
11 Solving Steady-State Heat Conduction
Problems by Means of Numerical Methods

This chapter is devoted to numerical methods, which are used to determine
steady-state temperature fields. It contains detailed description of the fol­
lowing numerical methods: finite-difference method, finite-volume method
(control volume), finite element method (FEM) and pseudo-transient
method for solving stationary problems, based on the method of lines. Lin­
ear and non-linear problems, both simple and inverse, are solved here.
Specific computational programs are developed for determining steady­
state temperature fields, while Gauss elimination method, Gauss-Seidel it­
erative method or over-relaxation method are applied to integrate an alge­
braic equation system. Ordinary differential equation system in the
pseudo-transient method is solved using Rung-Kutta method of 4th order.
Finite element method, based on Galerkin method, is discussed in great de­
tail, as well as the two methods for creating global equation system in
FEM. Basic matrixes and vectors, which occur in FEM for one­
dimensional and two-dimensional triangular and rectangular elements, are
also developed. Furthermore, authors present their own solutions to FEM
problems. The obtained results are compared with analytical solutions or
the solutions acquired by means of finite volume method. The application
of the ANSYS program is presented in Ex. 11.20, 11.21 and 11.22. Hex­
agonal fin efficiency is determined in Ex. 11.21, while the effect the shape
of pins on the heating surface of the cast iron heating boiler has on the
temperature distribution and pin-transferred heat flow is analyzed in
Ex. 11.22.

Exercise 11.1 Description of the Control Volume Method

Describe how transient heat conduction problems are solved by means of
the control volume method; assume that thermal conductivity can be tem­
perature dependent. Write heat balance equation for control volume in the
Cartesian and cylindrical coordinate system for two-dimensional problems.
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Solution

Control volume method, also called elementary balance method or finite
volume method, is a universal and effective method for solving heat con­
duction problems. If the thickness of an analyzed area is d and thermal
properties c, p, A and power densityof internal heat sources qv are tem-

perature dependent, then heat conduction equation can be written in the
form

(1)

The area is divided into control volumes, which have the following dimen­
sions: Llx, 8y and d in the Cartesian coordinate system (Fig. 11.1) or 8r, 8lfJ
and d (Fig. 11.2) in the cylindrical coordinate system. Once (1) is integrated
over the control volume, the following equation for a single cell (control vol­
ume) is obtained:

JC(T)p(T) aT dV = - Jdivq dV + Jqv dV,
cv 8t cv cv

(2)

where CV stands for the control volume .
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Fig. 11.1. A diagram of an area divided into finite volumes in the Cartesian coor­
dinate system

If we apply Green-Gauss-Ostrogradski theorem to the first term on the
right-hand-side of (2), the equation will assume the form

JC ( T) P (T) aT dV =- Jn ·qdS + Jqv dV ,
cv 8t s cv

(3)
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where S is the control volume surface, while n a normal unit surface vector
directed to the outside of the control volume. From expression

n-q =1·14Icos(n ,4) =4n (4)

it is evident that when the heat flows up to the control volume, the heat
flux vector 4 is directed to the inside of the control volume and the an­
gle between vector nand 4n is 180°. The scalar product (4) is then nega­
tive, while the surface integral in (3) is positive. If ~V denotes the vol­
ume of a control cell, then individual terms in (3) can be approximated in
the following way:

4

-fn ·4 dS =I Qi'
s i=l

f4vdV = ~V 4v (Tp ) ,

cv

(5)

(6)

(7)

where o. is the heat flow that flows in from the neighbouring cell. Substi­

tuting equalities (5)-(7) in (3), one obtains the following heat balance
equation

(8)

(9)

which will be written in a greater detail in the Cartesian and cylindrical
coordinate system.

a) Heat balance equation- Cartesian coordinates

A division of an area into control volumes and a control volume are shown
in Fig.11.1. The volume of a single cell is ~V = (Ax)(~y)d. Heat flows,
which inflow from nodes W, N, E and S to node P are expressed by the fol­
lowing formulas:

. A(1: )+A(T,) 1: -T
Q = (~ )d . = (~)d w p • w p

w-p ~ qw-p ~ 2 Ax'

. A(T )+A(T,) T -T
Q =(Ax)d· =(Ax)d N p • N p (10)

N-P qN-P 2 ~y'
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o =(il1))dqo =(il1))d A(TE ) + A(Tp) .TE - T;
E-P :T E-P:T 2 Ax' (11)

° A(T )+A(1',) T -1',
Q =(At)d ° =(At)d s p 0 s p. (12)s-p qs-p 2 ~y

Substituting the expressions (9)-(12) in (8), one obtains

(Ax)(~Y)dC(Tp)P(Tp)d2 =(~Y)dA(Tw );A(Tp).Tw:xTp+

( )
A(TN)+A(Tp) TN-Tp ( ) A(T£)+A(Tp)

+Atd . +Llyd .
2 ily 2

.TE:xTp+ (Ax)d A(Ts ) ; A(Tp) .Ts:;p + (Ax)(~y)d. tlv (Tp) .

Assuming constant properties

(13)

... ,

Equation (13) is simplified to the following equation

d~=a[~+~.~-~+~+~.~-~+
dt p 2Ap (LlX)2 2Ap (Llyf

A£ +Ap T£ -Tp As +Ap t; -Tp] qv,P
+ · 2 + . 2 +--.

2Ap (Llx) 2Ap (Lly) cp . PP

(14)

When steady-state problem is analyzed, dTp/dt =O. For a uniform grid
Ax = ily and for constant and temperature independent thermal properties
and heat source power, (14) is simplified to a form

(15)

(16)

b) Heat balance equation-cylindrical coordinates

Heat balance (8) can be transformed into a form similar to (14) after calcu­
lating of the following quantities (Fig. 11.2):

_ (2 _ 2)~(jJ _(r} -rn~(jJ
i1V -Jr rn rs d - d ,

2:r 2
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-~-
I

Fig. 11.2. A division of an area into finite volumes in the cylindrical coordinate
system

(17)

(18)

(19)

(20)

From (8), one obtains

In the case of steady-state problems, one should assume that d~/dt = o.
Heat balance (14) in the Cartesian coordinates or (21) in cylindrical coor­
dinates is written for all nodes, including the nodes in the control volumes
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that abut to a boundary. Appropriate boundary conditions should be al­
lowed for in the equations for boundary-adjacent control volumes. In order
to determine node temperature in the cases of transient problems, one
should solve the ordinary differential equation system by means of the
Runge-Kutta method, for instance. In steady-state problems, one can obtain
an algebraic equation system, which can be solved by direct methods, e.g.
Gauss elimination method, or by iterative methods like Gauss-Seidel
method.

Exercise 11.2 Determining Temperature Distribution
in a Square Cross-Section of a Long Rod by Means
of the Finite Volume Method

Determine temperature distribution in a square cross-section of an infi­
nitely long rod with prescribed temperature on lateral surfaces (Fig. 11.3).
In order to solve the problem, apply the control volume method, while the
obtained algebraic equation system solve by means of the iterative Gauss­
Seidel method. Write a computational program for the determination of
temperature in nodes 1-4.

- -
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t • • t
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1 4 "'.• .~ t

Fig. 11.3. Square cross-section of an infinitely long rod with prescribed surface
temperature

Solution

Equation (15) from Ex. 11.1 will be used to solve the above stated problem;
in this case, it has the form



(7)
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t; +TN +TE «t; -4Tp =0. (1)

From the equation above, we have, respectively, for nodes 1 to 4:

• node 1

300 + 1; + T4 + 350- 4~ = 0,
(2)

4~ -1; -T4 =650;

• node 2

250+300+1; +~ -41; =0,
(3)

-~ +41; -1; =550;

• node 3

1; +400+450+~ -41; =0,
(4)

-1; +41; -~ =850;

• node 4

~ +1; +400+350-4~=0 ,
(5)

-t; -1; +4~ =750.

According to the Gauss-Seidel method, (2)-(5) are transformed in a way
that the temperature in the first node is determined from the first equation,
in the second node from the second equation, in the third node from the
third equation and in the fourth node from the fourth equation:

1t; =-(650+1; +~) , (6)
4

1
1; =-(550+~ +1;) ,

4

1
1;=-(850+1;+~) ,

4
(8)

1
~=-(750+~+1;). (9)

4
Next, initial approximation is assumed, e.g.

T1(0) == 250°C, T2(0) == 250°C, T3(0) == 250°C, T4(0) == 250°C
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and, in tum, individual temperatures are determined from (6)-(9). Tem­
perature determined in this way is substituted into the subsequent equation,
i.e.

1'.(1) =!(650 + r(O) + r(O)) =!(650 + 250 + 250) = 287.5 0 C
1 4 2 4 4 '

1;(1) =±(550 + ~(I) + 1;(0)) =±(550 + 287.5 + 250) =271.875°C,

1;(1) =±(850 + 1;(1) + ~(O)) =±(850 + 271.875 + 250) =342.969°C,

rY) =±(750 + ~(I) + 1;(1) ) =±(750 + 287.5 + 342.969) =345.117 °C.

The secondapproximation is done in a similar way

~(2) =±(650 + 1;(1) + ~(1)) =±(650+ 271.875 + 345.117) =316.748°C,

1;(2) =±(550 + ~(2) + 1;(1)) =±(550 + 316.748 + 342.969) =302.429°C,

1;(2) =±(850 + 1;(2) + ~(I)) =±(850 + 302.429 + 345.117) =374.38rC,

~(2) =±(750 + ~(2) + 1;(2)) =±(750 + 316.748 + 374.387) =360.284-c

From the third approximation, one obtains

~(3) =±(650 + 1;(2) + ~(2)) =±(650 + 302.429 + 360.284) =328.178°C,

1;(3) =±(550 + ~(3) + 1;(2)) =±(550 + 328.178 + 374.387) =313.141 °c,

1;(3) =±(850 + 1;(3) + ~(2)) =±(850 + 313.141 + 360.284) =380.856 °c,

~(3) =±(750 + ~(3) + 1;(3)) =±(750 + 328.178 + 380.856) =364.759°C.

After fourth iteration, one has
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1;(4) = ~(550+ ~(4) + 1;(3)) = ~(550+331.975 +380.856)= 315.708°C,

1;(4) = ~(850 +1;(4) + rP)) = ~(850 +315.708 +364.759)= 382.61'r C;

T.t(4) = ~(750 + ~(4) +1;(4)) = ~(750 +331.975 +382.617)= 366.148°C.

Following that, iterative calculations are conducted in a way that satisfies
the inequality below:

11;(k+l) _1;(k) 1< e; i = 1, 2, 3,4; k = 0,1.... (10)

For e = O.OOOOl°C after k = 14 iterations, the following temperature
values are obtained:

T4 == 366.667°C.

Calculations were carried out by means of the FORTRAN program. In
spite of the fact that a large number of iterations was done, calculation
timeis very short, since theformulas are very simple in form.

Program for temperature determination in nodes 1-4

c Calculating two-D temperature field in a flat rod
c by means of Gauss-Seidel method

program seidel
dimension t(50),tt(50)
logical inaccurate
open(unit=l,file='seidel.in')
open(unit=2,file='seidel.out ')
read(l,*)n,toler,niter,t-pocz
write(2, I (a) ') "CALCULATING TWO-DIMENSIONAL TEMPERATURE

&FIELD IN A FLAT & ROD "
write(2,' (/a) I) "DATA ENTERED"
write(2, I (a,ilO) ') "equation number n=",n
write (2, , (a, elO. 5, a) , ) "calcul. toler=" , toler, " [C] "
write(2,' (a,ilO) ') "max. iteration number niter=",niter
write(2,' (a,elO.5,a) ')"init.temp.t-pocz=",t-poc z," [C]"
do i=l,n

t(i)=t-poc z
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tt(i)=t-pocz
enddo
i=O
inaccurate=.true.
do while ((i.le.niter) .and.inaccurate)

t(1)=(650.+t(2)+t(4))/4.
t(2)=(550.+t(1)+t(3))/4.
t(3)=(850.+t(2)+t(4))/4.
t(4)=(750.+t(1)+t(3))/4.
inaccurate=.false.
do j=l,n

if (abs(tt(j)-t(j)) .gt.toler) inaccurate=.true.
enddo
if (inaccurate) then

do j=l,n
tt(j)=t(j)

enddo
endif
i=i+1

enddo
......write (2, , (/a) , ) "CALCULATED TEMPERATURE"

write(2, , (a) ')" Lp T[C] "
do j=l,n

write(2,' (i5,3x,e11.6) ')j,t(j)
enddo
write(2,' (a,i10) ') "final iteration number=",i
end program seidel

data(seidel.in)
4 0.00001 10000000 250.

results (seidel.out)
CALCULATING TWO-DIMENSIONAL TEMPERATURE FIELD IN A FLAT ROD

DATA ENTERED
equation number n= 4
calcul. toler=.10000E-04 [C]
max. iteration number niter= 10000000
init.temp.t-pocz=.25000E+03 [C]

CALCULATED TEMPERATURE
Lp T[C]

1 .333333E+03
2 .316667E+03
3 .383333E+03
4 .366667E+03

final iteration number= 14
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Exercise 11.3 A Two-Dimensional Inverse Steady-State
HeatConduction Problem

Solve an inverse heat conduction problem. Temperature is measured at a
point inside a body. The unknown is the temperature of a node, which lies
on the edge of that body. Consider two cases (Fig. 11.4):

a) Temperature is measured in node 1, while the unknown is the tem­
perature in node B, which lies on the body edge.

b) Temperature is measured in node 3, while the unknown is the tem­
perature in node B, which lies on the body edge.

As measurement values ft and h adopt temperatures determined in the pre­
vious exercise (Ex. 11.2), for nodes 1 and 3, respectively, i.e.

I, =T
1
=333.333°C,

I> T3= 383.333°C.

How the calculation results are going to change, if measurement values
contain a measurement error I1.T = +1.0°C i.e.

ft= T
1+I1.T

= 333.333 + 1.0 = 334.333°C,

I> T3+I1.T= 383.333 + 1.0 =384.333°C.

--

2 3
~ • •

~x

1 4
~.• ./1 •

-350°C 350°C

350°C 350°C

Fig. 11.4. Inverse heat conduction problem; temperature it is measured in node 1,
while the unknown temperature at point TB lies on the body edge

Solution

In general, temperatures in volume nodes or finite elements are formulated
by the equation system
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allI;. + a12I; + a13T; + + aInT:z =bi

a21I;. + a22I; + a23I; + + a2nT:z =b2 (1)

Parameters that appear in the boundary conditions are expressed by the
terms on the right side of the system, i.e. in vector b = tb; b2, ••• , bn)T, while
coefficients a.., i = 1, ..., n, J. = 1, ..., n, i.e. the coefficient matrix A is

IJ

known. If the equation system (1) is written in the matrix form

AT=b,

where

all a12 a13 «; I;. bi

a2I a22 a23 «; T b2
A= T= 2 b=, ,

anI «: «; ann t; bn

then the solution of the system (2) has the form

T == A-1b,

where A-I is the inverse matrix to A.
Once we determine the inverse matrix

we can determine node temperatures from (4)

I;. =cllbi + c12b2+ c13b3+ + cInbn

I; =C2Ibi +C22b2+C23b3+ + c2nbn

(2)

(3)

(4)

(5)

(6)

If temperature! in node i is known from measurements taken, while
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coefficient b
j

is unknown, then from the equality condition of measured
temperature~ and calculated T, , one obtains

f.= T.
ji l' (7)

from where, after accounting for (6), one is able to determine coefficient b.
]

b. = ~ -cilb! -ci2b2 -Ci3b3- ... -Ci,j_1bj_! -ci,j+!bj+! - ... -cinbn . (8)
} c..

I,}

If the measurement data contains an error, then (8) assumes the form

b. =(~+dT)-Cilb! -ci2b2 -Ci3b3-",-ci,j_!bj_! -ci,j+!bj+! -oo.-cinbn .

) c..
I,}

Should the problem formulated in this exercise appear (Fig. 11.4), then
the balance equation system has the following form

4~ -T2 -~ =TB +350

-~ +41; -1; =550

-T2 +41;-T4 =850

-~ -1; +4T4 =750

Hence, the coefficient matrix has the form

4 -1

-1 4
A= o -1

-1 0

o -1

-1 0
4 -1

-1 4

Inverse matrix, determined by means of MATINV program (see Appen­
dix E), is

Cll c12 c13 cln 0.292 0.083 0.042 0.083

C=A-I =
C21 C22 C23 «; 0.083 0.292 0.083 0.042

0.042 0.083 0.292 0.083

cnl cn2 <. <: 0.083 0.042 0.083 0.292

(7) assumes the form

It =cll (TB +350)+CI2 ·550+c13 ·850+CI4 ·750 (i = 1)

Temperature T
B

is
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T
B

= J; - 350cll - 550C12 - 850c13 -750C14 =
Cll

333.333 - 350·0.292 - 550·0.083 - 850·0.042 -750·0.083

0.292

=299.770°C

In an instance when data is burdened with errors, one gets

, (It+ I1T) - 350C11 - 550C12 - 850C13 -750C14
~= =

cll

334.333 - 350·0.292 - 550·0.083 - 850·0.042 -750·0.083

0.292

=303.195°C.

If temperature is measured in node 3, then (7) assumes the form

h =C31(TB + 350) + C32 ·550+ C33 ·850+ C34 ·750,

hence,
T

B

=h - 350C31 - 550C32 - 850C33 - 750C34 =
C31

383.333 - 350·0.042 - 550·0.083 - 850·0.292 -750·0.083
=---------------------

0.042

=298.405° C.

For measured temperatureI, with error 11T, temperature r; is

T; =h - 350C31 - 550C32 - 850C33 - 750C34 =
C31

384.333 - 350·0.042 - 550·0.083 - 850·0.292 -750·0.083

0.042

=322.214°C.

From the analysis of the given results, one can see that in the case of
temperature measured at point 1, the accuracy of the obtained results is
greater for both, the accurate temperature it and the error-burdened data
if: +I1D. Temperature changes in ~ have a larger effect on temperature T;
There seems to be a distinct cause and effect relationship between TB and
T, than there is between T

B
and T

3
0 If temperature changes in T

B
affect, to a

small degree, temperature changes at the point of measurement, as it hap­
pens in the case of node 3, it is difficult to accurately determine
temperature T

B
on the basis of measured temperature h. Small temperature
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measurement error in 1
3

triggers a very large change in temperature TB •

The explanation for this is that the inverse problem has been ill conditioned. In
practice the problem can be avoided, if the sensor or temperature measur­
ing sensors are placed within a close proximity to a surface on which the
boundary condition is being determined. This is, however, not always pos­
sible. If the temperature sensor is located far from the surface, on which
the boundary conditions are identified, one should expect the obtained re­
sults to be far less accurate. This is precisely what this exercise has dem-
onstrated; adding error I1T= 1°C to the "accurate" measurement value at
point 3 causes the determined temperature T; = 322.214°C to be signifi-

cantly different from the real temperature T
B
=300°C.

Program inv

C Inverse matrix calculation
program inv
dimension a(50,50),c(50,50)
open(unit=l,file='inv.in')
open(unit=2,file='inv.out')
read(l,*)n
read(l,*) ((a(i,j),j=l,n),i=l,n)
write(2, I (a) ')"INVERSE MATRIX CALCULATION"
write(2,' (a) ') "DATA ENTERED"
write(2,' (a,i10) ')"matrix A dimension n=",n
wri te (2, , (a) ') "matrix A"
write(2,' (4f8.2)') ((a(i,j) ,j=l,n) ,i=l,n)
call matinv(a,n,c)
write (2, I (a) ') "CALCULATED MATRIX AA-1"
write(2,' (4f9.3)') ((c(i,j) ,j=l,n) ,i=l,n)
end program inv

data (inv. in)
4

4. -1. O. -1.
-1. 4. -1. O.

