


Solving Direct and Inverse Heat Conduction Problems



Jan Taler Piotr Duda

Solving Direct and
Inverse Heat Conduction
Problems

~ Springer



Professor Jan Taler
Dr. Piotr Duda
Cracow University Technology
Institute of Process and Power Engineering
AI. lana Pawla II 37
3 I -864 Krakow, Poland

Library of Congress Control Number: 2006925848

Additional material to this book can be downloaded from http://extras.springer.com

ISBN-IO 3-540-33470-X Springer Berlin Heidelberg New York
ISBN-I3 978-3-540-33470-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and techbooks using a Springer Ib-TEX macro package
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: I 1588993 89/techbooks 5 4 3 2 I 0



Preface

This book is devoted to the concept of simple and inverse heat conduction
problems. The process of solving direct problems is based on the tempera­
ture determination when initial and boundary conditions are known, while
the solving of inverse problems is based on the search for boundary condi­
tions when temperature properties are known, provided that temperature is
the function of time, at the selected inner points of a body.

In the first part of the book (Chaps. 1-5), we have discussed theoretical
basis for thermal conduction in solids, motionless liquids and liquids that
move in time. In the second part of the book, (Chapters 6-26), we have
discussed at great length different engineering problems, which we have
presented together with the proposed solutions in the form of theoretical
and mathematical examples. It was our intention to acquaint the reader in a
step-by-step fashion with all the mathematical derivations and solutions to
some of the more significant transient and steady-state heat conduction
problems with respect to both, the movable and immovable heat sources
and the phenomena of melting and freezing. Lots of attention was paid to
non-linear problems. The methods for solving heat conduction problems,
i.e. the exact and approximate analytical methods and numerical methods,
such as the finite difference method, the finite volume method, the finite
element method and the boundary element method are discussed in great
detail. Aside from algorithms, applicable computational programs, written
in a FORTRAN language, were given. The accuracy of the results obtained
by means of various numerical methods was evaluated by way of compari­
son with accurate analytical solutions.

The presented solutions not only allow to illustrate mathematical meth­
ods used in thermal conduction but also show the methods one can use to
solve concrete practical problems, for example during the designing and
life-time calculations of industrial machinery, combustion engines and in
refrigerating and air conditioning engineering.

Many examples refer to the topic of heating and thermo-renovation of
apartment buildings. The methods for solving problems involved with
welding and laser technology are also discussed in great detail.

This book is addressed to undergraduate and PhD students of mechani­
cal, power, process and environmental engineering. Due to the complexity
of the heat conduction problems elaborated in this book, this edition can



vi Preface

also serve as a reference book that can be used by nuclear, industrial and
civil engineers.

Jan Taler is the author of the theoretical part of this book, mathematical
exercises (excluding 12.1 & 12.3), and C, D & H attachments (found at the
back of this book).

Piotr Duda wrote in the FORTRAN language all presented programs
and solved with their help exercises 7.3, 11.2-11.7, 15.1, 15.2, 15.4, 15.5,
15.7, 15.8, 15.11, 15.13, 15.15, 16.5, 16.9, 16.10, 17.7, 18.5-18.8,21.5,
21.7-21.10, 22.7, 23.3-23.7, 24.4 and 24.5. He also carried out calcula­
tions using the following programs: ANSYS (in Exercises 11.18-11.22,
12.4, 21.9 and 25.10), BETIS (in Exercise 12.4) and MathCAD (in Exer­
cises 14.10, 16.2,16.4,17.6 and 25.10). Furthermore, Piotr Duda is the au­
thor of Exercises 12.1 and 12.3, and attachments A, B, E, F and G.

Krakow
June, 2005.

Jan Taler
Piotr Duda
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PART

Heat Conduction
Fundamentals

Heat conduction is, aside from convection
and radiation, the basic form of heat transfer. It is the
only type of heat flow that occurs in non-transparent

solids. In the cases of gases and fluids, heat
conduction usually occurs in combination with other

forms of conduction, such as convection and
radiation.



1 Fourier Law

In order to describe heat conduction phenomena, one usually uses a law
formulated by Fourier [2], which has the following form for one­
dimensional problems:

q"=-1 aT
ax ' (1.1)

where, q is the heat flux expressed in W/m2
, A - a thermal conductivity in

W/(m·K), T - a temperature in °C or K, while x - a coordinate in m.
The minus sign in (1.1) testifies to the fact that heat flows in the direc-

tion of the decreasing temperature. Therefore, derivative oT/ox is negative
(Fig. 1.1), so in order to obtain positive value q, the minus sign occurs on

the right side of (1.1). In such a case, the direction of x axis and of the heat
flux vector are the same.

a)

T

oT <0
Ox

heat conduction
c:::>

x

b)

T

oT >0
Ox

heat conduction
~

x

Fig. 1.1. Schematic diagram that illustrates the sign change of the first derivative
of function T(x, t), which describes temperature changes

If T(x, t) is an increasing function (Fig. 1.1b), then one obtains a nega­
tive value of qfrom (1.1). If one assumes that the value of heat flux qis
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always positive, then the minus sign in (1.1) should be omitted in the case
depicted in Fig. 1.1b.

In general, the heat flux vector is defined by Fourier law

q=-AVT, (1.2)

where, V T = grad T is a temperature gradient, a right angle vector to an
isothermic surface turned in the direction of a given point, where the func­
tion increases most rapidly.

Hamiltonian vectorial operator, also described as nabla, has the follow­
ing form in the three basic coordinate systems:

• in the Cartesian coordinate system (x, y, z) (Fig. 1.2a)

a a a
V =ex-+ey-+ez - 'ax ay az

where, e =i, e =J., e =k,x y z

• in the cylindrical coordinate system(r, 0, z) (Fig. 1.2b)

a 1 a a
V=e -+e --+e -

r ar °rao z az '
• in the spherical coordinate system (r, 0, cp) (Fig. 1.2c)

a I a I a
V=e -+e --+e ---

r ar () r aB ({J rsinO alp ,

(1.3)

(1.4)

(1.5)

where unit vectors e, e , e , e , eo, e and e, eo, em, constitute an orthogonal
x y Z r Z r -r

local base in the Cartesian, cylindrical and spherical coordinate system re-
spectively.

If Hamiltonian operator is known (1.3-1.5), it is easy to write a heat
conduction equation in different coordinate systems. Thermal conductivity

a)

y

z

/

x

b)

..........

x

c)
z

y'

r x

Fig. 1.2. Orthogonal coordinate systems: a) cartesian, b) cylindrical, c) spherical
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A may be temperature or location dependent. For isotropic bodies, the
thermal conductivity is a scalar. In the case of anisotropic bodies, the heat
conduction coefficient is a 2nd order symmetrical tensor. Fourier Law has
in this case the following form:

q=-A·VT,

where A is a 2nd order symmetrical tensor

-, Axy -,
A= Ayx Ayy -,-, Azy Azz

(1.6)

(1.7)

(1.8)

(1.9)

Therefore, the coordinates of the heat flux vector have in the Cartesian
coordinate system the following forms:

· (aT aT aT]qx =- Axx-+Axy-+Axz- ,ax By az

· (aT et aT]qy =- AYX-+Ayy-+Ayz- ,ax By az
· (aT or aT]
qz = - Azx ax + Azy By + Azz & ·

It can be proved that it is always possible to find three mutually or­
thogonal directions in space, such that

Aij :;t: 0 for i = j ,

Aij = 0 for i :j:. j .

These directions are called the principal directions ofan anisotropic body.
When principal directions are parallel to an axis of an assumed coordinate
system, the conduction tensor is simplified to the following form:

A= 0

o
(1.10)

Heat flux vector components are then defined as follow:

. A aT
qx =- xx ax ' (1.11)
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Heat flux normal component on the body's surface is defined using the
following formula:

q.n = -A· V'T·n = (llxnx +«», + qznz) , (1.12)

where, nx=cos(n,x), ny=cos(n,y), nz=cos(n,z) are directional cosinuses of
a normal to a surface.

If heat flow reaches the body surface, then the product it·n has a nega­
tive value, since angle tp between normal n directed to the outside of the
body and heat flow it directed to the inside of the body is larger than Te12.

Scalar product it.n is then smaller than zero.

Literature

1. Bird RB, Stewart WE, Lightfoot EN (2002) Transport Phenomena. Sec. Ed.,
Wiley, New York

2. Fourier JB (1822) Theone analytique de la chaleur. Paris
3. Trajdos T (1971) Tensor analysis. Mathematics. Engineer's guide (in Polish).

WNT, Warszawa



2 Mass and Energy Balance Equations

In this chapter, we will discuss mass and energy conservation equations
while allowing for the fact that a solid can be mobile. Such situation oc­
curs in processes of continual steel casting, during the transport of loose
materials and in number of other processes.

2.1 Mass Balance Equation for a Solid that Moves
at an Assigned Velocity

Mass and energy balance will be calculated for a finite sector of a conduc­
tive area with a time-invariable volume V and surface A (Fig. 2.1).

dA=ndA

A
v

Fig. 2.1. Mass flow with velocity w to the inside of volume V through surface A

Only a normal component of the mass flow penetrates through the ex­
ternal surface to the interior

where

Wn =-w·n.

One should note the scalar product sign

wn = Iwllnlcoslp = W cos e = wn '

since Inl = 1 (Fig. 2.2).

(2.1)

(2.2)

(2.3)
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If mass flow is directed to the interior of the control volume V, it should
have a positive value. Normal vector is a unitary vector directed to the out-
side. This means that for angles tp > 900

, when w is directed to the inside
of the control volume, product w-n has a negative value. In order to obtain
a positive value of w n product, when w is directed to the inside, one
should add a minus sign in front of this product.

/
Fig. 2.2. The determination of a normal component w

n
of W vector

Mass balance conservation equation has the following form:

(2.4)

(2.5)~ fpdV=- fpw·ndA.
at v A

Gauss-Ostrogradski equation is used to transform the right-hand-side

fF .ndA = fV . FdV,
A v

(2.6)

where F is a vector of continual partial derivatives, while V is a Hamilto­
nian operator, formulated as

n .e .a k a
v=l-+J-+ -.ax 8y az (2.7)

After the transformation of the right-hand-side of (2.5) with (2.6), one
obtains

~ fpdV =- fV .(pw)dV.
at v v

Since the control volume boundaries are not time-dependent, the time
derivative can be inserted in place of an integral. Additionally, after mov­
ing the right-hand-side of the equation to the left side, one obtains



(2.8)

(2.9)

(2.10)

(2.11)

2.2 Inner Energy Balance Equation 9

f[OP +V"(PW)]dV=O.
v at

Equation (2.8) is satisfied for every volume V, including a small volume.
If V ~ 0, then one obtains from (2.8) the following:

Op +V'.(pw)=O.
at

This is a continuity equation written in a differential form. For Cartesian
coordinates, it assumes the form

Op + o(PWx) + o(pwy) + o(pwz) = 0 .

at ill ~ ill

Substantial derivative will be entered below in order to shorten the no­
tation.

D a a a a a
-=-+wx-+w -+wz-=-+w·v.Dt at ax Y ay az at

Such derivative shows how fast a parameter changes in time from the
point of view of an observer, who moves along with the substance itself.

Continuity (2.9) can be expressed then in the following form:

Dp-+p(v.w)=o.Dt

2.2 Inner Energy Balance Equation

(2.12)

Inner energy balance equation for the control volume has the following
form:

~ fPUdV=- fpuw ·ndA - fpp Dv dV -
at v A v Dt

-fq ·ndA + ftlv dV + flPdV.
A v v

(2.13)

Below, we will analyze the inner energy general balance equation for
gases, liquids or solids, which move at w velocity, since heat conduction
occurs not only in solids but also in gases and liquids. The integral can be
found on the left-hand-side of the (2.13); it shows the inner energy
changes that occur in time in volume V. The first term on the right-hand­
side represents the inner energy flow, which moves to the control volume.
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The second term represents reversible compression work of a medium con­
tained within the control volume with respect to a unit of time. With con­
sideration to the equation of continuity (2.12), the second expression on
the right-hand-side (2.13) can be formulated in the following way:

J Dv JP Dp J(- pp-dV= --dV=- p V·w)dV.
v Dt v P Dt v

(2.14)

Reversible compression power is utilized for a density change of a me­
dium p and contributes to a change in inner energy contained within the
control volume V.

The third expression on the right-hand-side of the equation is the con­
duction-transferred energy flow. The fourth expression represents the
power of volumetric heat sources of density s.. which can be the function

of position r, temperature T or time t. Dissipation function f/J is an irre­
versible power of internal friction forces, which influence the moving liq­
uid particles. From Gauss-Ostrogradski theorem (2.6) applied to the first
and third expression on the right-hand-side of the (2.13) and upon
consideration of (2.14), one obtains

J[~(pu) + V'.(puw) + p(V'.w) +V'.q - iJv - (j)]dV =O.
v at

when V~ 0, the (2.15) assumes the following form:

:t (pu) + V' ·(puw) =-V'.q - p(V"w) + iJv + (j).

(2.15)

(2.16)

The left side of the (2.16) can be transformed in the following way:

a(pu) au ap a ( )--+v.(puw)=p-+u-+- upw +at at at ax x

+~(upwy )+~(upwz )=
By az

=u[op + o(PWx) + o(pwy) + O(PWz)]+
at ax ay az

(
au au au au) [ap ( )] Du+p -+wx-+w -+wz - =U -+V· pw +p-.
at ax Y ay az at Dt

(2.17)



(2.18)
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By allowing for the equation of continuity (2.9) in (2.17), one obtains

a(pu) + V 0 (puw) = P Du 0

& Dt

The first expression on the right-hand-side of (2.16), with respect to
Fourier Law (1.6), can be written in the form

-V·4 =v.(AVT). (2.19)

(2.20)

In order to transform the second expression on the right-hand-side of
(2.16), the equation of continuity will be applied (2.12)

Dp +pV.w=O
Dt '

from which one obtains

Term

1 Dp
V·w=---.

P Dt
(2.21)

(2.23)

(2.22)
pDp

-pV·w=--
P Dt

can be transformed in the following way:

-pVow=pDp =pDp +p~(p)_p~(p)=
P Dt P Dt Dt P Dt P

=pDp +p(pDP _pDPJ_l_p~(pv)=Dp-p~(pv)o
P Dt Dt Dt p2 Dt Dt Dt

By allowing for (2.18), (2.19) and (2.23) in the inner energy balance
equation (2.16) after the performed transformations, one has

(2.24)

(2.25)

where, i =u + pv is the specific enthalpy of a medium expressed in J/kg.
Since the enthalpy differential of a substance i = i(p, 1) can be formulated
[13, 16, 26] as

. (8i J (8i)dl= - dT+ - dp=cpdT+v(l-pT)dp,
8T p 8p T
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the (2.24) can be written in the form

PCp DT =V '(AVT)+iJv + prDp --»,
Dt Dt

where

f3-!(~) __~(ap)
v aT p p aT p

(2.26)

(2.27)

is the volumetric expansion coefficient.
For liquids and solids, regarded as incompressible, one can assume that

(2.28)

In the case of a perfect gas, which fulfils Clapeyron equation pv =RT,
the volumetric expansion coefficient amounts to

f3=~
T

and energy balance equation (2.26) has the form

pCp DT =V.(AVT)+iJv+
Dp -»,

Dt Dt

(2.29)

(2.30)

Equation (2.26) is a general energy balance equation for solids, gases or
liquids, which move (flow) at w velocity. Thermophysical properties A, C

and p may be position or temperature dependent. A body can also be ani­
sotropic, when the thermal conductivity is direction-dependent. Rate of en-
ergy generation per unit volume of heat sources iJv can be a function of
position, temperature and time. On the basis of the general equation (2.26),
energy balance equations will be written in a Cartesian, cylindrical and
spherical coordinate system. Term Dp/Dt will be omitted, since it is very
small. It will be only taken into consideration in the cases of supersonic
flows.

2.2.1 Energy Balance Equations in Three Basic Coordinate
Systems

Axes of a coordinate system will be selected in such a way that their direc­
tions will be the same as the general directions of an anisotropic body.
Furthermore, we will present energy balance equations for different
coordinate systems under the assumption that a liquid or a solid is
incompressible.
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Cartesian Coordinate System (Fig. 1.2a)

° A aTqx =- xx ax ' · A aTqz =- zza; (2.31)

ao ao a·
-V'4 =v '(AVT)=-3..£_3L._~=ax ay az

=~(Axx aT)+~(A aT)+~(Azz aT),ax ax ay YY ay az az

(2.32)

(2.33)
D a a a a-=-+w -+w -+w - .Dt at xax y ay zaz

By allowing for (2.32) and (2.33) in (2.30), one obtains a heat balance
equation

Pc (aT +w aT +w aT +w aT)=
P at xax Y ay zaz

(2.34)

a( aT) a( aT) a( aT) .=- A - +- A - +- A - +q +(/Jax xXax ay YYay az zZaz v ,

where the dissipation function is defined [20] by the following expression

(2.35)

+~(Owz + Owy )2+!(Owx+ Owz)2],
2ayaz 2az ax

where J.1 stands for a dynamic viscosity.
If a body is immovable, then w =0 and (/J =O. Thermophysical proper­

ties can be temperature or position-dependent. If we accept such an as­
sumption (2.34) is simplified to a form

pCp aT =~(Axx aT)+~(Ay'y aT)+~(Azz aT)+iJv • (2.36)at ax ax ay ay az az



14 2 Mass and Energy Balance Equations

Cylindrical Coordinate System (Fig. 1.2b)

. A aT
qr =- rr&'

. --A ~ aT
q(} - O(} r aB ' (2.37)

. 1 a( aT)-v.q=V.(AVT)=-- rArr - +rar ar
(2.38)

(2.39)
D a a w(} a a-=-+w -+--+w -Dt at r ar r aB z az .

By allowing for (2.38) and (2.39) in (2.30), one obtains the equation
below:

pc (aT +w aT + we aT +w aT)=
P at r ar r aB Z az

(2.40)

1 a( aT) 1 a ( aT) a( aT) .=-- rArr - +2- A(}(}- +- Azz - +qv +([J,rar ar r aB aB aZ aZ
where the dissipation function is defined by the following formula:

(2.41)

For an immobile solid w =0 and ([J =O. The (2.40) is then simplified to
a form

pCp aT =!~(rArr aT)+~~(Aee aT)+~(Azz aT)+4v. (2.42)at rar ar r aB aB az az

Spherical Coordinate System (Fig. 1.2c)

. A aT
qr =- rr&'

4 =-A _I_aT.
rp rprp r sin B arp , (2.43)
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D a a we a wqy a
-=-+Wr-+--+---·Dt at ar r ao rsinO arp

By allowing for (2.44) and (2.45) in (2.30), one obtains

1 a(2 erJ 1 a ( . otJ=2- r Arr - + 2 • AeesInO- +r ar ar r SIn0ao ao

1 a( aT) .+ 2 • 2 Aqyqy - + qv + (/J,r SIn 0 arp arp

+--;-(_._1_ OwqJ + w
r
+ wectgO)2]+

r sin e' arp

[ ]2}
1 . a wqy 1 Owe

+- sInO- -- +---- .
r 2 oo(sino) sine' orp

(2.44)

(2.45)

(2.46)

(2.47)

For an immobile solid w = 0 and (/J = O. The (2.46) is then simplified to
a form
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et 1 a(2 etJ 1 a ( . etJpCp-=z- r Ar r - + 2 . AeeSlnO- +at r ar ar r SInO ao ao
(2.48)

(2.49)

(2.50)

(2.51)

If a body is isotropic, then A
rr

= Aee = Alplp = A. Thermal conductivity A
can be a function of temperature and position. Thermophysical properties
of solids are listed in Appendix B at the back of the book.

2.3 Hyperbolic HeatConduction Equation

In the Subsect. 2.2, transient heat conduction equations were worked out
for immobile solids with Cartesian (2.36), cylindrical (2.42) and spherical
coordinates (2.48). These are a parabolic type of equations, based on Fou­
rier Law, which assumes that heat diffuses at an infinitely fast rate. This
means that any disturbances on the body's edges are immediately per­
ceived in the form of temperature changes within the whole body volume.
In the case of extremely rarefied gases, as well as helium and dialectric
crystals at very low temperatures, the rate of heat flow propagation w

g
has

a finite value. In such instances, the heat flux is formulated using the fol­
lowing constitutive equation [5,25]:

. aq AVTq+rat=- ,

where t is the relaxation time. If one assumes that VT =0, then (2.49) be­
comes a homogeneous differential equation of 1st order, whose solution is
proportional to expression exp(-tlz),

Relaxation time t is thus an equivalent of a time constant present in an
expression that defines the temporal temperature flow of a body with a
concentrated heat storage capacity. Energy balance equation (2.30) has in
such a case the following form:

ar n ..pc -=-Y .q+q .
p at v

If one assumes that p and c
p

are constant and differentiates equation
with respect to time (2.50), one gets

a2T a· a·
pc -=-V.~+~

p at2 at at
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Divergence from both sides of (2.49) is formulated as

V'q+TV, 8q =-V.(AVT).
at

By allowing for (2.50) and (2.51) in (2.52), one obtains

aT. [ a
2T

a4v) D ('JDT)-pc -+q -r pc --- =-y. /L.y ,
p at v p at2 at

(2.52)

(2.53)

(2.54)

from where one gets, after assuming that thermal conductivity is constant

aT a2T
2 1 (. a4v)-+r--=aV T+-- qv+r- ,

at at2 pcp at

where a = AipCp' while V2T
is a Laplace operator.

Equation (2.54) is a partial hyperbolic equation, which describes the
thermal wave propagation with the finite velocity

(2.55)

Relaxation time t is very small and for an alluminium, for example, it
comes to about 10-11s, while for a liquid helium to about 10-6 s at ex­
tremely low temperatures. Since for a liquid helium with a temperature
close to an absolute zero, the diffusivity a amounts to 10 m2/s, the velocity
of thermal wave propagation is

(2.56)

It can be seen, therefore, that the value of w
q

even in this case is large
and for the majority of calculations done for transient heat conduction
processes, it is assumed that r =0 s, i.e. the velocity of heat propagation is
infinitely large.

2.4 Initial and Boundary Conditions

Transient heat conduction problems are initial-boundary problems for
which one is required to assign appropriate initial and boundary condi­
tions. Initial conditions, also called Cauchy conditions, are temperature
values of a body at its initial moment to =0 s.
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T (r, t )11=0 = To (r ) · (2.57)

If temperature distribution is written in the form of a hyperbolic equa­
tion of heat conduction (2.54), then a initial derivative value must also be
given.

aT(r,t)
at

t=O

(2.58)

where r is the positional vector of the analyzed point (a field vector in a

given point). Symbol t stands for the first temperature derivative with re­

spect to time i =aT/at. In practise, one rarely makes use of the hyper­

bolic equation (2.54); therefore, only an assigned condition (2.57) is in­
dispensible in order to determine transient temperature distribution.

One can distinguish four basic types of boundary conditions [15, 27],
which do not describe, nevertheless, all real conditions that occur in prac­
tise, such as body heating and cooling by radiation, the melting or freezing
of bodies or complex heat transfer.

2.4.1 First Kind Boundary Conditions
(Dirichlet Conditions)

Temperature distribution on the edge of body A is assigned as follows

(2.59)

where fA is a positional vector of a point located on the body's surface. If
temperature of the body surface, T(fA,t) is known from measurements
taken, then the boundary conditions can be formulated as boundary condi­
tions of the 1st order.

2.4.2 Second Kind Boundary Conditions
von Neumann Conditions)

(2.60)

If x and y axes of a coordinate system are compatible with the main ani­
sotropic axes, then the condition (2.60) assumes the form:

(2.61)



2.4 Initial and Boundary Conditions 19

where n =cos(n, x), n =cos(n, y) and n =cos(n, z) are directional cosi-
x y z

nuses of a normal to a surface.
For isotropic bodies, condition (2.60) assumes the form

If a surface is thermally insulated, then

aTI == o.
an A

(2.62)

(2.63)

The boundary condition of 2nd kind is frequently set on the surface of
radiated bodies, e.g. on the surface of boilers' radiant tubes. Surface tem­
perature of the tubes, TA(rA,t) is much lower than the temperature of com­
bustion gases T

sp
in a furnace chamber and practically does not affect the

heat flux transferred by the outer surface of the tubes. If the heat flux from
a body surface is known from measurements taken, then the boundary
condition of 2nd kind can be applied irrespectively of the type of heat
transfer present on the body surface. Condition (2.62) is often set when
solving steady-state and transient inverse heat conduction problems [9, 22,
23]. If thermophysical properties of a body c, p and A are temperature in­
variant, then the inverse problem becomes linear, thereby easier to solve,
when a boundary condition of 1st or 2nd kind is applied on the body
surface.

2.4.3 Third Kind Boundary Conditions

The boundary condition of 3rd kind is also known as Robin boundary
condition [15] or Newton law of cooling. Its heat penetration coefficient,
also called heat transfer coefficient [28], expresses the intensity of convec-
tive heat exchange. Coefficient a is dependent on the type of heat ex­
change that occurs on a body's surface, the fluid type, and on the velocity
and direction of the fluid flow with regard to body's surface. Heat transfer
coefficient a is also frequently a function of surface temperature or of the
difference between surface temperature T

A
and factor Tcz ' e.g. during boil­

ing, condensation and natural convection.

- (AVT· nt = a(rA,t,TA ) [ T( rA,t) - T::zJ.

If a body is isotropic, then condition (2.64) is simplified to a form

(2.64)



(2.65)
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_(A aT
) =a(TA-~z)'an A

The selected values of heat transfer coefficients are listed in Table 2.1.
From the analysis of this table, it is evident that in the case of droplet con­
densation the surface temperature of a solid is close in value to a tempera­
ture of condensing vapour.

In practise, the application of the 3rd kind boundary condition encoun­
ters difficulties with respect to the determination of spatial heat transfer
coefficient changes and the medium's temperature at small flow velocity.
If a liquid remains in a state of rest, then as a result of natural convection
the medium moves alongside the solid's surface demonstrating, at the
same time, significant temperature pulsations. Due to this reason, it is dif­
ficult to define the medium's temperature Tc/t). It also should be added
that spatial-temporal changes in the heat transfer coefficient on the surface
of a solid can be determined when a conjugated heat transfer problem in a
liquid and solid is solved using a computerized fluid mechanics program,
which consists of different CFD methods (abbr. Computer Fluid Dynam­
ics).

Due to a shortage, however, of competent models, which would de­
scribe turbulent liquid dynamics, and experimentally-determined con­
stants, the CFD-determined heat transfer coefficients can significantly di­
gress from experimentally determined coefficients.

Table 2.1. Approximate values of heat transfer coefficients

Heat '-'A"'.l.lUJ..lF;'-' conditions

Forced convection

Free convection

Gases
Oils
Water

Gases
Oils
Water

metals

metals

a
10-500
50-1700

300-12000
1000-45000

5-30
10-350

100-1200
1000-7000

Phase change

bubble boiling
film boiling
water vapour film condensation
water vapour droplet
condensation

condensation of vapour of

2000-50000
100-300

4000-17000

30000-120000

500-2300
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2.4.4 Fourth Kind Boundary Conditions

The boundary conditions of 4th kind occur at the point where two body­
surfaces meet (CD and (2) Fig. 2.3).

a)

T

b)

T

A

n

A

n

(2.66)

(2.67)

Fig. 2.3. The course of temperature on the boundary of two adjoining bodies : a)
ideal contact, b) contact resistance on the boundary

If contact is ideal, then the temperature of the two bodies is identical at
the point of contact. Furthermore, heat flux becomes uniform. In the case
of an ideal contact, the following equalities are valid (Fig. 2.3a):

lilA =T21A'

~ 8J; I = ~ 8J; I ·

an A an A

In reality, thermal resistance occurs at the point where two bodies meet
and the bodies' temperatures at the point of contact are not the same
(Fig.2.3b).

Thermal resistance at the point of contact is characterized by means of
the contact heat transfer coefficient a

kt
, which is defined as follows

(2.68)

Coefficient a
kt

, which characterizes the contact resistance, mainly de­
pends on the roughness of a surface and on the pressure force of both
bodies. The contact resistance can be significantly reduced by polishing
the two touching surfaces and by moistening them with a liquid, e.g. sili­
con, oil or petroleum jelly.
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2.4.5 Non-Linear Boundary Conditions

If a body surface is heated or cooled by radiation, then boundary condition
is nonlinear

(2.69)

Temperatures of surface T IA and surroundings T, are expressed in de­
grees Kelvin. Symbol T, denotes the temperature of surrounding walls,
which the body can "see." It is not a temperature of a medium T

cz
directly

located by the body surface, as it is in the case of convection. Shape coef­
ficient F is the emissivity function of the body surface and its surroundings
and of mutual configuration between the body and surroundings. If a sur­
face area of a convex or flat body A is significantly smaller than the sur­
face area of surroundings A

r
, then the heat flux on the body surface is only

the emissivity function of the body surface e and temperatures T
A

and T;

--1 ~:IA =c:o-[(TIJ4

_~4] . (2.70)

Symbol a = 5.67.10-8 W/(m2·K4
) is a Stefan-Boltzmann constant.

Thermal exchange by radiation plays a large role even in the case when
surface temperatures of a body TIA are relatively low, e.g. thermal ex­
change by radiation in central heating radiators can amount to 40% of the
total heat flow transferred by radiators. In reality, thermal exchange by
convection and radiation occurs simultaneously on the surfaces of bodies
treated with gases and, to a smaller degree, with liquids. Heat flux on the
body surface is formulated as follows:

--1 ~:IA =a(TIA -~z)+()"F[(TIAr _~4J ·
If A<<A , then on the basis of (2.70) one obtains

r

--1 ~:IA =a(TIA -~z)+C:()"[(TIAr _~4] · (2.71)

If T =T, as, for example, in a room, whose temperature is identical to
cz r

the temperature of the confining walls, the boundary condition (2.71) can
be easily transformed into a form

_AOTI =(a+ar)(TIA-~)' (2.72)on A

where a, is a radiative heat transfer coefficient expressed as
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Table 2.2. Emissivity of various surfaces with temperature of 300 K or with
temperature from 300 to 500 K

Material and Surface Material and Surface

0.9-0.93
0.9

0.8-0.9

0.97
0.99
0.75

0.91-0.98
0.82
0.92
0.92

0.88-0.95
0.95

0.8-0.9
0.82-0.8

0.85-0.92
0.9

0.96

0.3-0.6
0.93

0.9-0.96
0.9-0.97

0.91
0.93-0.96

0.95
0.86
0.7

0.88
0.9-0.8

Brick
-red
-refractory
Wood
Paints
-aluminium

1
o

0.04-0.05 _minium

- oil, including white
0.11-0.12 G bl Iypsum, mar e, paster

0.2-0.3 I
Burnt cay

0.9-0.7 Soil

0.1 Rubber-hard
0.6 Rubber-soft, gray, coarse

0.08-0.17 G hirap ite

0.0~~.03 T~les (white)
o04-0 05 Limestone
0~87-0~83 Ice (273 K)
0.05-0.07 - smooth

-coarse
0.6 Mica

0.05 Paper
0.1 Sandstone

0.01-0.02 Cream-coloured sand

0.1 Porcelain (glazed)
0.8 Rocks
0.1 Leather

0.5-0.8 S
now

0.03-0.05 P Iyrex g ass
Teflon
Silicon carbide

0.96 Water (a layer 1 mm
0.93 thick or more)
0.94

Asbestos
Asphalt
Concrete

Non-metals

Aluminium-smooth and
polished
Aluminium-smooth and
oxidized
Aluminium-rough and oxidized
Aluminium-anodized
Bronze-polished
Bronze-oxidized
Chromium-polished
Tin-polished
Tin-polished or galvanized
Copper-polished
Copper-oxidized
Nickel-polished
Lead-oxidized surface
Platinum-polished
Mercury
Silver-polished
Carbon steel-polished
Carbon steel-oxidized surface
Stainless steel-polished
Stainless steel-oxidized surface
Tungsten-polished

Metals

Perfectly black body
Shiny surface

(2.73)

It is worth to notice that a,« 0, even when TIA = T, Coefficient a, de­
pends, to a large degree, on surface emissivity of the solid B. Values of B



(2.74)
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for selected surfaces are listed in Table 2.2 [4, 21]. When r « T, one ob­
tains from (2.70)

J., aTI =[;(J"( T,.r=q,
an A

therefore, a non-linear boundary condition can be substituted by a 2nd kind
boundary condition.

2.4.6 Boundary Conditions on the Phase Boundaries

If phase-changes occur, for instance during the process of melting or freez­
ing, then a heat absorption or emission during the melting of a substance
takes place on the phase boundary between a liquid and a solid. The
boundary between the liquid and the solid phase set) is time-variable; this
is why this kind of problems are called a free and movable boundary
(Fig. 2.4).

T

o
set)

x

Fig. 2.4. Heat conduction problem with movable boundary

On the boundary x =set), the following conditions are met:

~I -TII x=s(t) - s x=s(t)

and

1 a1; I = 1 ay: I +p~ ds/lvi /lvs - .

ax x=s(t) ax x=s(t) dt

(2.75)

(2.76)



(2.77)

2.4 Initial and Boundary Conditions 25

The plus sign refers to a process of melting, while minus sign to a proc­
ess of freezing. Symbol L is the heat from substance melting (positive
value), expressed in J/kg. Temperature uniformity and heat flux step
change occurs on the boundary between the liquid phase (1) and solid
phase (s). When solving this kind of problem, one can omit the encoun­
tered difficulties by introducing the thermal capacity substitute c*(n. Phase
change takes place at T

m
temperature and that elicits enthalpy hen [3].
T

h(T) = Jc(T)dT + L· r(T - Tm ) ,

where T
od

is a randomly selected reference temperature, c(n is proper heat,
while ra unitary step function (Heaviside step function), expressed as fol­
lows:

(2.78)

Proper thermal substitute c*(n is determined from formula

c*(T)= dh =c(T)+Lt5(T-Tm ) ,
dT

(2.79)

where 8 is Dirac delta function. In accordance with the definition of this
function, one obtains

8 (T - t; ) =0 for T "* r;
8 (T - t; )~ 00 for T =r;

-00

(2.80)

By introducing proper thermal substitute, one eliminates step-change
heat flux, which occurs in (2.76). Transient heat conduction problem in
the liquid (1) and solid (s) domain is substituted by a problem in one do­
main, but with a specific heat c*(n that changes abruptly on the boundary
between phases. This method of analysis for problems with movable
boundary is called the enthalpy method and is frequently employed when
designating temperature fields by means of the finite element method
(FEM).
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3 The Reduction of Transient Heat Conduction
Equations and Boundary Conditions

The general transient heat conduction equation (2.34) is rather complex
and often numerous difficulties are encountered while solving such equa­
tion, even when numerical methods are applied. In this chapter, we will
present the methods for simplifying (2.34) and relevant boundary condi­
tions, which help to find a solution for an initial-boundary value problem.

3.1 Linearization of a Heat Conduction Equation

If thermophysical properties of a body are temperature-dependent, then the
equation for transient heat conduction in an motionless body

(3.1)

is non-linear. In order to transform (3.1), one can make use of Kirchhoff
transform

Since

and that leads to

T

S = _1 f-l(T)dT.
Ao o

a9 as aT A(T)aT
-=-.-=----,
at aT at Ao at

V9= 89 v T = A(T)VT
aT A 'o

aT _~as
at - A(T) at '

(3.2)

(3.3)

(3.4)

(3.5)
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(3.6)

then (3.1) can be transformed into a form

(3.7)

This is still a non-linear equation.
For steady-state problems, when oSlot = 0, (3.7) becomes linear

(3.8)

Equation (3.8) can be solved by means of exact analytical methods under
the condition that boundary conditions can be transformed into a linear form.
This is possible in the case of the 1st and 2nd kind boundary conditions; one
obtains then, respectively

(3.9)

(3.10)

and

(3.11)

(3.12)

Boundary problems expressed by (3.8) and conditions (3.10) and (3.12)
are linear and easier to solve than corresponding non-linear problems.
Once distribution 9(r) is determined, temperature distribution T(r) is cal­
culated. If thermal conductivity is approximated by means of the linear
function

A(T) =Au (1 + fJT), (3.13)

where Ao and fJ are constants, then S(n determined from (3.2) assumes the
form
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8(T)=T+!...PT2
• (3.14)

2

If 8(r) is known, then temperature T(r) can be determined from (3.14)

)
-1+~1+2p8(r)

T(r = .
f3

If 3rd kind boundary condition is assigned on the edge of the area

(3.15)

(3.16)[2(T)aT] = a(Tez - TIA)'an A

then after the application of Kirchhoff transform (3.2), condition (3.16)
continues to be non-linear

(3.17)

Finally, it should be emphasized here that Kirchhoff transform enables
one to find accurate solutions to steady-state non-linear heat conduction
problems with 1st or 2nd kind boundary conditions. In terms of transient
heat conduction problems, Kirchhoff transform does not contribute much
to the application and, therefore, is not recommended.

Due to the development of numerical methods for solving non-linear
steady-state and transient heat conduction problems, one can refrain from
using the Kirchhoff transform (3.2) and can solve non-linear problems in a
direct way.

3.2 Spatial Averaging of Temperature

In many instances, temperature changes in a particular direction or in the
whole body volume are minimaL Real body temperature can be approxi­
mated then by applying average temperature in the particular direction or
in the whole body volume.

3.2.1 A Body Model with a Lumped Thermal Capacity

If temperature difference within a body is minimal, one can assume then
that total body temperature, within its entire volume, is constant and equal
to the average temperature. Such assumption can be accepted in the case of



(3.18)
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rather small-size bodies with a large thermal conductivity A and small heat
transfer coefficient aon an outer surface.

One can assume for simple-shape bodies, such as the back-surface­
insulated L-thick plate, a cylinder and a globe with an outer surface radius
L, that as long as the following criterion is satisfied

B · _ aL < OI 51- _. ,
A

the inner temperature of the body does not differ by more than 5% from
the surface temperature. When criterion (3.18) is fulfilled, the body can be
regarded as a body with lumped thermal capacity. When the body is heated
or coolled with a liquid at temperature T: and there are no heat sources in­
side (Fig. 3.1), then the heat balance equation has the following form:

pVc
dT

=aA(I;,z-T). (3.19)
dt

Initial condition is indispensible for solving (3.19)

Tlt=o =t; (3.20)

p .c , V
T(t)

Fig. 3.1. A body model with concentrated (lumped) thermal capacity

If a temperature of a medium, which surrounds the body undergoes a
step increase from temperature To to temperature constant Tcz when t= 0,
then the initial problem (3.19)-(3.20) has a simple solution

(3.21)

where time constant Tis formulated as

pVc
r=-. (3.22)

iiA

The model of a body with lumped thermal capacity is often applied in
practise.
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3.2.2 Heat Conduction Equation for a Simple Fin
with Uniform Thickness

Fins used for the intensification of heat exchange from the gas side are
usually very thin. Thus, the temperature differenced across the fin's width
can be neglected [1]. Figure 3.2 shows the section of a simple fin with uni­
form thickness.

o x

L

Fig. 3.2. A simple fin cross-section

A determined fin temperature distribution is expressed using the heat
conduction equation

a2r a2r a2r
-+-+-=0ax2 ay2 az2

and the following boundary conditions:

rlx=o =t.,

-A arl =a(Tlx=L -r.).ax x=L

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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1 aTI =a(Tlz=-t/2 - t; ),az z=-t/2

-1 aTI = a(Tlz=t/2 - t; ).
az z=t/2

(3.28)

(3.29)

In order to shorten (3.23), the equation will be integrated from y =0 to
y =Wand from z =-t/2 to z =t/2:

Wt/2 a2r Wt/2 a2r Wt/2 a2r
f f

ax
2 duly + f f ;),,2 duly + f f az2 duly = 0 · (3.30)

o -t/2 0 -t/2 v y 0 -t/2

Once average temperature is introduced

1 t/2 W

T=- f fTdydz
tW -t/2 0

the following is obtained from (3.30)

rr 1 t/2 [ar er )
--+- f - -- dz+
ax

2
tW -t/2 Oy y=o Oy y=w

1 Wf[aTI aTI)+- - -- dy=O.
tWo az z=-t/2 az z=t/2

(3.31)

(3.32)

(3.33)

Once we assume that T (x) =T(x, y, z) and make allowance for bound­
ary conditions (3.26)-(3.29), we can write (3.32) in the following form:

d2
T a(2 2J(- )dx2 --; W +{ T -~z =0.

If t« W, then (3.33) is simplified to a form usually used in practical
computations ( (1), ex. 6.15)

where

2-
.rt 2(- )
--2 -m T-T;;z =0,
dx

(3.34)

(3.35)
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Boundary conditions (3.24) and (3.25) assume the form

-A aT =a(fl -T).ax x=L cz
x=L

(3.36)

(3.37)

The fin temperature distribution is a solution to an (3.34) when bound­
ary conditions are (3.36)-(3.37).

3.2.3 Heat Conduction Equation for a Circular Fin
with Uniform Thickness

The section of a circular fin with uniform thickness is shown in Fig. 3.3. It
is assumed that the thermal conductivity of the fin material is made of A
and heat transfer coefficient on the fin surface a can be the function of po­
sition and temperature. The fin height L is significantly larger than its
width t. The determined fin temperature distribution is expressed using the
heat conduction equation

!~[A(r)r8r]+~[A(r) 8r]=o
r Dr ar az az

and boundary conditions (Fig. 3.3)

[A(r) ~:1=~t/2 = a(rIZ=-t/2- t: ),

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

In order to reduce (3.38), the equation will be integrated from z =-t/2
to z = t/2
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1/2 1 8 [ 8T] 1/2 8 [ 8T]f-- A(T)r- dz+ f- A(T)- dz=O.
-1/2 r 8r 8r -1/2 8z 8z

Introducing an average temperature

1 1/2

f=t fTdz
-1/2

L

Th = T(r,)

o.
I

r

I •Tez

I
+._._._-

r;

...

Fig. 3.3. Circular fin with uniform thickness

(Equation (3.43) can be transformed into a form

(3.43)

(3.44)

r

!~[A(f)8f]+![A(T)8TI _A(T)8TI ]=0. (3.45)
r 8r 8r r 8z z=t/2 8z z=-t/2

Taking into account the boundary conditions (3.41) and (3.42) in (3.45),
one obtains

(3.46)
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Boundary conditions (3.39) and (3.40) can be integrated with respect to
d: within the limits from -t12 to t12, and upon the consideration of (3.44)

and the assumption that T ~ T, one obtains

(3.47)

(3.48)

(3.49)

Due to the assumption that the temperature drop across the fin's width is
insignificantly small, the two-dimensional heat conduction (3.38) was ap­
proximated by means of (3.46), which is easier to solve.

3.2.4 HeatConduction Equation for a Circular Rod
or a Pipethat Moves at Constant Velocity

In many technological processes, such as the production of wire or artifi­
cial conductors, continuous steel casting, heat rolling or during a transport
of loose materials, a solid constantly moves at velocity w. For a conductor,
which is extruded at a velocity W z from an opening with diameter d
(Fig. 3.4), the energy balance equation for cylindrical coordinates (2.40)
with the exclusion of a dissipation function (/J has the following form:

pc (aT +w aTJ=!~(rA 8TJ+
P at z 8z r8r rr 8r

1 a ( etJ a( erJ .+2- A(}(}- +- Azz - +qv'
r ae ae az az

r

a;e

--~~-,-,-

z

Fig. 3.4. Extrusion of a wire with diameter d from melted substance with tempera­
ture t,» t;
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If we additionally assume that temperature field is source-free (qv =0)

and spherically-symmetrical (aT/aO = 0), then (3.49) will be simplified to
a form

pc (aT +w aT)=!~(rA aT)+~(A aT) (3.50)Pat zaz r or rrar az zzaz'
Temperature T, of a melted substance is higher than the temperature of

surroundings T
cz

and the temperature of surroundings T
r

, which the wire
exchanges heat with by means of radiation.

If one assumes that conductor's diameter d is significantly smaller than
its length, one can disregard the radially-directed temperature drop. Once
(3.50) is integrated, one obtains

r. (aT aT) r, [1 a( aT) a( aT)]Jpc -+wz- rdr= J-- rArr- +- Azz- rdr. (3.51)
o P at az 0 rar ar az az

Once the average temperature, formulated as

2 r.
r=2 JrTdr

r, 0

is introduced (3.51) can be transformed into a form

rz
2

(aT aT) ( aT]1 ( aT]1-pc -+w - = rA - - rA - +2 P at z az rr ar r
z

rr ar r=O
(3.53)

+rz2 ~(A af).2az zzaz

In order to transform (3.53), the boundary conditions shown below are
applied.

Arr aTI =0, (3.54)
ar r=O

-Arr aTI =a(TI_ -~z)+80"(T41 _~4). (3.55)ar r-~ r=~
r-r.

By allowing for (3.54) and (3.55) in (3.53) and assuming that T ~ T,
(3.53) assumes the form



rz
2 (aT aT) (-)-c P -+w - =-ar T-T -2 P at Z az Z cz

2 ( -)
-4 4 rz a aT

-Bar (T -T )+-- A -
z r 2 az zz az '

from which, after simple transformations, one gets
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(3.56)

Pc (af +w af)=~(A af)_2a(T_T )_2B(J(T4_T4 ) (3.57)
P at z a a zz a cz r ,Z Z z rz rz

where c
p
= c is the specific heat of a solid, while (J= 5.67.10-8 W/(m2·K4

) , a
Stefan-Boltzmann constant.

The remaining boundary conditions and an initial condition can be
transformed in a similar way. By doing so, one can obtain one-dimensional
initial-boundary value problem, which is easier to solve than the two­
dimensional problem.

Literature

1. Kraus AD (1988) Analysis of extended surface. Transactions of the ASME. J. of Heat
Transfer 110: 1071-1081



4 Substituting Heat Conduction Equation
by Two-Equations System

Transient heat conduction equation can be substituted by an equivalent
system of 1st order partial differential equations [1, 2]. If one-dimensional
steady-state heat conduction problem is analyzed, one obtains as a result
two ordinary differential equations [2]. It is advantageous to substitute 2nd
order differential equation by the 1st order two-equations system when
solving transient inverse heat conduction problems [1], when determining
steady-state fin temperature distribution with variable thermal conductivity
or heat transfer coefficient and when optimilizing the fin shape. Two cases
will be discussed below:

• a transformation of a boundary problem into a system of two ordi­
nary differential equations,

• a substitution of one-dimensional transient heat conduction equa­
tion by the 1st order partial two-equations system

4.1 Steady-State Heat Conduction in a Circular Fin
with Variable Thermal Conductivity
and Transfer Coefficient

Temperature field in a circular fin shown in Fig. 3.3 is described by the
heat conduction equation (3.46) and boundary conditions (3.47) and (3.48).

Once dimensionless variables are introduced

r
p=- ,

'1
() (4.1)

and thermal conductivity A(1) and heat transfer coefficient a (r) are ap­
proximated using functions

(4.2)
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where

the problems (3.46)-(3.48) can be written in the form

d [ dB]- (1+8B)p- -N2 f (p )p B=0 ,
dp dp

[(l+c(}): e] =0.
p p=k

Symbols Nand k denote, correspondingly

(4.3)

(4.4)

(4.5)

(4.6)

2ii
N='l/---

A(~z)1 '
(4.7)

Introducing the new variable

dB
Q=-2Jr(1 + 8B)p­

dp

Equation (4.4) will be substituted by two-equations system

dQ =-21rN2pf(p) e,
dp

dB Q
dp 2Jr (1+ 8B)P ·

Boundary conditions (4.5) and (4.6) assume the form

elp=1 = 1,

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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Equations (4.9) and (4.10) and boundary conditions (4.11) and (4.12)
constitute a two-point boundary condition, which one can solve using a se­
cant method [2]. Initial problem for system (4.9)-(4.10) is being solved at
every iterative step with one of the widely available methods: the 4th order
Runge-Kutt method. The solution obtained in such way has a high degree
of accuracy. This method allows one to determine heat flux q=Q/21ip
more accurately than the finite element method (FEM).

4.2 One-Dimensional Inverse Transient HeatConduction
Problem

For inverse problems, the substitution of a single transient heat conduction
equation by two 1st order equations allows one to simplify to a significant
extent the solution of an inverse problem. The transient heat conduction
equation

where

q=-;'(T)~~ ,

can be transformed dimensionless into a equation system

8H =C H + C(B)Q(B) 8B
ax 1 aFo'

aB H
- --
ax K(B)'

where

(4.13)

(4.14)

(4.15)

(4.16)

c _ mE·
1 -1-X£*'

(4.17)

In (4.15) and (4.16), the following symbols were assumed:

c(r)
C=- ,

Co

p(r)
Q=-- ,

Po

A(r)
K=-­A 'o

(4.18a)
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FO=KO: , B= TAo, H=!L, (4.18b)
E 40E 40

where Ko=Ao/(CoPo) is a thermal diffusivity, ea dimensionless temperature,
H a dimensionless heat flux, 40 > 0 a certain positive constant.

Figure 4.1 shows an example of an inverse transient heat conduction prob­
lem.

T

2 i. N-l N

1(t)

E
L1x =N-l

E

Fig. 4.1. Inverse transient heat conduction problem; temperatureJ(t) and heat flux
qE(t) are known at point r = rt:

Temperature J(t) is measured at point r = rEo Heat flux 4£(t) is also

known on this surface. If surface r = rE is thermally insulated, then
4£(t) =O. Two boundary conditions are, therefore, known on surface r =
r

E
, i.e. for X = 0

where

[K(B)8B] =H£(FO),
ax x=o

elx=o =F(Fo),

(4.19)

(4.20)
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(4.21)

Neither temperature nor heat flux 4w (t ) is known at surface r =r
w

• Time

derivative 80/8Fo will be approximated by finite differences

80 I-- ~P.,

8Fo Fa. }
}

j=1, 2, 3, ... , NT, (4.22)

where NT is the last temporal point.
Derivative with respect to time will be approximated by the forward and

backward finite differences at the first and last temporal point, respectively

where

T(X,Mo)-T(X,O)
R1 =--------

Mo '

T(X,FoNT )-T(X,FoNT _1 )

PNT = Mo '

K I1t
FOj =(j-1)Mo=(j-1)~.

E

(4.23)

(4.24)

(4.25)

At points j =2, 3, ... , NT - 1 derivative with respect to time will be ap­
proximated by the central difference quotient

(4.26)

Once the right-hand side of the (4.15) is approximated by quotient
(4.22), one obtains

dHj =C1H. +c(o.)n(o.)p.,
dX } } } } (4.27)

j=1, ... , NT, (4.28)

where H.= H(X, Fo.), 0.= 0 (X, Fo.).
} } } }
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Conditions (4.19) and (4.20) assume the form

Hjlx=o =HE(Foj) , (4.29)

Bjlx=o = F( FoJ, j = 1, ... , NT . (4.30)

Thus, inverse transient heat conduction problem was reduced to an ini­
tial problem of a non-linear ordinary differential equations system. Initial
problem (4.27)-(4.30) can be solved, for example, using the 4th order
Runge-Kutta method.

Literature

1. Taler J (1998) Solving non-linear inverse heat conduction problems. Scientific
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5 Variable Change

The solution to many transient heat conduction problems, in particular
problems with movable boundaries or heat sources, can be simplified by
introducing new variables. Figure 5.1 shows an example of a heat source
moving along x axis at velocity v, while Fig. 5.2 shows an ablation that oc­
curs at velocity vet). One can transform transient heat conduction equation

a2T a2T a2T 1 er
--+--+--=-­ax2 ay2 az2 a at (5.1)

in an motionless coordinate system with origin 0 under the condition that
either the coordinate system, which moves along with the heat source, or a
movable boundary will be introduced. Once the new coordinate ~ is intro­
duced, expressed by equation (Fig. 5.1 and Fig. 5.2)

t

X= fv(t)dt+~=s(t)+ ~ (5.2)
o

z 1P(~,y,z)

I
0

°1--
s = vt ~

x
y

x

Fig. 5.1. Movable coordinate system that moves in the direction of x axis together
with the heat source at velocity v
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..x0jl---- --...

I

I

I~
I x

s(t) ~

°1 ~

Fig. 5.2. Movable boundary (ablation) heated by a heat flow with density qs (t)

one obtains

t

;=x- fv(t)dt=x-s(t).
o

(5.3)

If velocity v is independent of time, then

s(t) == vt, ~ == x -vt . (5.4)

Taking into account that T =T[~(t), t] and

ar _ar a~ _ar
ax - a~ ax - a~ , (5.5)

a2r a2r
ax2 - a~2 '

(5.6)

aT = aT a; + aT =_v(t)aT + aT
at a; at at a~ at

(5.7)

Equation (5.1) can be written in the following form:
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In the new coordinate system (C;, y, z) with the point of origin 01 a heat
source or ablation boundary remain constant and do not change In time.
Equation (5.8) has the same form as the heat conduction equation for a
body that moves in the direction of axis C; at velocity -v (t).

Another example that testifies to the practicability of changing the vari­
ables is the determination of a transient temperature field for a semi­
infinite body (Fig. 5.3).

it =T-To

x

Fig. 5.3. Heating semi-infinite body with a heat flow at constant density

Temperature distribution in the semi-infinite body is formulated by the
heat conduction equation

a2T 1 et
ax2 -~8t'

using boundary conditions

_}., aTI _.
a

-qs,
x x=o

TI =10x----;oo

and initial condition

(5.9)

(5.10)

(5.11)
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T(x,O) =To.

Once dimensionless variable [1] is introduced

x
17=--

~2at

and the following solution form assumed

T(x,t)=To _ q~X f~ll)

Equation (5.9) can be reduced to a form

d2f df
-+17--f=O.
d17 2 d17

Conditions (5.10) and (5.11) have the form

df(ll) =1
d '

17 17=0

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

Due to the fact that variable (5.13) is introduced, partial equation (5.9)
was substituted by an ordinary differential equation (5.15).

Literature

1. Slattery IC (1999) Advanced Transport Phenomena. University Press, Cambridge



Part

Exercises. Solving Heat
Conduction Problems
Part two contains theoretical and numerical problems

presented in the form of exercises. The topics of heat conduc­
tion and heat transfer are presented together. In this part, we

discuss the solution for steady-state heat conduction problems
using exact and approximate analytical and numerical

methods. Transient problems are thoroughly discussed; this
includes approximate and accurate analytical methods, such

as the variable separation method, Laplace transform, integral
heat balance method and numerical methods including, in par­

ticular, finite volume method and finite element method. Not
only initial-boundary problems, called simple, are analyzed but
also inverse steady-state and transient heat conduction prob­
lems. The processes of freezing and melting are discussed in

depth, as well as the heat flow around stationary and movable
heat sources.



6 Heat Transfer Fundamentals

In this chapter, the basics of heat conduction and transfer are discussed.
The chapter contains 29 exercises, which illustrate Fourier Law, the solv­
ing of heat transfer coefficients for multi-layered flat and cylindrical parti­
tions, the determination of a quasi-steady-state temperature field and the
computation of a radiant tube temperature in boilers. Critical thickness of
thermal insulation on the surface of the cylindrical tube is first determined
analytically, then calculated. The methods for solving selected inverse
steady-state heat conduction problems, which occur during heat flux
measurement carried out by means of different types of sensors, are pre­
sented here. A great deal of attention is paid to the determination of tem­
perature distribution and the efficiency of simple, circular, rectangular and
hexagonal fins. The calculation results of efficiency in complex-shape fins,
determined by means of an equivalent circular fin method and segment
method, are compared with the results obtained from FEM. Examples that
illustrate the computation of a heat transfer coefficient in pipes finned lon­
gitudinally and crosswise are presented here as welL Three exercises deal
with the way steady-state temperature distribution is determined using con­
trol volume method. These exercises present the methods for solving prob­
lems and the computational programs used. In the last exercise of this
chapter, temperature distribution and circular fin efficiency is determined
under the assumption that thermal conductivity of the fin's material is
temperature dependent. The problem is reduced to a two-point boundary
problem for the system of two ordinary differential equations.

Exercise 6.1 Fourier Law
in a Cylindrical Coordinate System

A radiant tube with an outer diameter d = 32 mm, wall thickness g =
5 mm and length L =20 m is made of a steel with a thermal conductivity
A, =47 W/(m·K) (Fig. 6.1). Water-vapour mixture, heated by combustions
gases that surround the tube on the outside, flows inside the tube. Inner
surface temperature is T

w
= 200°C, while the outer surface temperature

is T, = 250°C. The aim is to compute the heat flow transferred from the
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I I

Tw,~T.,
~......-l~ ';' ~T(r)

I I
I
I
I

Fig. 6.1. Tube cross-section

combustion gases to the water-vapour mixture and the heat flux on the in­
ner and outer surface.

Solution

Heat flux across the tube's wall thickness is formulated using Fourier Law

q(r)=A dT .
dr

Heat flow conducted through a flat wall can be written in the form

. dT
Q=A(r)q=A(r)A-,

dr
where A(r) =2JrrL.

The separation of variables in (2), gives

dT=~dr .
2JrLA r

(1)

(2)

(3)

On the basis of known inner and outer surface temperature, one can write
the boundary conditions as

T(r) = T ,z z T(r) = T .w w (4)

Once (3) is integrated, temperature distribution across the wall thickness of
the tube is obtained
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T=~lnlrl+C, (5)
2rcLA

where Q and C are constants computed from boundary conditions (4).

Unknown value Qis equal to

Q= (T: -Tw)·2;rLJ. .
In(rz / rw )

Substituting of the data gives

Q= 2;r· 20· 47· (250- 200) = 788100W .

In(0.016)
0.011

Inner surface heat flux is

Outer surface heat flux is

Exercise 6.2 The Equivalent Heat Transfer Coefficient
Accounting for Heat Exchange by Convection
and Radiation

A non-insulated tube (Fig. 6.2) with a nominal diameter d
n
= 38 mm (1Y2") ,

and the following measurements: d =38 mm, wall thickness g =2.6 mm,
length L =5; the tube is kept in a room whose temperature is Tot = 20ae.
Water with temperature 80aC flows inside the tube. The tube's outer sur­
face emissivity is e = 0.8. Lets assume that outer surface temperature is
identical to the temperature of a flowing medium inside and that heat
transfer coefficient by means of convection is formulated as

5° ~ -~t 1 21~~Tak = . 4 or ak =. 4 - ,

i». dz
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Fig. 6.2. Tube cross-section

where, d is the tube's outer diameter in meters, while T is the temperaturez ot

of surroundings in Kelvin [9]. The aim is to calculate heat loss Q, which

is related to heat transfer from hot water to surroundings by convection
and radiation and to determine the equivalent heat transfer coefficient ac­
counting for to convection and radiation.

Solution

Heat loss Q is the sum of losses from convection and radiation heat ex­

change

Heat flow transferred by convection is

where A = mdL is an outer surface of the tube.
z z

By substituting the data, one obtains

o, =Jr.O.038·5·7.627·(353.15-293.15)=273.2 W.

Heat flow transferred by radiation is given by

where (J =5.67 .10-8 W/(m2·K4
) is the Stefan-Boltzmann constant.
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Thus

o. = lZ"' 0,038· 5· 0.8· 5.67.10-8
.(353.154

- 293.154
) =221.17 W.

Total heat loss amounts to

Total heat coefficient can be expressed as

as = a, +8lT( J:2 + J:,~ )(J: + Tot) ·

Substitution of the numerical values yields

as = 7.63 +0.8·5.67 .10-8 (353.15 2 + 293.15 2
) ( 353.15 + 293.15) =

=13.803 W/(m 2
• K).

Exercise 6.3 Heat Transfer Through a Flat Single-Layered
and Double-Layered Wall

A flat wall (Fig. 6.3) with a thickness of g =0.4 m and surface area A =
15.6 m' is made of a material whose thermal conductivity equals A =
1 W/(m·K). Air temperature in front of the wall is T, = 20°C, behind the
wall T2 =-20°C. Heat transfer coefficients for both wall surfaces are, cor­
respondingly, al =5 W/(m2·K) and a

2
=15 W/(m2·K). The aim is to calcu­

late heat transfer coefficient, heat flux and heat flow transferred through
the wall and the surface temperature of the walL The question is how the
heat flow transferred by the wall will be changed, if the wall is thermally
insulated on its outer side by a layer of foamed polystyrene, which is 10 em
thick ts; =10 em) and whose thermal conductivity is A

iz
=0.04 W/(m·K)?

The second aim is to calculate surface temperature of the wall and the
foamed polystyrene.

Solution

a) Non-insulated wall (Fig. 6.4)
Heat transfer coefficient through the flat wall :

1
k= 1 g l'

-+-+-
a1 A a2



58 6 Heat Transfer Fundamentals

g

Fig. 6.3. Flat wall

Thus

1 2

k = 1 0.4 1 =1.5 W/(m ·K).
-+-+-
5 1 15

Heat flux transferred by the flat wall can be determined from the follow­
ing formula:

q=k(~-r;),

q= 1.5· (20 +20) = 60 W/m2

a) b)
gT 14----__~~

o o
x x

Fig. 6.4. Temperature distribution: (a) non-insulated wall, (b) insulated wall
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Heat flow conducted by the flat wall can be determined as follows:

Q=A.k(~ -1;)=15.6.1.5.(20+20)=936 W.

Temperature T
s1

is (Fig. 6.4)

T = T _.!L = 20 - 60 = 20-12 = 8°C .
sl 1 5a 1

Temperature T
s2

is calculated using similar expression

T =T +~=-20+60 =-16°C.
s2 2 a

2
15

b) Thermally insulated wall
Heat transfer coefficient

1 1 2

k= 1 1 = 1 004 0.1 1 =0.3158 W/(m ·K).
_+ g + giz +_ _+_+ __ +_
a 1 A Aiz a 2 5 1 0.04 15

Heat flux transferred by the wall is computed in the following way:

q=k(1; -Tz)=0.3158 [20-(-20)J=12.632 W/m
2

•

Heat flow transferred by an insulated wall is:

Q=Aq=Ak(~ -T2 )=15.6 .12.632 =197.06 W.

Surface temperature T
s1

is:

'F.l =1; -.!L=20- 12.632 =17047°C.
a 1 5

Temperature Ts2 is calculated by subtracting a temperature drop across
the wall thickness from temperature T

s1

T =T _qg=1747_12.632.0.4=1242°C
s2 sl A· 1 ..

Temperature T
s3

is calculated as follows:

T'3 =1; +~=-20+12.632 =-19.16°C.
a 2 15

One can observe that insulating a wall with a foamed polystyrene has a
significant effect on the heat flow transferred by the wall and on the wall's
temperature. In the case when there is a lack of insulation, heat flow Q. is



60 6 Heat Transfer Fundamentals

n = 936/197.06 = 4.75 times larger than when the wall is insulated. When in­
sulation is applied, the wall does not freeze, since its outer surface tem-
perature increases from T

S2
= -16°C to Ts2=I2.42°C.

From the conducted analysis, one can deduce that buildings should be
insulated on the outside surface, since the temperature of the walls remains
then positive (is above zero).

Exercise 6.4 Overall Heat Transfer Coefficient
and Heat Loss Through a Pipeline Wall

Pipeline (Fig. 6.5) with an outer diameter d = 273 mm, wall thickness
g = 16 mm and length L =70 m is made of a material whose thermal con-
ductivity is A = 45 W/(m·K). The pipeline is thermally insulated by a
layer, which is 10 ern thick is, =10 em) and made of a material with A

iz
=

0.08 W/(m·K). A medium with temperature Tw = 400°C flows inside the
pipeline, while on the inner surface a heat transfer coefficient is aw =
500 W/(m2·K). Air temperature, which surrounds the pipeline on the out­
side, is T = 20°C, while a heat transfer coefficient on an outer surface is
a = 10 W/(m2.K). The aim here is to compute:

z

1. overall heat transfer coefficient related to:
a) outer insulation surface
b) inner surface of the pipeline
c) tube's length

2. heat loss

•
r

Fig. 6.5. Longitudinal cross-section of a pipeline
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Solution

a) Total drop in temperature is equal to the sum of temperature decreases
due to, correspondingly, convectional heat exchange on an outer surface of
the insulation, the heat conduction in the insulation, the pipeline conduc­
tion and the convectional inner surface heat exchange

From the equation above, one can determine the overall heat transfer coef­
ficient related to the outer surface of the tube

Substitution of the numerical values gives

k = 1
z 1 0.2365

1
0.2365 0.2365

1
0.1365 1 0.2365

-+ n + n +
10 0.08 0.1365 45 0.1205 500 0.1205

=0.5782 W/(m 2
• K).

Heat flow conducted by the pipeline and the insulation heat loss is given
by:

Q= Aizkz(Tw - r:) = 21r1jzLkz(Tw - r:).
Thus

Q=2·1r· 0.2365.70.0.5782.(400 - 20) = 22855 W .

b) In order to compute the heat transfer coefficient for the pipeline's inner
surface, one should begin by adding up all temperature decreases from the
inner surface. Total temperature drop equals the sum of temperature de­
creases connected with, correspondingly, convectional inner surface heat
exchange, pipeline heat conduction, heat conduction in an insulation and
the insulation's convectional outer surface heat exchange:

Thus, the overall heat transfer coefficient related to inside tube surface is
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Thus

k = 1 =
w 1 0.1205

1
0.1365 0.1205

1
0.2365 1 0.1205

-+ n + n +
500 45 0.1205 0.08 0.1365 100.2365

=1.1348 W/(m 2
• K).

Heat flow transferred by the pipeline and the insulation (heat loss) is

Substitution of the numerical values gives

Q=2·ff· 0.1205·70 ·1.1348· (400 - 20) =22855W .

c) Heat transfer coefficient related to the tube's length can be calculated
from the following equation:

The simple transformation gives

k = Q 22855 = 0.8592 W/(m.K).
L L(Tw - I: ) 70 · (400 - 20)

Exercise 6.5 Critical Thickness of an Insulation
on an Outer Surface of a Pipe

The aim is to calculate thermal loss within the length of 1 m long copper
pipe (Fig. 6.6) whose outer diameter measures d = 12 mm and wall thick-
ness 1 mm. Water with a temperature of 90°C flows inside the pipe. Ther­
mal conductivity of an insulating material equals A

iz
= 0.05 W/(m·K). Tem­

perature of surroundings is 20°C. Heat transfer coefficient from the outer
surface of the pipe, or an insulation, to surroundings is the same as above
and measures a

z
= 5 W/(m2·K). The aim is to calculate the following quan­

tities:
a) critical thickness of the insulation,
b) heat loss in the function of insulation thickness (draw a diagram).
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r

Fig. 6.6. Longitudinal cross-section of a pipeline

In both cases, inner surface thermal resistance and the copper wall resis­
tance should be neglected.

Solution

Heat loss per unit of length:

Q 2ff'iz (Tw - T: )
L

r. (r.) 1~ln .s: +-
Aiz rz a z

or

Q 2ff(Tw - T:)
L

1 (r.) 1-In .s: +--
Aiz rz r»,

Heat loss Q/L will reach its peak, when denominator will reach a minimal

value

1 (r.) 1M==-ln -.E..- +--
Aiz rz r»,
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From the necessary minimum condition, one obtains a critical inner in­
sulation surface radius

dM =0
d1jz '

c Aiz
~z =-.

o;

a) critical insulation thickness:

c 0.05 0 006giz =--. =0.01-0.006=0.004m=4mm.
5

b) Fig. 6.7. shows the relevant graph.

Q/L [W/m]

15

gfz=4 mm
o

13,194
13 --+------+--------+--~~

Fig. 6.7. Heat loss through the insulation-thickness function

One should emphasize here that the problem of critical insulation thick­
ness, marked by the largest thermal loss, occurs only in pipes with very
small diameters, for example, when heat transfer coefficients on an outer
surfaces of an insulation are small and when thermal conductivity for insu­
lation materials are relatively large. In other cases, thermal loss decreases
when the thickness of an insulation increases.
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Exercise 6.6 Radiant Tube Temperature

The aim is to calculate the temperature of a steel-made radiant tube with a
thermal conductivity A =40 W/(m·K) and the following dimensions: d =
=32 mm, g =6 mm, t =39.6 mm (Fig. 6.8). The temperature of a medium
inside the tube is T =350°C. Heat transfer coefficient from an inner sur-

w

face of the tube to the medium is a
w

= 20000 W/(m2·K). Thermal load of
the tube (heat flux transferred by the tube at point P) is q= 350000 W/m2

•

The temperature at point P should be calculated in a simplified way under
the assumption that the tube is uniformly heated. Also, an accurate tem­
perature should be calculated on the basis of the provided diagram in Fig.
6.9, with a consideration given to a heat flow from the front-part of the
pipe to its unheated rear-side.

I~

~q

Fig. 6.8. Diagram of a smooth radiant (water-wall) tube

Solution

Tube wall temperature is described by the equation below

~(rdT)=o
dr dr

and by boundary conditions

J. dTI =a(TI -T ),dr r=rw w
r-r; '

(1)

(2)

(3)
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The solution is obtained by integrating (1) twice in r:

T = Cllnr + C2 • (4)

After substituting (4) for boundary condition (2) and (3) and determining
constants, temperature distribution is formulated as

qrz ( r 1 JT=Tw +- In-+-. '
A r; BI

(5)

where Bi= a r r):
w

The tube temperature at point P is calculated by means of an approxi-
mate formula (5)

Bi = 20000·0.01 = 5
40 '

T = TI =350°C+ 350000.0.016(ln 0.016 +.!.J=443.8°C.
P r-r. 40 0.01 5

Real temperature at point P is lower, since heat flows from the tube's
front-side to its unheated rear-side from the brickwork side. According to
paper [6], the radiant tube's real temperature at point P can be calculated
from the formula below

T' T . r 1 2 g
P = w + f.1q--3- -+--- ,

rw «, 1+ rz A
rw

where f.1 is a so called heat dissipation coefficient, which is determined
from Fig. 6.9. For Bi =5, /3= r Ir = 32/20 =1.6 and tid =1.2375, one ob-z w z

tains f.1 =0.89. Thus, temperature T; is

T' = 350°C + 0.89.350000 0.016 _1_ + 2 0.006 = 43rC.
p 0.01 20000 1+ 0.016 40

0.01

Temperature calculated by means of the approximate formula (5) equals
Tp=443.8°C. It is, therefore, higher than the real temperature T;= 432°C.

The difference, however (T
p

- T;) is small.
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Exercise 6.7 Quasi-Steady-State of Temperature
Distribution and Stresses in a Pipeline Wall

The aim is to calculate the difference between inner surface temperature
and average temperature across the thickness of a steel pipe wall with an
outer diameter of d =324 mm and wall thickness g =65 mm, made of a fer­
ritic steel 10CrMo910 with thermal conductivity A= 35.5 W/(m·K) and
thermal diffusivity a = Alcp= 7.137.10-6 m2/s. The outer surface of the
pipe is thermally insulated. The pipe heating (the steam superheater cham-
ber) takes place at constant temperature rate equal to vr = 10 K/min. Lets
assume that a quasi-stationary state forms itself in the pipe wall (Fig. 6.10)
and is characterized by a stable heating rate equal to vr. Quasi-stationary
state usually occurs for F0 = atlg2> 0.5 during the heating or cooling of an
element, if a temperature change rate of a medium or of an inner surface
wall temperature remains constant. We will also calculate thermal stresses
(axial) on an inner surface of the pipe under the assumption that the pipe
ends can be easily elongated (are free). The following material constants
apply for the computation: elastic modulus E = 181600 MPa, thermal ex­
pansion coefficient f3 = 1.35.10-5 11K, Poisson ratio v = 0.301.

r

g

Fig. 6.10. Quasi-steady-state temperature field in the pipe wall (cylindrical chamber)
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Solution

Due to a stable temperature change rate within a whole body volume equal
to aTfat = v

T
' the heat conduction equation assumes the following form:

~~(r dT) =vr .
r dr dr a

Equation (1) will be solved using the following boundary conditions:

Tlr=r
w

=Tw =vrt ,

(1)

(2)

(3)

(4)

The solution is obtained by integrating (1) twice in r:

1 Vr 2 IT =--r +C1 nr+C2 •

4 a

Constants C
1
and C

2
are determined from the boundary conditions (2) and

(3). Substitution of the C
1
and C

2
into (4) yields

T(r,t)=vrt+ ::(r
2-r; -2r}ln ~). (5)

Average temperature T
m
(r) across the wall thickness is given by

(6)

from which, after substitution of (5) for (6) and subsequent integration, one
gets

r
In~

( )
vr 1( 2 2) 1 4 rwT t =v t +-. - 3r - r - - r .

m r a 8 Z w 2 Z r 2 _ r 2

Z w

Equation (7) can be also transformed into the following form:

_ vrg2(3u2-1)(u2-1)-4u4lnu
Tm (t)- vrt+ () 2 •

a 8 u2 -1 (u -1)

(7)

(8)
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The unknown temperature difference

IS

vrg 2 (3u 2 -1)(u2 -1)-4u4lnu

~T = () 2 'a 8 u2 -1 (u -1)

where u =r / r .z w

The inner surface axial stress is given by

Ef3
aT =--~T,

I-v

where ~T is expressed using (9).
Temperature difference ~T is

u =324/194 =1.6701,

10 (0.065)2 (3.1.672-1)(1.672-1)-4.1.6741n1.67

~T= . =
607.137.10-6 8(1.672-1)(1.67 _1)2

=-42.6444 K.

The inner surface axial stress is

(J"r = EfJ I1T = 181600 .1.35.10-
5

(-42.6444) =-149.57 MPa .
I-v 1-0.301

Exercise 6.8 Temperature Distribution
in a Flat Wall with Constant
and Temperature Dependent Thermal Conductivity

(9)

The aim is to determine temperature distribution in a flat wall with thick­
ness g heated by a heat flow with density q and cooled on the opposite

side by water at temperature Tcz (Fig. 6.11). Heat transfer coefficient from
the plate surface to water a is constant. Lets assume that the thermal con­
ductivity of the plate material changes with temperature in a linear manner:

A(T)=a+bT,

where a and b are constants; temperature T is expressed in "C.

(1)
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We will also calculate temperature distribution with an assumption that
the thermal conductivity is constant and equals

1[( ) ( )JA ==- A T +A T
m 2 Ix=o Ix=g' (2)

where T!x=o and T!x=g are front-side and rear-side surface temperatures,

calculated using temperature-dependent thermal conductivity. The follow­
ing values are adopted for the calculation: g=0.016 m, q=274800 W/m 2

,

a =2400 W/(m2·K), Tcz= 20°C, a =14.64 W/(m·K), b =0.0144 W/(m·K2
) .

Calculation results will be presented in a tabular and graphical form.

T(x)

.
q"?
¢

o

g

x

(3)

Fig. 6.11. Plate heating

Solution

First apply Fourier Law:

4=-A,(T): =-(a+bT):.

Note that heat flux qis constant within the entire plate thickness, since

heat flow Q== Aq is constant for steady-state heat conduction. Separation

of variables in (3) gives

qdx == -(a + bT)dT .

By integrating (4), one obtains a quadratic equation with respect to T

(4)
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whose solution is thefunction

(5)

(_a
b

J2T(x)=-~+
b

2(qx-C)
b

(6)

Constant C is determined from condition

After substituting (7) for (5), one obtains

C=q·g+aTI +!b(TI )2,
x=g 2 x=g

(7)

where T!x=g is expressed by (7).

In order to determine temperature distribution, constant C is calculated
first:

TI = 274800 +20=129.5°C
x=g 2400 '

C = 274800·0.016 + 14.65 ·129.5 + !0.0144 .129.52 = 6414.7208 W/m.
2

Temperature distribution is expressed by the following function:

T(x)= 14.65 + (14.65 J2 _2(274800x-6414.7208) .
0.0144 0.0144 0.0144

Table 6.1 and Fig. 6.12 shows the determined T (x) distribution. Mean
thermal conductivity Am determined from (2) is:

T!x=o = 370.4274°C, T!x=g =129SC,

..1.(T!x=o) = ..1.(370.4274° C) = 19.9842W/(m· K),

2(TL=g) = 2(129SC) = 16.5148 W/(m· K),

Am =0.5· (19.9842 + 16.5148) = 18.2495 W/(m· K).



Exercise 6.8 Temperature Distribution in a Flat Wall 73

No.

Table6.1. Temperature distribution rex) across the plate thickness

[ ]
Non-linear Problem Linear Problem

x m T T

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

0.000 370.4274 370.4271
0.001 356.6077 355.3692
0.002 342.6476 340.3112
0.003 328.5427 325.2533
0.004 314.2884 310.1953
0.005 299.8799 295.1374
0.006 285.3119 280.0794
0.007 270.5793 265.0215
0.008 255.6761 246.9635
0.009 240.5964 234.9056
0.010 225.3337 219.8476
0.011 209.8812 204.7897
0.012 194.2317 189.7317
0.013 178.3773 174.6738
0.014 162.3099 159.6158
0.015 146.0206 144.5579
0.016 129.5000 129.5000

0.016

A(T)

0.008 0.012
x [m]

0.004

380-r------------------,
360

340

320

300
U
2..... 280

Q.)

~ 260
[) 240
0..

a 220
~

200

180

160

140
120 -+---r--r------r-----r---..,.....-----,r--~----t

0.000

Fig. 6.12. Temperature distribution across a wall thickness for constant and temp­
erature dependent thermal conductivity
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In the case of a linear problem, when the thermal conductivity is con­
stant and equals Am' temperature distribution across the plate thickness is
formulated as

After substitution of the numerical values, function T(x) has the form

T(x) =-15057.9468· x+ 370.4271°C.

Temperature distribution of T(x) for the linear problem is presented in
Table 6.1 and Fig. 6.12. It is clear from the analysis of results presented
there that the variable conductivity causes discernible temperature differ­
ences with regard to the linear problem.

Exercise 6.9 Determining Heat Flux on the Basis
of Measured Temperature at Two Points Using
a Flat and Cylindrical Sensor

Flat or cylindrical conductometric sensors are used to measure heat flux
q. The sensors operate by measuring temperature at two selected points:

PI i P
2

(see Fig. 6.13). The known values are the thermal conductivity A
tT), coordinates of measured temperature points Xl and x

2
(Fig. 6.13a) or

(Fig. 6.13b) and measured temperatures T
I

and T
2

• The aim is to determine
unknown heat fluxes, assuming that the thermal conductivity of the sen­
sor's material is a function of temperature and formulated as

(1)

where a, b, C and d are known coefficients.
The following values are assumed for the computation:
g =0.016 m; Xl =0.002 m; x2 =0.012 m;
a = 14.99 W/(m·K);
b =1.35.10-2 W/(m·K

2
) ;

C = - 4.51.10-6 W/(m·K3
) ;

d = 3.59.10-9 W/(m·K4
) ;

T
I
=330°C; T2=180°C.

In the case of a cylindrical wall:
r

2
=0.020 m; r l =0.030 m and r =0.032 m.

Remaining values are the same as the values for a flat wall.
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a)

x

g

o

/)
. I

b)

i .
0'

I

r;

r ...

PI

.
a

<;:5

Fig. 6.13. Conductometric sensors: (a) flat sensor, (b) cylindrical sensor

Solution

a) Flat sensor (Fig. 6.13a)
Once the Fourier Law variables are separated

and subsequently the integration is carried out from Xl to x2' one obtains

Xz Tz

Jqdx=- J-i(T)dT.
Xl 11

(2)

(3)

Introducing the mean thermal conductivity

1 11
Am=- J-i(T)dT,

~-I;Tz

(4)

and transforming (3), one obtains an expression which can be used to cal­
culate heat flux q

(5)

After substitution of (1) into (4) and integration, one obtains

Am =_l_[a(~ -1;)+!b(~2 - Tn+.!.C( ~3 - Tn +!d(~4 - T2
4

) ] . (6)
~-I; 2 3 4



76 6 Heat Transfer Fundamentals

Mean thermal conductivity Am is

Am = 1 [14.99.(330-180)+L1.35.1O-Z .(3302 -1802)+
330-180 2

1 ( -6) (3 3) 1 -9 (4 4)]+"3. -4.51·10 · 330 -180 +"4.3.59.10 · 330 -180 =

= 14.99+ 3.4425- 0.301719 + 0.1184796 = 18.25 W/(m· K).

Thus, heat flux qis

. =18.25 330-180 = 273750W/m2
•

q 0.012 - 0.002

b) Cylindrical sensor (Fig. 6.13b)

Heat flow Q is given by

(7)

(8)

. dT
Q=2;rrrLA(T)-,

dr
(9)

where L is the length of the sensor. After the separation of variables

».dr =A(T)dT
2;rrL r

and integration (10), one obtains

iLJdr = fA(T)dT,
2;rrL r2 r T

2

Q 'i ( )-In-=A 1:-T
2 L

m 1 2';rr r
2

(10)

(11)

(12)

where Am is expressed by (4). Since on the outer surface, heat flux qz is

given by the expression

. Q
qz = 2;rrr L '

z

one obtains from (12):

18.25.(330-180) 2q = =210984.55W/m.
z 0.032 ·In(0.030 / 0.020)
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Exercise 6.10 Determining Heat Flux By Means of Gardon
Sensor with a Temperature Dependent Thermal
Conductivity

A thin-walled measuring device called the Gardon sensor was applied to
measure heat flux in a furnace chamber of a boiler; the sensor is a cylindri­
cal plate insulated on the back surface Fig. 6.14). Since the plate is con­
stantly utilized to measure heat flux, it is cooled on the edges by water
(Fig. 6.15).

Assume that the circular measuring plate is made of austenitic steel
(18% Cr, 8% Ni) with thermal conductivity dependent on temperature

A(T)=15.1+0.0136·T, (1)

I 2Rr------.-------..--..

