5.6156.10-5-0.6909 X

.0.003795
2
)0.9441 2 ·1.8367 .10-5· 0.9034 + 4· 4.62056 .10-5· 0.9441

x - -
.0.003795 2

) - 3.6734.10-5+ 1.84823 ·10-4 -

=0.9373.

From the comparison of results, with 17
e
= 0.9394 and 17

s
= 0.9373, it is clear

that method I, in which the whole fin is substituted by an equivalent circular
fin, and sector method generate almost identical results. However, method I
requires less computational work.
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Exercise 6.21 Calculating Rectangular Fin Efficiency

The aim is to calculate efficiency of an equivalent fin in a fin-plate ex­
changer with a serial pipe configuration (Fig. 6.25). Pipes with outer di­
ameters d = 10 mm are arranged with the following pitches: P, =25 mm
and Pi = 22 mm. The thickness of fin-plates from aluminium alloy with
thermal conductivity A= 165 W/(m·K) is t =0.13 mm. Heat transfer coef­
ficient on a fin-plate surface equals a = 35 (W/m2·K). Calculate efficiency
of an equivalent circular fin with radius '2* by means of a simplified (5)
from Ex. 6.18.

-$-i
______ ~ d== I0 mm

-$-i
I

airflow
direction

E
E

-t - - - - - - +- - - - - - - 1- - - - - - -I

i-$:-$-i-$-i
------~------------~:-$-:-1---+---1-I . I

I . I

I I

------1---
I I
I I

I I --+---+-+-
I I
I I
I I

~-- ---~-- --4------~

Fig. 6.25. Serial pipe configuration in a fin-plate exchanger

Solution

Equivalent radius '2* of a circular fin will be calculated from the condition
of equality of a circular and rectangular fin surface area (Fig. 6.25):

2[n-(r;r-n-lj2 ] =2(~~ - mn.
From the above formula, one obtains

r; =J~~/n-.
The efficiency of a circular fin is calculated from (5), Ex. 6.18

1
1]== 1 '

1+-(mL)2 ~r; /lj
3

where
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m=~2a/At,

After substitution, one obtains

r; = (0.025·0.022) = 0.01323 m,
1r

'i = 0.5d1 = 0.005 m,

L = r2* - 'i = 0.01323 - 0.005 = 0.008231 m,

2·35
m = = 57.131/m, mL = 57.13·0.008231 = 0.47023,

165· 0.00013

1
17 = = 0.8929 .

1+!.0.470232 0.01323
3 0.005

Exercise 6.22 HeatTransfer Coefficient
in Exchangers with Extended Surfaces

Derive a formula for an overall heat transfer coefficient k for thermal ex­
changers with extended surfaces (Fig. 6.26). Compare coefficients to an
inner surface k

rw
and outer surface krz of a smooth pipe and to an entire

outer surface k
c

(fins + surfaces between fins). Take into account the pres­
ence of scale on an inner fin-free surface, assuming that coefficient a

g
from

the finned side is determined in a way that it already accounts for the resis­
tance from external scale.

Solution

In order to derive a formula for a heat transfer coefficient, an equivalent
heat transfer coefficient azr will be introduced with regard to smooth sur­
face area A

g
, on which fins are mounted. It takes into consideration both

heat transfer by fins and heat transfer by inter-fin spaces. It is assumed, at
the same time, that fins do not disturb a one-dimensional temperature field
in a wall of an element to which they are attached. If T

w
stands for a wall

surface temperature from a liquid's side, while T, is an outer surface tem­
perature from the gas side (Fig. 6.26), then heat flow transferred by an
outer surface
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a)

b)

Fig. 6.26. Extended heat transfer surfaces: (a) finned pipe, (b) flat plate with fins

where o. stands for a heat flow that flows from a liquid of temperature T,
to a gas of temperature T

g
that corresponds to a single pitch s, while T,> T,

Surface area A stands for a surface area of a smooth pipe or fin-free plate
g

that corresponds to a single pitch s:

Ag = Arz = 2Jr'is for a smooth pipe,

Ag = A = w-s for a smooth plate.
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Surface area between fins, which corresponds to single pitch s, can be
calculated in a similar way:

Ami =2Jr'i (s - t ) for a finned pipe,

Ami =(s - t ) w for a finned plate.

The surface of a single fin, which corresponds to a single pitch is given
by

t
where r2c =r2 +-, for a finned pipe,

2

A. =2wL, where L =L +i, for a finned plate.
z C C 2

From (1), one obtains a formula for an equivalent heat transfer coeffi­
cient

[
A . A. )a =a --.!!E-+_Z n .

zr g A A"
g g

(2)

If an equivalent heat transfer coefficient is known, then the calculation
of an overall heat transfer coefficient krz ' with regard to a plate surface or
an outer surface of a smooth pipe, is conducted in an identical way as the
calculation of a smooth pipe or plate with a heat transfer coefficient equal

to a; Heat flow o: which corresponds to a single pitch, can be calculated

for a pipe (Fig. 6.27a) using the following formula:

o. = krzAg (1;, - Tg ) = qlAg • (3)

-T
Ao

e

(Xu'

a) b)