O. -1. 4. -1.
-1. O. -1. 4.

results (inv.out)
INVERSE MATRIX CALCULATION
DATA ENTERED
matrix A dimension n= 4
matrix A

4.00
-1.00

.00
-1.00

-1.00
4.00

-1.00
.00

.00
-1.00

4.00
-1.00

-1.00
.00

-1.00
4.00
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CALCULATED MATRIX AA-l
.292 .083
.083 .292
.042 .083
.083 .042

.042

.083

.292

.083

.083

.042

.083

.292

(1)

Exercise 11.4 Gauss-Seidel Method
and Over-Relaxation Method

Describe Gauss-Seidel method and over-relaxation method, which are fre­
quently employed when solving a system of algebraic equations obtained
from the control volume method. Write a computational program in the
FORTRAN language for the calculation using the over-relaxation method.
Show how the equation system obtained in Ex. 11.2 can be solved by
means of this program.

Solution

In the Gauss-Seidel method, the system of algebraic equations, which are
the heat balance equations for the control volume,

alIT;. + a 12T2 + a 13T; + + alnTn =b,

a21~ + a 22Y; + a 23T; + + a 2nI: =b2

(2)

Gauss-Seidel method is an iterative method. One begins calculations by
selecting the initial approximation first: T1(O), T

2(O)
, ••• , Tn(O); more often than

not it is assumed that all temperature values equal zero. Quite often, more­
over, temperatures ~(O) = bla.. i = 1, ..., n are selected as initial values. By
substituting T

2
= T

3
= ... = T,=0 into the first equation in the system (2),

one is able to calculate the first approximation of T
1(1).

Temperature T\(1) is
automatically taken into account in the second equation of the system (2).



(5)

Exercise 11.4 Gauss-Seidel Method and Over-Relaxation Method 205

The remaining temperature values, which are present on the right-hand­
side of the second equation, are assumed to be as follow: T

3
=T

4
=... =T,=

O. This is how T
2(l)

is calculated from the second equation. By using the
same method to determine temperature in the remaining nodes, the follow­
ing approximation is obtained: T/l), T

2(l),
..., Tn(l). The determination of node

temperature in the iterative k-stepprogresses as follows:

(k+l) _ 1/ .(b _ (k) _ (k) _ _ (k))1; - / all 1 al21; a l3 t; ... a1nT'"

r (k+l) =X.(b - 'T'(k+l) - r(k) - - r(k))
2 2 a21.1 I a 23 3 ••• a 2n na22

r(k+l) =X.(b - T(k+l) - r(k+l) - - r(k+I))
nan anI I a n2 2 ••• an,n-I n-I •

nn

This calculation method, expressed by the equations in (3), was applied in
a program presented in Ex.II.2. It does not require of one to use coeffi­
cients ail' i =1, ..., n, j =1, ..., n in the calculation. The calculation process
is the same when coefficients ail are temperature dependent, if the thermal
conductivity, for instance, is temperature dependent. A drawback to this
method is the fact that one is forced to rewrite all balance equations anew,
when the new problem must be analyzed.

In order to make the program more universally applicable, a formula for
~(k+1) in the system (3) will be used for the calculation; it can be written in
the slightly different form

I;(k+l) =_1(hi - faij~(k+l) - i aij~(k)), i = 1, ..., n. (4)
au j=1 j=i+1

Over-relaxation method is a form of modification of the Gauss-Seidel
method; it aims to accelerate the iterative process

T(k+l) =T(k) +~(b. _~ a..T~k+l) - ~ a..T~k)),
1 1 1 L..JlJJ L..JlJJ

au j=1 j=i

where 1 ~ OJ ~ 2 is an over-relaxation coefficient. If (j) = 1, then over­
relaxation method is identical to Gauss-Seidel method. Both, Gauss-Seidel
method and over-relaxation method are convergent when

ilaijl<laiil,
j=1
I:ti

i =1, 2, ..., n. (6)
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Iterative process is continued until the criterion below is satisfied

11;(k+l) -1;(k) I< G, i = 1, ..., n, (7)

where 8 is the assigned calculation tolerance or

IIT(k+l) - T(k)11 < GI' (8)

where 81 is the assigned calculation tolerance, e.g. 81 = 0.001 K. Square
norm is calculated from formula

1

IIT(k+l) - T(k)11 =[~(1;(k+l) -1;(k)ry. (9)

Sub-program SOR for solving equation system (1) by means of the
over-relaxation method is shown in Appendix F. Equation system (2)-(5)
in Ex. 11.2 has the following form:

4 -1 0 -1 i. 650

-1 4 -1 0 1; 550

0 -1 4 -1 1; 850
(10)

-1 0 -1 4 T4 750

The broken brackets are column vectors.
A program for solving system (10) with the help of sub-program SOR is

shown below. The value of over-relaxation coefficient is assumed to equal
1,2. Obtained results are the same as they are in Ex. 11.2.

Program content, data and the solution of equation system (10)

C Solution of an equation system by means of over-
C relaxation method and sub-program SOR

program nadrel
dimension a(50,51),xi(50)
nmax=50
mmax=nmax+l
open(unit=l,file='nadrel.in')
open(unit=2,file='nadrel.out')
read(l,*)n, w, niter, toler

m=n+l
read (1, *) ( (a (i, j ) , j =1, m) , i=l, n)
read (1, *) (xi (i) , i=l, n)
write(2,' (a) ') "SOLUTION OF EQUATION SET

&BY OVER-RELAXATION METHOD"
write(2, I (fa) ') "DATA ENTERED"
write(2,' (a,i10) ') "equation number n=",n
write(2,' (a,e10.5) ') "relaxation coefficient w=",w
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write(2/' (a/i10) ') "max. iter. number niter="/niter
write (2 / ' (a, e10. 5/ a) ') "calc. toler. toler=" / toler / " [C] "
write (2 / ' (a) ') "matrix A"
wr i t e (2 / ' (5 f 8 . 2) ') (( a ( i / j ) / j =1 / m) / i =1 / n)
write(2, I (a) ') "initial vector XI"
write(2/' (4f8.2) ') (xi(i)/i=l/n)
call sor(a/nrnax/mrnax/n/xi/w/niter/toler/k)
write(2, I (/a)') "CALCULATION RESULTS"
write(2/' (a)')" Lp X "
do j=l/n

write(2/' (i5/3x/4e11.6) ')j/xi(j)
enddo
write(2/' (a/i10) ') "final iteration number="/k
end program nadrel

data (nadrel. in)
4 1.2 30 1.0E-3
4. -1. O. -1. 650.

-1. 4. -1. O. 550.
O. -1. 4. -1. 850.

-1. O. -1. 4. 750.
O. O. O. O.

results (nadrel.out)
SOLUTION OF EQUATION SET BY OVER-RELAXATION METHOD
DATA ENTERED
equation number n= 4
relaxation coefficient w=.12000E+01
max. iteration number niter= 30
calc.toler.toler=.10000E-02 [C]
matrix A

650.00
550.00
850.00
750.00

-1.00
.00

-1.00
4.00

.00
-1.00
4.00

-1.00

4.00 -1.00
-1.00 4.00

.00 -1.00
-1.00 .00

initial vector XI
.00 .00 .00 .00

CALCULATION RESULTS
Lp X

1 .333333E+03
2 .316667E+03
3 .383333E+03
4 .366667E+03

final iteration number= 11
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Exercise 11.5 Determining Two-Dimensional Temperature
Distribution in a Straight Fin with Uniform Thickness
by Means of the Finite Volume Method

Determine temperature distribution in a fin presented in Fig. 11.5 by
means of the control volume method. For the calculation adopt the values
given in Ex. 7.3. Also calculate heat flow at the fin base and its efficiency.

+- - + -.., - -1- - r- - 1- - +--f
I I I I I I 1 I

a

3 5 7

I

9 ]1 13 15

Fig. 11.5. A division of half of the fin into control volumes

Solution

Heat balance equations for control volumes have the form:

• node 1

hence,

• node 2

(1)

(2)

;.., l1y 1;, - r; +;.., l1y T4 - r; + AL\x ~ - r; + aAx(r - T. ) =0, (3)
2 L1x 2 L1x ~y cz 2

from where, after transformations, one obtains
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• nodes 3,5,7,9,11,13

Heat balance equation for i-node has the form

A, ily 1;-2 - 1; + A, ily 1;+2 - 1; + AAx 1;+1 - 1; = 0
2 Llx 2 Llx ~y'

hence,

~y (~Y Llx) Llx ~y--T + -+- T--T --T =02Llx 1-2 Llx ~y 1 ~y 1+1 2Llx 1+2 ,

i=3, 5, 7, 9, 11, 13

(5)

(6)

• nodes 4, 6,8, 10, 12, 14

Heat balance equation for i-node has the form

A, I1y 1;-2 - 1; + A, ily 1;+2 - 1; + .lAx 1;-1 - 1; + aL\x(T - T) =0 (7)
2 Llx 2 Llx ~y CZ 1 '

hence,

_ ~y T - Llx T +(~Y + Llx + aLlx)T _ ~y T =aLlx
2Llx 1-2 ~y 1-1 Llx ~y A 1 2Llx 1+2 A' (8)

i =2, 4, 6, 8, 10, 12.

• node 15

A, ily 1'13 - 1;5 + A, Ax 1;6 - 1;5 =0
2 Lix 2 ily ,

from where, after simple transformations, one obtains

- ily 1;3 +(~Y + Lix)1;5 - Ax 1;6 = O.
Llx Llx ~y ~y

• node 16

(9)

(10)

(12)

A, ily 1;4 - 1;6 + A, Ax 1;5 - 1;6 +a Ax(T - T. ) =0 . (11)
2 Llx 2 ~y 2 cz 16 '

from where, one obtains

_ ~y T. - Llx T. +(~Y + Llx + aLlx)r = aLlx T .
Llx 14 ~y 15 Llx ~y A 16 A cz
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After substitution of T, = 95°C, Tcz = 20°C, Ax = 8y = 0.003 m, A= 50
W/(m· K), a =100W/(m~ K), (2), (4), (6), (8), (10)and (12)assume the form

2~ -1; -0.51; =47.5 -~ +2.0061; -0.5~ =47.62

-0.51;_2 + 21; - 1;+1 - 0.51;+2 = 0; i = 3, 5, 7, 9, 11, 13
(13)

-0.51;_2 - 1;-1 + 2.0061; - 0.51;+2 = 0.12; i = 2, 4, 6, 8, 10,12,14

-~3 + 2~5 - ~6 = 0 -~4 - ~5 + 2.006~6 = 0.12.

Gauss-Seidel method will be used to solve equation system (13). A pro­
gram similar to the one in Ex. 11.2 will be used for the calculation. For
that reason, one should rewrite (13), so that one could determine tempera­
ture T: from i-equation. Equation system (13) assumes the form

Node no. Equation

1 T; = 0.5(1; + 0.51; + 47.5)
1

2 1; =--(~ +0.5~ +47.62)
2.006

3 1; =0.5(0.5~ +T4 +0.5~)

1
4 t; =--(0.5T2 +1; +0.5~ +0.12)

2.006
5 t; = 0.5(0.51; + t; + 0.51;)

1
6 t; =--(0.5T4 «t; +0.5~ +0.12)

2.006
7 1; = 0.5(0.5Ts +~ + 0.5~)

1
8 Tg =--(0.5~ + 1; + 0.5~o + 0.12)

2.006 (14)9 t; =0.5(0.5T7 +~o +0.5~1)

1
10 ~o =--(0.5Tg +~ +0.5~2 +0.12)

2.006
11 ~1 =0.5(0.5~ +~2 +0.5~3)

1
12 ~2 =--(0.5~o +~1 +0.5~4 +0.12)

2.006
13 ~3 = 0.5(0.5~1 + ~4 + 0.5~5)

1
14 ~4 =--(0.5~2 + ~3 + 0.5~6 + 0.12)

2.006
15 ~5 =0.5(~3 +~6)

1
16 ~6 =--(~4 +~5 +0.12).

2.006
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The system was solved with the assumed tolerance that equals &

0.00001 "C. As an initial solution, the following was assumed:

~(O) =1;(0) = ... =~~O) =20 De . (15)

Computational Program Content

C Calculating two-dimensional fin temp. field (Fig.ll.5)
C by means of control volume method equation system
C solved by Gauss-Seidel method

program seide12
dimension t(50),tt(50)
logical inaccurate
open(unit=1,file='seide12.in')
open(unit=2,file='seide12.out')
read(l,*)n,toler,niter,t-pocz
write(2, , (a) ')

&IICALCULATING TWO-DIMENSIONAL FIN TEMPERATURE FIELD II
write (2, 1 (/a) ') IIDATA ENTERED II

write(2,' (a,ilO) I) lIequation number n=lI,n
write (2, , (a, elO. 5, a) I) Ileal. toler toler= II , toler, II [C] II
write(2,' (a,ilO) ') IImax. iteration number niter=lI,niter
write (2, , (a, elO. 5, a) I) II init temp. t-pocz= II , t-pocz, II [C] II
do i=l,n

t(i)=t-pocz
tt(i)=t-poc z

enddo

i=O
inaccurate=.true.
do while ((i.le.niter) .and.inaccurate)
t(l)=(t(2)+O.5*t(3)+47.5)*O.5
t(2)=(t(l)+O.5*t(4)+47.62)/2.006
t(3)=(O.5*t(l)+t(4)+O.5*t(5))*O.5
t(4)=(O.5*t(2)+t(3)+O.5*t(6)+O.12)/2.006
t(5)=(O.5*t(3)+t(6)+O.5*t(7))*O.5
t(6)=(O.5*t(4)+t(5)+O.5*t(8)+O.12)/2.006
t(7)=(O.5*t(5)+t(8)+O.5*t(9))*O.5
t(8)=(O.5*t(6)+t(7)+O.5*t(lO)+O.12)/2.006
t(9)=(O.5*t(7)+t(lO)+O.5*t(11))*O.5
t(lO)=(O.5*t(8)+t(9)+O.5*t(12)+O.12)/2.006
t(11)=(O.5*t(9)+t(12)+O.5*t(13))*O.5
t(12)=(O.5*t(lO)+t(11)+O.5*t(14)+O.12)/2.006
t(13)=(O.5*t(11)+t(14)+O.5*t(15))*O.5
t(14)=(O.5*t(12)+t(13)+O.5*t(16)+O.12)/2.006
t(15)=(t(13)+t(16))*O.5
t(16)=(t(14)+t(15)+O.12)/2.006
inaccurate=.false.
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do j=l,n
if (abs(tt(j)-t(j)) .gt.toler) inaccurate=.true.

enddo
if (inaccurate) then

do j=l,n
tt(j)=t(j)

enddo
endif

i=i+1
enddo
write (2, , (fa) , ) "CALCULATED TEMPERATURE"
write(2, '(a) ')" Lp T[C] "
do j=l,n
write(2, I (i5,3x,e11.6) ')j,t(j)

enddo
write(2,' (a,i10) ') "final iteration number=",i
end program seide12

data(seidel.in)
16 0.00001 100000 20.

results (seidel.out)
DATA ENTERED
equation number n= 16
cal. toler toler =.10000E-04 [C]
max. iteration number niter= 100000
init temp. t-pocz=.20000E+02 [C]
CALCULATED TEMPERATURE
Lp T[C]

1 .921152E+02
2 .919377E+02
3 .895855E+02
4 .893836E+02
5 . 87 4594E+02
6 .872585E+02
7 .857353E+02
8 .855386E+02
9 .844046E+02

10 .842117E+02
11 .834597E+02
12 .832696E+02
13 .828950E+02
14 .827066E+02
15 .827072E+02
16 .825193E+02
final iteration number= 536
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Table11.1.Temperatures in control volume nodes shown in Fig. 11.5

Temperature Temperature
Node no. no.

Control Volume Analytical Control Volume Analytical
Method Method Method Method

1 92.11 92.09 84.40 84.37

2 91.94 91.88 10 84.21 84.18

3 89.58 89.55 11 83.46 83.42

4 89.38 89.34 12 83.27 83.23

5 87.46 87.42 13 82.89 82.86

6 87.26 87.22 14 82.71 82.67
7 85.73 85.70 15 82.71 82.67
8 85.54 85.50 16 82.52 82.48

Calculation results are presented in Table 11.1.
One can see from the table above that temperatures calculated by means

of control volume method are almost the same as the values determined by
means of the analytical formula ((2), Ex.7.3). On the basis of temperature
distribution, one can calculate fin-base heat flow, which equals the fin-to­
surroundings transferred heat flow. If a fin perpendicular to the diagram
surface (fin length) measures 1 m in length, then the heat flow at the fin­
base is expressed by formula

Q=2(W. I .A~-T2 + w. I .A~-~)=
b 2 Ax 2 Ax

= 2wA(2T. - T. - T ) =2A(T. _ ~ +1;)
2Ax b 1 2 b 2 '

hence,

o; = 2· 50(95 - 92.11 ~ 91.94J= 297.5 W .

Multiplier 2 was placed in front of the square brackets, since the heat
flow given off by the fin is twice as large; only half of the fin was taken
into consideration in Fig.II.5. In order to calculate efficiency, one needs to

know what the value of heat flow c, is, given off by an isothermal fin

with temperature T, within its entire volume

c, =2.I.I·a(~-~z)=2·0.024.I.IOO·(95-20)=360W.

Therefore, fin efficiency determined by means of the control volume
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method is

17 =-fL- = 297.5 =0.826 .
Qmax 360

Fin efficiency lJ
e
calculated by means of the analytical method is formu­

lated as

Hence,

= 2 .0.003 .53253 = 0.887 .
n, 360

Relative error from theefficiency calculation aboveis

1117 = 17 - 17e .100% =0.826 - 0.887 .100% =-6.8%.
lJe 0.887

In spite of the coarse control volume grid, a good agreement was estab­
lished between temperature distribution (Table 11.1) and two-dimensional
analytical solution. Calculation of heat flux at the fin-base, as indicated by
thecalculated efficiency value, is less accurate.

In order to improve accuracy, fin efficiency will be calculated in a differ­
ent way. Fin-dissipated heat flow canalso be calculated by determining heat
flow received by thelateral surfaces of thefin first:

. [1Q=2al1x "2(1;, -J:z)+(1; -J:z)+(Tt -J:J+(T6-J:J+(Tg -J:z)+

+(1;0 -J:z)+(1;2 -Tcz)+(1;4 -J:Z)+~(1;6 -J:J] =

=2a11x[~I;, +1; -r, +T6 -r; +1;0 +1;2 +1;4 +~1;6 -v: ]=

(
95

= 2 ·100· 0.003 2 +91.94 +89.38 +87.26 +85.54 +84.21 +83.27 +

82.52 )+82.71+-
2--8.20

=319.842W/m.

Finefficiency, then, determined by means of thecontrol volume method is

17 =--B- =319.842 =0.888.
Qmax 360
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Relative error is at

/!1lJ = lJ -lJe .100% = 0.888 - 0.887 .100% = 0.112% .
TIe 0.887

Exercise 11.6 Determining Two-Dimensional Temperature
Distribution in a Square Cross-Section of a Chimney

Determine temperature distribution in a chimney cross-section presented in
Fig. 11.6. External dimensions of the chimney are 2b x 2b. Internal canal has a
square cross-section and the length of its side is 2a. For the calculation as­
sume that b = 0.375 m and a = 0.125 m. Thermal conductivity of the chim-
ney's material is A, =1.25 W/(m·K). Heat transfer coefficient from emissions
to inner surface is a = 60 W/(m2·K), while from outer surface to surround-

w

ings is az= 20 W/(m2·K). Emissions temperature measures T
w
=250°C, while

air temperature of surroundings T,=10°C. Solve the problem using control
volume method.

x

y

• T~,

I ~

I I
_I _ ---e - -.l -

15

4 10
--1--"-

, I I ~ I I
" <1'-1"'----t- ---:--i--t--·

13 : ' " : ~ • 6 : t'7 : .11
I ,I I I

-~----~,- ---:--1-- t--.
: 14 '" 8 : I 9: 12I • -_._- .....

f1x/2 I ~x

Fig. 11.6. A division of 1A of a chimney into control volumes
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Solution

Due to the symmetry of temperature field, only 1/8 of the chimney cross­
section will be analyzed below. Temperature will be determined for nodes
from node 1 to 9 (Fig. 11.6). Control volumes are squares with a side that
measures Ax =~y =(b - a)/2 =(0.375 - 0.125)/2 =0.125 m.