Where Ais expressed in W/(m·K) and temperature Tin -c The thickness
of the measuring plate is 1.8 mm. Coordinates of the installation points of
thermoelements are ,}=0 mm and '2 = 10 mm. Measured temperatures at
points ,} and '2 are, respectively T(,}) = T} = 420aC and T('2) = T2= 250aC.

The aim is to derive a formula for calculating temperature distribution in
Gardon sensor and heat flux q on the basis of measured temperatures T}

and T
2

•

Fig. 6.14. The longitudinal section Fig. 6.15. The operation principle of Gar­
of Gardon's measuring device: 1 - don's measuring device: 1 - measuring
constantan foil, 2 - protective plate, 2 - water coolant, q - heat flux, T]
shield, 3 - copper block, 4 - copper and T

2
- measured temperatures

ends



(2)

(4)

(5)

(6)

78 6 Heat Transfer Fundamentals

Solution

In order to derive a differential equation, which describes heat conduction
in a sensor of Gardon's measuring device, the energy balance equation will
be written for an elementary volume dV = 2 rg

c
r (Fig. 6.15)

( ) ( ) aT···
C T P T 21rrg/lrii = QI - Q2+ Q3'

where

Ql =-21[rgc[A(T) ~~]Ir' Q2 =-21[(r + Sr )gc [A(T) aT] ,
ar r+tJ.r (3)

Q3 =-21[r~rq.

By substituting (3) into (2), one obtains the following for I1r~ 0

C(T)p(T) aT =!~[A(T)r aT] +!L.
at r ar ar S;

In the case of steady-state problems aT/at = 0, and temperature distribu­
tion is only a function of a single variable r; therefore,

1 a [ aT] q-- A(T)r- =--.
r ar ar S;

Boundary conditions have the following form:

~~ Ir=o =0, Tlr='i = t; , TL=r2 =t;.

In order to linearize problem (5)-(6), Kirchhoff's transformation will be
used

T

U= fA(T)dT.
o

Since

dU =dU dT =A(T)dT,
dr dT dr dr

Equation (5) and boundary conditions (6) become linear

!~(rdU) =_!L
r dr dr gc '

dUI =0 UL='i =U" UL=r, =U2 ,dr r=O '

(7)

(8)

(9)

(10)
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where

(11)

From (9) with boundary conditions (10), one obtains

1 q(r2 -,n
U= +U1o

4 gc

From the third boundary condition (10) it follows that

1 qh2 -,n
U2 = +U1o

4 gc

(12)

(13)

After simple transformations of (13) we obtain a formula for heat flux q
. 4(U1 -v.».
q = 2 2 0 (14)

r2 -'1

Since
~ ~ ~

U1 -U2 = f.l(T)dT- fA(T)dT= fA(T)dT=Am(J; -T2 ) , (15)
o 0 T2

where
~

fA(T)dT
A =~T2 _

m ~_~

Equation (14) can be written in the following form:

o 4Am(~ -1;)gc
q = 2 2 0

r2 -'1

(16)

(17)

(18)

If A(n =a + bT, then the average thermal conductivity given by (16) is
~

f(a+bT)dT a(1'. -T )+!b(1'.2 _r 2 )
T 1 2 2 1 2

A = 2 = =
m ~_~ ~_~

1
=a+-b(~ +I;)=A(Tm ) ,

2
1

where Tm =-(~ +~)o
2
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On the basis of the derived formulae, one can determine the heat flux
value. Average temperature T

m
measures

Tm =!(~ + 1;) =!(420+ 250) =335°C.
2 2

After calculating the average thermal conductivity

Am = A(Tm) = a + bTm= 15,1+ 0.0136·335 = 19.656 W/(m·K),

one can calculate heat flux from (17):

. 4Am(~ -r;)gc 4.19.656·(420-250).0.0018
q= r

2
2 -li2 = 0.0102 _02 =

=240589.44 W/m 2
•

Exercise 6.11 One-Dimensional Steady-State Plate
Temperature Distribution Produced by Uniformly
Distributed Volumetric Heat Sources

A round plate with a diameter d, =200 mm and thickness g =20 mm is
electrically heated. The aim is to calculate the upper and lower surface
temperature of the plate under the assumption that heat is uniformly gener­
ated within the entire plate volume. The bottom and side parts of the plate
surface are thermally insulated.

Heat transfer coefficient on the plate surface is a =300 W/(m2·K). Sur­
rounding air temperature is T

p
=20°C. The plate's thermal conductivity is

A = 30 W/(m·K). The second aim is to calculate temperature distribution
within the entire plate thickness under the assumption that the plate's

thermal power is Q=6 kW.

Solution

The problem under consideration is shown in Fig. 6.16.
Since the power of internal heat sources remains constant

. Q 4Q
qv = V =Jrd;g ,

temperature field is determined using the heat conduction equation

(1)
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x

o

a = 300 W/(m2. K)

A= 30 W/(m·K)

~Q=6kW

I

ss
o
N
II
c.o

dz=200 mm

Fig. 6.16. Plate heating

and boundary conditions

dTI =0
dx x=o '

-A dTI =a(TI -T).dx x=g P
x=g

The solution is obtained by integrating (2) twice in x

T 1 4v 2 C C=---x + x+ .2 A 1 2

(2)

(3)

(4)

(5)

Once constants C
1

and C2 are determined from boundary conditions (3) and
(4) and substituted into (5), one obtains

T(x)= tlvg
2

[1_(~)2]+ 4vg +T .
2A gaP

Insulated surface temperature (x = 0) is

• 2 •

T(O)= qvg + qvg +T .
2A a P

The upper part plate surface temperature (x = g) is

T(g) = tlvg +T
p

•

a

(6)

(7)

(8)
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Substitution of the numerical values into (1), (7) and (8) yields

. = 4·6000 =9.5493 .106W/m3 •

qv JT.0.22.O,02

Temperature of the lower part of the plate surface is

T(0) = 9.5493.10
6

• (0.02 )2 + 9.5493.10
6

• 0.02 + 20 = 720.28 0C.
2·30 300

Temperature of the upper part is slightly lower:

T(0.02) = 9.5493.10
6

• 0.02 + 20 = 656.62°C.
300

Exercise 6.12 One-Dimensional Steady-State Pipe
Temperature Distribution Produced by Uniformly
Distributed Volumetric Heat Sources

Electric current flows at an intensity of 300 A through a pipe made of an
alloy steel pipe (Fig. 6.17) with an inner diameter d

w
= 7.2 mm and outer di­

ameter d =8 mm. Thermal conductivity of this steel is A= 18.4 W/(m·K),
while its specific resistance p =0.85 (n . rnm'j/m, The aim is to calculate
temperature distribution within the entire wall thickness under the assump­
tion that the outer surface of the pipe is thermally insulated and that total
heat generated by the pipe flows inside it. The inner surface temperature of
the pipe is T

w
= 300°C. The second aim is to calculate the heat transfer co­

efficient on the inner surface of the pipe, if the temperature of a medium is
T = 20oe.cz

l thermal insulation

L

Fig. 6.17. Electrically heated steel pipe
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Solution

Firstly, we will determine temperature distribution within the pipe wall
under the assumption that heat is uniformly generated within the entire
body volume. The heat conduction equation

~~(r dTJ =_ i.Jv
rdr dr A

will be solved using the following boundary conditions:

TI =Tr-r; w'

dTI =0
dr r-r. .

The solution is obtained by integrating (1) twice in r

dT iIvr C1-=--+-
dr 2,.1 r

and

(1)

(2)

(3)

(4)

(5)
• 2

()
qvr

T r =---+C1lnr+C2 •
4,.1

By substituting (5) into (2) and (4) into (3), one gets two algebraic
equations

whose solution are constants C
1
and C

2
:

• 2

C = qvrz
1 2,.1'

C =~(r; -r21nr J+T .
2 2,.1 2 z w w

(6)

(7)

(8)

(9)

By substituting constants C
1
and C

2
into (5), one obtains the following,

after simple transformations:
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. ( 2 2)r r-r
T(r)=:.T +~ r2 In- + w •

w 2A z r
w

2
(10)

(11)

(12)

Outer surface temperature is obtained from (10) by substituting r =r

q. ( r r
2 2)T(r )=:.T +_v r2 In2..+ w -rz •

z w 2A z r; 2

The power of internal heat sources with respect to a unit of volume is

. Q 12R

qv =V = lZ"(r; - r,nL ·

Since electrical resistance R is formulated as

therefore, from (12) one obtains

. 12p
qv =:. 2(2 2)2'

1r rz - rw

(13)

(14)

(15)

Heat transfer coefficient on the pipe's inner surface will be calculated
using the Newton's Law of Cooling:

A~~Ir=ra=:. w ,

(Tw - J:z)

where the heat flux on the inner surface is given by

Heat flux on the pipe's inner surface can also be calculated from energy
balance equation. The entire heat flow produced inside the pipe penetrates
the inner surface; hence, we get

tivlZ" (rz
2

- r~)L = tiw 2lZ"rwL. (17)

From (17), one obtains
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Therefore, the heat transfer coefficient on the pipe's inner surface is ex­
pressed as

(19)

By substituting the numerical values into (12), (11) and (19), one obtains

iJv = 300
2

• 8.5.10-
7

2 = 8.38715 .108 W/m3 ,

Jr2 (0.0042- 0.00362)

T(r )=300+ 8.38715.10
8

(0.0042ln 0.004 + 0.0036
2

-0.004
2)=

z 2 ·18.4 0.0036 2

=303.77805 "C,

a = 8.38715.10
8

• 0.0036 [( 0.004 )2 -1] 1 = 1264.73 W/(m2K).
2 0.0036 300 - 20

Exercise 6.13 Inverse Steady-State HeatConduction
Problem in a Pipe

The aim here is to solve the problem formulated in Ex. 6.12. In contrast to
Ex. 6.12, both conditions, i.e. heat flux and temperature T

z
= 303.77805°C,

are set on an outer surface. It is thus an inverse steady-state heat conduc­
tion problem characterized by the fact that temperature distribution across
the wall thickness can be determined on the basis of known temperature
values and heat flux at a single body point.

Solution

In a given case, heat conduction equation

!~(r dT) =_ 4v
rdr dr A

will be solved when both conditions are assigned on the outer surface

(1)
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TI =Tr=rz z '

dTI =0
dr r=r

z
•

Integrating (1) twice, yields

dT 4vr C1-=--+-
dr 2A r

• 2

T(r)=-qJ +C\lnr+Cz •
4A

By substituting (4) into (3) and (5) into (2), one gets
• 2

C = qvrz
1 2A'

(2)

(3)

(4)

(5)

(6)

• 2 • 2

C =T + qvrz - qvrz lnr . (7)
2 z 4A 2A z

Substituting (6) and (7) into (5), gives the temperature distribution T(r)

q. [r2 r
2

r )T(r)=T +_v z - -r2In.2....
z 2A 2 z r

Inner surface temperature is

. [2 2 )T =T(r )=T +~ rz -rw -r2In~ .
w w z 2 1 2 z

/I" rw

(8)

(9)

Temperature drop across within the wall thickness, determined from (9)
is given by

. [ 2 2)r r-r
T - T =~ r 2 In2.. + w z •

z w 2A z r; 2

The same result is obtained from (11) in Ex. 6.12.
Inner surface temperature determined from (9) is

T =303.77805 + 8.38715.10
8

(- 0.0042 In 0.004 +
w 2 ·18.4 0.0036

+ 0.004
2

~0.0036
2

) = 300 0 C.

The remaining results are identical to the results from Ex. 6.12.

(10)
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Exercise 6.14 General Equation of Heat Conduction
in Fins

The aim is to derive a differential equation to describe heat transfer in fins
with arbitrary shapes (Fig. 6.18) under the assumption that temperature
across the fin thickness is constant. In other words, one should disregard
temperature drop across the fin thickness and derive a formula for fin effi­
ciency.

x Ax

Fig. 6.18. Heat flow through fins with arbitrary shapes

Solution

By assuming that fin temperature remains constant within the fin's cross­
section and changes only in the direction of x axis, the heat balance for
control volume A(x)Ax has the form

(1)

Heat flows Qare expressed by the following formulas:

By substituting (2) for (1), one obtains

AA dTI -AA dTI
dx x+<lx dx x -aP(T - J:J =0, (3)

Ax

where A(x) is a cross-section area of a fin perpendicular to the direction of
heat flow through a fin, P is the fin circumference at a point with x coordi­
nate. If & ~ 0, then (3) assumes the form:
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d( dT)dx ).,A dx -aP(T-Tcz}=O. (4)

For a constant thermal conductivity A and constant cross-section A, (4) can
be written in the form

where

d2T
2

--m tt -r )=0dx' cz'

2 aP
m =-.

AA

(5)

(6)

Two boundary conditions are necessary in order to determine tempera­
ture distribution in a fin of height L. The first condition is assigned at point
x = 0 in the base of the fin, the second at the end of the fin at point x = L.
In practical computations, it is usually assumed that fin base temperature
T; is constant and equal to a temperature of a surface on which the fin is
mounted; i.e. it is assumed that fins do not disturb temperature distribution
in a construction element to which they are attached. The fin tip is usually
regarded as being thermally insulated, since the surface area of the tip is
considerably smaller than the area of fin's side surfaces; therefore, one can
neglect the heat flow transmitted by the tip. Assuming that heat exchange
takes place on the tip of the fin, the boundary conditions have the form

where a
w

is the heat transfer coefficient from the tip to surroundings, while
temperature Tcz is the temperature of a medium that surrounds the fin. It is
usually assumed that a

w
= a or a

w
=0, when a fin tip is thermally insu­

lated.
Fin efficiency is a ratio of a heat flow Q, transferred by an actual fin, to

a maximal heat flow Qmax' which the fin could transfer. Maximal heat flow

Q. occurs when temperature of the fin is uniform within its entire vol-max

ume and is equal to the base temperature T
b

• Heat flow Q can be calcu-

lated as a flow that is conducted through the base of the fin or as a dissi­
pated flow by lateral surfaces of the fin and the tip:



(1)
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Q=-(AA dT)1 = fa(T - t; )Pdx,
dx x=O 0

L

c, = Ja(I;, -Tcz)Pdx.
o

Fin efficiency is formulated as

Q
1]=-.-.c,

Assuming that a, P and T
cz

are independent of their position, formulas for
efficiency in fins with standard shapes are not very complicated.

Exercise 6.15 Temperature Distribution and Efficiency
of a Straight Fin with Constant Thickness

The aim is to determine temperature distribution and efficiency of a
straight fin with constant thickness under the assumption that fin tip is
thermally insulated. Next, to consider heat exchange through the fin tip,
the fin height will be increased by half of the fin's thickness. Then, the fin
temperature, heat flow dissipated by the fin and fin efficiency should also
be calculated. The following values are assumed for the calculation: fin
material - copper with the thermal conductivity A = 390 W/(m·K), fin
thickness t =0.5 mm, height L =7.5 em, width w =0.7 m, fin base tem-
perature T,=80°C, air temperature Tcz =20°C, heat transfer coefficient a =
10 W/(m2 ·K).

Solution

Differential (5) from Ex. 6.14, which describes thermal exchange in a fin,
has the following form:

d 2T 2
--m (T-T )=0.
dx' cz

If fin base temperature is T
b

, while fin tip is thermally insulated, the
boundary conditions have the form

(2)
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== O.
dx x=L

Lc

o
x

Fig. 6.19. Straight fin of constant cross-section

(3)

In the case of a straight fin, shown in Fig. 6.19, circumference P, on
which thermal exchange takes place, is P = 2(w + t), while the cross­
section area with regard to the direction of thermal conduction is A = wt.
Fin parameter m

2 ((6), Ex. 6.14) has, in the given case, the form

2 2a(w+t) 2a
m = ~-

Awt At '

since usually t « w. Once the new variable is introduced

(4)

(5)

Equation (1) and boundary conditions (2), (3) can be rewritten in the follo­
wing way

(6)

(7)

dOl =0
dx x=L •

Solution of the homogenous (6) has the following form:

e C mx C -mx== Ie + 2e .

(8)

(9)

From boundary conditions (7)and (8), two algebraic equations are obtained
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mC1emL
- mc.«:' =o. (11)

Once constants C
1
and C

2
are determined from (10) and (11) and sub­

stituted into (9), one obtains the following after transformations:

B(x) T(x)-J:z

Bb T;; - T;

coshm(L -x)

coshmL
(12)

Flow Q and Qmax will be determined in order to define fin efficiency:

Q=_:tAdTI =-[:twt(1;, -T )-mSinhm(L-X)]
dx x=o cz cosh mL

x=o (13)

=:twt~~~ (1;, - Tcz )tgh mL,

Qmax =a2wL(T;; - J:z)· (14)

Efficiency of a straight fin with constant cross-section is

o :twt~~at (T;; - J:z )tgh mL
'7 - - - /l, tgh mL (15)

- Qmax - a2wL(T;; - ~z) mL '

h
sinh x eX_e-x

tg x=--=--­
coshx e' + e-x

e' + e-x

coshx=---
2

where m is formulated in (4).
Hyperbolic trigonometric functions are expressed using the following for­

mulas:
x -x. e -e

slnhx=---
2

In (12) and (15), fin tip heat exchange is not taken into considera­
tion. It can be considered only when the fin height is increased by tl2 (Fig.
6.19). Once the fin height substitute is introduced, L,

t
L =L+-

c 2

temperature distribution and fin efficiency are expressed as

B(x) _ T(x)-J:z _ coshm(Lc -x)
- -

Bb T;; - T; cosh mLc
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tgh mLe

17= L 'm e

where m = -J2a / AI .
After substitution of the numerical values, one obtains the following re­

sults:

m= 2·10 =1O.127411m
390· 0.0005 '

I 1
L; = L + - = 0.075 + -·0.0005 =0.07525 m ,

2 2

- fin tip temperature

1 1
T (L ) = (1', - T ) + T = (80 - 20) +

e b ez coshmL
e

ez cosh(10.1274.0.07525)

+20 = 65.97°C.

- fin efficiency

tgh mL tgh(10.1274. 0.07525)
17 = e = = 0.8428 .

mLe 10.1274·0.07525

- heat flow to-surrounding air

Q = 17Qrnax = 17a2wL(~ - ~z) = 0.8428 ·10·2·0.7·0.07525· (80 - 60) =

=53.275 W

Exercise 6.16 Temperature Measurement Error Caused by
Thermal Conduction Through Steel Casing that Contains
a Thermoelement as a Measuring Device

The aim is to calculate temperature measurement error of combustion
gases by means of a thermoelement installed inside a steel casing (Fig.
6.20). The following data are used for the calculation: d = 12 mm, go =
3 mm, L =120 mm, A =50 W/(m·K), T =20°C, T =210°C. Heat transfer

o p ~

coefficient from combustion gases to casing is a
o
=45 W/(m

2·K).
Heat

transfer coefficient on an outer and inner side of the combustion channel is
a

p
=15 W/(m

2·K) and a
sc
=30 W/(m2.K), respectively. Lets assume that the

base temperature of a steel casing T, is equal to an average temperature Tsc

of a wall, which the thermometer casing is welded onto (Fig. 6.20).
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o

x

·0)=20')C

•.................~g() combustion

fl..o

Fig. 6.20. Thermoelement installation

Solution

First wall temperature T
sc

will be calculated. From the heat flux equality
condition on an inner and outer surface of the combustion channel, one ob­
tains

(1)

(2)

hence,

T; = ascT.p+apTp = 30·210+15·20 =146.7°C.
«: +ap 30+15

Thermoelement-indicated temperature T, can be calculated in the same
way as the fin tip temperature (insulated on the tip). Fin temperature distri­
bution is expressed by the function ((12), Ex. 6.15):
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i. = T - T'.p = coshm(L -x)

(}b t; - T:p cosh mL
(3)

where
T,=T

sc
- wall temperature, which the casing is welded onto,

T
sp

- temperature of combustion gases,
T = T(x) - temperature of a casing within distance x from the channel

wall,
m - fin parameter, defined as follows

m =~aoP/AoA,

where a
o

- heat transfer coefficient on an outer surface of the casing, P =
nd - outer surface of the casing,

A = ; (d; -d;) = 7ldsrgo '

Parameter m:

d = dw +dz =d _
sr 2 z g .

After substitution, one obtains

m== 45·0.012 == 20 11m.
50· (0.012 - 0.006).0.003

Tip temperature of the casing T; indicated by the thermoelement, is de­
termined from (3) for x =L

Since

coshmL'

1', -T
T == T + b sp

t coshmL

mL =20·0.12 =2.4,

then

1;=210+146.7-210=210_ 63.3 =198.61 0C.

cosh(2.4) 5.5569

Relative temperature measurement error for combustion gases is

e = T'.p - 1; .100 % = 210 -198.61 5.42% .
T:p 210
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Exercise 6.17 Temperature Distribution and Efficiency
of a Circular Fin of Constant Thickness

The aim is to derive an equation for a circular fin of constant thickness
from a general equation of heat transfer in fins (Ex. 6.14) and to determine
formulas for temperature distribution in fins, for a fin-transferred heat
flow and for fin efficiency. Following that calculate fin tip temperature, fin
efficiency and dissipate heat flow using the following data: fin-base tem-
perature T,=90°C, temperature of surroundings Tcz =20°C, r1 = 12.5 mm,
'2 = 28.5 mm, t = 0.4 mm, material of a fin - aluminium with thermal con­
ductivity A= 205 W/(m·K), heat transfer coefficient on the fin surface a =
70 W/(m2·K). Take into account heat exchange on a fin tip by increasing
fin height L to L,= L + t/2.

Solution

In the case of a circular fin shown in Fig. 6.21, surface area of a fin cross­
section is A =Tnrt, while circumference, on which thermal exchange oc­
curs is P =4;rr. Parameter m is defined as

~ap a471T ~2am- -- --- -
- AA - A2;rrt - At'

Differential equation (4) in Ex. 6.14 assumes the following form:

(1)

-·f·_·_·_·_·
I

1
I r,

Tb=T(rl) 1
I

1
I_. -I'_. _. _. _.

rw

L

A(r)

t/2

Fig. 6.21. Circular fin with constant thickness



(2)

(3)
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1 d ( dTJ 2a-- r- --(T-J:z)=O.
r dr dr At

Once excess temperature B = T - Tcz and parameter m given by (1) are in­
troduced, (2) can be written in a form

d2~ +.!.. dB _ m2B=O.
dr r dr

It is a modified Bessel equation, for which general solution has the form

Constants C
1
and C

2
will be determined from boundary conditions

BI_ =Bb , Bb =1;; - J:z'
r-fj

dBI =0
dr r=r2 •

(4)

(5)

(6)

Once constants are determined and substituted into (4), one obtains a for­
mula for temperature distribution B(r) in a fin:

B T (r) - J:z K o ( mr)II (mr2 ) +10 ( mr)K 1 ( mr2 )

0b 1;; - ~z 10 (mil )K}(mr2 ) + Ko (mil )I} (mr2 ) •

Heat flow Qdissipated by the fin

. _ dT I - K} (mJI ) I} (mr2 ) - I} (mJI )K} (mr2 )Q- -/LAb - - 21Z"/LJItBbm .
dr r=1j K o(mJI )1} (mr2 ) + 10 (mJI )K} (mr2 )

Since maximal flow Qrnax is

(7)

(8)

(9)

fin efficiency, then, can be determined as:

Q 211 K1 ( mil) II (mr2 ) - II (mil)K1 ( mr2 )
1]--- (10)

- c, - m(r22-rnKo(mlj)II(mr2)+Io(mlj)Kl(mr2)'

Fin tip heat exchange can be taken into account by substituting radius r2

in (7)-(10) for a slightly larger radius r
2c

= r
2
+ t/2. As in the case of a

straight fin, fin length is larger: L. = L + t/2.
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After substitution of the numerical values, one obtains

mil =41.32·0.0125=0.5165,

t
r2c = r2 +- = 0.0285 + 0.0002 = 0.0287 m,

2

mr2c =1.1859

The values of the Bessel functions are [5]

10 (mr2C) = 10 (1.1859) = 1.3837, K 1 (mr2C) = K 1 (1.1859) = 0.4443,

«,(mr2C ) = x, (1.1859) = 0.3247,

11 (mr2C) = 11 (1.1859) = 0.7035, 10 (mil) = 10 (0.5165) = 1.0678,

Ko(mil) = Ko(0.5165) = 0.8977,

one obtains

T(r2C)-20 = 0.3247·0.7035+1.3837·0.4443 =0.7624

90 - 20 1.0678·0.4443 + 0.8977 ·0.7035 '

T(r2C) = 73.38°C.

In order to determine fin efficiency, two additional Bessel functions are
needed:

K 1(mil) = K1 (0.5165) = 1.5887,

II (mlj) = II (0.5165) = 0.2670.

Heat flow dissipated by the fin is

= 2·0.0125 1.5887·0.7035-0.2670·0.4443 =0.8188.
'7 41.32(0.0287 2

- 0.0125 2
) 0.8977. 0.7035 + 1.0678·0.4443

Fin-diffused heat flow:

Q= '7Qmax = '7a 2Jl" (rz2c -In(J;, - ~J =

= 0.8188· 70·2· Jl"(0.0287 2 -0.01252 )(90 - 20) = 16.82 W.

Bessel function values, present in formulas for temperature distribution
and circular fin efficiency, can be read from table [5] or calculated by
means of library procedures [4, 7].
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Exercise 6.18 Approximated Calculation
of a Circular Fin Efficiency

Calculate circular fin efficiency from Ex. 6.17 using the following ap­
proximation formulas:

a) according to Schmidt [11, 12]

tghmLeCfJ
178 = L '

m eCfJ

where

CP=I+0.35ln(l+ ~c). m=~~~.

(1)

(2)

If 17 > 0.5, then efficiency 17 calculated using (1) does not differ more
than ±1% from the real value.

b) according to Brandt [2]

'lB = 2fj tgh mLc [1 + tgh mLc _ C (tgh mLJP ] ,
2'i + i, ml., Zmr; (»v. )n

(3)

where
C =0.071882, p =3.7482, n = 1.4810. (4)

Maximal error from efficiency determination by means of (3) is smaller
than 0.6% from an error made when determining efficiency by means of
(1).

c) formula according to [3]
1

(5)

Equation (5) gives good results, when 17 > 0.75. For the calculation, use
the values from Ex. 6.17.

Solution

a) according to Schmidt

m = 41.32 11m, 'i = 0.0125 m,

L; = r2e - '1 =0.0162 m, CfJ =1.2909,

r2e =0.0287 m,
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tgh(41.32.0.0162.1.2909)
17 = = 0.8082 .

s 41.32.0.0162.1.2909

Since a real value of the efficiency is 17 = 0.8188, relative error, then,
comes to

&s = ('Is -'1)100%= 0.8082-0.8188 .100%=-1.295%.
17 0.8188

b) according to Brandt [2]

2·0.0125 0.584575

17B = 2.0.0125+0.0162' 41.32.0.0162 x

[
(0 584575)3.7482 J

x 1+ 0.584575 0.071882·' =0.8162.
2·41.32·0.0125 (41.32.0.0125)1.4810

Relative error is:

&8 = 'IE - '1 .100% = 0.8162- 0.8188 .100% = -0.312% .
17 0.8188

c) formula according to [3]

1
17H= =0.8155.

1+!(41.32.0.0162)2 0.0287
3 0.0125

Relati ve error is:

&H = '1H -'1. 100% = 0.8155-0.8188 .100%=-0.409%.
17 0.8188

From the comparison of the results presented above, one can see that the
least accurate result is given by Schmidt formula. Brandt formula allows
for the most accurate calculation of circular fin efficiency; however, the
amount of work required to obtain the results is not much smaller than in
the case of the analytical formula. Equation (5) is both simple, yet accurate.

Exercise 6.19 Calculating Efficiency of Square
and Hexagonal Fins

Calculate fin efficiency (equivalent fins) in a fin-plate exchanger made of
pipes with an outer diameter of d = 10 mm and wall thickness S, = 1 mm.
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Distance between pipes in a hexagonal system is constant and is equal to
2s (Fig. 6.22b). Perpendicular and longitudinal pitch 2s, with pipes ar­
ranged in rows, is assumed constant (Fig. 6.22a). Calculations are to be
made for a

a) in-line
b) hexagonal

pipe configuration for two fin-plates of different thickness: t = 0.33 mm
and t =0.13 mm, assuming that 2s =25 mm. Fin plates are made of alumin-
ium alloy with thermal conductivity of A=165 W/(m·K). Heat transfer co­
efficient is a = 50 W/(m2·K).

Solution

Pipe configuration is shown in Fig. 6.22. Fin efficiency will be calculated
using (5) from Ex. 6.18.

1
1]= ,

1+!(mL)2 r;;
3 V--;;

where L = r;- '1' '1 =dJ2, r;- equivalent radius of a circular fin, calcu­

lated from a condition of equality of a conventional and circular fin surface
area, as shown in Fig. 6.22. Fin parameter is calculated using formula

air-How
direction

a)

f~~~1~~IJ(q71'471'47I
I J. J. .1

: :-$:-$:I t I
I I I____ .!. l ...1

""--+--+--+-4- : :Ltl :
I : :'+7:
I ----T----T----'
: : :-$:
I I t I
I I I I

t-----2~---- ... ---- ...
lamella of thickness 1

air-flow
direction

b)

lamella of thickness t

Fig. 6.22. Pipe lay-out in a fin-plate exchanger: (a) in-line pipe configuration,
(b) hexagonal (staggered) pipe configuration
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m=~~~ .

a) In-line pipe configuration is shown in Fig. 6.22a

Equivalent radius r2* is calculated from a condition of equality of circular

and square fin surface area, whose side is 2s

2s ·2s - 1rtj2 =Jr(rnZ
- 1rtJ

2
,

* 2s
rz =.j;'

After substitution, one obtains

* = 2s = 0.025 = 0 0141rz .j; .j; . m.

Parameter m:

when t ==0.33 mm,
2·50

=42.85 11m,m==
165 ·0.00033

when t =0.13 mm,
2·50

= 68.28 11m.m=
165·0.00013

Since,

L = r2* - 'i = 0.0141- 0.005 = 0.0091 m ,

fin efficiency is

when t = 0,33 mm,

when t = 0.13 mm,

1
1] = = 0.9216,

1+!(42.85'0.0091)Z 0.0141
3 0.005

1
1] = = 0.8223 .

1+!(68.28. 0.0091)Z 0.0141
3 0.005

b) Hexagonal pipe configuration is shown in Fig. 6.22b

Area of triangle ABC:
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Fin surface area: Si =2SABC and

2 (*)2 22SABC - Jr't =Jr r2 - Jr't ,

One obtains then

Equivalent radius:

(
hJ1I2 ( J

1/2
r; = 2~3 .s= 2~ .0.0125=0.0131m.

Since,

L=r2* -'t =0.0131-0.005=0.0081 m,

one obtains the following efficiency values:

when, t = 0.33 mID,

when, t = 0.13mm,

1
17 = = 0.9390 ,

1+!(42.85.0.0081)2 0.0131
3 0.005

1
17 = =0.8583 .

1+!(68.28.0.0081t 0.0131
3 0.005

From the comparison of results given, it is clear that hexagonal configu­
ration ensures greater fin efficiency; therefore, the flow of transferred heat
is larger than it is in the case of a in-line pipe configuration.

Exercise 6.20 Calculating Efficiency of Hexagonal Fins
by Means of an Equivalent Circular Fin Method
and Sector Method

The aim is to calculate efficiency of an equivalent fin in a fin-plate ex­
changer with a staggered fin configuration (Fig. 6.23). Pipes with an outer
diameter of d, = 7.59 mm arranged together with the following pitches:
P, = 21 mm and PI = 12.7 mm (Fig. 6.23). The thickness of aluminium
alloy based fin plates is t = 0.115 mm. Thermal conductivity of the fin
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Fig. 6.23. Fin-plateheat exchangerwith a staggeredpipe configuration

material is A= 165 W/(m·K). Heat transfer coefficient on a fin-plate sur­
face is equal to a = 40 (W/m2·K). Calculate efficiency of fins with an
equivalent outer radius by means of a simplified Brandt formula and sector
method.

Solution

a) Method I

First, we will calculate an equivalent outer radius of a circular fin, whose
surface area equals a surface area of a equivalent fin shown in Fig. 6.24.
The equivalent fin surface area is

where AoBe is an area of triangle OBC.
The above formula took into account the fact that thermal exchange occurs

on both sides of fin plates. Surface area of a circular fin A 0 with an equiva­
lent outer '2* and inner radius substitute and '1' respectively, is
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flow
direction

Fig. 6.24. Calculation of anequivalent fin surface area

From theequality

Oneobtains,

2[ (2AoAB + 4AaBC ) - 1Z7j2 ] =2Jr [ h*t -1j
2l

hence,

Area of a triangle DAB is formulated as (Fig. 6.24)

1
AOAB =-IABI· hOAB '

2
where

p
IABI =2~tgr =~tgr,

2

. ~
sm~= 2IODI'

h ~
DAB =2'

. ~
tp = arcsin -1-1 '20D

Jr
r=2-2~,

IODI= (~J +112
•
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Area of a triangle aBC is formulated as

1 1 1 1
AOBC=-IBClhoBC =-IBCI-IODI=-IBCIIODI,

2 2 2 4

IBCI =2!OD! tgqJ =IODI tgqJ.
2

According to a simplified Brandt formula, fin efficiency is expressed us­
ing (3) from Ex. 6.18

1J = 2'1 tghmLc [1 + tghmLc _ C(tghmL:Y],
2'i + i, mLe Lmr; (m'i)

where

c =0.071882, p = 3.7482, n =1.481,

m =~~at.L=r;-'1, /L

After substitution of the numerical values, one obtains

IODI= (~J +p/ = (0.~21J +0.0127
2

=0.01648m,

sin =~= 0.021 =0.6372
qJ 210D! 2·0.01648 '

(jJ= arcsin-I~I=0.6909 rad,
20D

Jr Jr
r =-- 2cp =-- 2·0.6909 =0.1890 rad,

2 2

IABI = ~tgr = 0.021· 0.19128 =0.004017m,

h _~_0.021_00105
OAB - 2 - 2 -. m,

11 I 1 -5 2AOAB= - AB hOAB= -·0.004017·0.0105 =2.1089 ·10 m,
2 2

IBCI = IODI· tgcp = 0.01648· tgO.6909 == 0.01363,

11 II I 1 -5 2AOBC== - BC OD == -·0.01363·0.01648 == 5.6156 ·10 m,
4 4
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2.2.1089.10-5 +4.5.6156.10-5

3 ~2a 2·40=9.2155 ·10- m, m = - = =64.93 11m,
At 165·0.000115

L = r2* - 'i =9.2155 .10-3
- 3.795.10-3 =5.4205 .10-5 m,

mL =0.35195,

2.3.795.10-3 tgh 0.35195

b) Sector method

In keeping with the sector method, a triangular fin OAB will be substituted
by an equivalent circular fin sector (with an equivalent surface area).

2r 2 2r 2 2r 2
AOAB - -Ii = -Jrr2 1 - -Jrli '

2Jr 2Jr ' 2Jr
hence,

1', =JAOAB = 2.1089 ·10~5 =0.010563 ill.
2,1 r 0.189

Circular fin efficiency with an outer radius '2,1 and inner radius '1

amounts to

L; = r2 l - 'i =0.010563 - 3.795.10-3 =6.768.10-3 m,

ml; =0.43945,

2.3.795.10-3 tghO.43945
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Radius r
2 2

of a circular fin sector with a surface area identical to a sur­
face area of'a triangular fin OBC is calculated in a similar way.

L2 = r2,2 - 'i = 5.2205 .10-3 m,

mL2 =64.93.5.2205.10-3 =0.33897,

2.3.795.10-3 tghO.33897

Fin efficiency calculated by means of a sector method comes to

After substitution of the numerical values, one obtains

2( 2.1089.10-5- 0.189· 0.003795 2 )0.9034 + 4(5.6156.10-5- 0.6909

tt, = 2(2.1089.10-5 -0.189.0.0037952)+4(5.6156.10-5-0.6909 X

.0.003795
2
)0.9441 2 ·1.8367 .10-5· 0.9034 + 4· 4.62056 .10-5· 0.9441

x - -
.0.003795 2

) - 3.6734.10-5+ 1.84823 ·10-4 -

=0.9373.

From the comparison of results, with 17
e
= 0.9394 and 17

s
= 0.9373, it is clear

that method I, in which the whole fin is substituted by an equivalent circular
fin, and sector method generate almost identical results. However, method I
requires less computational work.
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Exercise 6.21 Calculating Rectangular Fin Efficiency

The aim is to calculate efficiency of an equivalent fin in a fin-plate ex­
changer with a serial pipe configuration (Fig. 6.25). Pipes with outer di­
ameters d = 10 mm are arranged with the following pitches: P, =25 mm
and Pi = 22 mm. The thickness of fin-plates from aluminium alloy with
thermal conductivity A= 165 W/(m·K) is t =0.13 mm. Heat transfer coef­
ficient on a fin-plate surface equals a = 35 (W/m2·K). Calculate efficiency
of an equivalent circular fin with radius '2* by means of a simplified (5)
from Ex. 6.18.

-$-i
______ ~ d== I0 mm

-$-i
I

airflow
direction

E
E

-t - - - - - - +- - - - - - - 1- - - - - - -I

i-$:-$-i-$-i
------~------------~:-$-:-1---+---1-I . I

I . I

I I

------1---
I I
I I

I I --+---+-+-
I I
I I
I I

~-- ---~-- --4------~

Fig. 6.25. Serial pipe configuration in a fin-plate exchanger

Solution

Equivalent radius '2* of a circular fin will be calculated from the condition
of equality of a circular and rectangular fin surface area (Fig. 6.25):

2[n-(r;r-n-lj2 ] =2(~~ - mn.
From the above formula, one obtains

r; =J~~/n-.
The efficiency of a circular fin is calculated from (5), Ex. 6.18

1
1]== 1 '

1+-(mL)2 ~r; /lj
3

where
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m=~2a/At,

After substitution, one obtains

r; = (0.025·0.022) = 0.01323 m,
1r

'i = 0.5d1 = 0.005 m,

L = r2* - 'i = 0.01323 - 0.005 = 0.008231 m,

2·35
m = = 57.131/m, mL = 57.13·0.008231 = 0.47023,

165· 0.00013

1
17 = = 0.8929 .

1+!.0.470232 0.01323
3 0.005

Exercise 6.22 HeatTransfer Coefficient
in Exchangers with Extended Surfaces

Derive a formula for an overall heat transfer coefficient k for thermal ex­
changers with extended surfaces (Fig. 6.26). Compare coefficients to an
inner surface k

rw
and outer surface krz of a smooth pipe and to an entire

outer surface k
c

(fins + surfaces between fins). Take into account the pres­
ence of scale on an inner fin-free surface, assuming that coefficient a

g
from

the finned side is determined in a way that it already accounts for the resis­
tance from external scale.

Solution

In order to derive a formula for a heat transfer coefficient, an equivalent
heat transfer coefficient azr will be introduced with regard to smooth sur­
face area A

g
, on which fins are mounted. It takes into consideration both

heat transfer by fins and heat transfer by inter-fin spaces. It is assumed, at
the same time, that fins do not disturb a one-dimensional temperature field
in a wall of an element to which they are attached. If T

w
stands for a wall

surface temperature from a liquid's side, while T, is an outer surface tem­
perature from the gas side (Fig. 6.26), then heat flow transferred by an
outer surface
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a)

b)

Fig. 6.26. Extended heat transfer surfaces: (a) finned pipe, (b) flat plate with fins

where o. stands for a heat flow that flows from a liquid of temperature T,
to a gas of temperature T

g
that corresponds to a single pitch s, while T,> T,

Surface area A stands for a surface area of a smooth pipe or fin-free plate
g

that corresponds to a single pitch s:

Ag = Arz = 2Jr'is for a smooth pipe,

Ag = A = w-s for a smooth plate.
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Surface area between fins, which corresponds to single pitch s, can be
calculated in a similar way:

Ami =2Jr'i (s - t ) for a finned pipe,

Ami =(s - t ) w for a finned plate.

The surface of a single fin, which corresponds to a single pitch is given
by

t
where r2c =r2 +-, for a finned pipe,

2

A. =2wL, where L =L +i, for a finned plate.
z C C 2

From (1), one obtains a formula for an equivalent heat transfer coeffi­
cient

[
A . A. )a =a --.!!E-+_Z n .

zr g A A"
g g

(2)

If an equivalent heat transfer coefficient is known, then the calculation
of an overall heat transfer coefficient krz ' with regard to a plate surface or
an outer surface of a smooth pipe, is conducted in an identical way as the
calculation of a smooth pipe or plate with a heat transfer coefficient equal

to a; Heat flow o: which corresponds to a single pitch, can be calculated

for a pipe (Fig. 6.27a) using the following formula:

o. = krzAg (1;, - Tg ) = qlAg • (3)

-T
Ao

e

(Xu'

a) b)

1-

qyf,1 q
c::;> ¢

I A
I -r;
I Ao

«,
1

I «, -t,
1

r -
"'0

- go
rw gsc

fl

Fig. 6.27. Auxiliary diagram for determining overall heat transfer coefficient k for
finned surfaces with a scale layer of thickness go: (a) pipe, (b) plate
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Overall heat transfer coefficient krz ' which pertains to a surface area of a
smooth pipe with an outer radius of r 1 is calculated in the same way as the
coefficient for a smooth pipe, although here one allows for the fact that
four temperature decreases contribute to a temperature drop of T, - T

g
;

these are:

• Temperature decrease between a temperature of a liquid T, and an inner
scale surface temperature To formulated as

T -TI =~.
c 0 r=r

o a
c

Since the following equality occurs in a pipe

Q= iIo 21CroH =iIw 21CrwH = iI1 21CfiH ,
then

hence iIo can be calculated as shown below:

Equation (4) can be written then in the following way:

:z: - TI _ = 41'i .
r-r: rwa

c

• Temperature decrease inside a scale layer is formulated as

Hence, after introducing thermal contact resistance

s, = ~o [(m2
• K)/W]

o

one obtains

• Temperature decrease across a thickness of a pipe wall is

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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• Temperature decrease between an outer surface of a pipe and gas tem­
perature T

g
is

TI -T =!lL.
r='i g a

zr

(13)

After summation of four temperature decreases formulated by (8)-(13),
one obtains temperature difference (T - T)

e g

(14)

From the definition of an overall heat transfer coefficient krz ' the following
results from (3):

T -T =.!JLc g •
krz

From the dependence (14) and (15), one obtains

hence,

(15)

(16)

(17)

One can determine overall heat transfer coefficient k
w

with regard to in­
ner surface A

w
and coefficient ke with regard to total surface Ac=A + Arne

from the following equality:

hence,

where: A = Tnr S, A = 21lr1 S, A = A +A .
w w g e

In the case of a finned flat wall (Fig. 6.27b), overall heat transfer coeffi-
cient kg is determined, with regard to a smooth surface, from a formula

!L=!L+ qgo + qgsc ..«.
kg «, ,.10 A «.'



(1)
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from which the following equality results

_1 =_1 +R + gsc +_1_
kg «, 0 A «.'

where R, = go /Ao[(m2
•K)/W] is a thermal contact resistance of a scale layer.

The unknown overall heat transfer coefficient with regard to total sur­
face Ac= A +Am ' can be determined from the condition

o. = kgAg(I: - Tg) = kA; (I: - Tg) ,

which results in

~=_1~
k, kg Ag

Exercise 6.23 Calculating Overall HeatTransfer
Coefficient in a Fin Plate Exchanger

Calculate overall heat transfer coefficient in a fin-plate exchanger analyzed
in Ex. 6.20. The thickness of an aluminium made pipe wall with thermal
conductivity Ar= 165 W/(m·K) measures gr = 1 mm. Heat transfer coeffi­
cient on an inner surface of the pipe is a

c
=5000 W/(m

2·K).
The pitch of

fin spacing is s = 1.6 mm. Other values remain the same as they were in
Ex. 6.20. For the calculation, assume fin efficiency of 1]= tl,= 0.9394, cal­
culated by means of method I (Ex. 6.20). How many times does an overall
heat transfer coefficient increase in comparison to a smooth pipe?

Solution

First, surface areas will be calculated:
- fin surface area (Fig. 6.24)

At = (2AoAB +4AoBC ) = 2(2· 2.1089.10-5 + 4.5.6156.10-5
) =

= 5.33604.10-4 nr'.
- surface area between fins

Ami =Jrdz(s-t)=Jr.7.59.10-
3(1.6-0.115)·10-3 =3.54094.10-5 m".

- smooth surface area

A
g

=Jrdzs=Jr·7.59·10-
3 .1.6.10-3 =3.81515·10-5 m2

•

- surface area of a fin and a pipe between fins
A =A. +A . =5.33604·10-4 +3.54094.10-5 =5.690134.10-4 m".

c z mz
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An equivalent heat transfer coefficient is

a =a [Ami + Ai J=40[3.54094'10-
5

+ 5.33604·10-4 .0.9394)=
zr g A

g
A

g
17 3.81515.10-5 3.81515.10-5 (2)

= 596.58 W/(m2
• K)

Overall heat transfer coefficient (k
r
) , with regard to an outer surface of a

smooth pipe, is calculated in the following way:

_1 =-.-L+.lln2+_1_= 7.59.10-
3

1 +
krz r». Ar r; azr 2((7.59.10-3/2)-0.001)5000

+ 7.59.10-
3

x In 7.59.10-
3

+ 1 =2.71556.10-4 +
2 ·165 2[ 7.59~10-

3
_ 0.001) 596.58

+7.0346.10-6 + 1.676221.10-3 = 1.9548.10-3 (m 2
• K)/W,

krz =511.56 W/(m2 ·K).

Overall heat transfer coefficient (k) for smooth fin-free pipes with respect
to an outer surface of a pipe is:

1 'i 'i 'i 1 -4 6-=-+-In-+-=2.71556·10 +7.0346-10- +0.025=
k rwac Ar r; a

= 0.0252786 (m" . K)/W,

k = 39.559 W/(m2 ·K).

Due to the application of flat fins ( fin plates), heat transfer coefficient
increased n times:

n=krz =511.56=12.93.
k 39.559

Exercise 6.24 Overall HeatTransfer Coefficient
for a Longitudinally Finned Pipewith a Scale
Layer on an InnerSurface

A dowtherm was applied in a steam boiler. It flows inside a ring-shaped
gap between two pipes. In order to increase heat transfer coefficient, the
center pipe is longitudinally finned on its outer surface (Fig. 6.28). A wa­
ter-vapour mixture flows inside the pipe. The following data is used for the
calculation:
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• outer surface pipe diameter d, = 48.3 mm (Fig. 6.29),
• inner surface pipe diameter dw = 40.94 mm,
• fin height L =12.7 mm (d2 =d1 + 2L =73.7 mm),
• fin thickness t =0.889 mm,
• fin number on the pipe's perimeter N =24,
• thermal conductivity of the fins and pipe material: A= 55 W/(m·K)

(carbon steel),

Fig. 6.28.A diagram of a heat exchanger of pipe-in-pipe type with an internal pipe
finned on an outer surface

Fig. 6.29. A diagram of a longitudinally finned pipe
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• heat transfer coefficient from the dowtherm's side: ad = 1500
W/(m

2·K),

• heat transfer coefficient on an inner surface of the pipe: a
w

= 10000
W/(m

2·K ).
How much will a heat transfer coefficient decrease when a layer of a boiler
scale, go =0.1 mm thick with a thermal conductivity of Ao =1 W/(m· K) ac­
cumulates on an inner surface of the pipe?

Solution

L
e

= L +!.- = 12.7 .10-3 +!. 0.889 .10-3 = 13.1445 .1O-3 m .
2 2

Fin parameter comes to

m=~2ad = 2·1500 =247.7 11m,
AI 55.0.889.10-3

mLc =247.7.13.1445.10-3 =3.256.

Fin efficiency is formulated as

tgh(mLc ) tgh(3.256)
1] = = = 0.3062 .»a; 3.256

In order to calculate an equivalent heat transfer coefficient a, surface
area A, Am and A

g
, which correspond to 1 m of pipe and one pitch

~qJ , will be calculated first (Fig. 6.29).

Ai =2·Lc .1=2.13.1445.10-3 ·1=2.6289·10-2m2
,

A = /1rp' d[ .1 = 2;rr . 48.3 .10-
3

= 6.3225 .10-3 m 2

g 2 24 2 '

Ami =A
g

-1.1=6.3225.10-3 -0.889.10-3 =5.4335·10-3m2
•

An equivalent heat transfer coefficient a; calculated with respect to an
outer surface of a smooth pipe is

a =a (Ami + Ai J=1500.(5.4335.1O-
3

+ 2.6289.10-
2

.0.3062J=
zr d A

g
A

g
1] 6.3225 .10-3 6.3225 .10-3

= 3198.85 W/(m 2 ·K).



118 6 Heat Transfer Fundamentals

Overall heat transfer coefficient krz calculated with respect to an outer
surface of a smooth pipe is formulated as

_1_=l_I_+ l Ro+ 1j Inl +_1_.

krz r: «, r. A r, azr

First coefficient krzis calculated, for the situation when an inner pipe sur­
face is scale free. Since R = 0 and

o

r. = d1 = 48.3 .10-
3

=24.15 .10-3m r
w

= 40.94 .10-
3

=20047 .10-3m,
1 2 2 '2

then,

_1 = 24.15 .10-3 1 + 24.15 .10-3 In 24.15 .10-3 + =

krz 20.47.10-310000 55 20.47.10-3 3198.85

=1.17978·10-4 +7.2592.10-5 +3.1264.10-4 =5.0321.10-4 (rrr' ·K)/W.

hence,

krz = 1987.2 W/(m 2 ·K).

It can be seen that here overall heat transfer coefficient is only slightly
bigger than a dowtherm heat transfer coefficient, equal to ad = 1500
W/(m

2·K). This is caused by a large heat transfer coefficient a
w

' for which
fin efficiency is rather small. In order to consider the effect of scale layer
on a calculated coefficient krz ' it is sufficient to add calculated value llkrz
to a scale resistance equal to

lR =l. go = 24.15.10-
3

• 0.0001 =1.1789.10-4(m2.K )IW.
r
w

0 r. Ao 20.47 .10-3 1

Overall heat transfer coefficient k;z for a pipe with a scale layer on an

inner surface is

therefore,

k;z = 1609.82 W/(m
2
·K).

Due to a scale accumulation on an inner surface, overall heat transfer
coefficient became smaller by

tJakrz =krz -k;z =1987.23-1609.82 = 377.4W/(m
2·K).
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Exercise 6.25 Overall Heat Transfer Coefficient
for a Longitudinally Finned Pipe

Calculate overall heat transfer coefficient, with respect to a smooth outer
surface of a pipe, for finned pipes with an outer diameter d. = 16 mm and
thickness gr= 2 mm, made of aluminium with thermal conductivity A =
205 W/(m·K). The outer diameter of a fin,with thickness t = 0.1 is d2 =
35 mm. Pitch of the fin spacing is s = 1.1 mm. A hot water of tempera-
ture t

w
=80°C flows inside the pipe at a speed of WI =0.5 m/s; it warms the

air, which circulates the finned pipes crosswise. Heat transfer coefficient
from the air side is equal to a = 60 W/(m

2·K).
How is the overall heat

transfer coefficient going to change when the velocity of flowing water in­
creases to w

2
= 2 mls? Calculate heat transfer coefficient from water to pipe

using the following Stender and Merkel formulas

«, =2040(1+0.015tw)WO.87d:O.l3, (1)

in which the units are as follow:

«: [W/(m2·K)],
t

w
[DC], W [mls],

Solution

d [m].
w

A diagram of the finned pipe is presented in Fig. 6.30. First, we will calcu­
late fin efficiency from formula

(2)

where,

_ dl _ 16 .10-
3

_ 8 .10-3
'1 - 2 - 2 - ill,

r = d2 = 35.10-
3

=17.5.10-3 m
2 2 2 '

t
r

2e
= r2 +- = 17.5.10-3 + 0.05 .10-3 = 17.55 .10-3 m,

2

t t -3 -3 0.1.10-3
-3

Le =L+-=r2 -'1 +-=17.5·10 -8·10 + =9.55·10 ill.
222
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I i~ ~~N
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I I

1

I

Fig. 6.30. A diagram of a finned pipe with circular fins of constant thickness

Fin parameter m is

m=~2a = 2·60 =76.51 11m,
At 205·0.0001

mLc =76.51.9.55.10-3 =0.7307.

Thus:

1
17 = = 0.7914 .

1 17.55.10-3

1+ -(0.7307)2
3 8.10-3

Next, we will calculate fin surface area (At) and smooth pipe surface
area (Ag) on an outer surface and inner surface area (Aw) for a single pitch
s:

At =2Jrh2 -,n=2Jr[(17.5.1O-3r-(8.10-3r]=1.5221.10-3 m",

A
g

= 2Jr'is = 2Jr .8.10-3 .1.1.10-3 = 5.5292 .10-5 m",

A
w

=2Jrr
ws=2Jr('i

-gr)s=2Jr(8-2).10-3 .1.1.10-3 =4.1469.10-5 m",

Surface area between fins per single pitch is

Ami = Ag - Jrd1t = 2Jr'i (s - t) = 2Jr·8.10-3 (1.1- 0.1)10-3 =

= 5.0265 ·10-5m2
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Equivalent heat transfer coefficient a, calculated with respect to a
smooth outer surface of the pipe is

a =a[Ami + Ai )=60.(5.0265.10-
5

+ 1.5221.10-3.0.7914)=
zr A

g
A

g
1] 5.5292.10-5 5.5292.10-5

= 1362 W/(m2
• K).

Overall heat transfer coefficient from water to inner surface of the
pipe is

a w =2040(1+0.015.80)0.5°·87 .(0.012)-0·13 =4363.8 W/(m2·K).

Heat transfer coefficient with respect to smooth outer surface of the
pipe is calculated using (17), from Ex. 6.22:

_1_=~+ Ii In2+_1_= 8.10-
3

+
krz r»; A rw o; (8-2).10-3 ·4363.8

+ 8.10-
3
In 8.10-

3
+ _1_ = 3.055441.10-4 +

205 (8 - 2) .10-3 1362

+1.12266.10-5 +7.34198.10-4 =1.05097.10-3 (m2·K)/W,

hence,

krz = 951.5 W/(m2·K).

Next, we will calculate overall heat transfer coefficient k;z when the ve­

locity of a flowing water equals w
2
=2 mls. Heat transfer coefficient a: is

larger:

a: =2040(1+0.015.80).2°087 .(0.012)-0
0
13 =14576.6 W/(m 2·K ).

Overall heat transfer coefficient is calculated in the following way:

8.10-3

( ) 3 +1.12266.10-5 +7.34198·10-4 =k;z 8-2 ·10- ·14576.6

= 8.36895.10-4 W/(m 2
• K),

k;z = 1194.9 W/(m 2
•K).

Due to the increased water velocity, from WI =0.5 mls to w
2
=2 mis, the

overall heat transfer coefficient has increased by the following percentage
value

W = k~ -krz .100% = 1194.9 - 951.5 .100% = 25.6%.
krz 951.5
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Exercise 6.26 Determining One-Dimensional
Temperature Distribution in a Flat Wall
by Means of Finite Volume Method

(1)O~x~L,

Determine temperature distribution and heat flux on a slab surface, in
which temperature field is described using the following differential equa­
tion and boundary conditions:

d 2T .___ qv
dx' - A'

dTI =0
dx x=o '

(2)

-}., dTI =a[TI -T J.
d x=L cz

X x=L

(3)

Determine temperature distribution by means of finite volume method
for the following data: A = 15 W/(m·K), a = 300 W/(m2·K), L =0.06 m,
4v =1.106 W/m3

, Tez =20°C. Compare determined temperature distribution

with the accurate analytical solution (Ex. 6.11)

(4)

when the wall thickness is divided into five finite volumes (Fig. 6.31).

Solution

Heat balance equation for the first finite volume has the form

(5)

from which one obtains

21; -2~ = (6)

where Ax = L /4.
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Heat balance equation for finite volumes with numbers i = 2, 3, 4 has
the form

(7)

hence,

i =2,3,4. (8)

t!x/2 t!x t!x t!x/2

5
•
4

•
3

•
2

_.- _·_·_·_·'·_·_·_·_·+·_·_·_·_·1·_· .-

L

o x

Fig. 6.31. Wall division into control volumes

Heat balance equation for control volume no. 5 has the form

~(T -1:)+a(T -1:)+q. Ax =0Ax 4 5 cz 5 v2 '
(9)

hence, one obtains

(
2aAxJ q)i1xt _2aL1x T .2T4 - 2+--1- 1:5 =

A A A cz
(10)

By substituting the numerical values in (6), (8) and (10), one ob­
tains the following system:
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-2~ +21; =-15

T; - 2T2 +1; =-15

1; - 21; +T, =-15

1; - 2~ +~ =-15

2~ - 2.6~ =-27.

This system can also be written in the matrix form

AT=b,

where

-2 2 0 0 0 t; -15

1 -2 1 0 0 1; -15

A= 0 1 -2 1 0 T= 1; , b= -15

0 0 1 -2 1 t, -15

0 0 0 2 -2.6 t: -27

(11)

(12)

Equation system (12) has been solved using Gauss elimination method.
Solution can be written in the form

T=A-Ib,

where

340.0 -3.67 -6.33 -5.33 -4.33 -1.67

332.5 -3.17 -6.33 -5.33 -4.33 -1.67

T= 310.0 A-I = -2.67 -5.33 -5.33 -4.33 -1.67

272.5 -2.17 -4.33 -4.33 -4.33 -1.67

220.0 -1.67 -3.33 -3.33 -3.33 -1.67

It is important to know the inverse matrix A -1, since it allows to define the
relationship between temperature in a given node and the heat source unit
power iJv and the parameters a and Tez' which prevail in the boundary

condition (3). In order to compare obtained temperature values with ana­
lytical solution, temperature values in nodes were also calculated using (4)
(Table 6.2).

Heat flux on a slab surface is

q·1 =a(T\ -T)x=L x=L ~.
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Table 6.2. Comparison of temperature values calculated numerically nodes with
exact values

Node no.
Coordinate Finite volume method Exact solution

x [m] T [OC] T [OC]

1 0 340.0 340.0
2 0.015 332.5 332.5
3 0.030 310.0 310.0
4 0.045 272.5 272.5
5 0.060 220.0 220.0

Accurate value:

41x=L =300(220 - 20) =60000 W/m
2

•

Approximated value 4p (L) calculated from formula

is

Approximated value qp L=L can also be determined by means of Fourier

Law, while first derivative dT/dxL=L will be calculated by means of a

backward finite difference differential quotient with an accuracy of 2nd
order

After substituting node temperature values calculated by means of the fi­
nite volume method, one obtains

4 I =_153.220-4.272.5+310 =60000 W/m2 •

p x=L 2.0.015

From the analysis of the obtained results, it is clear that the accuracy of
the finite volume method is very good.

Program for calculating temperature distribution in slabs

program mat

dimension a(50,50) ,b(50) ,c(50,50) ,t(50)
open(unit=l,file='mat.in')
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open(unit=2,file='mat.out ')
read(l,*)n
read (1, *) ((a (i, j) , j =1, n) , i=l, n), (b (i) , i=l, n)

write(2,*) lA'

wr i te (2 , 66 ) (( a (i , j ) , j =1 , n) , i =1 , n)
wri te (2 , *) 'B I

write(2,66) (b(i),i=l,n)
call matinv(a,n,c)
write(2,*) 'AI\-l'

wr i te (2 , 66 ) (( c (i , j ) , j =1 , n) , i =1 , n)

do 20 i=l,n

sum=O.O
do 10 j=l,n

10 sum=sum+c(i,j)*b(j)

20 t(i)=sum
wr ite (2 , *) , I

write(2,50) (i,t(i),i=l,n)
stop 7

50 format (5 ( I T ( , , i 2, I ) = I , f 8 . 2 , 2x) )

66 format(5f8.2)
end

data (mat. in)

5

-2. 2. O. O. O.

1. -2. 1. O. O.
O. 1. -2. 1. O.

O. O. 1. -2. 1.

O. O. O. 2. -2.6
-15. -15. -15. -15. -27.
results (mat.out)

A
-2.00 2.00 .00 .00 .00
1.00 -2.00 1.00 .00 .00

.00 1.00 -2.00 1.00 .00

.00 .00 1.00 -2.00 1.00

.00 .00 .00 2.00 -2.60

B

-15.00 -15.00 -15.00 -15.00 -27.00
AI\-l

-3.67 -6.33 -5.33 -4.33 -1.67

-3.17 -6.33 -5.33 -4.33 -1.67

-2.67 -5.33 -5.33 -4.33 -1.67

-2.17 -4.33 -4.33 -4.33 -1.67
-1.67 -3.33 -3.33 -3.33 -1.67

T( 1)= 340.00 T( 2)= 332.50 T( 3)= 310.00

T( 4)= 272.50 T( 5)= 220.00
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Exercise 6.27 Determining One-Dimensional Temperature
Distribution in a Cylindrical Wall By Means
of Finite Volume Method

Solve the problem formulated in Ex. 6.12 using the finite volume method.
Calculate tube wall temperature in five uniformly spaced points (Fig.
6.32). Compare the obtained numerical solution with the accurate analyti­
cal solution.

o

I I I._.. _._.- -'-'-'r'-'-'- _. ,
I

..l._._._._ .

I
I

I
I

I
I

I
I

I
I

I
-1._._._._.

I ro=rw

I
I

I
I

I

~r/2 ~r ~r/2

01 r

Fig. 6.32. Division of a cylindrical wall into finite volumes

Solution

Heat balance equation for finite volumes, adjacent to the inner surface, is
not required, since the inner surface temperature is known: To = T

w
' Heat

balance equations for nodes i = 1, 2, 3 can be written in the condensed
form

(
I1r) T 1 - T ( I1r) T 1 - T21l i". - - A 1- 1 + 21l r + - A 1+ 1 + 21lrl1rq· =0

1 2 I1r 1 2 I1r 1 v , ( 1)

i =1, 2, 3,
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On the basis of (1), one obtains the following equations for nodes num­
bered 1,2 and 3:

~r ~r
11-- 11+- .
_~2(T -T)+ 2 (T -T)+ qv11~r =0
~r 0 1 ~r 2 1 A '

I1r I1r
r2 - - r2 +- .
__2~(T -T)+ 2 (T -T)+ qvr2~r =0

Sr 1 2 I1r 3 2 A '

I1r f1r
r3 - - r3 +- .
_~2 (T - T ) + 2 (T - 1: ) + qv

r
3

11r =0 .
I1r 2 3 I1r 4 3 A

An equation for node 4 has the form

(2)

(3)

(4)

(5)

After simple transformations (2)-(5) can be written in the following
form:

(6)

(7)

(8)

(9)
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After substitution of the numerical values

r - r (8 - 7.2) .10-3
4

I1r=-z--w = =1·10- m
4 2·4 '

'i = rw+ I1r = 3.6.10-3 + 1.10-4 = 3.7 .10-3 m,

r
2

=rw+2(l1r)=3.6.10-3 +2.1.10-4 =3.8.10-3 m,

r3 = rw+ 3( I1r) = 3.6 .10-3 + 3 .1.10-4 = 3.9.10-3 m, (10)

iJv = 8.38715 .108 W/m3
,

A =18.4 W/(m·K),

To = Tw = 300°C,

the equation system (7)-(10) assumes the form

-2~ + 1.01351351; = -296.4017693,

0.986842~ - 2T2 + 1.013157891; = - 0.4558234,

0.98717951; - 21; + 1.0128205~ = - 0.4558234,

21; - 2T4 = -0.458708.

Equation system (11) can be written in the matrix form

AT=b,

where

-2 1.0135135 0 0

0.986842 -2 1.01315789 0
A=

0 0.9871795 -2 1.0128205

0 0 2 -2

t; -296.4017693

1; -0.4558234
T= b=

1;
,

-0.4558234

t, -0.458708

(11)

(12)

(13)

The solution of the equation system (12), obtained by means of the Gauss
elimination method, has the form

T = A-1b, (14)
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where

301.6718 -1.0137 -1.0411 -1.0685 -0.5411

302.8493
A-I =

-1.0137 -2.0544 -2.1085 -1.0678
T= . (15)

303.5464
,

-1.0137 -2.0544 -3.1215 -1.5807

303.7757 -1.0137 -2.0544 -3.1215 -2.0807

The comparison of the obtained numerical solution with analytical solu­
tion from Ex. 6.12

(16)

is presented in Table 6.3. Heat flux on the inner surface of the pipe will be
determined from formula

(17)

Table 6.3. The comparison of numerically and analytically calculated node tem­
perature values

Node no. Coordinate Finite Volume Method Exact Method
x [m] T rOC] T rOC]

1 0.0036 300 300.0
2 0.0037 301.6718 301.6725
3 0.0038 302.8493 302.8506
4 0.0039 303.5464 303.5482
5 0.0040 303.7757 303.7781

Heat transfer coefficient on an inner surface of the pipe will be deter­
mined from formula

qw
T -T 'o cz

where iJw is expressed using (17).

After substitution, one obtains

. =18.4 -3·300+4·301.6718-302.8493 =353086.8 W/m2

s, 2.1.10-4
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and

a =353086.8 =1261.024 W/(m2.K).

300-20

It is clear that the obtained results are almost identical to the results ob­
tained by means of the analytical formulas from Ex. 6.12.

Exercise 6.28 Inverse Steady-State Heat Conduction
Problem for a Pipe Solved by Space-Marching Method

Electrical current with an intensity of 300 A flows through a stainless steel
pipe with an inner diameter d, =7.2 mm and outer diameter d = 8 mm.
Thermal conductivity of this steel is A = 18.4 W/(m·K), while its specific
resistance p = 0.85 (n . mm'j/m. Assuming that the outer surface of the
pipe is thermally insulated and the temperature of this surface is known
and equals T, =303.77805°C, calculate temperature distribution across the
wall thickness. Assume that total heat rate generated inside the wall flows
to the interior of the pipe. Calculate heat transfer coefficient on the inner
surface of the pipe, if the temperature of a medium measures Tcz = 20°C.
Perform calculations using finite volume method. Analytical solution of
the problem formulated above is presented in Ex. 6.13.

Solution

A division of the wall into finite volumes is shown in Fig. 6.32. An equa­
tion system for temperature in finite volume nodes has the same form as
(6)-(9) in Ex. 6.27, therefore

fj -!1r / 2 To _ 2T; + fj +!1r/ 2 7; =
'i 'i

r2-!1r / 2 T; _27; + r2+!1r/ 2 1;=
r2 r2

4v(ilr)2
A

4v (ilr )2
A

4v(!1r)2

A

(1)



(2)

(3)

132 6 Heat Transfer Fundamentals

After substitution of the numerical values, equation system (1) assumes
the form

0.986486~ - 2~ + 1.01351351; =- 0.4558234

0.98684~ - 21; + 1.013157891; =- 0.4558234

0.98717951; -21; +1.0128205~=- 0.4558234

21; - 2~ =- 0.458708.

This is different from what we obtained in Ex. 6.27, in which the system
in question is solved using the Gauss elimination method, since in this case
we can easily determine the solution of system (1) by starting calculations
from the last equation. If we take into account that

t, =I: =303.77805 °C

from the fourth equation of system (2), we get

1; =~ - 0.458708 =303.77805-0.229354°C=303.5487°C. (4)
2

From the third equation of system (2), we get

T2 = 1 (21; -1.0128205~ -0.4558234)=
0.9871795

= 1 (2.303.5487-1.0128205.303.77805-0.4558234)=
0.9871795

=302.8516°C.

From the second equation we have temperature at node 1:

7; = 1 (21; -1.013157891; -0.4558234)=
0.98684

= 1 (2.302.8516 -1.01315789. 303.5487- 0.4558234) =
0.98684

=301.6746°C.

Inner surface temperature To is determined from the first equation

To = 1 (27; -1.01351351; -0.4558234) =
0.986486

= 1 (2.301.6746-1.0135135.302.8516-0.4558234)=
0.986486

=300.00344°C.
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IS

Inner surface heat flux calculated from the approximate formula

q =2 dTI ~2 -3To+4~ -7;
W dr rr: 211r

. =18.4 -3·300.00344+4·301.6746-302.8516 =352956 W/m2 •

s; 2.1.10-4

Inner surface heat transfer coefficient is

a = qw = 352956 = 1260.5 W/(m2 •K).
1'0 - ~z 300.00344 - 20

(5)

Inner surface heat flux can be also calculated from an energy balance for
node 0

. (I1r)~ -Toq ·2Jrr =A2Jr r +- --
w w w 2 I1r'

hence,

. =A(I+ I1rJ~ -To =18.4(1+ 1·10-4 Jx
qw 2r I1r 2.3.6.10-3

w

x(301.6746 - 3~0.00344) = 311764.2 W/m2 •

1·10-

Heat transfer coefficient is:

a= qw = 311764.2 =1113.4W/(m2.K).
To - 1;;z 300.00344 - 20

(6)

(7)

(8)

It is clear, therefore, that the second method for calculating heat transfer
coefficient is less accurate, since value of a calculated in Ex. 6.12 by using
the exact method is a = 1264.73 W/(m2·K). This is due to the accurate
calculation of heat flux on the inner surface by means of difference quo­
tients. The accuracy of (5) is of the second order, while of (7) - of the first
order.

A problem, in which both assumed conditions are set on a single bound­
ary, is an inverse heat conduction problem. A method applied in this exer­
cise is called the space-marching method. According to this method, tem­
peratures are determined by space marching from the location, with
temperature and heat flux known, to a surface with a boundary condition
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unknown. One can also see that calculated node temperatures differ
slightly from the "exact" values (calculated using analytical formulas)
given in Table 6.3. This is mainly due to the rounding calculation errors
made in this exercise. In inverse problems, rounding errors or temperature
measurement errors, especially in transient problems, significantly influ­
ence the accuracy of the obtained results.

Exercise 6.29 Temperature Distribution and Efficiency of
a Circular Fin with Temperature-Dependent Thermal
Conductivity

Determine efficiency of a circular fin with constant thickness t by assum­
ing that thermal conductivity of the fin material A is a linear temperature
function of temperature:

A(T) =A(t: )(1+EO) ,

where e = [ A(~) - A(J:JJ/'l(Tcz)' e= (T - J:J/(~ - Tcz) ·
Symbols T

1
and Tcz stand for fin base temperature and medium's tem­

perature, respectively. Draw graphs show the fin efficiency as the function
of the parameter M:

where r
1
and r

2
are the base and fin tip radius, L =r

2
- r

1
fin height, a - heat

transfer coefficient on the fin surface. Show results in a tabular form for k =
2 as a function of parameter M.

Solution

Equations and boundary conditions, which describe fin temperature field,
have the following form (see reference [12] and equation (4.8)-(4.12) in
Part 1 of this book):

dQ = -21rN2pe (1)
dp ,

dO Q
(2)- ,

dp 2Jr(1+&B)p

elp=1 = 1, (3)
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QL=k = 0, (4)

dB
Q= - 2IT(1 +&B)p-. (5)

dp

Symbol p =rlr, is a dimensionless radius. The following relation occurs
between parameters Nand M:

N2 = 2 M 2 •

(k _1)2

Fin efficiency 17, defined as a ratio of real-fin-dissipated heat flow to
isothermal-fin-dissipated heat flow, is formulated as

r2

f4Jra (1; - Too )rdr

-[2Jrtd(J:z )(1 + t:B)~]lr=r,
172: =

Once (5) is substituted in (7) and subsequently transformed, one obtains

(7)

(k-l)Qlp =l

2IT (k +1) M 2
•

(8)

By solving two-point boundary value problem (1)-(4), one is able to de­
termine Qlp = 1. Two-point boundary value problem will be solved itera­
tively using secant method, also called Newton-Raphson method [1, 8].
Boundary problem (1)-(4) will be substituted by the initial problem under
the assumption that value Q is given at the base of the fin

(9)

If we assume a certain numerical value f3, we will be able to solve the
initial problem, formulated by (1) and (2) and by initial conditions (3)
and (9), at a given iterative step. Runge-Kutta Method of4th order was ap-
plied to solve the initial problem. Value f3 must be chosen in such way that
condition (4) is satisfied. Variable Qlp=k is, therefore, a function of parame­
ter f3

(10)
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One should find such value of parameter 13 * for which Q(13 *) = o.
Therefore, the solution of two-point boundary problems (1)-(4) is reduced
to the determination of the root of the following algebraic equation:

Q(f3)=O. (11)

Such equation will be solved by means of the secant method, according to
which (Fig. 6.33)

f3n - f3n-l _ f3n+l - f3n
Q(f3n)- Q(f3n-l) - Q(f3n+l) - Q(f3n) .

(12)

Q(f3) = Qlp=k

f3 = Qlp=l

Q(f3)

s.; f3

Fig. 6.33. Determining the root of a non-linear algebraic equation Q(fJ) by means

of the secant method

Next, by taking into account the following condition in (12)

(13)

one obtains,
f3n - f3n-l _ f3n+l - f3n

Q(Pn)-Q(Pn-l) - O-Q(Pn) ,
(14)

from which it follows that

f3 = f3 - (Pn - Pn-I) Q(Pn)
n+l n Q(f3n)- Q(f3n-l) ,

n =0,1, ... (15)

At the beginning of the calculation, two values 130 > 0 and 131 > 0 are as­
sumed, and following that roots 132' 133, ••• are calculated using (15). Itera­
tive process is continued until the following condition is met

If3n+l - f3n 1< e,
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where e is the assigned tolerance of the calculation and equals e = 0.001.
The results of fin efficiency calculation are presented in Fig. 6.34-6.37 for
different values of k =r

2/r1
, 8 and M.

L(}~-....---r----,r----....---r-----,r----t

IIi

0.75

0.25t--+--+--P~§.!I1

0.0 o.s 1.0 L5 2J) 25 3J) 3..5
1\1

Fig. 6.34. Efficiencyof a fin with constant thickness and variable thermal conduc­
tivityfork = 1.6

to -..,----ro--..,-__---,-- ___

'It

0,75

OJ) 0,5 1,0 1,5 2~O 2~5 3,0 3,5
1.11

Fig. 6.35. Efficiencyof a circular fin withconstant thickness and variable thermal
conductivity fork =2.0

1,0

1Jt

0,75

0,5

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5
M

Fig. 6.36. Efficiency of a circular fin of constant thickness and variable thermal
conductivity fork =3.0
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0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5
M

Fig. 6.37. Efficiency of a circular fin of constant thickness and variable thermal
conductivity for k =4.0

From the comparisons presented in Table 6.4, it is evident that the given
method for calculating fin efficiency is highly accurate. In paper [12], the
method described above was also used to determine circular fin efficiency
with position-dependent heat transfer coefficient a.

Table 6.4. Efficiency 1Ji of a circular fin with constant thickness for k == 2; value
1Ji for e == 0 (constant thermal conductivity) calculated by means of the analytical
formula ((10), Ex. 6.17) is given in brackets

ParameterM
e

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75

-0.6 1.0 0.8831 0.6915 0.5351 0.4217 0.3410 0.2829 0.2401 0.2078 0.1827 0.1628 0.1468
-0.3 1.0 0.9241 0.7648 0.6095 0.4868 0.3959 0.3292 0.2795 0.2419 0.2126 0.1894 0.1707
0.0 1.0 0.9445 0.8133 0.6674 0.5418 0.4440 0.3704 0.3149 0.2725 0.2395 0.2133 0.1921

(1.0) (.9445) (0.8133)(0.6674) (0.5418)(0.4440)(0.3704)(0.3149) (0.2725)(0.2395) (.2133) (0.1921)
0.3 1.0 0.9565 0.8465 0.7128 0.5885 0.4867 0.4077 0.3473 0.3007 0.2643 0.2353 0.2119
0.6 1.0 0.9642 0.8702 0.7486 0.6282 0.5247 0.4419 0.3772 0.3269 0.2874 0.2558 0.2303
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7 Two-Dimensional Steady-State Heat
Conduction. Analytical Solutions

In order to solve steady-state heat conduction problems, we have employed
in this chapter a well-known separation of variables method, which is an
analytical method. We have derived formulas for two-dimensional tem­
perature distribution in fins of an infinite and finite length and in the radi­
ant tubes of boilers. A computational program was developed for deter­
mining temperature and heat flux in finite-length-fins.

Exercise 7.1 Temperature Distribution in an Infinitely
Long Fin with Constant Thickness

Determine temperature distribution in an infinitely long fin, shown in
Fig. 7.1, by means of separation of variables method.

Fin base temperature is 1;, while the temperature of a fin-surrounding
medium is T . Heat transfer coefficient a on the fin surface is constant.cz

y

x

a

Fig. 7.1. A diagram of an infinitely long fin



(1)

142 7 Two-Dimensional Steady-State Heat Conduction. Analytical Solutions

Solution

Due to a symmetry of the temperature field, only an upper half of the fin
will be examined here. Temperature distribution is described by the fol­
lowing differential equation

a2T a2T
-+-==0
ax2 8y2

and boundary conditions

T(O,y)==~ ,

T(oo,y)==~z '

aT-(x,o)==o,
8y

aT
-A-(x,w)=a[T(x,w)-J:z] ·ay

Once dimensionless variables are introduced, such as

• temperature

• coordinates

(2)

(3)

(4)

(5)

(6)

and Biot number

X==~,
w

y==L ,
w

(7)

B
o aw
1==-

A '

problem (1)-(5) can be written in the dimensionless form:

e(o,Y)==I,

e(oo,y) == 0,

(8)

(9)

(10)

(11)
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8e(X 0)==0
8Y' ,

8e-(X,l)+ Bi- e(X,l) == O.
8Y

(12)

(13)

According to the separation of variables method, the solution has the form

e(X,Y) == U(X). V(Y).

By substituting (14) into (9), one obtains

U"V+UV" == 0 ,

which results in

(14)

(15)

U" V" 2
(j=-V= u, gdzie (16)

From (16), one obtains two differential equations

d
2
U _ 2U =0

dX 2 Ji , (17)

(18)

Boundary conditions for (17) are obtained after substituting (14) into
conditions (10) and (11)

uvlx=o == 1,

u(oo)==O.

(19)

(20)

Boundary conditions for function V(Y) are obtained by substituting solution (14)
into boundary conditions (12) and (13)

~~(O)=O, (21)

dV (l)+Bi 'V(l)=O. (22)
dY

A general solution for (18) is the function

V == A COSJiY + BsinJiY. (23)
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Accounting for boundary condition (21), yelds B =O. Next, after substitut­
ing (23) into (22), characteristic equation is obtained

- fi . sin fi + Bi .cos fi =0 ,

which can be written in the form

(24)

(25)
1

ctg,u = Bi,u·

Equation (25) has an infinite number of roots fin > 0, n = 1,2, ..., which are
the characteristic values of the problem in question. It is evident, therefore,
that an infinite number of solutions exists for the Sturm-Liouville problem
(18), (21), (22)

n=l, 2, ... (26)

A general solution for (17) has the form

U =Ce'" + De-j.iX .

A great number of solutions U exist, which satisfy (17)

U =C ef1nX + D e- f1nX
n n n·

(27)

(28)

From the boundary condition (20), it is clear that C,= O. None of the solu­
tions (14)

e =U (X)V (Y)=A COS" Y·D e- f1nX
n n n n rn n (29)

satisfy boundary condition (19). Once notation C, =AnDnis introduced, the
solution will be searched for in the form of a linear combination of func­
tion (29), in a way that will satisfy heterogeneous boundary condition (10)

By substituting (30) into (10), one obtains

00

I c,COSfinY =1.
n=l

(30)

(31)

After multiplying both sides of the equation by cos IlmY and by integrating
them from 0 to 1, one obtains

00 1 1

I JCn cos fin Y .cos fim YdY = Jcos fim YdY ·
n=lo 0

(32)
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Since a set of characteristic functions is a set of orthogonal functions,
which satisfy

1

Jcos,unY.cos,umYdY =0 dla m s n , (33)

°
therefore, for m =n from (32), one obtains

1

Jcos,unYdY

Cn=-lO----

Jcos
2,unYdY

°

(34)

(35)C
n

=---.----
Jln+ SIn Jln cos Jln

hence, after integration one obtains

2sinJln

By substituting (35) into (30), a formula for temperature distribution has
the form

Exercise 7.2 Temperature Distribution in a Straight Fin
with Constant Thickness and Insulated Tip

Determine two-dimensional steady-state temperature distribution in a
straight fin with thickness 2w and length 1, made of a material with a con-
stant thermal conductivity A. The fin is secured to a surface with a constant
temperature T

h
• The fin tip is very well insulated. Lateral fin surfaces ex­

change heat with surroundings, at temperature Tez' by convection when
heat transfer coefficient a remains constant (Fig. 7.2).