1-

qyf,1 q
c::;> ¢

I A
I -r;
I Ao

«,
1

I «, -t,
1

r -
"'0

- go
rw gsc

fl

Fig. 6.27. Auxiliary diagram for determining overall heat transfer coefficient k for
finned surfaces with a scale layer of thickness go: (a) pipe, (b) plate
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Overall heat transfer coefficient krz ' which pertains to a surface area of a
smooth pipe with an outer radius of r 1 is calculated in the same way as the
coefficient for a smooth pipe, although here one allows for the fact that
four temperature decreases contribute to a temperature drop of T, - T

g
;

these are:

• Temperature decrease between a temperature of a liquid T, and an inner
scale surface temperature To formulated as

T -TI =~.
c 0 r=r

o a
c

Since the following equality occurs in a pipe

Q= iIo 21CroH =iIw 21CrwH = iI1 21CfiH ,
then

hence iIo can be calculated as shown below:

Equation (4) can be written then in the following way:

:z: - TI _ = 41'i .
r-r: rwa

c

• Temperature decrease inside a scale layer is formulated as

Hence, after introducing thermal contact resistance

s, = ~o [(m2
• K)/W]

o

one obtains

• Temperature decrease across a thickness of a pipe wall is

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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• Temperature decrease between an outer surface of a pipe and gas tem­
perature T

g
is

TI -T =!lL.
r='i g a

zr

(13)

After summation of four temperature decreases formulated by (8)-(13),
one obtains temperature difference (T - T)

e g

(14)

From the definition of an overall heat transfer coefficient krz ' the following
results from (3):

T -T =.!JLc g •
krz

From the dependence (14) and (15), one obtains

hence,

(15)

(16)

(17)

One can determine overall heat transfer coefficient k
w

with regard to in­
ner surface A

w
and coefficient ke with regard to total surface Ac=A + Arne

from the following equality:

hence,

where: A = Tnr S, A = 21lr1 S, A = A +A .
w w g e

In the case of a finned flat wall (Fig. 6.27b), overall heat transfer coeffi-
cient kg is determined, with regard to a smooth surface, from a formula

!L=!L+ qgo + qgsc ..«.
kg «, ,.10 A «.'
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from which the following equality results

_1 =_1 +R + gsc +_1_
kg «, 0 A «.'

where R, = go /Ao[(m2
•K)/W] is a thermal contact resistance of a scale layer.

The unknown overall heat transfer coefficient with regard to total sur­
face Ac= A +Am ' can be determined from the condition

o. = kgAg(I: - Tg) = kA; (I: - Tg) ,

which results in

~=_1~
k, kg Ag

Exercise 6.23 Calculating Overall HeatTransfer
Coefficient in a Fin Plate Exchanger

Calculate overall heat transfer coefficient in a fin-plate exchanger analyzed
in Ex. 6.20. The thickness of an aluminium made pipe wall with thermal
conductivity Ar= 165 W/(m·K) measures gr = 1 mm. Heat transfer coeffi­
cient on an inner surface of the pipe is a

c
=5000 W/(m

2·K).
The pitch of

fin spacing is s = 1.6 mm. Other values remain the same as they were in
Ex. 6.20. For the calculation, assume fin efficiency of 1]= tl,= 0.9394, cal­
culated by means of method I (Ex. 6.20). How many times does an overall
heat transfer coefficient increase in comparison to a smooth pipe?

Solution

First, surface areas will be calculated:
- fin surface area (Fig. 6.24)

At = (2AoAB +4AoBC ) = 2(2· 2.1089.10-5 + 4.5.6156.10-5
) =

= 5.33604.10-4 nr'.
- surface area between fins

Ami =Jrdz(s-t)=Jr.7.59.10-
3(1.6-0.115)·10-3 =3.54094.10-5 m".

- smooth surface area

A
g

=Jrdzs=Jr·7.59·10-
3 .1.6.10-3 =3.81515·10-5 m2

•

- surface area of a fin and a pipe between fins
A =A. +A . =5.33604·10-4 +3.54094.10-5 =5.690134.10-4 m".

c z mz
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An equivalent heat transfer coefficient is

a =a [Ami + Ai J=40[3.54094'10-
5

+ 5.33604·10-4 .0.9394)=
zr g A

g
A

g
17 3.81515.10-5 3.81515.10-5 (2)

= 596.58 W/(m2
• K)

Overall heat transfer coefficient (k
r
) , with regard to an outer surface of a

smooth pipe, is calculated in the following way:

_1 =-.-L+.lln2+_1_= 7.59.10-
3

1 +
krz r». Ar r; azr 2((7.59.10-3/2)-0.001)5000

+ 7.59.10-
3

x In 7.59.10-
3

+ 1 =2.71556.10-4 +
2 ·165 2[ 7.59~10-

3
_ 0.001) 596.58

+7.0346.10-6 + 1.676221.10-3 = 1.9548.10-3 (m 2
• K)/W,

krz =511.56 W/(m2 ·K).

Overall heat transfer coefficient (k) for smooth fin-free pipes with respect
to an outer surface of a pipe is:

1 'i 'i 'i 1 -4 6-=-+-In-+-=2.71556·10 +7.0346-10- +0.025=
k rwac Ar r; a

= 0.0252786 (m" . K)/W,

k = 39.559 W/(m2 ·K).