Heat balance equations for control volumes have the following form:

• Node 1

a (Llx + ~Y)(T -1'.)+,1 Ax 7;3 -7; +,1~y T2 -7; =0 (1)
z 2 2 z 1 2 ~ 2 Llx '

from where, one obtains (when ~y =Ax)

1'. = 1 [1; +~3 +(M3i )TJ. (2)
1 1+ M3i 2 z z

z

When T
13

= T
2

, (2) assumes the form

7; = 1. [1; + (sn; )I: ] '
1+ M31z

(3)

where M3i = a(Ax)IA.z

• Node 2

a Llx(T -T )+,1~ 7; -T2 +,1~y 1; -1; +AAx Ts -T2 =0 (4)
z z 2 2 Llx 2 Llx ~y'

hence,

T = 1 [1: + ~ +1; + (M3i )T]. (5)
2 2 + M3i

z
5 2 z z

• Node 3

a Llx(T -T )+,1 ~y 1; -1; +,1~y T4 -7:, +AAxJ;, -7:, =0 (6)
z z 3 2 Llx 2 Llx ~Y'

where from, after transformations, one obtains

T = 1 [T + 1; +~ + (M3i )T J. (7)
3 2 + M3i

z
6 2 z z

• Node 4

a Llx(T -T )+,1 ~y 7:, -~ +,1~y 7;0 -~ +lliT, -~ =0, (8)
z z 4 2 Llx 2 Ax ~y

hence, when T
lO
=T3 ' one obtains
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• Node 5

lli T2-1; +lli~4 -1; +My~3 -1; + My 1;; -1; =0, (10)
~Y ~Y Ax Ax

hence, when T
13

= T
2

and T
l 4

= T
6

' one gets

1
t; =-(1; +~).

2
• Node 6

(11)

hence, one obtains

• Node 7

hence, when TIl = T6 , one obtains

1
T,==-(~+2~+I;).

4

(13)

(14)

(15)

• Node 8

(
L\.x ~YJ(T T) 1A ..,"~ -t; 1A ~4 -t; 1 ~y Tc;-Tga -+- rr L, +/ILU--+/LLlY +/L---+

w 2 2 w 8 ~y ~ 2 ~ (16)

+.,1 L\.x ~5 -Tg =0
2 ~Y ,

hence, after transformations and when TIS =T
6

and T
l 4
=Tg, one has

t; = 1. [21;; + t; +(LVJiw ) t; ] '
3+LVJlz

where LVJi = a (Ih)/ .,1.z

(17)
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• Node 9

a Llx(T -1: )+,,1 ~y 1'g -T9 +,,1 ~y 1;2 -T9 +AAx T7-~ =0
w w 9 2 Llx 2 Llx L1y'

hence, after transformations and when TI2 = Ts' one has

t; = 1. [1; + t; +(Miw ) t;J.
2+Mlz

One should emphasize that due to temperature field symmetry, planes
1-5-8 and 4-7-9 are thermally insulated (are adiabatic). There is no need to
take additional nodes located outside area 1-4-9-8-1 into consideration, if
one takes into consideration that symmetry planes are thermally insulated.
The heat balance for node 8, with the plane 1-5-8 thermally insulated, has
the form

a Llx (T - To )+ ALlx 1;; - Tg + A ~y 1'g - Tg = 0
w 2 w 8 ~y 2 Llx '

hence, after transformations, (17) is obtained. Equations for nodes located
in symmetry planes 1,5, 4, 7 and 9 can be derived in a similar way.

After substitution, one has

Mi = azAx = 20·0.125 =2.0
z A 1.25 '

Mi = awAx = 60·0.125 =6.0.
w A 1.25

Heat balance equations for nodes 1 to 9 have the form

1( ) 1( ~+r; ) 1( T;+T4 )T, =- 1; +20 , 1; =- T, +--+20 , T; =- ~ +--+20 ,
3 4 2 4 2

1
T, =-(1; +1; +20),

4

1Ts =-(1; +~),
2

111
1;=-(~ +2~ +~), t; =-(2~ +~ +1500), t; =-(1; -r; +1500).
499

The equation system above will be solved by Gauss-Seidel method, when
e =0.00001 "C. The printout of the program in FORTRAN language is pre­
sented below.
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Computational program in FORTRAN language usedfor determining
temperature distribution in a chimney cross-section

C Calculating two-dim. temperature field in a chimney
C cross-section (Fig. 11.6) by means of control volume
C method, equation system solved by Gauss-Seidel method

program seidel3
dimension t(50) ,tt(50)
logical inaccurate
open(unit=1,file='seideI3.in')
open(unit=2,file='seideI3.out')
read(1,*)n,toler,niter,t-po c z
write(2,' (a) ') "CALCULATING TWO-DIMENSIONAL TEMPERATURE

&FIELD IN CHIMNEY CROSS-SECTION"
write (2, , (/a) ') "DATA ENTERED"
write(2,' (a,i10) ') "equation number n=",n
write(2, I (a,e10.5,a) ') "calculation tolerance toler=",

&toler, " [C]"
write(2,' (a,i10) ') "max.iteration number niter=",

&niter
write(2,' (a,e10.5,a) ')"initial temp. t-pocz=",t-pocz,

&" [C]"

do i=1,n
t(i)=t-pocz
tt(i)=t-pocz

enddo
i=O
inaccurate=.true.
do while ((i.le.niter) .and.inaccurate)

t(1)=(t(2)+20.)/3.
t(2)=(t(S)+O.S*t(1)+O.S*t(3)+20.)/4.
t(3)=(t(6)+O.5*t(2)+O.5*t(4)+20.)/4.
t(4)=(t(7)+t(3)+20.}/4.
t(5)=(t(2)+t(6))/2.
t(6)=(t(3)+t(5)+t(7}+t(8))/4.
t(7}=(t(4)+2.*t(6}+t(9))/4.
t(8)=(2.*t(6)+t(9)+1500.)/9.
t(9)=(t(7)+t(8)+1500.)/8.
inaccurate=.false.
do j=1,n

if (abs(tt(j)-t(j)) .gt.toler) inaccurate=.true.
enddo

if (inaccurate) then
do j=1,n

tt(j)=t(j)
enddo

endif
i=i+1

enddo
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write(2,' (/a) ')IICALCULATED TEMPERATURE II

write(2, I (a) ') II Lp T[C] II
do j=l,n

write(2,' (i5,3x,e11.6) ')j,t(j)
enddo

write(2, I (a,i10) ') IIfinal iteration number=lI,i
end program seide13

data (seide13.in)
9 0.00001 100000 10.

results (seide13.out)
CALCULATING TWO-DIMENSIONAL TEMPERATURE FIELD IN CHIMNEY
CROSS-SECTION

DATA ENTERED
equation number n=9
calculation tolerance toler=.10000E-04 [C]
max. iteration number niter= 100000
initial temp. t-pocz=.10000E+02 [C]

CALCULATED TEMPERATURE
Lp T[C]

1 .169665E+02
2 .308994E+02
3 .437345E+02
4 .4 77868E+02
5 .732471E+02
6 .115595E+03
7 .127413E+03
8 .217985E+03
9 .230675E+03

final iteration number= 26

The following initial values were assumed: T
1
(O) = T

2
(O) = ... = T

9
(O) =

IDce. After n = 26 iterations, the following temperature values were ob­
tained:

T, = 16.96°C,

t; =47.78°C,

1; = 127.41°C,

1; = 30.90°C,

t; = 73.25°C,

t; =217.98°C,

1; =43.73°C,

~ =115.59°C,

~ =230.67°C.

The accuracy of this solution can be evaluated if one calculates the heat
flow, which is dissipated through the outer and inner chimney surface on
the length of I m. Outer surface heat flow is
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o. = 8az [ ~(~ - J:)+ &(1; - J:)+&(1; - J:)+~(~ - J:)]=

=8· 20· 0.125(~16.96 +30.90 +43.73 +~47.78 - 3.10) =1540 W.

Outer surface heat flow can be calculated from the formula below

Qw=8[aw~(Tw-Tg)+aw ~(Tw-1;)l

where from, after transformations, one has

Qw =8a
w
(&)(t; - Tg ; 1; ) =8. 60. 0.125(250 _ 217.98; 230.67) =

=1540.5 W.

Heat flows o. and Qw should be equal, since the heat conduction is

steady-state. Relative difference ~Q is at

I1Q=Qw ~ Qz .100% =1540.5 -1540 .100% =0.03%.
Qw 1540.5

The difference between o. i Qw is attributed to a rather small number of

control volumes.

Exercise 11.7 Pseudo-Transient Determination of Steady­
StateTemperature Distribution in a Square Cross-Section
of a Chimney; HeatTransfer by Convection and Radiation
on an OuterSurface of a Chimney

Determine steady-state temperature distribution in a cross-section of a
chimney presented in Fig. 11.6; allow for both, heat transfer by convection
and heat transfer by radiation. Assume that the equivalent emissivity of the
chimney's interior is 8 = 0.9, while the outer surface 8 = 0.8. Other values

w z

remain the same as they are in Ex. 11.6. Use control volume method to de-
termine temperature distribution.

Solution

The presence of radiation renders this problem to be non-linear. If the
problem is solved as a steady-state problem, one obtains a non-linear



(1)

(3)

(2)
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algebraic equation system for node temperature, which can be solved by
Newton-Raphson method or by other iteration methods. The problem in
question can be also solved as a transient problem, since there are a num­
ber of well developed methods, which can be used for solving non-linear
ordinary differential equation systems, for e.g., Rung- Kutta method. Tem­
perature distribution is determined after a sufficiently long duration; that
is, the unknown steady-state temperature distribution is determined. Heat
balance equations for individual control volumes (Fig. 11.6) have the form
(when Ax = ~y):

• Node 1

~(Ax)~(Ax)cP; =az • (Ax)(J: -1;)+&p.(Ax)(J:4_1;4)+

1 Lix ~3 - T; 1 Lix T; - T;+/l" +/l,,---
2 Lix 2 Lix'

hence, one obtains

d~ =~[{M3i )T - &zo-·(Ax)(T4 -r.4 )- {1+M3i )r. +
dt (Ax)2 Z Z -1 z 1 Z 1

T; ~3]+-+-
2 2'

following that, when Tl 3=T2

d~ =~[{M3i )T - &P·(Ax)(T4 -r.4 )- {1+M3i )r. +T]dt (Ax)2 Z Z -1 Z 1 Z 1 2'

where temperatures are expressed in Kelvin, while a = 5.67.10-8

W/(m2.K4
) is the Stefan-Boltzmann constant.

• Node 2

~(Ax)(Ax)cpd2 =az·(Ax)(J: -1;)+&zo-·(Ax)(J:4_1;4)+

+-1 Ax 1; -1; +-1 Ax 1; -1; +-1{Ax) 1; -1;
2 Lix 2 Ax Lix '

which results in

dT; =~[{M3i)T + &p.(Ax)(T4 - T4 )- {2+M3i )T +dt (Ax)2 z Z -1 Z 2 z 2

+~+r;+I:].
2 2 5

(4)

(5)
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• Node 3

(6)

(7)

• Node 4

(8)

(10)

hence, when T
IO

= T
3

,

d~ =~[(Miz)I: + c
p O

(Ax)(I:4-T44)_(2+MiJ~ +1; +1;]. (9)
dt (Ax) A

• Node 5

(Ax)(Ax)cpdTs =2o(Ax)J;-Ts +2o(Ax)~-Ts +
dt Ax Ax

+2 o(Ax) ~3~Ts + 2 .(Ax) ~4~Ts ,

where from, after transformations and when T
13
=T

2
and T

14
=T

6
, one has

dTs 2a
-==--2(1; -t; -2Ts), (11)
dt (Ax)

• Node 6

(12)
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where from, after transformations, one obtains

dYe, 2a
-=--2(1; «t: +1; +Tg -4~).
dt (Ax)

• Node 7

(13)

hence, when TIl = T6, one has

dT7 a ( )
-=--2 T, +2Ye, +~ -41; ,
dt (~)

• Node 8

(15)

hence, after transformations and when T
l 4
=T

6
and TIS =T

9
, one has

at: 4 a [_s=---2 (M3iw)T +2Ye, -t; -(3+M3iw)~
dt 3 (Ax) w

Ew() • ( Ax) (4 4)]+ T -Tcs .A w

• Node 9

(17)

(18)

hence, when Tl 2 =T, ' one gets

; = (~)2 [(M3iw )Tw + &w
CT

} Ax) (T: - Tg4) +1; + t; - (2 + M3iw )Tg ] (19)
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After assuming for Ax = ~y = (b - a)/2 = (0.375 - 0.125)/2 =0.125 m,
A = 1.25 W/(m·K), aw = 60 W/(m

2·K), a = 20 W/(m
2·K), T

w
= 250 +

273.15 =523.15 K, T = 10 + 273.15 =283.15 K , one can calculate MJiz w

and MJi:z

MJi =aw·(&)=60.0.125=6.0

w A 1.25 '

MJi = az .(&) = 20·0.125 =2.0
z A 1.25

and

EwO"'(&) = 0.9·5.67·10~8 ·0.125 =5.103.10-9 lIK3

A 1.25 '

EP'(&) = 0.8·5.67 .1O~8 ·0.125 =4.536.10-9 lIK3 ,

A 1.25

In order to calculate temperature distribution, one needs to know what
the value of heat diffusivity a = NCp is. To quickly reach a steady-state, a
should have a large value, e.g. a = 1.5625.10-5 m/s'; then a/(Ax)2 =
1.5625.10-5/(0.125)2 =0.001 l/s . If we were to assume that a =5.2.10-7

m2/s, we would significantly lengthen the whole calculation, since the tran­
sient state (chimney heating) would last longer. At an initial moment when
t = 0 s, chimney temperature is uniform and is of 10oe, thus T1(0) = T

2(0)
=

... = T9(0) = 283.15 K. Once all the data is taken into consideration, (3),
(5), (7), (9), (11), (13), (15), (17) and (19) assume, respectively, the fol­
lowing forms:

.n, [ -9 ( 4 4) ]dt = 0.004 566.3 + 4.536·10 283.15 - 1; - 31; +1; , (20)

dT2 [ -9 ( 4 4 ) t; 1; ]-==0.002 566.3+4.536·10 283.15 -1; -41; +-+-+~ , (21)m 2 2

.n; _ [ -9 ( 4 4 ) 1; t, ]--0.002 566.3+4.536·10 283.15 -1; -41; +-+-+~ , (22)
m 2 2

.n; [ -9 ( 4 4) ]dt = 0.002 566.3 + 4.536·10 283.15 - T:t - 4T4 +1; + 1; , (23)
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d~ ( )-=0.002 7; -2~ +~ ,
dt

d~ ( )-=0.001 t: +~ +1; «r;-4~ ,
dt

d1; ( )-=0.001 t, +2~ - t; -41; ,
dt

(24)

(25)

(26)

dTg 0.004 [ -9 ( 4 4 ) ]-=-- 3138.9+5.103·10 523.15 -t; +2~ -t; -9Tg , (27)
dt 3

d; =0.002[3138.9 + 5.103 .10-9(523.154- ~4) + t: + t; -8~ J. (28)

Initial conditions have the form

1;(0)=7;(0)= ... =Tc;(0)=283.15 K (29)

Problem (20)-(29) will be solved by the Rung-Kutta method. A sub­
program for the integration of the equation system by means of the Rung­
Kutta method is presented in Appendix G. If we assume that temperature is
already in a steady-state after t =9120 s, then the following temperature
values will be obtained:

1; =288.36 K=15.21°C,

I; =312.55 K=39.40°C,

~ = 345.27 K = 72.12°C,

1; = 401.19 K = 128.04°C,

Tc; = 509.66 K = 236.51°C.

1; = 300.99 K = 27.84°C,

T, =315.99K=42.84°C,

t; =389.56 K=116.41°C,

T; = 499.22 K = 226.07°C,

The integration step in Rung-Kutta method was assumed to equal t1.t =
60 s. Heat flow transferred by an inner surface of the chimney within the
length of 1 m is at
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Qw = 4[a; ·(Ax )(Tw- Tg) + &wO"' (Ax)(T: - Tg4) + aw·(Ax )(Tw-1;) +

+&wO"' (Ax)(T: _1;4)] = 4[60· 0.125(523.15 - 499.22) + 0.9·5.67 x

x 10-8 ·0.125· (523.15 4- 499.224) + 60· 0.125 (523.15 - 509.66) +

+0.9· 5.67 .10-8 ·0.125 ·(523.15 4- 509.664)] = 1638.65 W.

Heat flow given off by an outer surface is

o. =8[az ~ (1; -I:)+~&P'(Ax)(1;4 -I:4)+a
z •(Ax)(T2 -I:)+

+&p. (Ax)(T2
4- I:4) +a, ·(Ax)(1; - I:)+&p'(Ax)(1;4 - I:4) +

+az ~(~ - I:)+~&P' (Ax)(~4 - I:4)]
= 8[az '(Ax){~ +1; +

T4 ] ()(1;.4 4 4 1;4 4J]+T +--3T +8 a- Llx -+T +T +--3T
3 2 z z 2 2 3 2 z'

hence, after substitution of the numerical values, one has

o. = 8[20·0.125 -( 28~.36 + 300.99 + 312.55 + 31~.99 - 3·283.15) +

+0.8.5.67 .10-8
• 0.125( 288~364 + 300.994+ 312.554+

300:9
4

-3.283.154J]=1598.71 W

Heat flows Qw and Qz should be equaL Relative difference

!1Q = Qw ~ Qz .100% = 1638.65 -1598.71 .100% = 2.44%
Qw 1638.65

results from the small number of control volumes. By increasing the num­
ber of control volumes, one can improve the accuracy of the obtained re-
sults and at the same time decrease the difference between Qw and c. If

heat exchange by radiation is neglected in (20)-(28), i.e. when 8
w

= e, =0,
then the following nodetemperature values are obtained (after t = 9780 s):



1; = 304.05 K = 30.90°C,

t, =320.94 K=47.79°C,

t; =388.74 K=115.59°C,

Tg = 491.13 K = 217.98°C,
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T, = 290.12 K = 16.97°C,

1;=316.88 K=43.73°C,

Ts = 346.40 K = 73.25°C,

1; =400.56 K=127.41°C,

Tg = 503.82 K = 230.67°C,

They are almost identical to temperatures calculated in Ex.11.6. Due to the
fact that steady-state was treated as a particular case of transient state,
when t ~ 00, temperature distribution was calculated in a relatively simple
way, as it was not necessary to apply iteration and to select approximate,
initial temperature values at the beginning of the iteration process.