Solution

(1)

Articles on the calculation of two-dimensional fin temperature fields are
rather extensive in scope [2-9, 13, 14]. Fin temperature distribution is de­
scribed by the heat conduction equation

a2r a2r
-+-=0
ax2 8y2
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y

w ....,....,....,....,.......,.......,~...-.,.......,.......,.....,.......,... ""

o

a

x

Fig. 7.2. A fin diagram with an assumed coordinate system

when boundary conditions are

T(O,y) =~,

aT-(l,y)=O,ax
aT
-(x,o)=o,
8y

aT-A-(x,w)=a[T(x,w)-Tcz ] •
8y

After introducing dimensionless variables:
• temperature

• coordinates

(2)

(3)

(4)

(5)

(6)

and the Biot number

X=~,
w

y=L,
w

(7)

B
o aw
1=-A '

problem (1)-(5) can be written in the dimensionless form:

a2e a2e

-+-=0ax2 ay2

(8)

(9)
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e(o,Y)=I,

ae(L Y)=Oax' ,

ae(X 0)=0
aY' ,

ae(X,l) +Bi ·e(X,l) = o.ay

(10)

(11)

(12)

(13)

In accordance with the separation of variables method, the solution of
problems (9)-(13) is searched for in the form

e(x,Y) =u(x). V(Y). (14)

(15)

Function V(Y) has the same form as it does in Ex. 7.1. Function V(X) is,
much like in Ex. 7.1, determined from equation

a
2u _ 2U =0

ax2 Jl ,

when boundary conditions are

UV\x=o = 1, (16)

au
-(L) =0, where L = l/w. (17)
ax

The solution for (15), which satisfies condition (17), is the function

U=Ccosh,u(L-X). (18)

Since the characteristic equation (25) from Ex. 7.1 has an infinite number
of positive elements Jl

n
, an infinite number of functions exist

(19)

which satisfy (15) and boundary condition (17). The solution of problems
(9)-(13) will be searched for in the form

e(x,Y)= funvn= fCncosh zz, (L-X) -ccsu.)'. (20)
n=l n=l

Constant en in expression (20) is determined from the heterogeneous
boundary condition (10), which yields the following result:

00

L en cosh Jln L .cos Jln Y =1.
n=l

(21)
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After multiplying both sides of the equation by cos fimY and after integrat­
ing dY from 0 to 1, one gets

00 1 1

L fCn cosh fin L . cos fin Y . cos fim Y = fcos fim YdY .
n=lo 0

(22)

From orthogonal condition of function cos finY' COSfimY ((33), Ex. 7.1), one
obtains

hence

1

fCosfin Yd Y

C; cosh finL = --.;.1
0---­

[cos' fin Yd Y
o

(23)

(24)c = 2sin,un
n cosh fin L(fin + sin fin cos fin) .

By substituting constant en formulated in (24) into expression (20), tem­
perature distribution is formulated as

e(x Y)=2I sin,un x
, n=l cosh fin L (fin + sin fin cos fin )

xcosh zz, (L - X).cos finY'

(25)

where fin are positive elements of the characteristic transcendental equation

(26)

Exercise 7.3 Calculating Temperature Distribution
and Heat Flux in a Straight Fin with Constant Thickness
and Insulated Tip

Calculate temperature distribution in a fin on the basis of a formula de­
rived in Ex. 7.2. Calculate fin temperature in points shown in Fig. 7.3.
Also calculate heat flux at the fin base in points (0,0) and (O,w). Determine
a formula for averaged temperature and heat flux across the fin thickness.
Compare mean temperature values across the entire fin length and heat
flux at the fin base with one-dimensional solution. Assume the following
values for the calculation: w =0.003m, 1=0.024 m, a =100 W/(rrt·K),
T; =95°C, T =20°C, Ax =0.003 m, A=50 W/(m·K).cz
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y

-T. cz

a

82 2 4 6 8 10

~ 3 5 7 9
N

X

a

-r:

Fig. 7.3. A fin diagram with marked nodes, in which temperature is calculated

Solution

On the basis of (25) from Ex. 7.2, temperature distribution T (X,Y) will be
calculated from formula

(1)

where

;.( ( ) _ ~ sinJln coshJln(L - X) (2)e X,Y - 2LJ ( ) COSJlnY,
n=l JLn+ sin JLn . cos JLn cosh JLn L

(4)

where: X = x/w, Y = y/w, Bi = aw/A.
Elements of the characteristic equation

1
ctgz, = Bi,u (3)

will be determined by means of the interval halving method; one should
note, however, that the infinite element JL

n
lies in an interval between

Jln,min =(n - l)Jr and JLn,max =(n - 1/2)Jr. Values JLn,max are characteristic val­
ues of the Strum-Liouville problem in an instance when Bi ~ 00, i.e. when
constant temperature is assigned on the fin surface.

Mean temperature across the fin thickness is determined from formula

1 w

i (x) = - J[I:z +(Tb - t; )()] dy ,
W o



(7)

150 7 Two-Dimensional Steady-StateHeat Conduction. AnalyticalSolutions

from where, one obtains

Heat flux in the direction of x axis comes to

q =_). aT = 2).(1;, -~z)f Ilnsinlln sinhlln(L-X) x

x ax w n=l (f.1n + sin f.1n .cos f.1n) cosh f.1nL (6)

x cos f.1nY .

Mean heat flux value across the fin thickness is the function of x coordi­
nate

-:- 1 wf.( )d 2A(4 - ~z) ~ sinf.1n
qx=-qxx,yy= L.J. x
wow n=l (f.1n + SIn f.1n .cos f.1n )

sinh f.1n(L - X) .
x SInf.1n .

coshf.1nL

Fin temperature distribution TId' determined under the assumption that
temperature decrease within the fin thickness is negligibly small, is ex­
pressed by function (Ex. 6.15)

coshm(l-x)
J;d (x ) = t; + (1;, - ~J hi'

cos m

where m=~a/Aw.

In the given case

m = 50 = 12.90994 11m .
100·0.003

In the case of the one-dimensional solution, heat flux is formulated as

. ( ) _ at; _( ) sinh m(I- x )
qld x --A--- 4 -~z Am .

dx coshml

(8)

(9)

Allowing that Bi = aw/A = 100·0.003/50 = 0.006, the first ten elements
of the characteristic equation (3) were determined:

~!~ i~j J&- .. !&- .~. ~
0.0774 13.1435 ;6.2841 19.4254 112.5668115.7083118.8499121.9914!25.1330128.2745
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Next, the elements were applied to (2). Temperature T (x, y) in nodes
shown in Fig. 7.3 was calculated by means of the FORTRAN program,
which comes with this exercise. Proper values j.1 n were calculated by
means of the sub-program presented in paper [1]. Mean temperature distri-

bution T(x) and temperature TId (x) were also calculated.

Heat flux was calculated at two points: B
1

and B
2

(Fig. 7.3). Mean heat

flux 4x at the fin base (X =0) was calculated on the basis of (7). For

comparison purposes 4Id was also calculated for x = 0 by means of (9).

Temperature calculation results are shown in Table 7.1.

Table 7.1. Calculation results

x[m] Node Temperature Node Temperature
no. [OC] no. [OC]

0 B] 95.00 B2 94.99 n., B2 95.00 95.00
0.003 1 92.09 2 91.88 1,2 92.02 92.02
0.006 3 89.55 4 89.34 3,4 89.48 89.47
0.009 5 87.42 6 87.22 5,6 87.35 87.34
0.012 7 85.70 8 85.50 7,8 85.63 85.62
0.015 9 84.37 10 84.18 9, 10 84.30 84.29
0.018 11 83.42 12 83.23 11, 12 83.36 83.34
0.021 13 82.86 14 82.67 13, 14 82.80 82.78
0.024 15 82.67 16 82.48 16 82.61 82.59

Calculated heat flux measures:

• at point B1

4x (0,0) == 49764 W/m 2
,

• at point B2

4x(0,w)==66646 W/m 2
,

• mean heat flux at the fin base 4x

4x (0) == 53253 W/m 2
,

• heat flux 4Id at the fin base

4Id(O)==53341 W/m 2
•

From the analysis of the obtained results, it is evident that there is a small
temperature decrease across the fin thickness. Also, heat flux 4x varies in

points B1 and B2• A good accuracy of results is evident in T(x) and TId (x),
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qx (0) and qld (0), i.e. between the mean values across the fin thickness ob­

tained under the assumption that fin temperature field is two-dimensional
and between values determined under the assumption that temperature de­
crease across the fin thickness is negligibly small, i.e. temperature and heat
flux are only the function of x coordinate.

Program for Calculating Two-Dimensional Fin Temperature Field

program fin
dimension eigen(50)
open(unit=l,file='fin.in')
open(unit=2,file='fin.out')
read(l,*)ne,bi
read(l,*)t_cz,t_b,dlug,w,s_lam,s_alfa
write(2,' (a) I)

&"CALCULATING TWO-DIMENSIONAL FIN TEMPERATURE FIELD"
write(2,' (/a)') "DATA ENTERED"
write(2,'(a,ilO)') "ne =",ne
write(2,' (a,elO.5) ') "Biot number=",bi
write(2,'(a,elO.5,a)') "t_cz =",t_cz," [C]"
write(2,'(a,elO.5,a)') "t_b =",t_b," [C]"
write(2,'(a,elO.5,a)') "dlug =",dlug," [m] "
write(2, I (a,elO.5,a)') "w =" ,w," [m]"
write (2, I (a, elO. 5, a) ') "lambda =", s_lam," [W/mK]"
write(2,'(a,elO.5,a)') "alfa =",s_alfa," [W/m2K]"
write (2, , (la, i3, a) ') "CALCULATION OF FIRST", ne,

&" EQUATION ELEMENTS X*TAN(X)=BI"
call equation_elements (bi,ne,eigen)
write(2,' (/a) ')"CALCULATED EQUATION ELEMENTS"
write(2, , (a)') "Lp mi "
do i=l,ne

write(2, I (i2,5x,ell.6)') i,eigen(i)
enddo
write (2, , (/a) I) "CALCULATED TEMPERATURE [C]"
write(2,' (a) ')" x[m] T(x,Bl) T(x,B2) T_sr(x) T_ld(x)"

x=O.
do i=l,lO
write(2,' (f5.3,4(3x,elO.5)) I)X,

& temperature(x,O.,t_cz,t_b,dlug,w,ne,eigen),
& temperature(x,w,t_cz,t_b,dlug,w,ne,eigen),
& temperature_sr(x,t_cz,t_b,dlug,w,ne,eigen),
& temperature_ld(x,t_cz,t_b,dlug,w,s_lam,s_alfa)

x=x+dlug/float(8)
enddo
write(2,' (/a)') "CALCULATED HEAT FLUX [W/m2]"
write(2,' (a,elO.5) ') "~x(O,O)=",

&value_q(O.,O.,t_cz,t_b,dlug,w,ne,eigen,s_lam)
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write(2, I (a/elO.5) ') "CI-x(O/w)="/
&value_q(O./w/t_cz/t_b/dlug/w/ne/eigen/s_lam)
write(2/' (a,elO.5) ') "CI-x_sr(O)=",

&value_CI-sr(O./t_cz/t_b/dlug/w/ne/eigen/s_lam)
write(2/' (a/elO.5)') "CI-x_ld(O)=",

&value_CI-ld(O.,t_cz/t_b/dlug/w/s_lam/s_alfa)
end program fin

function value_CI-ld(x/t_cz/t_b/dlug/w/s_lam/s_alfa)
s_m=sqrt(s_alfa/s_lam/w)
value_CI-ld=(t_b-t_cz)*s_lam*s_m*sinh(s_m*

&(dlug-x))/cosh(s_m*dlug)
end function

function value_q(x/y/t_cz/t_b/dlug/w/ne/eigen/s_lam)
dimension eigen(*)
teta=O.
x_b=x/w
y_b=y/w
dlug_b=dlug/w
do i=l/ne
s=eigen(i)
teta=teta+s*sin(s) *sinh(s* (dlug_b-x b))

&*cos(s*y_b)/(s+sin(s)*cos(s))/cosh(s*dlug_b)
enddo
value_q=2.*(t_b-t_cz)*s_lam*teta/w
end function
function value_CI-sr(x/t_cz/t_b/dlug/w/ne/eigen/s_lam)
dimension eigen(*)
teta=O.
x_b=x/w
dlug_b=dlug/w
do i=l/ne
s=eigen(i)
teta=teta+sin(s)*sinh(s*(dlug_b-x_b))*sin(s)/

&(s+sin(s)*cos(s))/cosh(s*dlug_b)
enddo
value_CI-sr=2.*(t_b-t_cz)*s_lam*teta/w
end function

function temperature_ld(x/t_cz/t_b/dlug/w/s_lam/s_alfa)
s_m=sqrt(s_alfa/s_lam/w)
temperature_ld=t_cz+(t_b-t_cz)*cosh(s_m*(dlug-x))

&/cosh(s_m*dlug)
end function

function temperature_sr(x/t_cz/t_b/dlug,w,ne/eigen)
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dimension eigen(*)
teta=O.
x_b=x/w
dlug_b=dlug/w
do i=l,ne
s=eigen(i)
teta=teta+sin(s)*cosh(s*(dlug_b-x_b))*sin(s)/

&s/(s+sin(s)*cos(s))/cosh(s*dlug_b)
enddo
temperature_sr=t_cz+(t_b-t_cz)*2.*teta
end function

function temperature(x,y,t_cz,t_b,dlug,w,ne,eigen)
dimension eigen(*)
teta=O.
x_b=x/w
y_b=y/w
dlug_b=dlug/w
do i=l,ne

s=eigen(i)
teta=teta+sin(s)*cosh(s*(dlug_b-x_b))*cos(s*y_b)/

&(s+sin(s)*cos(s))/cosh(s*dlug_b)
enddo
temperature=t_cz+(t_b-t_cz)*2.*teta
end function

c procedure calculates elements of characteristic eq.
c x*tan(x)=bi where bi is Biot number, ne calculated
c element quantity, eigen vector with recorded calculated
c elements

subroutine equation_elements (bi,ne,eigen)
dimension eigen(*)
pi=3.141592654
do i=l,ne

xi=(float(i)-l.)*pi
xf=pi*(float(i)-.5)
do while (abs(xf-xi) .ge.5.E-06)

xm=(xi+xf)/2.
y=xm*sin(xm)/cos(xm)-bi
if (y.lt.O.) then

xi=xm
else

xf=xm
endif

enddo
eigen(i)=xm

enddo
return
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end
data(fin.in)
10 0.006
20. 95. 0.024 0.003 50. 100.
results(fin.out)
CALCULATING TWO-DIMENSIONAL FIN TEMPERATURE FIELD

DATA ENTERED

w

ne 10
Biot number=.60000E-02
t_cz =.20000E+02 [C]

=.95000E+02 [C]
=.24000E-01 [m]
=.30000E-02 [m]

lambda =.50000E+02 [W/mK]
alfa =.10000E+03 [W/m2K]

T_1d(x)
.95000E+02
.92021E+02
.89475E+02
.87346E+02
.85621E+02
.84290E+02
.83345E+02
.82781E+02
.82593E+02
.82781E+02

T_sr(x)
.95000E+02
.92026E+02
.89485E+02
.87359E+02
.85637E+02
.84308E+02
.83365E+02
.82801E+02
.82613E+02
.82801E+02

CALCULATION OF FIRST 10 EQUATION ELEMENTS X*TAN(X)=BI

CALCULATED EQUATION ELEMENTS
Lp mi

1 .773851E-01
2 .314350E+01
3 .628414E+01
4 .942542E+01
5 .125668E+02
6 .157083E+02
7 .188499E+02
8 .219914E+02
9 .251330E+02

10 .282745E+02

CALCULATED TEMPERATURE [C]
x[m] T(x,B1) T(x,B2)

.000 .95000E+02 .94990E+02

.003 .92095E+02 .91887E+02

.006 .89554E+02 .89346E+02

.009 .87426E+02 .87224E+02

.012 .85702E+02 .85506E+02

.015 .843 72E+02 .84180E+02

.018 .83428E+02 .83238E+02

.021 .82863E+02 .82675E+02

.024 .82676E+02 .82488E+02

.027 .82863E+02 .82675E+02

CALCULATED HEAT FLUX [W/m2]
~x(O,0)=.49764E+05

~x(O,w)=.66646E+05

~x_sr(O)=.53253E+05

~x_1d(O)=.53341E+05
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Exercise 7.4 Temperature Distribution in a Radiant Tube
of a Boiler

Determine formula for temperature distribution in the boiler's radiant tube
(Fig. 7.4) by means of the separation of variables method. Assuming that
heat flux qm (thermal load of the water-wall) transferred by the water-wall

is known (calculated with reference to a wall regarded as a plane), as well
as the temperature of a medium that flows inside the tube Tcz and heat
transfer coefficient a on an inner surface of the tube, determine tempera­
ture field in the function of coordinates rand rp. Also calculate the inner
and outer surface tube temperature for angle rp = 0 and rp = Jr rad; use the
following values for the calculation:

• outer surface tube radius r = 0.019 m,z

• inner surface tube radius rw = 0.015 m,
• scale of radiant tube spacing s = 0.042 m,
• thermal load of the water-wall s;=300000 W/m ~

• heat transfer coefficient on the inner surface of the tube
a= 15 000 W/(m2·K),

• temperature of a medium T = 330°C,c:

• heat conduction coefficient of the steel which the tube is made of
A=45 W/(m·K).

combustion chamber

/

Fig. 7.4. A diagram of a radiant tube spacing in a combustion chamber
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Heat flux on the outer surface of the tube is expressed by function [12]

q(cp) =qm (0.3649 + 0.4777 coscp+ 0.1574cos2cp) .

Solution

Tube temperature distribution is expressed by heat conduction equation

and boundary conditions

A~~Ir=r, = 1]0 + ~I]n cos(nqJ) ,

AaTI =aTI '
8r r=r

w
r-r;

(1)

(2)

(3)

(4)

where T is the temperature excess of the tube t;above the temperature of

the medium Sez' i.e. T =t;- Sez·
In conformity with the separation of variables method, the solution is

searched for in the form

T(r,cp)=U(r) 'V(cp).

By substituting (5), one obtains equation

r2U"V + rU'V +UV"=0 .

(5)

(6)

After a division of (6) by UVand the separation of variables, one obtains

U

V"

V
(7)

Since rand cp are independent variables, equality (7) occurs only when
its both sides are equal to the same constant. If the constant were negative,
the solution V(cp) would then contain exponential functions, which would
unable one to satisfy periodic boundary condition (3) written in the Fourier
series form. Separated constant, therefore, must be either a positive inte­
gral number or zero. If one assumes that both sides of (7) are equal to n2

,

one obtains
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(8)

n=O, 1, ... (9)

In the case of a circular-symmetrical load only qo *- 0, whereas

qi =q2 =...=O. For n = 0, the solution of (8) and (9) has the form

U(r)=~+B~lnr (10)

and

v(rp ) =c; + D~rp . (11)

Due to the circular-symmetrical load D~ =0, the product U(r) V(rp) can

be written in the form

U (r)V (rp ) =Av +e; Inr, n=O, (12)

where, Av =~e', Bo =B~e~.

For n ~ 1, the solution of (8)-(9) has the forms

U(r) =A' rn + B' r- n
n n'

V ( rp) =e~ cos vup +D~ sin nip .

(13)

(14)

Due to the symmetry of tube heating (condition (3)) with respect to the
plane, which is perpendicular to the water-wall and which crosses the tube
axis, constant D~ = O. Product U(r)V(rp) can be written in the form

n~l, (15)

where, en =A~ e~ and D; =B~e~ .
Expression (5), which describes the distribution of excess temperature in

the tube, has the form

T(r,tp) = Av + BoInr +f(Cnrn+ Dnr-n)cosntp .
n=I

(16)

After substituting (16) into boundary conditions (3) and (4), one can de­
termine constants, which can be written after transformation in the follow­
ing form:

L1 = 40r
z (_1 -lnr J

.l~ A Bi w'
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B = qorz

o A'

where, U = r Ir .Bi = a rIA.
Since in thisWexercise, the heat flux on the outer surface of the pipe is de-

fined by (1), then

40 =0.36494m'

41 =0.47774m'

42 =0.15744m'

and

43 =44 = ... =0,

It is easy to calculate tube temperature, when only 2 terms are accounted
for in the series (16). Once the following is calculated

u=!.£..= 0.019 =1.2667,
rw 0.015

Bi = arw =15000·0.015 =5.0
A 45

and substituted into solution (16), one obtains

T(rz'O) =52.28°C,

T(rw'O) =23.53°C,

T(rz,Jr) =2.31°C,

T (rw ' Jr) =1.04°C.

These are temperatures above the medium's temperature. Corresponding
pipe temperatures are:

((rz'O) =~z + T(rz'O) =330 + 52.28 =382.28°C,

((rw'O) =~z + T(rw'O) =330 + 23.53 =353.53°C,
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s(rz,n-) =~z + T(rz,n-) =330+ 2.31 =332.31 °C,

S(rw,n-) =J:z + T(rw,n-) =330 + 1.04 =331.04°C.

It is evident that temperature S(rz'O) is the maximum temperature across
the whole cross-section of the tube. Provided that this temperature is
known, one can correctly chose the right type of steel for the radiant tube
of a boiler.
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8 Analytical Approximation Methods. Integral
Heat Balance Method

In this chapter an integral heat balance method, which is an approximate
method [1-8], was applied to solve various engineering problems. It en­
sures fast obtaining of an approximated solution, marked by simplicity of
form. Accuracy of approximated solution is higher when heat flow is sig­
nificantly larger in one direction than it is in others. For this reason, inte­
gral heat balance method is recommended for determining steady-state
temperature fields, which are not much different from one-dimensional
steady-state temperature field.

Exercise 8.1 Temperature Distribution
within a Rectangular Cross-Section of a Bar

Determine temperature distribution in an infinitely long bar of a rectangu­
lar cross-section, heated by thermal sources with constant power density
4v. Bar temperature T, (Fig. 8.1) at perimeter is constant. Determine tem-

perature distribution by means of integral heat balance method.

Solution

Temperature distribution T(x,y) is expressed by heat conduction equation

a2r a2r 4v
-+-=--ax2 8y2 A

and by boundary conditions

(2)

(3)
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Fig. 8.1. A bar of a rectangular cross-section

In accordance with integral heat balance method, temperature distribution
will be approximated by the following function, which satisfies boundary
conditions and temperature field symmetry conditions with respect to axis
x andy:

If we assume in (4) that x = 0 and y = 0, then T (0,0) = T
max

• Constant T
max

,

which is present in function (4) and approximates real temperature distri­
bution, is determined through an integration of (1) within an entire rectan-
gle area: -b/2 ~ x ~ b/2, -h/2 ~ y ~ h/2. Approximate temperature distribu­
tion (4) is replaced by an integral

h/2 b/2 (82T 82T qv Jf f -+-+- dxdy==O
-h/2 -b/2 8x

2
Oy2 A,

and after transformations, one obtains

(5)

(6)

Solution (6) is a good approximation of an accurate solution, when b »
h or b « h. In both cases, temperature distribution is almost one­
dimensional. The lowest accuracy is obtained in the case of a square cross­
section, when b = h. Then difference (T

max
- T

b
) determined from (6) is by

27% larger than a difference obtained from an exact analytical solution.
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Exercise 8.2 Temperature Distribution in an Infinitely
Long Fin of Constant Thickness

Determine temperature distribution in a fin depicted in Fig. 8.2. Fin base
temperature T, is constant. Determine temperature distribution by means of
approximate method: integral heat balance method.

y

o x

Fig. 8.2. Two-dimensional steady-state temperature field in an infinitely long fin

Solution

Temperature distribution is expressed by a differential equation of steady­
state heat conduction

(1)

and by boundary conditions

T( x, ±w) == Too' T(oo,y) == Too . (2)

(3)

Once new variable is introduced e =T - Too, (1) and conditions (2) can
be written in the following form:

a2e a2e

-2-+--2 ==0,ax ay

where emax= Tmax- Too.
Approximate temperature distribution will be searched for in a form

(5)



(6)
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Function (5) is selected in such a way that it satisfies boundary condition
e(y, ±w) =0 and the temperature field symmetry condition with respect to
axis x, i.e.

ae =0.
8y y=o

In accordance with heat balance method, heat conduction equation (3) is
integrated within the area under analysis (due to a symmetry of tempera­
ture field after division in two parts)

woo (a2e a2e)If --2 +--2 dxdy =0 .
o 0 ax 8y

By substituting (5) into (7), one obtains

11[(w
2 -l )U" -2U] dxdy =0 ,

o 0

from which, after integration in the direction of y-axis, we have

Applying the boundary conditions (4) in (8), one obtains

i[%w
3U"

-2wU]dx=O,

which yields differential equation

U"-~U=O.
w

(7)

(8)

(9)

(10)

Boundary conditions for U result from the first and third boundary con­
dition in (4). From the first condition, one obtains

from which, after simple transformations, one has

U(O)= em;" .
w

(11)

(12)
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From third boundary condition in (4), one obtains a second boundary
condition for U(x)

U(oo)=o.

Solution of (10) has the form

(13)

(14)

By substituting (14) into condition (12) and (13), one is able to determine
constant C

1
and C

2

(15)

Function Vex) is given by

U(x) = e;;x exp( -../3:) . (16)

By allowing for (16) in (5), the expression for approximate temperature
distribution has the form

(17)

Exercise 8.3 Determining Temperature Distribution
in a Boiler's Water-Wall Tube by Means of Functional
Correction Method

Solved the problem formulated in Ex. 7.4 using functional correction
method.

Solution

First we will briefly characterize functional correction method [6], which
is also an analytical approximate method. If heat flux is much larger in one
direction than it is in another, then temperature field resembles one­
dimensional temperature field. Functional correction method is very effec­
tive for determining such temperature fields. A typical example of such
problem is the conduction of heat in a fin, in which the flow is much larger
in the direction of x axis than it is in the direction of y axis (Ex. 7.2, Fig.
7.2). Heat conduction equation



(1)
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a2T a2T
-+-=0aX2 8y2

will be approximated by differential equation, in which derivative a2T/a
y2

will be approximated by mean value within the fin thickness

where

1 wa2T
f(x) = -- f-dY .

w ax2
o

(2)

(3)

As follows from (2), it has been assumed that second derivative a2T/a
y2

is a function of coordinate x and doesn't depend, on coordinate y.
Temperature distribution is determined in the following way.
Once (2) is integrated twice, one obtains

r(x,Y) =! l f (x) + CIY+ C2 ,
2

(4)

(5)

where C1 and C
2

are constants, which are determined from appropriate
boundary conditions in the direction of y axis. Once (4) is substituted into
(3) and all mathematical operations carried out, one obtains ordinary dif­
ferential equation of 2nd order for j(x). After integrating this equation in
the presence of appropriate boundary conditions at the base and tip of a
fin, one obtains temperature distribution in the fin.

In order to determine temperature distribution in a water-wall tube,
whose temperature field is expressed by equation

!~(raTJ+~a
2

r =0
rar ar r2aqJ2

and boundary conditions

/) aTI . ~.
/1.,- =qo +LJqn cosrup,

ar r-r. n=l

AaTI =aTIar r-r: r-r; '

(6)

(7)

where T = S- Scz is excess temperature of tube S(r,qJ) above a tempera­
ture of medium Scz' functional correction method will be applied. In a wa­
ter-wall tube heat flux in circumferential direction is much smaller than in
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radial direction. One could determine, therefore, tube temperature distribu­
tion under the assumption that temperature is only a function of a single
variable r, while ignore tube heat flow in the circumferential direction.
Maximum tube temperature T

max
= T (rz'O) determined in such way is to

large, since an outflow of heat from frontal part of the pipe to its cooler
rear side is not taken into consideration. One can make more accurate de­
termination of temperature distribution in a tube by means of functional
correction method, according to which (5) can be substituted by approxi­
mate equation

1 a( aT)-- r- =!(q;) ,
r ar ar

where

2 r
z 1 a2r

f(rp) = 2 2 f-Z-2 rdr.r - r r aq;z w rw

Once (9) is integrated twice, one obtains

T(r,rp)=.!-f( tp)r2 +C1 lnr + C2 •
4

(8)

(9)

(10)

After constants C
1

and C2 are determined from boundary condition (6) and
(7) and substituted into (10), one obtains

(11)

where Bi = arw
, q(rp) =qo + fqn cos ntp .

A n=l

Once (11) is substituted into (9) and all computational operations con-
ducted, the following differential equation is obtained

d
2! 2 2m

2 (1 rz 2 rz 1 )~. 2
--2- m ! = 2 2 --In u+--.Inu L...Jqnn cos rup , (12)
dip rz - rw 2 A A Bz n=l

where u =r.lr; ,

4Bi(u
2-1)

m' =----:-----:---------:---------
-Bi(u2 -1) + 2Biu2 1n2 u +4(u2 -1 )lnu + 2Bilnu .

(13)
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Boundary conditions for function f (cp) result from temperature field
symmetry conditions

et et
=

acp q>=O acp q>=7r

from which follows that

(14)

afaf

acp q>=O

=0.
acp q>=7r

(15)

The solution of (12) with boundary conditions (15) is function

2m
2 (1 < 2 r. 1 ) 00 4nn2f(cp)= 2 2 --In u+--.lnu L 2 2 cosne:

rz - rw 2 A A Bi n=l m + n
(16)

From (11), (13) and (16), tube temperature was calculated on an
outer and inner tube surface for angles tp = 0 and tp = 1r as a function of
Biot number Bi. The obtained approximate values were compared with
values, which were calculated by means of analytical formula (Ex. 7.4,
(16)). The comparison is presented in Table 8.1.

Calculation results were given in a dimensionless form e =

TA = (( - (cz)A as a function of Biot number Bi = a rIA. From the
4m rz 4m rz w

comparison of results presented in Table 8.1, one can conclude that the ac­
curacy of approximate method is very good. Also, in the functional correc­
tion method computational formulas have a simpler form than they do in
the analytical method.

Table 8.1. Comparison of temperature e = T A /s; r, calculated by means of ap­

proximate formula (11) and analytical formula ((16), Ex. 7.4); in top rows val­
ues e were given, calculated by means of exact analytical formulas, while in bot­
tom rows approximate values were given

<p Bi1.0 1.5 2.0 3.0 5.0 8.0 15.0 20.0r
1.0310 0.7893 0.6608 0.5260 0.4127 0.3466 0.2938 0.2784

rz 1.0304 0.7890 0.6607 0.5261 0.4131 0.3471 0.2945 0.2792
0

0.8172 0.5709 0.4397 0.3018 0.1858 0.1180 0.06373 0.04798
r, 0.8173 0.5709 0.4397 0.3018 0.1858 0.1179 0.06372 0.04797

0.07604 0.04564 0.03403 0.02452 0.01821 0.01504 0.01267 0.01203
rz 0.07576 0.04576 0.03410 0.02456 0.01824 0.01508 0.01274 0.01208

1t 0.06287 0.03433 0.02331 0.01427 0.0081920.00507 0.00272 0.00204
r, 0.06289 0.03434 0.02331 0.01426 0.0081780.00506 0.00271 0.00204

.:::J:".. ;0; •• «W#..@:«w~~-- ,'=.. """""','.~~~=._~&?'*~=... =.. -. _.~M~"""""",~:. ....,.",... :=...= .......,,~~.:zw~&W"~=""""'""".. ,....,."..ww~m::m=··=··_.=.-~:
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9 Two-Dimensional Steady-State Heat
Conduction. Graphical Method

In this chapter authors demonstrate that temperature gradient determines
the direction of its largest increment and that constant temperature lines
(isotherms) are perpendicular to a constant heat flux line. They also dis­
cuss graphical methods used for determining isotherms and constant heat
flux lines. Furthermore, they graphically determine temperature distribu­
tion and heat flow in a chimney cross-section with a square and circular
opening.

Exercise 9.1 Temperature Gradient
and Surface-Transmitted Heat Flow

Assuming that temperature gradient is known, determine body surface heat
flux in the normal direction n to the aforementioned surface and in the ar­
bitrary direction marked by versor l. Determine heat flow, which is trans­
fered through a body surface.

Solution

In order to determine heat flow Qexchanged between a body surface with
an area A and its surroundings, one needs to know what the normal heat
flux component on the body surface is

. -.,t aT
qn - an' (1)

normal derivative aT/an, however, can also be formulated as shown below

aT
-=n·VT
an '

where n is the unit normal-to-surface vector directed to the outside.

(2)



172 9 Two-Dimensional Steady-State Heat Conduction. Graphical Method

Heat flow Qis determined from formula

Q= JAaT dA =- Jq.JA =-Jq ·ndA = JAn.VTdA,
A an A A A

where VT is the temperature gradient formulated as

VT = i aT + j aT + k aT .
ax 8y az

Heat flux vector it is expressed by Fourier Law

it=-:AvVT.

(3)

Heat flux component, which is tangent to a body surface and occurs in the
case of non-isothermal body surfaces does not influence surface-to-

surroundings-exchanged heat flow Q. Heat flux in the direction I is for­

mulated as

where aTlal is the temperature directional derivative in direction I, while I
a directional unit vector, directed to the outside of the body. If the outer
body surface is isothermal (Fig. 9.1), then the heat flux vector is perpen­
dicular to the body surface and q=e.. i.e. the tangent component of the

heat flux vector is not present. In such a case, heat flux in the direction I is
formulated as

n

isothermal
body surface

Fig. 9.1. A diagram that shows how heat flux is determined on an isothermal body
surface
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The element of surface dA
z
is

dA
j
= dA .

cose

A heat flow that moves through surface A is formulated as

Q= f4 j dAj = f4n cosqJ dA = f4n dA ,
~ ~ cosqJ ~

it is, therefore, identical to (3).

Exercise 9.2 Orthogonality of Constant Temperature Line
and Constant Heat Flux

Demonstrate that a direction of a temperature gradient is the direction of
the fastest temperature increment and that constant temperature lines (iso­
therms) are orthogonal to a constant heat flux line.

Solution

The concept of direction will be applied in this exercise and will be briefly
characterized. Take a straight line; every parallel vector to this line is
called the direction vector for this line. Every line has many direction vec­
tors, since a given direction vector multiplied by a scalar other than zero
can serve as a direction vector. Let Po =Po(xo' Yo' zo) be an arbitrary point
and d = (a, b, c), a given direction vector. Therefore, there is only one line,
which passes through point Po at direction d. Let vo =(xo' Yo' zo) and v =(x,
y, z) be position vectors of point Po and P , respectively (Fig. 9.2).

Fig. 9.2. A diagram showing the concept of direction

Therefore v = Vo + PaP and point P lies on the straight line, if vector
----+ --

PaP is parallel to d, i.e. when PaP = td, where t is a scalar. Therefore, v is

a position vector of the point that lies on the straight line, if

v = Vo + td . (1)
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Vector d can be a unit vector. In order to demonstrate that a direction of
the temperature gradient direction is a direction of the largest temperature
increment, while the opposite direction (gradient with minus sign), a direc­
tion of the fastest temperature decrease, one assumes that a dislocation
from point x = (x, X2' X3) to point x =hd, is carried out where d is the di­
rection, while h a step whose length is assigned. Such dislocation, there-
fore, is executed from point (Xl' X2' X3) to point (r, + t5 Xl' X2 + t5 X2' X3 + t5x3) ,

where

t5xi == hd, '

while d, stands for the directional cosines of vector d, such that

(2)

(3)

One can determine temperature change dT when function Ttx, + t5 Xl'

X
2
+ t5 X

2
' X

3
+ t5x

3
) is written in the form of Taylor series and when the com­

putation is limited to the linear terms

dT == T (Xl +sXl 'X2 +sX2'X3 +sX3 ) - T ( Xl , X2 , X3 ) ==

(4)

where derivatives aT/ax;, and =1,2,3 are calculated at point x. In order to
determine the direction cosines d., which satisfy (3) and contribute to the

largest temperature increment dT , Lagrange multiplier method will be ap­
plied.

Lagrange function has the form

(5)

where f.1 is the Lagrange multiplier, while dT is expressed by (4). From the
necessary condition for existing maximum of the function F, i.e. from the
condition of zero setting of the first derivatives from function F:

where

aF == 0 1 2 3ad. ,j=",
}

aF == h aT + 2 d. 1 2 3ad. ax. JlJ,j=",
} }

(6)

(7)



(9)

(8)
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one obtains
-h er

d=--} 2f.1 ax} .

From (8), follow the following equalities

d, d2 d3---=---
aT/axl aT/ax2 aT/ax3

One can see, therefore, that d, = aTlaxi ' i = 1,2, 3 and direction d is par­
allel to gradient VT(x) at point x. The fastest local temperature increment
for the small step h occurs when direction d is equal to gradient VT. The
fastest local temperature decrease occurs, therefore, in the direction
[-VT(x)]. Hence, we can conclude that the heat flux vector, expressed by
Fourier Law

q=-AVT (10)

is parallel to the direction of the largest temperature decrement at point x.

heatflow lines

Fig. 9.3. Orthogonality of heat flow lines and isotherms

In order to demonstrate that heat flow lines are orthogonal to isotherms,
a temperature difference between points (x + dx) and x can be expressed
in the following way:

dT =IVT(x)lldxICOSlp. (11)

If we assume in (11) that dx =hd, then

dT=hI
8T

d.
i=l aXi



176 9 Two-Dimensional Steady-State Heat Conduction. Graphical Method

Is identical with expression (4). If we assume that qJ = 180° in (11), then
direction dx is the same as the direction of the largest temperature decrease
VT(x). However, for tp =90°, the function increment expressed by (11) is
equal to zero. Therefore, heat flux vector it at an arbitrary point x is per­
pendicular (orthogonal) to an isotherm, which passes through that point
(Fig. 9.3).

If body surface is adiabatic (extremely well insulated thermally), then
isotherms are perpendicular to such surface.

Exercise 9.3 Determining Heat Flow
between Isothermal Surfaces

Illustrate a graphical method for determining heat flow between isothermal
surfaces in two-dimensional heat conduction problems.

Solution

Graphical method can be applied to two-dimensional problems, which in­
volve only isothermal and adiabatic surfaces. In order to graphically illus­
trate two-dimensional heat conduction, two curve categories are drawn: the
first one consists of constant temperature lines (isotherms), the second,
lines parallel to a heat flux vector (heat flow lines). If constant temperature
difference ~T exists between isotherms, then a distance between two adja­
cent isotherms indicates the heat flux value. If a distance between iso-
therms at a set value ~T is small, then temperature gradient is large. In
steady-state heat conduction problems, the transferred heat flow Q is con­
stant. What this means is that if the cross-section the heat flow Qpasses
through becomes smaller, then heat flux and, consequently, temperature
gradient becomes larger. If the cross-section is larger, then heat flux and
temperature gradient are smaller, while the distance between the isotherms
becomes bigger. Since heat transfer occurs in the presence of a tempera­
ture gradient, heat does not flow along the isotherms. Therefore, the iso­
therm-orthogonal heat flow line can be regarded as an insulated boundary
through which the heat conduction does not take place. Two adjacent heat
flow lines form, therefore, a path (trajectory), which the specific heat flow
passes through.

Three isotherms are presented in Fig. 9.4; they differ from each other
with respect to ~T and two heat flow lines separated in between by heat

flow o:
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curvilinear square

isotherms

T+ tJ.T

Fig. 9.4. An illustration of a graphical method used when determining heat flow in
two-dimensional problems

If one assumes that the thickness of the analyzed element is L in the di­
rection perpendicular to the surface and heat flux is approximated by for­
mula

. T - (T + !1T) A!1T
q.=-A =-,

I !1Yj !1Y
j

where

!1 = ab+cd
~j 2 '

then heat flow Qi is formulated as

o. =AAi =LIllAi =J.L ~i !'J.T,
LlYj

where

(1)

(2)

(3)

(4)Ill. = ad +be .
I 2

If isotherms and heat flow lines, which intercept each other at right an­
gles, are drawn in a way that curvilinear tetragons abed become curvilinear
squares, i.e.

~i ~ l1yj ,

then (3) assumes the following form:

Qi =1Li1T.

(5)

(6)
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If heat passes between two isothermal surfaces with temperature T
g

and r:,
when T

g
> T, and area is divided into M paths traversed by the heat flow it­

self and temperature difference between isotherms is calculated from

T -T
I1T= g z, where N is the integer number, (7)

N
then the total heat flow measures

M

Q=IQi=MQi'
i=l

(8)

where M stands for the number of paths (it does not have to be an integer
number). By substituting (6) into (8) and accounting for (7), one obtains

Q= ML A(Tg -J:) .
N

Equality (9) is applied when it is necessary to define shape coefficient S

(9)

where

symmetry
plane

Tg

s=ML .
N

symmetry
plane

thermal
insulation

Q/2 heat flowline

(10)

(11)

isotherm

Fig. 9.5. An illustration of a graphical method for determining heat flow Q between

isothermal surfaces with temperature Tg and t, < Tg
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Shape coefficients S are tabularized for various isothermal surface con­
figurations that one can come across in engineering. In the graphical
method, heat flow is defined by means of (10).

When drawing isotherms and heat flow lines, one should note that
symmetry lines, which come from shape symmetry of an analyzed area
and from symmetry of boundary conditions, are adiabatic lines. As a re­
sult, the analysis can be limited to a repeatable part of the total area, for
e.g. in the case of an area shown in Fig. 9.5, one analyzes only one of its
halves [1].

If boundary surfaces are thermally insulated, isotherms then are perpen­
dicular to such surfaces. Examples of the practical application of the
graphical method can be found in papers [1-5].

Exercise 9.4 Determining Heat Loss Through a Chimney
Wall; Combustion Channel (Chimney)
with Square Cross-Section

A chimney made of stainless steel with a square cross-section and a side
equal to b = 14 ern is insulated on an outer surface by a glass wool whose
heat conduction coefficient is A = 0.05 W/(m·K). An outer dimension of
the square chimney is a =38 cm. Combustion gases from a boiler fired by
a natural gas flow inside the chimney. Due to the condensation of water
vapour on the inner surface of the chimney, one can assume that the sur-
face is isothermal, with the temperature measures T = 40°C. Outer surface

g

temperature is T, = O°C. Calculate chimney-to-surroundings heat loss per
1m of chimney length. Compare calculation results with the computed heat
flow value by means of the shape coefficient S.

Solution

Chimney cross-section is shown in Fig. 9.6a. A division of 1/8 of the
chimney cross-section into curvilinear squares is shown in Fig. 9.6b. Since
the number of paths, traversed by the heat flow, amounts to M = 5, while
the number of sections I1T to N = 6, heat flow is ((9), Ex. 9.3)

Q M ( ) 5-=8-A Tg -T: =8·_·0.05.(40-0)=13.33 W/m.
L N 6

(1)

Number 8 in (1) allows for the number of repeatable elements in the chim­
ney cross-section.
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a) symmetry lines

b)

thermal insulation

isotherm

thermal insulation

Fig. 9.6. Diagram of a square chimney cross-section

Using shape coefficient S, heat loss is formulated as

Q=S A(r -T)L L g z ,

where S is expressed as (Appendix D)

s = 27[L .

0.93ln(0.948~)

By substituting (3) into (2), one obtains

(2)

(3)

Q= 2JZ"A (T
g

_ J:) = 2JZ"' 0.05 (40 - 0) =

L 0.931n(0.948~) 0.93ln(0.948~:~~~) (4)

=14.3 W/m.

Heat loss estimation error is then

~Q= 14.3-13.33 .100%=6.8%.
14.3
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Exercise 9.5 Determining Heat Loss Through Chimney
Wall with a Circular Cross-Section

Using a graphical method, calculate heat flow per unit of length transmit­
ted from the inner surface of a chimney with temperature T

g
=100°C to the

outer surface with temperature T, = 30°C. Chimney cross-section is a
square whose side is a =0.52 m. Diameter of a combustion channel meas­
ures d = 0.13 m. Chimney is made of a refractory brick whose heat con-
duction coefficient is A= 1.0 WI(m · K).

Solution

A diagram of the chimney cross-section and the division of 1/8 of this
cross-section into curvilinear squares is shown in Fig. 9.7.

adiabatic
symmetry plane

a = 0.52 ill

d= 0.13 ill ~

M=3

N=6

domain
of analysis

a

adiabatic
symmetry plane

2 3.4 5.~._
~ r,

Fig. 9.7. Cross-section and division of a chimney into curvilinear squares

Heat flow per unit of chimney's length is calculated according to (9) from
Ex. 9.3:

Q=8
M

A(T -T).LNg z
(1)
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Multiplier 8 appears because there are 8 identic elements, which the chim­
ney cross-section is divided to. If M =3 and N =6, then from (1), one ob­
tains

Q 3
-=8·_.1.(100-30)=280 W/m.
L 6

The same heat flow Q/L can be calculated with the use of shape coeffi­

cient S

Q S-=-A(T -T)L L g « t »

where S is formulated as (Appendix D)

S = 2JrL .

In(1.08 ~)

By substituting (3), one obtains

2JrL

If S is known, one can calculate Q/L from (2)

Q = 4.294.1·(100 -30) = 300.58 W/m.
L

Heat loss estimation error with the graphical method is

~Q = 300.58 - 280 .100% = 6.85%.
300.58

Literature
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10 Two-Dimensional Steady-State Problems. The
Shape Coefficient

The subject of discussion in this chapter is the determination of heat flow
between isothermal surfaces by means of a shape coefficient. The concept
of shape coefficient initially appeared in 1913 [5]. Shape coefficients for
different geometric systems of isothermal surfaces, which one can come up
against in practice, are compiled in Appendix D, at the back of this book.
The appendix contains 38 different configurations of isothermal surfaces.

Exercise 10.1 Buried Pipe-to-Ground Surface Heat Flow

Discuss the method for determining heat flow Qbetween two isothermal

surfaces using shape coefficient S or thermal resistance R. Calculate heat
flow per 1 m of pipe length transmitted from a non-insulated pipe, with an
outer surface diameter d =325 mm and temperature T} =110°C, to ground
surface at temperature T2 = 3°C. The pipe is buried in the ground (Fig.
10.1) at a depth of h = 130 ern. Assume that thermal conductivity of the
ground is .,1= 1.2 W/(m· K).

Solution

Heat flow Q, between two isothermal surfaces at temperatures T} and T
2

that are separated by a medium with a thermal conductivity A, is expressed
by (10) in Ex. 9.3:

(1)

Shape coefficients are usually tabularized [1-4, 6, 7]. Shape coefficient
formulas for bodies with various shapes are compiled in Appendix D. In

some scientific papers, e.g. in [4], heat flow Q is formulated as
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(2)

where R is the heat conduction resistance. From the comparison of (1) and (2),
one can see that

R=_l .
AS

(3)

For the problem formulated in this exercise, shape coefficient S has the
form (Fig. 10.1)

h i- r , (4)

where r = d /2 stands for an outer surface radius of the pipe, while L for
the pipe length.

x

Fig. 10.1. A diagram of a pipe buried underground at depth h

T-T__2

~-~
(5)

Equations (4) and (5) were derived under the assumption that ground
temperature equals temperature T on the entire surface (y = 0) from x = 0
to an infinite distance from the pipe axis, i.e. T (0,0) =T (00, 0) =1;. By
substituting (4) into (1), one can determine heat flow within 1m long pipe
length:
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After substitution of the numerical values, one obtains

(7)
21r·1.2 . (110 - 3)

[ j
=291.4 W/m .

2
I 1.3 1.3 1
n 0.1625 + (0.1625) -

Q
L

In order to decrease heat loss, i.e. reduce quotient Q/L , the pipe should

be insulated to lower temperature TI •

Exercise 10.2 Floor Heating

Pipes with diameter d,= 18 mm were used for floor heating. They were
spaced at s =120 mm from each other at a depth of h =30 mm. Outer sur-
face temperature of a pipe is T

I = 40°C, while floor temperature T2 = 25°C.
Assume that thermal conductivity of the floor is A= 1.0 W/(m . K). Assum­
ing that there is no additional thermal insulation from the ground, i.e. the
floor is regarded as a semi-infinite body, calculate the heat flow transferred
from an individual pipe to the floor surface within the length of 1 m.

Solution

Please, refer to Fig. 10.2.

Fig. 10.2. Floor heating
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Heat flow transferred by an individual pipe, with respect to its length, is
given by

Q=SA(T_T)
L L 1 2'

where the shape coefficient S is formulated as (Appendix D, item 7)

S= m(;;::~).
By substituting (2) into (1), one obtains

Q 2JrA (~ - 1;)

L m(~ sinh 2;h)
Substituting the numerical values into (3) gives

(1)

(2)

(3)

2Jr ·1.0 . (40 - 25)

( )

= 41.35 W/m.
In 0.12 sinh 2Jr ·0.03

Jr. 0.009 0.12

Q
=-~----_-:-.---

L

In order to increase heat flow Q/L, one should insulate pipes from be­

low in order to decrease the heat flow transfer to the ground.

Exercise 10.3 Temperature of a Radioactive Waste
Container Buried Underground

Radioactive waste is stored in a spherical container whose outer diameter
is 1.6 m; it is located 11 m below the ground level. Surface temperature of
the ground is T2 = 10oe.Assuming that waste generated heat flow is 5 kW,
and the ground thermal conductivity equals A = 1.8 W/(m . K), calculate
outer surface temperature of the container.

Solution

Outer surface temperature of the container (Fig. 10.3) is calculated using
formula

(1)
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Fig. 10.3.A diagram of a spherical container stored underground

hence,

Q
~=T;+-.

SA

Shape coefficient (Appendix D, item 18) equals

S = 4JZ"r = 4JZ"· 0.8 =10.43 .

I-~ I-~
2h 2 ·11

By substituting S and other numerical values into (2), one obtains

1; =10+ 5000 =276.3°C .
10.43 ·1.8
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11 Solving Steady-State Heat Conduction
Problems by Means of Numerical Methods

This chapter is devoted to numerical methods, which are used to determine
steady-state temperature fields. It contains detailed description of the fol­
lowing numerical methods: finite-difference method, finite-volume method
(control volume), finite element method (FEM) and pseudo-transient
method for solving stationary problems, based on the method of lines. Lin­
ear and non-linear problems, both simple and inverse, are solved here.
Specific computational programs are developed for determining steady­
state temperature fields, while Gauss elimination method, Gauss-Seidel it­
erative method or over-relaxation method are applied to integrate an alge­
braic equation system. Ordinary differential equation system in the
pseudo-transient method is solved using Rung-Kutta method of 4th order.
Finite element method, based on Galerkin method, is discussed in great de­
tail, as well as the two methods for creating global equation system in
FEM. Basic matrixes and vectors, which occur in FEM for one­
dimensional and two-dimensional triangular and rectangular elements, are
also developed. Furthermore, authors present their own solutions to FEM
problems. The obtained results are compared with analytical solutions or
the solutions acquired by means of finite volume method. The application
of the ANSYS program is presented in Ex. 11.20, 11.21 and 11.22. Hex­
agonal fin efficiency is determined in Ex. 11.21, while the effect the shape
of pins on the heating surface of the cast iron heating boiler has on the
temperature distribution and pin-transferred heat flow is analyzed in
Ex. 11.22.

Exercise 11.1 Description of the Control Volume Method

Describe how transient heat conduction problems are solved by means of
the control volume method; assume that thermal conductivity can be tem­
perature dependent. Write heat balance equation for control volume in the
Cartesian and cylindrical coordinate system for two-dimensional problems.
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Solution

Control volume method, also called elementary balance method or finite
volume method, is a universal and effective method for solving heat con­
duction problems. If the thickness of an analyzed area is d and thermal
properties c, p, A and power densityof internal heat sources qv are tem-

perature dependent, then heat conduction equation can be written in the
form

(1)

The area is divided into control volumes, which have the following dimen­
sions: Llx, 8y and d in the Cartesian coordinate system (Fig. 11.1) or 8r, 8lfJ
and d (Fig. 11.2) in the cylindrical coordinate system. Once (1) is integrated
over the control volume, the following equation for a single cell (control vol­
ume) is obtained:

JC(T)p(T) aT dV = - Jdivq dV + Jqv dV,
cv 8t cv cv

(2)

where CV stands for the control volume .

o x

•I--------J---I I I
• I • I • I • I

I-~-:-~-?w~-.-~-.
~ - - f - - {&a--} -.
I • I • I·: • I •y[S1---.,... ---t - - -1- - - I- -
I • I • I • I I

_.L __

Fig. 11.1. A diagram of an area divided into finite volumes in the Cartesian coor­
dinate system

If we apply Green-Gauss-Ostrogradski theorem to the first term on the
right-hand-side of (2), the equation will assume the form

JC ( T) P (T) aT dV =- Jn ·qdS + Jqv dV ,
cv 8t s cv

(3)
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where S is the control volume surface, while n a normal unit surface vector
directed to the outside of the control volume. From expression

n-q =1·14Icos(n ,4) =4n (4)

it is evident that when the heat flows up to the control volume, the heat
flux vector 4 is directed to the inside of the control volume and the an­
gle between vector nand 4n is 180°. The scalar product (4) is then nega­
tive, while the surface integral in (3) is positive. If ~V denotes the vol­
ume of a control cell, then individual terms in (3) can be approximated in
the following way:

4

-fn ·4 dS =I Qi'
s i=l

f4vdV = ~V 4v (Tp ) ,

cv

(5)

(6)

(7)

where o. is the heat flow that flows in from the neighbouring cell. Substi­

tuting equalities (5)-(7) in (3), one obtains the following heat balance
equation

(8)

(9)

which will be written in a greater detail in the Cartesian and cylindrical
coordinate system.

a) Heat balance equation- Cartesian coordinates

A division of an area into control volumes and a control volume are shown
in Fig.11.1. The volume of a single cell is ~V = (Ax)(~y)d. Heat flows,
which inflow from nodes W, N, E and S to node P are expressed by the fol­
lowing formulas:

. A(1: )+A(T,) 1: -T
Q = (~ )d . = (~)d w p • w p

w-p ~ qw-p ~ 2 Ax'

. A(T )+A(T,) T -T
Q =(Ax)d· =(Ax)d N p • N p (10)

N-P qN-P 2 ~y'
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o =(il1))dqo =(il1))d A(TE ) + A(Tp) .TE - T;
E-P :T E-P:T 2 Ax' (11)

° A(T )+A(1',) T -1',
Q =(At)d ° =(At)d s p 0 s p. (12)s-p qs-p 2 ~y

Substituting the expressions (9)-(12) in (8), one obtains

(Ax)(~Y)dC(Tp)P(Tp)d2 =(~Y)dA(Tw );A(Tp).Tw:xTp+

( )
A(TN)+A(Tp) TN-Tp ( ) A(T£)+A(Tp)

+Atd . +Llyd .
2 ily 2

.TE:xTp+ (Ax)d A(Ts ) ; A(Tp) .Ts:;p + (Ax)(~y)d. tlv (Tp) .

Assuming constant properties

(13)

... ,

Equation (13) is simplified to the following equation

d~=a[~+~.~-~+~+~.~-~+
dt p 2Ap (LlX)2 2Ap (Llyf

A£ +Ap T£ -Tp As +Ap t; -Tp] qv,P
+ · 2 + . 2 +--.

2Ap (Llx) 2Ap (Lly) cp . PP

(14)

When steady-state problem is analyzed, dTp/dt =O. For a uniform grid
Ax = ily and for constant and temperature independent thermal properties
and heat source power, (14) is simplified to a form

(15)

(16)

b) Heat balance equation-cylindrical coordinates

Heat balance (8) can be transformed into a form similar to (14) after calcu­
lating of the following quantities (Fig. 11.2):

_ (2 _ 2)~(jJ _(r} -rn~(jJ
i1V -Jr rn rs d - d ,

2:r 2
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-~-
I

Fig. 11.2. A division of an area into finite volumes in the cylindrical coordinate
system

(17)

(18)

(19)

(20)

From (8), one obtains

In the case of steady-state problems, one should assume that d~/dt = o.
Heat balance (14) in the Cartesian coordinates or (21) in cylindrical coor­
dinates is written for all nodes, including the nodes in the control volumes
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that abut to a boundary. Appropriate boundary conditions should be al­
lowed for in the equations for boundary-adjacent control volumes. In order
to determine node temperature in the cases of transient problems, one
should solve the ordinary differential equation system by means of the
Runge-Kutta method, for instance. In steady-state problems, one can obtain
an algebraic equation system, which can be solved by direct methods, e.g.
Gauss elimination method, or by iterative methods like Gauss-Seidel
method.

Exercise 11.2 Determining Temperature Distribution
in a Square Cross-Section of a Long Rod by Means
of the Finite Volume Method

Determine temperature distribution in a square cross-section of an infi­
nitely long rod with prescribed temperature on lateral surfaces (Fig. 11.3).
In order to solve the problem, apply the control volume method, while the
obtained algebraic equation system solve by means of the iterative Gauss­
Seidel method. Write a computational program for the determination of
temperature in nodes 1-4.

- -

2 3
t • • t

Llx

1 4 "'.• .~ t

Fig. 11.3. Square cross-section of an infinitely long rod with prescribed surface
temperature

Solution

Equation (15) from Ex. 11.1 will be used to solve the above stated problem;
in this case, it has the form



(7)
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t; +TN +TE «t; -4Tp =0. (1)

From the equation above, we have, respectively, for nodes 1 to 4:

• node 1

300 + 1; + T4 + 350- 4~ = 0,
(2)

4~ -1; -T4 =650;

• node 2

250+300+1; +~ -41; =0,
(3)

-~ +41; -1; =550;

• node 3

1; +400+450+~ -41; =0,
(4)

-1; +41; -~ =850;

• node 4

~ +1; +400+350-4~=0 ,
(5)

-t; -1; +4~ =750.

According to the Gauss-Seidel method, (2)-(5) are transformed in a way
that the temperature in the first node is determined from the first equation,
in the second node from the second equation, in the third node from the
third equation and in the fourth node from the fourth equation:

1t; =-(650+1; +~) , (6)
4

1
1; =-(550+~ +1;) ,

4

1
1;=-(850+1;+~) ,

4
(8)

1
~=-(750+~+1;). (9)

4
Next, initial approximation is assumed, e.g.

T1(0) == 250°C, T2(0) == 250°C, T3(0) == 250°C, T4(0) == 250°C
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and, in tum, individual temperatures are determined from (6)-(9). Tem­
perature determined in this way is substituted into the subsequent equation,
i.e.

1'.(1) =!(650 + r(O) + r(O)) =!(650 + 250 + 250) = 287.5 0 C
1 4 2 4 4 '

1;(1) =±(550 + ~(I) + 1;(0)) =±(550 + 287.5 + 250) =271.875°C,

1;(1) =±(850 + 1;(1) + ~(O)) =±(850 + 271.875 + 250) =342.969°C,

rY) =±(750 + ~(I) + 1;(1) ) =±(750 + 287.5 + 342.969) =345.117 °C.

The secondapproximation is done in a similar way

~(2) =±(650 + 1;(1) + ~(1)) =±(650+ 271.875 + 345.117) =316.748°C,

1;(2) =±(550 + ~(2) + 1;(1)) =±(550 + 316.748 + 342.969) =302.429°C,

1;(2) =±(850 + 1;(2) + ~(I)) =±(850 + 302.429 + 345.117) =374.38rC,

~(2) =±(750 + ~(2) + 1;(2)) =±(750 + 316.748 + 374.387) =360.284-c

From the third approximation, one obtains

~(3) =±(650 + 1;(2) + ~(2)) =±(650 + 302.429 + 360.284) =328.178°C,

1;(3) =±(550 + ~(3) + 1;(2)) =±(550 + 328.178 + 374.387) =313.141 °c,

1;(3) =±(850 + 1;(3) + ~(2)) =±(850 + 313.141 + 360.284) =380.856 °c,

~(3) =±(750 + ~(3) + 1;(3)) =±(750 + 328.178 + 380.856) =364.759°C.

After fourth iteration, one has
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1;(4) = ~(550+ ~(4) + 1;(3)) = ~(550+331.975 +380.856)= 315.708°C,

1;(4) = ~(850 +1;(4) + rP)) = ~(850 +315.708 +364.759)= 382.61'r C;

T.t(4) = ~(750 + ~(4) +1;(4)) = ~(750 +331.975 +382.617)= 366.148°C.

Following that, iterative calculations are conducted in a way that satisfies
the inequality below:

11;(k+l) _1;(k) 1< e; i = 1, 2, 3,4; k = 0,1.... (10)

For e = O.OOOOl°C after k = 14 iterations, the following temperature
values are obtained:

T4 == 366.667°C.

Calculations were carried out by means of the FORTRAN program. In
spite of the fact that a large number of iterations was done, calculation
timeis very short, since theformulas are very simple in form.

Program for temperature determination in nodes 1-4

c Calculating two-D temperature field in a flat rod
c by means of Gauss-Seidel method

program seidel
dimension t(50),tt(50)
logical inaccurate
open(unit=l,file='seidel.in')
open(unit=2,file='seidel.out ')
read(l,*)n,toler,niter,t-pocz
write(2, I (a) ') "CALCULATING TWO-DIMENSIONAL TEMPERATURE

&FIELD IN A FLAT & ROD "
write(2,' (/a) I) "DATA ENTERED"
write(2, I (a,ilO) ') "equation number n=",n
write (2, , (a, elO. 5, a) , ) "calcul. toler=" , toler, " [C] "
write(2,' (a,ilO) ') "max. iteration number niter=",niter
write(2,' (a,elO.5,a) ')"init.temp.t-pocz=",t-poc z," [C]"
do i=l,n

t(i)=t-poc z



198 11 Solving Steady-State Heat Conduction Problems

tt(i)=t-pocz
enddo
i=O
inaccurate=.true.
do while ((i.le.niter) .and.inaccurate)

t(1)=(650.+t(2)+t(4))/4.
t(2)=(550.+t(1)+t(3))/4.
t(3)=(850.+t(2)+t(4))/4.
t(4)=(750.+t(1)+t(3))/4.
inaccurate=.false.
do j=l,n

if (abs(tt(j)-t(j)) .gt.toler) inaccurate=.true.
enddo
if (inaccurate) then

do j=l,n
tt(j)=t(j)

enddo
endif
i=i+1

enddo
......write (2, , (/a) , ) "CALCULATED TEMPERATURE"

write(2, , (a) ')" Lp T[C] "
do j=l,n

write(2,' (i5,3x,e11.6) ')j,t(j)
enddo
write(2,' (a,i10) ') "final iteration number=",i
end program seidel

data(seidel.in)
4 0.00001 10000000 250.

results (seidel.out)
CALCULATING TWO-DIMENSIONAL TEMPERATURE FIELD IN A FLAT ROD

DATA ENTERED
equation number n= 4
calcul. toler=.10000E-04 [C]
max. iteration number niter= 10000000
init.temp.t-pocz=.25000E+03 [C]

CALCULATED TEMPERATURE
Lp T[C]

1 .333333E+03
2 .316667E+03
3 .383333E+03
4 .366667E+03

final iteration number= 14
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Exercise 11.3 A Two-Dimensional Inverse Steady-State
HeatConduction Problem

Solve an inverse heat conduction problem. Temperature is measured at a
point inside a body. The unknown is the temperature of a node, which lies
on the edge of that body. Consider two cases (Fig. 11.4):

a) Temperature is measured in node 1, while the unknown is the tem­
perature in node B, which lies on the body edge.

b) Temperature is measured in node 3, while the unknown is the tem­
perature in node B, which lies on the body edge.

As measurement values ft and h adopt temperatures determined in the pre­
vious exercise (Ex. 11.2), for nodes 1 and 3, respectively, i.e.

I, =T
1
=333.333°C,

I> T3= 383.333°C.

How the calculation results are going to change, if measurement values
contain a measurement error I1.T = +1.0°C i.e.

ft= T
1+I1.T

= 333.333 + 1.0 = 334.333°C,

I> T3+I1.T= 383.333 + 1.0 =384.333°C.

--

2 3
~ • •

~x

1 4
~.• ./1 •

-350°C 350°C

350°C 350°C

Fig. 11.4. Inverse heat conduction problem; temperature it is measured in node 1,
while the unknown temperature at point TB lies on the body edge

Solution

In general, temperatures in volume nodes or finite elements are formulated
by the equation system
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allI;. + a12I; + a13T; + + aInT:z =bi

a21I;. + a22I; + a23I; + + a2nT:z =b2 (1)

Parameters that appear in the boundary conditions are expressed by the
terms on the right side of the system, i.e. in vector b = tb; b2, ••• , bn)T, while
coefficients a.., i = 1, ..., n, J. = 1, ..., n, i.e. the coefficient matrix A is

IJ

known. If the equation system (1) is written in the matrix form

AT=b,

where

all a12 a13 «; I;. bi

a2I a22 a23 «; T b2
A= T= 2 b=, ,

anI «: «; ann t; bn

then the solution of the system (2) has the form

T == A-1b,

where A-I is the inverse matrix to A.
Once we determine the inverse matrix

we can determine node temperatures from (4)

I;. =cllbi + c12b2+ c13b3+ + cInbn

I; =C2Ibi +C22b2+C23b3+ + c2nbn

(2)

(3)

(4)

(5)

(6)

If temperature! in node i is known from measurements taken, while
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coefficient b
j

is unknown, then from the equality condition of measured
temperature~ and calculated T, , one obtains

f.= T.
ji l' (7)

from where, after accounting for (6), one is able to determine coefficient b.
]

b. = ~ -cilb! -ci2b2 -Ci3b3- ... -Ci,j_1bj_! -ci,j+!bj+! - ... -cinbn . (8)
} c..

I,}

If the measurement data contains an error, then (8) assumes the form

b. =(~+dT)-Cilb! -ci2b2 -Ci3b3-",-ci,j_!bj_! -ci,j+!bj+! -oo.-cinbn .

) c..
I,}

Should the problem formulated in this exercise appear (Fig. 11.4), then
the balance equation system has the following form

4~ -T2 -~ =TB +350

-~ +41; -1; =550

-T2 +41;-T4 =850

-~ -1; +4T4 =750

Hence, the coefficient matrix has the form

4 -1

-1 4
A= o -1

-1 0

o -1

-1 0
4 -1

-1 4

Inverse matrix, determined by means of MATINV program (see Appen­
dix E), is

Cll c12 c13 cln 0.292 0.083 0.042 0.083

C=A-I =
C21 C22 C23 «; 0.083 0.292 0.083 0.042

0.042 0.083 0.292 0.083

cnl cn2 <. <: 0.083 0.042 0.083 0.292

(7) assumes the form

It =cll (TB +350)+CI2 ·550+c13 ·850+CI4 ·750 (i = 1)

Temperature T
B

is



202 11 Solving Steady-State Heat Conduction Problems

T
B

= J; - 350cll - 550C12 - 850c13 -750C14 =
Cll

333.333 - 350·0.292 - 550·0.083 - 850·0.042 -750·0.083

0.292

=299.770°C

In an instance when data is burdened with errors, one gets

, (It+ I1T) - 350C11 - 550C12 - 850C13 -750C14
~= =

cll

334.333 - 350·0.292 - 550·0.083 - 850·0.042 -750·0.083

0.292

=303.195°C.

If temperature is measured in node 3, then (7) assumes the form

h =C31(TB + 350) + C32 ·550+ C33 ·850+ C34 ·750,

hence,
T

B

=h - 350C31 - 550C32 - 850C33 - 750C34 =
C31

383.333 - 350·0.042 - 550·0.083 - 850·0.292 -750·0.083
=---------------------

0.042

=298.405° C.

For measured temperatureI, with error 11T, temperature r; is

T; =h - 350C31 - 550C32 - 850C33 - 750C34 =
C31

384.333 - 350·0.042 - 550·0.083 - 850·0.292 -750·0.083

0.042

=322.214°C.

From the analysis of the given results, one can see that in the case of
temperature measured at point 1, the accuracy of the obtained results is
greater for both, the accurate temperature it and the error-burdened data
if: +I1D. Temperature changes in ~ have a larger effect on temperature T;
There seems to be a distinct cause and effect relationship between TB and
T, than there is between T

B
and T

3
0 If temperature changes in T

B
affect, to a

small degree, temperature changes at the point of measurement, as it hap­
pens in the case of node 3, it is difficult to accurately determine
temperature T

B
on the basis of measured temperature h. Small temperature
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measurement error in 1
3

triggers a very large change in temperature TB •

The explanation for this is that the inverse problem has been ill conditioned. In
practice the problem can be avoided, if the sensor or temperature measur­
ing sensors are placed within a close proximity to a surface on which the
boundary condition is being determined. This is, however, not always pos­
sible. If the temperature sensor is located far from the surface, on which
the boundary conditions are identified, one should expect the obtained re­
sults to be far less accurate. This is precisely what this exercise has dem-
onstrated; adding error I1T= 1°C to the "accurate" measurement value at
point 3 causes the determined temperature T; = 322.214°C to be signifi-

cantly different from the real temperature T
B
=300°C.

Program inv

C Inverse matrix calculation
program inv
dimension a(50,50),c(50,50)
open(unit=l,file='inv.in')
open(unit=2,file='inv.out')
read(l,*)n
read(l,*) ((a(i,j),j=l,n),i=l,n)
write(2, I (a) ')"INVERSE MATRIX CALCULATION"
write(2,' (a) ') "DATA ENTERED"
write(2,' (a,i10) ')"matrix A dimension n=",n
wri te (2, , (a) ') "matrix A"
write(2,' (4f8.2)') ((a(i,j) ,j=l,n) ,i=l,n)
call matinv(a,n,c)
write (2, I (a) ') "CALCULATED MATRIX AA-1"
write(2,' (4f9.3)') ((c(i,j) ,j=l,n) ,i=l,n)
end program inv

data (inv. in)
4

4. -1. O. -1.
-1. 4. -1. O.

O. -1. 4. -1.
-1. O. -1. 4.

results (inv.out)
INVERSE MATRIX CALCULATION
DATA ENTERED
matrix A dimension n= 4
matrix A

4.00
-1.00

.00
-1.00

-1.00
4.00

-1.00
.00

.00
-1.00

4.00
-1.00

-1.00
.00

-1.00
4.00
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CALCULATED MATRIX AA-l
.292 .083
.083 .292
.042 .083
.083 .042

.042

.083

.292

.083

.083

.042

.083

.292

(1)

Exercise 11.4 Gauss-Seidel Method
and Over-Relaxation Method

Describe Gauss-Seidel method and over-relaxation method, which are fre­
quently employed when solving a system of algebraic equations obtained
from the control volume method. Write a computational program in the
FORTRAN language for the calculation using the over-relaxation method.
Show how the equation system obtained in Ex. 11.2 can be solved by
means of this program.

Solution

In the Gauss-Seidel method, the system of algebraic equations, which are
the heat balance equations for the control volume,

alIT;. + a 12T2 + a 13T; + + alnTn =b,

a21~ + a 22Y; + a 23T; + + a 2nI: =b2

(2)

Gauss-Seidel method is an iterative method. One begins calculations by
selecting the initial approximation first: T1(O), T

2(O)
, ••• , Tn(O); more often than

not it is assumed that all temperature values equal zero. Quite often, more­
over, temperatures ~(O) = bla.. i = 1, ..., n are selected as initial values. By
substituting T

2
= T

3
= ... = T,=0 into the first equation in the system (2),

one is able to calculate the first approximation of T
1(1).

Temperature T\(1) is
automatically taken into account in the second equation of the system (2).
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The remaining temperature values, which are present on the right-hand­
side of the second equation, are assumed to be as follow: T

3
=T

4
=... =T,=

O. This is how T
2(l)

is calculated from the second equation. By using the
same method to determine temperature in the remaining nodes, the follow­
ing approximation is obtained: T/l), T

2(l),
..., Tn(l). The determination of node

temperature in the iterative k-stepprogresses as follows:

(k+l) _ 1/ .(b _ (k) _ (k) _ _ (k))1; - / all 1 al21; a l3 t; ... a1nT'"

r (k+l) =X.(b - 'T'(k+l) - r(k) - - r(k))
2 2 a21.1 I a 23 3 ••• a 2n na22

r(k+l) =X.(b - T(k+l) - r(k+l) - - r(k+I))
nan anI I a n2 2 ••• an,n-I n-I •

nn

This calculation method, expressed by the equations in (3), was applied in
a program presented in Ex.II.2. It does not require of one to use coeffi­
cients ail' i =1, ..., n, j =1, ..., n in the calculation. The calculation process
is the same when coefficients ail are temperature dependent, if the thermal
conductivity, for instance, is temperature dependent. A drawback to this
method is the fact that one is forced to rewrite all balance equations anew,
when the new problem must be analyzed.

In order to make the program more universally applicable, a formula for
~(k+1) in the system (3) will be used for the calculation; it can be written in
the slightly different form

I;(k+l) =_1(hi - faij~(k+l) - i aij~(k)), i = 1, ..., n. (4)
au j=1 j=i+1

Over-relaxation method is a form of modification of the Gauss-Seidel
method; it aims to accelerate the iterative process

T(k+l) =T(k) +~(b. _~ a..T~k+l) - ~ a..T~k)),
1 1 1 L..JlJJ L..JlJJ

au j=1 j=i

where 1 ~ OJ ~ 2 is an over-relaxation coefficient. If (j) = 1, then over­
relaxation method is identical to Gauss-Seidel method. Both, Gauss-Seidel
method and over-relaxation method are convergent when

ilaijl<laiil,
j=1
I:ti

i =1, 2, ..., n. (6)
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Iterative process is continued until the criterion below is satisfied

11;(k+l) -1;(k) I< G, i = 1, ..., n, (7)

where 8 is the assigned calculation tolerance or

IIT(k+l) - T(k)11 < GI' (8)

where 81 is the assigned calculation tolerance, e.g. 81 = 0.001 K. Square
norm is calculated from formula

1

IIT(k+l) - T(k)11 =[~(1;(k+l) -1;(k)ry. (9)

Sub-program SOR for solving equation system (1) by means of the
over-relaxation method is shown in Appendix F. Equation system (2)-(5)
in Ex. 11.2 has the following form:

4 -1 0 -1 i. 650

-1 4 -1 0 1; 550

0 -1 4 -1 1; 850
(10)

-1 0 -1 4 T4 750

The broken brackets are column vectors.
A program for solving system (10) with the help of sub-program SOR is

shown below. The value of over-relaxation coefficient is assumed to equal
1,2. Obtained results are the same as they are in Ex. 11.2.

Program content, data and the solution of equation system (10)

C Solution of an equation system by means of over-
C relaxation method and sub-program SOR

program nadrel
dimension a(50,51),xi(50)
nmax=50
mmax=nmax+l
open(unit=l,file='nadrel.in')
open(unit=2,file='nadrel.out')
read(l,*)n, w, niter, toler

m=n+l
read (1, *) ( (a (i, j ) , j =1, m) , i=l, n)
read (1, *) (xi (i) , i=l, n)
write(2,' (a) ') "SOLUTION OF EQUATION SET

&BY OVER-RELAXATION METHOD"
write(2, I (fa) ') "DATA ENTERED"
write(2,' (a,i10) ') "equation number n=",n
write(2,' (a,e10.5) ') "relaxation coefficient w=",w
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write(2/' (a/i10) ') "max. iter. number niter="/niter
write (2 / ' (a, e10. 5/ a) ') "calc. toler. toler=" / toler / " [C] "
write (2 / ' (a) ') "matrix A"
wr i t e (2 / ' (5 f 8 . 2) ') (( a ( i / j ) / j =1 / m) / i =1 / n)
write(2, I (a) ') "initial vector XI"
write(2/' (4f8.2) ') (xi(i)/i=l/n)
call sor(a/nrnax/mrnax/n/xi/w/niter/toler/k)
write(2, I (/a)') "CALCULATION RESULTS"
write(2/' (a)')" Lp X "
do j=l/n

write(2/' (i5/3x/4e11.6) ')j/xi(j)
enddo
write(2/' (a/i10) ') "final iteration number="/k
end program nadrel

data (nadrel. in)
4 1.2 30 1.0E-3
4. -1. O. -1. 650.

-1. 4. -1. O. 550.
O. -1. 4. -1. 850.

-1. O. -1. 4. 750.
O. O. O. O.

results (nadrel.out)
SOLUTION OF EQUATION SET BY OVER-RELAXATION METHOD
DATA ENTERED
equation number n= 4
relaxation coefficient w=.12000E+01
max. iteration number niter= 30
calc.toler.toler=.10000E-02 [C]
matrix A

650.00
550.00
850.00
750.00

-1.00
.00

-1.00
4.00

.00
-1.00
4.00

-1.00

4.00 -1.00
-1.00 4.00

.00 -1.00
-1.00 .00

initial vector XI
.00 .00 .00 .00

CALCULATION RESULTS
Lp X

1 .333333E+03
2 .316667E+03
3 .383333E+03
4 .366667E+03

final iteration number= 11
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Exercise 11.5 Determining Two-Dimensional Temperature
Distribution in a Straight Fin with Uniform Thickness
by Means of the Finite Volume Method

Determine temperature distribution in a fin presented in Fig. 11.5 by
means of the control volume method. For the calculation adopt the values
given in Ex. 7.3. Also calculate heat flow at the fin base and its efficiency.

+- - + -.., - -1- - r- - 1- - +--f
I I I I I I 1 I

a

3 5 7

I

9 ]1 13 15

Fig. 11.5. A division of half of the fin into control volumes

Solution

Heat balance equations for control volumes have the form:

• node 1

hence,

• node 2

(1)

(2)

;.., l1y 1;, - r; +;.., l1y T4 - r; + AL\x ~ - r; + aAx(r - T. ) =0, (3)
2 L1x 2 L1x ~y cz 2

from where, after transformations, one obtains
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• nodes 3,5,7,9,11,13

Heat balance equation for i-node has the form

A, ily 1;-2 - 1; + A, ily 1;+2 - 1; + AAx 1;+1 - 1; = 0
2 Llx 2 Llx ~y'

hence,

~y (~Y Llx) Llx ~y--T + -+- T--T --T =02Llx 1-2 Llx ~y 1 ~y 1+1 2Llx 1+2 ,

i=3, 5, 7, 9, 11, 13

(5)

(6)

• nodes 4, 6,8, 10, 12, 14

Heat balance equation for i-node has the form

A, I1y 1;-2 - 1; + A, ily 1;+2 - 1; + .lAx 1;-1 - 1; + aL\x(T - T) =0 (7)
2 Llx 2 Llx ~y CZ 1 '

hence,

_ ~y T - Llx T +(~Y + Llx + aLlx)T _ ~y T =aLlx
2Llx 1-2 ~y 1-1 Llx ~y A 1 2Llx 1+2 A' (8)

i =2, 4, 6, 8, 10, 12.

• node 15

A, ily 1'13 - 1;5 + A, Ax 1;6 - 1;5 =0
2 Lix 2 ily ,

from where, after simple transformations, one obtains

- ily 1;3 +(~Y + Lix)1;5 - Ax 1;6 = O.
Llx Llx ~y ~y

• node 16

(9)

(10)

(12)

A, ily 1;4 - 1;6 + A, Ax 1;5 - 1;6 +a Ax(T - T. ) =0 . (11)
2 Llx 2 ~y 2 cz 16 '

from where, one obtains

_ ~y T. - Llx T. +(~Y + Llx + aLlx)r = aLlx T .
Llx 14 ~y 15 Llx ~y A 16 A cz



210 11 Solving Steady-State Heat Conduction Problems

After substitution of T, = 95°C, Tcz = 20°C, Ax = 8y = 0.003 m, A= 50
W/(m· K), a =100W/(m~ K), (2), (4), (6), (8), (10)and (12)assume the form

2~ -1; -0.51; =47.5 -~ +2.0061; -0.5~ =47.62

-0.51;_2 + 21; - 1;+1 - 0.51;+2 = 0; i = 3, 5, 7, 9, 11, 13
(13)

-0.51;_2 - 1;-1 + 2.0061; - 0.51;+2 = 0.12; i = 2, 4, 6, 8, 10,12,14

-~3 + 2~5 - ~6 = 0 -~4 - ~5 + 2.006~6 = 0.12.

Gauss-Seidel method will be used to solve equation system (13). A pro­
gram similar to the one in Ex. 11.2 will be used for the calculation. For
that reason, one should rewrite (13), so that one could determine tempera­
ture T: from i-equation. Equation system (13) assumes the form

Node no. Equation

1 T; = 0.5(1; + 0.51; + 47.5)
1

2 1; =--(~ +0.5~ +47.62)
2.006

3 1; =0.5(0.5~ +T4 +0.5~)

1
4 t; =--(0.5T2 +1; +0.5~ +0.12)

2.006
5 t; = 0.5(0.51; + t; + 0.51;)

1
6 t; =--(0.5T4 «t; +0.5~ +0.12)

2.006
7 1; = 0.5(0.5Ts +~ + 0.5~)

1
8 Tg =--(0.5~ + 1; + 0.5~o + 0.12)

2.006 (14)9 t; =0.5(0.5T7 +~o +0.5~1)

1
10 ~o =--(0.5Tg +~ +0.5~2 +0.12)

2.006
11 ~1 =0.5(0.5~ +~2 +0.5~3)

1
12 ~2 =--(0.5~o +~1 +0.5~4 +0.12)

2.006
13 ~3 = 0.5(0.5~1 + ~4 + 0.5~5)

1
14 ~4 =--(0.5~2 + ~3 + 0.5~6 + 0.12)

2.006
15 ~5 =0.5(~3 +~6)

1
16 ~6 =--(~4 +~5 +0.12).