Due to the application of flat fins ( fin plates), heat transfer coefficient
increased n times:

n=krz =511.56=12.93.
k 39.559

Exercise 6.24 Overall HeatTransfer Coefficient
for a Longitudinally Finned Pipewith a Scale
Layer on an InnerSurface

A dowtherm was applied in a steam boiler. It flows inside a ring-shaped
gap between two pipes. In order to increase heat transfer coefficient, the
center pipe is longitudinally finned on its outer surface (Fig. 6.28). A wa­
ter-vapour mixture flows inside the pipe. The following data is used for the
calculation:
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• outer surface pipe diameter d, = 48.3 mm (Fig. 6.29),
• inner surface pipe diameter dw = 40.94 mm,
• fin height L =12.7 mm (d2 =d1 + 2L =73.7 mm),
• fin thickness t =0.889 mm,
• fin number on the pipe's perimeter N =24,
• thermal conductivity of the fins and pipe material: A= 55 W/(m·K)

(carbon steel),

Fig. 6.28.A diagram of a heat exchanger of pipe-in-pipe type with an internal pipe
finned on an outer surface

Fig. 6.29. A diagram of a longitudinally finned pipe
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• heat transfer coefficient from the dowtherm's side: ad = 1500
W/(m

2·K),

• heat transfer coefficient on an inner surface of the pipe: a
w

= 10000
W/(m

2·K ).
How much will a heat transfer coefficient decrease when a layer of a boiler
scale, go =0.1 mm thick with a thermal conductivity of Ao =1 W/(m· K) ac­
cumulates on an inner surface of the pipe?

Solution

L
e

= L +!.- = 12.7 .10-3 +!. 0.889 .10-3 = 13.1445 .1O-3 m .
2 2

Fin parameter comes to

m=~2ad = 2·1500 =247.7 11m,
AI 55.0.889.10-3

mLc =247.7.13.1445.10-3 =3.256.

Fin efficiency is formulated as

tgh(mLc ) tgh(3.256)
1] = = = 0.3062 .»a; 3.256

In order to calculate an equivalent heat transfer coefficient a, surface
area A, Am and A

g
, which correspond to 1 m of pipe and one pitch

~qJ , will be calculated first (Fig. 6.29).

Ai =2·Lc .1=2.13.1445.10-3 ·1=2.6289·10-2m2
,

A = /1rp' d[ .1 = 2;rr . 48.3 .10-
3

= 6.3225 .10-3 m 2

g 2 24 2 '

Ami =A
g

-1.1=6.3225.10-3 -0.889.10-3 =5.4335·10-3m2
•

An equivalent heat transfer coefficient a; calculated with respect to an
outer surface of a smooth pipe is

a =a (Ami + Ai J=1500.(5.4335.1O-
3

+ 2.6289.10-
2

.0.3062J=
zr d A

g
A

g
1] 6.3225 .10-3 6.3225 .10-3

= 3198.85 W/(m 2 ·K).
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Overall heat transfer coefficient krz calculated with respect to an outer
surface of a smooth pipe is formulated as

_1_=l_I_+ l Ro+ 1j Inl +_1_.

krz r: «, r. A r, azr

First coefficient krzis calculated, for the situation when an inner pipe sur­
face is scale free. Since R = 0 and

o

r. = d1 = 48.3 .10-
3

=24.15 .10-3m r
w

= 40.94 .10-
3

=20047 .10-3m,
1 2 2 '2

then,

_1 = 24.15 .10-3 1 + 24.15 .10-3 In 24.15 .10-3 + =

krz 20.47.10-310000 55 20.47.10-3 3198.85

=1.17978·10-4 +7.2592.10-5 +3.1264.10-4 =5.0321.10-4 (rrr' ·K)/W.

hence,

krz = 1987.2 W/(m 2 ·K).

It can be seen that here overall heat transfer coefficient is only slightly
bigger than a dowtherm heat transfer coefficient, equal to ad = 1500
W/(m

2·K). This is caused by a large heat transfer coefficient a
w

' for which
fin efficiency is rather small. In order to consider the effect of scale layer
on a calculated coefficient krz ' it is sufficient to add calculated value llkrz
to a scale resistance equal to

lR =l. go = 24.15.10-
3

• 0.0001 =1.1789.10-4(m2.K )IW.
r
w

0 r. Ao 20.47 .10-3 1

Overall heat transfer coefficient k;z for a pipe with a scale layer on an

inner surface is

therefore,

k;z = 1609.82 W/(m
2
·K).