Computational program in the FORTRAN language used for determining
temperature distribution in a cross-section of a chimney

c Calculating two-dim. temperature field in a chimney
c cross-section (Fig. 11.6) by means of control volume
c method, equation system solved by Runge- Kutta method

program rkutta
integer co_ile_druk
dimension y(6000),f(6000)
open(unit=l,file='rkutta.in')
open(unit=2,file='rkutta.out')
read(l,*) t,dt,m,n_row,n_time
read(l,*) t_init
read(l,*) co_ile_druk
write(2,' (a) ')"CALCULATING 2-D TEMP FIELD IN A CHIMNEY"
write (2, , (/a) ') "DATA ENTERED"
write(2,'(a,e10.5,a)') "initial time=",t," [s]"
write(2, '(a,e10.5,a) ') "time step=" ,dt," [s]"
wri te (2, , (a, i10) , ) "parameter m=", m
write(2,' (a,i10) ') "equation number n_row=",n_row
write(2,' (a,i10) ') "time step number n_time=",n_time
write(2,' (a,e10.5,a) ')"initial temp. t_init=",t_init,

&" [C]"

write(2,' (a,i10) ') "printing frequency=", co_ile_druk
z_w=5.103E-9
z_z=4.536E-9
write(2, , (/a) ') "CALCULATED TEMPERATURE [K]"
write(2, , (a,a)') "t[s] T(l) T(2) T(3) T(4)",

&" T(5) T(6) T(7) T(8) T(9)"
numerator=O
kolejny=l
to i=l,n_row
y(i)= t_init
enddo
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write(2, I (f9.0,9f8.3)') t, ((y(i)) ,i=l,n_row)

8 if( (kolejny-n_time) .1e.0.0 ) then

kolejny= kolejny+l

6 licznik = licznik+l
call runge (n_row,y,f,t,dt,m,k)
goto (10,20),k

10 f(1)=0.004*(566.3+z_z*(283.15**4-y(1)**4)-3.*y(1)+y(2))
f(2)=0.002*(566.3+z_z*(283.15**4-y(2)**4)-4.*y(2)+

&0.5*y(1)+0.5*y(3)+y(5))
f(3)=0.002*(566.3+z_z*(283.15**4-y(3)**4)-4.*y(3)+

&0.5*y(2)+0.5*y(4)+y(6))

f(4)=0.002*(566.3+z_z*(283.15**4-y(4)**4)-
&4.*y(4)+y(7)+y(3))

f(5)=0.002*(y(2)-2.*y(5)+y(6))

f(6)=0.001*(y(3)+y(5)+y(7)+y(8)-4.*y(6))
f(7)=0.001*(y(4)+2.*y(6)+y(9)-4.*y(7))
f(8)=0.004*(3138.9+z_w*(523.15**4-y(8)**4)+2.*y(6)+

&y(9)-9.*y(8))/3.
f(9)=0.002*(3138.9+z_w*(523.15**4-y(9)**4)+y(7)+

&y (8) -8 . *y (9) )

goto 6
20 continue

if((float(licznik / co_ile_druk)* co_ile_druk)
& .ne. licznik) goto 6

write(2, I (f9.0,9f8.3) ') t, ((y(i)),i=l,n_row)
goto 8

endif
stop

end

data (rkutta. in)
0.0 60. 0 9 200
283.15
1

results(rkutta.out - set part)
CALCULATING 2-D TEMP FIELD IN A CHIMNEY

DATA ENTERED
initial time=.OOOOOE+OO [s]
time step=.60000E+02 [s]
parameter m= 0
equation number n_row= 9
time step number n_time= 200
initial temp. t_init=.28315E+03 [C]
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printing frequency= 1

CALCULATED TEMPERATURE [K]
t[s] T(l) T(2) T(3) T(4) T(5) T(6) T(7)
T(8) T(9)
O. 283.150 283.150 283.150 283.150 283.150 283.150 283.150
283.150 283.150
60. 283.150 283.158 283.268 283.306 283.277 286.477 287.810
387.704 418.660
120. 283.155 283.217 283.892 284.131 283.975 293.481 296.517
439.175 469.283
180. 283.178 283.394 285.038 285.567 285.357 301.487 305.863
463.512 488.055
240. 283.231 283.722 286.546 287.393 287.323 309.332 314.766
475.076 495.437

................................
9000. 288.361 300.990 312.555 315.994 345.275 389.560 401.193
499.218 509.656
9060. 288.361 300.990 312.555 315.994 345.275 389.560 401.193
499.218 509.656
9120. 288.361 300.990 312.555 315.995 345.275 389.560 401.193
499.218 509.656
9180. 288.361 300.990 312.555 315.995 345.275 389.560 401.193
499.218 509.656
9240. 288.361 300.990 312.555 315.995 345.275 389.560 401.193
499.218 509.656

..................................

11820. 288.361 300.990 312.555 315.995 345.275 389.560
401.193 499.218 509.656
11880. 288.361 300.990 312.555 315.995 345.275 389.560
401.193 499.218 509.656
11940. 288.361 300.990 312.555 315.995 345.275 389.560
401.193 499.218 509.656
12000. 288.361 300.990 312.555 315.995 345.275 389.560
401.193 499.218 509.656

Exercise 11.8 Finite Element Method

Describe the procedure for calculating temperature fields by means of the
finite element method (FEM). List main advantages and disadvantages of
FEM.

Historical Development of FEM

The precursor of the FEM method was a mathematician by the name of Courant, who in
1943 employed the segmental approximation by polynomial method in combination with
the variational method in order to solve the torsion problem [3]. The method was developed
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and its present name, namely the finite element method appeared in 1950s [2, 7]. Tradi­
tional analytical approximation methods, such as variational methods or Galerkin methods
[5] have many limitations, which arise from the approximation of solution within the entire
analyzed area by means of a single function. It is almost impossible to apply analytical ap­
proximation method in an instance when the shape of an analyzed region is complex and its
boundary conditions change in a time and position. Similar limitations, with respect to
shape, characterize the classical finite difference method, in which partial derivatives in dif­
ferential equations are approximated by means of differentce quotients. Finite difference
method allows one to analyze different boundary conditions; the shape of a body, however,
should be isometric, e.g. a rectangle, prism, cylinder, sphere, or a flat, cylindrical or spheri­
cal wall. The universal applicability of the finite difference method, such as the control vol­
ume method, also known as finite volume method, allows to find a solution in construction
elements or in the complex shape regions [1]. Capabilities of this method are very similar to
the capabilities of FEM. A region, whose temperature distribution we are trying to estab­
lish, can be divided into control volumes (cells) of arbitrary shapes; due to this reason, one
can analyze curvilinear boundaries or other complex-shape boundaries.

The application of finite element method in heat transfer and fluid mechanics also has
certain limitations. At the boundary of a given element, heat or mass that flows from one
element can differ from the heat that flows towards adjacent element, in spite of the fact
that the same section of the boundary is in both instances analyzed. This is due to the fact
that a discontinuity of heat flux occurs in FEM at the boundary of adjacent elements. To
eliminate this problem, a so called finite element balance method was developed. Another
difference between FEM and the control (finite) volume method is the approximation
method for a temperature derivative after time in transient problems. In FEM, thermal ca­
pacity of an element is distributed among the element nodes at appropriate weights; in finite
volume method, however, thermal capacity of a cell (element) is concentrated in a single
node that lies inside the cell. From the comparison of calculation results obtained by means
of FEM and finite volume method, it is evident that the concentration of thermal capacity in
a single point not only does not tamper with calculation accuracy but increases it. In inverse
problems, concentration of thermal capacity in a single point, which lies inside the control
volume, improves the solution stability.

Finally, one can conclude that although finite difference method and FEM were treated
initially as two separate methods, the discrepancy is almost invisible between the finite vol­
ume method, which derives from finite difference method, and the FEM balance method,
with a concentrated thermal capacity in finite elements.

Also the functions, which interpolate temperature distribution (or other unknown quanti­
ties) inside the finite volume or a finite element can be employed in both methods.

Solution

FEM consists of the following calculation steps:

1. Division of an area into finite elements (a grid generation), Fig. 11.7.
2. Mathematical formulation of Galerkin or variational method (Ritz

method) for the analyzed boundary or initial-boundary problem
within the area of a single element.
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3. Selection of functions, which interpolate temperature distribution in­
side the element (shape function).

4. Determination of an algebraic equation system for a steady-state
problem or of an ordinary differential equation system for transient
problems in a single element by means of Galerkin or variational
method, formulated in step 2. The equation number equals the node
number in a given element, since node temperatures are the un­
known quantities in the element.

5. Summing up of equation systems for individual elements, with an
aim to create a single universal node-temperature equation system
for the whole analyzed region.

6. Allowing for the parameters present in the boundary conditions of
the global equation system.

7. Solving the algebraic equation system in the case of a steady-state
problem or the ordinary differential equation system in the case of a
transient problem.

8. Calculation of heat flux, heat flow and other secondary quantities
and graphical representation of the calculation results (post­
processing).

y

t:
inaccurate

boundary mapping

x

Fig. 11.7. Division of an area into finite elements

The procedure outlined above is typical of large commercial programs, de­
signed to provide solutions to problems from different disciplines. In terms
of individual solutions to specific problems and a development of ones
own computational program, the procedure steps can have a different se­
quence; for instance, boundary conditions can already be accounted for
when creating algebraic equations for a given element, i.e. at point 4. Also
the global equation system can be created in a different way by summing



Exercise 11.8 Finite Element Method 233

up, for instance, algebraic equations (or ordinary differential equations) for
node i, for example, obtained for elements with the same shape coefficient
N. around the node in Galerkin method.

1

Assuming that few elements share a common node i (Fig. 11.8), the
shape coefficient N, assumed in Galerkin method occurs only in elements
with common node i. In other nodes, the value of such coefficient equals
zero. This is the reason why we can add up the equations obtained for all
elements with the same shape coefficient N, around node i when creating a
global equation system.

If the same is done with respect to all other nodes, a global algebraic equa­
tion system or ordinary differential equation system is obtained for node
temperatures that can be solved by means of different methods.

Fig. 11.8. Elements taken into consideration when determining an algebraic equa­
tion for steady-state problems or an ordinary differential equation for transient
problems in a single node

The second method for creating a global equation system is the same as
in the finite volume method, in which heat balance is written for node i.

Finite element method has the following advantages:

• It is suited for problem analysis in complex shape bodies.
• Boundary conditions can be non-linear and time and location­

dependent.
• There are number of very good software programs that enable one to

quickly solve numerous problems, including problems related to de­
formation mechanics, heat transfer and fluid mechanics.

• One can solve non-linear problems, when thermo-physical properties
of a material are temperature-dependent, and problems in heterogene­
ous bodies with location-dependent properties in, for instance, com­
posite or anisotropic materials.

• A division of an area into finite elements is automatically carried out
(using commonly available software programs), which makes it easier
to evaluate accuracy of obtained results by increasing density of an
element grid.

• Calculation results are obtained in a graphical and numerical form,
which make it easier for a user to quickly analyze obtained results
(majority of software programs can be installed in personal com­
puters). The software costs are gradually decreasing.
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Finite element method is not, however, free of drawbacks; its main
drawbacks are as follow:

• The initial installation costs of the FEM software program are very
high.

• Source programs are usually not included in the software set; thus,
there is no possibility for program modification or improvement.

• If the problem under analysis is part of a larger problem, it is difficult
then to combine one software set with one's own programs or with
other sets, especially if the problem is to be solved in an on-line
mode.

• Particular attention should be paid to the accuracy of results obtained
by means of FEM. The apparent ease, which the results are obtained
with in a graphical form is rather deceptive. Even when boundary
conditions are prescribed incorrect, e.g. when the end conditions for a
construction element are incorrectly set during the determination of
thermal stresses, the obtained results seem to be correct at a first
glance.

Exercise 11.9 Linear Functions That Interpolate
Temperature Distribution (Shape Functions) Inside
Triangular and Rectangular Elements

Describe the simplest forms of temperature-distribution-interpolating func­
tions inside triangular and rectangular elements (shape functions).

Solution

First, we will discuss triangular elements (Fig. 11.9).

Temperature distribution in a triangular element will be approximated by a
linear function

y 3

....--.... 2
0'"-- --...

x

Fig. 11.9. Triangular finite element
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(1)

(3)

Constants ale, a
2

e, a
3

e
will be determined from conditions

Te(xl' YI ) =1;e , r: (X2,Y2 ) =1;e , r: (X3,Y3 ) =r; (2)

By substituting (1) into (2), one obtains the following equation system

at + a;xI+ a;YI =1;e

at +a;x2+ a;Y2 =1;e
at +a;x3+a;Y3 =J;e,

where from, one has

at = 2~e [( X2Y3 - X3Y2 )t; + (X3Yl - XlY3 )T2
e
+ (XlY2 - X2Yl )t; ] '

a; = 2~e [(Y2 - Y3)1;e +(Y3 - Yl)1;e +(Yl - Y2)J;eJ, (4)

a; = 2~e [( x3- x2)t: + (Xl - X3)T2
e+ (X2- Xl ) J;e ] '

where

1 Xl YI
2Ae = 1 X2 Y2

1 X3 Y3

(Ae-a surface area of triangle 1-2-3 from Fig. 11.9). (5)

After substituting (4) into (1) and ordering, one has

where N'', N2

e
, N

3

e are, so called, shape functions, formulated as

Ne 1 (e be e)
I =2Ae a l + I X + CI Y ,

Ne 1 (e be e)
2 = 2Ae a2+ 2X+C2Y ,

Ne 1 (e be e)
3 = 2Ae a3+ 3X+C3Y ,

where

(6)

(7)

(8)
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On the basis of temperature distribution inside the element, one can de­
termine heat flux vector

° (1 er . 1aT.)q =- /l,x -I+ /l, -J °

ax Y ay

Derivative aT/ax is formulated as

aT =aNt T: + aN; t: + aN; t:
ax ax 1 tu " ax 3'

hence, after substituting into (7), one gets

(9)

(10)

er 1 (be rre be e be re) 1 [( ) e-=-- 1 °1 1 + 2 oJ; + 3· 3 =-- Y2 - Y3 ~ +
aX 2Ae 2Ae (11)

+(Y3 - YI )Tz
e+ (YI - Yz)1;e J.

Derivative aT/ay can be calculated in a similar way

aT =_1_[(x3-xz)~e +(x
1
-x3)z;e+(xz -x

l
)1;eJ.

ay 2Ae

It is evident, thus, that components of the heat flux vector

. --A aT and qO --A aT
qx - x ax y - y 0'

(12)

(13)

are constant and position-independent inside the element. It seems, there­
fore, that heat flux equality does not occur on the element boundary, since
heat flux is constant yet different in every element. The condition of tem­
perature continuity, however, is preserved. It is easy to demonstrate that
the calculated temperature transient is the same for two adjacent elements
with common side, regardless of the element in which the transient is cal­
culated. The lack of continuity on the element boundary impairs the accu­
racy of the solution obtained by means of FEM. In order to calculate heat
flux at a specific point inside the analyzed region or to determine heat flow
using a boundary segment with an assigned temperature, one should em­
ploy a denser element mesh so that a satisfactory result in terms of accu­
racy could be obtained.
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y

o

y

4 Fe 3

Xl == x4 ne ~
N

1 2
("l X

2b ~

II

~

x

Fig. 11.10. Linear rectangular finite element

A linear tetragonal element, presented in Fig. 11.10, will be discussed
below.

Temperature distribution inside the element will be approximated by
function

T" = fJt + fJ; .x+ fJ; .y + fJ: .x.y .

Constants fJt, ... ,fJ: will be determined from conditions

(14)

r: (0,0) =t; ,

T e
( 2b, 2a ) =t; ,

T" (2b, 0) = I;e ,

T e (0, 2a ) =rt,
(15)

from which, once (14) is substituted, the following equation system is ob­
tained:

fit == r;.e ,

/3t + 2b/3; + 2afJ; + 4ab /3: = I;e ,
(16)

Once the above equation system is solved, obtains

fJe t: pe =_1(re_r: )
1 == 1 , 2 2b 2 l'

/3; =_1(T4
e-1;e), /3: =_I_(~e -r; «t; -T

4
e).

2a 4ab

After substituting (17) into (14) and after transformations, one obtains

where shape functions are formulated as follow:

(17)

(18)



N; = x· y
3 4ab'

i= j

i 7:- j.
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Nt =(1- ~)(l- ~) N; =~(l- ~),
N;= ~(l- ~).

Shape functions N i
e have the following properties:

• N i
e (xj 'Yj ) =0i,j ( i,j = 1, 2, 3) for a triangular element

and

• N i
e

( xj ' Yj ) =0i,j ( i, j = 1, 2, 3, 4) for a tetragonal element

where 8 . is the Kronecker delta, which satisfies
l,j

{
I, for

°i,j = 0, for

From properties (20) and (21), it follows that

n

LNt =1,
i=l

(19)

(20)

(21)

(22)

(23)

where n stands for the number of nodes in an element.

Therefore, in i-node the shape function Nt =1,in other nodes, however,

it equals zero. Aside from linear functions discussed above, one can apply
other interpolation functions, for instance, the square functions.

Exercise 11.10 Description of FEM Based
on Galerkin Method

Derive basic equations in FEM for a single element using Galerkin
method. Assume that two-dimensional temperature field is source-based,
while three different boundary conditions of 1st, 2nd and 3rd order are as­
signed on the body's edge. Allow for the fact that the medium is anisot-
ropic, i.e. Ax 7:- Ay•

Solution

We need to find a solution for the heat conduction equation

~(A 8T)+~[A 8TJ+. =0ax x ax By Y By qv
(1)
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when boundary conditions are (Fig. 11.11):

Tlr -t.,
T

and

239

(2)

(3)

(4)

Tr

o

rq

Fig. 11.11. A diagram with different boundary conditions

In (1)-(4), the following symbols are used:
Ax - thermal conductivity of a material in x-axis direction
A

y
- thermal conductivity of a material in y-axis direction

T, - temperature set on the body boundary T; ,
qB - heat flux on the body boundary ~ ,

a- heat transfer coefficient on the body boundary Fa,
T - temperature of a medium.cz

In order to make these calculations more widely applicable, three different
types of boundary conditions are assumed:

• 1st order kind condition, section r;,
• 2nd order kind condition, section F,

q

• 3rd order kind condition, section Fa.
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It is also assumed that heat flux 4in (3) is positive, i.e. the body is being

heated. Normal to boundary n is a unit vector directed to the outside of the
region, while its components are equal to directional cosinuses

nx = cosqJ, < = cos (~ - qJ) = sin qJ , (5)

where ({J is the slope angle of normal to a horizontal plane.
Boundary conditions (3) and (4) can be written in a slightly different

form, if conductivity matrix is entered into the equation

and column vector of temperature gradient

aT
ax

{g} = aT
ay

Heat flux components 4x and 4y can be written then in the form

{::}=-[A]{g}.

If we take into account, moreover, that

(6)

(7)

(8)

. ~ aT. ~ aT. .. ..
q == - /l,. -I-/l,. -J==q I+q Jxax Yay x y'

and

(9)

-(-A aT n - AaT n J== - q. ° n == qOxaxx yayy «>
(10)

then boundary conditions (3) and (4) can be correspondingly written in the
form

(11)

(12)
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where qn is the component value of the normal heat flux. One also as­
sumes that the body thickness in the direction perpendicular to the plane of
the diagram is of 1m.

Boundary problem (1)-(4) was formulated for the whole region Q. In
FEM, Galerkin method is first formulated for a single element Qe. It is as­
sumed that three types of boundary conditions are assigned, as they are for
the whole region, on the boundary of a single element. One needs to apply
such a formulation to elements adjacent to body boundary (Fig. 11.11). It
is not necessary, however, to consider boundary conditions for elements,
which lie inside the body. Temperature distribution inside the element Q e

is approximated by function

r (x,y) = tT/ ·N; (x,y) = [Ne ]{r},
j=l

(13)

where n is the number of nodes in the element, ~e - temperature inj-node
and ~e(x, y) the shape function (interpolation function).

Galerkin method will be used to determine an approximate temperature
~e in nodes, j = 1, ..., n.

[
a ( are] a ( are] .] ef - Ax- +- Ay - +qv N, (x,y)dxdy=O.

sr ax ax ay Oy

Green theorem will be applied in order to transform (14):

(
aG aF]f - - - dxdy =P(Fdx + Gdx) .

sr ax ay r :

Integration on the boundary T" is anti-clockwise.
If one assumes that

F=-A are N~ d G =A are N~
y 1 an Xl'ay ax

then on the basis of (15), one obtains

f[~(AX ar Nie]+~(A ar Nt]]dXdY =Qeax ax ay Yay

(
are are]

= fN~ -A -dX+A -dlJ .
1 y~, x a .rre vy X

(14)

(15)

(16)

(17)

Once the left-hand-side of (17) is transformed, the equation can be written
in the form
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I[~(AX ar)+~(Ay ar)]NtdXdY=- I(Axor aNie+
sr ax ax ay ay sr ax ax

are aN~) e(are are)+A __, dxdv « IN. -A -dX+A -dlJ .Yayay J re' Yay xax J

By substituting (18) into (14), one has

I(Ax or aNt +Ayor aNt) dxdy = INtq.dxdy +
sr ax ax ay ay sr

(
are are)+INt -Ay-dx+Ax-dy .

re ay ax
Because of (Fig. 11.12)

-dx = ds ·sincp = n ds ,

dy =as-coup =n ds

(18)

(19)

(20)

(21)

and on the basis of (10), the expression in the brackets in the curvilinear
integral in (19) can be transformed in the following way:

are are ar ar . .-A -dX+A -dlJ=A -n dS+A -n ds=-q·n=q ds. (22)Yay xax J yayy xax x n

Hence, from the above and the boundary conditions (11) and (12) in (19),
one gets

I(Axor aNie+Ayor aNt)dXdY= INtqdxdy « INt4Bds+
sr ax ax ay ay sr r; (23)

+ INta (t: - r: )ds.
r;

After substituting (13) into (23), one gets

[
aN~ n aN~ aN~ n aN~JfAx-l Lrj

e_J +Ay_' Lr/-J dxdy > fN;etivdxdy+
ir ax j=l ax ay j=l ay sr

n

+fNttiBds- fN;eaLT/N;ds+ fNieaJ;,zds.
r; r; j=l r;

(24)
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Equation (24) for i-node can be written in the form
n

I(K:,ij + K~,ij ). T/ = f;,i +t; +t; ' (25)
j=l

y

o

3
( - A 07'. -A OT.J

x~ I y~ J
ex vy

2

x

Fig. 11.12. A diagram with a calculation of a curvilinear integral on the element's
perimeter (in an anti-clockwise direction)

where

[

a lATe aN~ alATe aN~)
K" .. == f 1 _:I._Vi__J +1 _:I._Vi__J dxd

C,l] x a a Y~, a Y,
fle X X vy y

«: = faNtN;ds,
r:

f;,i = fqvNi
e
dxdy ,

fle

(26)

(27)

(28)

(29)
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and
I'e = J T NedJ a,i a cz is.

r;
(30)

If in (14), and by that in (25) ~e is assumed to be the shape function for
the consecutive nodes of a finite element, then one obtains for a given
element a system of n equations, which can be written in the form

([K:] +[K~ ]){r} ={f;}+ {~e} +{f:}, (31)

where matrix coefficient and elements of column vectors are expressed by
(26)-(30), while vector {T} has the form {T} = [ T/, ... , T

n

e
] , where n is

the number of nodes in an element. In contrast to other exercises where
bold type designates matrixes and column vectors, the traditional notation
used in FEM is preserved in (31). [ ] stands for a matrix or row vector,
while { } a column vector. Matrix [K

e

e
] is called stiffnes or conductivity

matrix. Matrix [Ke

e
] is symmetrical, since K:,ij = K:,ji' Equation (31) forms

the basis of FEM for (1).
Equation system (31) is frequently written in a slightly different form.