2.006
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The system was solved with the assumed tolerance that equals &

0.00001 "C. As an initial solution, the following was assumed:

~(O) =1;(0) = ... =~~O) =20 De . (15)

Computational Program Content

C Calculating two-dimensional fin temp. field (Fig.ll.5)
C by means of control volume method equation system
C solved by Gauss-Seidel method

program seide12
dimension t(50),tt(50)
logical inaccurate
open(unit=1,file='seide12.in')
open(unit=2,file='seide12.out')
read(l,*)n,toler,niter,t-pocz
write(2, , (a) ')

&IICALCULATING TWO-DIMENSIONAL FIN TEMPERATURE FIELD II
write (2, 1 (/a) ') IIDATA ENTERED II

write(2,' (a,ilO) I) lIequation number n=lI,n
write (2, , (a, elO. 5, a) I) Ileal. toler toler= II , toler, II [C] II
write(2,' (a,ilO) ') IImax. iteration number niter=lI,niter
write (2, , (a, elO. 5, a) I) II init temp. t-pocz= II , t-pocz, II [C] II
do i=l,n

t(i)=t-pocz
tt(i)=t-poc z

enddo

i=O
inaccurate=.true.
do while ((i.le.niter) .and.inaccurate)
t(l)=(t(2)+O.5*t(3)+47.5)*O.5
t(2)=(t(l)+O.5*t(4)+47.62)/2.006
t(3)=(O.5*t(l)+t(4)+O.5*t(5))*O.5
t(4)=(O.5*t(2)+t(3)+O.5*t(6)+O.12)/2.006
t(5)=(O.5*t(3)+t(6)+O.5*t(7))*O.5
t(6)=(O.5*t(4)+t(5)+O.5*t(8)+O.12)/2.006
t(7)=(O.5*t(5)+t(8)+O.5*t(9))*O.5
t(8)=(O.5*t(6)+t(7)+O.5*t(lO)+O.12)/2.006
t(9)=(O.5*t(7)+t(lO)+O.5*t(11))*O.5
t(lO)=(O.5*t(8)+t(9)+O.5*t(12)+O.12)/2.006
t(11)=(O.5*t(9)+t(12)+O.5*t(13))*O.5
t(12)=(O.5*t(lO)+t(11)+O.5*t(14)+O.12)/2.006
t(13)=(O.5*t(11)+t(14)+O.5*t(15))*O.5
t(14)=(O.5*t(12)+t(13)+O.5*t(16)+O.12)/2.006
t(15)=(t(13)+t(16))*O.5
t(16)=(t(14)+t(15)+O.12)/2.006
inaccurate=.false.
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do j=l,n
if (abs(tt(j)-t(j)) .gt.toler) inaccurate=.true.

enddo
if (inaccurate) then

do j=l,n
tt(j)=t(j)

enddo
endif

i=i+1
enddo
write (2, , (fa) , ) "CALCULATED TEMPERATURE"
write(2, '(a) ')" Lp T[C] "
do j=l,n
write(2, I (i5,3x,e11.6) ')j,t(j)

enddo
write(2,' (a,i10) ') "final iteration number=",i
end program seide12

data(seidel.in)
16 0.00001 100000 20.

results (seidel.out)
DATA ENTERED
equation number n= 16
cal. toler toler =.10000E-04 [C]
max. iteration number niter= 100000
init temp. t-pocz=.20000E+02 [C]
CALCULATED TEMPERATURE
Lp T[C]

1 .921152E+02
2 .919377E+02
3 .895855E+02
4 .893836E+02
5 . 87 4594E+02
6 .872585E+02
7 .857353E+02
8 .855386E+02
9 .844046E+02

10 .842117E+02
11 .834597E+02
12 .832696E+02
13 .828950E+02
14 .827066E+02
15 .827072E+02
16 .825193E+02
final iteration number= 536
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Table11.1.Temperatures in control volume nodes shown in Fig. 11.5

Temperature Temperature
Node no. no.

Control Volume Analytical Control Volume Analytical
Method Method Method Method

1 92.11 92.09 84.40 84.37

2 91.94 91.88 10 84.21 84.18

3 89.58 89.55 11 83.46 83.42

4 89.38 89.34 12 83.27 83.23

5 87.46 87.42 13 82.89 82.86

6 87.26 87.22 14 82.71 82.67
7 85.73 85.70 15 82.71 82.67
8 85.54 85.50 16 82.52 82.48

Calculation results are presented in Table 11.1.
One can see from the table above that temperatures calculated by means

of control volume method are almost the same as the values determined by
means of the analytical formula ((2), Ex.7.3). On the basis of temperature
distribution, one can calculate fin-base heat flow, which equals the fin-to­
surroundings transferred heat flow. If a fin perpendicular to the diagram
surface (fin length) measures 1 m in length, then the heat flow at the fin­
base is expressed by formula

Q=2(W. I .A~-T2 + w. I .A~-~)=
b 2 Ax 2 Ax

= 2wA(2T. - T. - T ) =2A(T. _ ~ +1;)
2Ax b 1 2 b 2 '

hence,

o; = 2· 50(95 - 92.11 ~ 91.94J= 297.5 W .

Multiplier 2 was placed in front of the square brackets, since the heat
flow given off by the fin is twice as large; only half of the fin was taken
into consideration in Fig.II.5. In order to calculate efficiency, one needs to

know what the value of heat flow c, is, given off by an isothermal fin

with temperature T, within its entire volume

c, =2.I.I·a(~-~z)=2·0.024.I.IOO·(95-20)=360W.

Therefore, fin efficiency determined by means of the control volume
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method is

17 =-fL- = 297.5 =0.826 .
Qmax 360

Fin efficiency lJ
e
calculated by means of the analytical method is formu­

lated as

Hence,

= 2 .0.003 .53253 = 0.887 .
n, 360

Relative error from theefficiency calculation aboveis

1117 = 17 - 17e .100% =0.826 - 0.887 .100% =-6.8%.
lJe 0.887

In spite of the coarse control volume grid, a good agreement was estab­
lished between temperature distribution (Table 11.1) and two-dimensional
analytical solution. Calculation of heat flux at the fin-base, as indicated by
thecalculated efficiency value, is less accurate.

In order to improve accuracy, fin efficiency will be calculated in a differ­
ent way. Fin-dissipated heat flow canalso be calculated by determining heat
flow received by thelateral surfaces of thefin first:

. [1Q=2al1x "2(1;, -J:z)+(1; -J:z)+(Tt -J:J+(T6-J:J+(Tg -J:z)+

+(1;0 -J:z)+(1;2 -Tcz)+(1;4 -J:Z)+~(1;6 -J:J] =

=2a11x[~I;, +1; -r, +T6 -r; +1;0 +1;2 +1;4 +~1;6 -v: ]=

(
95

= 2 ·100· 0.003 2 +91.94 +89.38 +87.26 +85.54 +84.21 +83.27 +

82.52 )+82.71+-
2--8.20

=319.842W/m.

Finefficiency, then, determined by means of thecontrol volume method is

17 =--B- =319.842 =0.888.
Qmax 360
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Relative error is at

/!1lJ = lJ -lJe .100% = 0.888 - 0.887 .100% = 0.112% .
TIe 0.887

Exercise 11.6 Determining Two-Dimensional Temperature
Distribution in a Square Cross-Section of a Chimney

Determine temperature distribution in a chimney cross-section presented in
Fig. 11.6. External dimensions of the chimney are 2b x 2b. Internal canal has a
square cross-section and the length of its side is 2a. For the calculation as­
sume that b = 0.375 m and a = 0.125 m. Thermal conductivity of the chim-
ney's material is A, =1.25 W/(m·K). Heat transfer coefficient from emissions
to inner surface is a = 60 W/(m2·K), while from outer surface to surround-

w

ings is az= 20 W/(m2·K). Emissions temperature measures T
w
=250°C, while

air temperature of surroundings T,=10°C. Solve the problem using control
volume method.

x

y

• T~,

I ~

I I
_I _ ---e - -.l -

15

4 10
--1--"-

, I I ~ I I
" <1'-1"'----t- ---:--i--t--·

13 : ' " : ~ • 6 : t'7 : .11
I ,I I I

-~----~,- ---:--1-- t--.
: 14 '" 8 : I 9: 12I • -_._- .....

f1x/2 I ~x

Fig. 11.6. A division of 1A of a chimney into control volumes



216 11 Solving Steady-State Heat Conduction Problems

Solution

Due to the symmetry of temperature field, only 1/8 of the chimney cross­
section will be analyzed below. Temperature will be determined for nodes
from node 1 to 9 (Fig. 11.6). Control volumes are squares with a side that
measures Ax =~y =(b - a)/2 =(0.375 - 0.125)/2 =0.125 m.

Heat balance equations for control volumes have the following form:

• Node 1

a (Llx + ~Y)(T -1'.)+,1 Ax 7;3 -7; +,1~y T2 -7; =0 (1)
z 2 2 z 1 2 ~ 2 Llx '

from where, one obtains (when ~y =Ax)

1'. = 1 [1; +~3 +(M3i )TJ. (2)
1 1+ M3i 2 z z

z

When T
13

= T
2

, (2) assumes the form

7; = 1. [1; + (sn; )I: ] '
1+ M31z

(3)

where M3i = a(Ax)IA.z

• Node 2

a Llx(T -T )+,1~ 7; -T2 +,1~y 1; -1; +AAx Ts -T2 =0 (4)
z z 2 2 Llx 2 Llx ~y'

hence,

T = 1 [1: + ~ +1; + (M3i )T]. (5)
2 2 + M3i

z
5 2 z z

• Node 3

a Llx(T -T )+,1 ~y 1; -1; +,1~y T4 -7:, +AAxJ;, -7:, =0 (6)
z z 3 2 Llx 2 Llx ~Y'

where from, after transformations, one obtains

T = 1 [T + 1; +~ + (M3i )T J. (7)
3 2 + M3i

z
6 2 z z

• Node 4

a Llx(T -T )+,1 ~y 7:, -~ +,1~y 7;0 -~ +lliT, -~ =0, (8)
z z 4 2 Llx 2 Ax ~y

hence, when T
lO
=T3 ' one obtains
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• Node 5

lli T2-1; +lli~4 -1; +My~3 -1; + My 1;; -1; =0, (10)
~Y ~Y Ax Ax

hence, when T
13

= T
2

and T
l 4

= T
6

' one gets

1
t; =-(1; +~).

2
• Node 6

(11)

hence, one obtains

• Node 7

hence, when TIl = T6 , one obtains

1
T,==-(~+2~+I;).

4

(13)

(14)

(15)

• Node 8

(
L\.x ~YJ(T T) 1A ..,"~ -t; 1A ~4 -t; 1 ~y Tc;-Tga -+- rr L, +/ILU--+/LLlY +/L---+

w 2 2 w 8 ~y ~ 2 ~ (16)

+.,1 L\.x ~5 -Tg =0
2 ~Y ,

hence, after transformations and when TIS =T
6

and T
l 4
=Tg, one has

t; = 1. [21;; + t; +(LVJiw ) t; ] '
3+LVJlz

where LVJi = a (Ih)/ .,1.z

(17)
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• Node 9

a Llx(T -1: )+,,1 ~y 1'g -T9 +,,1 ~y 1;2 -T9 +AAx T7-~ =0
w w 9 2 Llx 2 Llx L1y'

hence, after transformations and when TI2 = Ts' one has

t; = 1. [1; + t; +(Miw ) t;J.
2+Mlz

One should emphasize that due to temperature field symmetry, planes
1-5-8 and 4-7-9 are thermally insulated (are adiabatic). There is no need to
take additional nodes located outside area 1-4-9-8-1 into consideration, if
one takes into consideration that symmetry planes are thermally insulated.
The heat balance for node 8, with the plane 1-5-8 thermally insulated, has
the form

a Llx (T - To )+ ALlx 1;; - Tg + A ~y 1'g - Tg = 0
w 2 w 8 ~y 2 Llx '

hence, after transformations, (17) is obtained. Equations for nodes located
in symmetry planes 1,5, 4, 7 and 9 can be derived in a similar way.

After substitution, one has

Mi = azAx = 20·0.125 =2.0
z A 1.25 '

Mi = awAx = 60·0.125 =6.0.
w A 1.25

Heat balance equations for nodes 1 to 9 have the form

1( ) 1( ~+r; ) 1( T;+T4 )T, =- 1; +20 , 1; =- T, +--+20 , T; =- ~ +--+20 ,
3 4 2 4 2

1
T, =-(1; +1; +20),

4

1Ts =-(1; +~),
2

111
1;=-(~ +2~ +~), t; =-(2~ +~ +1500), t; =-(1; -r; +1500).
499

The equation system above will be solved by Gauss-Seidel method, when
e =0.00001 "C. The printout of the program in FORTRAN language is pre­
sented below.
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Computational program in FORTRAN language usedfor determining
temperature distribution in a chimney cross-section

C Calculating two-dim. temperature field in a chimney
C cross-section (Fig. 11.6) by means of control volume
C method, equation system solved by Gauss-Seidel method

program seidel3
dimension t(50) ,tt(50)
logical inaccurate
open(unit=1,file='seideI3.in')
open(unit=2,file='seideI3.out')
read(1,*)n,toler,niter,t-po c z
write(2,' (a) ') "CALCULATING TWO-DIMENSIONAL TEMPERATURE

&FIELD IN CHIMNEY CROSS-SECTION"
write (2, , (/a) ') "DATA ENTERED"
write(2,' (a,i10) ') "equation number n=",n
write(2, I (a,e10.5,a) ') "calculation tolerance toler=",

&toler, " [C]"
write(2,' (a,i10) ') "max.iteration number niter=",

&niter
write(2,' (a,e10.5,a) ')"initial temp. t-pocz=",t-pocz,

&" [C]"

do i=1,n
t(i)=t-pocz
tt(i)=t-pocz

enddo
i=O
inaccurate=.true.
do while ((i.le.niter) .and.inaccurate)

t(1)=(t(2)+20.)/3.
t(2)=(t(S)+O.S*t(1)+O.S*t(3)+20.)/4.
t(3)=(t(6)+O.5*t(2)+O.5*t(4)+20.)/4.
t(4)=(t(7)+t(3)+20.}/4.
t(5)=(t(2)+t(6))/2.
t(6)=(t(3)+t(5)+t(7}+t(8))/4.
t(7}=(t(4)+2.*t(6}+t(9))/4.
t(8)=(2.*t(6)+t(9)+1500.)/9.
t(9)=(t(7)+t(8)+1500.)/8.
inaccurate=.false.
do j=1,n

if (abs(tt(j)-t(j)) .gt.toler) inaccurate=.true.
enddo

if (inaccurate) then
do j=1,n

tt(j)=t(j)
enddo

endif
i=i+1

enddo
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write(2,' (/a) ')IICALCULATED TEMPERATURE II

write(2, I (a) ') II Lp T[C] II
do j=l,n

write(2,' (i5,3x,e11.6) ')j,t(j)
enddo

write(2, I (a,i10) ') IIfinal iteration number=lI,i
end program seide13

data (seide13.in)
9 0.00001 100000 10.

results (seide13.out)
CALCULATING TWO-DIMENSIONAL TEMPERATURE FIELD IN CHIMNEY
CROSS-SECTION

DATA ENTERED
equation number n=9
calculation tolerance toler=.10000E-04 [C]
max. iteration number niter= 100000
initial temp. t-pocz=.10000E+02 [C]

CALCULATED TEMPERATURE
Lp T[C]

1 .169665E+02
2 .308994E+02
3 .437345E+02
4 .4 77868E+02
5 .732471E+02
6 .115595E+03
7 .127413E+03
8 .217985E+03
9 .230675E+03

final iteration number= 26

The following initial values were assumed: T
1
(O) = T

2
(O) = ... = T

9
(O) =

IDce. After n = 26 iterations, the following temperature values were ob­
tained:

T, = 16.96°C,

t; =47.78°C,

1; = 127.41°C,

1; = 30.90°C,

t; = 73.25°C,

t; =217.98°C,

1; =43.73°C,

~ =115.59°C,

~ =230.67°C.

The accuracy of this solution can be evaluated if one calculates the heat
flow, which is dissipated through the outer and inner chimney surface on
the length of I m. Outer surface heat flow is
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o. = 8az [ ~(~ - J:)+ &(1; - J:)+&(1; - J:)+~(~ - J:)]=

=8· 20· 0.125(~16.96 +30.90 +43.73 +~47.78 - 3.10) =1540 W.

Outer surface heat flow can be calculated from the formula below

Qw=8[aw~(Tw-Tg)+aw ~(Tw-1;)l

where from, after transformations, one has

Qw =8a
w
(&)(t; - Tg ; 1; ) =8. 60. 0.125(250 _ 217.98; 230.67) =

=1540.5 W.

Heat flows o. and Qw should be equal, since the heat conduction is

steady-state. Relative difference ~Q is at

I1Q=Qw ~ Qz .100% =1540.5 -1540 .100% =0.03%.
Qw 1540.5

The difference between o. i Qw is attributed to a rather small number of

control volumes.

Exercise 11.7 Pseudo-Transient Determination of Steady­
StateTemperature Distribution in a Square Cross-Section
of a Chimney; HeatTransfer by Convection and Radiation
on an OuterSurface of a Chimney

Determine steady-state temperature distribution in a cross-section of a
chimney presented in Fig. 11.6; allow for both, heat transfer by convection
and heat transfer by radiation. Assume that the equivalent emissivity of the
chimney's interior is 8 = 0.9, while the outer surface 8 = 0.8. Other values

w z

remain the same as they are in Ex. 11.6. Use control volume method to de-
termine temperature distribution.

Solution

The presence of radiation renders this problem to be non-linear. If the
problem is solved as a steady-state problem, one obtains a non-linear



(1)

(3)

(2)
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algebraic equation system for node temperature, which can be solved by
Newton-Raphson method or by other iteration methods. The problem in
question can be also solved as a transient problem, since there are a num­
ber of well developed methods, which can be used for solving non-linear
ordinary differential equation systems, for e.g., Rung- Kutta method. Tem­
perature distribution is determined after a sufficiently long duration; that
is, the unknown steady-state temperature distribution is determined. Heat
balance equations for individual control volumes (Fig. 11.6) have the form
(when Ax = ~y):

• Node 1

~(Ax)~(Ax)cP; =az • (Ax)(J: -1;)+&p.(Ax)(J:4_1;4)+

1 Lix ~3 - T; 1 Lix T; - T;+/l" +/l,,---
2 Lix 2 Lix'

hence, one obtains

d~ =~[{M3i )T - &zo-·(Ax)(T4 -r.4 )- {1+M3i )r. +
dt (Ax)2 Z Z -1 z 1 Z 1

T; ~3]+-+-
2 2'

following that, when Tl 3=T2

d~ =~[{M3i )T - &P·(Ax)(T4 -r.4 )- {1+M3i )r. +T]dt (Ax)2 Z Z -1 Z 1 Z 1 2'

where temperatures are expressed in Kelvin, while a = 5.67.10-8

W/(m2.K4
) is the Stefan-Boltzmann constant.

• Node 2

~(Ax)(Ax)cpd2 =az·(Ax)(J: -1;)+&zo-·(Ax)(J:4_1;4)+

+-1 Ax 1; -1; +-1 Ax 1; -1; +-1{Ax) 1; -1;
2 Lix 2 Ax Lix '

which results in

dT; =~[{M3i)T + &p.(Ax)(T4 - T4 )- {2+M3i )T +dt (Ax)2 z Z -1 Z 2 z 2

+~+r;+I:].
2 2 5

(4)

(5)
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• Node 3

(6)

(7)

• Node 4

(8)

(10)

hence, when T
IO

= T
3

,

d~ =~[(Miz)I: + c
p O

(Ax)(I:4-T44)_(2+MiJ~ +1; +1;]. (9)
dt (Ax) A

• Node 5

(Ax)(Ax)cpdTs =2o(Ax)J;-Ts +2o(Ax)~-Ts +
dt Ax Ax

+2 o(Ax) ~3~Ts + 2 .(Ax) ~4~Ts ,

where from, after transformations and when T
13
=T

2
and T

14
=T

6
, one has

dTs 2a
-==--2(1; -t; -2Ts), (11)
dt (Ax)

• Node 6

(12)
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where from, after transformations, one obtains

dYe, 2a
-=--2(1; «t: +1; +Tg -4~).
dt (Ax)

• Node 7

(13)

hence, when TIl = T6, one has

dT7 a ( )
-=--2 T, +2Ye, +~ -41; ,
dt (~)

• Node 8

(15)

hence, after transformations and when T
l 4
=T

6
and TIS =T

9
, one has

at: 4 a [_s=---2 (M3iw)T +2Ye, -t; -(3+M3iw)~
dt 3 (Ax) w

Ew() • ( Ax) (4 4)]+ T -Tcs .A w

• Node 9

(17)

(18)

hence, when Tl 2 =T, ' one gets

; = (~)2 [(M3iw )Tw + &w
CT

} Ax) (T: - Tg4) +1; + t; - (2 + M3iw )Tg ] (19)
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After assuming for Ax = ~y = (b - a)/2 = (0.375 - 0.125)/2 =0.125 m,
A = 1.25 W/(m·K), aw = 60 W/(m

2·K), a = 20 W/(m
2·K), T

w
= 250 +

273.15 =523.15 K, T = 10 + 273.15 =283.15 K , one can calculate MJiz w

and MJi:z

MJi =aw·(&)=60.0.125=6.0

w A 1.25 '

MJi = az .(&) = 20·0.125 =2.0
z A 1.25

and

EwO"'(&) = 0.9·5.67·10~8 ·0.125 =5.103.10-9 lIK3

A 1.25 '

EP'(&) = 0.8·5.67 .1O~8 ·0.125 =4.536.10-9 lIK3 ,

A 1.25

In order to calculate temperature distribution, one needs to know what
the value of heat diffusivity a = NCp is. To quickly reach a steady-state, a
should have a large value, e.g. a = 1.5625.10-5 m/s'; then a/(Ax)2 =
1.5625.10-5/(0.125)2 =0.001 l/s . If we were to assume that a =5.2.10-7

m2/s, we would significantly lengthen the whole calculation, since the tran­
sient state (chimney heating) would last longer. At an initial moment when
t = 0 s, chimney temperature is uniform and is of 10oe, thus T1(0) = T

2(0)
=

... = T9(0) = 283.15 K. Once all the data is taken into consideration, (3),
(5), (7), (9), (11), (13), (15), (17) and (19) assume, respectively, the fol­
lowing forms:

.n, [ -9 ( 4 4) ]dt = 0.004 566.3 + 4.536·10 283.15 - 1; - 31; +1; , (20)

dT2 [ -9 ( 4 4 ) t; 1; ]-==0.002 566.3+4.536·10 283.15 -1; -41; +-+-+~ , (21)m 2 2

.n; _ [ -9 ( 4 4 ) 1; t, ]--0.002 566.3+4.536·10 283.15 -1; -41; +-+-+~ , (22)
m 2 2

.n; [ -9 ( 4 4) ]dt = 0.002 566.3 + 4.536·10 283.15 - T:t - 4T4 +1; + 1; , (23)
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d~ ( )-=0.002 7; -2~ +~ ,
dt

d~ ( )-=0.001 t: +~ +1; «r;-4~ ,
dt

d1; ( )-=0.001 t, +2~ - t; -41; ,
dt

(24)

(25)

(26)

dTg 0.004 [ -9 ( 4 4 ) ]-=-- 3138.9+5.103·10 523.15 -t; +2~ -t; -9Tg , (27)
dt 3

d; =0.002[3138.9 + 5.103 .10-9(523.154- ~4) + t: + t; -8~ J. (28)

Initial conditions have the form

1;(0)=7;(0)= ... =Tc;(0)=283.15 K (29)

Problem (20)-(29) will be solved by the Rung-Kutta method. A sub­
program for the integration of the equation system by means of the Rung­
Kutta method is presented in Appendix G. If we assume that temperature is
already in a steady-state after t =9120 s, then the following temperature
values will be obtained:

1; =288.36 K=15.21°C,

I; =312.55 K=39.40°C,

~ = 345.27 K = 72.12°C,

1; = 401.19 K = 128.04°C,

Tc; = 509.66 K = 236.51°C.

1; = 300.99 K = 27.84°C,

T, =315.99K=42.84°C,

t; =389.56 K=116.41°C,

T; = 499.22 K = 226.07°C,

The integration step in Rung-Kutta method was assumed to equal t1.t =
60 s. Heat flow transferred by an inner surface of the chimney within the
length of 1 m is at
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Qw = 4[a; ·(Ax )(Tw- Tg) + &wO"' (Ax)(T: - Tg4) + aw·(Ax )(Tw-1;) +

+&wO"' (Ax)(T: _1;4)] = 4[60· 0.125(523.15 - 499.22) + 0.9·5.67 x

x 10-8 ·0.125· (523.15 4- 499.224) + 60· 0.125 (523.15 - 509.66) +

+0.9· 5.67 .10-8 ·0.125 ·(523.15 4- 509.664)] = 1638.65 W.

Heat flow given off by an outer surface is

o. =8[az ~ (1; -I:)+~&P'(Ax)(1;4 -I:4)+a
z •(Ax)(T2 -I:)+

+&p. (Ax)(T2
4- I:4) +a, ·(Ax)(1; - I:)+&p'(Ax)(1;4 - I:4) +

+az ~(~ - I:)+~&P' (Ax)(~4 - I:4)]
= 8[az '(Ax){~ +1; +

T4 ] ()(1;.4 4 4 1;4 4J]+T +--3T +8 a- Llx -+T +T +--3T
3 2 z z 2 2 3 2 z'

hence, after substitution of the numerical values, one has

o. = 8[20·0.125 -( 28~.36 + 300.99 + 312.55 + 31~.99 - 3·283.15) +

+0.8.5.67 .10-8
• 0.125( 288~364 + 300.994+ 312.554+

300:9
4

-3.283.154J]=1598.71 W

Heat flows Qw and Qz should be equaL Relative difference

!1Q = Qw ~ Qz .100% = 1638.65 -1598.71 .100% = 2.44%
Qw 1638.65

results from the small number of control volumes. By increasing the num­
ber of control volumes, one can improve the accuracy of the obtained re-
sults and at the same time decrease the difference between Qw and c. If

heat exchange by radiation is neglected in (20)-(28), i.e. when 8
w

= e, =0,
then the following nodetemperature values are obtained (after t = 9780 s):



1; = 304.05 K = 30.90°C,

t, =320.94 K=47.79°C,

t; =388.74 K=115.59°C,

Tg = 491.13 K = 217.98°C,
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T, = 290.12 K = 16.97°C,

1;=316.88 K=43.73°C,

Ts = 346.40 K = 73.25°C,

1; =400.56 K=127.41°C,

Tg = 503.82 K = 230.67°C,

They are almost identical to temperatures calculated in Ex.11.6. Due to the
fact that steady-state was treated as a particular case of transient state,
when t ~ 00, temperature distribution was calculated in a relatively simple
way, as it was not necessary to apply iteration and to select approximate,
initial temperature values at the beginning of the iteration process.

Computational program in the FORTRAN language used for determining
temperature distribution in a cross-section of a chimney

c Calculating two-dim. temperature field in a chimney
c cross-section (Fig. 11.6) by means of control volume
c method, equation system solved by Runge- Kutta method

program rkutta
integer co_ile_druk
dimension y(6000),f(6000)
open(unit=l,file='rkutta.in')
open(unit=2,file='rkutta.out')
read(l,*) t,dt,m,n_row,n_time
read(l,*) t_init
read(l,*) co_ile_druk
write(2,' (a) ')"CALCULATING 2-D TEMP FIELD IN A CHIMNEY"
write (2, , (/a) ') "DATA ENTERED"
write(2,'(a,e10.5,a)') "initial time=",t," [s]"
write(2, '(a,e10.5,a) ') "time step=" ,dt," [s]"
wri te (2, , (a, i10) , ) "parameter m=", m
write(2,' (a,i10) ') "equation number n_row=",n_row
write(2,' (a,i10) ') "time step number n_time=",n_time
write(2,' (a,e10.5,a) ')"initial temp. t_init=",t_init,

&" [C]"

write(2,' (a,i10) ') "printing frequency=", co_ile_druk
z_w=5.103E-9
z_z=4.536E-9
write(2, , (/a) ') "CALCULATED TEMPERATURE [K]"
write(2, , (a,a)') "t[s] T(l) T(2) T(3) T(4)",

&" T(5) T(6) T(7) T(8) T(9)"
numerator=O
kolejny=l
to i=l,n_row
y(i)= t_init
enddo
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write(2, I (f9.0,9f8.3)') t, ((y(i)) ,i=l,n_row)

8 if( (kolejny-n_time) .1e.0.0 ) then

kolejny= kolejny+l

6 licznik = licznik+l
call runge (n_row,y,f,t,dt,m,k)
goto (10,20),k

10 f(1)=0.004*(566.3+z_z*(283.15**4-y(1)**4)-3.*y(1)+y(2))
f(2)=0.002*(566.3+z_z*(283.15**4-y(2)**4)-4.*y(2)+

&0.5*y(1)+0.5*y(3)+y(5))
f(3)=0.002*(566.3+z_z*(283.15**4-y(3)**4)-4.*y(3)+

&0.5*y(2)+0.5*y(4)+y(6))

f(4)=0.002*(566.3+z_z*(283.15**4-y(4)**4)-
&4.*y(4)+y(7)+y(3))

f(5)=0.002*(y(2)-2.*y(5)+y(6))

f(6)=0.001*(y(3)+y(5)+y(7)+y(8)-4.*y(6))
f(7)=0.001*(y(4)+2.*y(6)+y(9)-4.*y(7))
f(8)=0.004*(3138.9+z_w*(523.15**4-y(8)**4)+2.*y(6)+

&y(9)-9.*y(8))/3.
f(9)=0.002*(3138.9+z_w*(523.15**4-y(9)**4)+y(7)+

&y (8) -8 . *y (9) )

goto 6
20 continue

if((float(licznik / co_ile_druk)* co_ile_druk)
& .ne. licznik) goto 6

write(2, I (f9.0,9f8.3) ') t, ((y(i)),i=l,n_row)
goto 8

endif
stop

end

data (rkutta. in)
0.0 60. 0 9 200
283.15
1

results(rkutta.out - set part)
CALCULATING 2-D TEMP FIELD IN A CHIMNEY

DATA ENTERED
initial time=.OOOOOE+OO [s]
time step=.60000E+02 [s]
parameter m= 0
equation number n_row= 9
time step number n_time= 200
initial temp. t_init=.28315E+03 [C]
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printing frequency= 1

CALCULATED TEMPERATURE [K]
t[s] T(l) T(2) T(3) T(4) T(5) T(6) T(7)
T(8) T(9)
O. 283.150 283.150 283.150 283.150 283.150 283.150 283.150
283.150 283.150
60. 283.150 283.158 283.268 283.306 283.277 286.477 287.810
387.704 418.660
120. 283.155 283.217 283.892 284.131 283.975 293.481 296.517
439.175 469.283
180. 283.178 283.394 285.038 285.567 285.357 301.487 305.863
463.512 488.055
240. 283.231 283.722 286.546 287.393 287.323 309.332 314.766
475.076 495.437

................................
9000. 288.361 300.990 312.555 315.994 345.275 389.560 401.193
499.218 509.656
9060. 288.361 300.990 312.555 315.994 345.275 389.560 401.193
499.218 509.656
9120. 288.361 300.990 312.555 315.995 345.275 389.560 401.193
499.218 509.656
9180. 288.361 300.990 312.555 315.995 345.275 389.560 401.193
499.218 509.656
9240. 288.361 300.990 312.555 315.995 345.275 389.560 401.193
499.218 509.656

..................................

11820. 288.361 300.990 312.555 315.995 345.275 389.560
401.193 499.218 509.656
11880. 288.361 300.990 312.555 315.995 345.275 389.560
401.193 499.218 509.656
11940. 288.361 300.990 312.555 315.995 345.275 389.560
401.193 499.218 509.656
12000. 288.361 300.990 312.555 315.995 345.275 389.560
401.193 499.218 509.656

Exercise 11.8 Finite Element Method

Describe the procedure for calculating temperature fields by means of the
finite element method (FEM). List main advantages and disadvantages of
FEM.

Historical Development of FEM

The precursor of the FEM method was a mathematician by the name of Courant, who in
1943 employed the segmental approximation by polynomial method in combination with
the variational method in order to solve the torsion problem [3]. The method was developed
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and its present name, namely the finite element method appeared in 1950s [2, 7]. Tradi­
tional analytical approximation methods, such as variational methods or Galerkin methods
[5] have many limitations, which arise from the approximation of solution within the entire
analyzed area by means of a single function. It is almost impossible to apply analytical ap­
proximation method in an instance when the shape of an analyzed region is complex and its
boundary conditions change in a time and position. Similar limitations, with respect to
shape, characterize the classical finite difference method, in which partial derivatives in dif­
ferential equations are approximated by means of differentce quotients. Finite difference
method allows one to analyze different boundary conditions; the shape of a body, however,
should be isometric, e.g. a rectangle, prism, cylinder, sphere, or a flat, cylindrical or spheri­
cal wall. The universal applicability of the finite difference method, such as the control vol­
ume method, also known as finite volume method, allows to find a solution in construction
elements or in the complex shape regions [1]. Capabilities of this method are very similar to
the capabilities of FEM. A region, whose temperature distribution we are trying to estab­
lish, can be divided into control volumes (cells) of arbitrary shapes; due to this reason, one
can analyze curvilinear boundaries or other complex-shape boundaries.

The application of finite element method in heat transfer and fluid mechanics also has
certain limitations. At the boundary of a given element, heat or mass that flows from one
element can differ from the heat that flows towards adjacent element, in spite of the fact
that the same section of the boundary is in both instances analyzed. This is due to the fact
that a discontinuity of heat flux occurs in FEM at the boundary of adjacent elements. To
eliminate this problem, a so called finite element balance method was developed. Another
difference between FEM and the control (finite) volume method is the approximation
method for a temperature derivative after time in transient problems. In FEM, thermal ca­
pacity of an element is distributed among the element nodes at appropriate weights; in finite
volume method, however, thermal capacity of a cell (element) is concentrated in a single
node that lies inside the cell. From the comparison of calculation results obtained by means
of FEM and finite volume method, it is evident that the concentration of thermal capacity in
a single point not only does not tamper with calculation accuracy but increases it. In inverse
problems, concentration of thermal capacity in a single point, which lies inside the control
volume, improves the solution stability.

Finally, one can conclude that although finite difference method and FEM were treated
initially as two separate methods, the discrepancy is almost invisible between the finite vol­
ume method, which derives from finite difference method, and the FEM balance method,
with a concentrated thermal capacity in finite elements.

Also the functions, which interpolate temperature distribution (or other unknown quanti­
ties) inside the finite volume or a finite element can be employed in both methods.

Solution

FEM consists of the following calculation steps:

1. Division of an area into finite elements (a grid generation), Fig. 11.7.
2. Mathematical formulation of Galerkin or variational method (Ritz

method) for the analyzed boundary or initial-boundary problem
within the area of a single element.
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3. Selection of functions, which interpolate temperature distribution in­
side the element (shape function).

4. Determination of an algebraic equation system for a steady-state
problem or of an ordinary differential equation system for transient
problems in a single element by means of Galerkin or variational
method, formulated in step 2. The equation number equals the node
number in a given element, since node temperatures are the un­
known quantities in the element.

5. Summing up of equation systems for individual elements, with an
aim to create a single universal node-temperature equation system
for the whole analyzed region.

6. Allowing for the parameters present in the boundary conditions of
the global equation system.

7. Solving the algebraic equation system in the case of a steady-state
problem or the ordinary differential equation system in the case of a
transient problem.

8. Calculation of heat flux, heat flow and other secondary quantities
and graphical representation of the calculation results (post­
processing).

y

t:
inaccurate

boundary mapping

x

Fig. 11.7. Division of an area into finite elements

The procedure outlined above is typical of large commercial programs, de­
signed to provide solutions to problems from different disciplines. In terms
of individual solutions to specific problems and a development of ones
own computational program, the procedure steps can have a different se­
quence; for instance, boundary conditions can already be accounted for
when creating algebraic equations for a given element, i.e. at point 4. Also
the global equation system can be created in a different way by summing
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up, for instance, algebraic equations (or ordinary differential equations) for
node i, for example, obtained for elements with the same shape coefficient
N. around the node in Galerkin method.

1

Assuming that few elements share a common node i (Fig. 11.8), the
shape coefficient N, assumed in Galerkin method occurs only in elements
with common node i. In other nodes, the value of such coefficient equals
zero. This is the reason why we can add up the equations obtained for all
elements with the same shape coefficient N, around node i when creating a
global equation system.

If the same is done with respect to all other nodes, a global algebraic equa­
tion system or ordinary differential equation system is obtained for node
temperatures that can be solved by means of different methods.

Fig. 11.8. Elements taken into consideration when determining an algebraic equa­
tion for steady-state problems or an ordinary differential equation for transient
problems in a single node

The second method for creating a global equation system is the same as
in the finite volume method, in which heat balance is written for node i.

Finite element method has the following advantages:

• It is suited for problem analysis in complex shape bodies.
• Boundary conditions can be non-linear and time and location­

dependent.
• There are number of very good software programs that enable one to

quickly solve numerous problems, including problems related to de­
formation mechanics, heat transfer and fluid mechanics.

• One can solve non-linear problems, when thermo-physical properties
of a material are temperature-dependent, and problems in heterogene­
ous bodies with location-dependent properties in, for instance, com­
posite or anisotropic materials.

• A division of an area into finite elements is automatically carried out
(using commonly available software programs), which makes it easier
to evaluate accuracy of obtained results by increasing density of an
element grid.

• Calculation results are obtained in a graphical and numerical form,
which make it easier for a user to quickly analyze obtained results
(majority of software programs can be installed in personal com­
puters). The software costs are gradually decreasing.
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Finite element method is not, however, free of drawbacks; its main
drawbacks are as follow:

• The initial installation costs of the FEM software program are very
high.

• Source programs are usually not included in the software set; thus,
there is no possibility for program modification or improvement.

• If the problem under analysis is part of a larger problem, it is difficult
then to combine one software set with one's own programs or with
other sets, especially if the problem is to be solved in an on-line
mode.

• Particular attention should be paid to the accuracy of results obtained
by means of FEM. The apparent ease, which the results are obtained
with in a graphical form is rather deceptive. Even when boundary
conditions are prescribed incorrect, e.g. when the end conditions for a
construction element are incorrectly set during the determination of
thermal stresses, the obtained results seem to be correct at a first
glance.

Exercise 11.9 Linear Functions That Interpolate
Temperature Distribution (Shape Functions) Inside
Triangular and Rectangular Elements

Describe the simplest forms of temperature-distribution-interpolating func­
tions inside triangular and rectangular elements (shape functions).

Solution

First, we will discuss triangular elements (Fig. 11.9).

Temperature distribution in a triangular element will be approximated by a
linear function

y 3

....--.... 2
0'"-- --...

x

Fig. 11.9. Triangular finite element
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(1)

(3)

Constants ale, a
2

e, a
3

e
will be determined from conditions

Te(xl' YI ) =1;e , r: (X2,Y2 ) =1;e , r: (X3,Y3 ) =r; (2)

By substituting (1) into (2), one obtains the following equation system

at + a;xI+ a;YI =1;e

at +a;x2+ a;Y2 =1;e
at +a;x3+a;Y3 =J;e,

where from, one has

at = 2~e [( X2Y3 - X3Y2 )t; + (X3Yl - XlY3 )T2
e
+ (XlY2 - X2Yl )t; ] '

a; = 2~e [(Y2 - Y3)1;e +(Y3 - Yl)1;e +(Yl - Y2)J;eJ, (4)

a; = 2~e [( x3- x2)t: + (Xl - X3)T2
e+ (X2- Xl ) J;e ] '

where

1 Xl YI
2Ae = 1 X2 Y2

1 X3 Y3

(Ae-a surface area of triangle 1-2-3 from Fig. 11.9). (5)

After substituting (4) into (1) and ordering, one has

where N'', N2

e
, N

3

e are, so called, shape functions, formulated as

Ne 1 (e be e)
I =2Ae a l + I X + CI Y ,

Ne 1 (e be e)
2 = 2Ae a2+ 2X+C2Y ,

Ne 1 (e be e)
3 = 2Ae a3+ 3X+C3Y ,

where

(6)

(7)

(8)
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On the basis of temperature distribution inside the element, one can de­
termine heat flux vector

° (1 er . 1aT.)q =- /l,x -I+ /l, -J °

ax Y ay

Derivative aT/ax is formulated as

aT =aNt T: + aN; t: + aN; t:
ax ax 1 tu " ax 3'

hence, after substituting into (7), one gets

(9)

(10)

er 1 (be rre be e be re) 1 [( ) e-=-- 1 °1 1 + 2 oJ; + 3· 3 =-- Y2 - Y3 ~ +
aX 2Ae 2Ae (11)

+(Y3 - YI )Tz
e+ (YI - Yz)1;e J.

Derivative aT/ay can be calculated in a similar way

aT =_1_[(x3-xz)~e +(x
1
-x3)z;e+(xz -x

l
)1;eJ.

ay 2Ae

It is evident, thus, that components of the heat flux vector

. --A aT and qO --A aT
qx - x ax y - y 0'

(12)

(13)

are constant and position-independent inside the element. It seems, there­
fore, that heat flux equality does not occur on the element boundary, since
heat flux is constant yet different in every element. The condition of tem­
perature continuity, however, is preserved. It is easy to demonstrate that
the calculated temperature transient is the same for two adjacent elements
with common side, regardless of the element in which the transient is cal­
culated. The lack of continuity on the element boundary impairs the accu­
racy of the solution obtained by means of FEM. In order to calculate heat
flux at a specific point inside the analyzed region or to determine heat flow
using a boundary segment with an assigned temperature, one should em­
ploy a denser element mesh so that a satisfactory result in terms of accu­
racy could be obtained.
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y

o

y

4 Fe 3

Xl == x4 ne ~
N

1 2
("l X

2b ~

II

~

x

Fig. 11.10. Linear rectangular finite element

A linear tetragonal element, presented in Fig. 11.10, will be discussed
below.

Temperature distribution inside the element will be approximated by
function

T" = fJt + fJ; .x+ fJ; .y + fJ: .x.y .

Constants fJt, ... ,fJ: will be determined from conditions

(14)

r: (0,0) =t; ,

T e
( 2b, 2a ) =t; ,

T" (2b, 0) = I;e ,

T e (0, 2a ) =rt,
(15)

from which, once (14) is substituted, the following equation system is ob­
tained:

fit == r;.e ,

/3t + 2b/3; + 2afJ; + 4ab /3: = I;e ,
(16)

Once the above equation system is solved, obtains

fJe t: pe =_1(re_r: )
1 == 1 , 2 2b 2 l'

/3; =_1(T4
e-1;e), /3: =_I_(~e -r; «t; -T

4
e).

2a 4ab

After substituting (17) into (14) and after transformations, one obtains

where shape functions are formulated as follow:

(17)

(18)



N; = x· y
3 4ab'

i= j

i 7:- j.
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Nt =(1- ~)(l- ~) N; =~(l- ~),
N;= ~(l- ~).

Shape functions N i
e have the following properties:

• N i
e (xj 'Yj ) =0i,j ( i,j = 1, 2, 3) for a triangular element

and

• N i
e

( xj ' Yj ) =0i,j ( i, j = 1, 2, 3, 4) for a tetragonal element

where 8 . is the Kronecker delta, which satisfies
l,j

{
I, for

°i,j = 0, for

From properties (20) and (21), it follows that

n

LNt =1,
i=l

(19)

(20)

(21)

(22)

(23)

where n stands for the number of nodes in an element.

Therefore, in i-node the shape function Nt =1,in other nodes, however,

it equals zero. Aside from linear functions discussed above, one can apply
other interpolation functions, for instance, the square functions.

Exercise 11.10 Description of FEM Based
on Galerkin Method

Derive basic equations in FEM for a single element using Galerkin
method. Assume that two-dimensional temperature field is source-based,
while three different boundary conditions of 1st, 2nd and 3rd order are as­
signed on the body's edge. Allow for the fact that the medium is anisot-
ropic, i.e. Ax 7:- Ay•

Solution

We need to find a solution for the heat conduction equation

~(A 8T)+~[A 8TJ+. =0ax x ax By Y By qv
(1)



Exercise 11.10 Description of FEM Based on Galerkin Method

when boundary conditions are (Fig. 11.11):

Tlr -t.,
T

and

239

(2)

(3)

(4)

Tr

o

rq

Fig. 11.11. A diagram with different boundary conditions

In (1)-(4), the following symbols are used:
Ax - thermal conductivity of a material in x-axis direction
A

y
- thermal conductivity of a material in y-axis direction

T, - temperature set on the body boundary T; ,
qB - heat flux on the body boundary ~ ,

a- heat transfer coefficient on the body boundary Fa,
T - temperature of a medium.cz

In order to make these calculations more widely applicable, three different
types of boundary conditions are assumed:

• 1st order kind condition, section r;,
• 2nd order kind condition, section F,

q

• 3rd order kind condition, section Fa.
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It is also assumed that heat flux 4in (3) is positive, i.e. the body is being

heated. Normal to boundary n is a unit vector directed to the outside of the
region, while its components are equal to directional cosinuses

nx = cosqJ, < = cos (~ - qJ) = sin qJ , (5)

where ({J is the slope angle of normal to a horizontal plane.
Boundary conditions (3) and (4) can be written in a slightly different

form, if conductivity matrix is entered into the equation

and column vector of temperature gradient

aT
ax

{g} = aT
ay

Heat flux components 4x and 4y can be written then in the form

{::}=-[A]{g}.

If we take into account, moreover, that

(6)

(7)

(8)

. ~ aT. ~ aT. .. ..
q == - /l,. -I-/l,. -J==q I+q Jxax Yay x y'

and

(9)

-(-A aT n - AaT n J== - q. ° n == qOxaxx yayy «>
(10)

then boundary conditions (3) and (4) can be correspondingly written in the
form

(11)

(12)
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where qn is the component value of the normal heat flux. One also as­
sumes that the body thickness in the direction perpendicular to the plane of
the diagram is of 1m.

Boundary problem (1)-(4) was formulated for the whole region Q. In
FEM, Galerkin method is first formulated for a single element Qe. It is as­
sumed that three types of boundary conditions are assigned, as they are for
the whole region, on the boundary of a single element. One needs to apply
such a formulation to elements adjacent to body boundary (Fig. 11.11). It
is not necessary, however, to consider boundary conditions for elements,
which lie inside the body. Temperature distribution inside the element Q e

is approximated by function

r (x,y) = tT/ ·N; (x,y) = [Ne ]{r},
j=l

(13)

where n is the number of nodes in the element, ~e - temperature inj-node
and ~e(x, y) the shape function (interpolation function).

Galerkin method will be used to determine an approximate temperature
~e in nodes, j = 1, ..., n.

[
a ( are] a ( are] .] ef - Ax- +- Ay - +qv N, (x,y)dxdy=O.

sr ax ax ay Oy

Green theorem will be applied in order to transform (14):

(
aG aF]f - - - dxdy =P(Fdx + Gdx) .

sr ax ay r :

Integration on the boundary T" is anti-clockwise.
If one assumes that

F=-A are N~ d G =A are N~
y 1 an Xl'ay ax

then on the basis of (15), one obtains

f[~(AX ar Nie]+~(A ar Nt]]dXdY =Qeax ax ay Yay

(
are are]

= fN~ -A -dX+A -dlJ .
1 y~, x a .rre vy X

(14)

(15)

(16)

(17)

Once the left-hand-side of (17) is transformed, the equation can be written
in the form
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I[~(AX ar)+~(Ay ar)]NtdXdY=- I(Axor aNie+
sr ax ax ay ay sr ax ax

are aN~) e(are are)+A __, dxdv « IN. -A -dX+A -dlJ .Yayay J re' Yay xax J

By substituting (18) into (14), one has

I(Ax or aNt +Ayor aNt) dxdy = INtq.dxdy +
sr ax ax ay ay sr

(
are are)+INt -Ay-dx+Ax-dy .

re ay ax
Because of (Fig. 11.12)

-dx = ds ·sincp = n ds ,

dy =as-coup =n ds

(18)

(19)

(20)

(21)

and on the basis of (10), the expression in the brackets in the curvilinear
integral in (19) can be transformed in the following way:

are are ar ar . .-A -dX+A -dlJ=A -n dS+A -n ds=-q·n=q ds. (22)Yay xax J yayy xax x n

Hence, from the above and the boundary conditions (11) and (12) in (19),
one gets

I(Axor aNie+Ayor aNt)dXdY= INtqdxdy « INt4Bds+
sr ax ax ay ay sr r; (23)

+ INta (t: - r: )ds.
r;

After substituting (13) into (23), one gets

[
aN~ n aN~ aN~ n aN~JfAx-l Lrj

e_J +Ay_' Lr/-J dxdy > fN;etivdxdy+
ir ax j=l ax ay j=l ay sr

n

+fNttiBds- fN;eaLT/N;ds+ fNieaJ;,zds.
r; r; j=l r;

(24)
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Equation (24) for i-node can be written in the form
n

I(K:,ij + K~,ij ). T/ = f;,i +t; +t; ' (25)
j=l

y

o

3
( - A 07'. -A OT.J

x~ I y~ J
ex vy

2

x

Fig. 11.12. A diagram with a calculation of a curvilinear integral on the element's
perimeter (in an anti-clockwise direction)

where

[

a lATe aN~ alATe aN~)
K" .. == f 1 _:I._Vi__J +1 _:I._Vi__J dxd

C,l] x a a Y~, a Y,
fle X X vy y

«: = faNtN;ds,
r:

f;,i = fqvNi
e
dxdy ,

fle

(26)

(27)

(28)

(29)
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and
I'e = J T NedJ a,i a cz is.

r;
(30)

If in (14), and by that in (25) ~e is assumed to be the shape function for
the consecutive nodes of a finite element, then one obtains for a given
element a system of n equations, which can be written in the form

([K:] +[K~ ]){r} ={f;}+ {~e} +{f:}, (31)

where matrix coefficient and elements of column vectors are expressed by
(26)-(30), while vector {T} has the form {T} = [ T/, ... , T

n

e
] , where n is

the number of nodes in an element. In contrast to other exercises where
bold type designates matrixes and column vectors, the traditional notation
used in FEM is preserved in (31). [ ] stands for a matrix or row vector,
while { } a column vector. Matrix [K

e

e
] is called stiffnes or conductivity

matrix. Matrix [Ke

e
] is symmetrical, since K:,ij = K:,ji' Equation (31) forms

the basis of FEM for (1).
Equation system (31) is frequently written in a slightly different form.

Once (13) is substituted into (7), temperature gradient vector can be writ­
ten in the form

(32){r} .

8Ne
__n

8x
8Ne 8Ne
__1 __2

8x 8x
{s} = aNe aNe

__1 __2

8y 8y 8y
If we denote by [B] the matrix in the square bracket:

8Ne 8Ne 8N:__1 __2

[B]= 8x 8x 8x
8Ne 8Ne 8N:__1 __2

8y 8y 8y

(33)

Then {g} can be expressed in a shortened form

{g} =[Be ] {r }. (34)

Conductivity matrix [K
e

e
] can be written then in the form

(35)
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The remaining matrixes and column vectors present in (31) can be ex­
pressed in the following way:

[K=J= fa[Ner[NeJds,
r;

{f~}= f 4v [N
erdxdy ,

Qe

{~e} = f4B[Ner sr
r e

q

{f:}= faTcz [ N
erds,

r~

(36)

(37)

Nt
N e

2 ,while n is the number of nodes in an element.

(1)

Exercise 11.11 Determining Conductivity Matrix
for a Rectangular and Triangular Element

Determine conductivity matrix [Ke
e] for a rectangular and triangular ele­

ment.

Solution

Equation (26) from Ex. 11.10 and formulas for shape functions shown in
Ex. 11.9. will be used to calculate the elements of a conductivity matrix.

a) Conductivity matrix [Keel for a finite rectangular element

Matrix elements [K
e

e
] are expressed by (26) in Ex. 11.10

(
BNe BN~ BNe BN~)K:,ij = fAx _i_J+A

y
__i _J dxdy.

Qe Bx Bx By By
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Only two matrix elements will be calculated from (19) in Ex. 11.9 for the

shape functions K:,ll and K:,12. Let x, y be local coordinates.

After determining derivatives

aNt =__1 (I-LJ and aNt = __1 (1-~J
ax 2b 2a 8y 2a 2b

and

aN; =_1(I-L Jand aN; =_~ ,
ax 2b 2a 8y 4ab

element K:,ll will be calculated first

x: = f[A, aNt aNt + A, aNt aNt) dxd =
c,ll x a a y~, a Yne X X vy y

2a [2b 1 ( J2] 2a [2b 1 ( XJ2 ]=Ax f f-2 l- L dx dy+A,y f f-2 1-- dx dy=
o 0 4b 2a 0 0 4a 2b

Ax a Ay b
=--+-- .

3 b 3 a

Element K:,12 is calculated in a similar way:

x: = f[A, aNt aN; + A, aNt aN; )dXd =c,12 x a a y a a Y
ne X X Y Y

2a [2b 1 ( Y J2] 2a [2b 1 [ x
2
) ]=-Ax f f-2 1-- dx dy+Ay f f-2 x-- dx dy=

o 0 4b 2a 0 0 8a b 2b

Ax a Ay b
=---+-- .

3 b 6 a

(2)

(3)

(4)

(5)

Also the remaining elements of the conductivity matrix [K
c

e
] can be de­

termined in a similar way, namely
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2 -2 -1 1 2 1 -1 -2

[Ke]=Ax ~
-2 2 1 -1 Ay b 1 2 -2 -1

+-- (6)
c 6 b -1 1 2 -2 6 a -1 -2 2 1

1 -1 -2 2 -2 -1 1 2

b) Conductivity matrix [K'] for a finite triangular element

Matrix [B] for a triangular element is formulated as

aNe aNe aNe
__1 __2 __3

[Be]= ax ax ax 1 [be be b;]=2Ae c; 2 (7)aNe aN; aNe ce e '
__1 __3 2 C3

8y 8y ay

where Ae is the surface area of a triangle, while coefficients bi
e

, c; , i = 1, 2,

3, are expressed by formulas in (8), Ex. 11.9. Since the coefficients in ma­
trix [Be] are constants and Ax and Ay are material constants independent of
position and temperature inside the element, the conductivity matrix can be
easily determined, since

[K;]= J[BeJ[Ae][BeJdxdy=[BeJ[Ae][Be] fdxdy
sr sr

or

(8)

Once (7) is substituted into (8) and the appropriate operations carried out,
one obtains

(btt «« btb; (ctt c7c; c7c;

[Ke]=~ «« (b;t b;b;
Ae

e e (c;t e e . (9)+_x_ C1C2 C2C3
c 4Ae 4Ae

btb; b;b; (b;t e e c;c; (c;tc1c3

It can easily verify that the same results are obtained when calculating
matrix coefficient with (1). When a body is isotropic, i.e. Axe =Axe=A\ the
conductivity matrix [K

e

e
] for a triangle expressed by (9) can be written in a

simpler form, by introducing the notation shown in Fig. 11.13.
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x
b

l __------__~....I------..
(0,0)

y c

Fig. 11.13. Triangular finite element

On the basis of formulas (8) from Ex. 11.9 and the notations from Fig.
11.13, (9) for Axe = Axe = Aecan be written in the form

d' +(C-b)2

[K;J= 4~e -d
2 - c(c- b)
b(c -b) -cb

b(c - b)

-cb . (10)

b2

(11)

o
b

d
b

d

d

b

d b
-+-
b d

b

do

In a case when a triangle is rectangular in shape (Fig. 11.14), conductiv­
ity matrix assumes the form

d

b

[K;J= ~e ~
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y

b

3

c=b

Ae = lL:.Jl
2

o ...-----..........~--'-------....
2

x

Fig. 11.14. Finite element in a rectangular triangle form

Exercise 11.12 Determining Matrix [Ka"l in Terms
of Convective Boundary Conditions for a Rectangular
and Triangular Element

Determine matrix [Ka
e

] for a rectangular and triangular element.

Solution

Matrix [K a
e
] present in (25) [Ex. 11.10], whose coefficients are expressed

by (27) [Ex. 11.10], arises from 3rd order boundary conditions assigned on
the boundary of an element. Matrix [K a

e
] can be also determined by means

of (36) from Ex. 11.10. Coefficients K~ ii will be calculated by means of
,lj

(27) from Ex. 11.10

K~,ij = faNtN;ds .
r;

(1)

The determination of integrals in FEM is discussed, among others, in ar­
ticles [4, 6].

a) Rectangular finite element

If convective heat transfer is assigned on all sides of an element with a
heat transfer coefficient a, then matrix [Ka

e
] is formulated as
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(N:f NtN; NtN; NtN:

[K;J = fa
NtN; (N;f N;N; N;N:

ds. (2)
r~ NtN; N;N; (N;f N;N:

NtN: N;N: N;N: (N:f

In practice, convective heat transfer is usually set on one or two element
sides, which constitute a fragment of a body boundary. If convective heat
transfer takes place on the side 1-2 of a rectangular element (Fig. 11.15),
then in (2) one should assume thatN

3
= N

4
= O. Equation (2) assumes the form

(N:f NtN; 0 0

2b (N;f[K;J= fa NtN; 0 0 ds. (3)
0 0 0 0 0

0 0 0 0

Since ds =dx and on the basis of (19) from Ex. 11.9, individual integrals in
(3) are

2fb(N e)2dX=2b = L12

o 1 3 3'

where L
12

is the length of the side 1-2 of the element in question.

(4)

y

4 3
"

\j
N

Qe S ~ !l
(~

('1
, -..J

Fe
L]2 =2b

'\
2 Xa

Tez

Fig. 11.15. Convective heat transfer is prescribed on the boundary 1-2 of a rectan­
gular element
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Furthermore, once the following is determined

2fb N eN
2
edx = 2b = L12

1 6 6o

and

matrix (3) assumes the form
2 1 0 0

[KeJ= aL12 1 2 0 0
a 6 0 0 0 0

000 0

Similar results are obtained for the remaining sides of the element

o 0 0 0

[KeJ=aL23 0 2 1 0
a 601 2 0

o 0 0 0

000 0

[KeJ=aL34 0 0 0 0
a 600 2 1

001 2

200 1

[KeJ= aL41 0 0 0 0
a 6 000 0

100 2

(5)

(6)

(7)

(8)

(9)

(10)

where L23, L34, L41 are the lengths of the sides on which the convective heat
transfer takes place.
b) Triangular finite element

For a triangular element, matrix [Ka
e

] has the form
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(Ntr NtN; NtN;

[K=J = fa N;Nt (N;r N;N; ds. (11)
r;

(N;rN;Nt N;N;

The above matrix refers to a case when convective heat transfer takes
place on all three sides of a triangular element. When heat transfer occurs
only on the side 1-2, one assumes in (11) that N

3

e= 0, while after integra­
tion, one has

210

[K= J=a~12 1 2 0 .

000

Formulas for the remaining sides are obtained in a similar way

000

[K= J=a~23 0 2 1

012

(12)

(13)

(14)

where L
12

, L
23

, L
31

are the respective side lengths of the triangular element.
When calculating curvilinear integrals, present in (11), for a triangular

element, needed in order to determine (12)-(14), (1) was used:

(15)

It is easy to calculate the integrals in (11) by means of (15); e.g. to calcu­
late integral

~2 2

f(Nn ds,
o

in (15), one assumes that m = 2, n = 0, hence

f(N~)2ds=L 2!O! =L ~=LI2 .
o 1 12 (2 + 0 +1)! 12 3 . 2 ·1 3
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Exercise 11.13Determining Vector {fae
} with Respect

toVolumetric and Point Heat Sources in a Rectangular
and Triangular Element

Determine vector {fQe} for a rectangular and triangular element, when unit
heat source power is constant within the area of the element and constant
for a point heat source.

y

4 .Ji
3

l .*
~qv

...
,.

1 2 xXo

Fig. 11.16. Point heat source inside a rectangular element

Solution

Vector components {fQe} will be calculated according to (28) from
Ex. 11.10

i; = f4vNtdxdy .
Qe

(1)

a) Rectangular element

If power density of a heat source is constant, it is easy to calculate {f;,;}

2a(2b )
f;,; = J IqvN;edx dy;

hence, after substituting into (19) from Ex. 11.9, one obtains

(2)
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1 1

{f~} = iJv:e
1 1

1
== qah

1

1 1

(3)

where A
e
is the surface area of an element, equal to 4ab.

It follows from (3) that 1/4 of total body heat flow is allotted to every node
in a tetragonal element.

In the case of the point heat source (Fig. 11.16), (1) assumes the form

iJv == iJ: t5 (x- Xo)t5(y - Yo), (4)

(5)

where 4: [W/m] is the heat flow emitted at point (xo' Yo)' with respect to a

unit of length as the heat source is infinitely long in the direction perpen­
dicular to the diagram plane. Function t5 is a Dirac delta, which approaches
infinity at point (xo' Yo); at the remaining points, however, it equals zero.

By substituting (4) into (1), one has

Nt (xo,Yo)

{f~}= iJ: N; (xo' Yo )
N; (xo,Yo) .
N: (xo,Yo)

b) Triangular element

If density 4v is constant, then from (1), one obtains

f;,i == 4v fNtdxdy.
n e

(6)

In order to calculate the integral on the surface of a triangular element, a
formula from reference [4] will be used here:

f(Nn1(N;f (N;fdA = l!m!n! ,2A
e

o

ne (l+m+n+2).

Since in the given case m = 0, n = 0, l = 1, then from (6), one has

f/ = iJvAe
Q,i 3·

Therefore, vector {fQe} has the form

(7)

(8)
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1

{f;}=qv:e 1 . (9)

1

It follows from (9) that 1/3 of the total heat flow in an element is allotted
to every node in that element. In the case of point heat source, vector {fQe}
has the form

Nt (xo,Yo)
{f;}=q: N;(xo'yo) ·

N; (xo,Yo)
(10)

Equations (5) and (10) refer to a case when the point heat source is located
inside an element.

When a heat source is located in a node common to several elements

(Fig. 11.17), then source power q: per unit of length can be divided

among individual elements proportionally to angle qJ at the tip of a given
element. For a triangular element, vector {fQe} has the form

(11)

where angle tp is expressed in radians.

Fig. 11.17. Point heat source in a node common to several elements

In practice, the location of a heat source is of no great significance,
since in the global equation system, with the heat balance equations for in-

dividual nodes, total power q: is present in this equation of a node, which

has a point heat source inside.
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Exercise 11.14 Determining Vectors {fqe} and {fae} with
Respect to Boundary Conditions of 2nd and 3rd Kind on
the Boundary of a Rectangular or Triangular Element

Determine vectors ~e} and {fa
e} for a finite rectangular and triangular ele­

ment.

Solution

Elements of column vectors {te} and {fae} are determined from (29) and
q

(30), Ex. 11.10

J; = f a~zNieds ,
r;

(1)

(2)

therefore, from almost identical integrals. If we assume that qB = aTcz in

the first integral, then we obtain (2). This is why only vector ~e} will be
determined below.

a) Finite rectangular element

If heat flux is given on the boundary 1-2 of a finite element (Fig. 11.18)
with thickness 1, then vector {te} is formulated as

q

(3)

Since also N; =N; =0 on the side 1-2, (3) assumes the form

Nt (x, 0)

{}
2fb N;(x,O)f: =qB 0 0 dx ,

o

where shape functions Nt and N; are expressed by (19), in Ex. 11.9.

(4)
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y

re /
q

2 x

Fig. 11.18. Rectangular element heated by heat flux qB

Once the integrals are calculated

2b 2b( J 2 2be X X L12f N (x O)dx= f 1-- dx=x-- =b=-
1 , 2b 4b 2 '
000

2b 2b 2 2b

f f x x L
Ne(x O)dx= -dx =- =b =--l1:-
2' 2b 4b 2 '
000

vector {te} can be written in the form
q

1

{/qe} = qB~12 ~

o

(5)

(6)

(7)

It is evident from the analysis of (7) that the term qB L12/2 for node no. 1

will appear on the right -hand-side of the (25), Ex. 11.10, as it will for node
no. 2. This means that half of the heat, which flows through the lateral sur­
face of an element with length L12 and thickness 1, flows to node no. 1. The
second half flows to node no. 2. Vector {te} can be calculated in a similar

q

way when the heat inflows into the element through surfaces 2-3, 3-4 and
4-1; one then obtains, respectively

o

{/qe} = qB~23 ~

o

(8)
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o
·L 0

{re} = qB 34
J q 2 u '

1

1

·L 0
{fe } =~ .

q 2 0

1

(9)

(10)

If the heat flow at density qB inflows through all lateral surfaces of an

element (Fig. 11.18), then vectors (7)-(10) should be added; hence

L12 +L41

L12 +L23

L23 +L34

L34 +L41

(11)

From the analysis of (11), it is evident that the term qB (£12+ £41)/2 for

node no. 1 will appear on the right-hand-side of an algebraic equation, term
qB (L

12
+ L

32)/2
for node no. 2 on the right-hand-side of the equation, and so

on. The above is, therefore, the same procedure for calculating heat bal­
ance in nodes as the one, which is used in the control volume method.

b) Finite triangular element

To calculate curvilinear integral (1), we will use formula
L , ,

fNjmCs)NJCs)ds =L ( m.n. ) .
o m+n+l !

Vector

Nt
{~e} = fqB[NeT ds =qB f N; ds ,

r: r: N;

(12)

(13)

with a heat flux set on the surface 1-2 is calculated under the assumption
that N; = 0 and m =1, n =0 in (12). Once the integrals are calculated
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Lt2 1'0' LfN eds =L .. =--R (14)
o 1 12 (1+ 0 + I)! 2'

Lt2 L
f Neds =--R (15)
o 2 2'

vector {fe} assumes the form
q

1

{fq
e

} = qB;2 1

o
(16)

(17)

If a heat flow with density qB is assigned on the surface 2-3 or 3-1, then

the corresponding vectors have the form

o
{~e} = qB~23 1

1

1

{~e} = qB~31 0 .

1

(18)

(19)

When heating a triangular element on all sides, an appropriate vector is ob­
tained as a result of adding vectors (16)-(18)

. {L12 +L31
}

{~e} = q; L'2 +L23 .

L23 + L31

As in the case of a rectangular element, a heat flow, which inflows
through half of the surfaces that pass through a given node, occurs on the
right-hand-side of an algebraic equation when the equation is being formu­
lated for a given node.

Exercise 11.15 Methods for Building Global Equation
System in FEM

Describe the way global equation system is created using the finite ele­
ment method by summing up
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a) equation systems obtained for individual finite elements [Method I],
b) algebraic equations obtained for different elements that share, never­

theless, a common node (as an analogy to finite volume method)
[Method II].

Are the temperature continuity conditions and heat flux conditions satis­
fied on the boundary between elements?

Solution

a) In order to create a global equation system, conductivity matrix [K
e

e
]

and the matrix that comes from the assigned 3rd kind boundary conditions
[Ka

e
] , derived for individual elements, must be summated, i.e.

N

[K] = I([K;J+[ K~ J)
e=l

(1)

That includes the summation of vectors {fQe} , ~e}, {fae}, present on the
right-hand-side of the (31) in Ex. 11.10

(2)

(3)

and

(4)
e=l

where N is the finite elements integral number, which the entire analyzed
region was divided to. The global equation system for temperature in ele­
ment nodes has the form

(5)

where {T} is the column vector of size N, which comprises of unknown
temperatures in element nodes. Next, one has to account for parameters
present in the boundary conditions in the above created global equation
system (5).

The method for creating matrix [K], which is sparse, should be dis­
cussed in greater detail, since only some of the coefficients present in it are
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other than zero. It is assumed that the flat region is divided into triangular
elements (Fig. 11.19).

e

g

d

a

Fig. 11.19. A division of a flat region into finite triangular elements; element
numbers and global node numbers are marked: CD-@ - finite element numbers,
a-g - global node numbers

If element CD lies inside the analyzed region, thereby [K a
1
] can be disre­

garded, then matrix [K1
] = [K

c

1
] for the first element (Fig. 11.20) can be

written in the following way:

a b c

(1) KIll K:2 K:3
(2) K~l K~2 K~3 (6)

(3) K~l K~2 K~3

(1) (2) (3)

If global node numbers of a triangular element are marked as G, b, and c,
while local node numbers as (I), (2), (3), then one can see that coefficient
K 1

aa
corresponds to coefficient r; in matrix [K1

] (6), coefficient K 1

bc
cor­

responds to coefficient K1

23
, etc. When creating a matrix of coefficients [K]

according to (1), one should be guided by global indexes, i.e. one should
add coefficient K e that occurs in the matrix of element ® to coefficient

aa

K 1

aa that occurs in the conductivity matrix of element CD. Coefficients that
have the same global indexes in conductivity matrixes of other elements
are added together. Such common coefficients appear in conductivity ma­
trixes of elements, which share a common node, e.g. in the case of ele­
ments in Fig. 11.19, the node common to six elements is node c.
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<3>
c

Numeration of nodesin elementno. CD

Globalnode number Local node number

a (1)
b (2)
c (3)

a

<1>
Fig. 11.20. A diagram of global (a, b and c) and local (1), (2), (3») node numera­
tion in a triangular element

centerof gravity of
triangular element
midpoint of
triangle side

g

control volume
assigned to

node c a

<1>

A global equation system for node temperatures can be created in an­
other way, which resembles the way heat balance equations are developed
using the control volume method. One can also create control volume in
FEM around node c (Fig. 11.19), common to surrounding elements, by
linking centers of gravity of triangular elements with the midpoints of tri­
angle sides (Fig. 11.21). The equation number equal to the number of
nodes in an element is assigned to every element. There are three equations
in the case of a triangular element. When creating a global equation for
node c (Fig. 11.19), only those equations are considered in which the shape
function was selected as a weight function in the Galerkin method at point

c. For element CD when local nodes are positioned as shown in Fig. 11.20,
the third equation is the equation in question; it results from the application
of Galerkin method when weight coefficient equals N

3

1
(X, y).

i

o

Fig. 11.21. Control volume in FEM with a region divided into triangular elements;
linear functions interpolate temperature distribution inside the element

If similar local node numeration is assumed for the remaining elements
shown in Fig. 11.19, then we must account for the third equation in every
equation system for a given element, since in every element local node (3)
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corresponds to node c. In Galerkin method, function N
3

e(x,y) plays a role of
a weight function for element ®.
b) The second method for creating global equation system, based on the
formulation of an appropriate equation for a given node, indicates that
there is a close relationship between FEM and the control (finite) volume
method.

The following conditions should be retained when aggregating (summat­
ing) elements (Fig. 11.22):

• continuity of temperature field, including boundaries between ele­
ments;

• continuity of heat flow, also on the boundary between elements.
The first condition is satisfied in FEM; the second condition, however, is
not completely satisfied. On the boundary between elements, the following
temperature continuity takes place

1;1 =1;2 =T:t
and

(7)

The above indexes (7) are the element numbers. Temperature equality on
the boundary between elements follows from the equation of temperature
in nodes and linear character of temperature distribution inside the ele­
ments.

4 3

2

Fig. 11.22. Global and local numeration of nodes in finite elements

In agreement with (29), Ex. 11.10, the equality of integrals takes place
on the boundary between elements:

fq~N~ds =- fq~N12ds , (8)
Lh3 43

f q~N~ds =- f q~N~ds .
Lh3 43

(9)

Therefore, only in the case of very small elements, when the side common
to both elements is very short in length, the heat flux equality is ensured on
the boundary where two elements meet. Furthermore, heat flux inside an
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element is constant when temperature distribution is interpolated inside the
element by linear functions. Therefore, heat flux step-change occurs at the
point of contact of two elements. At such point, there is also no continuity
among the first derivatives of function rex, y). This lack of continuity at
the point of contact between elements negatively affects the accuracy of
solution. In order to determine heat flux at a given point in an analyzed re­
gion or to calculate heat flow transmitted by a body boundary, the region
should be divided into very small elements, so that the accuracy of the de­
termined heat flux values is satisfactory.

Exercise 11.16 Determining Temperature Distribution
in a Square Cross-Section of an Infinitely Long Rod
by Means of FEM, in which the Global Equation System
is Constructed using Method I (from Ex. 11.15)

Determine temperature distribution in a square cross-section of an infi­
nitely long rod (Fig. 11.23). Upper and lower surfaces are thermally insu­
lated. Left vertical surface is heated by a heat flow whose density is
qB = 200 000 W/m2

, while the surface on the opposite side is cooled by

water at temperature ~z = 200 e with a heat transfer coefficient equal to

a = 1000 W/(m2·K). Thermal conductivity of the rod's material A
x
= Ay =

50 W/(m·K). The length of the side within the square cross-section of the
rod is a =2 em.

a = 1OOOW/(m2-K)

Ax =Ay = 50 W/(m 0 K)

a=2cm

Fig. 11.23. Cross-section of an infinitely long rod
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Solution

Temperature field will be treated as two-dimensional. Cross-section of the
rod will be divided into four elements. Local and global node numeration
is given in Fig. 11.24. and Table 11.2.

3
.v
4 __--------__--yo

8
<)

N

2 x
2em

Fig. 11.24. A division of a rod's cross-section into four elements with a marked
global and local node numeration; local numeration is given in brackets ( )

Table 11.2. Local and global node numeration

Element No. Local Node Number Global Node Number

CD

®

(1)

(2)
(3)
(1)
(2)
(3)
(1)
(2)
(3)
(1)

(2)

1
2
5

1
5
4

4
5
3

2
3
5

First we will determine the quantities in individual elements of the con­
ductivity matrix [K

c

e
] and in the element of matrix element [Ka

4
] , since a

convection heat transfer is assigned on the side 2-3 (1)-(2»). Conductivity
matrix for a triangular element is formulated by (9) in Ex. 11.11, which in
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the given case for A = A = A has the form
x y

(bt t +(c:t btb; +c:c; btb; +c:c;
[K:J- 4~e btb;+c:c; (b;t +(c;t b;b;+c;c; (1)

where matrix coefficients are formulated in (8), Ex. 11.9.

Matrix [Ka
4

] for element @ is formulated in (12), Ex. 11.12

210

[K; ]= a~12 1 2 0

000

(2)

where L
I 2

= 0 is the length of the side in the square cross-section. From ma­
trices [K e

] and [Ka
4

] , one obtains:
c

• Element CD

x: = 0 m, y: = 0 m,

x~ = 2 .10-2 m, y~ = 0 m,

x~ = 1.10-2 m, y~ = 1.10-2 m,

hI = 0 -1 .10-2 = -1 .10-2 m hI = 1.10-2
- 0 = 1.10-2 mI , 2 ,

hI =O-O=Om3 ,

ci = 1.10-2
- 2 .10-2 = -1 .10-2 m ci = 0 -1 .10-2 = -1 .10-2 mI , 2 ,

c~ = 2 .10-2
- 0 = 2 .10-2 m,

Al =!.0.02.0.01=1.10-4 m2 .

2

Conductivity matrix [K
c

l
] calculated with (1) is as follows:

1 2

[

0.5 0

[K: ]= 50 0 0.5

-0.5 -0.5

5

-0.5] 1
-0.5 2,

1.0 5

(3)

The numbers above and next to the matrix are the global node numbers.
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• Element ®

x~ =0 m, y~ =0 m, x~ =0.01 m, y~ =0.01 m,

x; = 0.0 m, y; = 0.02 m,

b1
2 =0.01-0.02=-1.10-2 m, b~ =0.02-0=2.10-2

ill,

b~ =0-0.01=-1.10-2 m,

c~ =0-0.01=-1.10-2 m, c~ =0-0=0 m,

c; =0.01-0=1.10-2 m,

A2 =!.0.02.0.01=1.10-4 m".
2

Conductivity matrix is
1 5 4

0.5 -0.5 0 1

[K;J =50 -0.5 1.0 -0.5 5.
(4)

0.0 -0_5 0_5 4

• Element ®

x: = 0 m, y: = 2 -10-2 m,

x~ = 1-10-2
ill, y~ = 1.10-2

ill,

x~ = 2 -10-2 m, y~ = 2 .10-2
ill,

b; = 1-10-2
- 2 -10-2 = -1-10-2 m, b~ = 2 -10-2

- 2 -10-2 = 0 m,

b; =2 .10-2
- 1.10-2 =1.10-2 m,

c: =2.10-2 -1.10-2 =1·10-2m,
c~ =0-2-10-2 =-2-10-2 m,

c~ = 1.10-2
- 0 = 1-10-2 m.

Matrix [K 3] is as follows:
c

4 5 3

0.5 -0.5 0 4

[K;J =50 -0.5 1.0 -0.5 5.
(5)

0 -0.5 0.5 3
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• Element @

x: =2.10-2 m, y: =0 m, x; =2.10-2 m, y; =2.10-2 m,

x: =1.10-2 m, y: =1.10-2 m,

b
1
4 = 2 .10-2 -1.10-2 = 1.10-2 m, b; = 1.10-2

- 0 = 1.10-2 m,

b4 =0-2.10-2 =-2·10-2 m
3 '

c; = 1.10-2
- 2 .10-2 = -1 .10-2 m, c; = 2 .10-2 -1.10-2 = 1.10-2 m,

c: = 2 .10-2
- 2 .10-2 = 0 m.

Matrix [K 4
] is as follows:

c

2 3 5

0.5 0 -0.5 2

[K:] =50 0 0.5 -0.5 3.
(6)

-0.5 -0.5 1.0 5

Matrix [Ka
4

] , which results from the heat transfer on the side 2-3, has the
form

or

2 3

[K;]=3.33(3{~ ~ ~~, (7)

(8)

2 3 5

31.667 3.333 -25.0 2

[K:]+[K;]= 3.333 31.667 -25.0 3.
(9)

-25.0 -25.0 50 5

Coefficient matrix in the global equation system can be obtained by
adding coefficients in matrices (3)-(6) and (9):
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K ll = K I\ + KI
2
1 = 25 + 25 = 50 W/(m· K), Kl2= 0, Kl3= 0, Kl4= 0,

Kl5= KJ5 + Kl
2
5= -25 + (-25) = -50 W/(m· K),

K21=0, K22=K~2 + (K;2 + K:,22) =25 + 31.6667 =56.6667 W/(m· K),

K23=([K;3J+[ K:,23 J) =3.333 W/(m· K), K24=0,

K25= K~5 + K;5 = -25 + (-25) = -50 W/(m· K),

K31=0, K32=(K~ + K:,32) =3.333 W/(m· K),

K33=K:3+(K~ + K:,33 ) =25 +31.6667 =56.6667 W/(m· K),

K34= K;4 = 0 W/(m· K), K35= K;5 + K;5 = -25 + (-25) = -50 W/(m· K),

K41=K~l =0,K42=0,K43=0,K44=K~4 +K~4 =25+25=50W/(m·K),

K45= K~5 + K~5 = -25 + (-25) = -50 W/(m· K),

KSI = «; + K~I = -25 + (-25) = -50 W/(m· K),

KS2=K~2 +K~ =-25+(-25)=-50W/(m·K),

K S3= K:3+ K:3 = -25 + (-25) = -50 W/(m· K),

KS4= K~4 + K:4= -25 + (-25) = -50 W/(m· K),

KS5=K~5 +K~5 +K:5+K:5=50+50+50+50=200 W/(m·K).

If all coefficients are known, one can write then the global conductivity
matrix

50 0 0 0 -50

0 56.667 3.333 0 -50

[K] == 0 3.333 56.667 0 -50 W/(m·K). (10)

0 0 0 50 -50

-50 -50 -50 -50 200

Following that, vector {~2} is defined according to (17), Ex. 11.14

(11)
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2000

o
2000

(12)

Vector {fa4
} will be calculated according to (16), Ex. 11.14

{fa
4

} =aiz{i}={~} ,

where from, after substitution, one obtains

The right-hand-side vector has the form

(13)

(14)

I,

h
{f} = h =

I,

is

2000

10000

10000 W/m 2
•

2000

o

(15)

The equation system (31) from Ex. 11.10, from which node tempera-
tures will be determined, assumes in this case the following form

50 0 0 0 -50 t; 2000

0 56.667 3.333 0 -50 T2 10000

0 3.333 56.667 -50 1; = 10000 (16)

0 0 0 50 -50 T4 2000

-50 -50 -50 -50 200 t; 0

Since the equation system (16) is solved by means of the Gauss elimina­
tion method and the program shown in Ex. 6.26, the following is obtained:
T1=280°C, T2 =200°C, T3=200°C, T4 =280°C, T,=240°C. Due to thermal
insulation of lateral surfaces 1-2 and 3-4, temperature field is one­
dimensional in the cross-section of the rod.
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Temperature can be calculated from analytical formulas

T. =T =qBa + qB =200000·0.02+ 200000=2800C
1 4 A a 50 1000 '

T. =qBa + qB =200000·0.02 + 200000=240°C
5 2.,1, a 2·50 1000 '

T =T =qB =200000 =2000C.
2 3 a 1000

It is clear, therefore, that the results obtained by means of FEM and the
analytical formulas are identical to each other.

Exercise 11.17 Determining Temperature Distribution
in an Infinitely Long Rod with Square Cross-Section
by Means of FEM, in which the Global Equation System
is Constructed using Method II (from Ex. 11.15)

Solve the problem formulated in Ex. 11.16 by means of FEM; namely, the
equation (of heat balance) for individual nodes. Use Method II discussed
in Ex. 11.15.

Solution

• Node 1
Elements CD and ® have node 1 in common (Fig. 11.24). Equation system
for element CD has the form

[K1J{T1}={l}, (1)

where [K
1] is formulated in (3), Ex. 11.16. Because ifl} =[0,0, O]T, equa­

tion system (1) has the form

2: 2

05

=~~ {~} = {~} . (2)
-25 -25 50 t: 0

Node 1 in the global numeration is also (I) in the local numeration of ele­
ment CD; therefore, only the first equation is taken into consideration in (2)

25~ - 25T's =0 .