Due to a scale accumulation on an inner surface, overall heat transfer
coefficient became smaller by

tJakrz =krz -k;z =1987.23-1609.82 = 377.4W/(m
2·K).
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Exercise 6.25 Overall Heat Transfer Coefficient
for a Longitudinally Finned Pipe

Calculate overall heat transfer coefficient, with respect to a smooth outer
surface of a pipe, for finned pipes with an outer diameter d. = 16 mm and
thickness gr= 2 mm, made of aluminium with thermal conductivity A =
205 W/(m·K). The outer diameter of a fin,with thickness t = 0.1 is d2 =
35 mm. Pitch of the fin spacing is s = 1.1 mm. A hot water of tempera-
ture t

w
=80°C flows inside the pipe at a speed of WI =0.5 m/s; it warms the

air, which circulates the finned pipes crosswise. Heat transfer coefficient
from the air side is equal to a = 60 W/(m

2·K).
How is the overall heat

transfer coefficient going to change when the velocity of flowing water in­
creases to w

2
= 2 mls? Calculate heat transfer coefficient from water to pipe

using the following Stender and Merkel formulas

«, =2040(1+0.015tw)WO.87d:O.l3, (1)

in which the units are as follow:

«: [W/(m2·K)],
t

w
[DC], W [mls],

Solution

d [m].
w

A diagram of the finned pipe is presented in Fig. 6.30. First, we will calcu­
late fin efficiency from formula

(2)

where,

_ dl _ 16 .10-
3

_ 8 .10-3
'1 - 2 - 2 - ill,

r = d2 = 35.10-
3

=17.5.10-3 m
2 2 2 '

t
r

2e
= r2 +- = 17.5.10-3 + 0.05 .10-3 = 17.55 .10-3 m,

2

t t -3 -3 0.1.10-3
-3

Le =L+-=r2 -'1 +-=17.5·10 -8·10 + =9.55·10 ill.
222
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Fig. 6.30. A diagram of a finned pipe with circular fins of constant thickness

Fin parameter m is

m=~2a = 2·60 =76.51 11m,
At 205·0.0001

mLc =76.51.9.55.10-3 =0.7307.

Thus:

1
17 = = 0.7914 .

1 17.55.10-3

1+ -(0.7307)2
3 8.10-3

Next, we will calculate fin surface area (At) and smooth pipe surface
area (Ag) on an outer surface and inner surface area (Aw) for a single pitch
s:

At =2Jrh2 -,n=2Jr[(17.5.1O-3r-(8.10-3r]=1.5221.10-3 m",

A
g

= 2Jr'is = 2Jr .8.10-3 .1.1.10-3 = 5.5292 .10-5 m",

A
w

=2Jrr
ws=2Jr('i

-gr)s=2Jr(8-2).10-3 .1.1.10-3 =4.1469.10-5 m",

Surface area between fins per single pitch is

Ami = Ag - Jrd1t = 2Jr'i (s - t) = 2Jr·8.10-3 (1.1- 0.1)10-3 =

= 5.0265 ·10-5m2
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Equivalent heat transfer coefficient a, calculated with respect to a
smooth outer surface of the pipe is

a =a[Ami + Ai )=60.(5.0265.10-
5

+ 1.5221.10-3.0.7914)=
zr A

g
A

g
1] 5.5292.10-5 5.5292.10-5

= 1362 W/(m2
• K).

Overall heat transfer coefficient from water to inner surface of the
pipe is

a w =2040(1+0.015.80)0.5°·87 .(0.012)-0·13 =4363.8 W/(m2·K).

Heat transfer coefficient with respect to smooth outer surface of the
pipe is calculated using (17), from Ex. 6.22:

_1_=~+ Ii In2+_1_= 8.10-
3

+
krz r»; A rw o; (8-2).10-3 ·4363.8

+ 8.10-
3
In 8.10-

3
+ _1_ = 3.055441.10-4 +

205 (8 - 2) .10-3 1362

+1.12266.10-5 +7.34198.10-4 =1.05097.10-3 (m2·K)/W,

hence,

krz = 951.5 W/(m2·K).

Next, we will calculate overall heat transfer coefficient k;z when the ve­

locity of a flowing water equals w
2
=2 mls. Heat transfer coefficient a: is

larger:

a: =2040(1+0.015.80).2°087 .(0.012)-0
0
13 =14576.6 W/(m 2·K ).

Overall heat transfer coefficient is calculated in the following way:

8.10-3

( ) 3 +1.12266.10-5 +7.34198·10-4 =k;z 8-2 ·10- ·14576.6

= 8.36895.10-4 W/(m 2
• K),

k;z = 1194.9 W/(m 2
•K).

Due to the increased water velocity, from WI =0.5 mls to w
2
=2 mis, the

overall heat transfer coefficient has increased by the following percentage
value

W = k~ -krz .100% = 1194.9 - 951.5 .100% = 25.6%.
krz 951.5
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Exercise 6.26 Determining One-Dimensional
Temperature Distribution in a Flat Wall
by Means of Finite Volume Method

(1)O~x~L,

Determine temperature distribution and heat flux on a slab surface, in
which temperature field is described using the following differential equa­
tion and boundary conditions:

d 2T .___ qv
dx' - A'

dTI =0
dx x=o '

(2)

-}., dTI =a[TI -T J.
d x=L cz

X x=L

(3)

Determine temperature distribution by means of finite volume method
for the following data: A = 15 W/(m·K), a = 300 W/(m2·K), L =0.06 m,
4v =1.106 W/m3

, Tez =20°C. Compare determined temperature distribution

with the accurate analytical solution (Ex. 6.11)

(4)

when the wall thickness is divided into five finite volumes (Fig. 6.31).

Solution

Heat balance equation for the first finite volume has the form

(5)

from which one obtains

21; -2~ = (6)

where Ax = L /4.