Once (13) is substituted into (7), temperature gradient vector can be writ­
ten in the form

(32){r} .

8Ne
__n

8x
8Ne 8Ne
__1 __2

8x 8x
{s} = aNe aNe

__1 __2

8y 8y 8y
If we denote by [B] the matrix in the square bracket:

8Ne 8Ne 8N:__1 __2

[B]= 8x 8x 8x
8Ne 8Ne 8N:__1 __2

8y 8y 8y

(33)

Then {g} can be expressed in a shortened form

{g} =[Be ] {r }. (34)

Conductivity matrix [K
e

e
] can be written then in the form

(35)
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The remaining matrixes and column vectors present in (31) can be ex­
pressed in the following way:

[K=J= fa[Ner[NeJds,
r;

{f~}= f 4v [N
erdxdy ,

Qe

{~e} = f4B[Ner sr
r e

q

{f:}= faTcz [ N
erds,

r~

(36)

(37)

Nt
N e

2 ,while n is the number of nodes in an element.

(1)

Exercise 11.11 Determining Conductivity Matrix
for a Rectangular and Triangular Element

Determine conductivity matrix [Ke
e] for a rectangular and triangular ele­

ment.

Solution

Equation (26) from Ex. 11.10 and formulas for shape functions shown in
Ex. 11.9. will be used to calculate the elements of a conductivity matrix.

a) Conductivity matrix [Keel for a finite rectangular element

Matrix elements [K
e

e
] are expressed by (26) in Ex. 11.10

(
BNe BN~ BNe BN~)K:,ij = fAx _i_J+A

y
__i _J dxdy.

Qe Bx Bx By By
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Only two matrix elements will be calculated from (19) in Ex. 11.9 for the

shape functions K:,ll and K:,12. Let x, y be local coordinates.

After determining derivatives

aNt =__1 (I-LJ and aNt = __1 (1-~J
ax 2b 2a 8y 2a 2b

and

aN; =_1(I-L Jand aN; =_~ ,
ax 2b 2a 8y 4ab

element K:,ll will be calculated first

x: = f[A, aNt aNt + A, aNt aNt) dxd =
c,ll x a a y~, a Yne X X vy y

2a [2b 1 ( J2] 2a [2b 1 ( XJ2 ]=Ax f f-2 l- L dx dy+A,y f f-2 1-- dx dy=
o 0 4b 2a 0 0 4a 2b

Ax a Ay b
=--+-- .

3 b 3 a

Element K:,12 is calculated in a similar way:

x: = f[A, aNt aN; + A, aNt aN; )dXd =c,12 x a a y a a Y
ne X X Y Y

2a [2b 1 ( Y J2] 2a [2b 1 [ x
2
) ]=-Ax f f-2 1-- dx dy+Ay f f-2 x-- dx dy=

o 0 4b 2a 0 0 8a b 2b

Ax a Ay b
=---+-- .

3 b 6 a

(2)

(3)

(4)

(5)

Also the remaining elements of the conductivity matrix [K
c

e
] can be de­

termined in a similar way, namely
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2 -2 -1 1 2 1 -1 -2

[Ke]=Ax ~
-2 2 1 -1 Ay b 1 2 -2 -1

+-- (6)
c 6 b -1 1 2 -2 6 a -1 -2 2 1

1 -1 -2 2 -2 -1 1 2

b) Conductivity matrix [K'] for a finite triangular element

Matrix [B] for a triangular element is formulated as

aNe aNe aNe
__1 __2 __3

[Be]= ax ax ax 1 [be be b;]=2Ae c; 2 (7)aNe aN; aNe ce e '
__1 __3 2 C3

8y 8y ay

where Ae is the surface area of a triangle, while coefficients bi
e

, c; , i = 1, 2,

3, are expressed by formulas in (8), Ex. 11.9. Since the coefficients in ma­
trix [Be] are constants and Ax and Ay are material constants independent of
position and temperature inside the element, the conductivity matrix can be
easily determined, since

[K;]= J[BeJ[Ae][BeJdxdy=[BeJ[Ae][Be] fdxdy
sr sr

or

(8)

Once (7) is substituted into (8) and the appropriate operations carried out,
one obtains

(btt «« btb; (ctt c7c; c7c;

[Ke]=~ «« (b;t b;b;
Ae

e e (c;t e e . (9)+_x_ C1C2 C2C3
c 4Ae 4Ae

btb; b;b; (b;t e e c;c; (c;tc1c3

It can easily verify that the same results are obtained when calculating
matrix coefficient with (1). When a body is isotropic, i.e. Axe =Axe=A\ the
conductivity matrix [K

e

e
] for a triangle expressed by (9) can be written in a

simpler form, by introducing the notation shown in Fig. 11.13.
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x
b

l __------__~....I------..
(0,0)

y c

Fig. 11.13. Triangular finite element

On the basis of formulas (8) from Ex. 11.9 and the notations from Fig.
11.13, (9) for Axe = Axe = Aecan be written in the form

d' +(C-b)2

[K;J= 4~e -d
2 - c(c- b)
b(c -b) -cb

b(c - b)

-cb . (10)

b2

(11)

o
b

d
b

d

d

b

d b
-+-
b d

b

do

In a case when a triangle is rectangular in shape (Fig. 11.14), conductiv­
ity matrix assumes the form

d

b

[K;J= ~e ~
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y

b

3

c=b

Ae = lL:.Jl
2

o ...-----..........~--'-------....
2

x

Fig. 11.14. Finite element in a rectangular triangle form

Exercise 11.12 Determining Matrix [Ka"l in Terms
of Convective Boundary Conditions for a Rectangular
and Triangular Element

Determine matrix [Ka
e

] for a rectangular and triangular element.

Solution

Matrix [K a
e
] present in (25) [Ex. 11.10], whose coefficients are expressed

by (27) [Ex. 11.10], arises from 3rd order boundary conditions assigned on
the boundary of an element. Matrix [K a

e
] can be also determined by means

of (36) from Ex. 11.10. Coefficients K~ ii will be calculated by means of
,lj

(27) from Ex. 11.10

K~,ij = faNtN;ds .
r;

(1)

The determination of integrals in FEM is discussed, among others, in ar­
ticles [4, 6].

a) Rectangular finite element

If convective heat transfer is assigned on all sides of an element with a
heat transfer coefficient a, then matrix [Ka

e
] is formulated as
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(N:f NtN; NtN; NtN:

[K;J = fa
NtN; (N;f N;N; N;N:

ds. (2)
r~ NtN; N;N; (N;f N;N:

NtN: N;N: N;N: (N:f

In practice, convective heat transfer is usually set on one or two element
sides, which constitute a fragment of a body boundary. If convective heat
transfer takes place on the side 1-2 of a rectangular element (Fig. 11.15),
then in (2) one should assume thatN

3
= N

4
= O. Equation (2) assumes the form

(N:f NtN; 0 0

2b (N;f[K;J= fa NtN; 0 0 ds. (3)
0 0 0 0 0

0 0 0 0

Since ds =dx and on the basis of (19) from Ex. 11.9, individual integrals in
(3) are

2fb(N e)2dX=2b = L12

o 1 3 3'

where L
12

is the length of the side 1-2 of the element in question.

(4)

y

4 3
"

\j
N

Qe S ~ !l
(~

('1
, -..J

Fe
L]2 =2b

'\
2 Xa

Tez

Fig. 11.15. Convective heat transfer is prescribed on the boundary 1-2 of a rectan­
gular element
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Furthermore, once the following is determined

2fb N eN
2
edx = 2b = L12

1 6 6o

and

matrix (3) assumes the form
2 1 0 0

[KeJ= aL12 1 2 0 0
a 6 0 0 0 0

000 0

Similar results are obtained for the remaining sides of the element

o 0 0 0

[KeJ=aL23 0 2 1 0
a 601 2 0

o 0 0 0

000 0

[KeJ=aL34 0 0 0 0
a 600 2 1

001 2

200 1

[KeJ= aL41 0 0 0 0
a 6 000 0

100 2

(5)

(6)

(7)

(8)

(9)

(10)

where L23, L34, L41 are the lengths of the sides on which the convective heat
transfer takes place.
b) Triangular finite element

For a triangular element, matrix [Ka
e

] has the form
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(Ntr NtN; NtN;

[K=J = fa N;Nt (N;r N;N; ds. (11)
r;

(N;rN;Nt N;N;

The above matrix refers to a case when convective heat transfer takes
place on all three sides of a triangular element. When heat transfer occurs
only on the side 1-2, one assumes in (11) that N

3

e= 0, while after integra­
tion, one has

210

[K= J=a~12 1 2 0 .

000

Formulas for the remaining sides are obtained in a similar way

000

[K= J=a~23 0 2 1

012

(12)

(13)

(14)

where L
12

, L
23

, L
31

are the respective side lengths of the triangular element.
When calculating curvilinear integrals, present in (11), for a triangular

element, needed in order to determine (12)-(14), (1) was used:

(15)

It is easy to calculate the integrals in (11) by means of (15); e.g. to calcu­
late integral

~2 2

f(Nn ds,
o

in (15), one assumes that m = 2, n = 0, hence

f(N~)2ds=L 2!O! =L ~=LI2 .
o 1 12 (2 + 0 +1)! 12 3 . 2 ·1 3
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Exercise 11.13Determining Vector {fae
} with Respect

toVolumetric and Point Heat Sources in a Rectangular
and Triangular Element

Determine vector {fQe} for a rectangular and triangular element, when unit
heat source power is constant within the area of the element and constant
for a point heat source.

y

4 .Ji
3

l .*
~qv

...
,.

1 2 xXo

Fig. 11.16. Point heat source inside a rectangular element

Solution

Vector components {fQe} will be calculated according to (28) from
Ex. 11.10

i; = f4vNtdxdy .
Qe

(1)

a) Rectangular element

If power density of a heat source is constant, it is easy to calculate {f;,;}

2a(2b )
f;,; = J IqvN;edx dy;

hence, after substituting into (19) from Ex. 11.9, one obtains

(2)
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1 1

{f~} = iJv:e
1 1

1
== qah

1

1 1

(3)

where A
e
is the surface area of an element, equal to 4ab.

It follows from (3) that 1/4 of total body heat flow is allotted to every node
in a tetragonal element.

In the case of the point heat source (Fig. 11.16), (1) assumes the form

iJv == iJ: t5 (x- Xo)t5(y - Yo), (4)

(5)

where 4: [W/m] is the heat flow emitted at point (xo' Yo)' with respect to a

unit of length as the heat source is infinitely long in the direction perpen­
dicular to the diagram plane. Function t5 is a Dirac delta, which approaches
infinity at point (xo' Yo); at the remaining points, however, it equals zero.

By substituting (4) into (1), one has

Nt (xo,Yo)

{f~}= iJ: N; (xo' Yo )
N; (xo,Yo) .
N: (xo,Yo)

b) Triangular element

If density 4v is constant, then from (1), one obtains

f;,i == 4v fNtdxdy.
n e

(6)

In order to calculate the integral on the surface of a triangular element, a
formula from reference [4] will be used here:

f(Nn1(N;f (N;fdA = l!m!n! ,2A
e

o

ne (l+m+n+2).

Since in the given case m = 0, n = 0, l = 1, then from (6), one has

f/ = iJvAe
Q,i 3·

Therefore, vector {fQe} has the form

(7)

(8)
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1

{f;}=qv:e 1 . (9)

1

It follows from (9) that 1/3 of the total heat flow in an element is allotted
to every node in that element. In the case of point heat source, vector {fQe}
has the form

Nt (xo,Yo)
{f;}=q: N;(xo'yo) ·

N; (xo,Yo)
(10)

Equations (5) and (10) refer to a case when the point heat source is located
inside an element.

When a heat source is located in a node common to several elements

(Fig. 11.17), then source power q: per unit of length can be divided

among individual elements proportionally to angle qJ at the tip of a given
element. For a triangular element, vector {fQe} has the form

(11)

where angle tp is expressed in radians.

Fig. 11.17. Point heat source in a node common to several elements

In practice, the location of a heat source is of no great significance,
since in the global equation system, with the heat balance equations for in-

dividual nodes, total power q: is present in this equation of a node, which

has a point heat source inside.
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Exercise 11.14 Determining Vectors {fqe} and {fae} with
Respect to Boundary Conditions of 2nd and 3rd Kind on
the Boundary of a Rectangular or Triangular Element

Determine vectors ~e} and {fa
e} for a finite rectangular and triangular ele­

ment.

Solution

Elements of column vectors {te} and {fae} are determined from (29) and
q

(30), Ex. 11.10

J; = f a~zNieds ,
r;

(1)

(2)

therefore, from almost identical integrals. If we assume that qB = aTcz in

the first integral, then we obtain (2). This is why only vector ~e} will be
determined below.

a) Finite rectangular element

If heat flux is given on the boundary 1-2 of a finite element (Fig. 11.18)
with thickness 1, then vector {te} is formulated as

q

(3)

Since also N; =N; =0 on the side 1-2, (3) assumes the form

Nt (x, 0)

{}
2fb N;(x,O)f: =qB 0 0 dx ,

o

where shape functions Nt and N; are expressed by (19), in Ex. 11.9.

(4)
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y

re /
q

2 x

Fig. 11.18. Rectangular element heated by heat flux qB

Once the integrals are calculated

2b 2b( J 2 2be X X L12f N (x O)dx= f 1-- dx=x-- =b=-
1 , 2b 4b 2 '
000

2b 2b 2 2b

f f x x L
Ne(x O)dx= -dx =- =b =--l1:-
2' 2b 4b 2 '
000

vector {te} can be written in the form
q

1

{/qe} = qB~12 ~

o

(5)

(6)

(7)

It is evident from the analysis of (7) that the term qB L12/2 for node no. 1

will appear on the right -hand-side of the (25), Ex. 11.10, as it will for node
no. 2. This means that half of the heat, which flows through the lateral sur­
face of an element with length L12 and thickness 1, flows to node no. 1. The
second half flows to node no. 2. Vector {te} can be calculated in a similar

q

way when the heat inflows into the element through surfaces 2-3, 3-4 and
4-1; one then obtains, respectively

o

{/qe} = qB~23 ~

o

(8)
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o
·L 0

{re} = qB 34
J q 2 u '

1

1

·L 0
{fe } =~ .

q 2 0

1

(9)

(10)

If the heat flow at density qB inflows through all lateral surfaces of an

element (Fig. 11.18), then vectors (7)-(10) should be added; hence

L12 +L41

L12 +L23

L23 +L34

L34 +L41

(11)

From the analysis of (11), it is evident that the term qB (£12+ £41)/2 for

node no. 1 will appear on the right-hand-side of an algebraic equation, term
qB (L

12
+ L

32)/2
for node no. 2 on the right-hand-side of the equation, and so

on. The above is, therefore, the same procedure for calculating heat bal­
ance in nodes as the one, which is used in the control volume method.

b) Finite triangular element

To calculate curvilinear integral (1), we will use formula
L , ,

fNjmCs)NJCs)ds =L ( m.n. ) .
o m+n+l !

Vector

Nt
{~e} = fqB[NeT ds =qB f N; ds ,

r: r: N;

(12)

(13)

with a heat flux set on the surface 1-2 is calculated under the assumption
that N; = 0 and m =1, n =0 in (12). Once the integrals are calculated
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Lt2 1'0' LfN eds =L .. =--R (14)
o 1 12 (1+ 0 + I)! 2'

Lt2 L
f Neds =--R (15)
o 2 2'

vector {fe} assumes the form
q

1

{fq
e

} = qB;2 1

o
(16)

(17)

If a heat flow with density qB is assigned on the surface 2-3 or 3-1, then

the corresponding vectors have the form

o
{~e} = qB~23 1

1

1

{~e} = qB~31 0 .

1

(18)

(19)

When heating a triangular element on all sides, an appropriate vector is ob­
tained as a result of adding vectors (16)-(18)

. {L12 +L31
}

{~e} = q; L'2 +L23 .

L23 + L31

As in the case of a rectangular element, a heat flow, which inflows
through half of the surfaces that pass through a given node, occurs on the
right-hand-side of an algebraic equation when the equation is being formu­
lated for a given node.

Exercise 11.15 Methods for Building Global Equation
System in FEM

Describe the way global equation system is created using the finite ele­
ment method by summing up
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a) equation systems obtained for individual finite elements [Method I],
b) algebraic equations obtained for different elements that share, never­

theless, a common node (as an analogy to finite volume method)
[Method II].

Are the temperature continuity conditions and heat flux conditions satis­
fied on the boundary between elements?

Solution

a) In order to create a global equation system, conductivity matrix [K
e

e
]

and the matrix that comes from the assigned 3rd kind boundary conditions
[Ka

e
] , derived for individual elements, must be summated, i.e.

N

[K] = I([K;J+[ K~ J)
e=l

(1)

That includes the summation of vectors {fQe} , ~e}, {fae}, present on the
right-hand-side of the (31) in Ex. 11.10

(2)

(3)

and

(4)
e=l

where N is the finite elements integral number, which the entire analyzed
region was divided to. The global equation system for temperature in ele­
ment nodes has the form

(5)

where {T} is the column vector of size N, which comprises of unknown
temperatures in element nodes. Next, one has to account for parameters
present in the boundary conditions in the above created global equation
system (5).