The algebraic equation system for element @ has the form

(3)
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where [K2
] is formulated in (4) while vector {f2} in (12), Ex. 11.16. The

equation system for element ® assumes the form then

25 25 a t; 2000

-25 50 -25 r; a (4)

a -25 25 t; 2000

Node 1 in the global numeration is node (1) in the local numeration in
element ®; therefore, only the first equation in (4) is taken into considera­
tion

25~ - 25I's =2000 . (5)

Once (3) is added to (5), an algebraic equation for node 1 is obtained in
global numeration

50~ - 50I's =2000 . (6)

• Node 2

Node 2 is shared by element CD and @. Node 2 in the global numeration is
also node (2) in the local numeration. Therefore, in the equation system
(2), second equation is taken into consideration

25T; - 25I's =a.
Equation system for element @ has the form

(7)

(8)

(9)

where [K 4
] is formulated in (6), Ex. 11.16, while {f4} in (14), Ex. 11.16.

Thus, the equation system (8) has the form

31,667 3,333 -25 1; {10000

3,333 31,667 -25 T;, = 10000 .

-25 -25 50 t: a
Node 2 in the global numeration is node (1) in the local numeration in

element @. In the equation system (9) only the first equation is taken into
consideration

31.6671; +3.333 T;, - 25I's =10000 . (10)

Once (7) and (10) are added together, the equation for node 2 is obtained
(in global numeration)

56.667T2 +3.3331; -50I's =10000. (11)
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• Node 3

Node 3 has a local number (2) in element @. The second equation in the
system (9) has the form

3.3331; + 31.6671; - 25~ = 10000 . (12)

An equation system for element @, to which node 3 belongs, has the
form

(13)

(14)

where [K 3] is expressed in (4), Ex. 11.16, while if3}= [O,O,O]T. The equa­
tion system (13) assumes the form

25 -25 0 {~} O}
-25 50 -25 ~ = 0 .

o -25 25 1; 0

Only the third equation from above (14) is allowed for, since node 3 has
the local number (3)

251; - 25~ = 0 . (15)

Once corresponding sides of (12) and (15) are added, a global equation for
node 3 is obtained

3.3331; +56.6671; -50~ =10000 . (16)

• Node 4

Node 4 is shared by element ® and @. In the equation system for element
®, the third equation is taken into consideration, since the analyzed node
has a local number (3) ®. From (4), one obtains

25~ - 25T, = 2000 . (17)

In the equation system for element @, the first equation is taken into
consideration, since node 4 has the local number equal to (1) in element @.
From (14) one has

25~ -25~ =0. (18)

Once corresponding sides of (17) and (18) are added, one obtains a global
equation for node 4

50~ - 50~ = 2000 . (19)
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• Node 5

This is a node common to all elements. In the equation system (2) for ele­
ment CD , the third equation is accounted for, since the analyzed node has a

local number (3) in element CD. From (2), one gets

-251; - 25T2 + 50~ == O.

In (4) for element (2), the second equation is considered

-251; - 25~ + 50~ == 0,

(20)

(21)

since node 5 has the local number (2) in this element. In the equation sys­
tem for element @, the second equation is accounted for

-25 I; - 25T4 + 50~ == 0, (22)

since node 5 has the local number (2) in this element. In the equation sys­
tem (9) for element @, the third equation is accounted for

-25T; - 25 I; + 50~ == 0, (23)

since node 5 has the local number (3) in element ®. Once corresponding
sides of (20), (21), (22) and (23) are added, one has

-501;-50T;-50I;-50~+200~==0. (24)

Equations (6), (11), (16), (19) and (24) form a global equation system.

501; - 50~ == 2000

56.66671; +3.3331; -50~ ==10000

3.333T; + 56.667I; -50~ ==10000 (25)

50Tt - 50~ == 2000

-501; -501; -50I; -50~ +200~ ==0.

Equation system (25) and system (16) from Ex. 11.16 are the same. It is
clear, therefore, that regardless of how the global equation system is cre­
ated, it always remains the same.
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Exercise 11.18Determining Temperature Distribution
by Means of FEM in an Infinitely Long Rod with Square
Cross-Section, in which Volumetric Heat Sources Operate

Determine steady-state temperature distribution in a square region whose
side is 2a =2 em in length. Assume that the thermal conductivity of a me-
dium is A = 42 W/(m·K). Heat source power per unit of volume is
qv= 1.107 W/m3

• Boundary conditions are illustrated in Fig.ll.25. Assume
the following values for the calculation: qB = 200000 W/m2

, a = 60

W/(m2·K), T =20°C, T =100°C.cz s

Solution

Boundary conditions can be written in the following way:

_}., aTI =.a qB'
x x=o

-A aT =a(T -TI )a cz y=O'
Y y=O

(1)

(2)

(3)

(4)_}., aT =0.
8y y=2a

Temperature distribution will be determined by means of FEM with a
division depicted in Fig.ll.25. Local and global node numeration is pre­
sented in Table 11.3.

Conductivity matrix (rigidity) in the case of the square element and con­
stant thermal conductivity, when Ax = A

y
= A, has the following form ((6),

Ex. 11.11).
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a

a

y
7 8 9

<4) <3) <4) (3)c-r.
CD CD

5
4 <1> (2~ <1) <2) 6

<4) <3) <4) <3>

CD tifl CD A

<1) <2) <I) <2) x

I 2 3
a a

•t.;
Fig. 11.25.Diagram of the analyzed region, which illustrates boundary conditions
and division of an area into finite elements

Table 11.3.Local and global node numeration

Element No. Local Node No. Global Node No.

CD

®

(1)
(2)
(3)
(4)
(1)
(2)
(3)
(4)
(1)
(2)

(3)

(4)

(1)
(2)

(3)

1
2
5
4

2
3
6
5

4
5
8
7

5
6
9
8
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4 -1 -2 -1

[KeJ=A -1 4 -1 -2 (5)
c 6 -2 -1 4 -1

-1 -2 -1 4

Next, matrixes of conductivity (stiffness) [K
c

e
] will be written for indi­

vidual elements. Global node numeration will be used.

• Element CD

• Element ®

• Element @

• Element ®

1 2 5 4

4 -1 -2 -1 1

[K~ J = 7 -1 4 -1 -2 2,
-2 -1 4 -1 5

-1 -2 -1 4 4

2 3 6 5

4 -1 -2 -1 2

[K~ J = 7 -1 4 -1 -2 3 ,
-2 -1 4 -1 6

-1 -2 -1 4 5

4 5 8 7

4 -1 -2 -1 4

[K:J=7 -1 4 -1 -2 5,
-2 -1 4 -1 8

-1 -2 -1 4 7

5 6 9 8

4 -1 -2 -1 5

[K:J=7 -1 4 -1 -2 6,
-2 -1 4 -1 9

-1 -2 -1 4 8

(6)

(7)

(8)

(9)

Global conductivity matrix (stiffness) [K
c

] results from the summation
of matrixes for individual elements. By doing so, one should also pay at­
tention to coefficients with the same global indexes, as they should be



278 11 Solving Steady-State Heat Conduction Problems

summated as well. Coefficients of the global conductivity matrix (index c
was not included in the designations of coefficients KC,ij in order to shorten
the notation) are as follow:

K11==K1
1
1==28, K12==KJ2 ==-7, K14==K1

1
4==-7, K15==KJ5 ==-14,

K21==K~1 ==-7, K22==K~2 +K;2 ==7(4+4)==56, K23==K;3 ==-7,

K24 == K~4 == -14, K25 == K~5 + K;5 == 7(-1 + (-1)) == -14,

K26 == K;6 == -14, K32 == K~2 == -7, K33== K~3 == 28, K35 == K~5 == -14,

K36==K~6 ==-7, K41==K~1 ==-7, K42==K~2 ==-14,

K44 == K~4 + K~4 == 56, K45 == K~5 + K~5 == -7 + (-7) == -14,

K47 ==K~7 ==-7, K48==K~8 ==-14,

K48==K~8 ==-14, K51==K~l ==-14, K52==K~2 +K~ ==-7+(-7)==-14,

K53==Kff3 ==-14, K54==K~4 +K;4 ==-7+(-7)==-14,

K55==K~5 +Kff5 +K;5 +K;5 ==28+28+28+28==112,

K56==Kff6 +K;6 ==-7+(-7)==-14, K57==K;7 ==-14,

K58== K:8+ K;8 == -7 + (-7) == -14, K59 == K;9 == -14, K62 == K~2 == -14,

K63==K~3 ==-7, K65==K~5 +K:5==-7+(-7)==-14,

K66 == K~6 + K:6 == 28+ 28 == 56,

K68==K:8==-14, K69==K:9==-7, K74==K~4 ==-7, K75==K~5 ==-14,

K77 == K~7 == 28,

K78 == K~8 == -7, K84 == K:4 == -14, K85 == K:5+K~ == -7 + (-7) == -14,

K86 == K~ == -14,

K87 == K:7 == -7, K88 == K:8+ K:8== 28+ 28 == 56, K89 == K:9 == -7,

K95 == K:5 == -14, K96 == K:6 == -7, K98 == K:8 == -7, K99 == K:9 == 28.

The remaining coefficients equal zero. Global conductivity matrix [K
c

] has
the form
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28 -7 0 -7 -14 0 0 0 0

-7 56 -7 -14 -14 -14 0 0 0

0 -7 28 0 -14 -7 0 0 0

-7 -14 0 56 -14 0 -7 -14 0

[Kc ] = -14 -14 -14 -14 112 -14 -14 -14 -14 . (10)

0 -14 -7 0 -14 56 0 -14 -7

0 0 0 -7 -14 0 28 -7 0

0 0 0 -14 -14 -14 -7 56 -7

0 0 0 0 -14 -7 0 -7 28

Next, matrix [Ka] is determined

[x,]= [ K~ ]+[ K~ ] ' (11)

since heat transfer takes place on the lateral surface 1-2 of element CD and on

2-3 of element @. Matrix [K~] will be calculated using (7), from Ex. 11.12

1 2 5 4 1 2 5 4
2 1 0 o 1 2 1 0 o 1

[K~J = ai2
1 2 0 o 2 60·0.01 1 2 0 o 2 (12)

= =
0 0 0 o 5 6 0 0 0 o 5

0 0 0 o 4 0 0 0 o 4

1 2 5 4
0.2 0.1 0 o 1

0.1 0.2 0 o 2

0 0 0 o 5

0 0 0 o 4

Matrix [K~] will be calculated in a similar way.

2 3 6 5 2 3 6 5

2 1 0 o 2 0.2 0.1 0 o 2

[K~J = ai2
1 2 0 o 3 0.1 0.2 0 o 3 (13)

0 0 0 o 6 0 0 0 o 6

0 0 0 o 5 0 0 0 o 5
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Once matrix coefficients [K~] and [K~], with the same global indexes,

are added together, the following is obtained (index a in K a .. was omitted
,IJ

in order to simplify the notation)

K ll =K I\ =0.2; K l2 =Kl
1
2 =0.1; K 21 =K~l =0.1;

K 22 =K~2 + K~2 =0.2+ 0.2 =0.4; K 23 =K~3 =0.1;

K 32 =K:2 =0.1; K 33 =K:3 =0.2.

Matrix [Kal, which results from boundary conditions on the boundary 1­
-2-3, has the form

0.2 0.1 0 0 0 0 0 0 0

0.1 0.4 0.1 0 0 0 0 0 0

o 0.1 0.2 0 0 0 0 0 0

000000000

[Ka ]= 0 0 0 0 0 0 0 0 0 W/(m·K). (14)

000000000

000000000

000000000

000000000

Matrix [K] is obtained as a result of adding matrix [KJ formulated in
(10) and matrix [Kal formulated in (14)

28.2

-6.9

o
-7

[K] = -14

o
o
o
o

-6,9

56.4

-6.9

-14

-14

-14

o
o
o

o -7 -14 0 0

-6.9 -14 -14 -14 0

28.2 0 -14 -7 0

o 56 -14 0 -7

-14 -14 112 -14 -14

-7 0 -14 56 0

o -7 -14 0 28

o -14 -14 -14 -7

o 0 -14 -7 0

o
o
o

-14

-14

-14

-7
56

-7

o
o
o
o

-14 W (15)
mK

-7
o
-7
28

Next, one calculates the vectors on the right-hand-side of (31) from Ex.
11.10. Vector {fQe} is formulated in (3) from Ex. 11.13; it assumes the fol­
lowing form for the individual elements:
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1 1

• 2 1 2
{fJ} = qv: 1 5 W/m,

1 4

1 4

2 1 5
{f~} =qv: 1 8 W/m,

1 7

1 2

{fg}=Qv:
2

~ ~ W/m,

1 5

1 5

• 2 1 6
{f~} = qv: 1 9 W/m.

1 8

(16)

Global vector {fQ} is obtained as a result of summing up the elements of
vectors with the same global numbers.

1 250 1

2 500 2

1 250 3

• 2 2 500 4

{f
Q

} =qv; 4 1000 5 W/m. (17)

2 500 6

1 250 7

2 500 8

1 250 9

Vector {fa} will be calculated in compliance with (2) from Ex. 11.14.
Allowing for the fact that convection heat transfer is assigned on the sur­
face 1-2 of element CD and on the surface 2-3 of element @, vectors {fal

}

and {fa2
} have the form

1 1 6 1

1 2 6 2

0 0
Wlm,

0 0

1 2 6 2

1 3 6 3 W/m.=
0 0

0 0

(18)

(19)

As result of summing up the elements of vectors (18) and (19), with the
same global numbers, one obtains
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6

12

6

o
{fa} = 0

o
o
o
o

1

2

3

4

5 W/m.

6

7

8

9

(20)

Heat flux qB is assigned on surfaces 7-4 ( 4)-(1») and 4-1 ( 4)-(1»), of

the element ® and CD, respectively. Vectors {tI} and {t2} calculated ac-
q q

cording to (10) from Ex. 11.14 are

1 1000 1

{In = q;a 0 0
W/m,

0 0

1 1000 4

1 1000 4

{In = 4;a 0 0
W/m.a a

1 1000 7

(21)

(22)

Once these vectors are summed up (one should pay attention to the fact
that the elements with the same global numbers should be summed up),
one has

1000 1

0 2

0 3

2000 4

{J~} = 0 5 W/m. (23)

0 6
1000 7
a 8

a 9

The sum of vectors
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{f} ={fQ } +{fa} + {~} (24)

iso
250 6 1000 1256 1

500 12 0 512 2

250 6 0 256 3
500 0 2000 2500 4

{f}== 1000 + 0 + 0 == 1000 5 W/m. (25)

500 0 0 500 6

250 0 1000 1250 7
500 0 0 500 8

250 0 0 250 9

Global equation system [K] {T} = if} assumes the form

28.2 -6.9 0 -7 -14 0 0 0 0 t; 1256

-6.9 56.4 -6.9 -14 -14 -14 0 0 0 t; 512

0 -6.9 28.2 0 -14 -7 0 0 0 r, 256

-7 -14 0 56 -14 0 -7 -14 0 t; 2500

-14 -14 -14 -14 112 -14 -14 -14 -14 t; 1000 .(26)

0 -14 -7 0 -14 56 0 -14 -7 t; 500

0 0 0 -7 -14 0 28 -7 0 1:, 1250

0 0 0 -14 -14 -14 -7 56 -7 t; 500

0 0 0 0 -14 -7 0 -7 28 t; 250

The equation system (26) will be transformed with the boundary condition
(2), from which it follows that T

3
= T

6
= T

9
= lOOoe

28.2 -6.9 0 -7 -14 0 0 0 0 t; 1256
-6.9 56.4 0 -14 -14 0 0 0 0 t; 2602

0 0 1 0 0 0 0 0 0 t; 100

-7 -14 0 56 -14 0 -7 -14 0 t, 2500
-14 -14 0 -14 112 0 -14 -14 0 t; 5200 (27)

0 0 0 0 0 1 0 0 0 t; 100
0 0 0 -7 -14 0 28 -7 0 1:, 1250
0 0 0 -14 -14 0 -7 56 0 t; 2600
0 0 0 0 0 0 0 0 1 t; 100
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Global equation system (27) was solved using the Gauss elimination
method and thefollowing was obtained:

(28)

1; =180.20° C,

t, =240.68°C,

~ =100°C,

Tg =182.21°C,

t; =238.63°C,

1; =100°C,

r. =181.80°C,

1; =241.27°C,

~ =100°C.

Temperature distribution was also calculated by means of ANSYS pro­
gram, while the region was divided into 2500 elements. The following
temperatures wereobtained for nodes, whichcorrespond to nodes 1-9:

T, =238.51°C,

1; =100°C,

t; =181.67°C,

1; =241.09°C,

~ =100°C.

1; =180.15°C,

t; =240.53°C,

T, =100°C,

Tg =182.08°C,

(29)

The isotherm map is shown in Fig. 11.26.

I II (J F E D C B A

I

ANSYZ 5.5.3
OCT 6 2000
16: 28: 13
NODAL SOLUTION
STEP:}

SUB =1
TIME""1
TEM:P (AYG)

RSYS..O
PouTerGraphi.cs
EFACET"-'1
AVRES=Mat
:5mI ;;100
SMX ",241. 092
A =107.838
B =123. SIS
C =139.192
D =154.869
E =170.546
F ;;186.223
G =201. 899
H =217.576
I ""233.253

Fig. 11.26. Calculation results; calculations conducted by means of the ANSYS
program
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Exercise 11.19 Determining Two-Dimensional
Temperature Distribution in a Straight Fin with Constant
Thickness by Means of FEM

Determine temperature distribution in a fin by means of FEM. Assume the
following values from Ex. 7.3 for the calculation: a = 0.003 m, A =50
W/(m ·K), a = 100 W/(m2·K), T; =95°C, Tcz =20°C. Determine heat flow
at the fin base and fin efficiency.

i:
Fig. 11.27. A fin division into finite elements

y
B2 2 4 6 8 10 12 14 16

<4) <3> (4) (3) (4) <3) <4) <3) <4) <3) <4) (3) <4) <3) <4> (3)

a CD Q) CD @ CD ® (i) ®
0) <2) (I) (2) <I) (2) (I) (2) <I) <2) <r> <2) <r> <2> <I) <2)

B1 1 3 5 \a 7 9 11 13 15 x
a •

Solution

Temperature distribution will be determined at the mid-point of the fin due
to the symmetry of temperature field with respect to axis x. Table 11.4
contains local and global node numeration. Method II, discussed in Ex.
11.15, will be employed in the construction of the global equation system;
the method is based on the summation of weighted residuals for elements
with a common node. Due to the fact that the equations for individual
nodes have similar structure, the equation for node three will be created
and, subsequently, applied to nodes 1,5,7,9,11 and 13, while the equa­
tion for node 4 will be applied to nodes 2, 6, 8, 10, 12 and 14. Separate
equations will be created for nodes 15 and 16.

(1)

• Node 3

Node 3 is shared by elements ® and ® (Fig. 11.27). Thermal conduction
matrixes [K

c
2] and [K

c

3
] will be calculated according to (6) from Ex. 11.11,

while matrixes [K a
2

] and [K a
3

] according to (7) from Ex. 11.12. Matrixes
[K

c

2
] and [Ka

2
] are expressed as follow:

(1) (2) (3) (4)
4 -1 -2 -1 (1)

[K;]=A
6

-1 4 -1 -2 (2)
-2 -1 4 -1 (3)'

-1 -2 -1 4 (4)
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Table 11.4. Local and global node numeration

Element No. Local Node No. Global Node No.
(1) B1

CD (2) 1
(3) 2

(4) B2

(1) 1

®
(2) 3
(3) 4

(4) 2

(1) 3

®
(2) 5
(3) 6

(4) 4

(1) 5

@ (2) 7
(3) 8

(4) 6

(1) 7

@ (2) 9
(3) 10

(4) 8

(1) 9

@ (2) 11
(3) 12

(4) 10

(1) 11

(j) (2) 13
(3) 14

(4) 12

(1) 13

®
(2) 15
(3) 16

14

(1) (2) (3) (4)
2 1 0 0 (1)

[K~J= a; 1 2 0 0 (2) (2)

0 0 0 0 (3) .

0 0 0 o (4)
Stiffness matrix [K] is obtained by way of summing up matrices (1) and

(2) (coefficients with the same indexes are added up)
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(1) (2) (3) (4)
2A aa A aa A A (1)-+- --+- --
3 3 6 6 3 6
A aa 2A aa A A (2) .--+- -+- --

[K
2

] =[K; ] +[ K~ ] = 6 6 3 3 6 3
A A 2A A

-- -- - (3)
3 6 3 6
A A A 2A

(4)-- -- --
6 3 6 3

Matrixes [K
c

3
] and [Ka

3
] are calculated in a similar way.

(1) (2) (3) (4)
4 -1 -2 -1 (1)

[ 3J=-1 -1 4 -1 -2 (2)
x; ( ) ,6 -2 -1 4 -1 3

-1 -2 -1 4 (4)

(1)(2) (3) (4)
2 1 0 0 (1)

[
K 3 J=aa 1200 (2),

a 6 0 0 0 0 (3)

o 0 0 0 (4)

Rigidity matrix for element @ is as follows:

(1) (2) (3) (4)
2.,1 aa A aa A A (1)-+- --+- --
3 3 6 6 3 6
A aa 2.,1 aa A A (2)--+- -+- --

[K
3

] = [ K; ] +[ K~J= 6 6 3 3 6 3
A A 2A A

-- -- - (3)
3 6 3 6
A A A 2A

(4)-- -- --
6 3 6 3

(3)

(4)

(5)

(6)

Next, vectors ifa
2

} and ifa
3

} will be determined. According to (7) from
Ex. 11.14, one has
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1 (1) a~za/2 (1)

{f;} = a~za 1 (2) a~za/2 (2)
0 (3) 0 (3) ,

0 (4) 0 (4)
a~za/2 (1)

{f;}=
a~za/2 (2)

0 (3) .

0 (4)

(7)

(8)

Node 3, i.e. the node with global number 3, corresponds to local node
(2) in element ® and to node (1) in element ®. Therefore, in the equation
system for element ®

a~za/2

a~za/2

o
o

(9)

(10)

(11)

only the second equation is taken into consideration; it has the form

~

[
_ l + aa 2l + aa _ l _ l] 1; == a~za

6 6' 3 3' 6' 3 T4 2'
T2

(
_ A + aa)r. +(2A + aa)T _ AT _ AT == a~za .
66 133 3 6 4 3 22

In the equation system for element ®

1; a~za/2

[ K 3 ] t, aT;;za/2 (12)
~ 0
T4 0

only the first equation is taken into consideration; it has the form

1;

[2: + ~a, _ ~ + a
6a

, ~,_ ~] ~ a~za (13)

T4
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(
2A+aaJT +(_ A + aaJr _ AT _ AT = a~za . (14)
3 3 3 6 6 5 36 64 2

Once (11) and (14) are added, the equation for node 3 is obtained

( - ~ + ~aJ~ - ~ 1; + 2(2: + ~a )1; -~ T4 +( - ~ + a
6a

JTs - ~ t; = (15)
=a~za .

Analogically, one can write an equation for node 1

(
_ A + aaJT: _ AT: +2(2A + aa)r _ AT +(_ A + aa)T _ AT =

6 6 b 3 b 3 3 1 3 2 6 6 3 3 4 (16)

=a~za ,

which results in

2(2A + aaJr _ AT +(_ A + aaJr _ AT =(A - aaJT: +aT a. (17)
3 3 1 3 2 6 6 3 3 4 2 6 b cz

• Nodes 5, 7, 9, 11, 13

Equation (15) can be applied to nodes that lie on the surface, which re-
mains in contact with the medium; that excludes, however, node 15

(
_ A + aaJr _ AT + 2(2A + aa)r _ A t: +(_ A + aa)r - (18)

6 6 1-2 3 1-1 3 3 1 3 1+1 6 6 1+2

A
--1;+3 =aa~z; i=3, 5, 7, 9, 11, 13.

3

• Node 15

The equation for node 15 is obtained in a similar way as the equation for
node 3 in element ®. Analogically to (10), one can obtain the equation for
node 15

~3

[_ A + aa 2A aa A
- ~] ~5 a~za-+-

6 6' 33' 6 ' ~6 2

~4

(19)

from which, one obtains

(20)
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• Node 4

Convection heat transfer does not occure on the surface of elements (V and
®. The algebraic equation system for element (V has the form

t;

[K;] T; =0, (21)
t,
1;

where [K
c

2
] is formulated in (1).

The equation for node 4 (the third equation in the system (21)) has the
form

A
-[-2 -1 4 -1]6 ' , , (22)

_ 2 1: - 2 T + 22 T _ 2 T = 0 .
3

16 3
3

46 2

The equation system for element ® has the form

1;

[K;] t; =0,
t;
t,

(23)

(24)

where [K
c

2
] is formulated in (4).

The equation for node 4 (the fourth equation in the system (24)) has the
form

1;

A[-1 -2 -1 4] t; = 0 ,
6 ' , , ~

t;
from which, one obtains

(25)

(26)
A A A 2A

--T, --1'. --T +-T =0.
6

33 56 6
3

4

Once (23) and (26) are added together, an algebraic equation (heat bal­
ance) for node 4 is obtained
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_AT. _ AT _ AT + 4A T _ AT. _ AT = 0 . (27)
3 1

6
23 3 3

43 56 6

Equation for node 2 can be written analogically (indexes are reduced by 2
and the boundary conditions are accounted for)

A A A 4A A A
--1', --1', --1'. +-T --T --T =o·

3 b 6 b 3 1 3 23 36 4 '

hence, one gets

A 4A A A A
--1'. +-T --T --T =-1', .

3 1 3233642 b

(28)

(29)

(31)

• Nodes 6, 8, 10, 12, 14

One can write a general equation for nodes 4, 6, 8, 10, 12 and 14 on the
basis of (27)

_AT. _AT. _AT. +4A T_ AT. _AT =0
3 1-3 6 1-2 3 1-1 3 I 3 1+1 6 1+2' (30)

i =4, 6, 8, 10, 12, 14.

The equation system for element ® has the form

~3

[ K 2 ] 1;5 = 0
C T: '

16

~4
since [K

e

8
] = [K

e

2
] . [K

e

2
] is formulated in (1).

• Node 16

The equation for node 16 (the third equation in the system (31)) has the
form

hence, one has

~3

A[_2 -1 4 -1] 1;5 =0,
6 ' " ~6

~4

(32)

(33)_AT. _ AT. + 2A T. _ AT. = 0
3 13 6 15 3 16 6 14 •

The equation system made of (17), (18), (20), (29), (30) and (33) defines
node temperature distribution. Such system has the form



(34)

(35)
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2(2.,,1, + aaJr. _ AT +(_ A + aaJT _ AT ==(.,,1, - aaJ~ +aT a
3 3 1 3 2 6 6 3 3 4 2 6 b cz'

(
_ A +aaJT _AT +2(2A+aaJT_ AT +(_A+aaJT _

6 6 t-: 3 z-1 3 3 z 3 1+1 6 6 1+2

- A T;+3 =aaT;,z' i =3,5, 7, 9, 11, 13,
3

(
_ A + aaJr. +(2.,,1, + aaJT _ AT _ AT = aT;,za

6 6 13 3 3 15 6 16 3 14 2

_ A I. + 4AT _ AT _ AT = A I.
3 1 3 2 3 3 6 4 2 b'

A A A 4.,,1, A A
--T 3 --T 2 --T 1+-T --T I-- Tz'+2 ==0,3 z- 6 z- 3 z- 3 z 3 1+ 6

i == 4,6, 8, 10, 12, 14
A A 2.,,1, A

--T13 - - 1;.5 + -1;.6 - - 1;.4 == 0.
3 6 3 6

The equation system (34) will be solved using the Gauss-Seidel method;
due to this reason, it will be written in the form

1; = 1 .[ 21; + (1- Bi)1; + 2~ + (3- Bi)1;, + 6BiT;,z ]
8+4Bz

T; = 8+~Bi[(I-Bi)T;-2 +2T;~, +21;+1 +(3-Bi)1;+2 +21;+3 +6Bi1:J, (35)

i == 3, 5, 7, 9, 11, 13

1;5 =4 +1
2BJ

(1- Bi)1;3 + 21;4 + 1;6 + 3BiT;,zJ

1
1; ==-(21;. +21; +~ +3~)

8
1

1;=g(2T;-3 + T;-2 + 2T;_, + 2T;+, + T;+2)' i =4, 6, 8,10,12,14

1
1;.6 == -(21;.3 + 1;.4 + 1;.5)'

4

where Bi = 001A is the Biot number.
This system will be solved using the same data that was given in Ex.7.3:

a = 0.003m, A = 50 W/(m·K), a = 100 W/(m
2·K), T; = 95°C, Tcz = 20°C,

Bi = OO/A = (100·0.003)/50 =0.006. If we assume that calculation toler­
ance 8 = 0.00001 K in Gauss-Seidel method is the solution to system (35),
we will obtain the results, which are shown in Table 11.5.
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Table 11.5. Temperature in control volume nodes shown in Fig. 11.27

91.88
92.09
89.34
89.55
87.22
87.42
85.50
85.70

Next, we will calculate heat flow

• a ( ar: ) a aTl
Q=2f -,1- dy=-2,1f- dy,

o ax x=o 0 ax x=o
(36)

where TI(x, y) stands for the temperature distribution in element CD, formu­
lated as

where,

N; =;(1- ~}
N~ =;, N~ = ~ (1-~).

Derivative aTI/ax is

ar l

== (ON: + oN~)T. + aN; T. + oN~ t:
ax ax ax b ax 1 ax 2'

where

(37)

(38)

(39)

aN: =-!(l-y],
ax a a

aN~ == -!'(l- y],
ax a a

(40)
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By substituting (40) into (39), one obtains

aT! 1; -~ ~-1;
-==--+--2-Y 'ax a a

while after substitution of (41) into (36) and integration, one has

. [ 1( )] ( 1; +t:JQ=-22 1;-1;,+"2 1;-1; =22 1;,--2- W/m.

(41)

(42)

Maximum heat flow given off by an isothermal fin with the base tem­
perature T, is

Qmax == 2· 8aa(~ - ~z) == 16aa(~ - ~z)· (43)

Fin efficiency is defined as

. 2A(r. - 1; +~)
Q b 2

'I - -- - ------- c, - 16aa(~ - ~z)

r._1;+T2

1 b 2

8Bi ~ -~z
(44)

where Bi = aa/A.
After substitution of the numerical values, one obtains

95- 91.90+92.14

== 1. 2 == 0.828 .
1] 8.0.006 95-20

(45)

As one can see, the determined fin efficiency differs from the value tl,=
0.887 obtained by means of the analytical formula (Ex. 7.3). Relative error
is at

!:!'1]= 1]-1]e .100%= 0.828-0.887 ·100%=-6.6%. (46)
'Ie 0.887

Rather large error ~1] arises from the approximation of medium tempera­
ture gradient within the width of fin thickness by means of difference quo­
tient

at =~}aTI dy=~(1;,_1;+1;J
ax x=o a 0 ax x=o a 2

with an accuracy of 1st order.

One should add that heat flow Q at the fin base can be also calculated

from formula
(47)
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where qb is the heat flux at the fin base. Aside from the given fin base

temperature, assigned at points B
1

and B
2

(Fig. 11.27), temperatures in
nodes 1 and 2 (global numeration) are known from the FEM calculations.

The equation system for element CD has the form

1;;

[K~J ~ ={~}, (48)

1;;

where ~} follows from the heat flux qb assigned at the fin-base. Because

qb is assigned on the side (4)-(1) of element CD, vector ~} has the form

then

qba/2
o
o

qba/2

The first equation in the system (48) has the form

1;;

,1[4 -1 -2 -1] 1;
6 1;

1;;
hence, we have

4A 1: _ A T _ 2A T _ A 1: = qba

6 b6 1 6 26 b 2·

Heat flux qb at point B1 determined from (51) is

. - A(r. _t; +2T2 J
qb - b •

a 3

The fourth equation in the system (49) has the form

1;;

A[_I -2 -I 4] t; =qba

6 1; ~'

t;
hence, we obtain

(49)

(50)

(51)

(52)

(53)



(54)

(55)

(56)
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_ AT. _ 2..1 T. _ AT + 4..1 T. = qba .
«: 6 16 2 «: 2

Heat flux qb at point B2 determined from (54) is

. - A(T _2~ + T2 J
qb - 1 b •

a 3

Arithmetic average of the heat flux in nodes B1 and B2 given by (52) and
(55) is

qb = ~ ( t; - ~ ~T
2J.

By substituting (56) into (47), (42) is obtained. Both methods for calculat­
ing heat flux give identical results.

In order to improve accuracy, fin efficiency will be calculated using a
different method.

Heat flow given off by the fin can be expressed in the following way:

Fin efficiency determined by means of FEM is

1]=-JL= 319.785 =0.888.
c, 360

(59)

Relative error from the determination of efficiency is

111] = 1] -1]e .100% = 0.888-0.887 .100% = 0.112%,
'Ie 0.887

This method, therefore, is much more accurate than the earlier presented

method in which Qis determined from (42).
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Exercise 11.20 Determining Two-Dimensional
Temperature Distribution by Means of FEM in a Straight
Fin with Constant Thickness (ANSYS Program)

Determine temperature distribution and efficiency of a fin presented in Fig.
11.28. For the calculation, adopt the values from Ex. 7.3: w = 0.003 m, 1 =
0.024m, a = 100 W/(m ·K)2, t; =95°C, t; =20°C, A =50 W/(m·K).
Calculate fin efficiency for cases a) and b) presented in Fig. 11.28, i.e.
when the fin tip is thermally insulated and heat transfer occurs at the tip.
Furthermore, for the case a) determine fin efficiency by means of the
analytical formula; make use of the results obtained in Ex. 7.3.

a) y
li'

b) y
w

o

7:'"7.....""

a

x

o

1:'"7....'"

(1

x

Fig. 11.28. Diagram of a fin with constant thickness: (a) fin tip thermally insulated,
(b) heat transfer occurs between the fin and surrounding at the tip

Solution

Calculations were carried out by means of the ANSYS program, used for
calculating by FEM. Half of the fin cross-section was divided into 288 ele­
ments. Temperature was calculated in 343 nodes (Fig. 11.29). In a case
when the fin tip is thermally insulated (Fig. 11.28a), temperatures of the tip
calculated by means of the analytical formulas are (Ex. 7.3)

T(O, 1) = 82.67°C T(w, 1) = 82.48°C.

Corresponding approximate temperatures obtained by means of FEM are

T(O, l) = 82.67°C T(w, l) = 82.49°C.
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....
x

(1)

y

Fig. 11.29. Division of the half of fin cross-section into finite elements

The results obtained by means of the analytical solution and FEM are in a
very good agreement.

Fin efficiency will be calculated from formula

Q
17=-·-,

c,
where Q is the fin-to-surroundings transferred heat flow, which is formu­

lated as

Q=2'Qxl w.x=o
(2)

In the case of the analytical solution, the mean heat flux at the fin base

qxL~o calculated by means of (7) from Ex. 7.3 is at qxL~o =53253 W/m
2

•

Therefore,

Q= 2·53253·0.003 = 319.52 W/m . (3)

Maximum heat flow Qmax' i.e. heat flow transferred by an isothermal fin

with fin base temperature T, is formulated as

e., =2al(~ -~z)=2.100·0.024(95-20)=360W/m. (4)

Fin efficiency calculated by means of the analytical solution is

17=-fL= 319.52 =0.8876.
Qmax 360

(5)

Heat flow at the fin base determined by means of FEM for the fin shown
in Fig. 11.28a is

Q=Qb =2·157.88=315.76 W/m.

Fin efficiency calculated by means of FEM is

17=-2-= 315.76 =0.8771.
Qmax 360

(6)

(7)
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and is very close to the value of 1] = 0.8876 obtained by means of the ana­
lytical solution.

One can specify the heat flow given off by the fin, if the heat flow trans­
ferred by the lateral fin surfaces is determined first.

I

Q=2 fa[T(w,y)- t; ]ely =319.5 W/m;
o

Next, efficiency 1] =0.8875 is obtained from (7) and is almost identical to
the one obtained from the analytical formula. It is evident, therefore, that
node temperatures are more accurately calculated in FEM than the bound­
ary heat flux.

a) MN b) lIN

A.

B

c

o

E----
F

G

H

I

ANSYS 5.5.3
OCT 29 2000
18~48:27

NODAL SOLUTION
SUB =1
TIME=1
TEMP (AVG)
RSYS=O
Power-Graphics
EFACET=l
AVRES=Mat,
3MN =82.49
SMX =95
A =83.185
IS =84.575
C =85.965
D =87.355
E =88.745
F =90.135
G =91. 525
H =92.915
I =94.305

B

c

D

E

F

(J

H

A.NSYS 5.5.3
OCT 29 2000
20:03:37
NODAL SOLUTION
STEP=!
SUB =1
TIME=1
TEl'-'tP (AVG)
P.3YS=0
POl\<JerGraphics
EFACET=1
AVRES=Mat
SMN=79.932
SMX =95
A =80.769
B =82.443
C =84.117
D =85.792
E =87.466
F =89.14
G=90.814
H =92.489
I =94.163

Fig. 11.30. Layout of isotherms in the fin cross-section: (a) thermally insulated fin
tip; T(O, l ) =82.67°C, T(w, l) =82.49°C; (b) heat transfer at the fin tip; T(O, l) =
so.n-c, T(w, l) = 79.93°C

Next, temperature distribution and fin efficiency were calculated, while
a consideration was given to a tip heat transfer. The layout of isotherms in
the fin cross-section is presented in Fig.ll.30b. As one can see, temperatures
T(O, I) = 80.11°C, T(w, I) = 79.93°C are slightly lower than they are in the

case when the fin tip is thermally insulated. Also the maximum flow Qmax

calculated from formula
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Qrnax =2a(l + w)(~ - ~z) =2 .100(0.024 + 0.003)(95 - 20) =405 Wlm

is larger due to the fin tip heat transfer. Heat flow at the fin base calculated

by means of FEM is at Q=o; =345.84 W/m. Fin efficiency, therefore, is

1] = jL = 345.84 = 0.8539 .
e., 405

The above value approximates the obtained value, while the heat transfer
at the fin tip is neglected (7). In spite of the fact that fin efficiency is low,
the fin-diffused heat flow is large, since the heat transfer takes place at the
fin tip.

Exercise 11.21 Determining Two-Dimensional
Temperature Distribution by Means of FEM in a
Hexagonal Fin with Constant Thickness (ANSYS Program)

Determine temperature distribution and fin efficiency by means of FEM. Fin
diagram, which results from plate fin division, is presented in Fig. 11.31. For
the calculation, assume the values from Ex. 6.20: thickness of the plate-fin
t =0.000115 m, d =0.00759 m, A = 165W/(m·K), a =40 W/(m

2·K); T; =
100°C; Tez = O°C. Compare calculated fin efficiency value with the values
obtained in Ex. 6.20.

Solution

Calculations were carried out by means of FEM and ANSYS programs.
The analyzed region was divided into 1377 elements (Fig. 11.32). Tem­
perature was determined in 2934 nodes. The layout of isotherms on the fin
surface is shown in Fig. 11.33. Note that temperature on the outer fin
boundary is non-uniform due to the irregular shape of the fin. Maximum
temperature on the outer boundary is Tmax = 93.162°C, while minimum
T

min
=90.379°C. Temperatures at characteristic points marked in Fig. 11.31

are, correspondingly: T
1

= 91.56°C, T2 = 90.47°C, T3 = 90.38°C,
T

4
= 100°C, T

5
= 100°C.

Fin efficiency will be calculated from formula

Q
17=-·-,c., (1)



(2)

(3)

Exercise 11.21 Temperature Distribution by Means of FEM 301

where c, is the heat flow transferred by the isothermal fin whose base

temperature is T
b
= 100oe; the heat flow is formulated as

Qmax =aAi(~ -J:z)'
while (Fig. 6.24, Ex. 6.20)

( ~d2)Ai =2 2AoAB + 4AaBC - 4 =2(2 .2.1 089.10-5 +

+ 4.5.6156.10-5
- 4.52452.10-5

) = 4.43·10-4 rrr'.

Maximum heat flow Qmax is at

Qmax =40.4.43.10-4
• (100- 0) =1.772 W.

4~02 mm
3

E
L E

N

21,38 mm

Fig. 11.31. Diagram of a conventional fin after plate-fin division

Fin-transferred heat flow Qcan be determined from formula

(4)

where Ai is the lateral area of the fin surface that exchanges heat with sur­

roundings, while Tsr is the average temperature of the fin surface formu­
lated as

fJ:dA IJ:r,e·Ae
T = _Az__ ~ _e=_l _

sr A. A.·
z z

(5)
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Fig. 11.32. Division of 1/8 of a fin cross-section into finite elements

A

B

c

ANSYS 5.5.3
NOV 7 2000
18 :45:44
NODAL SOL UTION

STEP=1
SUB =1

TIME=!
TEMP
SMN =90.379
SMX =100
A =90.913
B =91.982
C =9:3.051
D =94.12
E =95.189
F =96.258
G =97.327
H =98.396
I =99.465

Fig. 11.33. The layout of isotherms on the fin surface
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Temperature T, is the temperature of the fin outer surface, which is in con­
tact with surroundings. Temperature T is the average temperature of the
element's surface exposed to surroundings, while A

e
is the element's sur­

face area from the side exposed to surroundings. Symbol N, stands for the
number of elements, which the analyzed region was divided to.

Average temperature determined from (5) by means of the ANSYS pro-
gram measures T

sr
=93.80°C. Such method of determining fin-transferred

heat flow Qis more accurate than the method that uses formula

.. (dT)1Q=Qb =1rdt - A, - ,
dr r=d/2

(6)

since an accurate determination of A,(dT/dr) in FEM enforces the need to
divide the region into a very large number of elements.

Fin-transferred heat flow Q determined by means of (4) with the help

of the ANSYS program comes to

Q=1.6622 W.

It is a heat flow transferred by lateral fin surfaces. Fin efficiency is at

1] = -fL- = 1.6622 = 0.9380 .
«, 1.772

Calculated efficiency differs insignificantly from the efficiency of the
equivalent circular fin lJ

e
=0.9394 and from the fin efficiency determined

by means of the segment method, equal to tl, = 0.9373.

Exercise 11.22 Determining Axisymmetrical Temperature
Distribution in a Cylindrical and Conical Pin by Means of
FEM (ANSYS Program)

Determine temperature distribution in cylindrical and conical pins, shown
in Fig. 11.34, by means of FEM and with the use of the ANSYS program.
Pins of this kind are used in gas-fired cast-iron heating boilers with an aim
to increase the heat flow transferred from combustion gases to water. Pin
dimensions are given in Fig.11.34. Both pins are almost identical in vol­
ume. Assume the following values for the calculation: water temperature
T =75°C, temperature of combustion gases T =400°C. Thermal conduc-

w ~

tivity of the material from which the wall and pins are made of is A, =
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a) b)
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Fig. 11.34. Pinned heating surfaces: (a) cylindrical pin, (b) conical pin

48 W/(m·K). Heat transfer coefficients on the water and combustion gases
side are, respectively a

w
= 1000 W/(m2·K) and a

sp
= 80 W/(m2·K).

Draw the layout of isotherms in the longitudinal cross-section of the
pins and determine maximum temperatures. Also calculate pin-transferred
heat flows from combustion gases to a boiler wall by determining heat

flow at the base of the pins Qb for the coordinate z = 0.004 m. Which of

the pins ensures a larger flow of transferred heat when maximum tempera­
ture is decreased? Calculate temperature distribution and heat flux at the
base of the cylindrical pin by means of the formulas obtained when a radial
temperature drop is neglected.

Solution

Temperature in the cylindrical pin was determined in 3401 nodes when
longitudinal cross-section was divided into 3195 elements (Fig. 11.35a),
while in the conical pin in 3647 nodes when longitudinal cross-section was
divided into 3439 elements (Fig. 11.35b).

Maximum temperature of the cylindrical pin at Tw,max = 186.65°C is lar­
ger than the maximum temperature of the conical pin at Ts,max = 150.747°C
(Fig. 11.36). A lower maximum temperature of the conical pin is due to
the fact that the pin has a more advantageous shape, since the surface area
of the cross-section becomes larger as the heat flow, which is conducted
through the pin's cross-section increases too.
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a) b)

Fig. 11.35. Half of the pin's longitudinal cross-section divided into finite ele­
ments: (a) cylindrical pin, (b) conical pin

In the case of the cylindrical peg, constituent heat flux qz = -AiJT/8z is

much larger near the base than anywhere else and that contributes to a
large increase in pin temperature within this region. Following that, heat
flow at the pin base z = 0.004 m were calculated from formula

ANSYS 5.5.3
lJOV 13 2000
18: 50: 29
NODAL SOLUTION
STEP=l
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TIME>, 1
TEMP (AVG)
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POf4etGraphics
EFACET=1
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E =147.024
F ..155.83
G "'164.635
H =173.44
I =182.246
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B /' '~~. +-- ....,

b)ANSYS 5.5.3
1010V 13 2000
19:11:54
NODAL SOLtITION
STEP..l
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TIME"'l
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B =110.545
C ""115.90S
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G

x x A

Fig. 11.36. Layout of isotherms on the pin surface: (a) cylindrical pin, (b) conical
pin
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where 'b = 0.003 m for cylindrical pin, 'b = 0.004 m for conical pin and r
=0.0015 m.

For cylindrical pin o: = 8.892 W, while for conical pin o;=
8.456 W. As one can see, the shape of the conical pin is a very advanta­
geous, since in spite of the fact that the flow of transferred heat is almost
the same, the temperature at the tip is much lower than it is at the tip of the
cylindrical pin. Temperature of the cylindrical pin can be approximately
calculated from the formula below (while disregarding radius at the curves
and radial temperature drop):

( )
_ (_ ) cosh [ m(z-L-0.004)J

Tz-T:p+~ T:p ,
coshmL

where T, is an average temperature at the peg base determined by means of
FEM. This temperature measures approximately T, ~ 118.469°C. Parame­
ter m formulated as

m=J4asp
Ad '

where d is the peg's diameter, measures

4·80
m== ==33.33(3)l/m.

48 ·0.006

Therefore, the tip temperature of the cylindrical pin is

1
T(L + 0.004) =Tw max =400+ (118.469 -400) ( )

, cosh 33.3333·0.0225

= 182.548°C.

(2)

As one can see, this temperature is close to the temperature Tw,max =
186.65°C obtained by means of FEM. Heat flow at the pin base can be
calculated from formula

Q=_ Jrd
2

AaT =-A Jrd
2

m(I;,_I;p)tghmL=_48JrO.~062 x

4 8z z=0.004 4 (3)

x 33.3333(118.469 - 400)tgh(33.3333. 0.0225) == 8.0893 W.

The obtained value approximates the value determined by means of FEM,

which is equal to o.. = 8.892 W. However, from the calculations carried

out with the use of FEM, it is clear that pin-base-temperature is higher than
the pin-free wall temperature from the combustion-gases-side, i.e. wall te­
mperature for z = 0.004 m at a significant distance from the pin axis for,
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e.g. r > 2d. Due to the application of FEM, one can use the actual dimen­
sions of the pins shape in the calculation, e.g. the curved edges or the two­
dimensional character of the temperature field in the pin and the wall, to
which the pin is attached.
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12 Finite Element Balance Method and Boundary
Element Method

In this chapter, the finite element balance method (FEBM) and boundary
element method (BEM) are discussed in depth. Also examples are given to
demonstrate how two-dimensional steady-state temperature distributions
can be determined using FEBM and BEM. The obtained results are com­
pared with the results from FEM calculations, which were carried out by
means of the ANSYS program with a highly dense finite element mesh.

Exercise 12.1 Finite Element Balance Method

Describe finite element balance method.

Solution

Transient heat conduction phenomenon can be described by the following
equation

C(T)P(T)~~ =-\7·4,

where it is a heat flux vector formulated by Fourier Law

it=-A(T)VT.

(1)

(2)

Thermo-physical properties such as specific heat c, thermal conductivity
A and density p are known temperature functions. Numerical solution will
be carried out using finite element balance method. Balance methods,
based on finite elements, allow solving heat conduction problems in com­
plex shape bodies. They increasingly become ever more popular.

Lets consider finite volume V with a boundary surface S. Heat balance
equation, which allows for the variability of thermo-physical properties
and which is integrated within volume ~ has the form



310 12 Finite Element Balance Method and Boundary Element Method

fC(T)p(T) aT dV = - fV' 'qdV .
v at v

(3)

By applying mean value theorem to the left-hand-side of (3), while theo­
rem of divergence to the right-hand-side, one obtains

Vc(f)p(f) dT =- fq ·ndS ,
dt s

(4)

where the upper dash stands for the appropriate mean value in the finite vol­
umeV.

For the purpose of simplification, finite element equations will be pre­
sented in two dimensions and in Cartesian coordinates. Equation (1) assumes
the following form:

C(T)p(T) aT =~[A(T) aT] +~[A(T) aT].at ax ax ay By
(5)

(6)

An arbitrarily selected region, in which the heat flow is analyzed, was
divided into triangular tri-nodal elements, marked by continuous lines (Fig.
12.1). Next, the center point of a triangle was connected with the center
points of sides. This is the way in which continuous lines define the
boundary of the entire region and of the individual elements, while broken
lines define the control volumes. Striped regions are the examples of three
control volumes. One of them is assigned to an internal node, while two to
boundary nodes. In this discretisation, broken lines approximate boundary
curves.

Two-dimensional mesh in finite volumes can be also created by means
of the Voronoi polynomials. This is when the broken lines that define con­
vex control volumes intersect continuous lines, which define the elements,
at right angles. One triangular element was evaluated; it is shown in
Fig.12.2. Integral equation similar to (5) can be written when the energy
preservation principle for finite volume V1aoc is applied. Equation (4) can
be written in the following form

[ }q.ndS+fq·ndS]=-~aocC(~)p(~)d~,
a 0 ~

where n is a normal unit vector directed to the outside of the element sur­
face ds, while q is heat flux

q=-"l(T)VT.
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Fig. 12.1. Irregular region divided
into triangular elements and finite
volumes

i=')

i=l

Fig. 12.2. Typical tri-nodal element with
an assumed local coordinate system

To solve (6), one is required to define the functions that interpolate tem­
perature T, thermal conductivity A, density p and specific heat c.

Linear function was selected for temperature interpolation within the
triangular element. Each element node has one degree of freedom, i.e. un-

known temperature T", Temperature at an arbitrary point with x, y coordi­

nates inside the element is formulated as follows:

(7)

Assuming that

(8)

one obtains

I;.e == a l + a2 • Xl + a3 • YI,

r;e == al + a2 • x3 + a3 •Y3 •

(9)

Once (9) are solved with respect to at' a2 and a3 , one obtains

al = 2~[(X2Y3 -X3Y2)~e +(X3YI-X1Y3)T2
e+ (X1Y2 -X2Yl)J;e],

a2=2~[(Y2 - Y3)~e +(Y3 - Yl)T; +(Yl - Y2)J;e],

(10)
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(10)

where

Yl
Y2 = elementsurface.

Y3

It is necessary to determine heat flux q in order to solve (6). We can
determine qin every element by summing up the components in x and y

direction

(11)

where i, j are versors in x and y direction. Interpolation function, present in
(6) and used for the approximation of variable q,has the form

4= [ -A(T") 2~ ((Y2 - Y3 )I;e + (Y3 - Yl vt; + (Yl - Y2 )T;e)}+

+[-A(Te)2~((X3 -x2)I;e +(xl-x3)1;e +(x2-xl)T;e)}.
(12)

Normal vectors Doc and Doa' which are needed for the calculation of inte­
grals in (6), are given by

On the basis of (12) and the local system of coordinates x, y showed in
Fig. 12.2, the integrals that appear in (6) canbe written in the form

fq·uds = [ qx'qy l [-Ya'Xa] ~ 2

1
2 ~X~ +Y~ ,

a Xa +Ya

14' tids =[qx,qy } [Yc,-xcl ~ 2

1
2 ~X; +Y; ·

o Xc + Yc

By substituting (12) into (13), one obtains

(13)
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}q ·nds =i(TJ[((Y2 - Y3)~e +(Y3 - Yl)J;e +(Yl - Y2)~e)lYa-
a 2A

- i(T,,) [((X3-X2)~e +(Xl-x3)T2
e+(X2-Xl)~e)lXa'

2A _ (14)

}q. nds = A (1;,) [((Y2 - Y3 )~e + (Y3 - Yl )T; + (Yl - Y2 )~e)l Yc-
o 2A

- i;~)[((X3 -X2)~e + (Xl -X3)J;e +(X2-Xl)~e)lxc,

where

Xl +X2X =--
a 2

Xl +X3
Xc = - - '

2

Y
= YI + Y2.

a 2'

Element 1-2-3 contributes to the energy balance equation written for the
entire finite volume, which surrounds node 1 when (14) is substituted into
(6) (Fig. 12.2).

Fig. 12.3.Finite volume that surrounds internal node n

In order to write the energy balance equation for the entire finite vol­
ume, which surrounds node n (Fig. 12.3), one should sumup the contribu­
tions made by all the elements, which contain node n. The energy balance
equation for finite volume around node n is written in agreement with the
standardized notations shown in Fig. 12.3.
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t8~i [(1; -J:){[1(J:)+1(T; ~J: )][(Yi+1 - Yn)(Yi +Yn)-

-(Xn-Xi+1)(Xi+xn)J-[1(Tn)+1(T;+I;J: )][(Yi+1 - Yn)(Yi+1 +Yn)-

-(Xn-Xi+1)(Xi+1+Xn) ]}+(T;+1 -J:){[1(J:)+1(T; ~J: )]x
x[(Yn - Yi)(Yi +Yn) - (Xi - Xn)( Xi +Xn)] - [1(J:) +1(T;+I; J: )] x

X[(Yn - Yi)(Yi+1 +Yn) - (Xi - Xn)(Xi+1+ Xn)] }]=

dT 1 M

=-c(J:)p(J:) d; 3~Ai'

(15)

where

1 [1 x
n

..A. =- det 1 x. y. .
1 2 1 1

1 Xi+1 Yi+l

If we write heat balance equations for all finite volumes (Fig. 12.1), we
obtain the system of N non-linear ordinary differential equations, whose
solution are the temperatures in nodes assigned to the corresponding finite
volumes. The number of equations equals the number N of finite volumes.
Initial condition determines initial temperature values in all nodes. In a
case when a direct problem is to be solved, the ordinary differential equa­
tion system can be solved, among others, by Runge-Kutta method. Finite
elements balance method can be also applied when solving inverse prob­
lems [4,8].

Exercise 12.2 Boundary Element Method

Describe how boundary element method is applied when solving steady­
state heat conduction problems.

Solution

In contrast to classical finite element method (FEM) , the analyzed region
is not divided into finite elements when using boundary element method
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(BEM)-only its boundaries [2, 3, 5, 6]. This is possible due to the trans­
formation of the analyzed differential heat conduction equation into the
equivalent integral boundary equation. BEM is especially useful for solv­
ing partial elliptical equations, which describe steady-state heat conduc­
tion, fluid flow and potential distribution in an electrostatic field. In order
to solve the boundary problem, the boundaries of the region are divided
into elements, as it is done in FEM. Next, the integrals, which results from
the division, are approximately calculated. The number of elements in
BEM is, therefore, much lower than it is in FEM. The drawback of BEM is
that it is necessary to determine the so-called fundamental solution and that
is something that one is able to do for only a limited number of phenom­
ena. BEM will be discussed in greater detail using the example given be­
low, in which we determine two-dimensional steady-state Laplace equa­
tion

(1)

where u(x, y) == T(x, y) is temperature in region R shown in Fig. 12.4.

tuls

YL:
Fig. 12.4. Division of a boundary into finite elements in a two-dimensional region

Temperature uses) is assigned on one part of the boundary designated as su'
while heat flux iJs(s) is assigned on part Sq

(2)

(3)

where q(s)=iJ(S)/A.
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A new function veX, y) is introduced in the boundary element method; it
is continuous and differentiable in the region R confined by curve s. On the
basis of the divergence theorem applied to vector field uVv, one has

4uVv.ds=fV.(uVv)dxdy= f [uV2v+(Vu).(Vv)] dxdy. (4)
R R

From the same theorem of divergence applied to vVu, one has

4 vVu ·ds = fV ·(vVu )dxdy = f [vV2u +(Vv). (Vu)] dxdy. (5)
R R

By subtracting sides (5) from (4), one obtains

f(uV2V-VV2
U )dxdy = f(uVv-vVu ).ds.

R

(6)

Equation (4) is usually defined as the Second Green Theorem. Furthermore,
taking into account the following relations

av
Vv ds == \Iv· nds == -ds (7)an

and

au
\lu -ds =\lu -tids=-dsan

Equation (6) can be transformed into a form

(8)

(9)

Equation (9) is used in BEM. In order to eliminate the surface integral in
(9), one assumes that function v(x, y) satisfies Laplace equation in an infi­
nite three-dimensional space Roo or in an infinite two-dimensional plane.

A unit source is assumed at (Xi, Yi) coordinate point. Function v(x, y)
should satisfy, therefore, equation

(10)

where J is the Dirac function, which has the following properties

s = 0, gdy X=f:.Xi i Y =f:. Yi'
Ji ~oo, gdy X=Xi 1 Y =YP (11)

fJidxdy =1.
R
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In BEM function v (x, y) is called the fundamental solution. It can be de­
termined in the similar way temperature field around a linear or point heat
source (Chap. 25). Laplace equation V v= 0 has the form

_1~(rm dV]==o, (12)
r" dr dr

where m = 1 for the two-dimensional problem and m = 2 for the three­
dimensional problem. Symbol r is the distance of a given point from a heat
source:

r=~(x-xY+(y-yY .

Solution of (12) has the form

1
v == Cln- + C1 dla m == 1,

r

c
v == - + C1 dla m == 2 .

r

(13)

(14)

Once (12) is integrated twice (after it is multiplied by rm
) , the solutions

(13) and (14) are obtained. For the fundamental solution, one assumes that
C1 =O. Constant C is determined on the basis of the third property of the
Dirac function noted in (11). By applying the divergence theorem to (10),
one has

JV 2vdV == - J8(x-xi 'Y- Yi )dV == - 1,
Rs Rs

(15)

m==l

r

linear heat source (xi,YD

Fig. 12.5. Linear heat source in an infinite space (m = 1)
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where RB is the region around the heat source. The outer surface of this re­
gion is SB.

Constant C will be determined for the two-dimensional problem (Fig.
12.5), in which the integration region is a cylinder with radius 8 and height
L = 1 m. Once the theorem of divergence is applied to the first integral in
(15), one obtains

fV2VdV= f(Vv).ndS= fav dS= avl s..
Re s, s, an ar rve

By substituting (16) into (15), one obtains

S avl =-1e ,ar r=c

where
S; =2:r8.

Once derivative of function (13) is calculated

(17)

(18)

av 1

ar r v e

C

(19)

from (17), one obtains

hence

C=_l.
2:r

Therefore, the fundamental solution for the two-dimensional problem
has the form

1 1
v=-ln-

2:r r'
(20)

where r=~(x-xJ2+(y_yY.

From the standpoint of physics, one can use the concept of heat ex­
change by conduction to explain in a straight-forward way how constant C
is determined from Gauss-Ostrogradski theorem (16). Linear heat source
with a power Q/L = 1W/m is located at the point (Xi' y); therefore, power
Q = 1 W is generated within the length of L = 1 m. Heat source power
per unit of volume is
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. Q
qV=~L'

Jr r.

319

(21)

where 4v is expressed in W/m3
• If the outer radius r of a cylindrical heat

source becomes smaller, then 4v becomes larger, i.e.

(22)

(23)

(26)

Power Q generated by the heat source outflows to the surrounding

space. Function vCr) that shows in such case temperature distribution
within the area whose heat conduction coefficient equals A == 1 W/(m·K),
should satisfy the heat balance equation. Source-generated heat flow must
be passing through a lateral surface of the cylinder (Fig. 12.5)

. avlQ=-2Jr8LA-.. '
ar r=&

hence, one gets

Q=-2Jl"&A 8v I . (24)
L ar r=&

Once we substitute Q/L == 1 W/m, A == 1 W/(m·K) and account for

8v/ arlr=& =-C / 8 , Z (23), we have (19). On the basis of divergence theo­

rem (15), one can also determine constant C in (14) for the spatial prob­
lem. Constants C and C1 in (14) are C == 1/4n, C1 == o.

If the fundamental solution (20) is known, one can calculate v and
avian, which appears on the right-hand-side of (9). By substituting (1) and
(10) into (9), one has for (Xi, Yi) E R and (Xi, Yi) ~ s

f(uV2v - vV2u)dxdy = - fuo;dxdy =-u; . (25)
R R

By substituting (25) into (9), one obtains

-u
i
= r(u 8v -v aU)dS.

s an an
On the basis of (26), one can calculate temperature ". at any point (Xi' y)

within region R, if temperature U and the derivative in normal direction
avian are known for the whole boundary s. According to boundary condi­
tions (2) and (3), temperature and normal derivative are not known for the
whole boundary, but only for the part of that boundary. Equation (26),
therefore, can be used to calculate temperature u

i
once temperature U on

the boundary section Sq and normal derivative aulan on the boundary



(27)

(28)

320 12 Finite Element Balance Method and Boundary Element Method

section su are determined. This is why it is necessary to find relation between
known and unknown temperatures and heat fluxes on boundary s. Such
dependency is obtained under the assumption that point (Xi' y) lies on the
boundary s. Equation (9) assumes then the following form [1-3]

f ( au aVJc.u. = v--u- ds
11 a a '

s n n

where r.is the constant dependent on the boundary shape at point (Xi' y). If
the boundary is smooth at this point, then c

i
= 1/2.

Once the following notations are introduced

_ au
q =an'

*u =V,

_* av
q = an'

Equation (27) can be written in the form

CiUi +Ju({ds = Ju*qds.

(29)

(30)

(31)

~u = consten

Next, discretisation of the integral (31) is carried out. The boundary of the
analyzed region is divided into N elements (Fig. 12.6). Function u and its
derivative au/an are assigned on every element by means of simple func­
tions. In the most straightforward case, values u and au/an are assigned to
the center points of elements called nodes. Boundary of region s is ap­
proximated by means of a piecewise linear function. The node lies in the
center of the section. At this point the boundary is smooth; therefore, ci in
(31) is c

i
=1/2, i =1, ..., N.

u> canst

Fig. 12.6. Boundary division into finite elements; values u and au/an are constant
within the.length of the element
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The discrete form of (31) is

N N

-». +L Juq*ds =L Ju*qds,
j=l ~ j=l ~

i =1, ...,N, (32)

where s. is the length ofj-element. Functions u and q = au/an are constant
}

within the length of the element; thus, once the following notations are in­
troduced

(33)

(34)

equation system (32) for points i, which lie on the region's boundary, can
be written in the form

(35)

Integrals (33) and (34) are usually numerically calculated using, for in­
stance, Gauss quadratures.

(36)

(37)
S. K *

Gij =--l.... LUkWk,
2 k=l

where sjis the length ofj-element, and wkthe weight coefficient, which cor­
responds to k-point during numerical integration. Once the notations below
are introduced

{
iI .. ,

H .. = IJ
IJ "

Hi) +1/2,

equation system (35) can be written in.the form

System (39) can also be written in the matrix form

Hu =Gij,

(38)

(39)

(40)

where Hand G are the coefficient matrices, whose dimensions are N x N,
while u and q are column vectors with N dimensions. The equation system,
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however, only contains N = N + N unknowns, since N values of tempera-
u q u

ture u are assigned on the section of boundary su' while N
q

values of heat
flux 4s are known on the boundary Sq (more specifically, Nq values where
au/an = 4s/A). Therefore, there are N

u
heat flux unknowns on the boundary

section sand N temperatures on the boundary s . In total, N unknowns are
u q q

to be found. One can transform the equation system (40) by moving the
mathematical terms, which contain the unknowns, to the left-hand-side of
the equation. The system is reduced to a form

Ay=b, (41)

where A is the matrix of coefficients, whose dimensions are N x N, y is a
column vector of N dimension that contains N of temperatures u and N

q u

derivatives au/an. Once the equation system (41) is solved, one can deter-
mine values u and au/an at the boundary of the analyzed region. Therefore,
values u and au/an are known on the boundary s. Furthermore, values v
and avIan can be calculated in all N nodes. Temperature at inner points
(Fig. 12.7) can be calculated by means of (26), which has the following
discrete form:

(42)

Boundary element method is also a very effective tool for solving tran­
sient problems. Its main advantage is that in comparison to FEM, it uses a
significantly smaller number of elements, since only the boundary is dis­
cretisized. Its disadvantage is that it is necessary to determine fundamental
solution, which in the case of convective heat transfer problems is difficult
to find.

s

Fig. 12.7. Diagram that shows the calculation of temperature u at point i, which
lies inside the region
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Exercise 12.3 Determining Temperature Distribution
in Square Region by Means of FEM Balance Method

Determine steady-state temperature distribution in a square region, whose
side is a = 2 em in length. Assume thermal conductivity coefficient of the
medium to be at A= 42 W/(m·K). Boundary conditions are illustrated in
Fig. 12.8. Use the following data for the calculation: qB = 200000 W/m

2
, a =

60 W/(m
2·K), r, =20°C, t, =100°C.

y
4

a

x
2

a

Tcz·

Fig. 12.8. Diagram of the analyzed region; it illustrates boundary conditions and
the division of the region into finite elements

Solution

Node coordinates are as follow:

Xl == 0.00 m, YI == 0.00 m;

X2 == 0.02 m, Y2 == 0.00 m;

x3 == 0.02 m, Y3 == 0.02 m;

x4 == 0.00 m, Y4 == 0.02 m;

Xs == 0.01 m, Ys == 0.01 m.

One can write heat balance equation for the finite volume, which surounds
node 5 using (15) from Ex. 12.1 and by substituting n =5; i =1,2,3,4
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--1_[(1; - Ts){2A[(Y2 - Ys )(YI +YS) - (XS- X2)(X1 + XS)]-g·AI

-2A[(Y2 - YS)(Y2 +YS)-(XS-X2)(X2+XS)]}X

x (1; -Ts){2A[(Ys - YI)(YI +YS)-(XI-XS)(XI+XS)]-

-2A[(Ys - YI)(Y2 +YS)-(XI-XS)(X2+Xs)]}J-

--1-[(1; -Ts){2A[(Y3 - YS)(Y2 +Ys)-(xs-X3)(X2+XS)]-g·A2

-2A[(Y3 - YS)(Y3 +Ys)-(xs-X3)(X3+xs)]}x

x (1; - Ts){2A[(Ys - Y2 )(Y2 +Ys) - (x2- xs)(x2+ xs)]-

-2A[(Ys - Y2)(Y3 + ys)-(x2-XS)(x3+Xs)]}J-

1 [ (1)-- (1; -Ts){2A[(Y4 - YS)(Y3 +Ys)-(xs-X4)(X3+xs)]-g·A3

-2A[(Y4 - YS)(Y4 +Ys)-(xs-X4)(X4+xs)]}x

x(~ -Ts){2A[(Ys - Y3)(Y3 + ys)-(x3-XS)(x3+XS)]­

-2A[(Ys - Y3)(Y4 + ys)-(x3-XS)(x4+XS)]}]-

__1_[(~ -Ts){2A[(YI - YS)(Y4 +Ys)-(xs-XI)(X4+XS)]-
8·A4

-2A[(YI - YS)(YI +Ys)-(xs-XI)(XI+xs)]}x

x(1; -Ts){2A[(Ys - Y4)(Y4 + ys)-(x4-XS)(x4+XS)]­

-2A[(Ys - Y4 )(YI +Ys) - (x4- xs)( XI + xs)]}] = 0,
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By substituting the numerical values into (1), the following equation for
node 5 is obtained:

42·2 [{(~ -Ts)(0-0,0002)+(1; -Ts)(0,0002-0,0004)} +
8·0,0001

+{(1; -Ts)(0,0004-0,0006)+(1; -Ts)(-0,0002-0)}+

+{(1; - Ts)(0- 0,0002) +(~ - Ts)(-0,0006 - (-0,0004))} +

+{(~ - 7;)(-0,0004- (-0,0002)) +(1; - Ts)(-0,0002 - O)}] =0,

-[{(~ -7;)(-2)+(1; -Ts)(-2)}+{(1; -7;)(-2)+(1; -Ts)(-2)} +

+{(1; -7;)(-2)+(~ -7;)(-2)}+{(~ -7;)(-2)+(~ -7;)(-2)}]=0.

By substituting T
2
= 100°C and T

3
=100°C, one obtains

~ +~ -4·~ =-200. (2)

Heat balance equation for the finite volume, which surrounds node 4 can
be written in the following form (n = 4; i = I, 5, 3):

__I_[(~ -~){21[(ys- Y4)(YI +Y4)-(X4-XS)(xl+x4)J-8·A4

-21[(ys - Y4)(YS +Y4)-(X4-xs)(xs+x4)J}x

x(7; -~){21[(Y4 - Yl)(YI +Y4)-(X} -X4)(X1 +x4)J­

-21[(Y4 - Yl)(YS + Y4)-(X1 -x4)(XS+x4)J}J-
--1-[(7; -~){21[(Y3- h)(Ys +Y4)-(X4-x3)(XS+x4)J-8·A3

-21 [(Y3 - Y4)(Y3 +Y4)-(X4-X3)(X3+x4)]}x

x(1; -~){21[(Y4 - Ys)(Ys +Y4)-(XS-x4)(XS+X4)]-

-21[(Y4 - YS)(Y3 +Y4)-(XS-X4)(X3+X4)J}J+qB~=0,

where from, after substitution of the numerical values, one has

(3)
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42·2 [{(1; -~)(-0.0002-(-0.0002))+(Ts -~)x
8·0.0001

x(0.0004 - 0.0006)} + {(Ts - T4 ) ( 0.0002 - 0.0004) + (1; - ~)x

x(0.0002 - 0.0002)} ] + 200000. 0.~2 =0,

42[{ }-4 (1; -~)(O)+(Ts -Tt)(-2) +

+{(Ts -Tt)(-2)+(1; -Tt)·0}]+2000=0,

1;-T4 =- 47.6. (4)

Heat balance equation forthefinite volume, which surrounds node 1 can
be written in thefollowing form (n = 1; i =2,5,4):

__l_[(J; -1;){2A[(Ys - Yl)(Y2 +Yl)-(X1-XS)(x2+X1)]-
8·AI

-2A[(Ys - Yl)(YS +Yl)-(X1-xs)(xs+x1)]}x

x(Ts -1;){2A[(YI - Y2)(Y2 +Yl)-(X2-X1)(X2+X1)]- (5)

-2A[(YI - Y2)(YS +Yl)-(X2-x1)(XS+x1)]}J-

__I_[(Ts -1;){2A[(Y4 - Yl)(YS +Yl)-(X1-x4)(XS+x1)J-
8·A4

-2A[(Y4 - Yl)(Y4 +Yl)-(X1-X4)(X4+x1)]}x

x(Tt -1;){2A[(YI - Ys)(Ys +Yl)-(XS-x1)(XS+x1)J-

-2A[(YI - YS)(Y4 +Yl)-(XS-X1)(X4+Xl)]}J+qB~+Qa =0,
al2

Qa = Ja(Tcz -T(x,O))dx=
o

=a{(Tcz - 2~[(X2Y3 -X3Y2)1; +(X3Yl-X1Y3)J; + (X1Y2 -X2Yl)Ts])~-

1 a
2

}-2A[(Y2-Y3)1; +(Y3-Yl)J; +(Yl-Y2)Ts]-g =

= a{(Tcz - 2a~/4[a~1; ])~- 2a~/4[(-~)1; +(~)J; ]a:}.
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After substitution of the numerical values, one has

Q. =a[(T -1: )~-[T -1: J~]=60'20'0.02 -60. 3.0.02.r,_
a cz 1 2 2 1 8 2 8 1

-60· 0.02'1; =12-0.45·~-0.15,1;,
8

42·2 [{(1; -~)(0.0002-0.0002)+(Ts-~)x
8·0.0001

x(-0.0004 - (-0.0002))} + {(Ts - ~)(0.0002 - 0.0004) +

+(~ -~)(-0.0002-(-0.0002))}J+200000' 0.~2 +

+(12-0.45·~ -0.15.1;)=0,

42-4[2(Ts - ~)(-2)] + 2000+ (12 - 0.45· ~ - 0.15· 1;) = 0,

- 42.45·~ +42·~ =-1997. (6)

The solution for equation systems (2), (4) and (6) is

T, = 194.145°C; ~ = 146.545°C.

Calculations by means of the ANSYS program were also carried out and
the following results were obtained:

~ = 146.545°C.

Exercise 12.4 Determining Temperature Distribution
in a Square Region using Boundary Element Method

Determine temperature distribution in a two-dimensional region, which
measures 6 x 6 m (Fig. 12.9). The thermal conductivity of the material is
A, = 50 W/(m·K). Boundary conditions are presented in Fig. 12.9. Tempera­
tures are assigned on lateral surfaces, while heat flux on an upper and
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lower surface. Determine temperature distribution by means of BETIS
program [1]. Compare the obtained results with the values determined by
means of FEM.

Solution

Temperature distribution within a two-dimensional region shown in Fig.
12.9 is governed by the heat conduction equation

a2T a2T
-+-=0 (1)
ax2 By2

and by boundary conditions

Osys6 m,

Osys6 m,

(2)

(3)

-A aT = 10000 W/m2
,

By y=o

-A aT =0 W/m2 ,

ay y=6m

Osxs6 m,

0~x~6 m.

(4)

(5)

Boundary conditions (4) and (5) will be transformed into a form

et =_10000 =-200 KIm
By y=o A '

(6)

aT
By y=6m

=0. (7)
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2 3 4
__--+--....-----tl---__--+--..'--.--..

(0,0) I' (6,0) x
q=10000 W/m2

Fig. 12.9. A diagram that illustrates boundary conditions and boundary division
into finite elements in BEM

Table 12.1. Node temperature values (Fig. 12.10) calculated by means of BEM
andFEM

Temperature rOC] Temperature rOC]
Node no. Node no.

BEM FEM BEM FEM

1 300.00 300.00 10 300.00 300.00
2 607.38 612.91 11 300.00 300.00
3 507.38 512.91 12 300.00 300.00
4 0.00 0.00 II 336.71 350.09
5 0.00 0.00 12 252.98 258.24
6 0.00 0.00 13 246.05 255.04
7 0.00 0.00 14 236.71 250.09
8 134.17 136.37 15 152.98 158.24
9 234.17 236.37
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ANSYS 5.5.3
DEC 19 2001
17: 35: 50
NODAL SOLUTION
STEP=l

SUB =1
TIME=l

TEMP (AVG)

RSYS=O

PowerGraphics
EFACET=l

AVRES=Mat

SMX =615.471
o

.. 68.386
• 136.771
00II 205.157
IIiI 273.543..
III ~~~:~~~
D 478.699
• 547.085
.. 615.471

Fig. 12.10. Temperature distribution in an analyzed region determined by means
ofFEM

Temperature distribution will be determined by means of BEM using
BETIS program [1]. Conditions (2)-(3) and (6)-(7) will be used for the
calculation. The boundary of region was divided into 12 boundary ele­
ments (Fig. 12.9). Temperature was calculated in 12 nodes, which lie on
the boundary and at internal points 11-15. Linear functions were utilized
for temperature approximation within the length of the element.

Temperature distribution was also determined by means of FEM with
ANSYS program (Fig. 12.10). Analyzed region was divided into 900 ele-
ments (mesh 30 x 30). Table 12.1 shows calculation results obtained by
means of BEM and FEM. The results on the region's boundary show good
agreement; however, the level of agreement is lower for the internal points
11-15. One should note, nevertheless, that obtained results show good ac­
curacy, in spite of the fact that the boundary in BEM was divided into a
small number of elements.
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13 Transient Heat Exchange between a Body with
Lumped Thermal Capacity and Its Surroundings

In this chapter, we will analyze the process of heat exchange under the as­
sumption that thermal capacity of a solid is concentrated in one point. Such
assumption can be made for number of cases in practice, since the thermal
conductivity of a solid is very large or the outer surface heat transfer coef­
ficient is very small. Solutions for step-change in the medium temperature
are presented here as well as the solutions that can be used in instances
when the medium's temperature changes periodically or is a linear func­
tion of time. Furthermore, an inverse problem is being solved; it is based
on the premise that one has to find the medium's temperature on the basis
of known thermometer temperature history in time. Derived formulas are
applied to the calculation of dynamic temperature measurement errors for
a step-change and linear-change temperature of a medium. Simple and in­
verse problem is illustrated on the basis of a given example: the history of
temperature of an industrial thermometer used for measuring periodically
variable temperature of a superheated vapour.

Exercise 13.1 Heat Exchange between a Body
with Lumped Thermal Capacity and Its Surroundings

Derive a differential equation to describe convection heat exchange by way of
between a body with concentrated mass and its surroundings. Thermal diffu-
sivity coefficient a is constant and time-invariant. Solve the obtained equation
when the temperature of a medium undergoes a step-change.

Solution

If the thermal conductivity A of a solid is extremely large or heat transfer
coefficient a on the body surface is extremely small, then the temperature
within the whole body volume is almost the same, i.e. temperature differ­
ences inside the body are insignificant. The following condition can be as­
sumed for irregular-shape-bodies:
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Bt =a(f) sO.05
A

(1)

(2)

(3)

If the above condition is met, one can neglected the temperature drop in­
side the body. In (1) B( is the Biot number, V a body volume, while Asan
outer surface area of the body. Quotient L* = VIAs is a characteristic body
dimension. A characteristic dimension of a sphere with radius R is

L* _ V _ 4 ;rR
3

_ R
- As -3 4JrR2 -3

Once we substitute (2) into (1), the condition under which we assume that
the heat conduction model with lumped mass has the following form for a
sphere:

aR
-50.15.
A

Heat balance equation will be written for an arbitrary shape body. Body
volume is V, while Asis the outer surface of the body (Fig. 13.1). Thermal
conductivity A, density p and specific heat c are constant and tempera-

ture invariant. Assuming that initial body temperature is

rlt=o =t; (4)

and that temperature of the medium Tcz(t) > To' i.e. the body is heated, the
energy balance has the form

(5)

where u =cvTis a unitary internal temperature, while m =pVa body mass.

Fig. 13.1. A body with concentrated (lumped) thermal capacity
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Because specific heat is practically the same for a solid when pressure
and volume is constant, i.e. c

p
= c, = c, the energy balance (5) assumes the

form

dT(/)
cpv--+ aAsT(/) =aAs~z (I).

dl

Once time constant is introduced

cpv
r=-­

A'a s

Equation (6) can be transformed into a form

(6)

(7)

(8)

It is a heterogeneous differential equation of the first order. If temperature
of the medium undergoes a step-change (Fig. 13.2), one can easily deter­
mine the solution for (6), if it is assumed that

(9)

T

Tcz1--------

o
Fig. 13.2. Temperature step-change in a medium

Equation (8) and initial condition (4) have the form then

dB
r-+B=O,

dl

After separation of variables in (10)

dB 1
-=--dl
B r

(10)

(11)

(12)
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one obtains InB = -t/ t + C or

(13)

Once we account for boundary condition (11), we can determine constant
C

1
: C

1=Bo• Solution (13) assumes the form then

B(t)=Boe- t
/

T
, (14)

where time constant r is given by (7).
Heat flow delivered to the body at time t iso

Q(t)=aAs[Tcz -T(t)J.

The quantity of body-transferred heat in time from 0 to tis
t

Q(t) = fQ(t )dt =aAs(Tcz - To )r(1- e-t1r
) .

o

Exercise 13.2Heat Exchange between a Body
with Lumped Thermal Capacity and Surroundings
with Time-Dependent Temperature

(15)

(16)

Write general formula for temperature of a body with concentrated mass
(small thermal resistance), if temperature of a medium Tczchanges in time.
Derive a formula for body temperature, if the medium's temperature
Tcz(t) =a + bt changes at constant rate, equal to b, where a is a constant.

Solution

Differential equation, which describes body temperature changes, has the
form (Ex. 13.1, (6))

cpV~+a(t)AJ(t) = a(t)AJcz (t) (1)

when initial condition is

Once (1) is divided by cpV~ one obtains

dT + p(t)T=q(t),
dt

(2)

(3)
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where

p ( t ) =a (t ) As ,
cpV

a(t)A
q(t) = S J:z (t).

cpV

(4)

(5)

It is a heterogeneous differential equation of the first order. First we will
determine the solution for homogeneous equation. In (3) we assume that
q(t) = 0, following that we obtain, using variable separation method

- Jp(t)dt •
T =Cle ,where C1 IS a constant.

According to the variation of constant method, solution (5) is written in
the form

(6)

Once (6) is substituted into (3) and mathematical operation carried out, one
obtains

C' - Jp(t)dt _ C () () - Jp(t)dt ( ) C ( ) - Jp(t)dt - ()Ie 1 t pte + p tIt e - q t ,

where

C'( ) - () Jp(t)dtIt-qte ,

C,=dCI

1 dt·

Once (8) is integrated, one has

C ( ) - f () Jp(t)dt CIt-qte +,

where C is a constant. By substituting (9) into (6), we has

T() C
- fp(t)dt - Jp(t)dt J () Jp(t)dt

dt = e +e q t e t.

Constant C is determined from the initial condition (2).
If the medium's temperature changes according to formula

(7)

(8)

(9)

(10)

(11)
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where a and b are constants and coefficient a is constant too, then from (4)
we have

p(t)= aAs =!,
cpV t

q(t)= aAs(a+bt) =a+bt.
cpV t

(12)

By substituting (12) into (10), one obtains

I I f
a+bt

T{t) =ce: T +«' T __et ITdt.
r

(13)

Then we determine the integral below by integrating by parts

fbtellTdt = tbte'" - fb(Tilr)dT=(bTt-bT2)eIIT =bT(t-T)eIIT (14)

and calculate the remaining integrals. Equation (13) then assumes the form

[
br{t - r) e

t l T
]

T(t) =Ce-IIT+ e-IIT aellT+ T '

T{t)=Ce-t IT +{a+bt)-br.