Exercise 6.26 Determining One-Dimensional Temperature Distribution 123

Heat balance equation for finite volumes with numbers i = 2, 3, 4 has
the form

(7)

hence,

i =2,3,4. (8)

t!x/2 t!x t!x t!x/2

5
•
4

•
3

•
2

_.- _·_·_·_·'·_·_·_·_·+·_·_·_·_·1·_· .-

L

o x

Fig. 6.31. Wall division into control volumes

Heat balance equation for control volume no. 5 has the form

~(T -1:)+a(T -1:)+q. Ax =0Ax 4 5 cz 5 v2 '
(9)

hence, one obtains

(
2aAxJ q)i1xt _2aL1x T .2T4 - 2+--1- 1:5 =

A A A cz
(10)

By substituting the numerical values in (6), (8) and (10), one ob­
tains the following system:
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-2~ +21; =-15

T; - 2T2 +1; =-15

1; - 21; +T, =-15

1; - 2~ +~ =-15

2~ - 2.6~ =-27.

This system can also be written in the matrix form

AT=b,

where

-2 2 0 0 0 t; -15

1 -2 1 0 0 1; -15

A= 0 1 -2 1 0 T= 1; , b= -15

0 0 1 -2 1 t, -15

0 0 0 2 -2.6 t: -27

(11)

(12)

Equation system (12) has been solved using Gauss elimination method.
Solution can be written in the form

T=A-Ib,

where

340.0 -3.67 -6.33 -5.33 -4.33 -1.67

332.5 -3.17 -6.33 -5.33 -4.33 -1.67

T= 310.0 A-I = -2.67 -5.33 -5.33 -4.33 -1.67

272.5 -2.17 -4.33 -4.33 -4.33 -1.67

220.0 -1.67 -3.33 -3.33 -3.33 -1.67

It is important to know the inverse matrix A -1, since it allows to define the
relationship between temperature in a given node and the heat source unit
power iJv and the parameters a and Tez' which prevail in the boundary

condition (3). In order to compare obtained temperature values with ana­
lytical solution, temperature values in nodes were also calculated using (4)
(Table 6.2).

Heat flux on a slab surface is

q·1 =a(T\ -T)x=L x=L ~.



Exercise 6.26 Determining One-Dimensional Temperature Distribution 125

Table 6.2. Comparison of temperature values calculated numerically nodes with
exact values

Node no.
Coordinate Finite volume method Exact solution

x [m] T [OC] T [OC]

1 0 340.0 340.0
2 0.015 332.5 332.5
3 0.030 310.0 310.0
4 0.045 272.5 272.5
5 0.060 220.0 220.0

Accurate value:

41x=L =300(220 - 20) =60000 W/m
2

•

Approximated value 4p (L) calculated from formula

is

Approximated value qp L=L can also be determined by means of Fourier

Law, while first derivative dT/dxL=L will be calculated by means of a

backward finite difference differential quotient with an accuracy of 2nd
order

After substituting node temperature values calculated by means of the fi­
nite volume method, one obtains

4 I =_153.220-4.272.5+310 =60000 W/m2 •

p x=L 2.0.015

From the analysis of the obtained results, it is clear that the accuracy of
the finite volume method is very good.

Program for calculating temperature distribution in slabs

program mat

dimension a(50,50) ,b(50) ,c(50,50) ,t(50)
open(unit=l,file='mat.in')
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open(unit=2,file='mat.out ')
read(l,*)n
read (1, *) ((a (i, j) , j =1, n) , i=l, n), (b (i) , i=l, n)

write(2,*) lA'

wr i te (2 , 66 ) (( a (i , j ) , j =1 , n) , i =1 , n)
wri te (2 , *) 'B I

write(2,66) (b(i),i=l,n)
call matinv(a,n,c)
write(2,*) 'AI\-l'

wr i te (2 , 66 ) (( c (i , j ) , j =1 , n) , i =1 , n)

do 20 i=l,n

sum=O.O
do 10 j=l,n

10 sum=sum+c(i,j)*b(j)

20 t(i)=sum
wr ite (2 , *) , I

write(2,50) (i,t(i),i=l,n)
stop 7

50 format (5 ( I T ( , , i 2, I ) = I , f 8 . 2 , 2x) )

66 format(5f8.2)
end

data (mat. in)

5

-2. 2. O. O. O.

1. -2. 1. O. O.
O. 1. -2. 1. O.

O. O. 1. -2. 1.

O. O. O. 2. -2.6
-15. -15. -15. -15. -27.
results (mat.out)

A
-2.00 2.00 .00 .00 .00
1.00 -2.00 1.00 .00 .00

.00 1.00 -2.00 1.00 .00

.00 .00 1.00 -2.00 1.00

.00 .00 .00 2.00 -2.60

B

-15.00 -15.00 -15.00 -15.00 -27.00
AI\-l

-3.67 -6.33 -5.33 -4.33 -1.67

-3.17 -6.33 -5.33 -4.33 -1.67

-2.67 -5.33 -5.33 -4.33 -1.67

-2.17 -4.33 -4.33 -4.33 -1.67
-1.67 -3.33 -3.33 -3.33 -1.67

T( 1)= 340.00 T( 2)= 332.50 T( 3)= 310.00

T( 4)= 272.50 T( 5)= 220.00
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Exercise 6.27 Determining One-Dimensional Temperature
Distribution in a Cylindrical Wall By Means
of Finite Volume Method

Solve the problem formulated in Ex. 6.12 using the finite volume method.
Calculate tube wall temperature in five uniformly spaced points (Fig.
6.32). Compare the obtained numerical solution with the accurate analyti­
cal solution.

o

I I I._.. _._.- -'-'-'r'-'-'- _. ,
I

..l._._._._ .