The method for creating matrix [K], which is sparse, should be dis­
cussed in greater detail, since only some of the coefficients present in it are
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other than zero. It is assumed that the flat region is divided into triangular
elements (Fig. 11.19).

e

g

d

a

Fig. 11.19. A division of a flat region into finite triangular elements; element
numbers and global node numbers are marked: CD-@ - finite element numbers,
a-g - global node numbers

If element CD lies inside the analyzed region, thereby [K a
1
] can be disre­

garded, then matrix [K1
] = [K

c

1
] for the first element (Fig. 11.20) can be

written in the following way:

a b c

(1) KIll K:2 K:3
(2) K~l K~2 K~3 (6)

(3) K~l K~2 K~3

(1) (2) (3)

If global node numbers of a triangular element are marked as G, b, and c,
while local node numbers as (I), (2), (3), then one can see that coefficient
K 1

aa
corresponds to coefficient r; in matrix [K1

] (6), coefficient K 1

bc
cor­

responds to coefficient K1

23
, etc. When creating a matrix of coefficients [K]

according to (1), one should be guided by global indexes, i.e. one should
add coefficient K e that occurs in the matrix of element ® to coefficient

aa

K 1

aa that occurs in the conductivity matrix of element CD. Coefficients that
have the same global indexes in conductivity matrixes of other elements
are added together. Such common coefficients appear in conductivity ma­
trixes of elements, which share a common node, e.g. in the case of ele­
ments in Fig. 11.19, the node common to six elements is node c.
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<3>
c

Numeration of nodesin elementno. CD

Globalnode number Local node number

a (1)
b (2)
c (3)

a

<1>
Fig. 11.20. A diagram of global (a, b and c) and local (1), (2), (3») node numera­
tion in a triangular element

centerof gravity of
triangular element
midpoint of
triangle side

g

control volume
assigned to

node c a

<1>

A global equation system for node temperatures can be created in an­
other way, which resembles the way heat balance equations are developed
using the control volume method. One can also create control volume in
FEM around node c (Fig. 11.19), common to surrounding elements, by
linking centers of gravity of triangular elements with the midpoints of tri­
angle sides (Fig. 11.21). The equation number equal to the number of
nodes in an element is assigned to every element. There are three equations
in the case of a triangular element. When creating a global equation for
node c (Fig. 11.19), only those equations are considered in which the shape
function was selected as a weight function in the Galerkin method at point

c. For element CD when local nodes are positioned as shown in Fig. 11.20,
the third equation is the equation in question; it results from the application
of Galerkin method when weight coefficient equals N

3

1
(X, y).

i

o

Fig. 11.21. Control volume in FEM with a region divided into triangular elements;
linear functions interpolate temperature distribution inside the element

If similar local node numeration is assumed for the remaining elements
shown in Fig. 11.19, then we must account for the third equation in every
equation system for a given element, since in every element local node (3)
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corresponds to node c. In Galerkin method, function N
3

e(x,y) plays a role of
a weight function for element ®.
b) The second method for creating global equation system, based on the
formulation of an appropriate equation for a given node, indicates that
there is a close relationship between FEM and the control (finite) volume
method.

The following conditions should be retained when aggregating (summat­
ing) elements (Fig. 11.22):

• continuity of temperature field, including boundaries between ele­
ments;

• continuity of heat flow, also on the boundary between elements.
The first condition is satisfied in FEM; the second condition, however, is
not completely satisfied. On the boundary between elements, the following
temperature continuity takes place

1;1 =1;2 =T:t
and

(7)

The above indexes (7) are the element numbers. Temperature equality on
the boundary between elements follows from the equation of temperature
in nodes and linear character of temperature distribution inside the ele­
ments.

4 3

2

Fig. 11.22. Global and local numeration of nodes in finite elements

In agreement with (29), Ex. 11.10, the equality of integrals takes place
on the boundary between elements:

fq~N~ds =- fq~N12ds , (8)
Lh3 43

f q~N~ds =- f q~N~ds .
Lh3 43

(9)

Therefore, only in the case of very small elements, when the side common
to both elements is very short in length, the heat flux equality is ensured on
the boundary where two elements meet. Furthermore, heat flux inside an
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element is constant when temperature distribution is interpolated inside the
element by linear functions. Therefore, heat flux step-change occurs at the
point of contact of two elements. At such point, there is also no continuity
among the first derivatives of function rex, y). This lack of continuity at
the point of contact between elements negatively affects the accuracy of
solution. In order to determine heat flux at a given point in an analyzed re­
gion or to calculate heat flow transmitted by a body boundary, the region
should be divided into very small elements, so that the accuracy of the de­
termined heat flux values is satisfactory.

Exercise 11.16 Determining Temperature Distribution
in a Square Cross-Section of an Infinitely Long Rod
by Means of FEM, in which the Global Equation System
is Constructed using Method I (from Ex. 11.15)

Determine temperature distribution in a square cross-section of an infi­
nitely long rod (Fig. 11.23). Upper and lower surfaces are thermally insu­
lated. Left vertical surface is heated by a heat flow whose density is
qB = 200 000 W/m2

, while the surface on the opposite side is cooled by

water at temperature ~z = 200 e with a heat transfer coefficient equal to

a = 1000 W/(m2·K). Thermal conductivity of the rod's material A
x
= Ay =

50 W/(m·K). The length of the side within the square cross-section of the
rod is a =2 em.

a = 1OOOW/(m2-K)

Ax =Ay = 50 W/(m 0 K)

a=2cm

Fig. 11.23. Cross-section of an infinitely long rod



Exercise 11.16 Temperature Distribution in a Square Cross-Section 265

Solution

Temperature field will be treated as two-dimensional. Cross-section of the
rod will be divided into four elements. Local and global node numeration
is given in Fig. 11.24. and Table 11.2.

3
.v
4 __--------__--yo

8
<)

N

2 x
2em

Fig. 11.24. A division of a rod's cross-section into four elements with a marked
global and local node numeration; local numeration is given in brackets ( )

Table 11.2. Local and global node numeration

Element No. Local Node Number Global Node Number

CD

®

(1)

(2)
(3)
(1)
(2)
(3)
(1)
(2)
(3)
(1)

(2)

1
2
5

1
5
4

4
5
3

2
3
5

First we will determine the quantities in individual elements of the con­
ductivity matrix [K

c

e
] and in the element of matrix element [Ka

4
] , since a

convection heat transfer is assigned on the side 2-3 (1)-(2»). Conductivity
matrix for a triangular element is formulated by (9) in Ex. 11.11, which in
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the given case for A = A = A has the form
x y

(bt t +(c:t btb; +c:c; btb; +c:c;
[K:J- 4~e btb;+c:c; (b;t +(c;t b;b;+c;c; (1)

where matrix coefficients are formulated in (8), Ex. 11.9.

Matrix [Ka
4

] for element @ is formulated in (12), Ex. 11.12

210

[K; ]= a~12 1 2 0

000

(2)

where L
I 2

= 0 is the length of the side in the square cross-section. From ma­
trices [K e

] and [Ka
4

] , one obtains:
c

• Element CD

x: = 0 m, y: = 0 m,

x~ = 2 .10-2 m, y~ = 0 m,

x~ = 1.10-2 m, y~ = 1.10-2 m,

hI = 0 -1 .10-2 = -1 .10-2 m hI = 1.10-2
- 0 = 1.10-2 mI , 2 ,

hI =O-O=Om3 ,

ci = 1.10-2
- 2 .10-2 = -1 .10-2 m ci = 0 -1 .10-2 = -1 .10-2 mI , 2 ,

c~ = 2 .10-2
- 0 = 2 .10-2 m,

Al =!.0.02.0.01=1.10-4 m2 .

2

Conductivity matrix [K
c

l
] calculated with (1) is as follows:

1 2

[

0.5 0

[K: ]= 50 0 0.5

-0.5 -0.5

5

-0.5] 1
-0.5 2,

1.0 5

(3)

The numbers above and next to the matrix are the global node numbers.
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• Element ®

x~ =0 m, y~ =0 m, x~ =0.01 m, y~ =0.01 m,

x; = 0.0 m, y; = 0.02 m,

b1
2 =0.01-0.02=-1.10-2 m, b~ =0.02-0=2.10-2

ill,

b~ =0-0.01=-1.10-2 m,

c~ =0-0.01=-1.10-2 m, c~ =0-0=0 m,

c; =0.01-0=1.10-2 m,

A2 =!.0.02.0.01=1.10-4 m".
2

Conductivity matrix is
1 5 4

0.5 -0.5 0 1

[K;J =50 -0.5 1.0 -0.5 5.
(4)

0.0 -0_5 0_5 4

• Element ®

x: = 0 m, y: = 2 -10-2 m,

x~ = 1-10-2
ill, y~ = 1.10-2

ill,

x~ = 2 -10-2 m, y~ = 2 .10-2
ill,

b; = 1-10-2
- 2 -10-2 = -1-10-2 m, b~ = 2 -10-2

- 2 -10-2 = 0 m,

b; =2 .10-2
- 1.10-2 =1.10-2 m,

c: =2.10-2 -1.10-2 =1·10-2m,
c~ =0-2-10-2 =-2-10-2 m,

c~ = 1.10-2
- 0 = 1-10-2 m.

Matrix [K 3] is as follows:
c

4 5 3

0.5 -0.5 0 4

[K;J =50 -0.5 1.0 -0.5 5.
(5)

0 -0.5 0.5 3
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• Element @

x: =2.10-2 m, y: =0 m, x; =2.10-2 m, y; =2.10-2 m,

x: =1.10-2 m, y: =1.10-2 m,

b
1
4 = 2 .10-2 -1.10-2 = 1.10-2 m, b; = 1.10-2

- 0 = 1.10-2 m,

b4 =0-2.10-2 =-2·10-2 m
3 '

c; = 1.10-2
- 2 .10-2 = -1 .10-2 m, c; = 2 .10-2 -1.10-2 = 1.10-2 m,

c: = 2 .10-2
- 2 .10-2 = 0 m.

Matrix [K 4
] is as follows:

c

2 3 5

0.5 0 -0.5 2

[K:] =50 0 0.5 -0.5 3.
(6)

-0.5 -0.5 1.0 5

Matrix [Ka
4

] , which results from the heat transfer on the side 2-3, has the
form

or

2 3

[K;]=3.33(3{~ ~ ~~, (7)

(8)

2 3 5

31.667 3.333 -25.0 2

[K:]+[K;]= 3.333 31.667 -25.0 3.
(9)

-25.0 -25.0 50 5

Coefficient matrix in the global equation system can be obtained by
adding coefficients in matrices (3)-(6) and (9):
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K ll = K I\ + KI
2
1 = 25 + 25 = 50 W/(m· K), Kl2= 0, Kl3= 0, Kl4= 0,

Kl5= KJ5 + Kl
2
5= -25 + (-25) = -50 W/(m· K),

K21=0, K22=K~2 + (K;2 + K:,22) =25 + 31.6667 =56.6667 W/(m· K),

K23=([K;3J+[ K:,23 J) =3.333 W/(m· K), K24=0,

K25= K~5 + K;5 = -25 + (-25) = -50 W/(m· K),

K31=0, K32=(K~ + K:,32) =3.333 W/(m· K),

K33=K:3+(K~ + K:,33 ) =25 +31.6667 =56.6667 W/(m· K),

K34= K;4 = 0 W/(m· K), K35= K;5 + K;5 = -25 + (-25) = -50 W/(m· K),

K41=K~l =0,K42=0,K43=0,K44=K~4 +K~4 =25+25=50W/(m·K),

K45= K~5 + K~5 = -25 + (-25) = -50 W/(m· K),

KSI = «; + K~I = -25 + (-25) = -50 W/(m· K),

KS2=K~2 +K~ =-25+(-25)=-50W/(m·K),

K S3= K:3+ K:3 = -25 + (-25) = -50 W/(m· K),

KS4= K~4 + K:4= -25 + (-25) = -50 W/(m· K),

KS5=K~5 +K~5 +K:5+K:5=50+50+50+50=200 W/(m·K).

If all coefficients are known, one can write then the global conductivity
matrix

50 0 0 0 -50

0 56.667 3.333 0 -50

[K] == 0 3.333 56.667 0 -50 W/(m·K). (10)

0 0 0 50 -50

-50 -50 -50 -50 200

Following that, vector {~2} is defined according to (17), Ex. 11.14

(11)
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2000

o
2000

(12)

Vector {fa4
} will be calculated according to (16), Ex. 11.14

{fa
4

} =aiz{i}={~} ,

where from, after substitution, one obtains

The right-hand-side vector has the form

(13)

(14)

I,

h
{f} = h =

I,

is

2000

10000

10000 W/m 2
•

2000

o

(15)

The equation system (31) from Ex. 11.10, from which node tempera-
tures will be determined, assumes in this case the following form

50 0 0 0 -50 t; 2000

0 56.667 3.333 0 -50 T2 10000

0 3.333 56.667 -50 1; = 10000 (16)

0 0 0 50 -50 T4 2000

-50 -50 -50 -50 200 t; 0

Since the equation system (16) is solved by means of the Gauss elimina­
tion method and the program shown in Ex. 6.26, the following is obtained:
T1=280°C, T2 =200°C, T3=200°C, T4 =280°C, T,=240°C. Due to thermal
insulation of lateral surfaces 1-2 and 3-4, temperature field is one­
dimensional in the cross-section of the rod.
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Temperature can be calculated from analytical formulas

T. =T =qBa + qB =200000·0.02+ 200000=2800C
1 4 A a 50 1000 '

T. =qBa + qB =200000·0.02 + 200000=240°C
5 2.,1, a 2·50 1000 '

T =T =qB =200000 =2000C.
2 3 a 1000

It is clear, therefore, that the results obtained by means of FEM and the
analytical formulas are identical to each other.

Exercise 11.17 Determining Temperature Distribution
in an Infinitely Long Rod with Square Cross-Section
by Means of FEM, in which the Global Equation System
is Constructed using Method II (from Ex. 11.15)

Solve the problem formulated in Ex. 11.16 by means of FEM; namely, the
equation (of heat balance) for individual nodes. Use Method II discussed
in Ex. 11.15.

Solution

• Node 1
Elements CD and ® have node 1 in common (Fig. 11.24). Equation system
for element CD has the form

[K1J{T1}={l}, (1)

where [K
1] is formulated in (3), Ex. 11.16. Because ifl} =[0,0, O]T, equa­

tion system (1) has the form

2: 2

05

=~~ {~} = {~} . (2)
-25 -25 50 t: 0

Node 1 in the global numeration is also (I) in the local numeration of ele­
ment CD; therefore, only the first equation is taken into consideration in (2)

25~ - 25T's =0 .

The algebraic equation system for element @ has the form

(3)
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where [K2
] is formulated in (4) while vector {f2} in (12), Ex. 11.16. The

equation system for element ® assumes the form then

25 25 a t; 2000

-25 50 -25 r; a (4)

a -25 25 t; 2000

Node 1 in the global numeration is node (1) in the local numeration in
element ®; therefore, only the first equation in (4) is taken into considera­
tion

25~ - 25I's =2000 . (5)

Once (3) is added to (5), an algebraic equation for node 1 is obtained in
global numeration

50~ - 50I's =2000 . (6)

• Node 2

Node 2 is shared by element CD and @. Node 2 in the global numeration is
also node (2) in the local numeration. Therefore, in the equation system
(2), second equation is taken into consideration

25T; - 25I's =a.
Equation system for element @ has the form

(7)

(8)

(9)

where [K 4
] is formulated in (6), Ex. 11.16, while {f4} in (14), Ex. 11.16.

Thus, the equation system (8) has the form

31,667 3,333 -25 1; {10000

3,333 31,667 -25 T;, = 10000 .

-25 -25 50 t: a
Node 2 in the global numeration is node (1) in the local numeration in

element @. In the equation system (9) only the first equation is taken into
consideration

31.6671; +3.333 T;, - 25I's =10000 . (10)

Once (7) and (10) are added together, the equation for node 2 is obtained
(in global numeration)

56.667T2 +3.3331; -50I's =10000. (11)
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• Node 3

Node 3 has a local number (2) in element @. The second equation in the
system (9) has the form

3.3331; + 31.6671; - 25~ = 10000 . (12)

An equation system for element @, to which node 3 belongs, has the
form

(13)

(14)

where [K 3] is expressed in (4), Ex. 11.16, while if3}= [O,O,O]T. The equa­
tion system (13) assumes the form

25 -25 0 {~} O}
-25 50 -25 ~ = 0 .

o -25 25 1; 0

Only the third equation from above (14) is allowed for, since node 3 has
the local number (3)

251; - 25~ = 0 . (15)

Once corresponding sides of (12) and (15) are added, a global equation for
node 3 is obtained

3.3331; +56.6671; -50~ =10000 . (16)

• Node 4

Node 4 is shared by element ® and @. In the equation system for element
®, the third equation is taken into consideration, since the analyzed node
has a local number (3) ®. From (4), one obtains

25~ - 25T, = 2000 . (17)

In the equation system for element @, the first equation is taken into
consideration, since node 4 has the local number equal to (1) in element @.
From (14) one has

25~ -25~ =0. (18)

Once corresponding sides of (17) and (18) are added, one obtains a global
equation for node 4

50~ - 50~ = 2000 . (19)
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• Node 5

This is a node common to all elements. In the equation system (2) for ele­
ment CD , the third equation is accounted for, since the analyzed node has a

local number (3) in element CD. From (2), one gets

-251; - 25T2 + 50~ == O.

In (4) for element (2), the second equation is considered

-251; - 25~ + 50~ == 0,

(20)

(21)

since node 5 has the local number (2) in this element. In the equation sys­
tem for element @, the second equation is accounted for

-25 I; - 25T4 + 50~ == 0, (22)

since node 5 has the local number (2) in this element. In the equation sys­
tem (9) for element @, the third equation is accounted for

-25T; - 25 I; + 50~ == 0, (23)

since node 5 has the local number (3) in element ®. Once corresponding
sides of (20), (21), (22) and (23) are added, one has

-501;-50T;-50I;-50~+200~==0. (24)

Equations (6), (11), (16), (19) and (24) form a global equation system.

501; - 50~ == 2000

56.66671; +3.3331; -50~ ==10000

3.333T; + 56.667I; -50~ ==10000 (25)

50Tt - 50~ == 2000

-501; -501; -50I; -50~ +200~ ==0.

Equation system (25) and system (16) from Ex. 11.16 are the same. It is
clear, therefore, that regardless of how the global equation system is cre­
ated, it always remains the same.
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Exercise 11.18Determining Temperature Distribution
by Means of FEM in an Infinitely Long Rod with Square
Cross-Section, in which Volumetric Heat Sources Operate

Determine steady-state temperature distribution in a square region whose
side is 2a =2 em in length. Assume that the thermal conductivity of a me-
dium is A = 42 W/(m·K). Heat source power per unit of volume is
qv= 1.107 W/m3

• Boundary conditions are illustrated in Fig.ll.25. Assume
the following values for the calculation: qB = 200000 W/m2

, a = 60

W/(m2·K), T =20°C, T =100°C.cz s

Solution

Boundary conditions can be written in the following way:

_}., aTI =.a qB'
x x=o

-A aT =a(T -TI )a cz y=O'
Y y=O

(1)

(2)

(3)

(4)_}., aT =0.
8y y=2a

Temperature distribution will be determined by means of FEM with a
division depicted in Fig.ll.25. Local and global node numeration is pre­
sented in Table 11.3.

Conductivity matrix (rigidity) in the case of the square element and con­
stant thermal conductivity, when Ax = A

y
= A, has the following form ((6),

Ex. 11.11).
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a

a

y
7 8 9

<4) <3) <4) (3)c-r.
CD CD

5
4 <1> (2~ <1) <2) 6

<4) <3) <4) <3>

CD tifl CD A

<1) <2) <I) <2) x

I 2 3
a a

•t.;
Fig. 11.25.Diagram of the analyzed region, which illustrates boundary conditions
and division of an area into finite elements

Table 11.3.Local and global node numeration

Element No. Local Node No. Global Node No.

CD

®

(1)
(2)
(3)
(4)
(1)
(2)
(3)
(4)
(1)
(2)

(3)

(4)

(1)
(2)

(3)

1
2
5
4

2
3
6
5

4
5
8
7

5
6
9
8
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4 -1 -2 -1

[KeJ=A -1 4 -1 -2 (5)
c 6 -2 -1 4 -1

-1 -2 -1 4

Next, matrixes of conductivity (stiffness) [K
c

e
] will be written for indi­

vidual elements. Global node numeration will be used.