From the initial condition (2), we get

To =C+a-br,

hence,

C=To <a v bt .

Once (16) is substituted into (15), (15) assumes the form

T (t ) = Tcz (t ) + (1'0 - a)e-I IT- bt (1- e-I IT) ,

where Tc/t) is expressed by (11).
From the analysis of (17) it follows that for t~ 00 one obtains

T(t l->oo = Tcz (t) - bt ,

(15)

(16)

(17)

(18)

i.e, body temperature is lower than the medium's temperature by b t . The
greater the time constant T, the greater the difference in b T .
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Exercise 13.3 Determining Temperature Distribution
of a Body with Lumped Thermal Capacity, when
the Temperature of a Medium Changes Periodically

Write a formula for temperature of a body with concentrated mass (small
thermal resistance), if the medium's temperature Tcz changes in time. De­
rive a formula for the body temperature, if the medium's temperature un­
dergoes cyclic changes according to formula

(1)

where OJ = 2n/to is the circular frequency of temperature changes, while to
a change period. Heat transfer coefficient remains constant.

Solution

Body temperature changes in time are formulated in (1), Ex. 13.2. By ac­
counting for

p(t)= aAs =! and q(t)= aAs J:z(t)= aAs Tm+I1TcosOJt (2)
cpV t cpV cpV t

the solution of (1) (Ex. 13.2) is expressed by (10) (Ex.13.2). Once expres­
sions p(t) and q(t) given by (2) are substituted into (10), Ex. 13.2, and
mathematical operations are carried out, one obtains

From initial condition

T It=o == Tm

one has

hence,

I1T. mrl1T
C = -J sm(-arctgzar] = 2 2 •

l+m2r2 l+m r

(3)

(4)

(5)

(6)

By substituting (6) into (3), one obtains an expression, which describes
body temperature T(t):



(8)
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O)ri1T i1T.
T(t)=Tm+ 2 2 «" + .J sm(wt-arctgwr). (7)

1+ 0) t 1+ 0)2r 2

The second term in (7) for time t >> t can be neglected; one obtains then
the "steady-state" temperature oscillations

T(t)=Tm+.J !1T sin(wt-arctgwr).
1+ 0)2r2

Body temperature oscillates around mean temperature T
m

' but at a lower
amplitude, equal to

i1T' = i1T .
.Jl + 0)2 r2

Furthermore, a phase shift occurs, which equals

lp = arctgzs r ,

(9)

(10)

Exercise 13.4 Inverse Problem: Determining Temperature
of a Medium on the Basis of Temporal Thermometer­
Indicated Temperature History

Determine temperature of a medium Tcz(t) on the basis of temperature his­
tory indicated by a thermometer with known time-constant t. Assume that
the thermometer is a body with a concentrated mass and "measurement
data" is expressed by function T(t).

Solution

This inverse problem is the kind of problem whose output signal T(t) is
known in the analyzed medium-thermometer set-up; the input signal Tcz(t)
is the unknown. Differential equation, which describes temperature
changes in the thermometer, will be used to determine T;(t).

dTT (t)=T +r-
cz dt

(1)

The main difficulty in determining temperature Tcz(t) by means of (1)
lies in the accurate calculation of derivative dT/dt, especially when the
readings are affected by random errors.

If the measured signal T(t) is approximated locally by a polynomial of
the 3rd degree with respect to time using the least-squares method, one can



(2)
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eliminate then, to a large extent, the effect of random errors on the value of
derivative dT/dt, since the derivative is calculated when the polynomial of
the 3rd degree is differentiated with respect to time and not by means of
difference quotients, which are based on the readings affected by random
errors. Using the polynomial of the 3rd degree and seven subsequent
measurement points, the following formula is obtained for derivative d'I'[dt
(Fig. 13.3):

d'I: 221;_3 - 671;_2 - 581;_1 + 581;+1 + 671;+2 - 221;+3

dt 252(~t)

T(t)

I-T--Ti+2

I
I
I
I
I
I

Fig. 13.3. A diagram for the calculation of the first derivative dT/dt by means of
the seven-point digital filter t, =i(~t)

For time to in (2) the following temperatures appear: T_
3

, T_
2

and T_
1
•

They are not known from the readings taken. One assumes then that
(Fig. 13.4)

(3)

Derivatives d'I, / dt for the first three measurement points are formu­

lated as

d1'o _ 221'0 - 671'0 - 581'0 +58~ +671; - 221;
dt - 252(M)

d1'o _ -1031'0 + 58~ + 671; - 221; .
dt - 252(~t) ,

d~ _ 221'0 - 671'0 - 581'0 + 581; + 671; - 22~
dt - 252(M)

(4)
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T(t)
T3 ---------

Fig. 13.4.A diagram that illustrates the calculation of derivative dT/dt for i = 0, 1,2

dT;. _ -1 03~ + 581; + 671; - 22~ .
dt - 252(~t) ,

d'I'; 22~ - 67~ - 58T;. + 581; + 67~ - 22T's

dt 252(~t)

dT; -45~ - 58~ + 581; + 67T4 - 22T's

dt 252(~t)

(5)

(6)

At other points i =3, 4, ..., derivative d'I'[dt is calculated by means of (2).
Temperature of the medium Tcz(t) is determined from (1)

i = 0,1,...,( )
dTT: ti =1;+r-1

,

dt

where derivatives dT./ dt are formulated in (4), (5), (6) and (2).
l

Exercise 13.5 Calculating Dynamic Temperature
Measurement Error by Means of a Thermocouple

(7)

The weld in a thermocouple copper-constantan (Cu-Konst) has a shape of
a sphere whose diameter is d =2 mm. Air temperature is measured by in­
serting the thermocouple into the passing airflow. How long should the
measuring of temperature last, so that dynamic measurement error will be
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smaller than 3%? Air-to-surface heat transfer coefficient of the thermo­
couple is at a = 60 W/(m2·K). Assume the following thermo-physical
properties of the thermocouple for the calculation: density p =8900 kg/m',
specific heat c =415 J/(kg·K).

Solution

Temperature of the thermocouple T(t) is expressed by formula ((14) from
Ex. 13.1)

(1)

where r= cpV/aA
s
is the time constant.

Time t, after which measurement error is at E, i.e.

cpR _ cpd
3a - 6a '

is calculated from (1): E =e- tx
/
r

, hence, one has

I tx
nE=--

t

tx =-rlnE.

Time constant of the thermocouple is

4 3
cp'-JrR

t > 3
a4JrR 2

where from, after substitution, one has

r = 415·8900·0.002 =20.52 s.
6·60

(2)

(3)

(4)

Measurement duration, after which the dynamic measurement error
equals 3 %, is

tx =-20.52 In0.03 =71.95 s.

If duration exceeds 71.95 s, then the dynamic measurement error becomes
smaller.
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Exercise 13.6 Determining the Time It Takes to Cool Body
Down to a Given Temperature

A single grape with a diameter of d = 12 mm and initial temperature of
To = 21°C was placed in a freezer whose temperature was Tcz = goC. As­
suming that heat transfer coefficient between the surrounding air and grape
surface equals a = 15 W/(m2·K). Determine the time it takes the grape to
reach the temperature of T(t) = 10°C. Assume that p = 1100 kg/m' and
c =4200 J/(kg·K). Calculate how much heat is taken away from the grape
during the process of cooling.

Solution

The temperature of the grape can be calculated by means of (14) from
Ex. 13.1

where
cpV

r=--.
aAs

Once a logarithm is found for both sides of (1), one has

rv.i-», txIn =--,
To -~z t

hence,

The grape's time constant is

4 3

cp·-rcR =cpR_cpd
t > 3

a4rcR2 ~ - 6a '

where from, after substitution, one has

t > 4200·1100·0.012 =616 s.
6·15

Time Ix is calculated from (3):

(1)

(2)

(3)

(4)
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t =-6161n 10-8 =1153 s = 19 min 13 s.
x 21-8

The amount of heat carried away from the grape during the cooling period
is

Q(tx) =aAs(Tcz - To )r(1- e-tx 1t
) =15· 4· n-(0.006)2 (8 - 21)x

x 616(1- e-1l53/616) = -45.98 J

Minus sign means that the heat was carried away from the grape.
In order to check the validity of results, grape heat removal can also be

calculated in the following way:

Q=mc[T(tx ) - To] =~n-R3pc[T(tx ) - To],
where from, after substitution, one obtains

Q=in-. 0.0063 ·1100· 4200(10 - 21) =-45.98 J ,
3

therefore, the same results are obtained.

Exercise 13.7Temperature Measurement Error
of a Medium whoseTemperature Changes atConstant Rate

Water temperature increases at a rate of b = 15 K/min. Assuming that wa­
ter heating lasted 6 minutes, calculate temperature measurement error at
the end of the heating phase, if water temperature was measured by means
of a three different sensors:

a) a sheathed thermocouple Ni-NiCr with the jacket's diameter of
1.5 mm and time constant of t =0.73 s,

b) a sheathed thermocouple Ni-NiCr with the jacket's diameter of 3 mm
and time constant of r =1.2 s ,

c) thermo-electric industrial sensor PTTK-SWI2 (produced by KFAP
Krak6w) with a casing whose diameter is d = 18 mm and sensor
length L = 140 mm. The time constant of the thermometer is
r=10.8s.

Solution

For time t» t temperature measurement error 8 is ((18), Ex. 13.2)
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8 =T: (t)- T (t)=bt .

For individual sensors, the error is
15

a) 8=-·0.73=0.1825K,
60
15

b) 8=-·1.2=0.3K,
60
15

c) 8=-·10.8=2.7K.
60

In the case of the first two sensors, the error is minimal.

Exercise 13.8Temperature Measurement Error
of a Medium whose Temperature Changes Periodically

(1)

Calculate temperature measurement error of an superheated vapour by
means of a thermo-electric industrial sensor with a time constant of
r=180 s. Temperature of the superheated vapour oscillates around the me­
dium temperature T

m
= 535°C according to formula

(1)

Oscillations last to = 10 min.
Calculate temperature of the thermometer in a quasi-stationary state.

Solution

Temperature transient of the thermometer is defined by (8) in Ex. 13.3

T(t)=T
m

+ I1T 1/2 sin(a>t-arctga>r). (2)
(1 + a>2 r 2

)

The circular frequency of the medium's temperature changes is

2Jr 2Jr
m=-=--=0.010472 l/s,

to 10·60

therefore, thermometer's temperature is formulated as

T(t)=535°C + 7.03 °C .sin(0.010472· t -1.083).

It is evident, therefore, that thermometer significantly dampens tempera­
ture changes of the vapor, since the maximum temperature indicated by the
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thermometer is

Tmax =535 +7.03 =542.03°C

instead of T
max

= 550°C. Also, there is a significant delay in temperature
changes indicated by the thermometer in contrast to real temperature
changes of the superheated vapour. Phase shift is at

qJ =arctgzur=1.083 rad =62.05 ° .

In order to minimize temperature measurement error of an superheated
vapour, a thermometric sensor with a smaller time constant should be used.

Exercise 13.9 Inverse Problem: Calculating Temperature
of a Medium whose Temperature Changes Periodically,
on the Basis of Temporal Temperature History Indicated
by a Thermometer

Temperature history indicated by a thermometer with time constant t =
180 s is described by function

T (t) =535 + 6.21e-t
/180 + 7.03· sin(0.010472t -1.083), (1)

where time t is expressed in seconds, while temperature in °C.
Determine real temperature history of the medium Tc/t).

Solution

Assumed sampling time is ~t = 30 s, while "measurement data" (artifi­
cially generated) determined from (1) is listed in Table 13.1. Determine
medium's temperature by means of (1) from Ex. 13.4:

T::z (Ii) = T (Ii) + T dI; ,
dt

(2)

where r is a time constant of the thermometer. Determination of derivative
d'I'[dt is discussed in Ex. 13.4. Calculated derivative values and medium's
temperature values are listed in Table 13.2, which also contains exact val­
ues (input data) of Tczd(t) calculated from (1), Ex. 13.3.

~~ «t; +~Tsinmt, (3)
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where

Tm =535°C, ~T =15°C and to =0.010472 rad/s.

Table 13.1. Artificially generated readings. Temperature indicated by a ther-
mometer T(t)

t T t T
0 0 534.9999 23 690 534.1498
1 30 535.3687 24 720 536.3284
2 60 536.3622 25 750 538.3912
3 90 537.7819 26 780 540.1342
4 120 539.4029 27 810 541.3848
5 150 540.9937 28 840 542.0191
6 180 542.3372 29 870 541.9737
7 210 543.2496 30 900 541.2518
8 240 543.5977 31 930 539.9233
9 270 543.3099 32 960 538.1172

10 300 542.383 33 990 536.0098
11 330 540.8808 34 1020 533.8068
12 360 538.9278 35 1050 531.7232
13 390 536.6960 36 1080 529.9627
14 420 534.3876 37 1110 528.6972
15 450 532.2148 38 1140 528.0503
16 480 530.3788 39 1170 528.0851
17 510 529.0494 40 1200 528.7979
18 540 528.3484 41 1230 530.1188
19 570 528.3375 42 1260 531.9185
20 600 529.0115 43 1290 534.0204
21 630 530.2996 44 1320 536.2188

Table 13.2. Calculated values of d'I'[dt and temperature values of medium Tcz(t)
and exact (input data) temperature values Tczd(t). Temperature indicated by a ther­
mometer T(t)

Entry t [s] dI;/dt
Calculated temperature values of the Exact temperature values

no. medium r:/~) - the inverse solution of the medium Tczd(t)

0 0
1 30 0.0223 539.3815 539.6353
2 60 0.0401 543.579 543.8168
3 90 0.0518 547.1109 547.1353
4 120 0.0547 549.2415 549.2659
5 150 0.0499 549.9780 550.0000
6 180 0.0384 549.2484 549.2658
7 210 0.0215 547.1242 547.1352
8 240 0.0012 543.8133 543.8167
9 270 -0.0204 539.6396 539.6351

::-;::m«X-;m.*:::~($7~=*:m~'9k:Xi«~~wmmm~~
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Table 13.2. (cont.)

caicmateo temperature temperature
Lp. t [s] dT /dt medium T (t) _ the inverse solution of the medium T d(t)

a I a I

=~~To"~~--300--~wh=-6~o41~~_h_,«-=,-~"~,,",~=-~,~,,~,»,,w-535"":0 I-f8~-h-=-~~__"_,"m~_,~«wM«~.m",,,w~w,=,,--,,,<<<v=·534. 9999 ------ =-»;

11 330 -0.0583 530.3828 530.3646
12 360 -0.0707 526.2059 526.1831
13 390 -0.0767 522.8898 522.8647
14 420 -0.0757 520.7591 520.7341
15 450 -0.0677 520.0225 520.0000
16 480 -0.0535 520.7520 520.7342
17 510 -0.0343 522.8762 522.8649
18 540 -0.012 526.1873 526.1833
19 570 0.0112 530.3609 530.3649
20 600 0.0332 534.9885 535.0002
21 630 0.0518 539.6173 539.6355
22 660 0.0651 543.7943 543.8170
23 690 0.072 547.1105 547.1354
24 720 0.0717 549.2410 549.2659
25 750 0.0644 549.9776 550.0000
26 780 0.0506 549.2479 549.2657
27 810 0.0319 547.1238 547.1351
28 840 0.01 543.8127 543.8165
29 870 -0.013 539.6391 539.6349
30 900 -0.0347 535.0114 534.9997
31 930 -0.053 530.3825 530.3644
32 960 -0.0662 526.2056 526.1829
33 990 -0.0729 522.8895 522.8646
34 1020 -0.0725 520.7590 520.7340
35 1050 -0.065 520.0225 520.0000
36 1080 -0.0512 520.7521 520.7343
37 1110 -0.0323 522.8763 522.8650
38 1140 -0.0104 526.1873 526.1835
39 1170 0.0126 530.3609 530.3652
40 1200 0.0344 534.9887 535.0004
41 1230 0.0528 539.6176 539.6357
42 1260 0.066 543.7946 543.8171
43 1290 0.0727 547.1105 547.1356
44 1320 0.0723 549.2410 549.2660
45 1350 0.0649 549.9775 550.0000

Exercise 13.10 Measuring Heat Flux

Capacitive sensors (slug calorimeters) are used to measure heat flux; they
are based on the heating model of an element with a lumped body mass.
Figure 13.5 depicts a diagram of a sensor used for measuring heat flux,
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which is transferred from combustion gases to walls of combustion cham­
bers in boilers or industrial furnaces.

A steel sensor with diameter d and thickness t5 is thermally insulated on
a lateral and rear surface. Heat flow is transferred from the gases side only
by the frontal surface of the sensor As. Determine a formula for calculating
heat flux q(t) on the basis of measured temperature of the sensor T(t). As­
sume that sensor's volume is V, while heat flow is transferred by surface
area As. In the second part of the exercise, calculate q(t) under the as­
sumption that sensor's temperature increases at constant rate vr =dT/dt =6
K/s. The sensor is made of a chromium-nickel steel, which contains 15%
Cr and 10% Ni, with a density of p =7865 kg/m' and specific heat at
c = 460 J/(kg·K). The thickness of the sensor is t5= 0,005 m.

n~·(t) n nVq V sensor V
T(t)

d

Fig. 13.5. A simple slug calorimeter

Solution

Sensor's heat balance has the following form:

(1)

or, when it is allowed that the sensor's mass is expressed as m = pV,

(2)

hence, after transformations, one obtains



.( ) V dTq t =cp---.
As dt

In the case of a disk-shaped sensor (Fig. 13.5), one has

V = Jrd
2

g
4 '

A = Jrd
2

s 4·

After substituting (4)-(5) into (3), one has

Literature 351

(3)

(4)

(5)

4(t)= cp g dT . (6)
dt

If derivative dT/dt is time-variable, one can use digital filters, discussed
in Ex. 13.9, to calculate it. When heat flux is large q(t) , the thickness of

the sensor t5 should be comparatively large, so that dT/dt could be easily
calculated.

For data from the second part of the exercise from (6), one obtains

q(t)=cpt5vr =460·7865·0.005·6=108537 W/m2
•

Literature

1. Taler J (1995) Theory and practice of heat flow processes identification.
Ossolineum, Wroclaw-Krakow-Warszawa
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The following chapter discusses methods, which can be used to determine
transient temperature field in a half-space with boundary conditions of the
I, II and III kind by means of Laplace transform. Also, formulas for tem­
perature distribution in the half-space are derived here, when surface tem­
perature is a random time function or changes periodically. In contrast to
earlier elaborations, formulas derived here not only encompass a quasi­
steady state but also a transient state. Furthermore, formulas are deter­
mined for temperature in contacting bodies and for the "depth of heat
penetration." Aside from that, four computational examples (exercises) are
presented here; they illustrate how the derived formulas can be applied in
practice.

Exercise 14.1 Laplace Transform

Discuss the Laplace transform, which is frequently used for determining
transient temperature fields in solids.

Solution

If functionf(t) is defined for t 2 0, then integral

00 b

fe-sf f (I )dl =lim fe-sf f (I )dl
o b~oo 0

is called the Laplace transform or Y-transform.

Laplace transform of functionf is designated as ::l{f(t)}, i.e.

::l{f(/)} =F(s) .

(1)

(2)

Below, two examples demonstrate how one can determine Laplace

transform, constant c and function e-ct with c as a constant. In the first
case, one obtains
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b
OCJ b _ce-st

5l{c} = fe-stcdt=clim fe-stdt=lim-- =
o b~OCJ 0 b~OCJ S 0

-sb

I
" -ce +c= Im----
b~OCJ s

c

s

(3)

provided that s > O. The same is done in the second case

b b -(s+c)b OCJ

2'{e-C1} = lim fe-sle-Cldt=lim fe-cs+C)ldt= -e (4)
b~OCJ 0 b~OCJ 0 S +cos + c

for s > - c.
When transformF(s) is given, while functionf(t), which corresponds to

the transform is the unknown, one can write the problem in the following
way:

f (t)= 2' -I {F(S )} . (5)

Symbol 5l-1 stands for the Laplace inverse transform.
Selected properties of the Laplace transform are listed in Table 14.1.
In the case of transient heat conduction equations, Laplace transforma­

tion is carried out with respect to time variable t. Once the solution trans­
form is found, the inverse transformation is carried out.

Table 14.1. Some of the properties of the Laplace transform C
1
and C

2
are constant

Y {clf (t)+<s (t)} = C1F (s ) + C2G(s) ,

y{8nf (x,t)} = anF(x,s) ,
8xn 8xn

£{ff(r)dr} = F~S),

d n

£ {tnf(t)} = (-1)" dsnF(s),

{
8f (X,t)}Y -8-t- =sF(x,s)- f(x,O)

{
82f (X,t)}y 8t2 =s2F(x,s)-sf(x,O)- f'(x,O)

£{J(kt)} =iFUJ
£ {ff( t )g(t- t )dr}= F(s)G(s)

It is often difficult to search for an inverse transform when one aims to
find a solution in the real domain. This is why often tables are used in
practice. Some of the transforms F(s) and their corresponding functions
f (t), which occur when transient temperature fields are determined in a
semi-infinite body, are compiled in Table 14.2.
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Table 14.2. Transforms F(s) of function f (t) that occur when transient tempera­
ture fields are determined in a semi-infinite body

exp(-sto)

exp(-qx)

exp(-qx)/q

exp(-qx)/s erfc ~
2v at

exp(-qx)/sq 2 ~ exp(-x2/4at)-xerfc ~V-; 2v at

exp(-qx)

s(q+~)
A x A
-erfc----G
a 2~ a

In Table 14.2, the following notations were assumed:

q=~,

G=exp(ax + a2~t)erfc( ~+ a~) ,
A A 2v at A

a - heat transfer coefficient [W/(m 2·K)],

A - thermal conductivity of semi-infinite body [W/(moK)],
x - spatial coordinate [m],
t - time [s],
a =Alcp- temperature diffusivity [m2/s],

erfc x = 1- erf x, erf x - Gauss error function (appendix A).
Laplace transform and its application when solving transient heat con­

duction problems is thoroughly discussed in papers [1, 4,7,8].

Exercise 14.2 Formula Derivation for Temperature
Distribution in a Half-Space with a Step Increase
in Surface Temperature

Derive a formula for temperature distribution and heat flux in a semi­
infinite body with a step increase in surface temperature of a half-space
from an initial temperature To to temperature T

s
0
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Solution

The assumed coordinate system is presented in Fig. 14.1.

T

x

Fig. 14.1.Heated half-space with a step increase in surface temperature

Temperature distribution is described by equation

er a2T-=a-
at ax2

'

by boundary conditions

T(oo,t)=1'0

and by initial condition

T(x,O) =1'0.
Once excess temperature surplus is introduced

u=T-1'o

(1)

(2)

(3)

(4)

(5)

the initial-boundary problem (1)-(4) can be expressed in the following
way:

au a2u

(6)-=a-
at ax2

'

u(o,t)=us ' (7)

u(oo,t)=o, (8)
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u(x,o) = O. (9)

The initial-boundary problem (6)-(9) will be solved using Laplace
transform. Transformation of (6) is carried out when the initial condition is
given by (9); hence, we obtain

d
2U(x,s)

_!... ( )-
--2- U X,S -0.

dx a

The solution of (10) has the form

(10)

(11)

By accounting for condition (8), from which it follows that C
1
= 0, solution

(11) assumes the form

(12)

Once constant C
2

is determined from boundary condition (7), which after
Laplace transformation assumes the form

one obtains

U(O,s)=~,
s

U(x,s)= Us e-...r;;;,·x.
s

(13)

(14)

Inverse Laplace transformation is carried out using the fourth formula
from Table 14.2; hence, we obtain

r(x,t)-r. =erf(_x_).
To -t; 2J;;{

Appendix A contains a table with function erf x.
Heat flux is formulated as

(15)

(16)

(17)
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or

q(x,t) =,i(:Z: - To) 7--. e-x
' / 4at . ~ =Jkp (:z: - To )e-X

' / 4at . (18)
'\jll 2'\jat m

Heat flux on the body surface is

(19)

Exercise 14.3 Formula Derivation for Temperature
Distribution in a Half-Space with a Step Increase
in Heat Flux

Derive a formula for temperature distribution in a semi-infinite body with
a step increase in heat flux qs on the surface. Initial body temperature To is

constant and measures.

Solution

Temperature field in a half-space is defined by a differential equation

au a2u

at =a ax2 ' (l)

by initial condition

u(x,O) =0,

and by boundary conditions

-,i aul =.
a qs,
x x=o

u(oo,t) =0,

where

u(x,t)=T(x,t)-ra .

(2)

(3)

(4)

(5)
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oLL..----- x

Fig. 14.2. Diagram of a half-space heated by heat flux qs

Once the Laplace transform is applied to (1) and initial condition (2) is ac­
counted for, one gets

d
2U(x,s)

_!- ( )-
---2- U X,S -0.

dx a

The solution of (6) has the form

(6)

(7)

From condition (4), it follows that constant C
1

in solution (7) equals
zero. Constant C2 is determined from boundary condition (3), to which
Laplace transform was applied

(8)

(9)

(10)

By substituting (7) into (8) and accounting for the fact that C
1
=0, one ob­

tains

c =~ where q= r;j;.2 ')' "Sfa
nsq

By substituting (9) into (7), one has

U(x,s)= iIs e-
qx

•

A sq

Once inverse Laplace transformation is carried out (Table 14.2,
Ex. 14.1), an expression for temperature distribution is obtained:
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_T 7' - qs [2J¥t -x
2/(4at)

c. X )U- -10 -- -e -xerlc-- .
A 1[ 2,J;;i

Surface temperature of the half-space is expressed as

ul =TI -T = 2Qs ~ = 2QsJi .
x=o x=o 0 A f; j;~Acp

Exercise 14.4 Formula Derivation for Temperature
Distribution in a Half-Space with a Step Increase
in Temperature of a Medium

(11)

(12)

(1)

Derive a formula for temperature distribution in a semi-infinite body with
a convective boundary condition.

Solution

Half-space is heated or cooled by a medium with temperature Tez and an as­
signed heat transfer coefficient a. Half-space temperature field is defined
by the heat conduction equation

au a2u
-=a-at ax2

'

by initial condition

and by boundary conditions

u(x,o) = 0, (2)

u(oo,t)=o,

(3)

(4)

where u = T - To.
Once Laplace transformation is carried out, solution Utx.s) has the form

identical to the (12) in Ex. 14.2:

(5)
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x

Fig. 14.3. Temperature distribution in a half-space with a convective boundary
condition

In order to determine constant C
2

' Laplace transformation will be done for
boundary condition (3):

-A, aUI =a(Ucz -UI = J.oX s x 0x=o

(6)

Once (5) is substituted into (6) and subsequently transformed, constant C
2

is determined

a/A
C2 = (1;,z - To) s (q +a/A) .

Once (7) is substituted into (5), one has

(7)

(8)

Inverse Laplace transformation is carried out using the last formula from
Table 14.2 (Ex. 14.1),hence, we obtain a formula for temperature distribu­
tion

U= T - To = (1;,z - To)[erfc2~ - exp[ aA,x + a;~t)x

xerfc(2~+~~)l osxSoo.

Once the symbolsare introduced

(9)
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at
FO=-2 '

x

and relations accounted for

Bi= ax
A' (10)

solution (9) can be written in the form

T(x,t)-Ta (I) ( 2)()= =1-erf r;:;- -exp Bi-v Bi Fo x
t: -t; 2vFo

X[1-erf(21 +Bi~)}

(11)

(12)

Function (12) describes temperature distribution in the half-space with an
initial temperature To, whose surface is subjected to (for time t> 0) a liquid
with temperature Tcz *To. The half-space can be heated or cooled by a
fluid with a temperature of Tcz == const. Half-space surface temperature x == 0
is defined by the following expression obtained from (12)

T(O,t)=To +(~z -To)[l-erfC(~~)exp ( a~~t)] (13)

or

Expression (14) is also used for the experimental determination of the
heat transfer coefficient a on the basis of measured surface temperature at
a given time point tp'

Half-space temperature distribution in a semi-logarithmic and Cartesian
coordinate system is shown in Figs. 14.4 and 14.5.
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Exercise 14.5Formula Derivation for Temperature
Distribution in a Half-Space when Surface Temperature is
Time-Dependent

Derive a formula for temperature distribution in a semi-infinite body when
surface temperature is time-dependent.

cp(t)

(1)

Fig. 14.6. Diagram of a semi-infinite body with time-dependent surface
temperature

Solution

Temperature field in the half-space is expressed by a differential equation

au a2u

-==a-at ax2
'

by initial condition

u =0 for t =0, x > 0

and by boundary conditions

u == cp(t) for x == 0, t > 0,

u == ° for x ~ 00, t > 0,

(2)

(3)

(4)

where u =T - To' To is the constant initial temperature.
Once Laplace transformation of (1) is carried out and initial condition

(2) accounted for, one has

where

d
2U(x,s)

_!... ( )-
--2- U X,S -0,

dx a

00

u (x,s) = fe-stu(x,t )dt.
o

(5)

(6)
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As a result of the transformation of boundary condition (3), one gets

U(x,s)=¢(s) for x =o.

The solution for (5) is the function

Because V(oo, s) =0, constant C1in expression (8) equals zero: C1=O.
Therefore, solution (8) has the form

U( )=C -.[;7;.xx,s 2e .

From boundary condition (7), one obtains

By accounting for (10) in (9), solution Vex, s) assumes the form

U (x,s) = ¢(s) e-.[;7;.x

or after multiplying and dividing by s

e-.[;7;x

U(x,s)=s¢(s) .-.
s

Taking into account that (Table 14.1)

and

{
-.[;k.x}-1 e x x

fZ -- =erfc-- =1-erf--
s 2~ 2~'

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

excess temperature surplus u(x,t) can be determined on the basis of the
last dependency in Table 14.1

tdrp(r) x
u(x,t)= J--.erfc ~ dt .

o dt 2 a(t-r)

Heat flux q(x, t) is given by

.( )__ au(x,t)
q x,t - A .

ax

(15)

(16)
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By using a formula for derivative

d ( ) 2 _x
2

- erfx =-e ,
dx J;

heat flux (16) can be expressed in the following way:

(17)

q(X,t)=-AfdqJ(t)[-~.exp[- x
2 J. 1 ]dr, (18)

o dt J; 4a(t- T ) 2~a(t - T )

. f¥cP t 1 [ x
2 Jdrp ( t )q(x,t)= -f--exp - ·--dr.

1r o~ 4a(t-r) dt

Heat flux on the half-space surface is

q(x,t)l_ =~Acplfdrp(r)_I_dr.
x-a 1r 0 dt ~

(19)

Equation (19) is used for measuring heat flux on the basis of the half­
space measured temperature rp (t).

Exercise 14.6 Formula Derivation for a Quasi-Steady State
Temperature Field in a Half-Space when Surface
Temperature Changes Periodically

Derive a formula for the quasi-steady state temperature field in a half­
space, when surface temperature changes periodically (Fig. 14.7). Discuss
your findings.

Solution

Temperature field is expressed by equation

et a2r

-=a-
at ax2

'

by initial condition

(1)

O~x<oo (2)
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and by boundary conditions

TL=Q =T+ ~TcosOJt, t >0, (3)

TI =T
x~oo '

t >0, (4)

where OJ= 21dtois the circular frequency, while to a circular period.

T-------

Ts= T+ ~Tcos rot

c,p,A

o x

Fig. 14.7. Diagram of the half-space with periodically variable temperature

Because function u =T - T, which describes excessive temperature sur­
plus distribution has a periodic character, the solution of problem (1)-(4)
will be searched for in the form

u = T(x,t) - T = AekxeiOJt,

where function e
iOJ t is expressed by the Euler formula

e
i OJ t =cos OJt + i sin OJt.

By substituting T(x,t) from expression (5) into (1), one has

hence, the equation

whose solution has the form

k1,2 =±-JiOJ/Q.

Taking into account for the identity

i={i+l)2/2

(5)

(6)

(7)

(8)

(9)

(10)
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and the decreasing temperature, as the distance from the surface increases,
we assume for the further calculation that

k =-~iOJ / a =- (i +1)~OJ/ 2a .

By substituting (11) into (5), one has

A -(i+l).Jm/2a.x icot A -.Jm/2a·x i(mt-.Jm/2a.x)
U= e e = e ·e .

(11)

(12)

Using Euler's Equation (6), solution (12) can be written in the form

u= T(x,t) - T = Ae-x
../

m12a [COs(OJt - XJff) + iSin[OJt -XJff)]. (13)

ConstantA in (13) determined from condition (3) is

A=~T. (14)

By substituting (14) into (13) and taking only the real part of the solu­
tion, one has

T(x,t)=T +f..Te-x
../

m
/
2a

• COs(OJt-xJff} (15)

This is the equation that describes steady-state periodic changes in the
half-space, caused by periodic temperature changes on the half-space sur­
face.

The analysis of solution (15) leads to the following conclusions:
1. The amplitude of temperature fluctuations becomes smaller with

depth.
2. Low frequency temperature fluctuations penetrate materials deeper

than the high frequency fluctuations.
3. Steady-state temperature fluctuations transpire inside a body at a fre­

quency equal to the frequency of temperature changes on the half­
space surface.

4. Time points t, in which temperatures at a given point x = 8 reach its
maximum or minimum, are determined from equation

21l' t _ J ~21l' 1 =nx, n =1, 2, 3 ... . (16)
to to 2a

The even values of n, however, correspond to the maximum values T(8, t),
while odd values to the minimum values.

Next, we will determine the length of the temperature wave A. Assum­
ing that temperature distribution is analyzed at a given time point t = tp'

from (15), one has
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(19)n = 0,1,2, ....

T( x,t p ) = T+ I'1Te-x
.jm / 2a cos[«. - X~) (17)

where the coordinates of maximum temperature values will be determined
from.

Function cosrp assumes maximum values equal to 1 for rp = ±n21C, n =
0, 1, .... For the subsequent calculations, negative angle values rp are as­
sumed, so that the maximums x

n
of function T(x, t

p
) will lie on the positive

semi-axis x. The position of x maximums in function T (x, t) is determined
n p

from equation

«.-x~=-n2Jr, n=O, 1,2, .... (18)

From the solution of (18), one has

xn = f§ (OJtp+ 2nJr),

Hence, for n = 0 from (19), we obtain

Xo=tp~2OJa =2tpJJra,

to
(20)

while for n = 1

OJt - x ~ =-2Jr
p IV~ , (21)

(22)

Wave length A is obtained from the calculation of a distance between
two subsequent maximums

hence, by taking into account that OJ=21C Ito' one gets

A =xn+1 - xn =2~Jrato' (24)

The amplitude of temperature changes (Tm(x, t) - T) at a distance x from
the body surface is determined from (15), when
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(25)

T(x,tp) = -5e-157,08xeos(1,5708 - 157,08x)

°

-x~(J)J2a 15708I1Te =5e-' x

4= ~1tato = 0,02 ill

5

_I1Tix~(J)J2a = _ 5e-157,08x

10 x [em]

Fig. 14.8. Temperature distribution in a half-space at the moment t = tp =2.894 s
with periodic surface temperature changes 11x=o =5 cos(0.5428t)
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Accounting for (25) in (15), one has

Tm(x,t)-f =e-x~.
~T

(26)

Spatial temperature distribution T(x, t ) for a selected time t = t lies be-
p p

tween lines f ±~T exp(- x-JOJ/ 2a).
The depth of temperature wave penetration X

w
can be expressed as a dis­

tance from the half-space surface, on which the wave amplitude decreases
to 0,01 of the body surface amplitude, i.e. it is determined from equation

e -xw~OJ/2a =0,01· e -x~OJ/2aI '
x=o

where from one obtains

After finding the both-sided logarithm of (28), one has

-x
w
r;- =InO.Ol,
~~

hence

(27)

(28)

(29)Xw =-j¥In0.01= 4.605j¥ .

Figure 14.8 shows temperature distribution in the half-space for the follow­
ing data: a == 1.1.10-5 m2/s (steel), to == 11.575 s, T == O°C, J1.T == 5 K, tp == to /4 ==

2.89375 s. Once(20),(24)and (26)are substituted, onehas

2Jr
OJ =- =0.5428 rad/s,

to

Xo= 2t
p

§ = 2.2.89375 JT .1.1.10-
5

= 0.01 mVI: 11.575 '

A=2~JTato =2~JT.1.1.1O-5 ·11.575 =0.04 m.

The amplitude of temperature changes is expressed by function

T (x t)= i + ~Te-x~OJ/2a =0 + 5 exp(-x 0.5428) =5e-157.08x. (30)
m , 2 .1.1.10-5
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Spatial temperature distribution is obtained from (17)

r(x,tp ) = 5e-157.08x cos(1.5708 -157 .08x) . (31)

The depth of temperature wave penetration calculated by means of (29)
is

X
w

= 4.605 2 .1.1.10-
5

= 0.02932 m .
0.5428

(32)

Table 14.3 shows the temperature and amplitude history as the function x.

Table 14.3. The amplitude of temperature fluctuations Tm(x, t) and half-space tem­
perature Tm(x, t

p
) in time tp = t/4 = 2.89375 s

Entry no. x [m]
Tm(x,t) Tm(x,tp)

Entry no. x [m]
Tm(x,t) Tm(x,tp)

1 0.0000 5 0 7 0.0200 0.2161 0
2 0.0025 3.3762 1.29200 8 0.0250 0.0985 -0.0697
3 0.0050 2.2797 1.61198 9 0.0300 0.0449 -0.0449
4 0.0075 1.5393 1.42210 10 0.0350 0.0205 -0.0145
5 0.0100 1.0394 1.03940 11 0.0400 0.0093 0
6 0.0150 0.4739

It should be emphasized here that function (15) gives a real quasi­
steady-state solution for time t »0.

The solution for a selected time point can be obtained from (15), Ex. 14.5,
assuming that

tp( t ) =f + I1T cos OJt .

The overall form of the solution presented, for instance, in paper [5] has
the form

_ ~ ( g;) lOOpe-tPsin~p/a.x
T(x,t)=T+I1Te-x

OJ/2a cos mt- -x --J (2 2) dp. (33)
2a Jr 0 P +m

Transient part of the solution in (33) can be also expressed by means of
Fresnel integral [3], which is tabularized and easy to calculate by means of
power series.

If the half-space surface temperature is given by

T( O,t) =f + I1Tsinmt , (34)
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then surface heat flux is expressed by formula

where g is the auxiliary Fresnel function [2, 6].
Function g (x) is formulated as

[
1 ] J[ x

2
[ 1 ] . J[ x

2

g(x)= --C(x) cos-+ --S(x) Sln-
2 2 2 2 '

where C(x) and Sex) are Fresnel integrals

(35)

(36)

x (t 2 JC(x)= [cos 11
2

dt, x ( t
2 Js(x)= fSin 11

2
dt. (37)

Paper [3] presents a formula for the half-space surface temperature,
when heat flux periodically changes.

It is evident from the calculations, however, that the effect of the tran­
sient part of the solution quickly diminishes. One can assume that the
quasi-stationary temperature field is established for time t>5/m (Fig. 14.9)
when there is a periodic change in surface temperature, while t> 15/to [3]
when there is a periodically changeable heat flux.

lr-~~-------....~~-------....~~

0,5

-0,5

T(O,t) - r
~T

-1

° 5 10 wt 15

Fig. 14.9. Half-space surface heat flux q., when surface temperature changes pe­

riodically and is described by function T(O,t) =T+ ~Tsinmt - a dashed line [3]
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For t > 5/m, one can assume that g = 0 and (35) assumes the form

tis (t) = AllTlSin(tot+:). (38)

Exercise 14.7 Formula Derivation for Temperature of Two
Contacting Semi-Infinite Bodies

Derive a formula for temperature of two adjacent semi-infinite bodies, un­
der the assumption that at the interface the body contact is ideal, i.e. sur­
face temperature and heat flux are identical at the plane of contact.

Solution

In a case when there is an ideal contact between two bodies CD and ®, the
heat flux and temperature equality occurs at the plane of contact
(Fig. 14.10), therefore

1:1 -T I1 x=o - 2 x=o'
(1)

A 81; =A 81;
1 ax x=o 2 ax x=o

o x

Fig. 14.10. Diagram of two touching bodies

Temperature r: at the plane of contact does not change with time; this is
why the temperature field is described for both bodies by (16) from Ex.
14.2, which was derived for the step-change in the half-space surface.
Since within the plane of contact heat flux is formulated as (19) in
Ex. 14.2; therefore, from (1), one obtains
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Since (2) is solved with respect to Ts ' one gets

T =~·~,o +~~C2P2 '1;,0
s ~~CIPI +~~C2P2 '

375

(2)

(3)

where T},O and T2,o are initial constant temperatures of both bodies. One can

deduce from the analysis of (3) that the product ~ACP is a weight factor

in (3), which has an influence on whether the contact temperature T, is

closer to temperature T},O or T2,o. If ~~CIPI > ~A2C2P2 ' then contact tem­

perature is closer to temperature T} 0. Equation (3) is also true for bodies
with finite dimensions, provided that the contact time is short. Equation (3)
confirms the phenomenon, which is observed when one touches objects
whose temperature is lower than the temperature of a human body.
Wooden objects seem to be warmer than, for instance, objects made of

metal or stone. In the case of wooden objects, product ~ACP is smaller

than the product for human body. The sensory impression one gets is that
the object made of wood is warmer than the object made of metal. In real­
ity, both objects have the same temperature; the only thing that differs is
the contact temperature T,

Exercise 14.8 Depth of Heat Penetration

Determine the depth of heat penetration inside a body with a step-change
in the half-space surface temperature. As a penetration depth x = 5, as­
sume a coordinate point in which temperature change To - T(5, t) consti­
tutes 1% of the difference (To - T), where To and T, are, respectively, the
initial and surface temperature. On the basis of the obtained formula, de-
termine a time interval 0 S t s tv in which a steel wall of a tank, cooled
one-sided by water, can be treated as a semi-infinite body. For the calcula­
tion use the data that comes from the emergency cooling of a pressure ves-
sel of a nuclear reactor: To = 350°C, T,= 20°C, a = 1.1.10-5 m2/s. The thick­
ness of the vessel wall is L = 0.2 m. Calculate the vessel's wall
temperature after time tL at a distance of ~ =50 mm from the vessel's in­
ner surface.
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Solution

Here, we will make use of (16) from Ex. 14.2 for temperature distribution
in the half-space

T(x,t)-J: =erf(_X_).
To -T: 2f;i

From the definition of the depth of heat penetration, we have

To -T(8,t)=0.01(To-Ts ) ,

from where, we get

T(8,t)-Ts

( )
=0.99.

To -t;

From table in Appendix A for

erf[2~ ) = 0.99

we obtain
8
C=I.82.

2val

The depth of heat penetration is determined from (4)

8=3.64f;i.

Time t
L
is determined from (5) after substituting 8 =L

L =3.64~atL'

( )2 ()2=~ .L: = 1 0.2 =2745IL 5 • s.
a 3.64 1.1·10- 3.64

Temperature at a distance x = ~ after time tL is

T(8p 1L ) =I: + (To - I: )erf[ ~)=
2valL

=20+(350-20)erf( ~ 0.05 )=
2 1.1.10-5 ·274.5

= 20 + 330erf (0.455) = 20 + 330·0.48007 = 178.4°C.

(1)

(2)

(3)

(4)

(5)



Exercise 14.9 Calculating Plate Surface Temperature Under the Assumption 377

Exercise 14.9 Calculating Plate Surface Temperature
Underthe Assumption that the Plate
is a Semi-Infinite Body

Thick steel plate was quickly placed into an industrial furnace at high tem­
perature. Furnace temperature T

p
is much higher than the plate surface

temperature T , i.e. T » T . One can assume, therefore, that the plate sur-
s p s

face was suddenly warmed by a heat flow with constant density qs' since
T

p

4 >>T
s

4
• Treat the plate as a semi-infinite body. Calculate plate surface

temperature and temperature at point x = 0,03 m under the plate surface.
Assume that heat flux is qs = 500000 W/m

2
, initial plate temperature To =

30°C, A = 40 W/(m·K), C = 460 J/(kg·K), p = 7770 kg/m', Calculate tem­
perature after time t = 30 s, from the moment the charge is placed in the
furnace.

Solution

Surface temperature is expressed by (12) in Ex. 14.3:

T, = TL-o = To + 2QsJi = 30 + 2· 500000.J30 = 288.4° C .
- ~ffACP ~ff·40·460·7770

Temperature at the point with a coordinate x is given by (11), Ex. 14.3:

T(x,t) =To + ~ [2~e-X2/(4at) -x[l-erf[2~ ))lwhere a=c:·
After substitution of the numerical values, one obtains

a=~= 40 =1.11913.10-5 m2js,

cp 460·7770

x 0.03 =0.81863.
2~ 2"'1.11913.10-5 ·30

From Appendix A, one has

erf'(0.81863) =0.753.

After substituting data into temperature formula, one gets

T(0.03 m; 30 s)=30+ 50~~00[2 1.11913~10-5 ·30 .e-0818632 _

-0.03(1- 0.753) ] = 30 + 39.6 = 69.6°C.
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Exercise 14.10Calculating Ground Temperature at a
Specific Depth

Water-main pipe is buried in the ground at a depth of x = 1.2 m. Initial
ground temperature measures To = 5°C. External air temperature has
dropped to Tez = -15°C and remained constant for 50 days. Air-to-ground
surface heat transfer coefficient is at a = 10 W/(m

2·K). Calculate ground
temperature at a depth of x = 1.2 m. Assume the following ground proper-
ties for the calculation: A=2.5 W/(m·K), a =3.10-7

m
2/s.

Solution

First, dimensionless numbers F0 and Bi will be calculated

at 3.10-7 ·50·24·3600
Fo =-2 = 2 =0.90,

x 1.2
Bi= ax = 10·1.2 =4.8

A 2.5 '

~ ~ =0.5270, BiJF; =4.8~0,9=4.5537.
2vFo 2 0.90

Temperature at a depth of x = 1.2 m will be calculated using (12) from
Ex. 14.4

() ( ){ (
1 ) (Bi+Bi

2Fo)

T x,t =To + 1;;z -To I-erf 2JF; -e x

x[I-erf(2~ +BiJF;)]} =

= 5 +(-15 - 5){1- erf (0.527) - e(4.8+20.7362) [1- erf (0.527 + 4.5537)]}

= 5 - 20{I- erf(0.527)_e2S.S362 [1- erf'[ 5.0807)]}.

Once the value of function erf is read from Appendix A in Table AI, one
has

T (x,t) = 5 - 20{1- 0.54389 -1.230676 .1011[I-I]} = -4.12° C.

The obtained result is not, however, accurate due to the fact that it is diffi­
cult to calculate the product e25

,5362. erf (5.0807), since function erf (5.0807)
is very close to unity and is not tabulated for an argument larger than 3
(Appendix A). This is the reason why temperature T(x, t) is obtained by
means of the MathCAD program, in which the function erf (z) is also
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calculated for arguments larger than z = 3. Once calculations are com­
pleted, one has T (x, t) =-2.47°C. Similar temperature values are obtained
from diagrams presented in Figs. 14.4 and 14.5 (Ex. 14.4). It is evident
from the calculations above that one should bury the pipe at a greater depth
than it is suggested in this exercise, so that one can avoid the danger of wa­
ter freezing inside the pipe.

Exercise 14.11 Calculating the Depth of Heat Penetration
in the Wall of a Combustion Engine

Rotational speed of a two-stroke spark-ignition engine is 2200 rev.lmin.
The amplitude of temperature fluctuations on the inner cylinder surface is
5.7 K. Calculate penetration depth of temperature oscillations in the cylin­
der wall. Cylinder is made of a cast iron with the following thermo-
physical properties: A=52 W/(m·K), a =1.7.10-5 m2/s.

Solution

Penetration depth is given by (29), Ex. 14.6:

Xw=4.605~ .

Frequency of temperature changes is calculated using formula

2Jr -n
0)=-- rad/s,

60

(1)

(2)

where n rev.lmin is the rotational speed of the engine shaft. After substitut­
ing (2), one has

0) = 2Jr' 2200 =230.38 rad/s.
60

Penetration depth of temperature oscillations, determined by means of
(1), is

X
w

=4.605 2 ·1.7 .10-
5

=1.769.10-3 m=1.769 mm.
230.38

It is evident, therefore, that temperature fluctuations on the cylinder sur­
face are quickly suppressed and do not penetrate the cylinder wall deep
enough.
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Exercise 14.12 Calculating auasi-Steady-State Ground
Temperature at a Specific Depth when Surface
Temperature Changes Periodically

In the summer, ground surface temperature changes from 35°e to 100e

within 24 hours. Assuming that similar temperature changes occur over a
longer period of time, so that steady-state temperature fluctuations are
formed underground, calculate temperature change intervals at a depth of
a) Xl =0.9 m and b) x

2
=1.2 m. Also determine phase shift and time-lag of

temperature changes at a depth Xl and x2 in relation to temperature changes
on the ground surface. Assume the following thermo-physical properties of
the ground (clay) for the calculation: A, =1.28 W/(m·K), C =880 J/(kg·K),
p = 1500 kg/m',

Solution

Formulas derived in Ex. 14.6. will be used to solve this exercise. Ampli­
tude of temperature changes is given by (26), Ex. 14.6

Tm{x,t)-f=e-x~
I1T '

where:
T -T.

~T == max mIll - amplitude of ground surface temperature changes,
2

T
max

- maximum temperature of ground surface in °C,
Tmin - minimum temperature of ground surface in °C,
- T +T.
T == max mIll - average ground temperature.

2
Ground temperature fluctuations at a depth X occur in the interval

f -I1Te-x~ ~ t; (x,t) ~ i +I1Te-x~.

A phase shift in temperature fluctuations at a depth X is ((13) from
Ex. 14.6))

rp=x{jf,
while time-lag I1t, which corresponds to angle tpis

tp x{jf g; x~oI1t---- --x ---- -
- OJ - OJ 2a - 2OJa - 2 Jra'

(3)

(4)



Exercise 14.12 Calculating Quasi-Steady-State Ground Temperature 381

where OJ= 21C/to stands for temperature circular frequency, to- temperature
change period.

Calculations will be done separately for both Xl and x2 •

a) X =Xl =0.9 m.

a =~ = 1.28 = 9.697 .10-7
fi

2 /s,
cp 880·1500

~T=35-10 =25 =12.50C

2 2 '

f = 35+10 =22SC,
2

OJ= 2Jr = 2Jr = 7.2722.10-5 rad/s,
to 24·3600

~Te-XI.JmI2a =12.5ex (-0.9 7.2722.10-
5

]=0.050C.

P 2.9.697 .10-7

Temperature fluctuations at a depth Xl = 0.9 m are in the interval

22.45°C ~ T; (Xl't) ~ 22.55°C .

Time-lag in temperature fluctuations with respect to temperature changes
on the ground surface amounts to

~t = 0.9 24·3600 = 75783.7 s = 21 h 3min.
2 1C'9.697 .10-7

b)x=x
2=1.2m,

i1Te-X2.JmI2a =12.5exP(-1.2 7.2722.10-
5

]=0.0080C.

2.9.697.10-7

Temperature fluctuations at a depth x2 = 1.2 m are in the interval

22.492° C ~ t; (x2 , t ) ~ 22.508° C .

Time-lag I1t amounts to

I1t=~
2

24·3600 7 =101044.9 s=28 h 4min.
1C'9.697 ·10-
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From the analysis of results obtained for both cases, one can discern that
temperature fluctuations, which occur on the ground surface are very
quickly suppressed. Temperature changes that occur underground at a depth
of x

t
= 0.9 m and x

2
= 1.2 m are considerably delayed in comparison with the

changes that occur on the ground surface.

Exercise 14.13 Calculating Surface Temperature
at the Contact Point of Two Objects

Calculate surface temperature at the point of contact of a chamotte brick
heated to a temperature of 200°C with a) a cast iron object, b) a wooden
object (oak), with a temperature of 20°C. Lets assume that the objects are
suddenly placed against the heated chamotte brick. Assume that the con­
tact between the two objects is ideal, i.e. the temperature and heat flux on
the contact surface are identical. Use the following thermo-physical prop­
erties of the materials for the calculation:

• chamotte brick:
A=0.9 W/(m·K), C =835 J/(kg·K), p =1800 kg/m',

• cast iron:
A=53 W/(m·K), C =545 J/(kg·K), p =7200 kg/m',

• oak wood:
A= 0.19 W/(m·K), C =2400 Jz(kg-K), p= 700 kg/rn'.

Solution

Temperature of the surfaces in contact with each other will be calculated
from (3), Ex. 14.7

T = ..p:;;:;;: ·1;,0 +~~ C2P2 •1;,0
s ~A,C1Pl +~~C2P2 •

After substitution, of the numerical values we have

a) chamotte brick-cast iron

T = ,",,0.9· 835·1800 ·200 + ,",,53. 545·7200· 20 = 33.430C,

s -J0.9 .835 ·1800 + -J53 ·545 . 7200

b) chamotte brick-oak wood

(1)
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T = .J0.9·835 ·1800 · 200 + .J0.19·2400· 700· 20 =141.150C.

s ~0.9. 835·1800 +~0.19· 2400·700

From the comparison of the obtained results, it is clear that the contact
temperature is closer to the initial temperature of the body with a higher
product value ACp. In the case of a) contact temperature T,is closer to the
initial temperature of the cast iron, while in the case of b) to the initial
temperature of the chamotte brick.
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15 Transient Heat Conduction
in Simple-Shape Elements

This chapter analyzes the phenomenon of transient heat conduction in
simple-shape bodies. It presents twenty exercises, which contain both, the­
ory and computational problems. Using the separation of variables method
and Laplace transform, the authors derive formulas for temperature distri­
bution in a plate, cylinder and sphere with boundary conditions of 1st, 2nd
and 3rd kind. Also develop computational programs as well as graphs and
diagrams, which enable one to calculate roots of characteristic equations,
temperature distribution, temperature change rate and average temperature.
Dimensionless teperature values in the function of time are listed for
boundary conditions of 2nd kind in tables provided. Derived formulas are
applied to the calculation of temperature transients and thermal stresses.

Exercise 15.1 Formula Derivation for Temperature
Distribution in a Plate with Boundary Conditions
of 3rd Kind

Derive a formula for temperature distribution in a plate with a thickness
2L, when convective heat transfer occurs between both plate surfaces and
the surroundings, with temperature Tcz' when heat transfer coefficient a is
constant. Initial plate temperature is constant and is To (Fig. 15.1). Assume
constant material properties for the calculation: A, c and p.

Solution

(1)O~x~L,O~t,

Plate temperature distribution is described by the heat conduction equation

aT a2T

-=a-at ax2
'

boundary conditions
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aT I =0
ax x=o '

O~t , (2)

-:i aTI = a(TIX=L - ~z)'ax x=L
O~t (3)

and by initial condition

T(x,t)lt=o =To,

T

O~x~L. (4)

Fig. 15.1. Heating an infinitely long uniformly thick plate

Due to the symmetry of the problem, only region 0 :s x:S L (a half of the
plate's thickness) is analyzed here. In order to reduce the boundary condi­
tion (3) to a homogeneous condition, a new variable is introduced

e(x,t)=T(x,t)-~z . (5)

The initial-boundary problem (1)-(4) can be written then in the follow­
ing way:

to a2e

-=a-at ax2
'

ael =0
ax x=O '

(6)

(7)
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OBI-,.1,- =aB!a x=L'
X x=L

(8)

(9)

The separation of variables method is used to solve problems (6)-(9);
according to this method, the solution has a form

B(x,t) =tp(t)V/(x).

Once (10) are substituted into (6), one obtains

1 de: d
2V/

-V/-=tp-.
a dt dx'

(10)

(11)

(12)

(13)

Once both sides of (11) are divided by (lj/,tp) can be written in the form

1 1 de: _ 1 d 2V/
---; tpdt - V/ dx2 •

Due to the fact that the equality (12) should occur for any value of x and
t, both sides of the equation should be equal to the constant, which should,
in turn, have a negative value due to a finite temperature value in time.
Once the constant is marked as -k', one has

1 1 d.p _ 1 d
2
1f/ _ k2

a tp dt - V/ dx2 - - ,

from which two equations follow:

dqJ +ak2qJ=O,

dt

d 2

~+k2V/=O.
d 2t

General solutions to (14) and (15) are functions

V/ =C2 cos (kx) + C3 sin (kx) .

Once (16) and (17) are substituted into (10), one obtains

(14)

(15)

(16)

(17)
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B= tp(t)V!(x) = e-ak2t [Acos(kx) +Bsin(kx)] ,

where A =C1C2 and B =C1C3•

From boundary condition (7), one obtains

o() I = e-ak
2t

k (-A sin 0 + Bcos 0) = 0 ,
ox x=o

hence, B = O. Therefore, the solution of (18) has the following form

B(x,t) = Ae-aet cos(kx).

Once (19) is substituted into boundary condition (8), one has

AkAe-aet sin (kL) =a Ae-aet cos (kL) ,

hence the equation

kL
ctg(kL) = aL ·

A

(18)

(19)

(20)

Once we denote aLIA = Bi and kL = 11, transcendental (20) can be written
in the form

ctgzz =;i · (21)

Equation (21) has an infinite number of roots, which can be determined us­
ing one of the methods for solving non-linear algebraic equations, either,
for instance, the interval halving method or Muller method [1, 2]. These
are iterative methods; when using them, one is required to give an ap­
proximate starting value for each element or interval in which a particular
element is found. The interval with element Jl

i
can be determined and pre­

sented in a graphical form.
Once we denote Y1 = ctg Jl and Y2 = ulbi, we can easily determine roots

of (21), if we define intersection points of functions y/p) and Y2{J1) first
(Fig. 15.2).

One can see that a different set of roots corresponds to every value of
Biot number Bi

111 < 112 < 113 < ...< I1n < ...
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Y
Yl = ctgrz Yl Yl Yl

Fig. 15.2. Graphical determination of roots of characteristic equation (21): ctg fl =
fl/Bi

For number Bi ~ co line Y2 =u/Bi overlaps the x-axis and the roots of
(21) are

135
fll ==-lC , fl2 ==-lC , /13 ==-lC, ... , fln== (2n - l)n/2, n == 1,2,3....
222

For Bi ~ 0 line Y2 =u/Bi overlaps the y-axis and the roots of (21) are
fl] = 0, fl 2 =x, /13 =2n ... /1

n
= (n - l)n, n = 1, 2, 3... It is clear, therefore,

that i-element lies in the interval

i =1,2, ... (22)

Program in FORTRAN language for calculating roots of the characteristic
equation (21) by means of interval halving method

C Calculating roots of characteristic equation
program p15_1
dimension eigen(50)
open(unit=l,file='pI5 l.in')
open(unit=2,file='pI5_I.out')
read(l,*)ne
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" ,mi3

write(2,' (a) ') "CALCULATING ROOTS OF CHARACTERISTIC
&EQUATION"
write (2, , (/a) ') "DATA ENTERED"
write(2,' (a,ilO) ') "ne =",ne
write(2,' (/a,i3,a) ') "CALCULATIONS OF PRIMARIES",ne,

&" ROOTS OF EQUATION X*TAN(X)=BI"
write(2,' (/a) ')"CALCULATED EQUATION ROOTS"
write(2,' (a,a) ')" Bi mil mi2

&" mi4 mi5 mi6"
Bi=O.
call equation_roots (Bi,ne,eigen)
write(2,' (f7.3,5x,6f9.4) ') Bi, (eigen(i),i=l,ne)
Bi=O.OOl
variable=O.OOl
to k=1,5

to j=1,9
call equation roots (Bi,ne,eigen)
write(2,' (f7.3,5x,6f9.4) ') Bi, (eigen(i),i=l,ne)
Bi=Bi+variable

enddo
variable=variable*lO.
enddo
call equation_roots (Bi,ne,eigen)
write(2,' (f7.3,5x,6f9.4) ') Bi, (eigen(i),i=l,ne)
end program p15 1

c procedure calculates roots of characteristic equation
c x*tan(x)=Bi where Bi is Biot
c number, ne the number of calcul. roots, eigen vector
c with recorded calculated roots

subroutine equation_roots (Bi,ne,eigen)
dimension eigen(*)
pi=3.141592654
to i=l,ne

xi=(float(i)-l.)*pi
xf=pi*(float(i)-.5)
to while (abs(xf-xi) .ge.5.E-06)

xm=(xi+xf)/2.
y=xm*sin(xm)/cos(xm)-Bi
if (y.lt.O.) then xi=xm

else

xf=xm
endif

enddo
eigen(i)=xm

enddo
return
end
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The first six roots of (21) are presented in Table 15.1.
Every root JL

i
corresponds to a single (19), which has the following form, if

we take into account that JL
i
=k1L:

i = 1, 2 ... (23)

The obtained solution (23) satisfies differential equation (1) for any i, but
does not satisfy the initial condition, since for t = 0 (23) has the form

i =1,2 ... (24)

It is easy to satisfy the initial condition T(x,O) = To(x), if we assume that
the solution for temperature distribution is the sum of partial solutions (24)

(25)

Constants A will be determined from the initial condition. Once both sides
n

of the (25) are multiplied, for t =0, by cos( Am ~) and then integrated in

the interval 0 :::; x :::; L, one obtains

00 fCOS(Jlm !"')dx = ffAnCOS(JLn !...)COS(Jlm !-)dX. (26)
o L 0 n=l L L

Noting that

fCOs(JLn ~ }OS(JLm ~)dx =0, gdy n oF m ,

then from (26), one has

°0 fCOS(JLn ~)dx = An fCOS
2 (JLn ~)dx ,

Oo~sinJLn =An L[I+_I-sin2JLn) ,
JLn 2 2JLn

(27)

(28)

(29)
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Table 15.1.Roots of characteristic equation ctgz, =plBi

Bi

0.000 0.0000 3.1416 6.2832 9.4248 12.5664 15.7080
0.001 0.0316 3.1419 6.2833 9.4249 12.5665 15.7080
0.002 0.0447 3.1422 6.2835 9.4250 12.5665 15.7081
0.003 0.0547 3.1425 6.2837 9.4251 12.5666 15.7082
0.004 0.0632 3.1429 6.2838 9.4252 12.5667 15.7082
0.005 0.0706 3.1432 6.2840 9.4253 12.5668 15.7083
0.006 0.0774 3.1435 6.2841 9.4254 12.5668 15.7083
0.007 0.0836 3.1438 6.2843 9.4255 12.5669 15.7084
0.008 0.0893 3.1441 6.2845 9.4256 12.5670 15.7085
0.009 0.0947 3.1445 6.2846 9.4257 12.5671 15.7085
0.010 0.0998 3.1448 6.2848 9.4258 12.5672 15.7086
0.020 0.1409 3.1479 6.2864 9.4269 12.5680 15.7092
0.030 0.1723 3.1511 6.2880 9.4280 12.5688 15.7099
0.040 0.1987 3.1543 6.2895 9.4290 12.5696 15.7105
0.050 0.2218 3.1574 6.2911 9.4301 12.5703 15.7111
0.060 0.2425 3.1606 6.2927 9.4311 12.5711 15.7118
0.070 0.2615 3.1637 6.2943 9.4322 12.5719 15.7124
0.080 0.2791 3.1668 6.2959 9.4333 12.5727 15.7131
0.090 0.2956 3.1700 6.2975 9.4343 12.5735 15.7137
0.100 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143
0.200 0.4328 3.2039 6.3148 9.4460 12.5823 15.7207
0.300 0.5218 3.2341 6.3305 9.4565 12.5902 15.7270
0.400 0.5932 3.2635 6.3461 9.4670 12.5981 15.7334
0.500 0.6533 3.2923 6.3616 9.4775 12.6060 15.7397
0.600 0.7051 3.3204 6.3770 9.4879 12.6139 15.7461
0.700 0.7506 3.3477 6.3923 9.4983 12.6218 15.7524
0.800 0.7910 3.3744 6.4074 9.5087 12.6296 15.7587
0.900 0.8274 3.4003 6.4224 9.5190 12.6375 15.7650
1.000 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713
2.000 1.0769 3.6436 6.5783 9.6296 12.7223 15.8336
3.000 1.1925 3.8088 6.7040 9.7240 12.7967 15.8945
4.000 1.2646 3.9352 6.8140 9.8119 12.8678 15.9536
5.000 1.3138 4.0336 6.9096 9.8928 12.9352 16.0107
6.000 1.3496 4.1116 6.9924 9.9667 12.9988 16.0654
7.000 1.3766 4.1746 7.0640 10.0339 13.0584 16.1177
8.000 1.3978 4.2264 7.1263 10.0949 13.1141 16.1675
9.000 1.4149 4.2694 7.1806 10.1502 13.1660 16.2147
10.000 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594
20.000 1.4961 4.4915 7.4954 10.5117 13.5420 16.5864
30.000 1.5202 4.5615 7.6057 10.6543 13.7085 16.7691
40.000 1.5325 4.5979 7.6647 10.7334 13.8048 16.8794
50.000 1.5400 4.6202 7.7012 10.7832 13.8666 16.9519
60.000 1.5451 4.6353 7.7259 10.8172 13.9094 17.0026
70.000 1.5487 4.6461 7.7438 10.8419 13.9406 17.0400
80.000 1.5514 4.6543 7.7573 10.8606 13.9644 17.0686
90.000 1.5535 4.6606 7.7679 10.8753 13.9830 17.0911
100.000 1.5552 4.6658 7.7764 10.8871 13.9981 17.1093
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hence, one can easily determine constant An

Zsinzz,
An =()o ---.----

JLn+ SIn JLnCOS JLn
(30)

By substituting (30) into (25), the expression that defines temperature
distribution is obtained

00 2 . () 2 at_ SIn JLn x -f.in L2

B(x,t)-BoL. cos fJn - e ·
n=l JLn+ SIn JLn COS JLn L

(31)

(32)

If we introduce a dimensionless coordinate X = x/L and Fourier number
Fo =at/L2

, then we can write the (31) in the following form

~= T(x,t)-I;;z =2f sinfJn.coS(fJnX ) e-/1;Fo.

()o To - I;;z n=l JLn+ SIn JLn COS JLn

When calculating thermal stresses and accumulated or given off energy
during the processes of heating and cooling, respectively, one needs to
know what the average temperature across the plate thickness is

(33)

where B(x,t) is given by (32).
Once (31) is substituted into (33) and subsequently integrated, one has

(34)

The case ofan infinitely large heat transfer coefficient a

When heat transfer coefficient a is very large, the plate surface tempera­
ture is very close to the temperature of a medium. In the case when a~ 00,

then 71x=±L = Tez· If the Biot number Bi = aUA> 100, one can assume that the
heat transfer coefficient is infinitely large. For a ~ 00 the roots of charac­
teristic equation (21) are (Fig. 15.1)

n=l, 2, ... (35)
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Equation (32) assumes the form then

hence, one obtains

B 4~(-lr+I [(2n-l)Jr] [(2n-l)2 2 ]- =- LJ cos X exp - -- Jr Fo .°0 Jr n=l (2n -1) 2 2

Average temperature across the plate thickness is

o 1 L 00 8 [ ( 2n - 1)2 2 ]-=-fBdx= L 2 exp - -- Jr Fo .°0 LOo0 n=l (2n -1) Jr2 2

(37)

(38)

Equations (37) and (38) define plate temperature with the boundary con­
dition of 1st kind, when there is a step increase in plate surface tempera­
ture from the initial temperature To to temperature Tcz .

Exercise 15.2 A Program for Calculating Temperature
Distribution and Its Change Rate in a Plate with Boundary
Conditions of 3rd Kind

Write a program in the FORTRAN language for calculating plate tempera­
ture distribution, using the formulas derived in Ex. 15.1. The program
should also enable one to calculate average temperature and temperature
change rate at any point across the plate thickness. Use the developed pro­
gram to calculate the inner and surface temperature transient of the plate,
whose thickness is 2L (Fig. 15.1). Also calculate temperature change rate
on the surface of and inside the plate thickness. Assume the following val­
ues for the calculation: L = 0.1 m, A. = 50 W/(m·K), a = 1.10-5

m
2/s,

a =1000 W/(m
2·K), To =20°C, Tcz =100°C.
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Solution

Formulas for temperature distribution T(x,t) and average temperature

within the plate thickness f (x,t) were already derived in Ex. 15.1. Tem­
perature change rate is obtained once (32), from Ex. 15.1, is differentiated
with respect to time.

2 . (XJ
2 (T

7') 00 f.1n SIn f.1n cos f.1n - 2 at
dT(x,t) _ a cz - 10 " L -Pn L2

- 2 LJ e.
dt L n=l f.1n + sin f.1n cos f.1n

(1)

Program for calculating temperature distribution in a plate with thickness L,
which undergoes convective heating or cooling on its front face and is ther­
mally insulated on the rear surface

C Calculating temperature distribution in a plate with
C thickness L
C convectively heated or cooled on the butting face
C and thermally insulated on the rear surface

program p15_02
dimension eigen(50)
open(unit=1,file='p15 02.in')
open(unit=2,file='p15 02.out')
read(l,*)ne
read(l,*)t_o,t_cz,s_l,s a
read(l,*)s_lam,s_alfa
write(2,' (a) ') "CALCUL. PLATE TEMPERATURE DISTRIBUTION"
write (2, , (/a) ') "INPUT DATA"
write(2,' (a,ilO) ') "ne =",ne
write(2,' (a,elO.5,a) ') "t ° =",t_o," [C]"
write(2,' (a,elO.5,a) ') "t cz =",t_cz," [C]"
write(2,' (a,elO.5,a) ') "1 =",s 1, " [m]"
write(2,' (a,elO.5,a) ') "a =",s a, " [m"'2/s]"
write(2,' (a,elO.5,a) ') "lambda =",s_lam," [W/mK]"
write(2,' (a,elO.5,a) ') "alfa =",s alfa," [W/m2K]"
Bi=s alfa*s lis lam

- --
call equation_roots (Bi,ne,eigen)
write(2,' (/a) ')"CALCULATED TEMPERATURE [C]"
wr i te (2, , (a, a) , )

&" t[s] T(O,t) T(l,t) T sr(t) dT/dt(O,t)",
& dT/dt(l,t)"

t=O.
to while (t.le.2000.)

write(2,' (f5.0,5(3x,elO.3)) ')t,
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& temperature(O.,t,t_cz,t_o,s_l,s_a,ne,eigen),
& temperature (s_l,t,t_cz,t_o,s_l,s_a,ne,eigen) ,
& temperature_sr(t,t_cz,t_o,s_l,s_a,ne,eigen),
& temperature szyb(O.,t,t_cz,t_o,s_l,s_a,ne,eigen),
& temperature szyb(s l,t,t cZ,t o,S l,s a,ne,eigen)

t=t+5.
enddo
end program p15 02

c according to equation (1)
function temperature szyb(x,t,t cZ,t o,S l,s a,ne,

& eigen)
dimension eigen(*)
teta=O.
to i=l,ne

s=eigen(i)
teta=teta+s**2*sin(s)*cos(s*x/s 1)*

& exp(-s**2*s a*t/s 1**2)/(s+sin(s)*cos(s))

enddo
temperature_szyb=2.*s a*(t cz-t o)*teta/s 1**2
end function

c according to equation (34) in Ex. 15.1
function temperature sr(t,t cz,t_o,s l,s a,ne,eigen)
dimension eigen(*)
teta=O.
do i=l,ne

s=eigen(i)
teta=teta+sin(s)*sin(s)*

& exp(-s**2*s a*t/s 1**2)/(s+sin(s)*cos(s))/s
enddo
temperature_sr=t cz+(t o-t cz)*2.*teta
end function

c according to equation (31) in. Ex. 15.1
function temperature(x,t,t cZ,t o,S l,s a,ne,eigen)

dimension eigen(*)
teta=O.
do i=l,ne

s=eigen(i)
teta=teta+sin(s)*cos(s*x/s 1)*

& exp(-s**2*s a*t/s 1**2)/(s+sin(s)*cos(s))

enddo
temperature=t cz+(t o-t cz)*2.*teta

end function

c procedure calculates roots of the characteristic equation
c x*tan(x)=Bi where Bi is Biota number, ne number of
c calculated roots, eigen output vector with
c calculated roots
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subroutine equation_roots (Bi,ne,eigen)
dimension eigen(*)
pi=3.141592654
do i=l,ne

xi=(float(i)-l.)*pi
xf=pi*(float(i)-.5)
do while (abs(xf-xi) .ge.5.E-06)

xm=(xi+xf)/2.
y=xm*sin(xm)/cos(xm)-Bi
if (y.lt.O.) then

xi=xm
else

xf=xm
endif

enddo
eigen(i)=xm

enddo
return
end

Temperature transients of the plate surface, T(L,t) and T(O,t) and aver­

age temperature T(t) are presented in Fig. 15.3. Temperature change rates

dT/dt of the plate front face (x =L) and the rear surface (x =0) in the func­
tion of time are shown in Fig. 15.4.

1600 t [s] 20001200800400

40

60

100~-----------------.,

T[OC]

80

Fig. 15.3. Temperature transients of a front T(L,t) and rear plate surfaces T(O,t)

and average temperature T (t )
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0,25~-----------------,

dT/dt [KIs]

0,20

0,15
x=L

1200 1600 t [s] 2000800400
0,00 ,"""",,-~----'-_....I....- I......---,,-----&..._....a..-__~

o

0,10

0,05

Fig. 15.4. Heating rate transient dT/dt of the front plate face (x =L) and the rear
surface (x =0)

Exercise 15.3 Calculating Plate Surface Temperature
and Average Temperature Across the Plate Thickness
by Means of the Provided Graphs

Determine front face temperature of a steel plate and the temperature of its
insulated rear surface (Fig. IS.5) by means of the attached diagrams [I, 2].
Also calculate average plate temperature. The front face heated to an initial
temperature of To = 100°C is suddenly cooled by a compressed air flow
whose temperature is Tcz = 20°C. Use the following data for the calcula­
tion: a =200 W/(m2·K), L =0.05 m, A =50 W/(m·K), a =AI(c ) =1.10-

5

m2/s, t = 250 s. Furthermore, calculate the insulated plate surface tempera-
ture, if heat transfer coefficient is infinitely large, i.e. if a ~ 00. Determine
unknown temperatures by means of the program developed in Ex. 15.2.

Solution

To find appropriate temperatures in the diagrams provided, the Biot and
Fourier numbers are calculated first

Bi= aL = 200·0.05 =0.2
A 50 '

Fo=:!!....= 1.10-
5

·250 =1.
L2 0.05
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T +

T(O,t)

thermal
insulation

a

air flow

._.~

X

Fig. 15.5. Air flow cooling of the steel plate

From diagram in Fig. 15.6, one has (}/(}o =0.76, i.e.

T(L,t) - 1;,z = TCL,t) - 20 = 0.76 ,
To -~z To -20

hence, T (L, t) = 80.8°C. Temperature of the rear insulated surface is de­
termined from Fig. 15.7

T(O,t) - 20 =0.85
100-20 '

hence, one gets T(O, t) =88°C. Average temperature T(t) is determined

from the diagram in Fig. 15.8

TCt) - 1;,z = 0.82
T -T 'o cz

hence, T(l) = 85.6°C.

In a case when a ~ 00, from diagram in Fig. 15.9 one has

TCO,!) - 1;,z =0.1 08 ,
To -t;

which results in

T(0,1) =80·0.108 + 20 =28.64°C.

It is clear, therefore, that when a ~ 00 the plate cooling occurs much
faster than when a = 200 W/(m

2·K).
Once calculations are completed by

means of the program from Ex. 15.2, one gets
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T(L,t) =82.1°C

T(O,t) =88.4°C

T(t) =86.3°C

T(O,t)=28.7° C

~-t--""'--+"7""'+--7"'f--r-+--:iM--+-t-1~~ooofo--lf-+-lo-++-4-+--I-++--++-+-I 0 8

.,--.t--7"I~r+---+-r--+-T-+-+-Ir--+r~I-I-~-A---,4--+--tlF---A--~ 0:6 f
I- fl

t--~---+-~--"'t----1 L>r~--M"-""!t-r-+'----ho£--+-,'-t-7-f-Jl--¥--r+-~+--¥--I 0..4 ()0

0~2

ft
O~4()

0

! 0,6

0,8

1.0
0.0012 5 0..01 2
iiiI_~~~~8~~~iiiiiiiiii5~::::::L.LJ_l-Jo

5 0.. 1 0,2 0.. 5 1 2 5 10 20 50 100 200 500 1000
Fo ----....

Fig. 15.6. A change in dimensionless temperature of the plate butting face 0(1,

Fo)l()o = [T(L,t) - TcJ/(To- Tc) in the Fourier number function Fo =atlL
2

, Bi =
aLIA

In both cases, similar results are obtained. Diagrams help us easily deter­
mine temperature, but the method is less accurate, since the diagrams in
Figs. 15.6-15.9 do not have a corresponding curve for every value of the
Biot number.

Appendix 15.1. Diagrams for calculating plate temperature with a
convective boundary condition (Figs. 15.6-15.8)

o co

t

LO 0
OJ>012 5 0.01 2 5 0.1 0.2 0.5 1 2 5 10 20 50 100200 500 1000

Fo ---.....

Fig. 15.7. Dimensionless temperature changes in the center of the plate (insulated
surface) O(O,Fo)IOo= [T(O,t) - TczJ/(To- Tc) in the Fourier number function Fo =
atlL2

, Bi = aLIA

()
B 0..4o! 0,61---+----+---+-+-+--+---+-++-ItT-++l-++-+--tr-rt+-t-+---Y--rt-r--t-t~
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0 to

O~2

lJ t~ (t4
... ft

!O~6
00

O~8 O~2

1,0
O~OOI 2

Fig. 15.8. Changes in dimensionless average" temperature 0 100 =[T(Fo) - T;;z] I

(To - Tcz) in the Fourier number function Fo = aut:, Bi =aLIA

xlL---"

Fig. 15.9. Temperature changes across the plate thickness for selected values of
the Fourier number with a step-change in the plate surface temperature from tem-
perature To to temperature Tez' Fo = atlL2

, BI80 =[T(x,t) - TeJ/(To- Te)
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Exercise 15.4 Formula Derivation for Temperature
Distribution in an Infinitely Long Cylinder with Boundary
Conditions of 3rd Kind

Derive formulas for temperature distribution in an infinitely long cylinder
with an outer surface radius r, when convective heat exchange takes place
between a cylinder and its surroundings at temperature Tez and constant
heat transfer coefficient a on the cylinder surface. Initial cylinder tempera­
ture is constant and is To. Assume, for the calculation, constant material
properties: A~ c and p.

T

Fig. 15.10. The heating of an infinitely long cylinder

Solution

Temperature distribution in the cylinder is governed by the heat conduc­
tion equation

(1)

by boundary conditions

(2)

(3)
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and by initial condition

where

(4)

B=T (r, t ) - T;;z , (5)

According to the separation of variables method, the solution of the ini­
tial-boundary problem will be searched for in the form

B(r,t) =cp(t )v(r). (6)

(7)

By substituting dependency (6) into (1), one has

!~ dcp =~(d21f/ +.!.. dlf/).
a cp dt V dr' r dr

Since (7) should occur for any rand t, both sides of (7) should be equal
to the constant, which should, in turn, have a negative value due to a finite
value of temperature in time. By designating this constant as -k", one has

hence, two equations follow

~ drp +ae =0,
cp dt

d
21f/

+.!.. dlf/ +k21f/ = 0 .
dr' r dr

A general solution of (9) and (10) are functions

In - C -ak
2t

't' - Ie ,

Equation (6), therefore, has the form

B=rp(t)lf/(r) =e-
ak 2

/ [ AJo(kr) + BYo (kr)J,

(8)

(9)

(10)

(11)

(12)

(13)
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Due to the condition (2) and by accounting for the fact that Yo(r) ~ 00:
when r ~ 0, constant B in the (13) equals zero. Function (13) assumes the
form

(14)

By substituting (14) into boundary condition, a characteristic equation is
obtained

which results in

Jo(krz ) Akrz
J} (krz ) arz

When (15) was derived, the following was accounted for

dIo(kr) =-kJ
I
(kr) .

dr

Once notation Jl = kr is introduced, (16) has the form

Jo(Jl) _ fi
J}(fi) - m'

(15)

(16)

(17)

(18)

where Bi =ar IA.z

Equation (18) has an infinite number of roots.
Figure 15.11 presents a graphical method for determining roots of the

characteristic equation (18). Although such method is rarely used nowa­
days, it allows to find the intervals in which successive roots are found.
One can deduce from Fig. 15.11 that the n-th root of this equation is lo­
cated in the interval

fid,n < fin < fig,n '

where fid,n and fig,n are the roots of the following equations

J} (fid) =0,

t, (,llg )= 0 ·

(19)

(20)

(21)

Zeros of Bessel functions J} and Jo can be found in reference [5]. For

Bi-sco the characteristic equation (18) assumes the form

Bi ~oo. (22)
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Likewise for Bi ~ 0 (18) is simplified to a form

0,8

0,6

0,4

0,2

°
-0,2

-0,4

4

2

-2

-4

-6

Bi~O. (23)

Fig. 15.11. Graphical method for determining roots of the characteristic
equation (18): JO(Ji)IJ1(Ji) = p/Bi



406 15 Transient Heat Conduction in Simple-Shape Elements

Every root Ji
i
corresponds to a one (14), which, if we take into account

that II. =k.r , has the following form:r 1 I Z

(24)

where R = rlr .
Z

The program in FORTRAN language helps to calculate roots of the
characteristic equation (18). The first six roots of (18) are given in Table
15.2.