I
I

I
I

I
I

I
I

I
I

I
-1._._._._.

I ro=rw

I
I

I
I

I

~r/2 ~r ~r/2

01 r

Fig. 6.32. Division of a cylindrical wall into finite volumes

Solution

Heat balance equation for finite volumes, adjacent to the inner surface, is
not required, since the inner surface temperature is known: To = T

w
' Heat

balance equations for nodes i = 1, 2, 3 can be written in the condensed
form

(
I1r) T 1 - T ( I1r) T 1 - T21l i". - - A 1- 1 + 21l r + - A 1+ 1 + 21lrl1rq· =0

1 2 I1r 1 2 I1r 1 v , ( 1)

i =1, 2, 3,
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On the basis of (1), one obtains the following equations for nodes num­
bered 1,2 and 3:

~r ~r
11-- 11+- .
_~2(T -T)+ 2 (T -T)+ qv11~r =0
~r 0 1 ~r 2 1 A '

I1r I1r
r2 - - r2 +- .
__2~(T -T)+ 2 (T -T)+ qvr2~r =0

Sr 1 2 I1r 3 2 A '

I1r f1r
r3 - - r3 +- .
_~2 (T - T ) + 2 (T - 1: ) + qv

r
3

11r =0 .
I1r 2 3 I1r 4 3 A

An equation for node 4 has the form

(2)

(3)

(4)

(5)

After simple transformations (2)-(5) can be written in the following
form:

(6)

(7)

(8)

(9)
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After substitution of the numerical values

r - r (8 - 7.2) .10-3
4

I1r=-z--w = =1·10- m
4 2·4 '

'i = rw+ I1r = 3.6.10-3 + 1.10-4 = 3.7 .10-3 m,

r
2

=rw+2(l1r)=3.6.10-3 +2.1.10-4 =3.8.10-3 m,

r3 = rw+ 3( I1r) = 3.6 .10-3 + 3 .1.10-4 = 3.9.10-3 m, (10)

iJv = 8.38715 .108 W/m3
,

A =18.4 W/(m·K),

To = Tw = 300°C,

the equation system (7)-(10) assumes the form

-2~ + 1.01351351; = -296.4017693,

0.986842~ - 2T2 + 1.013157891; = - 0.4558234,

0.98717951; - 21; + 1.0128205~ = - 0.4558234,

21; - 2T4 = -0.458708.

Equation system (11) can be written in the matrix form

AT=b,

where

-2 1.0135135 0 0

0.986842 -2 1.01315789 0
A=

0 0.9871795 -2 1.0128205

0 0 2 -2

t; -296.4017693

1; -0.4558234
T= b=

1;
,

-0.4558234

t, -0.458708

(11)

(12)

(13)

The solution of the equation system (12), obtained by means of the Gauss
elimination method, has the form

T = A-1b, (14)
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where

301.6718 -1.0137 -1.0411 -1.0685 -0.5411

302.8493
A-I =

-1.0137 -2.0544 -2.1085 -1.0678
T= . (15)

303.5464
,

-1.0137 -2.0544 -3.1215 -1.5807

303.7757 -1.0137 -2.0544 -3.1215 -2.0807

The comparison of the obtained numerical solution with analytical solu­
tion from Ex. 6.12

(16)

is presented in Table 6.3. Heat flux on the inner surface of the pipe will be
determined from formula

(17)

Table 6.3. The comparison of numerically and analytically calculated node tem­
perature values

Node no. Coordinate Finite Volume Method Exact Method
x [m] T rOC] T rOC]

1 0.0036 300 300.0
2 0.0037 301.6718 301.6725
3 0.0038 302.8493 302.8506
4 0.0039 303.5464 303.5482
5 0.0040 303.7757 303.7781

Heat transfer coefficient on an inner surface of the pipe will be deter­
mined from formula

qw
T -T 'o cz

where iJw is expressed using (17).

After substitution, one obtains

. =18.4 -3·300+4·301.6718-302.8493 =353086.8 W/m2

s, 2.1.10-4
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and

a =353086.8 =1261.024 W/(m2.K).

300-20

It is clear that the obtained results are almost identical to the results ob­
tained by means of the analytical formulas from Ex. 6.12.

Exercise 6.28 Inverse Steady-State Heat Conduction
Problem for a Pipe Solved by Space-Marching Method

Electrical current with an intensity of 300 A flows through a stainless steel
pipe with an inner diameter d, =7.2 mm and outer diameter d = 8 mm.
Thermal conductivity of this steel is A = 18.4 W/(m·K), while its specific
resistance p = 0.85 (n . mm'j/m. Assuming that the outer surface of the
pipe is thermally insulated and the temperature of this surface is known
and equals T, =303.77805°C, calculate temperature distribution across the
wall thickness. Assume that total heat rate generated inside the wall flows
to the interior of the pipe. Calculate heat transfer coefficient on the inner
surface of the pipe, if the temperature of a medium measures Tcz = 20°C.
Perform calculations using finite volume method. Analytical solution of
the problem formulated above is presented in Ex. 6.13.