• Element CD

• Element ®

• Element @

• Element ®

1 2 5 4

4 -1 -2 -1 1

[K~ J = 7 -1 4 -1 -2 2,
-2 -1 4 -1 5

-1 -2 -1 4 4

2 3 6 5

4 -1 -2 -1 2

[K~ J = 7 -1 4 -1 -2 3 ,
-2 -1 4 -1 6

-1 -2 -1 4 5

4 5 8 7

4 -1 -2 -1 4

[K:J=7 -1 4 -1 -2 5,
-2 -1 4 -1 8

-1 -2 -1 4 7

5 6 9 8

4 -1 -2 -1 5

[K:J=7 -1 4 -1 -2 6,
-2 -1 4 -1 9

-1 -2 -1 4 8

(6)

(7)

(8)

(9)

Global conductivity matrix (stiffness) [K
c

] results from the summation
of matrixes for individual elements. By doing so, one should also pay at­
tention to coefficients with the same global indexes, as they should be
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summated as well. Coefficients of the global conductivity matrix (index c
was not included in the designations of coefficients KC,ij in order to shorten
the notation) are as follow:

K11==K1
1
1==28, K12==KJ2 ==-7, K14==K1

1
4==-7, K15==KJ5 ==-14,

K21==K~1 ==-7, K22==K~2 +K;2 ==7(4+4)==56, K23==K;3 ==-7,

K24 == K~4 == -14, K25 == K~5 + K;5 == 7(-1 + (-1)) == -14,

K26 == K;6 == -14, K32 == K~2 == -7, K33== K~3 == 28, K35 == K~5 == -14,

K36==K~6 ==-7, K41==K~1 ==-7, K42==K~2 ==-14,

K44 == K~4 + K~4 == 56, K45 == K~5 + K~5 == -7 + (-7) == -14,

K47 ==K~7 ==-7, K48==K~8 ==-14,

K48==K~8 ==-14, K51==K~l ==-14, K52==K~2 +K~ ==-7+(-7)==-14,

K53==Kff3 ==-14, K54==K~4 +K;4 ==-7+(-7)==-14,

K55==K~5 +Kff5 +K;5 +K;5 ==28+28+28+28==112,

K56==Kff6 +K;6 ==-7+(-7)==-14, K57==K;7 ==-14,

K58== K:8+ K;8 == -7 + (-7) == -14, K59 == K;9 == -14, K62 == K~2 == -14,

K63==K~3 ==-7, K65==K~5 +K:5==-7+(-7)==-14,

K66 == K~6 + K:6 == 28+ 28 == 56,

K68==K:8==-14, K69==K:9==-7, K74==K~4 ==-7, K75==K~5 ==-14,

K77 == K~7 == 28,

K78 == K~8 == -7, K84 == K:4 == -14, K85 == K:5+K~ == -7 + (-7) == -14,

K86 == K~ == -14,

K87 == K:7 == -7, K88 == K:8+ K:8== 28+ 28 == 56, K89 == K:9 == -7,

K95 == K:5 == -14, K96 == K:6 == -7, K98 == K:8 == -7, K99 == K:9 == 28.

The remaining coefficients equal zero. Global conductivity matrix [K
c

] has
the form
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28 -7 0 -7 -14 0 0 0 0

-7 56 -7 -14 -14 -14 0 0 0

0 -7 28 0 -14 -7 0 0 0

-7 -14 0 56 -14 0 -7 -14 0

[Kc ] = -14 -14 -14 -14 112 -14 -14 -14 -14 . (10)

0 -14 -7 0 -14 56 0 -14 -7

0 0 0 -7 -14 0 28 -7 0

0 0 0 -14 -14 -14 -7 56 -7

0 0 0 0 -14 -7 0 -7 28

Next, matrix [Ka] is determined

[x,]= [ K~ ]+[ K~ ] ' (11)

since heat transfer takes place on the lateral surface 1-2 of element CD and on

2-3 of element @. Matrix [K~] will be calculated using (7), from Ex. 11.12

1 2 5 4 1 2 5 4
2 1 0 o 1 2 1 0 o 1

[K~J = ai2
1 2 0 o 2 60·0.01 1 2 0 o 2 (12)

= =
0 0 0 o 5 6 0 0 0 o 5

0 0 0 o 4 0 0 0 o 4

1 2 5 4
0.2 0.1 0 o 1

0.1 0.2 0 o 2

0 0 0 o 5

0 0 0 o 4

Matrix [K~] will be calculated in a similar way.

2 3 6 5 2 3 6 5

2 1 0 o 2 0.2 0.1 0 o 2

[K~J = ai2
1 2 0 o 3 0.1 0.2 0 o 3 (13)

0 0 0 o 6 0 0 0 o 6

0 0 0 o 5 0 0 0 o 5
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Once matrix coefficients [K~] and [K~], with the same global indexes,

are added together, the following is obtained (index a in K a .. was omitted
,IJ

in order to simplify the notation)

K ll =K I\ =0.2; K l2 =Kl
1
2 =0.1; K 21 =K~l =0.1;

K 22 =K~2 + K~2 =0.2+ 0.2 =0.4; K 23 =K~3 =0.1;

K 32 =K:2 =0.1; K 33 =K:3 =0.2.

Matrix [Kal, which results from boundary conditions on the boundary 1­
-2-3, has the form

0.2 0.1 0 0 0 0 0 0 0

0.1 0.4 0.1 0 0 0 0 0 0

o 0.1 0.2 0 0 0 0 0 0

000000000

[Ka ]= 0 0 0 0 0 0 0 0 0 W/(m·K). (14)

000000000

000000000

000000000

000000000

Matrix [K] is obtained as a result of adding matrix [KJ formulated in
(10) and matrix [Kal formulated in (14)

28.2

-6.9

o
-7

[K] = -14

o
o
o
o

-6,9

56.4

-6.9

-14

-14

-14

o
o
o

o -7 -14 0 0

-6.9 -14 -14 -14 0

28.2 0 -14 -7 0

o 56 -14 0 -7

-14 -14 112 -14 -14

-7 0 -14 56 0

o -7 -14 0 28

o -14 -14 -14 -7

o 0 -14 -7 0

o
o
o

-14

-14

-14

-7
56

-7

o
o
o
o

-14 W (15)
mK

-7
o
-7
28

Next, one calculates the vectors on the right-hand-side of (31) from Ex.
11.10. Vector {fQe} is formulated in (3) from Ex. 11.13; it assumes the fol­
lowing form for the individual elements:
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1 1

• 2 1 2
{fJ} = qv: 1 5 W/m,

1 4

1 4

2 1 5
{f~} =qv: 1 8 W/m,

1 7

1 2

{fg}=Qv:
2

~ ~ W/m,

1 5

1 5

• 2 1 6
{f~} = qv: 1 9 W/m.

1 8

(16)

Global vector {fQ} is obtained as a result of summing up the elements of
vectors with the same global numbers.

1 250 1

2 500 2

1 250 3

• 2 2 500 4

{f
Q

} =qv; 4 1000 5 W/m. (17)

2 500 6

1 250 7

2 500 8

1 250 9

Vector {fa} will be calculated in compliance with (2) from Ex. 11.14.
Allowing for the fact that convection heat transfer is assigned on the sur­
face 1-2 of element CD and on the surface 2-3 of element @, vectors {fal

}

and {fa2
} have the form

1 1 6 1

1 2 6 2

0 0
Wlm,

0 0

1 2 6 2

1 3 6 3 W/m.=
0 0

0 0

(18)

(19)

As result of summing up the elements of vectors (18) and (19), with the
same global numbers, one obtains
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6

12

6

o
{fa} = 0

o
o
o
o

1

2

3

4

5 W/m.

6

7

8

9

(20)

Heat flux qB is assigned on surfaces 7-4 ( 4)-(1») and 4-1 ( 4)-(1»), of

the element ® and CD, respectively. Vectors {tI} and {t2} calculated ac-
q q

cording to (10) from Ex. 11.14 are

1 1000 1

{In = q;a 0 0
W/m,

0 0

1 1000 4

1 1000 4

{In = 4;a 0 0
W/m.a a

1 1000 7

(21)

(22)

Once these vectors are summed up (one should pay attention to the fact
that the elements with the same global numbers should be summed up),
one has

1000 1

0 2

0 3

2000 4

{J~} = 0 5 W/m. (23)

0 6
1000 7
a 8

a 9

The sum of vectors
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{f} ={fQ } +{fa} + {~} (24)

iso
250 6 1000 1256 1

500 12 0 512 2

250 6 0 256 3
500 0 2000 2500 4

{f}== 1000 + 0 + 0 == 1000 5 W/m. (25)

500 0 0 500 6

250 0 1000 1250 7
500 0 0 500 8

250 0 0 250 9

Global equation system [K] {T} = if} assumes the form

28.2 -6.9 0 -7 -14 0 0 0 0 t; 1256

-6.9 56.4 -6.9 -14 -14 -14 0 0 0 t; 512

0 -6.9 28.2 0 -14 -7 0 0 0 r, 256

-7 -14 0 56 -14 0 -7 -14 0 t; 2500

-14 -14 -14 -14 112 -14 -14 -14 -14 t; 1000 .(26)

0 -14 -7 0 -14 56 0 -14 -7 t; 500

0 0 0 -7 -14 0 28 -7 0 1:, 1250

0 0 0 -14 -14 -14 -7 56 -7 t; 500

0 0 0 0 -14 -7 0 -7 28 t; 250

The equation system (26) will be transformed with the boundary condition
(2), from which it follows that T

3
= T

6
= T

9
= lOOoe

28.2 -6.9 0 -7 -14 0 0 0 0 t; 1256
-6.9 56.4 0 -14 -14 0 0 0 0 t; 2602

0 0 1 0 0 0 0 0 0 t; 100

-7 -14 0 56 -14 0 -7 -14 0 t, 2500
-14 -14 0 -14 112 0 -14 -14 0 t; 5200 (27)

0 0 0 0 0 1 0 0 0 t; 100
0 0 0 -7 -14 0 28 -7 0 1:, 1250
0 0 0 -14 -14 0 -7 56 0 t; 2600
0 0 0 0 0 0 0 0 1 t; 100
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Global equation system (27) was solved using the Gauss elimination
method and thefollowing was obtained:

(28)

1; =180.20° C,

t, =240.68°C,

~ =100°C,

Tg =182.21°C,

t; =238.63°C,

1; =100°C,

r. =181.80°C,

1; =241.27°C,

~ =100°C.

Temperature distribution was also calculated by means of ANSYS pro­
gram, while the region was divided into 2500 elements. The following
temperatures wereobtained for nodes, whichcorrespond to nodes 1-9:

T, =238.51°C,

1; =100°C,

t; =181.67°C,

1; =241.09°C,

~ =100°C.

1; =180.15°C,

t; =240.53°C,

T, =100°C,

Tg =182.08°C,

(29)

The isotherm map is shown in Fig. 11.26.

I II (J F E D C B A

I

ANSYZ 5.5.3
OCT 6 2000
16: 28: 13
NODAL SOLUTION
STEP:}

SUB =1
TIME""1
TEM:P (AYG)

RSYS..O
PouTerGraphi.cs
EFACET"-'1
AVRES=Mat
:5mI ;;100
SMX ",241. 092
A =107.838
B =123. SIS
C =139.192
D =154.869
E =170.546
F ;;186.223
G =201. 899
H =217.576
I ""233.253

Fig. 11.26. Calculation results; calculations conducted by means of the ANSYS
program
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Exercise 11.19 Determining Two-Dimensional
Temperature Distribution in a Straight Fin with Constant
Thickness by Means of FEM

Determine temperature distribution in a fin by means of FEM. Assume the
following values from Ex. 7.3 for the calculation: a = 0.003 m, A =50
W/(m ·K), a = 100 W/(m2·K), T; =95°C, Tcz =20°C. Determine heat flow
at the fin base and fin efficiency.

i:
Fig. 11.27. A fin division into finite elements

y
B2 2 4 6 8 10 12 14 16

<4) <3> (4) (3) (4) <3) <4) <3) <4) <3) <4) (3) <4) <3) <4> (3)

a CD Q) CD @ CD ® (i) ®
0) <2) (I) (2) <I) (2) (I) (2) <I) <2) <r> <2) <r> <2> <I) <2)

B1 1 3 5 \a 7 9 11 13 15 x
a •

Solution

Temperature distribution will be determined at the mid-point of the fin due
to the symmetry of temperature field with respect to axis x. Table 11.4
contains local and global node numeration. Method II, discussed in Ex.
11.15, will be employed in the construction of the global equation system;
the method is based on the summation of weighted residuals for elements
with a common node. Due to the fact that the equations for individual
nodes have similar structure, the equation for node three will be created
and, subsequently, applied to nodes 1,5,7,9,11 and 13, while the equa­
tion for node 4 will be applied to nodes 2, 6, 8, 10, 12 and 14. Separate
equations will be created for nodes 15 and 16.

(1)

• Node 3

Node 3 is shared by elements ® and ® (Fig. 11.27). Thermal conduction
matrixes [K

c
2] and [K

c

3
] will be calculated according to (6) from Ex. 11.11,

while matrixes [K a
2

] and [K a
3

] according to (7) from Ex. 11.12. Matrixes
[K

c

2
] and [Ka

2
] are expressed as follow:

(1) (2) (3) (4)
4 -1 -2 -1 (1)

[K;]=A
6

-1 4 -1 -2 (2)
-2 -1 4 -1 (3)'

-1 -2 -1 4 (4)
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Table 11.4. Local and global node numeration

Element No. Local Node No. Global Node No.
(1) B1

CD (2) 1
(3) 2

(4) B2

(1) 1

®
(2) 3
(3) 4

(4) 2

(1) 3

®
(2) 5
(3) 6

(4) 4

(1) 5

@ (2) 7
(3) 8

(4) 6

(1) 7

@ (2) 9
(3) 10

(4) 8

(1) 9

@ (2) 11
(3) 12

(4) 10

(1) 11

(j) (2) 13
(3) 14

(4) 12

(1) 13

®
(2) 15
(3) 16

14

(1) (2) (3) (4)
2 1 0 0 (1)

[K~J= a; 1 2 0 0 (2) (2)

0 0 0 0 (3) .

0 0 0 o (4)
Stiffness matrix [K] is obtained by way of summing up matrices (1) and

(2) (coefficients with the same indexes are added up)
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(1) (2) (3) (4)
2A aa A aa A A (1)-+- --+- --
3 3 6 6 3 6
A aa 2A aa A A (2) .--+- -+- --

[K
2

] =[K; ] +[ K~ ] = 6 6 3 3 6 3
A A 2A A

-- -- - (3)
3 6 3 6
A A A 2A

(4)-- -- --
6 3 6 3

Matrixes [K
c

3
] and [Ka

3
] are calculated in a similar way.

(1) (2) (3) (4)
4 -1 -2 -1 (1)

[ 3J=-1 -1 4 -1 -2 (2)
x; ( ) ,6 -2 -1 4 -1 3

-1 -2 -1 4 (4)

(1)(2) (3) (4)
2 1 0 0 (1)

[
K 3 J=aa 1200 (2),

a 6 0 0 0 0 (3)

o 0 0 0 (4)

Rigidity matrix for element @ is as follows:

(1) (2) (3) (4)
2.,1 aa A aa A A (1)-+- --+- --
3 3 6 6 3 6
A aa 2.,1 aa A A (2)--+- -+- --

[K
3

] = [ K; ] +[ K~J= 6 6 3 3 6 3
A A 2A A

-- -- - (3)
3 6 3 6
A A A 2A

(4)-- -- --
6 3 6 3

(3)

(4)

(5)

(6)

Next, vectors ifa
2

} and ifa
3

} will be determined. According to (7) from
Ex. 11.14, one has
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1 (1) a~za/2 (1)

{f;} = a~za 1 (2) a~za/2 (2)
0 (3) 0 (3) ,

0 (4) 0 (4)
a~za/2 (1)

{f;}=
a~za/2 (2)

0 (3) .

0 (4)

(7)

(8)

Node 3, i.e. the node with global number 3, corresponds to local node
(2) in element ® and to node (1) in element ®. Therefore, in the equation
system for element ®

a~za/2

a~za/2

o
o

(9)

(10)

(11)

only the second equation is taken into consideration; it has the form

~

[
_ l + aa 2l + aa _ l _ l] 1; == a~za

6 6' 3 3' 6' 3 T4 2'
T2

(
_ A + aa)r. +(2A + aa)T _ AT _ AT == a~za .
66 133 3 6 4 3 22

In the equation system for element ®

1; a~za/2

[ K 3 ] t, aT;;za/2 (12)
~ 0
T4 0

only the first equation is taken into consideration; it has the form

1;

[2: + ~a, _ ~ + a
6a

, ~,_ ~] ~ a~za (13)

T4
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(
2A+aaJT +(_ A + aaJr _ AT _ AT = a~za . (14)
3 3 3 6 6 5 36 64 2

Once (11) and (14) are added, the equation for node 3 is obtained

( - ~ + ~aJ~ - ~ 1; + 2(2: + ~a )1; -~ T4 +( - ~ + a
6a

JTs - ~ t; = (15)
=a~za .

Analogically, one can write an equation for node 1

(
_ A + aaJT: _ AT: +2(2A + aa)r _ AT +(_ A + aa)T _ AT =

6 6 b 3 b 3 3 1 3 2 6 6 3 3 4 (16)

=a~za ,

which results in

2(2A + aaJr _ AT +(_ A + aaJr _ AT =(A - aaJT: +aT a. (17)
3 3 1 3 2 6 6 3 3 4 2 6 b cz

• Nodes 5, 7, 9, 11, 13

Equation (15) can be applied to nodes that lie on the surface, which re-
mains in contact with the medium; that excludes, however, node 15

(
_ A + aaJr _ AT + 2(2A + aa)r _ A t: +(_ A + aa)r - (18)

6 6 1-2 3 1-1 3 3 1 3 1+1 6 6 1+2

A
--1;+3 =aa~z; i=3, 5, 7, 9, 11, 13.

3

• Node 15

The equation for node 15 is obtained in a similar way as the equation for
node 3 in element ®. Analogically to (10), one can obtain the equation for
node 15

~3

[_ A + aa 2A aa A
- ~] ~5 a~za-+-

6 6' 33' 6 ' ~6 2

~4

(19)

from which, one obtains

(20)
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• Node 4

Convection heat transfer does not occure on the surface of elements (V and
®. The algebraic equation system for element (V has the form

t;

[K;] T; =0, (21)
t,
1;

where [K
c

2
] is formulated in (1).

The equation for node 4 (the third equation in the system (21)) has the
form

A
-[-2 -1 4 -1]6 ' , , (22)

_ 2 1: - 2 T + 22 T _ 2 T = 0 .
3

16 3
3

46 2

The equation system for element ® has the form

1;

[K;] t; =0,
t;
t,

(23)

(24)

where [K
c

2
] is formulated in (4).

The equation for node 4 (the fourth equation in the system (24)) has the
form

1;

A[-1 -2 -1 4] t; = 0 ,
6 ' , , ~

t;
from which, one obtains

(25)

(26)
A A A 2A

--T, --1'. --T +-T =0.
6

33 56 6
3

4

Once (23) and (26) are added together, an algebraic equation (heat bal­
ance) for node 4 is obtained
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_AT. _ AT _ AT + 4A T _ AT. _ AT = 0 . (27)
3 1

6
23 3 3

43 56 6

Equation for node 2 can be written analogically (indexes are reduced by 2
and the boundary conditions are accounted for)

A A A 4A A A
--1', --1', --1'. +-T --T --T =o·

3 b 6 b 3 1 3 23 36 4 '

hence, one gets

A 4A A A A
--1'. +-T --T --T =-1', .

3 1 3233642 b

(28)

(29)

(31)

• Nodes 6, 8, 10, 12, 14

One can write a general equation for nodes 4, 6, 8, 10, 12 and 14 on the
basis of (27)

_AT. _AT. _AT. +4A T_ AT. _AT =0
3 1-3 6 1-2 3 1-1 3 I 3 1+1 6 1+2' (30)

i =4, 6, 8, 10, 12, 14.

The equation system for element ® has the form

~3

[ K 2 ] 1;5 = 0
C T: '

16

~4
since [K

e

8
] = [K

e

2
] . [K

e

2
] is formulated in (1).