Program for calculating roots of the characteristic equation
Jo{p)1J1(p) =piBi, Bi = a rz IA

" ,mi3mi2

Program for calculating roots of the charact. (18)
program p15_4
dimension eigen(50),zero(100)
file p15_4.in is attached to the program
open(unit=1,file='p15_4.in')
open(unit=2,file='p15 4.out')
read(l,*)ne
read(l,*)nc
read (1, *) (zero (i), i=l, 2*nc, 2)
read(l,*) (zero(i),i=2,2*nc,2)
write (2, , (a) ')

& "CALCULATION OF ROOTS OF THE CHARACTERISTIC EQUATION"
write(2,' (/a) ') "INPUT DATA"
write(2,' (a,i10) ') "ne =",ne
write(2,' (/a,i3,a) ') "CALCULATION OF FIRST",ne,

& " ROOTS OF EQUATION X*J1(X)/JO(X)=BI"
write (2, , (/a) ') "CALCULATED ROOTS"
write(2,'(a,a)')" Bi mil

& " mi4 mi5 mi6"

c

C

Bi=O.
call equation_roots_cyl(Bi,zero,ne,eigen)
write(2,' (f7.3,5x,6f9.4) ') Bi, (eigen(i),i=l,ne)
Bi=O.OOl
zmienna=O.OOl
do k=1,5

do j=1,9
call equation roots_cyl(Bi,zero,ne,eigen)
write(2,' (f7.3,5x,6f9.4) ') Bi, (eigen(i),i=l,ne)
Bi=Bi+zmienna

enddo
zmienna=zmienna*10.
enddo
call equation_roots cyl(Bi,zero,ne,eigen)
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write(2,' (f7.3,5x,6f9.4) ') Bi, (eigen(i),i=l,ne)
end program pI5 4

c procedure calculates roots of the characteristic equation
c x*JI(x)/JO(x)=Bi where Bi is Biot number, ne is number of
c calculated roots, eigen is output vector with calculated
c roots zero() is output vector with funct. JI(x) and JO(x)
c zeroing points see Fig.15.II

subroutine equation_roots_cyl(Bi,zero,ne,eigen)
dimension zero(*),eigen(*)
pi=3.141592654
j=O
do i=l,ne

xi=zero(i+j)
xf=zero(i+l+j)
do while (abs(xf-xi) .ge.l.E-05)

xm=(xi+xf)/2.
y=xm*bessjI(xm)/bessjO(xm)-Bi
if (y.lt.O.) then

xi=xm
else

xf=xm
endif

enddo
eigen(i)=xm

j=j+I
enddo
return
end

FUNCTION bessjO(x)
REAL bessjO,x
REAL ax,xx,z
DOUBLE PRECISION pl,p2,p3,p4,p5,ql,q2,q3,q4,q5,

& rl,r2,r3,r4,r5,r6,sl,s2,s3,s4,s5,s6,y
SAVE

pl,p2,p3,p4,p5,ql,q2,q3,q4,q5,rl,r2,r3,r4,r5,r6,sl,s2,
& s3,s4,s5,s6

DATA pI,p2,p3,p4,p5/I.dO,-.1098628627d-2, .27345I0407d-4
&,-.2073370639d-5, .20938872IId-6/, qI,q2,q3,q4,q5/-
&.1562499995d-l, .1430488765d-3, -. 69III4765Id-5,
&.7621095I6Id-6,-.934945I52d-7/

DATA rI,r2,r3,r4,r5,r6/57568490574.dO,-13362590354.dO,
&65I619640.7dO,-112I4424.I8dO,77392.330I7dO,
&-184.9052456dO/,sl,s2,s3,s4,s5,s6
&/575684904II.dO,1029532985.dO,9494680.7I8dO,
&59272.64853dO,267.85327I2dO,I.dO/
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if(abs(x) .It.8.)then
y=x**2

bessjO=(rl+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/
&(sl+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))
else

ax=abs(x)
z=8./ax
y=z**2
xx=ax-.785398164
bessjO=sqrt(.636619772/ax)*(cos(xx)*(pl+y*(p2+y*

&(p3+y*(p4+y*p5))))-
& z*sin(xx)*(ql+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END

FUNCTION bessjl(x)
REAL bessjl,x
REAL ax,xx,z
DOUBLE PRECISION p5,ql,q2,q3,q4,q5,rl,r2,r3,r4,

& pl,p2,p3,p4,r5,r6,sl,s2,s3,s4,s5,s6,y
SAVE pl,p2,p3,p4,p5,ql,q2,q3,q4,q5,rl,r2,r3,

& r4,r5,r6,sl,s2,s3,s4,s5,s6
DATA rl,r2,r3,r4,r5,r6/72362614232.dO,-7895059235.dO,

&242396853.1dO,-2972611.439dO,15704.48260dO,
&-30.16036606dO/,sl,s2,s3,s4,s5,s6/144725228442.dO,
&2300535178.dO,18583304.74dO,99447.43394dO,
&376.9991397dO,1.dO/

DATA pl,p2,p3,p4,p5/1.dO, .183105d-2,-.3516396496d-4,
&.2457520174d-5,-.240337019d-6/, ql,q2,q3,q4,q5
&/.04687499995dO,-.2002690873d-3, .8449199096d-5,
&-.88228987d-6, .105787412d-6/
if(abs(x) .It.8.)then

y=x**2
bessjl=x*(rl+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/

&(sl+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))

else
ax=abs(x)
z=8./ax
y=z**2
xx=ax-2.356194491
bessjl=sqrt(.636619772/ax)*(cos(xx)*

&(pl+y*(p2+y*(p3+y*
&(p4+y*p5))))-z*sin(xx)*(ql+y*(q2+y*(q3+y*(q4+y*q5)))))
&*sign(l.,x)
endif
return
END
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Table15.2.Roots of the characteristic equation Jo(j.1)IJj(j.1) =j.1IBi, Bi =a r]A

Bi

0.000 0.0000 3.8317 7.0156 10.1735 13.3237 16.4706
0.001 0.0447 3.8320 7.0157 10.1736 13.3238 16.4707
0.002 0.0632 3.8322 7.0159 10.1737 13.3238 16.4708
0.003 0.0774 3.8325 7.0160 10.1738 13.3239 16.4708
0.004 0.0894 3.8327 7.0162 10.1739 13.3240 16.4709
0.005 0.0999 3.8330 7.0163 10.1740 13.3241 16.4709
0.006 0.1095 3.8333 7.0164 10.1741 13.3241 16.4710
0.007 0.1182 3.8335 7.0166 10.1742 13.3242 16.4711
0.008 0.1264 3.8338 7.0167 10.1743 13.3243 16.4711
0.009 0.1340 3.8341 7.0169 10.1744 13.3244 16.4712
0.010 0.1412 3.8343 7.0170 10.1745 13.3244 16.4712
0.020 0.1995 3.8369 7.0184 10.1754 13.3252 16.4718
0.030 0.2440 3.8395 7.0199 10.1764 13.3259 16.4725
0.040 0.2814 3.8421 7.0213 10.1774 13.3267 16.4731
0.050 0.3143 3.8447 7.0227 10.1784 13.3274 16.4737
0.060 0.3438 3.8473 7.0241 10.1794 13.3282 16.4743
0.070 0.3709 3.8499 7.0256 10.1803 13.3289 16.4749
0.080 0.3960 3.8525 7.0270 10.1813 13.3297 16.4755
0.090 0.4195 3.8551 7.0284 10.1823 13.3305 16.4761
0.100 0.4417 3.8577 7.0298 10.1833 13.3312 16.4767
0.200 0.6170 3.8835 7.0440 10.1931 13.3387 16.4828
0.300 0.7465 3.9091 7.0582 10.2029 13.3462 16.4888
0.400 0.8516 3.9344 7.0723 10.2127 13.3537 16.4949
0.500 0.9408 3.9594 7.0864 10.2225 13.3612 16.5009
0.600 1.0184 3.9841 7.1004 10.2322 13.3686 16.5070
0.700 1.0873 4.0085 7.1144 10.2419 13.3761 16.5130
0.800 1.1490 4.0325 7.1282 10.2516 13.3835 16.5191
0.900 1.2048 4.0562 7.1421 10.2613 13.3910 16.5251
1.000 1.2558 4.0795 7.1558 10.2710 13.3984 16.5312
2.000 1.5994 4.2910 7.2884 10.3658 13.4719 16.5910
3.000 1.7887 4.4634 7.4103 10.4566 13.5434 16.6498
4.000 1.9081 4.6019 7.5201 10.5423 13.6125 16.7073
5.000 1.9898 4.7131 7.6177 10.6223 13.6786 16.7630
6.000 2.0490 4.8033 7.7039 10.6964 13.7414 16.8168
7.000 2.0937 4.8772 7.7797 10.7646 13.8008 16.8684
8.000 2.1286 4.9384 7.8464 10.8271 13.8566 16.9179
9.000 2.1566 4.9897 7.9051 10.8842 13.9090 16.9650
10.000 2.1795 5.0332 7.9569 10.9363 13.9580 17.0099
20.000 2.2880 5.2568 8.2534 11.2677 14.2983 17.3442
30.000 2.3261 5.3410 8.3771 11.4222 14.4748 17.5348
40.000 2.3455 5.3846 8.4432 11.5081 14.5774 17.6508
50.000 2.3572 5.4112 8.4840 11.5621 14.6433 17.7272
60.000 2.3651 5.4291 8.5116 11.5990 14.6889 17.7807
70.000 2.3707 5.4419 8.5316 11.6258 14.7222 17.8201
80.000 2.3750 5.4516 8.5466 11.6461 14.7475 17.8502
90.000 2.3783 5.4592 8.5584 11.6620 14.7674 17.8739
100.000 2.3809 5.4652 8.5678 11.6747 14.7834 17.8931

W;'~X*:«";X*~:»»m«*74:*~:::~,»~&::m::m:w:«.::'"X%pt.;.;x.»'W';:,,(";:::;';W4(/'«:xm;:;.»»>.;x-;:~;:~"I);»~&~:x~;g~;*~~x'X«»"&;am>;x::~~*,~y.'l«*;.»x«:*::>>>;::gq;.m.~$$~~,e~-t};~~:x-».
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The obtained (24) satisfies differential equation (1) and boundary condi­
tions (2) and (3) for any i, but does not satisfy the initial condition, since
for t = 0 (24) has the form

(25)

Initial condition (4), T(r,O) = To can be easily satisfied when tempera­
ture distribution B(r,t) is the sum of partial solutions of (25)

00

B(r,t) =LAJo(JlnR)e-P/FO ,
n=1

(26)

where Fo = at/r ',z
Constants A will be determined from the initial condition. One can multi-

n

ply both sides of (26) for Fo = 0 by rJo(JimR), and following that integrate
them from r =0 to r =r while accounting for the initial condition (4).

As a result, one has

(27)

Next, the integrals [2, 5] are determined

IrJo[Jln ~ )Jo[JIm ~ )dr =

rz
2

[JimJo (Jin )J1(Jim) - JinJO(Jim )J1(Jin)]

Jim
2

- Jin
2

(28)

(29)

Characteristic equation (18) is also satisfied by Jim. By substituting Ji=Jim
into (18) and multiplying both sides of (18) by JO(Ji

n
) , one has

(30)

On the other hand, if we substitute Ji= Jin into (18) and multiply both sides
of the equation by Jo(Jim)' we have
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JlnJO(Jlm)Jl (Jln) =BiJo(Jln )Jo(Jlm) . (31)

From (30) and (31), the equality below follows

(32)

One can see, therefore, that for m :j:. n the integral (29) equals zero. For m =
n, the integral has the form

If we account for (28) and (33) in (27), then for m = n we have

2 BOJI (Jln )

By substituting (34) into (26), one obtains

(33)

(34)

where R = rlr , Fo = at/r',
z z

When calculating thermal stresses or calculating the amount of energy
needed to heat up a cylinder or the energy given off during the cylinder
cooling, it is necessary to know what the average temperature of the cylin­
der is, which is defined as

1 r
z z "

T(t) =-2 f2JrrT(r,t)dr =-2 frT(r,t)dr.
Jrrz 0 rz 0

Once we account for

(36)

(37)

and determine T(r,t) from (35), then substitute it into (36) and transform it,
we have
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If we account for the characteristic equation (18), we can write the (38) in
the form

(39)

(40)

A case ofan infinitely large heat transfer coefficient a

When heat transfer coefficient a is large, the surface temperature of a cyl­
inder is close to the temperature of a medium. In the case when a ~ 00,

then TI r=rz=T
cz

• The temperature of the cylinder is formulated in this case as

~_~ 2 J ( !-) -Jl/Fo- L...J 0 lin e ,
(}o n=l linJl (lin) rz

where lin' n = 1,2 ... are the roots of characteristic equation (22). Average
temperature is formulated as

where lin are the roots of Jo(li) =O.
Equations (40) and (41) express plate temperature with boundary condi­

tions of 1st kind, when surface temperature of the cylinder undergoes a
step increase from initial temperature To at the moment t == 0 to tempera­
ture Tcz for time t > o.

Exercise 15.5 A Program for Calculating Temperature
Distribution and Its Change Rate in an Infinitely Long
Cylinder with Boundary Conditions of 3rd Kind

Write a program in FORTRAN language for calculating temperature dis­
tribution in an infinitely long cylinder, using the formulas derived in
Ex. 15.4. The program should also allow to calculate average temperature
and temperature change rate at any point in the cylinder. By means of the
developed program, calculate temperature transient on the surface and in
the center of the cylinder. Also calculate temperature change rate on the
surface and in the center of the cylinder and average temperature transient
in time. Assume the following values for the calculation: r =0.025 m, A=
50 W/(m·K), a = 1.10-5 m2/s, a =2000 W/(m

2·K), To =20aC, Tcz = 100aC.

Apply formulas derived in Ex. 15.4.
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Solution

Temperature change rate is obtained once function T(r,t), formulated in
(35), Ex.15.4, is differentiated with respect to time. By accounting that
T(r,t) =~r,t)(To - Tc) + I:z ' one gets

dT(r,t) _ 2a(Tcz -To)~ JLn Jl (JLn)Jo(JLn R) _Ji2nFo
- 2 L..J 2 ( ) 2 ( ) e. (1)

dr r, n=l Jo JLn + J1 JLn

A program for calculating temperature distribution T{r,t), average tempera­

ture T{t) and temperature change rate dT{r,t)/dt in an infinitely long convec­
tively heated or cooled cylinder

C program for calculating temperature distribution, average
C temperature and temp. change rate in an infinitely long
C convectively heated or cooled cylinder

program p15_5
dimension eigen(50),zero(100)
open(unit=l,file='pI5_5.in')
open(unit=2,file='pI5 5.out')
read(I,*)ne
read(I,*)t_o,t_cz,s_rz,s a
read(I,*)s_lam,s alfa
read(I,*)nc
read (1, *) (zero (i) , i=l, 2*nc, 2)
read (1, *) (zero (i) , i=2, 2*nc, 2)
write (2, , (a) ')

& " CALCULATING CYLINDER TEMPERATURE DISTRIBUTION "
write(2,' (/a) ') "INPUT DATA"
write(2,' (a,il0) ') "ne =",ne
write(2,' (a,el0.5,a) ') "t ° =",t_o," [C]"
write(2,' (a,elO.5,a) ') "t cz =",t_cz," [C]"
write(2,' (a,el0.5,a) ') "r z =",s_rz," [m]"
write(2,' (a,el0.5,a) ') "a =",s_a, " [m"'2/s]"
write(2,' (a,el0.5,a) ') "lambda =",s_lam," [W/mK]"
write (2, , (a, elO. 5, a) ') "alfa =", s_alfa," [W/m2K]"
bi=s alfa*s rz/s lam

- - -
call equation_roots_cyl(bi,zero,ne,eigen)
write(2,' (/a) ')"CALCULATED TEMPERATURE [CJ"
write(2,'(a,a)')" t[s] T(O,t) T(r z,t) T_sr(t)

& dT/dt(O,t)", dT/dt(r z,t)"
t=O.
do while (t.le.400.)

write (2, , (f5. 0, 5 (3x, el0. 3) ) ') t,
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& temperature(O.,t,t_cz,t_o,s_rz,s_a,ne,eigen),
& temperature (s_rz, t,t_cz,t_o,s_rz,s_a,ne,eigen),
& temperature sr ( t,t_cz,t_o,s_rz,s_a,ne,eigen),
& temperature_szyb(O., t,t cz,t o,s rz,s a,ne,eigen),
& temperature szyb(s rz,t,t cz,t o,s rz,s a,ne,eigen)

t=t+1.
enddo
end program p15_5

c according to equation (35) in 15.4
function temperature (r,t,t cz,t_o,s rz,s a,ne,eigen)
dimension eigen(*)
teta=O.
do i=l,ne

s=eigen(i)
teta=teta+bessj1(s)*bessjO(s*rls rz)*

&exp(-s**2*s_a*t/s rz**2)/(s*(bessjO(s)**2+
&bessj 1 (s) **2))
enddo
temperature=t cz+(t o-t cz)*2.*teta
end function

c according to equation (38) in 15.4
function temperature sr(t,t cz,t o,s rz,s a,ne,eigen)
dimension eigen(*)
teta=O.
do i=l,ne

s=eigen(i)
teta=teta+bessj1(s)**2*

&exp(-s**2*s_a*t/s rz**2)/(s**2*(bessjO(s)**2+
&bessj1(s)**2))
enddo
temperature_sr=t cz+(t o-t cz)*4.*teta
end function

c according to equation (1)
function temperature szyb(r,t,t cz,t o,s rz,s a,ne,

&eigen)
dimension eigen(*)
teta=O.
do i=l,ne

s=eigen(i)
teta=teta+s*bessj1(s)*bessjO(s*rls rz)*

& exp(-s**2*s a*t/s rz**2)/(bessjO(s)**2+bessj1(s)**2)
enddo
temperature_szyb=2.*s a*(t cz-t o)*teta/s rz**2
end function

c procedure calculates roots of the characteristic eq.
c x*J1(x)/JO(x)=Bi where Bi is Biota number, ne number of
c calculated roots, eigen output vector with calcul.
c roots, zero() is output vector with function J1(x)
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c and JO(x) zeroing points see Fig.15.II
subroutine equation_roots_cyl(bi,zero,ne,eigen)
dimension zero(*),eigen(*)
pi=3.I4I592654
j=O
do i=l,ne

xi=zero(i+j)
xf=zero(i+l+j)
do while (abs(xf-xi) .ge.I.E-05)

xm=(xi+xf)/2.
y=xm*bessjl (xm)/bessjO (xm)-bi
if (y.lt.O.) then

xi=xm
else

xf=xm
endif

enddo
eigen(i)=xm

j=j+1
enddo
return
end

The program does not contain instructions for calculating Bessel functions
10 and 1

1
, since they are presented in Ex. 15.4. Temperature calculation re­

sults are presented in Fig. 15.12, while the change rate in Fig. 15.13.

lOOr---------=::::;;;;;;jiiiiijjjijjiiiiiiii81--~

80

60

40

200 t [s] 250

Fig. 15.12.Outer surface temperature history of a cylinder Ttr , t), center tempera­

ture T(O, t) and average temperature T (t) in the function of time
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3,00....-----------------,

dT/dt [K/s]

2,00 r = rz

1,00

0,000
50 100 150 200 t [s] 250

Fig. 15.13. Heating rate history dT(r,t)/dt of an outer surface (r =r) and the center
of a cylinder (r = 0) in the function of time

Exercise 15.6 Calculating Temperature in an Infinitely
Long Cylinder using the Annexed Diagrams

By means of the annexed diagrams [1,2] determine surface temperature in
the center line of a steel-made infinitely long cylinder with an outer sur­
face radius r, = 0.05 m (Fig. 15.14). Also calculate the cylinder's average
temperature. The surface of the cylinder, which has been heated to the ini-
tial temperature of To =100°C, is suddenly cooled by a compressed airflow
at the temperature of Tcz = 20°C. Assume the following values for the cal­
culation: a = 200 W/(m

2·K),
A = 50 W/(m·K), a = )Jcp = 1.10-5

m
2/s,

t =
250 s. Furthermore, determine temperature in the center line of the cylin-
der, if the heat transfer coefficient is infinitely large, i.e a ~ 00. Also cal­
culate the unknown temperatures by means of the program developed in
Ex. 15.5, by accounting for 20 terms in the infinite series.

Solution

In order to find the appropriate temperatures in the diagrams given, the
Biot and Fourier numbers have to be calculated first
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Bi= arz = 200·0.05 =0.2
A 50 '

at 1.10-5
• 250

Fo=z= =1.
r. 0.05

From the diagram in Fig. 15.15, one has 010
0
= 0,66, i.e.

T(rz ,t) - Tcz = T(rz ,t) - 20 = 0.66,
To - Tcz 100 - 20

hence, follows that T(rz,t) = 72.8°C. From diagram in Fig. 15.16, the di­
mensionless temperature can be determined in the center line of the cylin­
der B(O, Fo)/Bo

_O(_O,_Fo_) = T(O,t) - 20 = 0.72,
00 100-20

hence, we obtain T(O,t) = 77.6°C.

o ---~

r

Fig. 15.14. The cooling process of a steel cylinder

Average temperature T(t) is read from the diagram in Fig. 15.17

hence, T(t) = (100 - 20)·0.68 + 20 = 74.4°C.
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When a ~ 00, the dimensionless temperature in the center line of the
cylinder cannot be read from the Fig. 15.18. As a result of the calculations
conducted by means of the program from Ex.15.5, one has

T(rz ,t) =72.0°C

T(O,t)=77.3°C

T(t) =74.6°C

and

T(O,t)=20.4°C

Similar results were obtained, with an exception of the case a ~ 00. It is
easy to determine temperature when diagrams are used, but such method is
less accurate, since not every value of the Biot number has a corresponding
curve in the diagrams from Figs. 15.15-15.18.

Appendix 15.2. Diagrams for the calculation of temperature in an infinitely
long cylinder with a convective boundary condition

SO 40

0 I~O

0,2 0~8

f1

100 °,4 0,6

!0.6 (t4 l- Q
00

o.a 0,2

1..0 0
0.,0012 5 0,01 2 5 0,1 0,2 O~5 I 2 5 10 20 50 100200 5001000

Fo ----....

Fig. 15.15. A change in the dimensionless surface temperature of a cylinder O( 1,
Fo)IOo= [T(rz,t) - TcJ/(To- Tc) in the Fourier number function Fo =atlrz

2
, Bi = a

rIAz
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2
to LL.-J.~~rtii~.:===~~~::::t=----L---l._L--l---.J 0
uo: 2 5 10 20 50 100 20() 500 1000

O~2 I---+---+---+-+--I++I-J~+-t-+--+l~~--"-++--I-#:----+----..~-+-+ O~8

*0,4I---+--+----I---+-I+-l,........-+l-I--I--+-I-~_+Io__++____I+I-H___++~~__I 0,6 t
o 1- it
I 80t O~6 0,4

Fig. 15.16. Temperature changes in the center line of a cylinder B(O,Fo)IBo =
[TrO,t) - T ]/(To - T ) in the Fourier number function F0 = atlr 2, Bi = a riA\ ~ ~ z z

LO 0
0.0012 5 OJ)1 2 5 OJ 0,2 0.5 1 2 5 10 20 50 100 200 500 1000

Fo ---...

Fig. 15.17. Changes in average dimensionless temperature jj/00 = [T(F0) ­

T ]/(To - T ) in the Fourier number function F0 =atl r 2, Bi = a r IA
~ ~ z z
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0,8

1

06
Fo=08

° 0,2 0,4 0,6
R~

0,8 1,0

Fig. 15.18. Temperature changes in a cylinder elBo= [T(r,t) - Tcz]1 (To - Tcz) in the
radial coordinate function R = rlrz with a step change in the cylinder surface tem­
perature from temperature To to temperature Tcz

Exercise 15.7 Formula Derivation for a Temperature
Distribution in a Sphere with Boundary Conditions
of 3rd Kind

Derive a formula for temperature distribution in a sphere with the outer
surface radius r, and the convective boundary condition. Initial temperature
of the sphere To is uniform. Temperature of the medium increases step-like
from the initial temperature ~ to temperature Tcz (Fig. 15.19). Also derive a

formula for the average temperature i (t). Consider a specific case, when
a~oo.

Solution

Temperature distribution is described by the heat conduction equation

(1)
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by boundary conditions

aOI-A- =aOI 'ar r=~
r=rz

aOI -0
ar r=O

and by initial condition

where

() =T - Tez' ()o =To - Tez

If a new variable is introduced

9=Or,

(2)

(3)

(4)

(5)

Fig. 15.19. Heating a sphere with a medium, whose temperature undergoes a step­
change from initial temperature To to temperature Tez
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the initial-boundary problem (1)-(4) can be written as follows:

89 829

-=a-
8t 8r 2

'

-:1
89

1 =(a-~J9
8r r,

r=~ r=~

(6)

(7)

(8)

(9)

Once the separation of variables method is applied, as in the case of the
flat wall (Ex. 15.1) the following solution of (6) is obtained that accounts
for the boundary condition (8)

() =Ae-ak
2

t sin (k r) .

By substituting (10) into (7), one obtains

- AAkcos (k r, ) = ( a - ~JA sin (k r, ),

( )
k r.

tg k r, =--.- .ei-:

(10)

(11)

If notation f.1 = kr, is introduced, characteristic equation (11) can be written
in the form

t -~
gJi- 1- Bi ' (12)

where Bi = a r /:1.z
The first six roots of (12) are presented in Table 15.3.
Graphical method for determining roots of the characteristic equation (12)

is presented in Fig. 15.20. On the basis of this diagram, it is easy to deter-
mine the intervals, which contain roots of (12). If (1 - Bi) > 0, then n-th
root of (12) lies in the interval

(n-l)JrS;,un S; Jr +(n-l)Jr, n=l, 2, ..., gdy (l-Bi»O. (13)
2
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Table15.3.First six roots of the characteristic (12) tgJl = Jl/(1 - Bi)
determined by means of the programfor Ex. 15.7

Bi

0.000 0.0000 4.4934 7.7253 10.9041 14.0662 17.2208
0.001 0.0548 4.4936 7.7254 10.9042 14.0663 17.2208
0.002 0.0774 4.4939 7.7255 10.9043 14.0663 17.2209
0.003 0.0948 4.4941 7.7256 10.9044 14.0664 17.2209
0.004 0.1095 4.4943 7.7258 10.9045 14.0665 17.2210
0.005 0.1224 4.4945 7.7259 10.9046 14.0666 17.2211
0.006 0.1341 4.4947 7.7260 10.9047 14.0666 17.2211
0.007 0.1448 4.4950 7.7262 10.9048 14.0667 17.2212
0.008 0.1548 4.4952 7.7263 10.9049 14.0668 17.2212
0.009 0.1642 4.4954 7.7264 10.9049 14.0668 17.2213
0.010 0.1730 4.4956 7.7265 10.9050 14.0669 17.2213
0.020 0.2445 4.4979 7.7278 10.9060 14.0676 17.2219
0.030 0.2991 4.5001 7.7291 10.9069 14.0683 17.2225
0.040 0.3450 4.5023 7.7304 10.9078 14.0690 17.2231
0.050 0.3854 4.5045 7.7317 10.9087 14.0697 17.2237
0.060 0.4217 4.5068 7.7330 10.9096 14.0705 17.2242
0.070 0.4551 4.5090 7.7343 10.9105 14.0712 17.2248
0.080 0.4860 4.5112 7.7356 10.9115 14.0719 17.2254
0.090 0.5150 4.5134 7.7369 10.9124 14.0726 17.2260
0.100 0.5423 4.5157 7.7382 10.9133 14.0733 17.2266
0.200 0.7593 4.5379 7.7511 10.9225 14.0804 17.2324
0.300 0.9208 4.5601 7.7641 10.9316 14.0875 17.2382
0.400 1.0528 4.5822 7.7770 10.9408 14.0946 17.2440
0.500 1.1656 4.6042 7.7899 10.9499 14.1017 17.2498
0.600 1.2644 4.6261 7.8028 10.9591 14.1088 17.2556
0.700 1.3525 4.6479 7.8156 10.9682 14.1159 17.2614
0.800 1.4320 4.6696 7.8284 10.9774 14.1230 17.2672
0.900 1.5044 4.6911 7.8412 10.9865 14.1301 17.2730
1.000 1.5708 4.7124 7.8540 10.9956 14.1372 17.2788
2.000 2.0288 4.9132 7.9787 11.0855 14.2074 17.3364
3.000 2.2889 5.0870 8.0962 11.1727 14.2764 17.3932
4.000 2.4556 5.2329 8.2045 11.2560 14.3433 17.4490
5.000 2.5704 5.3540 8.3029 11.3348 14.4080 17.5034
6.000 2.6537 5.4544 8.3913 11.4086 14.4699 17.5562
7.000 2.7165 5.5378 8.4703 11.4773 14.5288 17.6072
8.000 2.7654 5.6078 8.5406 11.5408 14.5846 17.6562
9.000 2.8044 5.6669 8.6031 11.5993 14.6374 17.7032
10.000 2.8363 5.7173 8.6587 11.6532 14.6869 17.7481
20.000 2.9857 5.9783 8.9831 12.0029 15.0384 18.0887
30.000 3.0372 6.0766 9.1201 12.1691 15.2245 18.2869
40.000 3.0632 6.1273 9.1933 12.2618 15.3334 18.4085
50.000 3.0788 6.1582 9.2384 12.3200 15.4034 18.4888
60.000 3.0893 6.1788 9.2690 12.3599 15.4518 18.5450
70.000 3.0967 6.1937 9.2909 12.3887 15.4872 18.5864
80.000 3.1023 6.2048 9.3075 12.4106 15.5140 18.6181
90.000 3.1067 6.2135 9.3204 12.4276 15.5352 18.6431
100.000 3.1102 6.2204 9.3308 12.4414 15.5521 18.6632

~~"''''''''''''':.. .-:.. """""'... W~Q.w@.::t::~::::.w.am."?"~~..«w~;w-..:w~$.o:w&W.:?M&MWZ;.:?~.&:m:¥&.*8WW~z~».:~m::;~..:::::::ms:&m:i::::~~
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When (1 - Bi) < 0, then

;r +(n-l);r::s;,un ::s;;r+(n-l);r, n=l, 2, ..., gdy(l-Bi)<O. (14)
2

If Bi = 1, then

When Bi ~ 00, then

(15)

u; =nst, n=l, 2, ...

(1- Bi»O

Bi=oo
fl

(1 - Bi)<O

Yl=tgf.l

_ fl
Y2-l-Bi

(16)

Fig. 15.20. Graphical method for determining roots of the characteristic equation
tgJl =Jl /(I-Bi)

Computational program in the FORTRAN language was developed to
determine roots of the characteristic equation (12). The interval-halfing
method was applied, using (13) and (14).

A program for calculating the first six roots of the characteristic equation
(12): tg,u =,u 1(1 - 8/1

C program for calculating the first six roots
C of the characteristic equation (12) tg(mi)=mi/(l-Bi)

program p15_7
dimension eigen(50)
open(unit=1,file='p15 7.in')
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open(unit=2,file='p15 7.out')
read(l,*)ne
write(2,' (a) ')

&"CALCULATION OF ROOTS OF THE CHARACTERISTIC EQUATION"
write (2, , (/a) ') "INPUT DATA"

write(2,' (a,ilO) ') "ne =",ne
write(2,' (/a,i3,a) ') "CALCULATION OF FIRST",ne,

& "ROOTS OF EQUATION X*COT(X)=l-BI"
write (2, , (/a) ') "CALCULATED ROOTS"
write(2,' (a,a) ')" Bi mil mi2 mi3

& " mi4 mi5 mi6"
Bi=O.

call equation roots_sph(Bi,ne,eigen)
write(2,' (f7.3,5x,6f9.4) ') Bi, (eigen(i) ,i=l,ne)
Bi=O.OOl
zmienna=O.OOl
do k=1,5

do j =1, 9
call equation roots_sph(Bi,ne,eigen)
write(2,' (f7.3,5x,6f9.4) ') Bi, (eigen(i),i=l,ne)
Bi=Bi+zmienna

enddo
zmienna=zmienna*lO.
enddo

call equation roots_sph(Bi,ne,eigen)
write(2,' (f7.3,5x,6f9.4) ') Bi, (eigen(i) ,i=l,ne)
end program p15 7

c procedure calculates roots of the characteristic
c equation x*cot(x)=l-Bi where Bi is Biot number,
c ne is number of calculated roots, eigen is output
c vector with calculated roots

subroutine equation roots sph(Bi,ne,eigen)
dimension eigen(*)
pi=3.l4l592654
if ((Bi.eq.l.) .or. (Bi.gt.lOOOO.)) then

do i=l,ne
if(Bi.eq.l.) eigen(i)=(2.*float(i)-1.)*pi/2.
if(Bi.gt.lOOOO.) eigen(i)=float(i)*pi

enddo
else
h=l.-Bi
if (h.lt.O.) then

hl=pi/2.
h2=pi

else
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hl=O.
h2=pi/2.

endif
do i=l,ne

xi=hl+(float(i)-l.)*pi
xf=h2+(float(i)-1.)*pi
do while (abs(xf-xi) .ge.5.E-06)

xm=(xi+xf)/2.
y=xm*cos(xm)/sin(xm)-h
if (y.lt.O.) then

xf=xm
else

xi=xm
endif

enddo
eigen(i)=xm

enddo
endif
return

end

In order to satisfy the initial condition (5), the solution of (10) must be
modified to a form

00 ( J 2 atr -fln 2
.9 = I An sin u; - e <,

n=l rz

By substituting expression (17) into (9), one obtains

(17)

(18)

After multiplying (18) by sin (JIm ~Jand integrating it within the interval

from r =0 to r =r , one hasz

The integral on the right-hand-side of (19) is

r

J
z

• ( r J. ( r ) _ r, (j.1n sin j.1m cos u; - u; sin u; cos j.1m )
SIn lin - SIn 11m - dr - 2 2 ,(20)

o r, r, 11m - lin

while, after accounting for (12), it has the form
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o dla mi:-n

(21)

m=ndlar, (. )-- lin - SIn lin COS lin
2lin

Once we account for (21) in (19) and calculate the integral on the left­
hand-side, we have the following from (19)

_ ( ) 2(sin lin - lin cos lin )
An - To-Tcz .

lin - sin lin cos lin
(22)

If we substitute (22) into (17) and account for (5), then, after transforma­
tions, we obtain

~ = T (r,t) - Tcz = f 2( sin,u~ - ,un COS,un ) . sin(,unR ) e-1J~Fo , (23)

()o To - Tcz n=l lin - SIn lin COS lin u.R

where R = rlr, Fo = atlr 2.
z z

Dimensionless average temperature is defined as

()- f(t) T 3 rz
() 1 ()

-= - cz =3 J-r2dr=3 J-R2dR.

~ ~-~ ~o~ o~
(24)

Once we substitute (23) into (24) and account for

1JRsin(,un R) dR = ~(sin zz, - u; cosu; )
o lin

(25)

we have

1f _~ 6 (sin,un - ,un COS,un )2 -1J;Fo
-LJ 3. e.

()o n=l lin lin - SIn lin COS lin
(26)

The case ofan infinitely large heat transfer coefficient a

When heat transfer coefficient a is large, then surface temperature of a
sphere is close to a temperature of the medium, i.e. TL=rz = Tcz• If the Biot
number Bi=arlA >100, one can assume then that the heat transfer coeffi-z

cient is infinitely large. For a ~ 00, the roots of characteristic equation
(12) are

lin =ntt, n=l, 2, ... (27)
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By substituting the roots of (27) into (23), one has

~= T(r,t)-Tcz =I2(-lf+l sin (mrR) e-(ntr)2 Fo, (28)
00 To - Tcz n=l nnR

where Tcz is, in the given case, a surface temperature of the sphere.
Average temperature

- - 1

~= T(t)-Tcz =3 fR2~dR (29)
00 To - Tcz 0 00

is given by

if = I -s->':
00 n=l (nJr )

Equations (29) and (30) express temperature of the sphere with the bound­
ary condition of 1st kind, when surface temperature of the sphere increases
step-like from initial temperature To to temperature Tcz .

Exercise 15.8 A Program for Calculating Temperature
Distribution and Its Change Rate in a Sphere
with Boundary Conditions of 3rd Kind

Write a program in FORTRAN language for calculating temperature dis­
tribution in a sphere, using the formulas derived in Ex.I5.7. The program
should also allow to calculate average temperature and the temperature
change rate at a random point in the sphere. Using the developed program,
calculate temperature transient of the sphere surface and center. Also de­
termine temperature change rate on the surface and in the center of the
sphere and average temperature transient in time. Assume the following
values for the calculation (steel quenching): r = 18.75 mm, a = NCp =
1.0.10-5 m2/s, A= 36 W/(m·K), a= 500 W/(m2·K), To = 850°C, Tcz= 40°C.

Solution

Temperature change rate is obtained by differentiating function T(r,t) with
respect to time, formulated by (23) in Ex. 15.7

dT (r,t) = a(Tcz - To )f 2j.Ln (sin j.Ln - j.Ln cos j.Ln) . sin (j.LnR ) e-Pn2Fo (1)

dt r/ n=l u; - sin zz, cos u; R

where R = rlr, Fo =at/r ',z z
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A program for calculating temperature distribution T(r,t), average tempera­

ture T (t) and temperature change rate dT(r,t)/dt in the heated or convec­
tively cooled sphere

C program for calculating temperature distribution,
C average temperature and temperature change rate
C in the heated and convectively cooled sphere

program p15_08
dimension eigen(50)
open(unit=1,file='p15 08.in')
open(unit=2,file='p15 08.out')
read(l,*)ne
read(l,*)t_o,t_cz,s_rz,s a
read(l,*)s_lam,s alfa
write (2, ' (a) ')

& "CALCULATING SPHERE TEMPERATURE DISTRIBUTION"
write (2, ' (/a) ') "INPUT DATA"
write(2,' (a,ilO) ') "ne =",ne
write(2,' (a,elO.5,a) ') Itt ° =",t_o, " [C]"
write(2,' (a,elO.5,a) ') Itt cz =",t_cz," [C]"
write(2,' (a,elO.5,a) ') "r z =",s_rz," [m]"
write(2,' (a,elO.5,a) ') "a =",s a, " [mI\2/s]"

write(2,' (a,elO.5,a) ') "lambda =",s_lam," [W/mK]"
write(2,' (a,elO.5,a) ') "alfa =",s alfa," [W/m2K]"
bi=s alfa*s rz/s lam

- -
write(*,*)bi
call equation_roots sph(bi,ne,eigen)
write(*,*)eigen
wr i te (2, ' (/ a) , ) " CALCULATED TEMPERATURE [C]"
write(2,' (a,a) ')" t(s] T(O,t) T(r z,t) T sr(t)

& dT/dt(O,t)"," dT/dt(r z,t)"
t=O.
do while (t.le.2000.)

write (2, ' (f5. 0, 5 (3x, elO. 3) ) ') t,
& temperature(1.E-7,t,t_cz,t_o,s rz,s_a,ne,eigen),
& temperature(s rZ,t,t cz,t_o,s_rz,s_a,ne,eigen),
& temperature sr(t,t cz,t_o,s_rz,s_a,ne,eigen),
& temperature_szyb(1.E-7,t,t_cz,t_o,s_rz,s_a,ne,eigen),
& temperature szyb(s rZ,t,t cZ,t o,s rz,s a,ne,eigen)

t=t+5.
enddo
end program p15 08

c according to equation (1)
function temperature szyb(r,t,t cZ,t o,s rz,

&s_a,ne,eigen)
dimension eigen(*)
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teta=O.
do i=l,ne

s=eigen(i)
teta=teta+s*(sin(s)-s*cos(s))*sin(s*r/s rz)*

& exp(-s**2*s a*t/s rz**2)/(s-sin(s)*cos(s))/(r/s rz)
enddo
temperature_szyb=2.*s a*(t cz-t o)*teta/s rz**2
end function

c according to equation (26) in 15.7
function temperature sr(t,t cz,t o,s rz,s a,ne,eigen)
dimension eigen(*)
teta=O.
do i=l,ne

s=eigen(i)
teta=teta+(sin(s)-s*cos(s))**2*

& exp(-s**2*s a*t/s rz**2)/(s-sin(s)*cos(s))/(s**3)
enddo
temperature_sr=t cz+(t o-t cz)*6.*teta
end function

c according to equation (23) in 15.7
function temperature (r,t,t cz,t o,s rz,s a,ne,eigen)
dimension eigen(*)
teta=O.
do i=l,ne

s=eigen(i)
teta=teta+(sin(s)-s*cos(s))*sin(s*r/s rz)*exp(-s**2*

& s a*t/s rz**2)/(s-sin(s)*cos(s))/(s*r/s rz)
enddo
temperature=t cz+(t o-t cz)*2.*teta
end function

c procedure calculates roots of the characteristic
c equation x*cot(x)=l-Bi where Bi is Biot number,
c ne is number of calculated roots, eigen is
c output vector with calculated roots

subroutine equation roots sph(bi,ne,eigen)
dimension eigen(*)
pi=3.141592654
if ((bi.eq.1.) .or. (bi.gt.10000.)) then
do i=l,ne

if(bi.eq.1.) eigen(i)=(2.*float(i)-1.)*pi/2.
if(bi.gt.10000.) eigen(i)=float(i)*pi

enddo
else
h=l.-bi
if (h.lt.O.) then

h1=pi/2.
h2=pi
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else
hl=O.
h2=pi/2.

endif
do i=l,ne

xi=hl+(float(i)-l.)*pi
xf=h2+(float(i)-1.)*pi
do while (abs(xf-xi) .ge.5.E-06)

xm=(xi+xf)/2.
y=xm*cos(xm)/sin(xm)-h
if (y.lt.O.) then

xf=xm
else

xi=xm
endif
enddo
eigen(i)=xm

enddo
endif
return
end

Results from the calculation of temperature and temperature change rate
are presented in Figs. 15.21 and 15.22.
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Fig. 15.21. Temperature transient of the sphere's outer surface T(rz,t) , center
T(O,t), average temperature r(t) and temperature difference J1.T =T(O,t) - T(rz,t)
in the function of time (steel sphere quenching)
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Fig. 15.22. Temperature change rate transient dT/dt on the outer surface of a
sphere (r = r) and in the sphere center (r =0) in the function of time (steel sphere
quenching)

Exercise 15.9 Calculating Temperature of a Sphere
using the Diagrams Provided

On the basis of the given diagrams [1, 2] determine temperature on an
outer surface of a sphere and the temperature at its center (Fig. 15.23).
Also calculate average temperature of the sphere. Outer surface of the
sphere, heated to a uniform initial temperature of To = 850°C was suddenly
cooled in a quenching bath with temperature of Tcz = 40°C. Assume the fol­
lowing values for the calculation: r = 0.01875 m, a = 384 Wl(m

2
•K), A=

36 W/(m·K), a = A/Cp = 1.10-5 m2/s, t = 35 s. Also calculate the tempera­
ture of the sphere center for t =7 s, if the heat transfer coefficient is infi­
nitely large, i.e. a ~ 00. In addition, determine the unknown temperatures
by means of the program developed in Ex. 15.8.

Solution

In order to find the appropriate temperatures in diagrams provided, the
Biot and Fourier numbers should be calculated first

Bi = arz = 200·0.05 =0.2
A 50 '

Fo= G; = 1.10-
5
.3; =0.9956.

rz 0.01875
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Fig. 15.23. The cooling of a steel sphere in a quenching bath

From the diagram in Fig. 15.24, one has

T(rz,t) - Tcz T(rz,35s)- 40
B= = =0.54,

To -Tcz 850-40

hence, T(rz,t) = 477.4°C. From Fig. 15.25, one can determine dimen­
sionless temperature of the sphere center

_B(~O,_Fo~) = T(0,t)-40 =0.6,
Bo 850 -40

hence, one obtains T(O,t) =(850 - 40) - 0.6 + 40 =526°C.
Dimensionless average temperature obtained from Fig. 15.26 is

B(Fo) = f(t)-Tcz =0.58,
Bo To - Tcz

hence,

T(t) =(850 - 40)·0.58 + 40 =509.8°C.

In the case when a ~ 00 , one obtains from Fig. 15.27 for t = 7 s
(Fo =0.199)

B(O,Fo) T( O,t) - Tcz
-:....._-=- = =0.28 ,

Bo To - Tcz

hence,
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T(O,t) = (To - ~z)' 0.28 + E; = (850- 40)·0.28 + 40 = 266.8°C.

When a ~ 00, the cooling of the sphere is very rapid.
By conducting calculations by means of the program from Ex. 15.8, one

has

T(rz,t) = 478.1 DC

T(O,t) = 523.2 DC

f(t)=496.0 DC

and

T(O,t) = 266.6°C

for t = 35 s and a =384 W/(m 2 ·K)

In both cases similar results are obtained. The diagrams help to determine
temperature; the method, however, is less accurate, since not every value
of the Biot number Bi has a corresponding curve in the diagram
(Figs. 15.24-15.27)

Appendix 15.3. Diagrams for the calculation of temperature in a sphere
with a convective boundary condition

t--~--+--'24---I----'JIIlf----hJ--~~~++-+---1f-+o+-++-+--+-+-+--++--+--I----fO,6 1
t-Jl.0,4 ()

o

1,0 0
0,001 2 5 0~01 2 5 0.1 O~2 0,5 1 2 5 10 20 50 100200 5001000

Fa ------

Fig. 15.24. Change in the dimensionless surface temperature of a sphere
()(l,Fo)/()o = [T(rz,t) - TcJ/(To- Tc) in the Fourier number function Fo = at/rz

2
, Bi =

a~/A
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Q 0,4·1--+----I---+----I--..J--4-~+_+___J1___.,t11___JC_+__J+_++_I_+__tC~t_+_~___10,6 t·

00!0,6 0,41_!-

0,8 O~2 0

1,0 0
O~0012 5 0,01 2 5 o.t 0.2 o.s I 2 5 10 20 50 100200 500 1000

fa ----....

Fig. 15.25. Changes in the dimensionless temperature in the center of a sphere
8(O,Fo)18o = [T(O,t) - TcJ/(To - Tc) in the Fourier number function Fo = atlrz

2
, Bi =

a 'zIA

1,0JiiIii_!i!(i:~~iiiiiiiiiiiiiiiii'i~~iiiiii_aa:::::L~LLL~-J 0
0.001 2 5 10 20 50 100200 500 1000

0,2 ~+----f---I----+--+--~f-+#--+4-oI---+o-+-+-I----II---f-l'--+-t~'I--~~~---40,8

0, t00,4 0,6
o!0,6J--+---4--4---A-~+-7--r#-":"'-~~-:A---';;~~~....:+I~~-I----I--1 0,4

1_
i
00

0,8 1---i--~-~~~~I--'JI.-.~-,4.IIo---III4--~-,c;....t'--4--~~-+----+----IO,2

Fig. 15.26. Changes in the average dimensionless temperature (j/00 = [T (Fo) ­

T ]/(To - T ) in the Fourier number function F0 =atlr 2, Bi =ar IAcz cz Z Z
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Fig. 15.27. Temperatures of a sphere in the dimensionless radius function R = rlr
for chosen values of the Fourier number with a step-change in surface temperature
from temperature To to temperature Tcz' Fo = atlrz

2
, BIBo= [T(r,t) - TcJ/(To- Tc)

Exercise 15.10 Formula Derivation for Temperature
Distribution in a Plate with Boundary Conditions
of 2nd Kind

Determine a formula for temperature distribution in an infinite plate with a
width 2L, which is heated on both sides by a heat flow at constant density
qs (Fig. 15.28). Thermo-physical properties p, A, c are constant. Initial

plate temperature is uniform and measures To. Apply the Laplace transform
to solve the initial-boundary problem.

Solution

(1)

Due to the symmetry of the temperature field, temperature distribution will
be determined in region 0 :::; x :::; L defined by the heat conduction equation

a2T et
a--==-

ax2 at'
by boundary conditions
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A,p,C

Tol--P-----+---1IIIIJII

-L L------ -~o x

Fig. 15.28. Both-sided plate heating by a heat flow at constant density qs

aTI =0
ax x=o '

I) aTI _.
/l" -qs

ax x=L

and by initial condition

(2)

(3)

(4)

Once Laplace transform is applied to (1)-(3), while accounting for the
initial condition (4), one has

d 2f -
a--sT =10 (5)

dx2
'

where

dT
=0

dx x=o '
(6)

(7)
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00

T=2'[T(x,t)] = fT(x,t)e-Sldt.
o

The solution to the boundary problem (5)-(7) is

. h[~)qscos -x
- To a To gl (S)
T=-+ =-+--

S ~. [~) S g2 ( S )AS -sInh -L
a a

or

- To 4scosh(qx ) To gl(S)
T=-+ =-+--

S Asqsinh (qL) S g2 ( s) ,

where q =~S/ a .

Denominator is zero, when S = 0 or

(8)

(9)

(10)

(11)

(14)

(12)

(13)

sinh (qL) =°.
Once notation Jl = iqL is introduced and

sinh (ia) =isina

accounted for, (12) can be written in the form

sinh ( ~n ) = 0 lub sinh (-ipn) = O.

If we account for the identity of (13), then we have from (14) the char­
acteristic equation

The roots of (15) are

Iln =nn , n =0, 1, ...

By accounting that u; = iq.L = i~L, one has

(15)

(16)

2
Iln a

s; =--2'
L

n=O, 1, ... (17)

Therefore, there are a double pole s =0 and single poles (17) for n = 1,
2, .... Temperature distribution T(x,t) will be determined from (18) while
accounting for (25) (both formulas are listed in Appendix H)
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_ 1 8+ioo_

T(X,t)=:Z-l[T(s)]=-. f T(s) estds=
2Jr1

8
_

ioo
(18)

In order to determine coefficients A, B, D and E, the transform

( )
st [-() To] st qs cosh (qx) stF s e = T s -- e = e

s Asqsinh (qL)

should be transformed by expanding function cosh(qx) and sinh(qL) and est

into Taylor series

. [ sx
2

S2 X
4 J( )qs 1+-+--2 +... l+st+ ...

2a 24a

(20)

The following expressions for constants (Appendix H) are obtained from
(20).

• 2

A _. B - qsx
- qs, - 2a '

D= AL ,
a

AL3

£=-2·
6a

(21)

(22)

Next, we must determine the terms, which are present in (18) under the
summation symbol. The numerator in (19) can be transformed into a form

gl(Sn) =qs COSh[fixJ=qsCOSh(~n ~)=qsCOSh( -ipn ~)=

=qs cos(pn ~) = qs cos(ns:~J
During the transformation of (22), it has been accounted for that cosh(ia) =

icosa and cos(-a) = cos a. In order to calculate the derivative g2 (s») , pre-

sent in the numerator, one should determine the derivative dq/ds
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dq _~ r; __1__1 I_
ds - ds '{;; - ~ 2); - 2aq ,

hence follows that
dq q

S-=-.
ds 2

Derivative g2(Sn) is

g2(sn) = dg21 =~[ASq sinh(qL)JI
ds S=Sn ds S=Sn

Ad(sq) L
= sinh(qL) +Asqcosh(qL)- .

ds S=Sn 2aq S=Sn

(23)

(24)

(25)

By accounting for (15) and (16), one has

sinh(qL)I_ =Sinh(~n)=Sinh(-iJln)=-isin(Jln)=o (26)
S-Sn 1

and

cosh(qL )1_ = cosh( ~n ) = cosh]-iJln) = COS(Jln) =
s-~ 1 (27)

= cos(mr)=-(-If+! , n=l, 2, ... ,

while (25) assumes the form

, ( ) _ ASn ( l)n+lg2 Sn - - 2a - , n=l, 2, ... (28)

By accounting for (16) and (17) in (28), one obtains

'J 2 2

gZ(Sn)=(-lf+! ;1,~:, n=l, 2, ..,

If (21), (22) and (29) are substituted into (18), then one obtains

T(x,t)=10 + q~L[FO+±(~r -i+
~( l)n+l 2 (x) -n2

7[ 2Fo ]+~ - ~cos nJr- e ,
n=l n Jr L

where Fo =out:

(29)

(30)
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Average temperature across the wall thickness is

1 L . L
t; =- JT(x,t )dt =10 +!l!.-Fa.

L o A-

for dimensionless time Fo 2:: 0.5, while (30) is simplified to a form

4sL[ 1(XJ2 1]T(x t)=To+- Fo+- - --.
, A- 2 L 6

Exercise 15.11 A Program and Calculation Results
for Temperature Distribution in a Plate with Boundary
Conditions of 2nd Kind

(31)

(32)

Write a program for the calculation of temperature distribution in an infi­
nite plate with thickness L heated in time t > 0 by a heat flow at constant
density qs (Fig. 15.29). The back surface of the plate (x = L) is thermally
insulated. Material properties A-, p, c are constant, while initial temperature
To is uniform. Temperature distribution in the plate is expressed by (30),
derived in Ex. 15.10. Present the calculation results in a tabular and
graphical form.

Solution

A program for calculating temperature distribution in an infinite plate heated
by a heat flow with density C, = Cis

C Calculation of temperature distribution in an infinite
C plate heated by a heat flow on the front surface and
C insulated on the back surface

program p15_II
open(unit=1,file='p15_11.in')
open(unit=2,file='p15_11.out')
read(l,*)ne
write (2, , (a) ')

& "CALCULATION OF TEMPERATURE DISTRIBUTION IN A PLATE"
write(2,'(/a)') "INPUT DATA"
write(2,' (a,ilO) ') "ne =",ne
write(2,' (/a) ')"CALCULATED TEMPERATURE [C]"
write(2,' (a,a) ')
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&"
&

Fo x/L=O
x/L=0,6

x/L=0,2
x/L=0,8

x/L=0,4 x/L=0,5",
x/L=l,O"

Fo=O.
do while (Fo.lt.0.2)

write (2, , (f5. 2,7 (3x, flO. 6)) ') Fo,
& temperature_bezw(Fo,O.O,ne),
& temperature_bezw(Fo,0.2,ne),
& temperature_bezw(Fo,0.4,ne),
& temperature_bezw(Fo,0.5,ne),
& temperature_bezw(Fo,0.6,ne),
& temperature_bezw(Fo,0.8,ne),
& temperature_bezw(Fo,1.0,ne)

Fo=Fo+.01
enddo

do while (Fo.le.1.2)
write (2, , (f5. 2,7 (3x, flO. 6)) ') Fo,

& temperature_bezw(Fo,O.O,ne),
& temperature_bezw(Fo,0.2,ne),
& temperature_bezw(Fo,0.4,ne),
& temperature_bezw(Fo,0.5,ne),
& temperature_bezw(Fo,0.6,ne),
& temperature_bezw(Fo,0.8,ne),
& temperature_bezw(Fo,1.0,ne)

Fo=Fo+.05
enddo
end program p15 11

c according to equation (31) in 15.10
function temperature_bezw(Fo,x_przez L,ne)
pi=3.141592654
xpL=x_przez L
teta=O.
do n=l,ne
teta=teta+(-1.)**(n+1)*2.*cos(n*pi*xpL)*

&exp(-n**2*pi**2*Fo)/
& n**2/pi**2
enddo

temperature_bezw=teta+Fo+0.5*xpL**2-1./6.
end function

Plate temperature distribution for selected coordinates x/L is presented
in Fig. 15.29 and Table 15.4.
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Table 15.4. Dimensionless temperature [T(x,t) - To]/( qs LIA) for the selected val-

ues of the dimensionless coordinate X =xlL and the Fourier number Fo =atlL2
;

the plate is being heated on the front face x =L, while the back surface x =0 is
thermall y insulated

Fo
0.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000203
0.01 0.000000 0.000000 0.000001 0.000014 0.000196 0.010051 0.112838
0.02 0.000000 0.000003 0.000153 0.000802 0.003396 0.033326 0.159577
0.03 0.000005 0.000071 0.001147 0.003722 0.010530 0.057196 0.195441
0.04 0.000057 0.000393 0.003449 0.008754 0.020102 0.079856 0.225676
0.05 0.000269 0.001166 0.007040 0.015366 0.031010 0.101159 0.252313
0.06 0.000786 0.002515 0.011718 0.023074 0.042621 0.121223 0.276395
0.07 0.001735 0.004489 0.017263 0.031528 0.054573 0.140203 0.298541
0.08 0.003207 0.007098 0.023492 0.040486 0.066658 0.158238 0.319154
0.09 0.005251 0.010323 0.030261 0.049784 0.078753 0.175447 0.338514
0.10 0.007885 0.014132 0.037461 0.059311 0.090788 0.191930 0.356826
0.11 0.011104 0.018489 0.045011 0.068992 0.102722 0.207771 0.374245
0.12 0.014887 0.023353 0.052850 0.078777 0.114535 0.223039 0.390892
0.13 0.019205 0.028684 0.060933 0.088632 0.126218 0.237798 0.406863
0.14 0.024023 0.034443 0.069223 0.098535 0.137770 0.252099 0.422240
0.15 0.029306 0.040594 0.077692 0.108469 0.149195 0.265989 0.437089
0.16 0.035017 0.047102 0.086317 0.118425 0.160498 0.279508 0.451466
0.17 0.041121 0.053935 0.095079 0.128395 0.171687 0.292694 0.465422
0.18 0.047584 0.061063 0.103964 0.138375 0.182770 0.305578 0.479000
0.19 0.054375 0.068460 0.112957 0.148361 0.193755 0.318189 0.492236
0.20 0.061464 0.076101 0.122047 0.158352 0.204650 0.330554 0.505165
0.25 0.100516 0.117236 0.168646 0.208336 0.258025 0.389430 0.566146
0.30 0.143824 0.161821 0.216576 0.258334 0.310092 0.444845 0.622842
0.35 0.189738 0.208515 0.265313 0.308333 0.361354 0.498152 0.676928
0.40 0.237244 0.256497 0.314542 0.358333 0.412125 0.550170 0.729423
0.45 0.285721 0.305265 0.364071 0.408333 0.462596 0.601402 0.780946
0.50 0.334791 0.354512 0.413784 0.458333 0.512883 0.652154 0.831876
0.55 0.384223 0.404053 0.463608 0.508333 0.563058 0.702614 0.882444
0.60 0.433877 0.453773 0.513501 0.558333 0.613166 0.752894 0.932790
0.65 0.483665 0.503602 0.563436 0.608333 0.663231 0.803065 0.983002
0.70 0.533536 0.553497 0.613396 0.658333 0.713271 0.853170 1.033131
0.75 0.583457 0.603433 0.663372 0.708333 0.763295 0.903233 1.083210
0.80 0.633409 0.653395 0.713357 0.758333 0.813310 0.953272 1.133258
0.85 0.683380 0.703371 0.763348 0.808333 0.863319 1.003296 1.183287
0.90 0.733362 0.753356 0.813342 0.858333 0.913325 1.053311 1.233305
0.95 0.783351 0.803347 0.863339 0.908333 0.963328 1.103320 1.283316
1.00 0.833344 0.853342 0.913337 0.958333 1.013330 1.153325 1.333323
1.05 0.883340 0.903339 0.963335 1.008333 1.063331 1.203328 1.383327
1.10 0.933337 0.953337 1.013335 1.058333 1.113332 1.253330 1.433329
1.15 0.983336 1.003335 1.063334 1.108333 1.163333 1.303331 1.483331
1.20 1.033335 1.053334 1.113334 1.158333 1.213333 1.353332 1.533332
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Fig. 15.29. Temperature distribution along the thickness of an infinitely long plate
heated on the front face (x =L) and thermally insulated on the back surface (x =0)

Exercise 15.12 Formula Derivation for Temperature
Distribution in an Infinitely Long Cylinder with Boundary
Conditions of 2nd Kind

Determine a formula for temperature distribution in an infinitely long cyl­
inder with an outer surface radius r heated by a heat flow at constant den-
sity qs (Fig. 15.30). Thermo-physical properties p, A, C are constant. Ini-

tial temperature of the plate is uniform and is To' Apply the Laplace
transform to solve the initial-boundary problem.

Solution

Temperature distribution in the cylinder is governed by the heat conduc­
tion equation

(1)

by boundary conditions
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T

TO~-----ol

r

Fig. 15.30. Diagram that depicts heating of an infinitely long cylinder by a heat
flow with constant density qs

and by initial condition

aTI =0
ar r=O '

(2)

(3)

(4)

(5)

Once Laplace transform is applied to (1)-(3) while accounting for the
initial condition (4), one has

(
d2T 1 dT) -a --+-- -sT=To,
dr: r dr

where

dT
=0

dr r=O '

A dT
dr

r=rz

(6)

(7)
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t

T=T(x,s)=2'[T(x,t)] = fT(x,t)e-S1dt.
o

The solution of the boundary problem (5)-(7) is

where q =~s/ a .

While deriving (9), the following formula for the derivative is used

~ [10 (qr )] =qIt (qr ) .

Next, accounting that

(8)

(9)

(10)

10 (qr) =Jo(iqr) and (11)

Equation (9) assumes the form

- To . qsJo(iqr)
T--=z .

s AqSJl (iqrz )

By substituting

Jl =iqrz

the following characteristic equation is obtained

(12)

(13)

(14)

(15)

whose roots are Jll =3.8317; Jl2 =7.0156; Jl3 =10.1735; Jl4 =13.3237; Jl5 =
16.4706; Jl

6
= 19.6159. The subsequent zeros of the Bessel function lJJl)

can be found in tables for special functions, e.g. in [5]. Once functions
Io(qr) and IJqr) are expanded into Taylor series, (12) has the form

q2 r2 q4r4
rr . 1+--+--+...

T-~=~ ( 4 3 364 5 5 )'S qrz q r, q rz
sq -+--+--+...

2 16 384

hence, after transformations
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sr2 S2r4
'T 2· 1+-+--2 +...

T-!.!!...= s.« 4a 64a. (16)

s A,rz 2 (1 srz
2

S2rz
4 JS +-+--2 + ...

8a 192a

A double pole exists in s = 0, while single poles in sn = -f.1n2a/rz2, n = 1,2 ...
Temperature distribution is obtained using the inverse Laplace tranfor­

mation (Appendix H). From the analysis of (16), it follows that

2 · 2· 2 2
A= qsa, B= qsa.!-, D=I, E=!:-. (17)

A,rz A,rz 4a 8a

Temperature distribution T(r,t) is determined form formula (Appen­
dix H)

_ 1 8+ioo_

T(r,t)=~-I[T(x,s)J=-.f T(r,s)eS1ds=
21(1

8
_

ioo

_'T A B AE ~ gl(Sn) Snt
-.IO +-f+---

2
+ L.; e .

D D D n~l g2(Sn)

Derivative g2 (Sn )can be calculated from dependence

(18)

g2(sn)= dg21 =~(:tqs)Il(qrz)1 +[:tqSdIl(qrz)] (19)
ds s~s ds s=s ds

n n S=Sn

By accounting, next, that the first term on the right-hand-side equals zero,
due to the fact that the characteristic equation I 1(qnr) = J1(iqnr) =J1(lln) =0,
the derivative g2 (Sn )can be expressed in the following way:

The numerator g/sn) can be transformed in the following way:

gl (Sn )=4.'/0 (qnr)=4sJo(iqnr)=4sJo(,un ~ ) ·

By substituting (17), (20) and (21) into (18), one has

(21)
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If dimensionless quantities are introduced

R =!- i Fo = at
2 'r, r,

(22)

(23)

temperature distribution T(r,t) can be expressed in the following way:

T(r,t)=To+qSrz[2FO+~R2_~-if J~(,unR) e-IJ;'FO]. (24)
A 2 4 n=l JlnJo(Jln)

For the Fourier number Fo > 0.5, one can neglect the infinite series in
(24).

Exercise 15.13 Program and Calculation Results
for Temperature Distribution in an Infinitely Long
Cylinder with Boundary Conditions of 2nd Kind

Write a program for the calculation of temperature distribution in an infi­
nitely long cylinder with an outer surface radius r, heated by a heat flow
with constant density qs (Fig. 15.31). Thermo-physical properties A, p, C

are constant. Carry out the calculations by means of (24) derived in Ex.
15.12. Present calculation results in a tabular and graphical form

Solution

A program for the calculation of temperature distribution in a infinitely long

cylinder heated by a heat flow with constant density c's

C Calculation of temperature distribution in a long
C cylinder heated by a heat flow with constant q_s

program p15_13
dimension zero(50)
open(unit=l,file='pI5_13.in')
open(unit=2,file='pI5_13.out')
read(l,*)ne
read(I,*)nc
read (1, *) (zero (i), i=l, nc)
write(2,' (a) ')"CALCULATION OF TEMPERATURE IN CYLINDER"
write (2, , (fa) ') "INPUT DATA"



Exercise 15.13 Program and Calculation Results 449

r/r z=0,5",r/r_z=0,4
r/r z=l,O"

=",ne

r/r_z=0,2
r/r z=0,8

&

&

&

&

&

&

&

&

&

&

&

&

&

&

write (2, , (a, i10) ') "ne
write(2,' (/a) ')"CALCULATED TEMPERATURE [CJ"
write(2,' (a,a) ')

&" Fo r/r z=O
&" r/r z=0,6

Fo=O.
do while (Fo.lt.0.2)

write (2, , (f5. 2,7 (3x, flO. 5) ) ') Fo,
temperature_bezw_cyl(zero,Fo,O.O,ne),
temperature_bezw_cyl(zero,Fo,0.2,ne),
temperature_bezw_cyl(zero,Fo,0.4,ne),
temperature_bezw_cyl(zero,Fo,0.5,ne),
temperature_bezw_cyl(zero,Fo,0.6,ne),
temperature_bezw_cyl(zero,Fo,0.8,ne),
temperature_bezw_cyl(zero,Fo,1.0,ne)

Fo=Fo+.01
enddo
do while (Fo.le.1.2)

write (2, , (f5. 2,7 (3x, flO. 5)) ') Fo,
temperature_bezw_cyl(zero,Fo,O.O,ne),
temperature_bezw_cyl(zero,Fo,0.2,ne),
temperature_bezw_cyl(zero,Fo,0.4,ne),
temperature_bezw_cyl(zero,Fo,0.5,ne),
temperature_bezw_cyl(zero,Fo,0.6,ne),
temperature_bezw_cyl(zero,Fo,0.8,ne),
temperature_bezw_cyl(zero,Fo,1.0,ne)

Fo=Fo+.05
enddo
end program p15_13

c according to equation (24) in 15.12 R=r/r_z, Fo=at/r z/r z
function temperature_bezw_cyl(zero,Fo,R,ne)
dimension zero(*)
pi=3.141592654
teta=O.
do n=l,ne

s=zero(n)
teta=teta+bessjO(s*R)*exp(-s**2*Fo)/( s**2*bessjO(s)

enddo
temperature_bezw_cyl=-2.*teta+2.*Fo+0.5*R**2-1./4.
end function
FUNCTION bessjO(x)
REAL bessjO,x
REAL ax,xx,z
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,

& r1,r2,r3,r4,r5,r6,sl,s2,s3,s4,s5,s6,y
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,

& r3,r4,r5,r6,sl,s2,s3,s4,s5,s6
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DATA pl,p2,p3,p4,p5/1.dO,-.1098628627d-2, .2734510407d­
&4,-.2073370639d-5, .2093887211d-6/, ql,q2,q3,q4,q5/
&-.1562499995d-l, .1430488765d-3,-.6911147651d-5,
&.7621095161d-6,-.934945152d-7/

DATA rl,r2,r3,r4,r5,r6/57568490574.dO,-13362590354.dO,
&651619640.7dO,-11214424.18dO,77392.33017dO,
&-184.9052456dO/,sl,s2,s3,s4,s5,s6/57568490411.dO,
&1029532985.dO,9494680.718dO,59272.64853dO,
&267.8532712dO,1.dO/
if(abs(x) .It.8.)then

y=x**2
bessjO=(rl+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/

&(sl+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))
else

ax=abs(x)
z=8./ax
y=z**2
xx=ax-.785398164
bessjO=sqrt(.636619772/ax)*(cos(xx)*

&(pl+y*(p2+y*(p3+y*
&(p4+y*p5))))-z*sin(xx)*(ql+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END

Dimensionless temperature distribution for selected dimensionless coor­
dinates rlr, is presented in Fig. 15.31 and Table 15.5.

3,00r----------------...,

T
(T - To) AI(qs rz) .

~
2,00

1,00

0,40

0,5

0,4

0,2

0,80 Fo = atlr} 1,20

Fig. 15.31. Temperature transient in an infinitely long cylinder heated by a con­
stant density heat flow
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Table 15.5. Dimensionless temperature in an infinitely long cylinder [T(r,t) -

To]/ ( qs L/A) for the selected values of the dimensionless coordinate R = r/ r, and

the Fourier number Fo = atlr'z

Fo =0.2 =0.4 = 1.0

0.00 0.00256 0.00036 0.00024 0.00022 0.00021 0.00027 0.01026
0.01 0.00000 0.00000 0.00000 0.00002 0.00026 0.01159 0.11814
0.02 0.00000 0.00001 0.00025 0.00118 0.00457 0.03918 0.17046
0.03 0.00003 0.00017 0.00192 0.00556 0.01439 0.06830 0.21210
0.04 0.00028 0.00096 0.00585 0.01326 0.02785 0.09669 0.24829
0.05 0.00120 0.00291 0.01211 0.02359 0.04351 0.12402 0.28104
0.06 0.00325 0.00636 0.02044 0.03588 0.06054 0.15036 0.31139
0.07 0.00676 0.01147 0.03052 0.04963 0.07842 0.17582 0.33995
0.08 0.01188 0.01822 0.04206 0.06449 0.09685 0.20051 0.36712
0.09 0.01862 0.02655 0.05483 0.08021 0.11567 0.22456 0.39317
0.10 0.02692 0.03632 0.06863 0.09661 0.13474 0.24805 0.41833
0.11 0.03667 0.04741 0.08331 0.11357 0.15400 0.27105 0.44273
0.12 0.04771 0.05965 0.09873 0.13097 0.17339 0.29364 0.46650
0.13 0.05993 0.07293 0.11479 0.14876 0.19290 0.31588 0.48973
0.14 0.07317 0.08710 0.13140 0.16686 0.21248 0.33781 0.51252
0.15 0.08731 0.10205 0.14847 0.18523 0.23213 0.35948 0.53492
0.16 0.10223 0.11769 0.16594 0.20382 0.25183 0.38091 0.55698
0.17 0.11784 0.13391 0.18376 0.22261 0.27157 0.40215 0.57876
0.18 0.13405 0.15065 0.20188 0.24157 0.29136 0.42323 0.60030
0.19 0.15077 0.16784 0.22026 0.26067 0.31117 0.44415 0.62163
0.20 0.16794 0.18540 0.23886 0.27989 0.33101 0.46495 0.64277
0.25 0.25861 0.27739 0.33425 0.37735 0.43048 0.56758 0.74653
0.30 0.35413 0.37355 0.43204 0.47613 0.53023 0.66884 0.84834
0.35 0.45198 0.47170 0.53098 0.57554 0.63011 0.76944 0.94920
0.40 0.55095 0.57082 0.63047 0.67526 0.73005 0.86973 1.04962
0.45 0.65046 0.67039 0.73023 0.77512 0.83003 0.96987 1.14982
0.50 0.75022 0.77019 0.83011 0.87506 0.93001 1.06994 1.24991
0.55 0.85011 0.87009 0.93005 0.97503 1.03001 1.16997 1.34996
0.60 0.95005 0.97004 1.03003 1.07501 1.13000 1.26999 1.44998
0.65 1.05002 1.07002 1.13001 1.17501 1.23000 1.36999 1.54999
0.70 1.15001 1.17001 1.23001 1.27500 1.33000 1.47000 1.65000
0.75 1.25001 1.27000 1.33000 1.37500 1.43000 1.57000 1.75000
0.80 1.35000 1.37000 1.43000 1.47500 1.53000 1.67000 1.85000
0.85 1.45000 1.47000 1.53000 1.57500 1.63000 1.77000 1.95000
0.90 1.55000 1.57000 1.63000 1.67500 1.73000 1.87000 2.05000
0.95 1.65000 1.67000 1.73000 1.77500 1.83000 1.97000 2.15000
1.00 1.75000 1.77000 1.83000 1.87500 1.93000 2.07000 2.25000
1.05 1.85000 1.87000 1.93000 1.97500 2.03000 2.17000 2.35000
1.10 1.95000 1.97000 2.03000 2.07500 2.13000 2.27000 2.45000
1.15 2.05000 2.07000 2.13000 2.17500 2.23000 2.37000 2.55000
1.20 2.15000 2.17000 2.23000 2.27500 2.33000 2.47000 2.65000

......m:.-::mm:~. .;.~~~~-?~~~~~~~~.~.. ~.&33~...~:=..~."." ~.. :8)~~.&.v.«&.~=.• =:.._.=.~~
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Exercise 15.14 Formula Derivation for Temperature
Distribution in a Sphere with Boundary Conditions
of 2nd Kind

Determine a formula for temperature distribution in a sphere with an outer
surface radius r heated by a heat flow with constant density qs (Fig.

15.32). Thermo-physical properties p, A, c are constant. Initial temperature
of the sphere is uniform and measures To' Apply Laplace transform to
solve the initial-boundary problem.

T~

!1(1',/)

I
I

..
r

Fig. 15.32. The sphere heating by a heat flow with constant density qs

Solution

Temperature distribution in a sphere is governed by the heat conduction
equation

by boundary conditions

aTI =0
ar r=O '

IJ aTI -'/l" -qs
8r r=rz

(1)

(2)

(3)
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and by initial-boundary condition

Tlt=o =To. (4)

(5)

Once Laplace transform is applied to (1)-(3), while accounting for ini­
tial condition (4), one has

(
d

2
T 2 dTJ -a --+-- -sT=To,

dr: r dr

dT
=0

dr r=O '

(6)

where

)., dT
dr

r=rz
s

(7)

00

T=T(r,s) =2'[T(r,t)] = fT(r,t )e-stdt.
o

Solution of the boundary problem (5)-(7) has the form

- To sinh (qr) cosh (qr)
T=-+A +B ,

s r r

(8)

(9)

(10)

where q=~s/a.

Due to the finite temperature value inside the sphere r =0 constant B
equals zero. Constant A determined from condition (7) has the form

.21
A=~~ .

AS qrz cosh (qr. ) - sinh (ar. )

By substituting A into (9), while noting that B = 0, a formula for a tem­
perature distribution in the image domain is obtained

Function (11) has a single pole in s =0 and single poles, which constitute
the roots of the following transcendental equation

g2(S)=0, (12)

hence,

qrz cosh (qrz ) - sinh (qrz ) =0 . (13)
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By substituting u =iqrz into (13), one has

~ COSh(~ )-Sinh(~ )=0,
~ cosh(-ill) - sinh(-ill) = 0,
1

hence, by accounting that

coshj-(u) = cOSJl oraz sinh (-iJl) =-isinJl

one obtains

JlcosJl- sin Jl =0,

tgjz =u.

If we assume that

lin = iqnrz,
then

(14)

(15)

(16)

(17)

2u;«
s; =--2 .

r.
(18)

The roots of the characteristic equation (16) (the first five) are
III =4.4934; 112 =7.7253; 113 =10.9041; 114 =14.4934 and 115 =17.2208.

Once the functions, sinh(qr), cosh(qr) and sinh(qr) in the (11) are ex­
panded into the Taylor series (see Appendix H), one has

(
q3r3 J

• 2 qr+-
6-+···

(1+S1+...)
~(s)e~=qs~ ~~~~~~~~~~~~~~~~~~

Ar s[qrz(1+
q2;} +q~4 +...J_(qrz+

q3;z3 +~5;~ +...J]
(19)

. (1+
sr2

+...J(1+S1+ ...)
_ qsrz 6a

- A s2(r} + sr}2 ...J
3a 30a

From the analysis of this expression it follows that (see Appendix H)
·22 4

A= qsrz B= qsrz !..- D=!!- E=~ (20)
A ' A 6a' 3a ' 30a 2 •

By accounting for formula (H.25) from Appendix H, one obtains (k =2)



(21)

(22)

(23)

(24)

(25)
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C-l = ~ ( At +B - ~J= q~z ( ~; t +~ ~z: - 1~ ) ·

Temperature distribution T(r,t) is determined from formula (see Appen­
dix H)

_ 1 O+ioo_

T(r,t) =2:-1[T(r,s)]
=-. f T(r,s)e~stds=

2JrI o_
ioo

_T 1 (A B AEJ ~ gl(Sn) snt-10+- t+ -- +L..J e.
D D n=l g2(Sn)

For a single pole s =0 ((H.8) in Appendix H), the derivative g2(sn)has

the form

g2 (Sn)=Arsnh'(Sn) =Arsn~[qrz cosh (qrz) - sinh (qrz)JI
ds S=Sn

=Arsn {d
q

rz cosh (qrz)+ qrz sinh (qrz) dq rz -
ds ds

-cosh(qrz) dq rz} =Arrz q~ sinh (qnrz ) =
ds 2

S=Sn

1 j.l; . h ( j.ln J 1 1 2· h ( . ) 1. 1 2·=Ar 2i2 SIn -1-. =- 2" Aru; SIn -1u; =2"IAru; SInj.ln.

When determining g2(sn ) , the following is accounted for

dq q
s-=-.

ds 2
Next, numerator is determined

gl (Sn ) =4s rz
2

sinh (qnr) =4s rz
2

sinh (~n rJ =
Irz

• 2 . h(· r J .. 2 . ( r J=qsrz sm -lJln r
z

= -lqsrz sm u; r
z

·

By substituting dependencies (21), (23) and (25) into (22), one has

. ( r J. ( 2). 2 00 SIn u; - 2 at

T(r,t) = 1'0 +qsrz 3~t +!;--~ _2qsrz I 2. rz /n ri. (26)
A r, 2 r, 10 Ar n=l u; SInu;

Assuming that the dimensionless radius is R = (rlr) and the Fourier num­
ber is F0 = atlr 2, (26) can be written in the form

z



456 15 Transient Heat Conduction in Simple-Shape Elements

[T(r,t)-ro Jt 1 2 3 ~ sin(,unR) e-f-/;;Fo
-=----~=3Fo+-R ---2LJ . (27)

qsrz 2 10 n=l u.R u; sin f.Jn

For Fo > 0.5 one can neglect the infinite series in the above formula.

Exercise 15.15 Program and Calculation Results
for Temperature Distribution in a Sphere
with Boundary Conditions of 2nd Kind

Write a program for the calculation of temperature distribution in an infi­
nitely long cylinder with the outer surface radius r z heated by a heat flow
with constant density qs (Fig. 15.33). Thermo-physical properties A, p, C

are constant. Carry out the calculations using (26) derived in Ex. 15.14.
Present the calculation results in a tabular and graphical form.

Solution

Program for calculating temperature distribution in a sphere heated by a heat

flow with constant heat flux its
C Calculation of temperature distribution in a sphere
C heated by a heat flow with constant heat flux q_s

program p1S_1S
dimension eigen(SO)
open(unit=1,file='p1S lS.in')
open(unit=2,file='p15_15.out')
read(l,*)ne
write(2,' (a) ')

& "CALCULATION OF TEMPERATURE DISTRIBUTION IN SPHERE"
write (2, , (/a) ') "INPUT DATA"
write(2,' (a,ilO) ') "ne =",ne
call equation_roots_sph(O.O,ne+l,eigen)
write (*, *) (eigen (i), i=l, 6)
write(2,' (/a) ')"CALCULATED TEMPERATURE [C]"
write(2,' (a,a) ')

&" Fo r/r_z=O,O r/r_z=0,2 r/r_z=0,4
&"r/r_z=0,5", r/r_z=0,6 r/r z=0,8 r/r_z=l,O"

Fo=O.
do while (Fo.lt.0.2)

write (2, , (f5. 2,7 (3x, flO. 5)) ') Fo,
& temperature_bezw_sph(eigen,Fo,O.,ne),
& temperature_bezw_sph(eigen,Fo,0.2,ne),
& temperature_bezw_sph(eigen,Fo,0.4,ne),
& temperature_bezw_sph(eigen,Fo,0.5,ne),
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& temperature_bezw_sph(eigen,Fo,O.6,ne),
& temperature_bezw_sph(eigen,Fo,O.8,ne),
& temperature_bezw_sph(eigen,Fo,1.0,ne)

Fo=Fo+.Ol
enddo
do while (Fo.le.l.2)

write(2,' (f5.2,7(3x,fl0.5)) ')Fo,
& temperature_bezw_sph(eigen,Fo,O.,ne),
& temperature_bezw_sph(eigen,Fo,O.2,ne),
& temperature_bezw_sph(eigen,Fo,O.4,ne),
& temperature_bezw_sph(eigen,Fo,O.5,ne),
& temperature_bezw_sph(eigen,Fo,O.6,ne),
& temperature_bezw_sph(eigen,Fo,O.8,ne),
& temperature_bezw sph(eigen,Fo,1.0,ne)

Fo=Fo+.05
enddo
end program p15 15

c according to Eq. (27) in 15.14, R=r/r_z, Fo=at/r z/r z
function temperature_bezw_sph(eigen,Fo,R,ne)
dimension eigen(*)
pi=3.141592654
teta=O.
do n=l,ne

s=eigen(n+l)
if (R.eq.O.) then

teta=teta+exp(-s**2*Fo)/(s*sin(s))
else

teta=teta+sin(s*R)*exp(-s**2*Fo)/(s*R*s*sin(s))
endif

enddo
temperature bezw sph=-2.*teta+3.*Fo+O.5*R**2-3./10.
end function

c procedure calculates roots of the ch. eq. x*cot(x)=l-Bi
c where Bi is Biot number, ne is number of calculated
c roots, eigen is output vector with calculated roots

subroutine equation roots sph(bi,ne,eigen)
dimension eigen(*)
pi=3.141592654

if ((bi.eq.l.) .or. (bi.gt.l0000.)) then
do i=l,ne

if(bi.eq.l.) eigen(i)=(2.*float(i)-1.)*pi/2.
if(bi.gt.l0000.) eigen(i)=float(i)*pi

enddo
else
h=l.-bi
if (h.lt.O.) then

hl=pi/2.
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h2=pi
else

hl=O.
h2=pi/2.

endif
do i=l,ne

xi=hl+(float(i)-l.)*pi
xf=h2+(float(i)-1.)*pi
do while (abs(xf-xi) .ge.5.E-06)

xm=(xi+xf)/2.
y=xm*cos(xm)/sin(xm)-h
if (y.lt.O.) then

xf=xm
else

xi=xm
endif

enddo
eigen(i)=xm

enddo
endif
return
end

Dimensionless temperature distribution for the selected coordinates rlr is
presented in Fig. 15.33 and Table 15.6.