Solution

A division of the wall into finite volumes is shown in Fig. 6.32. An equa­
tion system for temperature in finite volume nodes has the same form as
(6)-(9) in Ex. 6.27, therefore

fj -!1r / 2 To _ 2T; + fj +!1r/ 2 7; =
'i 'i

r2-!1r / 2 T; _27; + r2+!1r/ 2 1;=
r2 r2

4v(ilr)2
A

4v (ilr )2
A

4v(!1r)2

A

(1)



(2)

(3)
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After substitution of the numerical values, equation system (1) assumes
the form

0.986486~ - 2~ + 1.01351351; =- 0.4558234

0.98684~ - 21; + 1.013157891; =- 0.4558234

0.98717951; -21; +1.0128205~=- 0.4558234

21; - 2~ =- 0.458708.

This is different from what we obtained in Ex. 6.27, in which the system
in question is solved using the Gauss elimination method, since in this case
we can easily determine the solution of system (1) by starting calculations
from the last equation. If we take into account that

t, =I: =303.77805 °C

from the fourth equation of system (2), we get

1; =~ - 0.458708 =303.77805-0.229354°C=303.5487°C. (4)
2

From the third equation of system (2), we get

T2 = 1 (21; -1.0128205~ -0.4558234)=
0.9871795

= 1 (2.303.5487-1.0128205.303.77805-0.4558234)=
0.9871795

=302.8516°C.

From the second equation we have temperature at node 1:

7; = 1 (21; -1.013157891; -0.4558234)=
0.98684

= 1 (2.302.8516 -1.01315789. 303.5487- 0.4558234) =
0.98684

=301.6746°C.

Inner surface temperature To is determined from the first equation

To = 1 (27; -1.01351351; -0.4558234) =
0.986486

= 1 (2.301.6746-1.0135135.302.8516-0.4558234)=
0.986486

=300.00344°C.
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IS

Inner surface heat flux calculated from the approximate formula

q =2 dTI ~2 -3To+4~ -7;
W dr rr: 211r

. =18.4 -3·300.00344+4·301.6746-302.8516 =352956 W/m2 •

s; 2.1.10-4

Inner surface heat transfer coefficient is

a = qw = 352956 = 1260.5 W/(m2 •K).
1'0 - ~z 300.00344 - 20

(5)

Inner surface heat flux can be also calculated from an energy balance for
node 0

. (I1r)~ -Toq ·2Jrr =A2Jr r +- --
w w w 2 I1r'

hence,

. =A(I+ I1rJ~ -To =18.4(1+ 1·10-4 Jx
qw 2r I1r 2.3.6.10-3

w

x(301.6746 - 3~0.00344) = 311764.2 W/m2 •

1·10-

Heat transfer coefficient is:

a= qw = 311764.2 =1113.4W/(m2.K).
To - 1;;z 300.00344 - 20

(6)

(7)

(8)

It is clear, therefore, that the second method for calculating heat transfer
coefficient is less accurate, since value of a calculated in Ex. 6.12 by using
the exact method is a = 1264.73 W/(m2·K). This is due to the accurate
calculation of heat flux on the inner surface by means of difference quo­
tients. The accuracy of (5) is of the second order, while of (7) - of the first
order.

A problem, in which both assumed conditions are set on a single bound­
ary, is an inverse heat conduction problem. A method applied in this exer­
cise is called the space-marching method. According to this method, tem­
peratures are determined by space marching from the location, with
temperature and heat flux known, to a surface with a boundary condition
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unknown. One can also see that calculated node temperatures differ
slightly from the "exact" values (calculated using analytical formulas)
given in Table 6.3. This is mainly due to the rounding calculation errors
made in this exercise. In inverse problems, rounding errors or temperature
measurement errors, especially in transient problems, significantly influ­
ence the accuracy of the obtained results.

Exercise 6.29 Temperature Distribution and Efficiency of
a Circular Fin with Temperature-Dependent Thermal
Conductivity

Determine efficiency of a circular fin with constant thickness t by assum­
ing that thermal conductivity of the fin material A is a linear temperature
function of temperature:

A(T) =A(t: )(1+EO) ,

where e = [ A(~) - A(J:JJ/'l(Tcz)' e= (T - J:J/(~ - Tcz) ·
Symbols T

1
and Tcz stand for fin base temperature and medium's tem­

perature, respectively. Draw graphs show the fin efficiency as the function
of the parameter M:

where r
1
and r

2
are the base and fin tip radius, L =r

2
- r

1
fin height, a - heat

transfer coefficient on the fin surface. Show results in a tabular form for k =
2 as a function of parameter M.