• Node 16

The equation for node 16 (the third equation in the system (31)) has the
form

hence, one has

~3

A[_2 -1 4 -1] 1;5 =0,
6 ' " ~6

~4

(32)

(33)_AT. _ AT. + 2A T. _ AT. = 0
3 13 6 15 3 16 6 14 •

The equation system made of (17), (18), (20), (29), (30) and (33) defines
node temperature distribution. Such system has the form



(34)

(35)
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2(2.,,1, + aaJr. _ AT +(_ A + aaJT _ AT ==(.,,1, - aaJ~ +aT a
3 3 1 3 2 6 6 3 3 4 2 6 b cz'

(
_ A +aaJT _AT +2(2A+aaJT_ AT +(_A+aaJT _

6 6 t-: 3 z-1 3 3 z 3 1+1 6 6 1+2

- A T;+3 =aaT;,z' i =3,5, 7, 9, 11, 13,
3

(
_ A + aaJr. +(2.,,1, + aaJT _ AT _ AT = aT;,za

6 6 13 3 3 15 6 16 3 14 2

_ A I. + 4AT _ AT _ AT = A I.
3 1 3 2 3 3 6 4 2 b'

A A A 4.,,1, A A
--T 3 --T 2 --T 1+-T --T I-- Tz'+2 ==0,3 z- 6 z- 3 z- 3 z 3 1+ 6

i == 4,6, 8, 10, 12, 14
A A 2.,,1, A

--T13 - - 1;.5 + -1;.6 - - 1;.4 == 0.
3 6 3 6

The equation system (34) will be solved using the Gauss-Seidel method;
due to this reason, it will be written in the form

1; = 1 .[ 21; + (1- Bi)1; + 2~ + (3- Bi)1;, + 6BiT;,z ]
8+4Bz

T; = 8+~Bi[(I-Bi)T;-2 +2T;~, +21;+1 +(3-Bi)1;+2 +21;+3 +6Bi1:J, (35)

i == 3, 5, 7, 9, 11, 13

1;5 =4 +1
2BJ

(1- Bi)1;3 + 21;4 + 1;6 + 3BiT;,zJ

1
1; ==-(21;. +21; +~ +3~)

8
1

1;=g(2T;-3 + T;-2 + 2T;_, + 2T;+, + T;+2)' i =4, 6, 8,10,12,14

1
1;.6 == -(21;.3 + 1;.4 + 1;.5)'

4

where Bi = 001A is the Biot number.
This system will be solved using the same data that was given in Ex.7.3:

a = 0.003m, A = 50 W/(m·K), a = 100 W/(m
2·K), T; = 95°C, Tcz = 20°C,

Bi = OO/A = (100·0.003)/50 =0.006. If we assume that calculation toler­
ance 8 = 0.00001 K in Gauss-Seidel method is the solution to system (35),
we will obtain the results, which are shown in Table 11.5.



Exercise 11.19 Determining Two-Dimensional Temperature Distribution 293

Table 11.5. Temperature in control volume nodes shown in Fig. 11.27

91.88
92.09
89.34
89.55
87.22
87.42
85.50
85.70

Next, we will calculate heat flow

• a ( ar: ) a aTl
Q=2f -,1- dy=-2,1f- dy,

o ax x=o 0 ax x=o
(36)

where TI(x, y) stands for the temperature distribution in element CD, formu­
lated as

where,

N; =;(1- ~}
N~ =;, N~ = ~ (1-~).

Derivative aTI/ax is

ar l

== (ON: + oN~)T. + aN; T. + oN~ t:
ax ax ax b ax 1 ax 2'

where

(37)

(38)

(39)

aN: =-!(l-y],
ax a a

aN~ == -!'(l- y],
ax a a

(40)
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By substituting (40) into (39), one obtains

aT! 1; -~ ~-1;
-==--+--2-Y 'ax a a

while after substitution of (41) into (36) and integration, one has

. [ 1( )] ( 1; +t:JQ=-22 1;-1;,+"2 1;-1; =22 1;,--2- W/m.

(41)

(42)

Maximum heat flow given off by an isothermal fin with the base tem­
perature T, is

Qmax == 2· 8aa(~ - ~z) == 16aa(~ - ~z)· (43)

Fin efficiency is defined as

. 2A(r. - 1; +~)
Q b 2

'I - -- - ------- c, - 16aa(~ - ~z)

r._1;+T2

1 b 2

8Bi ~ -~z
(44)

where Bi = aa/A.
After substitution of the numerical values, one obtains

95- 91.90+92.14

== 1. 2 == 0.828 .
1] 8.0.006 95-20

(45)

As one can see, the determined fin efficiency differs from the value tl,=
0.887 obtained by means of the analytical formula (Ex. 7.3). Relative error
is at

!:!'1]= 1]-1]e .100%= 0.828-0.887 ·100%=-6.6%. (46)
'Ie 0.887

Rather large error ~1] arises from the approximation of medium tempera­
ture gradient within the width of fin thickness by means of difference quo­
tient

at =~}aTI dy=~(1;,_1;+1;J
ax x=o a 0 ax x=o a 2

with an accuracy of 1st order.

One should add that heat flow Q at the fin base can be also calculated

from formula
(47)
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where qb is the heat flux at the fin base. Aside from the given fin base

temperature, assigned at points B
1

and B
2

(Fig. 11.27), temperatures in
nodes 1 and 2 (global numeration) are known from the FEM calculations.

The equation system for element CD has the form

1;;

[K~J ~ ={~}, (48)

1;;

where ~} follows from the heat flux qb assigned at the fin-base. Because

qb is assigned on the side (4)-(1) of element CD, vector ~} has the form

then

qba/2
o
o

qba/2

The first equation in the system (48) has the form

1;;

,1[4 -1 -2 -1] 1;
6 1;

1;;
hence, we have

4A 1: _ A T _ 2A T _ A 1: = qba

6 b6 1 6 26 b 2·

Heat flux qb at point B1 determined from (51) is

. - A(r. _t; +2T2 J
qb - b •

a 3

The fourth equation in the system (49) has the form

1;;

A[_I -2 -I 4] t; =qba

6 1; ~'

t;
hence, we obtain

(49)

(50)

(51)

(52)

(53)



(54)

(55)

(56)
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_ AT. _ 2..1 T. _ AT + 4..1 T. = qba .
«: 6 16 2 «: 2

Heat flux qb at point B2 determined from (54) is

. - A(T _2~ + T2 J
qb - 1 b •

a 3

Arithmetic average of the heat flux in nodes B1 and B2 given by (52) and
(55) is

qb = ~ ( t; - ~ ~T
2J.

By substituting (56) into (47), (42) is obtained. Both methods for calculat­
ing heat flux give identical results.

In order to improve accuracy, fin efficiency will be calculated using a
different method.

Heat flow given off by the fin can be expressed in the following way:

Fin efficiency determined by means of FEM is

1]=-JL= 319.785 =0.888.
c, 360

(59)

Relative error from the determination of efficiency is

111] = 1] -1]e .100% = 0.888-0.887 .100% = 0.112%,
'Ie 0.887

This method, therefore, is much more accurate than the earlier presented

method in which Qis determined from (42).
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Exercise 11.20 Determining Two-Dimensional
Temperature Distribution by Means of FEM in a Straight
Fin with Constant Thickness (ANSYS Program)

Determine temperature distribution and efficiency of a fin presented in Fig.
11.28. For the calculation, adopt the values from Ex. 7.3: w = 0.003 m, 1 =
0.024m, a = 100 W/(m ·K)2, t; =95°C, t; =20°C, A =50 W/(m·K).
Calculate fin efficiency for cases a) and b) presented in Fig. 11.28, i.e.
when the fin tip is thermally insulated and heat transfer occurs at the tip.
Furthermore, for the case a) determine fin efficiency by means of the
analytical formula; make use of the results obtained in Ex. 7.3.

a) y
li'

b) y
w

o

7:'"7.....""

a

x

o

1:'"7....'"

(1

x

Fig. 11.28. Diagram of a fin with constant thickness: (a) fin tip thermally insulated,
(b) heat transfer occurs between the fin and surrounding at the tip

Solution

Calculations were carried out by means of the ANSYS program, used for
calculating by FEM. Half of the fin cross-section was divided into 288 ele­
ments. Temperature was calculated in 343 nodes (Fig. 11.29). In a case
when the fin tip is thermally insulated (Fig. 11.28a), temperatures of the tip
calculated by means of the analytical formulas are (Ex. 7.3)

T(O, 1) = 82.67°C T(w, 1) = 82.48°C.

Corresponding approximate temperatures obtained by means of FEM are

T(O, l) = 82.67°C T(w, l) = 82.49°C.
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....
x

(1)

y

Fig. 11.29. Division of the half of fin cross-section into finite elements

The results obtained by means of the analytical solution and FEM are in a
very good agreement.

Fin efficiency will be calculated from formula

Q
17=-·-,

c,
where Q is the fin-to-surroundings transferred heat flow, which is formu­

lated as

Q=2'Qxl w.x=o
(2)

In the case of the analytical solution, the mean heat flux at the fin base

qxL~o calculated by means of (7) from Ex. 7.3 is at qxL~o =53253 W/m
2

•

Therefore,

Q= 2·53253·0.003 = 319.52 W/m . (3)

Maximum heat flow Qmax' i.e. heat flow transferred by an isothermal fin

with fin base temperature T, is formulated as

e., =2al(~ -~z)=2.100·0.024(95-20)=360W/m. (4)

Fin efficiency calculated by means of the analytical solution is

17=-fL= 319.52 =0.8876.
Qmax 360

(5)

Heat flow at the fin base determined by means of FEM for the fin shown
in Fig. 11.28a is

Q=Qb =2·157.88=315.76 W/m.

Fin efficiency calculated by means of FEM is

17=-2-= 315.76 =0.8771.
Qmax 360

(6)

(7)
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and is very close to the value of 1] = 0.8876 obtained by means of the ana­
lytical solution.

One can specify the heat flow given off by the fin, if the heat flow trans­
ferred by the lateral fin surfaces is determined first.

I

Q=2 fa[T(w,y)- t; ]ely =319.5 W/m;
o

Next, efficiency 1] =0.8875 is obtained from (7) and is almost identical to
the one obtained from the analytical formula. It is evident, therefore, that
node temperatures are more accurately calculated in FEM than the bound­
ary heat flux.

a) MN b) lIN

A.

B

c

o

E----
F

G

H

I

ANSYS 5.5.3
OCT 29 2000
18~48:27

NODAL SOLUTION
SUB =1
TIME=1
TEMP (AVG)
RSYS=O
Power-Graphics
EFACET=l
AVRES=Mat,
3MN =82.49
SMX =95
A =83.185
IS =84.575
C =85.965
D =87.355
E =88.745
F =90.135
G =91. 525
H =92.915
I =94.305

B

c

D

E

F

(J

H

A.NSYS 5.5.3
OCT 29 2000
20:03:37
NODAL SOLUTION
STEP=!
SUB =1
TIME=1
TEl'-'tP (AVG)
P.3YS=0
POl\<JerGraphics
EFACET=1
AVRES=Mat
SMN=79.932
SMX =95
A =80.769
B =82.443
C =84.117
D =85.792
E =87.466
F =89.14
G=90.814
H =92.489
I =94.163

Fig. 11.30. Layout of isotherms in the fin cross-section: (a) thermally insulated fin
tip; T(O, l ) =82.67°C, T(w, l) =82.49°C; (b) heat transfer at the fin tip; T(O, l) =
so.n-c, T(w, l) = 79.93°C

Next, temperature distribution and fin efficiency were calculated, while
a consideration was given to a tip heat transfer. The layout of isotherms in
the fin cross-section is presented in Fig.ll.30b. As one can see, temperatures
T(O, I) = 80.11°C, T(w, I) = 79.93°C are slightly lower than they are in the

case when the fin tip is thermally insulated. Also the maximum flow Qmax

calculated from formula
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Qrnax =2a(l + w)(~ - ~z) =2 .100(0.024 + 0.003)(95 - 20) =405 Wlm

is larger due to the fin tip heat transfer. Heat flow at the fin base calculated

by means of FEM is at Q=o; =345.84 W/m. Fin efficiency, therefore, is

1] = jL = 345.84 = 0.8539 .
e., 405

The above value approximates the obtained value, while the heat transfer
at the fin tip is neglected (7). In spite of the fact that fin efficiency is low,
the fin-diffused heat flow is large, since the heat transfer takes place at the
fin tip.

Exercise 11.21 Determining Two-Dimensional
Temperature Distribution by Means of FEM in a
Hexagonal Fin with Constant Thickness (ANSYS Program)

Determine temperature distribution and fin efficiency by means of FEM. Fin
diagram, which results from plate fin division, is presented in Fig. 11.31. For
the calculation, assume the values from Ex. 6.20: thickness of the plate-fin
t =0.000115 m, d =0.00759 m, A = 165W/(m·K), a =40 W/(m

2·K); T; =
100°C; Tez = O°C. Compare calculated fin efficiency value with the values
obtained in Ex. 6.20.

Solution

Calculations were carried out by means of FEM and ANSYS programs.
The analyzed region was divided into 1377 elements (Fig. 11.32). Tem­
perature was determined in 2934 nodes. The layout of isotherms on the fin
surface is shown in Fig. 11.33. Note that temperature on the outer fin
boundary is non-uniform due to the irregular shape of the fin. Maximum
temperature on the outer boundary is Tmax = 93.162°C, while minimum
T

min
=90.379°C. Temperatures at characteristic points marked in Fig. 11.31

are, correspondingly: T
1

= 91.56°C, T2 = 90.47°C, T3 = 90.38°C,
T

4
= 100°C, T

5
= 100°C.

Fin efficiency will be calculated from formula

Q
17=-·-,c., (1)



(2)

(3)
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where c, is the heat flow transferred by the isothermal fin whose base

temperature is T
b
= 100oe; the heat flow is formulated as

Qmax =aAi(~ -J:z)'
while (Fig. 6.24, Ex. 6.20)

( ~d2)Ai =2 2AoAB + 4AaBC - 4 =2(2 .2.1 089.10-5 +

+ 4.5.6156.10-5
- 4.52452.10-5

) = 4.43·10-4 rrr'.

Maximum heat flow Qmax is at

Qmax =40.4.43.10-4
• (100- 0) =1.772 W.

4~02 mm
3

E
L E

N

21,38 mm

Fig. 11.31. Diagram of a conventional fin after plate-fin division

Fin-transferred heat flow Qcan be determined from formula

(4)

where Ai is the lateral area of the fin surface that exchanges heat with sur­

roundings, while Tsr is the average temperature of the fin surface formu­
lated as

fJ:dA IJ:r,e·Ae
T = _Az__ ~ _e=_l _

sr A. A.·
z z

(5)



302 11 Solving Steady-State Heat Conduction Problems

Fig. 11.32. Division of 1/8 of a fin cross-section into finite elements

A

B

c

ANSYS 5.5.3
NOV 7 2000
18 :45:44
NODAL SOL UTION

STEP=1
SUB =1

TIME=!
TEMP
SMN =90.379
SMX =100
A =90.913
B =91.982
C =9:3.051
D =94.12
E =95.189
F =96.258
G =97.327
H =98.396
I =99.465

Fig. 11.33. The layout of isotherms on the fin surface
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Temperature T, is the temperature of the fin outer surface, which is in con­
tact with surroundings. Temperature T is the average temperature of the
element's surface exposed to surroundings, while A

e
is the element's sur­

face area from the side exposed to surroundings. Symbol N, stands for the
number of elements, which the analyzed region was divided to.

Average temperature determined from (5) by means of the ANSYS pro-
gram measures T

sr
=93.80°C. Such method of determining fin-transferred

heat flow Qis more accurate than the method that uses formula

.. (dT)1Q=Qb =1rdt - A, - ,
dr r=d/2

(6)

since an accurate determination of A,(dT/dr) in FEM enforces the need to
divide the region into a very large number of elements.

Fin-transferred heat flow Q determined by means of (4) with the help

of the ANSYS program comes to

Q=1.6622 W.

It is a heat flow transferred by lateral fin surfaces. Fin efficiency is at

1] = -fL- = 1.6622 = 0.9380 .
«, 1.772

Calculated efficiency differs insignificantly from the efficiency of the
equivalent circular fin lJ

e
=0.9394 and from the fin efficiency determined

by means of the segment method, equal to tl, = 0.9373.

Exercise 11.22 Determining Axisymmetrical Temperature
Distribution in a Cylindrical and Conical Pin by Means of
FEM (ANSYS Program)

Determine temperature distribution in cylindrical and conical pins, shown
in Fig. 11.34, by means of FEM and with the use of the ANSYS program.
Pins of this kind are used in gas-fired cast-iron heating boilers with an aim
to increase the heat flow transferred from combustion gases to water. Pin
dimensions are given in Fig.11.34. Both pins are almost identical in vol­
ume. Assume the following values for the calculation: water temperature
T =75°C, temperature of combustion gases T =400°C. Thermal conduc-

w ~

tivity of the material from which the wall and pins are made of is A, =
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a) b)
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Fig. 11.34. Pinned heating surfaces: (a) cylindrical pin, (b) conical pin

48 W/(m·K). Heat transfer coefficients on the water and combustion gases
side are, respectively a

w
= 1000 W/(m2·K) and a

sp
= 80 W/(m2·K).

Draw the layout of isotherms in the longitudinal cross-section of the
pins and determine maximum temperatures. Also calculate pin-transferred
heat flows from combustion gases to a boiler wall by determining heat

flow at the base of the pins Qb for the coordinate z = 0.004 m. Which of

the pins ensures a larger flow of transferred heat when maximum tempera­
ture is decreased? Calculate temperature distribution and heat flux at the
base of the cylindrical pin by means of the formulas obtained when a radial
temperature drop is neglected.

Solution

Temperature in the cylindrical pin was determined in 3401 nodes when
longitudinal cross-section was divided into 3195 elements (Fig. 11.35a),
while in the conical pin in 3647 nodes when longitudinal cross-section was
divided into 3439 elements (Fig. 11.35b).

Maximum temperature of the cylindrical pin at Tw,max = 186.65°C is lar­
ger than the maximum temperature of the conical pin at Ts,max = 150.747°C
(Fig. 11.36). A lower maximum temperature of the conical pin is due to
the fact that the pin has a more advantageous shape, since the surface area
of the cross-section becomes larger as the heat flow, which is conducted
through the pin's cross-section increases too.
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a) b)

Fig. 11.35. Half of the pin's longitudinal cross-section divided into finite ele­
ments: (a) cylindrical pin, (b) conical pin

In the case of the cylindrical peg, constituent heat flux qz = -AiJT/8z is

much larger near the base than anywhere else and that contributes to a
large increase in pin temperature within this region. Following that, heat
flow at the pin base z = 0.004 m were calculated from formula
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Fig. 11.36. Layout of isotherms on the pin surface: (a) cylindrical pin, (b) conical
pin
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where 'b = 0.003 m for cylindrical pin, 'b = 0.004 m for conical pin and r
=0.0015 m.

For cylindrical pin o: = 8.892 W, while for conical pin o;=
8.456 W. As one can see, the shape of the conical pin is a very advanta­
geous, since in spite of the fact that the flow of transferred heat is almost
the same, the temperature at the tip is much lower than it is at the tip of the
cylindrical pin. Temperature of the cylindrical pin can be approximately
calculated from the formula below (while disregarding radius at the curves
and radial temperature drop):

( )
_ (_ ) cosh [ m(z-L-0.004)J

Tz-T:p+~ T:p ,
coshmL

where T, is an average temperature at the peg base determined by means of
FEM. This temperature measures approximately T, ~ 118.469°C. Parame­
ter m formulated as

m=J4asp
Ad '

where d is the peg's diameter, measures

4·80
m== ==33.33(3)l/m.

48 ·0.006

Therefore, the tip temperature of the cylindrical pin is

1
T(L + 0.004) =Tw max =400+ (118.469 -400) ( )

, cosh 33.3333·0.0225

= 182.548°C.

(2)

As one can see, this temperature is close to the temperature Tw,max =
186.65°C obtained by means of FEM. Heat flow at the pin base can be
calculated from formula

Q=_ Jrd
2

AaT =-A Jrd
2

m(I;,_I;p)tghmL=_48JrO.~062 x

4 8z z=0.004 4 (3)

x 33.3333(118.469 - 400)tgh(33.3333. 0.0225) == 8.0893 W.

The obtained value approximates the value determined by means of FEM,

which is equal to o.. = 8.892 W. However, from the calculations carried

out with the use of FEM, it is clear that pin-base-temperature is higher than
the pin-free wall temperature from the combustion-gases-side, i.e. wall te­
mperature for z = 0.004 m at a significant distance from the pin axis for,



Literature 307

e.g. r > 2d. Due to the application of FEM, one can use the actual dimen­
sions of the pins shape in the calculation, e.g. the curved edges or the two­
dimensional character of the temperature field in the pin and the wall, to
which the pin is attached.
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