Solution

Equations and boundary conditions, which describe fin temperature field,
have the following form (see reference [12] and equation (4.8)-(4.12) in
Part 1 of this book):

dQ = -21rN2pe (1)
dp ,

dO Q
(2)- ,

dp 2Jr(1+&B)p

elp=1 = 1, (3)



(6)
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QL=k = 0, (4)

dB
Q= - 2IT(1 +&B)p-. (5)

dp

Symbol p =rlr, is a dimensionless radius. The following relation occurs
between parameters Nand M:

N2 = 2 M 2 •

(k _1)2

Fin efficiency 17, defined as a ratio of real-fin-dissipated heat flow to
isothermal-fin-dissipated heat flow, is formulated as

r2

f4Jra (1; - Too )rdr

-[2Jrtd(J:z )(1 + t:B)~]lr=r,
172: =

Once (5) is substituted in (7) and subsequently transformed, one obtains

(7)

(k-l)Qlp =l

2IT (k +1) M 2
•

(8)

By solving two-point boundary value problem (1)-(4), one is able to de­
termine Qlp = 1. Two-point boundary value problem will be solved itera­
tively using secant method, also called Newton-Raphson method [1, 8].
Boundary problem (1)-(4) will be substituted by the initial problem under
the assumption that value Q is given at the base of the fin

(9)

If we assume a certain numerical value f3, we will be able to solve the
initial problem, formulated by (1) and (2) and by initial conditions (3)
and (9), at a given iterative step. Runge-Kutta Method of4th order was ap-
plied to solve the initial problem. Value f3 must be chosen in such way that
condition (4) is satisfied. Variable Qlp=k is, therefore, a function of parame­
ter f3

(10)
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One should find such value of parameter 13 * for which Q(13 *) = o.
Therefore, the solution of two-point boundary problems (1)-(4) is reduced
to the determination of the root of the following algebraic equation:

Q(f3)=O. (11)

Such equation will be solved by means of the secant method, according to
which (Fig. 6.33)

f3n - f3n-l _ f3n+l - f3n
Q(f3n)- Q(f3n-l) - Q(f3n+l) - Q(f3n) .

(12)

Q(f3) = Qlp=k

f3 = Qlp=l

Q(f3)

s.; f3

Fig. 6.33. Determining the root of a non-linear algebraic equation Q(fJ) by means

of the secant method

Next, by taking into account the following condition in (12)

(13)

one obtains,
f3n - f3n-l _ f3n+l - f3n

Q(Pn)-Q(Pn-l) - O-Q(Pn) ,
(14)

from which it follows that

f3 = f3 - (Pn - Pn-I) Q(Pn)
n+l n Q(f3n)- Q(f3n-l) ,

n =0,1, ... (15)

At the beginning of the calculation, two values 130 > 0 and 131 > 0 are as­
sumed, and following that roots 132' 133, ••• are calculated using (15). Itera­
tive process is continued until the following condition is met

If3n+l - f3n 1< e,
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where e is the assigned tolerance of the calculation and equals e = 0.001.
The results of fin efficiency calculation are presented in Fig. 6.34-6.37 for
different values of k =r

2/r1
, 8 and M.

L(}~-....---r----,r----....---r-----,r----t

IIi

0.75

0.25t--+--+--P~§.!I1

0.0 o.s 1.0 L5 2J) 25 3J) 3..5
1\1

Fig. 6.34. Efficiencyof a fin with constant thickness and variable thermal conduc­
tivityfork = 1.6

to -..,----ro--..,-__---,-- ___

'It

0,75

OJ) 0,5 1,0 1,5 2~O 2~5 3,0 3,5
1.11

Fig. 6.35. Efficiencyof a circular fin withconstant thickness and variable thermal
conductivity fork =2.0

1,0

1Jt

0,75

0,5

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5
M

Fig. 6.36. Efficiency of a circular fin of constant thickness and variable thermal
conductivity fork =3.0
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0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5
M

Fig. 6.37. Efficiency of a circular fin of constant thickness and variable thermal
conductivity for k =4.0

From the comparisons presented in Table 6.4, it is evident that the given
method for calculating fin efficiency is highly accurate. In paper [12], the
method described above was also used to determine circular fin efficiency
with position-dependent heat transfer coefficient a.

Table 6.4. Efficiency 1Ji of a circular fin with constant thickness for k == 2; value
1Ji for e == 0 (constant thermal conductivity) calculated by means of the analytical
formula ((10), Ex. 6.17) is given in brackets

ParameterM
e

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75

-0.6 1.0 0.8831 0.6915 0.5351 0.4217 0.3410 0.2829 0.2401 0.2078 0.1827 0.1628 0.1468
-0.3 1.0 0.9241 0.7648 0.6095 0.4868 0.3959 0.3292 0.2795 0.2419 0.2126 0.1894 0.1707
0.0 1.0 0.9445 0.8133 0.6674 0.5418 0.4440 0.3704 0.3149 0.2725 0.2395 0.2133 0.1921

(1.0) (.9445) (0.8133)(0.6674) (0.5418)(0.4440)(0.3704)(0.3149) (0.2725)(0.2395) (.2133) (0.1921)
0.3 1.0 0.9565 0.8465 0.7128 0.5885 0.4867 0.4077 0.3473 0.3007 0.2643 0.2353 0.2119
0.6 1.0 0.9642 0.8702 0.7486 0.6282 0.5247 0.4419 0.3772 0.3269 0.2874 0.2558 0.2303
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