Table 15.6. Dimensionless temperature in a sphere [T(r,t) - ToJ/( qs L/.,1,) for the

selected values of the dimensionless coordinate R=r/r and the Fourier number
Fa =atlr '

z

z

Fo =0.4 =0.8

0.00 -0.02891 -0.00266 -0.00248 -0.00213 -0.00124
0.01 0.00000 0.00000 0.00000 0.00003 0.00034 0.01331 0.12364
0.02 0.00000 0.00001 0.00040 0.00170 0.00607 0.04575 0.18192
0.03 0.00009 0.00038 0.00310 0.00811 0.01931 0.08084 0.22985
0.04 0.00088 0.00211 0.00950 0.01948 0.03772 0.11576 0.27260
0.05 0.00342 0.00631 0.01976 0.03489 0.05942 0.15002 0.31217
0.06 0.00865 0.01358 0.03346 0.05337 0.08327 0.18360 0.34956
0.07 0.01699 0.02404 0.05008 0.07421 0.10860 0.21656 0.38538
0.08 0.02848 0.03753 0.06912 0.09686 0.13497 0.24900 0.42002
0.09 0.04288 0.05373 0.09015 0.12093 0.16210 0.28100 0.45375
0.10 0.05988 0.07229 0.11281 0.14614 0.18982 0.31264 0.48676
0.11 0.07911 0.09284 0.13682 0.17224 0.21799 0.34398 0.51920
0.12 0.10023 0.11507 0.16192 0.19907 0.24651 0.37508 0.55119
0.13 0.12293 0.13870 0.18791 0.22649 0.27530 0.40598 0.58281
0.14 0.14694 0.16347 0.21464 0.25439 0.30433 0.43671 0.61413
0.15 0.17203 0.18919 0.24196 0.28267 0.33353 0.46731 0.64520
0.16 0.19801 0.21569 0.26977 0.31126 0.36289 0.49780 0.67608
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Table 15.6. (cont.)

Fo =0 =0.2 =0.4 =0.5 =0.8 = 1.0

0.17 0.22472 0.24282 0.29799 0.34012 0.39236 0.52821 0.70680
0.18 0.25203 0.27048 0.32653 0.36918 0.42193 0.55853 0.73738
0.19 0.27983 0.29856 0.35533 0.39842 0.45157 0.58880 0.76786
0.20 0.30804 0.32700 0.38436 0.42779 0.48129 0.61902 0.79825
0.25 0.45293 0.47255 0.53159 0.57602 0.63047 0.76964 0.94936
0.30 0.60107 0.62093 0.68058 0.72537 0.78017 0.91987 1.09977
0.35 0.75039 0.77034 0.83021 0.87514 0.93006 1.06995 1.24992
0.40 0.90014 0.92012 0.98008 1.02505 1.08002 1.21998 1.39997
0.45 1.05005 1.07005 1.13003 1.17502 1.23001 1.36999 1.54999
0.50 1.20002 1.22002 1.28001 1.32501 1.38000 1.52000 1.70000
0.55 1.35001 1.37001 1.43000 1.47500 1.53000 1.67000 1.85000
0.60 1.50000 1.52000 1.58000 1.62500 1.68000 1.82000 2.00000
0.65 1.65000 1.67000 1.73000 1.77500 1.83000 1.97000 2.15000
0.70 1.80000 1.82000 1.88000 1.92500 1.98000 2.12000 2.30000
0.75 1.95000 1.97000 2.03000 2.07500 2.13000 2.27000 2.45000
0.80 2.10000 2.12000 2.18000 2.22500 2.28000 2.42000 2.60000
0.85 2.25000 2.27000 2.33000 2.37500 2.43000 2.57000 2.75000
0.90 2.40000 2.42000 2.48000 2.52500 2.58000 2.72000 2.90000
0.95 2.55000 2.57000 2.63000 2.67500 2.73000 2.87000 3.05000
1.00 2.70000 2.72000 2.78000 2.82500 2.88000 3.02000 3.20000
1.05 2.85000 2.87000 2.93000 2.97500 3.03000 3.17000 3.35000
1.10 3.00000 3.02000 3.08000 3.12500 3.18000 3.32000 3.50000
1.15 3.15000 3.17000 3.23000 3.27500 3.33000 3.47000 3.65000
1.20 3.30000 3.32000 3.38000 3.42500 3.48000 3.62000 3.80000

4.00 ~ . maJ qs(T-
1'o))'J(4s

rz) -.' _ ,~~~, .' 0.5

3.00 I
0.6

Pi ~
0.8

2.00

0.4

1.00 0.2

Fig. 15.33.Temperature transient of a sphere heated by a heat flow with constant
density qs
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Exercise 15.16 Heating Rate Calculations
for a Thick-Walled Plate

Steel plate, 2L =300 mm thick is heated in a furnace, whose chamber tem­
perature is Tcz = 850°C. Temperature of the plate, before it is placed in the
furnace is constant and is To = 20°C. Heat transfer coefficient on the plate
surface is constant and equals a = 250 W/(m2·K). Due to a considerable
width and length of the plate with respect to its thickness, assume that the
plate is infinite, i.e. that the temperature distribution in the plate is one­
dimensional. Calculate the amount of heat (energy) accumulated by 1 m'
of the plate during 1 hour from the moment the plate is placed in the fur­
nace. Also calculate the temperature in the center and on the plate surface.
Thermal conductivity of the steel is .It. = 36 W/(m·K), while temperature
diffusivity coefficient a = 9.10-6 m2/s.

Solution

The amount of energy transferred by 1 m' of the plate can be calculated
from formula

M =£2 - £1 =PAC[JT(X,h)dx-JT(X,t1)dx] =

=PAC[2!T(X,t2)dx - u.i; ] = PAC[2L ~ !T (x, t: )dx- 2LTol
M=2LpAc[f(t2)-ToJ'

where A =1 m' is the surface area of the heated plate (from one side only),
pc = Ala = 36/(9.10-6) = 4.106 J/(m3·K). Carry out the calculations by

means of the program developed in Ex. 15.2. Average temperature T(/2)

is calculated as follows
_ 1 L

~c (/)1 =- JT( X,/2 )dx =577°C.
t2=3600s L

o

Plate surface temperature is T(L,12) =650°C, while temperature of the plate
center is T(0,12) =539°C.
The energy amount is determined from (2)

M=2.1.4.106(577-20)= 4,456·109J.

Calculations can also be done using the diagrams shown in Ex.15.3. Fou­
rier Fo and Biot numbers are
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Fo= al2 = 9.10-
6

• 3600 =1.44
L2 0.152

Bi =aL = 250· 0.15 =1.042.
A 36

Average temperature 1fleo taken from the diagram in Fig. 15.8 is

1f Tcz - T(12)
= ~ 0.33

eo Tcz - To
hence,

T(12) =Tcz - 0.33(Tcz - To) =850 - 0.33(850 - 20) =576.1°C.

Plate surface temperature is (diagram, Fig. 15.6)

e( L,(2) Tcz - T(L,12)
--:..-~ = ~ 0.24 ,

eo Tcz - To
hence,

T(L,12) =Tcz - 0.24(Tcz - To) =850- 0.24(850- 20) =650.8°C.

Temperature of the plate center taken from the diagram in Fig. 15.7 is

e (0,12 ) t; - T(0,12 )
~~= ~0.37,

eo Tcz - To
hence,

T(0,(2) =Tcz - 0.4(Tcz - To) =850- 0.4(850 - 20) =518°C.

The amount of energy accumulated by the plate, and calculated on the
basis of temperatures taken from the diagrams, is

fill =2.1.4.106 (576.1-20) =4.45 .109 J.

Calculation results obtained by means of the program are more accurate.

Exercise 15.17 Calculating the Heating Rate
of a Steel Shaft

Long steel shaft with a diameter that is d =2r
z
=120 mm was placed in a

furnace with a temperature of 800°C. How long should a shaft with an ini­
tial temperature of To = 200e be heated so that temperature would reach
T(O,tn) = 644°e at the shaft axis? Also determine surface temperature of
the shaft at the end of the heating process, i.e. the temperature T(rz,t

n
) . Use

the following data for the calculation: thermal conductivity A = 21
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W/(m·K), temperature diffusivity a = 6.10- 6 m2/s, heat transfer coefficient
on the shaft surface a = 140 W/(m2·K). Carry out the calculations by
means of the program presented in Ex. 15.5 and by using the diagrams
from Ex. 15.6.

Solution

Once the calculations are completed by means of the program developed in
Ex.15.5, the following results are obtained:

• time tn = 1405.31 s,
• shaft surface temperature after time tn: T(rz,tn) = 671.02°C.

In order to make use of the diagrams presented in Ex. 15.6, calculate
dimensionless temperature B/Bo and the Biot number Bi first

B T( O,tn)- Tcz 644 - 800
-- - -02
Bo - To - Tcz - 20 - 800 - . ,

Bi= arz = 140·0.06 =0.4.
A 21

From Fig. 15.16, Ex. 15.6, one has

Fo= a~ =2.4
r,

hence

_ Fo r; _ 2.4.0.06
2

-1440 - 24 .t, - - - s - mIn.
a 6.10-6

Dimensionless temperature of the surface B/Bo for Fo = 2,4 taken from
the diagram in Fig. 15.15, Ex. 15.6 is

B T(rz,tn)-Tcz
-= ~0.15,
Bo To - Tcz

hence

T(rz,tn) = 0.15(20 - 800) +800 = 683°C.

Results obtained by means of the computational program are more accu­
rate than the results determined by means of the diagrams.
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Exercise 15.18Determining Transients of Thermal
Stresses in a Cylinder and a Sphere

Determine transients of thermal stresses in the centre line of an infinitely
long cylinder and inside a sphere. In both cases, assume the following data
for the calculation: r = 0.025 m, A= 40 W/(m·K), a = 8.10- 6 m2/s, a = 200z

W/(m
2·K), f/Jw = EfJI(I-v) = 3.7 MPalK, Tcz= 20°C, To = 750°C. In order to

determine stresses, apply computational programs developed in Ex. 15.5
and 15.8.

Solution

Thermal stresses are calculated from formula [6]

{JT = fPw [ t; (t ) - T (r, t ) ] '

while the material constant (jjw is given by

(1)

(2)fPw= Efi ,
I-v

where E [MPa] is the longitudinal elasticity module, f3 [11K] a linear ther­
mal expansion coefficient, v a Poisson ratio.

80,..----------------.

aT[MPa] ,
\ ,

"40 " ,
" ....

o

-40

'I
I

I I

-80 I
l'

o

r=r..

1'=0

--cylinder
- - - - - sphere

800 t [sOl 1000

Fig. 15.34. Thermal stresses transient in a cylinder and a sphere caused by a sud­
den drop in temperature (cooling)
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Average temperature is defined as

(3)

where: m =1 for a cylinder and m =2 for a sphere.
Calculation results are presented in Fig.15.34. One can conclude from

them that thermal stresses are extensible on the surface, while compressi­
ble in the centre line of the cylinder and inside the sphere. Maximum com­
pressible or extensible stresses occur at the beginning of the cooling proc­
ess. Despite the large difference in temperature between initial temperature
To =750°C and medium's temperature Tez =20°C, the absolute stress value
is not very high, since the heat transfer coefficient is relatively small.

Exercise 15.19 Calculating Temperature and Temperature
Change Rate in a Sphere

Calculate temperature and temperature change rate inside a sphere with a
radius of r = 30 mm in time t = 10 s. Initial temperature of the copper
sphere is To = 30°C. The sphere surface is tarnished black and its emissiv­
ity G is of 0.97. The sphere was suddenly placed in a furnace chamber of a
power boiler, whose temperature was T, = 1350°C. Assume the following
thermo-physical properties of copper for the calculation: A = 386 W/(m·K),
a =11.23.10-5 m2/s.

Solution

First calculate heat flux on the sphere surface

qs =EO" [ Tk
4

- T
4 (rz ,t ) ] ' (1)

where a = 5.67.10-8 W/(m2·K4
) is the Stefan-Boltzmann constant.

Taking into account that at an initial heating stage T,>>Ttr, t), (1) is sim­
plified to a form

qs =EO"Tk
4 =0.97· 5.67 .10-8

• (1350 + 273r=381618 W/m 2
• (2)

Assuming that

D == at == 11.23.10-
5

·10 == 4 99 0 5
r o 2 2· ».,

r; 0.015
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(4)
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Equation (26) in Ex. 15.14 for the calculation of sphere temperature can be
simplified to a form

() qsr, (3at 1 r
2

3 JT rt =To+- -+----
, A r} 2 r} 10'

where from it is easy to determine temperature change rate

dT qsrz 3a
vr=-=-'-2 .

dt A rz

Temperature inside the sphere after time t = 10 s from the moment the
sphere is placed inside the furnace, calculated from (3) is

1;; =T(O 10 8)=30+ 381618.0.015(3.11.23.10-
5

·10 -~J=247.6°C.
, 386 0.0152 10

Temperature change rate inside the sphere is

VT = 381618· 0.015 3 ·11.23 .10-
5

= 22.2 K .
386 0.0152 s

Exercise 15.20Calculating Sensor Thickness for Heat
Flux Measuring

A flat sensor (a slug calorimeter), insulated on the back and lateral surfaces
(Fig. 15.35) was used for measuring heat flux qs absorbed by a furnace
chamber water-wall of a boiler (thermal load). Maximum value qs does
not exceed 400 000 W/m 2

• Due to the accuracy of the measurement, the
temperature change rate v

T
measured on the sensor's back surface should

not be very high. Assume that the sensor is made of a chrome-nickel steel
(20% Cr, 15% Ni) and calculate the thickness of the sensor L, so that the
rate of temperature increase would be vT :S 5 K/s. Assume the following
steel properties for the calculation: A =15.1 W/(m·K), a = 4.2.10-6 m2/s.

Solution

Measurements are taken during a quasi-steady state, when the following
condition is satisfied

at
FO=-2 >0.5,

L
(1)
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hence, follows that

0.5L2

t~--.

a
(2)

(3)

During the quasi-steady state, temperature distribution in the sensor is
given by (32) from Ex. 15.10

() qsL [ at 1 ( X)2 1]
T x,t =To+T L2 +"2 L -6"'

Temperature change rate vr is

dT qsL a
VT=-=--·

dt A L2

x

thermal
insulation

sensor

'\
thennoelement

(4)

Fig. 15.35. Diagram of a sensor used for measuring thermal loads in furnace
chamber water-walls of a boiler

From condition

VT S Vmax ,

one obtains

q.L a <-z-vmax
A L

(5)
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L2~, (6)
AVmax

L? 400000· 4.2 .10-
6

= 0.02225 m.
15.1·5

From condition (2) it follows that the measurement v
T

should be taken
for time

>0.5L
2 =0.5· 0.02225

2 =58 9
t - 6' s,

a 4.2·10-

i.e. after t 2: about 1 min after the probe is placed inside the furnace.
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16 Superposition Method in One-Dimensional
Transient Heat Conduction Problems

The subject of Chap. 16 is the superposition method. The chapter contains
formula derivations for Duhamel integral and demonstrates how one can
apply them in practice in order to determine temperature in the half-space
when surface or medium temperature is time-variable. Also, formulas are
derived for the half-space temperature, with an assigned surface heat flux,
whose changes in time are depicted by various functions. Furthermore,
authors determine formulas, which are applied in transient methods for
measuring a heat transfer coefficient, when the half-space surface is heated
by a step-changing heat flow in time and which, simultaneously, gives off
heat by convection to surroundings. Computational programs are
developed. Computational examples demonstrate, among others, how
paper is heated in a xerographic photocopier, which is treated as a semi­
infinite body.

Exercise 16.1 Derivation of Duhamel Integral

Derive a formula for a Duhamel integral, using the superposition method.

Solution

When surface temperature of a body, heat flux or the temperature of a sur­
rounding fluid are a function of time, then temperature distribution inside
the body is determined by means of the Duhamel integral. This integral de­
rives from the superposition principle and can be applied to linear transient
heat conduction problems when initial temperature of the body is uniform
and equals To. In order to determine temperature field when surface tem­
perature is time-variable, To + f (t) it is necessary to determine u(r,t) by
solving a transient heat conduction problem when surface temperature T,
undergoes a unit step-increase.
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t<O

t >0.
(1)

Likewise, the function u(r,t) of temperature distribution inside a body,
with a unit step-increase in heat flux on the body surface, is needed when
the heat flux J(t) =q(t) on the body surface is a function of time, i.e.

when

{
O,

q= 1 W/m 2

t<O

t >0.
(2)

If medium's temperature To + f(t) is time-variable when convective heat
transfer is set on the body surface, the function u(r,t) is a temperature dis­
tribution inside the body when the medium's temperature Tcz undergoes a
unit step-increase

t<O

t>O
(3)

and the value of heat transfer coefficient ais constant.
The function transientf(t) is approximated by a stepped line (Fig. 16.1).
It is assumed that

fi =f( (}o + (}1/2 ) ,

12 = I[B1 +(B2-BI}/2J,
h =I[B2 + (B3 -B2 )/2J,

(}o s t s (}1

(}1 S t s (}2

(}2 S t s (}3

(4)

On the basis of the superposition principle, temperature distribution in­
side the body at any point r and time t = t

M
is the sum of all parts that de­

rive from individual components f(t) fromj. tot,

T(r,tM )=10 +Ji[u(r,tM -Bo)-u(r,tM -fA)J+

+12 [u(v.t« - fA) -u(r,tM - (2)J+

where u(r,t - (}M) = u(r,O) = 0 and
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j(/)

/3 - - - - - - - ---t

.Ii
/1 1--..,jIC--I

Fig. 16.1. Approximation of changes in functionf(t) by means of the stepped line

Equation (4) can be written in the form

( )
~ u{r,tM-On-l)-u{r,tM-On)

T r.t« =To + L..Jfn 110n.
n=l 11 On

(5)

When 110n= (On - 0n-) ~ 0, then from (5) one obtains the following for
t = tM

tf [au{r,t-O)]T{r,t)=10+ f{O) dO.
o ao

(6)

Because

au{r,t-O) _ au{r,t-O)
ao at

(7)

Equation (6) can be written as follows:

(8)T(r,t)=10+ ff(B)au(r,t-B) dB.
o at

Equation (8) is a Duhamel integral.
For the boundary condition of 1st or 3rd kind and non-zero initial tem­

perature To functionf(t) is the excess of surface temperature T/t) above the
initial temperature To or the excess of medium's temperature Tcz(t) above
the initial temperature To' i.e.

f{t)=Ts{t)-To, (9)

f (t) =r: (t ) -10 . (10)
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(12)
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In the case of the boundary condition of 3rd kind, the Duhamel integral
(8) has the form

fn- ]au(r,t-O)
T(r,t)=To+ JLTcz(t)-1O dO.

o at

Similar operation is performed for the boundary condition of 1st kind,
when the following expression is obtained from (8) once (9) is accounted
for:

T(r,t)=10+ KTs(t)_To]8u(r,t-O) dO.
o at

Alternative form of (8) can be obtained from (4) when individual terms are
grouped in a different way

T(r,tM )=To+ jiu(r,tM -OO)+(f2 - ji)u(r,tM -Bt)+

+... +(fM - fM-I)u(r,tM -OM-I).
(13)

Equation (13) can be written in the form

T( r.i« ) =To +f In - In-l u(v.t« - On-I) !:lOn (14)
n=l ilOn

where fa =0 i 00 =O. For t = tM and ilOn~ 0 one has

t df(B)
T(r,t)=To+ f u(r,t-O)dO. (15)

o dB

This is the secondform of the Duhamelfunction.
The choice between (8) or (15) for the subsequent calculations can lead

to different solutions of the same problem that may differ in the rate of
convergence of the infinite series present in these solutions.

Exercise 16.2 Derivation of an Analytical Formula
for a Half-Space Surface Temperature when Medium's
Temperature Undergoes a Linear Change
in the Function of Time

Derive a formula for the half-space surface temperature, using the Du­
hamel integral, if temperature of a medium is defined by function T,(t) =
To + bt, where bis a constant. Thermo-physical properties of the me-
dium, A, c and p, are temperature invariant.
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Solution

The second form of the Duhamel integral is used for the calculation
(Ex. 16.1)

tJd[r, (e) -10]
T(x,t)=To+ u(x,t-B)dB.

o dB

Accounting that

_d(_Tf_-_];_O) = _d(_bB_) = b
dB dB

(1)

(2)

and that the expression for the surface temperature of the half-space, when
medium's temperature undergoes a step-increase, is

T(O,t)-To (a r-;J a~~t
----=1-erfc -vat e ~

Tcz-To A
(3)

(4)

one can determine temperature distribution from (1). In order to determine
function u(O,t), which is surface temperature when medium's temperature
undergoes a unit step-increase and initial temperature is at zero, one as-
sumes in (3) that u(O,t)=T(O,t), Tcz=1°C, To=O°C and obtains

( J
a2at

u( O,t) =1- erfc ~ j;i e)}.

By accounting for (2) and (3), (1) has the form

l ( J".T(O,t) =10 +b llI-erfC ~ ~a(t-e) r>: dB. (5)

Noting that for erfc x = 1 - erf x, and subsequently integrating by parts
leads to a new form of (5),

{[ ( J]
t a 2a(t-B)

T(O,t) =10 +bt-b I-erf ~ ~a(t-e) fe-"t2-dB-

t d [( J] t a

2

a(t-B) }
-Jde I-erf ~~a(t-e) fe- "t2- dB .

(6)
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If the expressions below are evaluated

a 2a(t- B) A2 a 2a(t- B)

Je .,t2 dB=--e .,t2

a 2a '

Equation (6) can be written in the following form:

{

2 tA2 a a(t-B)

T(O,t) =1'0 +bt-b -[l-erf(~ ~a(t-O) )]a2a e-.,t2- 0 -

While calculating derivative (8), it has been accounted for that

d ( ) 2 _x
2

- erfx =-e .
dx J"i

After transformations, (9) can be written as follow

hence, after accounting that

t t

f(t-Ot/2 dO=-2(t-O)1/t =2J(
o

one has

(7)

(8)

(9)

(10)

(11)

(12)

bA
2

[ (a J] bA
2

a

2

;t 2bAJiT(O,t) =To+bt+-
2
- - 1-erf -J;;i -2-e A - ~. (13)

a a A a a a na
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Introducing the new variable

a 2at
1]=7'

the (13) for temperature distribution (13) assumes the form

T (0,t) =To +bt - ~ {[1- erf (..F)Jeq-I} - ~.

(14)

(15)

(17)

(16)

Once dimensionless temperature is introduced

* T(O,t)-To
T =----

ht

Equation (15) can be written as follows

T* =1- ~[(I-erf..F)eq -IJ-k '
where 1] is expressed by (14). The calculated temperature T(1]) is pre­
sented in Table 16.1.

Table 16.1. Dimensionless half-space surface temperature T* = [T(O,t) - To]/(bt)
when medium's temperature is defined by Tcz(t) =To + bt

1 0.1 0.19597 20 2.0 0.53401 39 3.9 0.61885
2 0.2 0.25793 21 2.1 0.54034 40 4.0 0.62196
3 0.3 0.29981 22 2.2 0.54636 41 4.1 0.62499
4 0.4 0.33186 23 2.3 0.55210 42 4.2 0.62793
5 0.5 0.35792 24 2.4 0.55759 43 4.3 0.63079
6 0.6 0.37989 25 2.5 0.56283 44 4.4 0.63358
7 0.7 0.39890 26 2.6 0.56786 45 4.5 0.63629
8 0.8 0.41563 27 2.7 0.57269 46 4.6 0.63894
9 0.9 0.43056 28 2.8 0.57732 47 4.7 0.64152
10 1.0 0.44404 29 2.9 0.58179 48 4.8 0.64404
11 1.1 0.45631 30 3.0 0.58608 49 4.9 0.64651
12 1.2 0.46756 31 3.1 0.59023 50 5.0 0.64891
13 1.3 0.47795 32 3.2 0.59423 51 5.1 0.65126
14 1.4 0.48759 33 3.3 0.59809 52 5.2 0.65355
15 1.5 0.49657 34 3.4 0.60183 53 5.3 0.65580
16 1.6 0.50498 35 3.5 0.60545 54 5.4 0.65799
17 1.7 0.51288 36 3.6 0.60895 55 5.5 0.66014
18 1.8 0.52032 37 3.7 0.61235 56 5.6 0.66224
19 1.9 0.52735 38 3.8 0.61565 57 5.7 0.66430
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Table 16.1. cont

58 5.8 0.66632 73 7.3 0.69240 88 8.8 0.71271
59 5.9 0.66830 74 7.4 0.69391 89 8.9 0.71391
60 6.0 0.67024 75 7.5 0.69539 90 9.0 0.71510
61 6.1 0.67214 76 7.6 0.69685 91 9.1 0.71626
62 6.2 0.67400 77 7.7 0.69828 92 9.2 0.71742
63 6.3 0.67583 78 7.8 0.69969 93 9.3 0.71856
64 6.4 0.67762 79 7.9 0.70109 94 9.4 0.71968
65 6.5 0.67938 80 8.0 0.70246 95 9.5 0.72079
66 6.6 0.68111 81 8.1 0.70380 96 9.6 0.72188
67 6.7 0.68281 82 8.2 0.70513 97 9.7 0.72296
68 6.8 0.68448 83 8.3 0.70644 98 9.8 0.72403
69 6.9 0.68612 84 8.4 0.70773 99 9.9 0.72508
70 7.0 0.68773 85 8.5 0.70900 100 10.0 0.72612
71 7.1 0.68931 86 8.6 0.71026
72 7.2 0.69087 87 8.7 0.71149

One needs to carry out a large number of transformations in order to de­
termine temperature distribution by means of the Duhamel integral. It is
much easier to determine the distribution by applying Duhamel integral
calculated by means of approximation using the rectangles method. Tem­
perature transient with a unit function can also be in such a case numeri­
cally calculated, e.g. by means of the difference method or finite element
method.

Exercise 16.3 Derivation of an Approximate Formula for a
Half-Space Surface Temperature with an Arbitrary
Change in Medium's Temperature in the Function of Time

Determine a formula for surface temperature of a body with a convective
boundary condition and time-variable medium's temperature Tcz(t) and
constant heat transfer coefficient a. Treat the body with an arbitrary shape
as a semi-infinite body, while assuming that the heating or cooling proc­
esses are short-lasting. Determine the value of heat transfer coefficient on
the surface of complex-shape bodies [3-5] by means of a formula for sur­
face temperature of a semi-infinite body. The value of the heat transfer co-
efficient a is chosen in such way that both, the body's measured surface
temperature T (t) and calculated surface temperature T (t) are equal afters.z p s.z p

time t
p

from the beginning of the heating or cooling process. Body surface
temperature is frequently measured by means of liquid crystals.
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Solution

A diagram of a semi-infinite body is shown in Fig. 16.2.

T
/'

x

Fig. 16.2. A diagram of a semi-infinite body

To determine body surface temperature, (15) is used; it is derived in Ex.
16.1. Backward approximation of the derivative df/dBby a difference quo­
tient yields (14), from which, after transformations, (13), Ex. 16.1, is ob­
tained. Equation (13), in Ex. 16.1, was a starting point for the derivation of
the Duhamel integral. Surface temperature T, =T(O,t) is, therefore, formu­
lated as follows:

Temperature of the medium Tcz(t) is approximated by a stepped line (Fig.
16.3).

Function u (O,t) is a body surface temperature when the medium's
temperature undergoes a unit step-increase.

u(O,t) = 1-[1- erf(~Fi)] ea~~t (2)

The coordinates of temporal points ~, in which temperature TCZ,i = Tcz(~) is
measured, are indicated in Fig. 16.3. Once we account for

in (1) and

ji =~~z(I,O)

ji - ii-I = ~~z(i,i-l) = Tcz,i - Tcz,i-l, i=2, '" M,

(3)

(4)
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~Tcz(l,O)

o E)j

Fig. 16.3. Approximation of temperature changes in a medium Tc/t) by a stepped
line

andthe influencefunction (2), we have

M { [a 2
a(tM -0.)]Is(tM)=To+ I 1-exp 2 1 X

1=1 A

[ [ a~a (tM - ()i ) J]}x 1-erf A · .1.T"Z(i,i-l)'

If,

then (5) can be written in the form

Is (~M )-To=t {l-exp[~M (1- ~ )]x

x[1- erf ~M (1- ~)]}.1.T"Z(i,i-l).

(5)

(6)

(7)

Using (5), one can determine heat transfer coefficient a while account­
ing for the medium's time-variable temperature Tcz(t). By measuring half­
space surface temperature in time tM by means of the liquid crystals and by
comparing it to temperature calculated from (5), one is able to determine a
from the following non-linear algebraic equation
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t., (tM )- t., (tM )=0 , (8)

where Ts,o(tM) is the temperature given by (5), while Ts,/tM) a measured half­
space surface temperature.

For details about the conducted experiment refer to papers [3+5].

Exercise 16.4 Definition of an Approximate Formula
for a Half-Space Surface Temperature when Temperature
of a Medium Undergoes a Linear Change in the Function
of Time

Temperature of a medium, which heats up a half-space whose initial tem­
perature is constant and is Toincreases according to formula Tcz(t) = To + bt,
where b is the constant heating rate. Calculate half-space surface tempera­
ture by means of (5) from Ex. 16.3. Present calculation results in the form
T' =T*(17M)' where T = [T(O,t) - To]/(btM). Compare calculation results with
the results presented in Table 16.1, which were obtained by means of the
analytical (17) (Ex. 16.2).

Solution

Temperature changes in the medium are presented in Fig. 16.4.
From the above diagram, one can see that

I1Tcz(i,i-l) =b(()i - ()i-l) .

a

(1)

~TcZ(i,i .... l)

€');....l (9,

b=tga

Fig. 16.4. Temperature changes in a medium formulated as Tcit) =To + bt
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If time interval tM is divided into M number of equal sections, then

tM
/1 ()i-l i = ()i - ()i-l =-,, M

and

(2)

Ll ·A Ll .tu
oi =lilUi-l i =1-,, M i =0, 1, 2, ... , M. (3)

Equation (7) from Ex. 16.3 can be written in the form

* T(O,tM )-10 1 f{ [( i J]T M = =-~ l-exp 17M 1-- x
btu M i=l M

X[l-errfTI)]},
where

(4)

(5)

Table 16.2. Half-space surface temperature calculated by means of the analytical
(17) (Ex. 16.2) and approximate (4)

Entry no. 17M 17M) 17M) 8[%]

1 0.5 0.35789 0.35792 0.00838
2 1.0 0.44401 0.44404 0.00676
3 1.5 0.49654 0.49657 0.00604
4 2.0 0.53398 0.53401 0.00562
5 2.5 0.56280 0.56283 0.00533
6 3.0 0.58605 0.58608 0.00512
7 3.5 0.60541 0.60545 0.00661
8 4.0 0.62192 0.62196 0.00643
9 4.5 0.63625 0.63629 0.00629
10 5.0 0.64887 0.64891 0.00616
11 5.5 0.66010 0.66014 0.00606
12 6.0 0.67020 0.67024 0.00597
13 6.5 0.67934 0.67938 0.00589
14 7.0 0.68769 0.68773 0.00582
15 7.5 0.69535 0.69539 0.00575
16 8.0 0.70241 0.70246 0.00712
17 8.5 0.70896 0.70900 0.00564
18 9.0 0.71505 0.71510 0.00699
19 9.5 0.72074 0.72079 0.00694

10.0 0.72608 0.72612 0.00551
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Calculations were done for different values of 17M when the entire time
interval t

M
was divided into a number of M = 100 subsections. The com-

parison of temperature T
a
* (O,17

M
) calculated from the approximate (4) with

temperature T,* (O,17
M

) calculated by means of the analytical (17) (Table
16.1, Ex. 16.2) is presented in Table 16.2. Also, surface temperature meas­
urement error was calculated by means of the approximate (4)

Te(O,tM )-Ta(O,tM)
e= ·100% (6)

Te(O,tM)

From the analysis of results presented in Table 16.2, it is evident that a
discrete form of the Duhamel integral ((5), Ex. 16.3) ensures high calcula­
tion accuracy. The main attribute of (5) is that it can be applied in cases
when temporal temperature transients of a medium Tc/t) are complex.

Exercise 16.5 Application of the Superposition Method
when Initial Body Temperature is Non-Uniform

Illustrate the superposition method in transient heat conduction problems
when initial temperature is non-uniform qJ(x). Boundary condition of 1st
kind is assigned on the plate butting front, i.e. temperature T

s
' while

boundary condition of 2nd kind on the back surface of the plate (Fig.
16.5).

Solution

The determination of temperature distribution can be divided into two par­
tial problems. In the first problem, we have to determine temperature dis­
tribution TI(x,t) when boundary conditions are homogenous (zero). In the
case of boundary conditions of 1st kind, one assumes that surface tempera­
ture equals zero; for boundary conditions of 2nd kind, heat flux equals
zero, while in the case of boundary conditions of 3rd kind, temperature of
the medium Tcz equals zero. Initial temperature TI(x,t)=cp(x) is non-zero. In
the second problem, one has to account for the real boundary conditions
when initial condition is zero. The unknown temperature distribution T(x,t)
is the sum of solutions of TI(x,t) and Tn(x,t). The superposition method de­
scribed above will be illustrated on the basis of an example in which the
temperature field is determined in the plate shown in Fig. 16.5. Plate tem­
perature distribution is expressed by equation
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1 er a2T
-; at- ax2 '

with boundary conditions

and

=0,
ax x=L

and initial condition

T( x,t )11=0 =q;>( x) ·

T

(1)

(2)

(3)

(4)

Fig. 16.5. A plate with thickness L, insulated on the back surface with non­
uniform initial temperature c;i...x) and a surface temperature T, assigned for t > 0

In accordance with the superposition method, the solution to problems (1)­
(4) should have the form

T (x,t)=T; (x, t)+ IiI (x,t).

By substituting (5) into (1)-(4), one has

~ (an + aTrr J= a2n
+ a2Trr

a at at ax2 ax2
'

(5)

(6)

(7)
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811 I + aTn I =0 , (8)
8x x=L ax x=L

Tr (x,t)11=0 +Tn (x,t )11=0 =qJ(x)· (9)

The initial-boundary problem (6)-(9) can be separated into two partial
problems

and

1 811 a211
-; 81- ax2 '

Tr (x, t )Ix=o =0 ,

811 I =0,
ax x=L

1 8Tu a2Iil

a fit- ax2 '

Tn (x,t)Ix=o =t: ,

aIiI I =0,
ax x=L

Trl (x,t)11=0 = 0 ·

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

The solutions to the problem (10)-(17) can be found, among others, in ref­
erence [9, 10]. Additionally, another simple method for solving problems
(1)7(4) will be shown below.

If we assume that the solution has the form

T(x,t)=Ts +U(x,t)

and substitute it into (1)7(4), we have

(18)
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1 au a2u

-; 81- ax2 '

U(x,t)lx=o = 0,

aUI -0
ax x--]:

and

U(x,t)lt=o =tp(x)-Ts.

(19)

(20)

(21)

(22)

The solution to the problem (19)-(22) can be found, among others, in ref­
erences [7, 10].

Both methods presented above produce the same results.

Exercise 16.6 Description of the Superposition Method
Applied to Heat Transfer Problems with Time-Dependent
Boundary Conditions

Describe how the superposition method is applied to heat transfer prob­
lems with time-dependent boundary conditions.

Solution

If heat flux (boundary condition of 2nd kind), surface temperature (bound­
ary condition of 1st kind) or medium's temperature (boundary condition of
3rd kind) change in time, then one can determine the solution of the prob­
lem by summing up (superposition) partial solutions obtained when
boundary conditions are constant in time. Heat flux qs (I) on the body sur­
face, surface temperature T/t) or temperature of the medium Tcz(t) is writ­
ten as the sum of constant quantities or quantities that change in time ac­
cording to simple functions. Below four examples are given to explain the
superposition method, once qs (I) , Ts(t) and Tcz(t) are denoted by a common'

symbol B(t).
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Example 1

We can determine temperature distribution with a boundary condition
shown in Fig. 16.6a by summing up the solutions of partial problems with
the boundary conditions shown in Fig. 16.6b and c, while accounting for
the initial operation of a given boundary condition.

T (x,t) =To , t s II ,

T( x,t) =T; (x,t - tI), tl < t S t: ,

T (x,t) =Ii (x,t - tl)+IiI (X, t - t: ),

(1)

(2)

(3)

a)

B

o

b)

B

o

Q)

+

c)

B

o

®

Fig. 16.6.Expansion of function B(t) into two components

We can determine temperature by means of (1)-(3) and from the dia­
grams of body temperature transients with an assigned body shape and
boundary conditions or we can analytically or numerically calculate tem­
perature u(x,t) when a boundary condition is unit function. Once we as­
sume (and that depends on the kind of the assigned boundary condi­
tions)that q.s = 1 W1m

2
, T = 1°C or T = 1°C, we can determine

s cz

temperature transient u(x,t), also called the influence function.
Temperature distribution with constant value B has the form

T(x,t)=Bu(x,t).

Once we account for (4), (1)-(3) can be written as follows:

(4)

T( x,t) =To, t S ti, (5)
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T( X,/) =B1u (X,I- 11)' (6)

T( x,t) =B1u (X,I-11) - B1u(x,1 -t2), (7)

Equations (5)-(7) enable us to calculate temperature at a any spatial
point x and time t.

Example 2

Function B(t) can be expressed as follows (Fig. 16.7):

B ( I ) =B1 for 0 < I sit, (8)

(9)

If the solutions of partial problems T1, TIl and TIll are known when
boundary conditions are as given in Fig. 16.7a, then we can present the so­
lution T as the sum of solutions to partial problems, while accounting for
the initial stage of operation and duration of a given boundary problem.
For individual partial problems, time is measured from the moment the
boundary condition exerts its influence, i.e. as a time variable in problem I
(Fig. 16.7b) time t will be assumed, in problem II (Fig. 16.7c) time (t - t),
while in III (Fig. 16.8d) time (t - t

2
) .

a) b) c) d)

B B", B
CD ®

B
®

.) B

B I
8} 83-B2B2 - +- +

11 t2 13

0 t, /2 13 t 0 13 t t t} 12 t, 1
.)

B2-B]

Fig. 16.7. Division of function B(t) into three components
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Example 3

The solution of a transient heat conduction problem, with the boundary
condition shown in Fig. 16.8a, has the form

T (x,I ) =Ti (x,I ) , o~ I ~ 11, (11)

T (x,I ) = Ti (x,I ) + Til (X, I - 11 ) , (12)

where TI' Tn and TIll are partial solutions, for which the changes in function
B are presented in Fig. 16.8b, c and d.

d)

B @

+

c)

B ®
b)a)

Fig. 16.8. Division of function B(t) into three components

Example 4

The solution of the transient heat conduction problem with changes in
function B(t), presented in Fig. 16.9a, has the form

T (x,I ) =Ti (x,I ) , 0<1 ~ 11, (14)

T (x,I ) =Ti (x,I ) + Til (X, I - 11 ) + Tin (x,I - 11 ) , 11 < I . (15)

When using diagrams to determine components t; Tn and TIll' one
should note that time is measured from the moment a given boundary con­
dition exerts its influence.



488 16 One-Dimensional Transient Heat Conduction Problems

a) b) c) d)

B B CD B @ B @
B3

Y

+B2 f3
B1 B1

(B3-B2)

I
0 t1 0 0 t1 0 t1

(Y-f32)

Fig. 16.9. Division function B(t) into three components

Exercise 16.7 Formula Derivation for a Half-Space Surface
Temperature with a Change in Surface Heat Flux
in the Form of a Triangular Pulse

Using the superposition principle, determine half-space surface tempera­
ture for a change in heat flux presented in Fig. 16.10. The initial tempera­
ture is uniform and equals To. Solve the same problem by means of the
Duhamel integral.

Fig. 16.10. Changes in heat flux on the surface of a half-space in the form of a

triangular pulse; qmax is the maximum heat flux value; D - a pulse duration
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Solution

If dimensionless time

(1)r=L.
D

and the dimensionless thermal flow q/qrnax are introduced, the heat flux

changes presented in Fig. 16.10 can be described by means of function

qrnax

q r
----,

p
(2)

(3)p~r~l,
q t 1 r-p

-- ------
qrnax p 1- p P

where p is the dimensionless time, in which the heat flux reaches its
maximum. Quantity D in (1) is the total pulse duration.

Dimensionless half-space surface temperature

() _ ~!rAe p / D ( )-. t: -t;
qrnax

(4)

O~r~p.

is determined for time 0 ~ t ~ p using formula [2, 6]

B(r)= 3: r3/2, (5)

Once the form of (3) is analyzed and the superposition principle applied,
the temperature in the second stage of the pulse duration a ~ t ~ 1 can be
expressed as follows:

B(r)=~[r3/2 _(r- pf/2],
3p I-p

p~r~l. (6)

Obtained results can be presented in the dimensional form by means of the
equation

1', _ 7"' 4qrnax fi5 (~)3/2
w-10+ . ,

3P~JrACP D
(7)
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( )

3/ 2

t; = To + 4qmax.fi5 (!-)3/2 _ -i> - p ,
3P~JrACP D 1- P

t
p~-~l . (8)

D

Equations (7) and (8) can be obtained using the Duhamel integral ((15),

Ex.16.1))

T(O,t) =To + [clf(0) u(O,t - O)dO,
o dB

(9)

(10)

where function u(O,t) is the half-space surface temperature with initial
temperature at zero To = 0 and with a unit step-increase in heat flux qs = 1
W/m2

• From (12) in Ex. 16.3, one has

u(0,t)=2J t
JrACP

Taking into account that

O~r~p (11)

and

(12)

from (9) the following expression is obtained

T(O,t)=To + qmax~ [vit-OdO,
pD JrACP 0

and

O~r~p (13)

. 2 pD

T(o,t)=To + qmax ..p;:;;p fvlt-OdO-
pD JrACP 0

(qma) ~ [.Jt-OdO, p::;r::;1.
1- p D JrACP pD

(14)
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By introducing a new variable
z=t-B (15)

one can easily calculate the integrals in (13) and (14). Because T
w
=T(O,t),

the calculation of integrals in (13) and (14) yields, respectively, (7) and
(8).

Exercise 16.8 Formula Derivation for a Half-Space Surface
Temperature with a Mixed Step-Variable Boundary
Condition in Time

Using the superposition principle discussed in Ex. 16.6, derive a formula
for a half-space temperature with a constant initial temperature To' Half­
space surface is heated by a heat flow with constant density qs, while the
surface is simultaneously cooled by an airflow at temperature T. Heat

p

transfer coefficient a is constant. At time point t
u
' the heat flux is step-wise

decreased to a value eqs and maintained at this leveL

Solution

A diagram, which illustrates half-space and heat flux changes is presented
in Fig. 16.11.

Temperature distribution in the half-space is described by the heat con­
duction equation

4s t---------.

a)

T
(j•.

~

1 er a2T
-- -
a at ax2

'

b)

x o

-----~--

(1)

Fig. 16.11. Simultaneous: heating of a half-space by a heat flow with a density
shown in the diagram b); cooling by airflow at temperature T

p
- a)
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by boundary conditions

and by initial condition

T (x,t )It=o = 'To ·

(2)

(3)

(4)

In accordance with the superposition method, heat flux changes on the
half-space surface can be presented as shown in Fig. 16.12.

a)

qst------.....,

o

b)

o

c)

CD q

@

+
0 tu

tu t
- (l-e)qs

Fig. 16.12. Heat flux division into two components

Temperature distribution TI(x,t) is determined from the following equa­
tion

1 ot. a2Ii
-; at- ax2 '

with a boundary condition

-A 8lil =q" -a(IiI -T)a s x=o p
X x=o

and initial condition

(5)

(6)

(7)
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Condition (6) can be written in the form

where equivalent temperature of a medium T, is formulated as

1; =Tp +~,
a

while surface temperature T
I
(x,t) is expressed by a equation

_Ii----:..-(0_,t.....;....,,)-_];_0 =1- erfc(a ;;t). exp (_a_2~_t) .

1;-~ A A

(8)

(9)

(10)

If temperature of the passing airflow Tp equals the initial temperature To'
then (10) is simplified to a form

Ii (0,t)-1O (a c) (a 2at)a qs =l-erfc "ivat -exp -:i2 · (11)

In accordance with the superposition principle, the half-space surface
temperature Ts(t) is formulated as

L (t) =Ii (O,t), 0< t ~ tu , (12)

L (t )=Ii (0,t)+IiI (0,t- i; ), t; < t . (13)

(14)

Once we account for (11) and decompose the heat flux into two compo­
nents (Fig. 16.12), we can express the surface temperature Ts(t) as follows:

L - To (a c) (a 2
at)a~=l-erfc "ivat -exp -:i2 '

L - To (a r=) (a 2
at)a~=l-erfc "i"at -exp -:i2 -

(15)

tu < t.
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After transformations, (15) assumes the form

t, - To (a 1:) (a 2at)a qs =&-erfc -x"at -exp y +

(16)

tu < t.

Equations (14) and (16) enable us to calculate the half-space surface tem­
perature when step-function is applied, as shown in Fig.16.12a. These for-
mulas are applied when the heat transfer coefficient a [8] is determined
experimentally.

The surface of the analyzed model, usually made of plexiglass, is cov­
ered by a thin electric resistance heating foil. Initially, for 0 < t 5 t

u
' the

heat flux transferred by the foil to a base is qs. After time t
u

the heating

power is reduced and the heat flux qs decreases to 8Qs (Fig. 16.11b),

where 0 < 85 1.
A standardized transient of the half-space surface temperature is shown

in Fig. 16.13.
The model's initial temperature To equals the temperature of surround­

ings. The foil surface temperature T is assumed to be a body temperature
and is measured by means of liquid S~rystals. The colour change in crystals
occurs at a specific constant temperature; this is why it is easy to register
temperature Ts,z by means of a video camera. During the first stage 0 < t 5
tu temperature Ts,z is obtained at the time point t

1
, while during the second

stage tu< t at the time point t2•

From the comparison Ts(t) = Ts(t2) , the following non-linear equation is
obtained with respect to a once (14) and (16) are accounted for:

l-erfc(~ ~)-exp( a~~tl )=&-erfc(~ ~)-exp(a:~t2)+
(17)

+(1- e)erfc(~ ~a(t2 - tu ) )- exp( a2a~22 - tu
) ). tu < t.



Exercise 16.9 Formula Derivation for a Plate Surface Temperature 495

Fig. 16.13. Temperature transient of the model's surface

The above equation contains neither qs nor Ts,z' which in itself is an attrib­

ute of the earlier described method for determining a heat transfercoeffi­
cient. Equation (17) can be easily solved using, for e.g., the interval halv­
ing method or the interval searching method, or any other widely available
methods for solving non-linear algebraic equations.

Exercise 16.9 Formula Derivation for a Plate Surface
Temperature with a Surface Heat Flux Change
in the Form of a Triangular Pulse and the Calculation
of This Temperature

Using the superposition method, determine temperature distribution in a
plate heated by a heat flow whose density changes in time as shown on the
diagram in Fig. 16.14. Initial plate temperature is uniform and is To. Back
plate surface is thermally insulated.

o

/

Fa

Fig. 16.14. Heat flux changes q(l)/qN in time, Fa =at/L2
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Solution

Heat flux on the plate front face q* is formulated as

q* =Fo,

q* =2Fom -Fo,

.* 0q = ,

O:::;Fo:::;Fom ,

u»; «r«.

(1)

(2)

(3)

where q* =qlqN' Fo = out:
Boundary condition (1) written in a dimensional form is

-Je aTI =q(t),
ax x=o

where

. () qNaq t =-2-t.
L

(4)

(5)

Expression qNa /L2 is the heat flux change rate on the plate surface, which
increases as the parameter qN becomes larger.

Back plate surface is thermally insulated, i.e.

A aTI =o. (6)
ax x=L

Plate temperature distribution with boundary conditions (1) and (6) has
the form [9]

Fo2 Fo FoX2 x 4 x 3 x 2 1
B=-+-+---FoX+---+----

2 3 2 24 6 6 45
(7)

00

- LAn cos [,un (1- X)Jexp(-,u;Fo),
n=l

where

B=_T_-_To_
(qNL/A) ,

X=~
L'

u; =nit, An =(-1r --;· (8)
f.1n

In accordance with the superposition principle, one can determine plate
temperature by resolving heat flux q(t) into three components (Fig.

16.15).
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Plate temperature distribution with heat flux changes, as shown in Fig.
16.15a, has the form

B(X,Fo)=O, Fo~O, (9)

B(X,Fo)=B(X,Fo), Fo~Fom, (10)

B(X,Fo) =B(X,Fo) - 2B(X,Fo - Fom), FOm~ Fo ~ 2Fom, (11)

B(X,Fo ) =B(X,Fo ) - 2B(X,Fo - Fom)+

+B(X,Fo-2Fom), u»; s t».
(12)

Temperature transient Bof the plate's front face and back surface in the
Fourier number function is presented in Table 16.3. For the calculation, it
was assumed that Fo =0.75.

m

Table 16.3. Temperature transient of the plate's front face () (O,Fo) and back sur­
face (}(l,Fo) in the Fourier number function for FOm =0.75

!:-£""=»"'W~~'"«""'»«'"WAyft#(Ql,Eql~##_=«W~,"«_~»f!-"tl!E2J~.=##_~~_#~l~q_"'~'"'X,""~"~#_".,..fl_(Q,~C!l««~"~wA__#!i.e1,I:QL _
0.00 -0.0000058 0.0000008 :1.05 0.6313468 0.3689310
0.05 0.0084105 0.0000016 !l.10 0.6367580 0.3976864
0.10 0.0237884 0.0001500 !1.15 0.6393467 0.4242643
0.15 0.0437030 0.0010261 !l.20 0.6392387 0.4485391
0.20 0.0672971 0.00325951.25 0.6365103 0.4704341
0.25 0.0941024 0.007286611.30 0.6312087 0.4899024
0.30 0.1238408 0.0133814 1.35 0.6233622 0.5069155
0.35 0.1563434 0.021712111.40 0.6129884 0.5214560
0.40 0.1915073 0.0323816 11.45 0.6000980 0.5335132
0.45 0.2292697 0.04545261.50 0.5846972 0.5430806
0.50 0.2695922 0.06096351.55 0.5752009 0.5501558
0.55 0.3124513 0.0789377 11.60 0.5701680 0.5548815
0.60 0.3578329 0.09938941.65 0.5671695 0.5578372
0.65 0.4057281 0.122327611.70 0.5653492 0.5596518
0.70 0.4561317 0.1477573,1.75 0.5642391 0.5607610
0.75 0.5090520 0.1756805!l.80 0.5635616 0.5614383
0.80 0.5476312 0.2061003 11.85 0.5631481 0.5618518
0.85 0.5747891 0.2387231:1.90 0.5628959 0.5621043
0.90 0.5953746 0.27238961.95 0.5627415 0.5622584
0.95 0.6111021 0.30584062.00 0.5626477 0.5623524
1.00 0.6229074 0.3382035
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a) q(t)

4N
FOm

Fo

b) cj(t)
fiN
FOm

FomFa

2F'om - - - - - - -

o
FOm

d) "('q t)

qN

o 3FomFom

Fig. 16.15. Division of heat flux changes presented in Fig. a) into three components - Fig.
b), c) and d)

(t8 ,..--------------------,

e

0,4

0,0

....... O~2 '----.l-_..L---'-_......I..-----Il----.L-_""'----L._......I.-----I

0,0 0.,4 0,8 L2 1,6 F'o 2,0

Fig. 16.16. Plate temperature determined on the front face and on the thermally
insulated back surface, FOm = 0.75
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The transient of calculated temperatures is shown in Fig.16.16. The print­
out of the computational program in the FORTRAN language is presented
below.

Computational program in FORTRAN language for calculating plate tempera­
ture with time-dependent heat flux (Fig. 16.15a) on the front face and ther­
mally insulated back surface

C Program for determining temperature distribution
C on the back surface-insulated plate. Heat flux
C varies in time in the triangle form

PROGRAM tr
OPEN(2,FILE='16 9 tr.out',STATUS='OLD')
DFo=0.05
write(2,*) 'Fo, X=O., X=l.'
Fo m=0.75
Fo=O.O
DO WHILE (Fo.LE.Fo m)

write(2,300) Fo,TETA(O.,Fo),TETA(l.,Fo)
Fo=Fo+DFo

ENDDO
DO WHILE ((Fo.GT.Fo m) .and. (Fo.LE.2.*Fo_m))

write(2,300) Fo,TETA(0.,Fo)-2.*TETA(0.,Fo-Fo_m),
& TETA(1.,Fo)-2.*TETA(1.,Fo-Fo_m)

Fo=Fo+DFo
ENDDO
DO WHILE (Fo.LE.2.0)
write(2,300)Fo,TETA(0.,Fo)-2.*TETA(0.,Fo-Fo_m)+

& TETA(0.,Fo-2.*Fo_m),

& TETA(1.,Fo)-2.*TETA(1.,Fo-Fo_m)+TETA(1.,Fo-2.*Fo_m)
Fo=Fo+DFo

ENDDO
STOP

300 FORMAT (F4.2,3x,F9.7,3x,F9.7)
END

REAL FUNCTION TETA(X,Fo)
REAL X,Fo,Pi
Pi=3.14159
suma=O.O

DO n=l,lO
s_mi=FLOAT(n)*Pi

a_n=(-1.)**(n+l)*2./s mi**4
suma=suma+a_n*cos(s_mi*(1.-X))*exp(-s_mi**2*Fo)

ENDDO

TETA=0.5*Fo**2+Fo/3.+0.5*Fo*X**2-Fo*X+l./24.*X**4
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& -1./6.*X**3+1./6.*X**2-1./45.-suma
RETURN
END

Exercise 16.10 Formula Derivation for a Plate Surface
Temperature with a Surface Heat Flux Change in the Form
of a Rectangular Pulse; Temperature Calculation

Using the superposition principle, determine plate temperature distribution
with a time-dependent heat flux q, as shown on the diagram in Fig. 16.17.

Plate temperature is To.

Solution

Temperature distribution in a plate is described by the heat conduction
equation

F01 < Fo < Fo2 ,

F02 ~ Fo lub Fo ~ Fo1,

with boundary conditions (Fig. 16.17)

aOI {I,
- ax X~O = 0,

O~X~l, (1)

(2)

ae I - °
ax X=l

and initial condition

(3)

where

Fa =at/L2
,

e(x,o)=o, Fo~O,

X =x/L,

(4)

FOI =FOe - Mo12, F02 =FOe + Mo12.

In accordance with the superposition principle, the heat flux changes are
defined as the sum of two heat flux step-changes at time points Fo, and F0 2

(Fig. 16.18).
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-----..---------.
.tlF'o

2

(7~ (t)

c:::>

o

L

x

o F01 FOe Fo

Fig. 16.17. Dimensionless heat flux changes q(t)/qN in the Fourier number func­

tion, Fa =at/L2

a) b)

ti q
tiN tiN

J

c)

() 1~~Ol

+
o

-1

Fig. 16.18. Division of heat flux into two componen ts

Plate temperature distribution with a heat flux step-change is expressed
as

X 2 1 2 00 1
B(X,Fo)=Fo+--X +---2I-2cos(nJrX)exp(-n 2

Jr
2Fo). (5)

2 3 Jr n=l n

In accordance with the superposition principle, the solution of the
problem (1)-(4) has the form

B=O, (6)

B=B(X,Fo-Fo 1) , Fo1<Fo<Fo2 , (7)

B=B(X,Fo-Fo1)-B(X,Fo-Fo2 ) , F02 s t», (8)
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Dimensionless temperature transient ()(X, F0) for X =0 and X = 1 is pre­
sented in Table 16.4.

Also, calculated temperature transient is presented in Fig.16.19.

Table 16.4. Dimensionless plate temperature transient on the butting face B(O,F0)
and the back surface B(1,Fo) for FO l =0.75 and F02 =1.25

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

0.0000000 0.0000000 0.80 0.2523133
0.0000000 0.0000000 0.85 0.3568263
0.0000000 0.0000000 0.90 0.4370888
0.0000000 0.0000000 0.95 0.5051653
0.0000000 0.0000000 1.00 0.5661457
0.0000000 0.0000000 1.05 0.6228415
0.0000000 0.0000000 1.10 0.6769283
0.0000000 0.0000000 1.15 0.7294230
0.0000000 0.0000000 1.20 0.7809461
0.0000000 0.0000000 1.25 0.8318758
0.0000000 0.0000000 1.30 0.6301309
0.0000000 0.0000000 1.35 0.5759643
0.0000000 0.0000000 1.40 0.5459132

-0.0009125
0.0002696 1.55 0.5104165 0.4895842
0.0078856 1.60 0.5063590 0.4936410
0.0293066 1.65 0.5038822 0.4961178
0.0614640 1.70 0.5023701 0.4976300
0.1005160 1.75 0.5014470 0.4985531
0.1438246 1.80 0.5008833 0.4991167
0.1897384 1.85 0.5005393 0.4994607
0.2372436 1.90 0.5003293 0.4996708
0.2857205 1.95 0.5002011 0.4997990
0.3347906 2.00 0.5001227 0.4998773
0.3839533 2.05 0.5000749 0.4999251
0.4259908 2.10 0.5000458 0.4999543
0.4543583

0.8
()

0.6

0.4

0.2

0.01---~--

0.50 0.75 1.00 1.25 1. 50 1.75 Fo 2.00

Fig. 16.19. Dimensionless temperature B=(T - To)}) (qNL) of the front face (X =
0) and the back surface (X = 1) with heat flux changes shown in Fig. 16.17 for
FO l = 0.75 and F02 = 1.25
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Exercise 16.11 A Program and Calculation Results for a
Half-Space Surface Temperature with a Change in Surface
Heat Flux in the Form of a Triangular Pulse

Calculate a half-space temperature transient in time. Heat flux changes in
time (Fig. 16.10, Ex. 16.7). Initial temperature of the copper half-space is
To =O°C; maximum heat flux value qmax =3000000 W/m

2
; pulse duration

D = 60 s. Assume for the calculation that p = 0,4 and (kp)1I2 = 35968
J/(m2·K·s1l2

) (see Table 17.1, Ex. 17.1). In order to simulate measurement
data recorded at the step ~t =1 s, add normally distributed pseudo-random
numbers with a mean equal to zero and a variance of 1.0 to calculated
temperature. Present calculation results in a tabular and graphical form.
For the calculation, use formulas derived in Ex. 16.7. Attach a printout of
the computational program.

Solution

Normally distributed pseudo-random numbers ~ with a mean equal to zero
and a variance a 2 = 1.0 were added to a temperature transient calculated by
means of (7) and (8) from Ex. 16.7. The probability that the errors
calculated this way lie in the interval ±3a = ±3°C is P = 99.7%.

'Measurement data" T~,i disturbed by random errors was calculated from

formula

i = 0, ..., 60, (1)

where ~ are pseudo-random numbers, while Tw temperatures Tw(t)
calculated by means of (7) and (8) in Ex. 16.7. Calculation results are
listed in Table 16.5 and Fig. 16.20.

A program for determining a half-space temperature transient in time

PROGRAM temperature
Pi=3.14159
OPEN(2,FILE='16_11.wyn',STATUS='OLD')
write(2,*) 't, Tw, Tw_z'
D=60.
p=O.4
p_l_c_ro=35968.
q_max=3000000.
dt=l.
temp_O=O.
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RX1=0.49
STALA=3./3.
t =0.
DO WHILE (t.LE. (p*D))
temp=temp_0+4.*q_max*sqrt(D/Pi)/(3.*p*p_l_c_ro)*

& (t/D)**(3./2.)
CALL GEN (STALA,RX1, PX1)

write(2,300) t,temp,temp+PX1
t=t+dt

ENDDO
DO WHILE (t.LE.D)

temp=temp_0+4.*q_max*sqrt(D/Pi)/(3.*p*p_l_c_ro)*
& ( (t/D)**(3./2.)-(t/D-p)**(3./2.)/(1.-p)

CALL GEN (STALA,RX1, PX1)
write(2,300) t,temp,temp+PX1
t=t+dt

ENDDO
STOP

300 FORMAT (F7.0,3x,F9.4,3x,F9.4)
END
SUBROUTINE GEN(STALA,RX,PZ)
CALL NORNG(RX,PX)
PZ=PX/STALA
RETURN
END

SUBROUTINE NORNG(RX,PX)
DIMENSION Y(6),X(6),S(5)
DATA Y/ 0 . , . 022 8, . 0 668, . 135 7 , . 27 43, . 5/ ,

1 X/-3.01,-2.0,-1.5,-1.0,-.6,0./,
2 S/43.8596,11.3636,7.25689,2.891352,2.65887/

CALL STRNUM(RX)
PX=RX
1=1
IF(PX.GT.0.5) PX=1.0-RX

2 IF(PX.LT.Y(I+1)) GO TO 8
1=1+1
GOTO 2

8 PX= ( (PX-Y (I)) *S (I) +X (I))
IF (RX.GE.0.5) PX=-PX
RETURN
END
SUBROUTINE STRNUM(RX)
BB=l.
PX1=RX*317.
RX=AMOD(PX1,BB)
RETURN
END



Exercise 16.11 A Program and Calculation Results 505

200

400r---------------,

300

100

o 20 40 t [s] 60

Fig. 16.20. Transient of a half-space surface temperature Tw(t) and a simulated

measurement data T:,j

Table 16.5. Temperatures of a half-space surface TW,j = Tw(t) and a simulated

measurement data T;i

o 0.000
1 2.614
2 7.394
3 13.584
4 20.915
5 29.229
6 38.422
7 48.418
8 59.155
9 70.587
10 82.672
11 95.378
12 108.675
13 122.539
14 136.946
15 151.878
16 167.316
17 183.245
18 199.649
19 216.515
20 233.831

-0.452
2.909
7.856
13.830
21.707
28.537
39.062
48.339
57.702
69.874
82.727
93.691
110.416
122.687
136.080
152.277
165.583
183.738
199.227
215.780
231.998

251.586 252.640
269.769 269.292
288.370 288.717
307.379 309.007
322.432 322.104
334.267 333.985
344.137 345.095
352.485 352.118
359.562 360.170
365.538 363.719
370.536 369.907
374.649 375.215
377.953 379.896
380.507 379.652
382.364 383.582
383.567 383.562
384.152 385.530
384.154 384.071
383.599 384.002
382.515 382.640
380.923 380.621

[s] T . [OC]
W,l

378.845
376.299
373.303
369.871
366.018
361.757
357.101
352.061
346.647
340.870
334.738
328.261
321.446
314.301
306.834
299.050
290.958
282.563
273.870

378.779
376.532
372.681
369.799
368.771
360.783
358.303
352.826
346.034
340.620
335.371
328.762
320.768
313.890
306.683
299.254
291.849
281.133
273.145
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Exercise 16.12Calculation of a Half-Space Temperature
with a Mixed Step-Variable Boundary Condition in Time

Calculate temperature of a half-space made of a plexiglass, initially heated
by a heat flow at density q= 6000 W/m2

• A step-decrease in the heat flow

density occurs at time t
u
= 30 s and is 8q = 0.55·6000 = 3300 W/m2

• Initial

temperature To of the half-space and the temperature of the passing airflow
Tp are identical and are To =T

p
=20°C. The half-space-to-air heat transfer

coefficient is a = 200 W/(m2·K). Also, carry out calculations when a = 150
W/(m2·K). Assume the following plexiglass values for the calculation: A=
0.184 W/(m·K), p = 1180 kg/m', c = 1440 J/(kg·K). Determine time-points
t} and t

2
, in which the half-space temperature measures 38.2°C. At this

temperature, the liquid crystals (Hallcrest, BM/R38C5W/C17-10[3] or
Hallcrest, BM/R100F2W/C17-10[4]) change colour from colourless to red,
which is something that can be easily recorded by means of a camera. Ap­
ply to the calculation formulas derived in Ex. 16.8.

Table 16.6. Half-space surface temperatures
~=w~

T[ °C] T[OC] T [OC] T[OC] T[ °C] T[OC]
t [s] a= 150 a=200 :t [s] a= 150 a=200 .t [s] a= 150 a=200
~m2~K)~/(m~.Kl!~(m~K)_
0 20.000 20.000 -21 45.113 40.994 42 38.599 34.740
1 29.721 29.101 :22 45.356 41.158 143 38.509 34.668
2 32.673 31.619 123 45.587 41.313 144 38.432 34.606
3 34.629 33.224 124 45.806 41.460 ~5 38.364 34.553
4 36.103 34.401 125 46.016 41.599 46 38.306 34.506
5 37.285 35.325 126 46.215 41.732 147 38.255 34.465
6 38.271 36.081 27 46.406 41.859 l48 38.211 34.430
7 39.115 36.719 128 46.589 41.979 ;49 38.173 34.399
8 39.851 37.268 29 46.765 42.095 ·50 38.140 34.371
9 40.502 37.747 .30 46.933 42.205 151 38.111 34.348
10 41.085 38.172 31 42.720 38.215 152 38.087 34.327
11 41.612 38.553 132 41.548 37.184 153 38.066 34.309
12 42.092 38.896 133 40.817 36.559 54 38.047 34.293
13 42.532 39.209 34 40.299 36.123 55 38.032 34.280
14 42.938 39.495 35 39.906 35.798 156 38.019 34.268
15 43.313 39.758 36 39.597 35.544 57 38.008 34.258
16 43.663 40.001 37 39.347 35.341 58 38.000 34.250
17 43.990 40.227 38 39.142 35.175 159 37.993 34.243
18 44.296 40.438 .39 38.971 35.038 :60 37.987 34.237
19 44.584 40.635 40 38.827 34.922
20 44.856 40.82 41 38.704 34.824

'~wwm•... --... 'wwm.....~. ."""""""".... """""""".. .""""","~,"<wm>~.' •
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50 .-------------------,

40

30

a = 150 W/(m2'K)

6040 t [s]20
20 L..-_.....1....-_--L-_----1.__.l--_......L-_---J

o
Fig. 16.21. Half-space surface temperature transient

Solution

Time-points t
1

and t
2

, at which surface temperature measures 38.2°C, can
be determined using surface temperature transients Tw(t) presented in Table
16.6 or Fig. 16.21.

Exercise 16.13 Calculating Plate Temperature by Means
of the Superposition Method with Diagrams Provided

Calculate front face temperature of a back-surface-insulated flat wall at a
time-point t

2
= 150 s (Fig. 16.22). The flat wall is L = 0.05 m thick, thermal

diffusivity coefficient a = 1.10-5 m2/s, while the thermal conductivity A =
50W/(m·K).

Heat flux changes in time as follows:

(1)

Q2=1·105 W/m2, t1st,

where t, = 50 s. Initial temperature of the plate is To = 20°C.
Use the diagram from Fig 16.23.

(2)
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L

4(t)

42 -----.....---.......--

°
Fig. 16.22. Flat wall heating

0,8 X=f 1,0

Fo= at
L2

Q= (T-To)A
l7 ql.

I
I
I

---+----

0,60,40,2°

0,2

0,4

0,8

1,0 ~--...,..------r-----r------.....,

0,6

Fig. 16.23. Dimensionless temperature of a flat wall heated by a heat flow
at constant density q with back surface insulated

Solution

(3)

Heat flux changes shown in Fig. 16.22 can be presented as the sum of two
components (Fig. 16.24).

The Fourier number for the first problem (Fig. 16.24a) is

Fo= at2 = 1.10-
5

·150 =0.6
L2

(0.05)2
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while for the second (Fig. 16.24b)

a(t2- tl) 1.10-5(150-50)
Fo= 2 = 2 =0.4.

L (0.05)

From diagram (Fig. 16.23) for X = 0, one obtains:

Bt =0(0;0.6)=0.94,

O2 =0(0;0.4)=0.73.

Temperature of the plate front surface at a time 12 = 150 s is

T(O t )=() q\L +() (qZ -q\)L +Tr
,2 1 A 2 A 0

As a result of substitution, one has

(4)

(5)

(6)

(7)

r(o,tz) = 0.94. 2 .10
5

·0.05 + 0,73 (1- 2) .10
5

• 0.05 + 20 =
50 50 (8)

=188 -73 + 20 =135°.C.

a)

q(t)

4110--------

o

b)

q(t)

Fig. 16.24. Division of heat flux- the two components

Exercise 16.14 Calculating the Temperature of a Paper
in an Electrostatic Photocopier

Electrostatic photocopier operates on the principle that a paper is electro­
statically charged on the side, which displays the original imprint. Dark re­
gions are positively charged, while the light regions are negatively
charged.
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Next, the paper comes into contact with negatively charged carbon mole­
cules encapsulated in a polymer foil (Fig. 16.25) [1]. Carbon molecules at­
tach themselves to a positively charged regions of the paper and due to a
rise in the paper surface temperature T

max
= 115.5°C, get permanently af­

fixed to the paper. If the temperature is too low, stains form on the paper
surface.

a)

b)

negatively charged carbon molecules

:~+ :~ -+~+ -+~+

\
paper

qmax ------------- -

tmax = 2D/3

D/2 tmax D

Fig. 16.25. A diagram, which illustrates the heating of a paper in a xerographic
printer: (a) xerographic paper, with attached negatively charged carbon molecules,
(b) heat flux transient and surface temperature; D -pulse duration in the form of a
triangle

At the initial stages of development of the fast photocopying machines,
engineers encountered technical problems; they found it difficult to design
a photocopier that would warm up a paper to a temperature Tmax in a very
short period of time. This difficulty, however, was quickly overcome. The
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idea was to heat up a paper by a very large short-lasting heat flow gener­
ated by means of the flash-lamp-condenser system. The heat flux, which
falls on the paper surface, changes in time in the form of an isosceles tri­
angle (Fig. 16.25b).

The duration of paper heating is very short and lasts D = 1.10-3 s. In or­
der to appropriately design the flash-lamp-condenser system, it is neces­
sary to know what qmax, is, since this ensures that the paper surface is

heated to T
max

' There are delays in surface temperature changes in compari­
son to heat flux changes that occur on the paper surface. The maximum
half-space surface temperature occurs at a time point located in the interval
0.5D S t s D. Determine value qmax which ensures that Tmax = 115.5°C is

reached, by assuming the following data for the calculation [1]:

• thermal conductivity for the paper is A =0.1295 W/(m·K),
• thermal diffusivity for the paper is a =6.65.10- 8 m2/s,

• paper thickness is L = 7.63.10-5 m,

• initial temperature is To =20.1°C.

Account for the fact that only 30% of the incident heat flow is absorbed by
the paper, while the paper heating lasts D =1.10-3

S.

Solution

Paper can be regarded as a semi-infinite body, since

and the back surface temperature of the paper equals initial temperature.
The depth of heat penetration at time D is smaller than the thickness of pa­
per L. Formulas derived in Ex. 16.7 will be used to solve this problem.
Half-space surface temperature in the time interval pD s t s D is derived in
(8), Ex. 16.7

t: = T(O,t) = To + 4qmaxJi5 [T3/2 _ (T - Pt
2

] , (1)
3P~JrACP 1- P

where t = tID. Coefficient p is the dimensionless time, in which q(t)
reaches the maximum value, with respect to the whole time interval D. In
the given case, p =0.5. The maximum of function Tw(t) occurs under the
condition that the first derivative with respect to time is equal zero.
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dTw = dTw • dr = 2qmax fi5 [r1/2_(r - p yl2 ] .J.. =0. (2)
dt dt dt P~1CAcp 1- p D

Once equation (2) is solved, one has

1
'max =-2-'

-p
(3)

where 'max is the time point, at which Tw(t) reaches its maximum value (Fig.
16.25).

By substituting p = 0.5 into (3), one obtains

2 2 -3 -4
'max=-D=-·1·10 s=6.667·10 s.

3 3

By substituting ,= 'max into (1), one has

t: - T ( ) _ 4qmax fi5 [ 3/2 _ (rmax - P )3/2 ] T (4)
max - 1 w 'max - r:::::;-:::: 'max + 1 0 •

3p'\j1CAcp 1- p

Following that qmax is determined from equation (4)

. 3p J*P(Tmax -To)
qmax = fi5 [ 3/2 ] ,4 D 3/2 _ ( 'max - p )

'max
1- p

(5)

where 'm~ =4p13 =4·0.5/3 =2/3.
By substituting data into (5), one obtains (after Acp =A21a is accounted

for)

. 3·0.5
qmax = 4.J0.001

3 1416 0.1295
2

( )
· 6.65.10~8 115.5-20.1 W

[ ]

=2466546-2 .

(
~)3 / 2 _ (2/3-0.5)3/2 ill

3 1- 0.5

Lamp-generated heat flux in the xerographic printer should amount to

qk max = qJrulX ·100 =2 466 546· 100 =8 221 820 W .
'30 30 m2

Flash-lamp-condenser system should generate a maximum density heat
flow qk,max, so that surface temperature of the paper would equal Tmax'
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17 Transient Heat Conduction in a Semi-Infinite
Body. The Inverse Problem

In this chapter, inverse transient heat conduction problems in a semi­
infinite body are discussed. Particular attention is paid to transient methods
for measuring a heat transfer coefficient applied to tests conducted on heat
transfer in gas turbines, combustion engines and rocket motors. The au­
thors also derive formulas, which allow to determine both, constant and
time-variable heat transfer coefficients on the basis of a measured tempera­
ture on the surfaces of construction elements that are considered as semi­
infinite bodies and discuss the method for measuring heat flux on the inner
surface of the combustion engine cylinder on the basis of a measured cyl­
inder wall temperature in a single point. The authors derive theoretical de­
pendencies, develop computational programs and illustrate how the pro­
grams are applied in practice. Overall, the chapter contains eight exercises,
which are both, theoretical and computational in character.

Exercise 17.1 Measuring HeatTransfer Coefficient. The
Transient Method

Describe a transient method for measuring heat transfer coefficient on the
surface of a complex-shape body, based on the step-change in medium's
temperature. The solid is regarded as a semi-infinite body due to a short
measuring time. Assume that the body surface temperature is measured by
means of thermo-chromatic liquid crystals.

Solution

The change in surface temperature of a semi-infinite body with initial tem­
perature To that was suddenly heated or cooled by a medium (usually air)
at temperature T; (Fig. 17.1), is described by (14) in Ex. 14.4.

r(O,t) =10 + (fez - 10){1-[1- erf(~ J;;t)1exp( a~~t)}. (1)
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Assuming that surface temperature T
sm

is known for time t
m

from the read­
ings taken (Fig. 17.1), then from the condition of equality of calculated
temperature T(O,t) and measured temperature T

sm
for time t = t

m
one obtains

the equation that allows to determine a

T(O,tm)=Tsm, (2)

hence, once (1) is accounted for, one has

1O+(Tcz-To{1-erfC(~ .,fa1m}exp ( a~~lm )]=Tsm, (3)

where erfc x =1- erfx .

a)

x

To

x 1m

b)
Tez < To

To

Fig. 17.1. Surface temperature transient of an infinite body T(O,t) with initial tem­
perature To triggered by a step-change in medium's temperature from Tez = To for t
~ 0 to Tez =I:- To for t> 0: a) Tez > To (heated body), b) Tez < To (cooled body)

The above is a non-linear algebraic equation with respect to a, which can
be solved using one of the widely available methods, such as the interval
searching method, method of interval bisection, Newton method or secant
method.



(4)
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Coefficient a can also be determined from the graph of (2) or (3),
shown in Ex. 14.4. For this purpose, (3) will be written in the form

t: - 1'0 [ (a c:-J] (a 2

atm J_ =1- l-erf -Vatm 'exp --2- ·
~ 1'0 A A

If we first calculate (Tsm - To )/ (Tcz - To ) and then allow for x/(2~aIm = 0,

we can determine parameter a-Jatm fA from the graph of (2) in Ex. 14 or

parameter a2 -Jatm fA2 from the graph of (3), in the same exercise.

If we take in to account that thermo-physical properties of the body, a =
Alcp and A and measurement time t

m
are known, we will find it easy to

calculate a.
Liquid crystals method is a method for measuring heat transfer coeffi-

cient a and is widely applied in practice [1-3, 5, 6, 8, 10, 14, 15], espe­
cially when it is necessary to determine the distribution of a heat transfer
coefficient on the surface of gas turbine blades. Table 17.1 lists thermo­
physical properties of materials, which are frequently used for building
models of the tested construction elements.

Table 17.1. Thermo-physical properties of the selected materials at temperature
20°C

Ape
[W/(m.K)][k~~m3] [J/(kg·K)][J/(m2.K.sl/~2)]~

204 2707 896 22244
372 8300 419 35968
57.5 7839 464 14461.8
411 10524 236 31949.7

Material

Aluminum (pure)
Copper (commercial)
Silver (99,90% Ag)
Carbon steel (0,1%)
Alloy steel (0,19% C, 11,8% Cr,
1,07% Mo, 0,8% Ni) 24.0 7760 456
Heat-resistant glass: Pyrex 1.4 2225 835
Plexiglass 0.184 1180 1440
Polyethylene 0.35 920 2300
Teflon 0.23 2200 1040
Polyvinyl chloride (PVC) 0.15 1380 960
J.I"rlr"'I"'A11'"<:lTn 9606* 2600 808

9215.5
1612.8
559.2
860.6
725.4
445.8
2891.6

* Product trade name of the firm Coming Glass, New York USA

The main advantages of this method, in comparison to other standard
methods, are high spatial resolution and its adaptability to heat transfer
testing in complex-shape bodies. It is a non-expensive and non-invasive
method, more frequently used than thermo-element-based measuring
method when temperatures are low and resemble the temperature of sur­
roundings.
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If we allow that the models of construction elements are made of mate­
rials with low thermal conductivity and that the duration of the experiment
is very short, then the depth of heat penetration is smaller than the thick­
ness of the model wall. In such a case, the model can be regarded as a
semi-infinite body.

In liquid crystals method, the model with a uniform initial temperature
is heated or cooled when there is a step-change in the flowing medium's
temperature, which remains constant during the duration of the experi­
ment.

The experiment can be conducted in two ways:

1. Model remains in the temperature of surroundings and is suddenly
placed into the flow of the passing medium, whose temperature is higher
than the temperature of surroundings (Fig. 17.1a).

2. Model is initially heated by a hot air or water and then is suddenly
placed into the passing airflow, whose temperature equals the tempera­
ture of surroundings (Fig. 17.1b).

The measurement method is thoroughly described in reference [1+3,5,
6, 8, 10, 14, 15]. Paper [3] discusses the method for determining the distri­
bution of a heat transfer coefficient on the surface of a turbine blade by
means of the liquid crystals (BM/R32C5W117-10), which change color
from colourless to red, from red to green and from green to blue at tem­
perature 31.6°C, 32.7°C and 37.2°C, respectively. The crystal-covered
blade model was first heated to an initial temperature To' which was higher
than 37.2°C (the blue colour of liquid crystals). Next, the model was
placed in 0.1 s into the passing airflow, whose temperature equaled the
temperature of surroundings, and time tsm was recorded, after which the
blade surface reached the temperature of T

sm
=32.7°C, at which the liquid

crystals changed their colour from green to red. The colour changes in liq­
uid crystals were recorded by a video camera and a computer system.

Exercise 17.2 Deriving a Formula for Heat Fluxon the
Basis of Measured Half-Space Surface Temperature
Transient Interpolated by a Piecewise Linear Function

Derive a formula for the half-space surface heat flux q(t) by assuming

that measured time transient of the half-space surface temperature is inter­
polated by a piecewise linear function.
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Solution

The starting point is (19) derived in Ex. 14.5, according to which the heat
flux q(t) on the half-space surface is formulated as follows

q(t)=~ACP tfdf(e) 1 de,
rc 0 de .Jt-e

(1)

(2)

where J(t) is the measured half-space surface temperature transient.

Approximation by a piecewise linear function of the measured half­
space surface temperature transient (Fig. 17.2) enables one to write the in­
tegral (1) in the following way:

q(tM+l)=~AcpitJ df(~) 1 de.
rc i=l ti de .JtM+l - e

,I'(e)

fitl I
I

e I

0 I
I
I
I

t, 12 t, [/+1 tA1+1 e
Fig. 17.2. Interpolation of measured half-space temperature transient by a piece­
wise linear function

Derivative with respect to time dJ( e)/de can be approximated by a for­
ward difference quotient

df(e) /i+l-/i
--...;,-.=---

de ti+l -ti
(3)

(4)



520 17 Transient Heat Conduction in a Semi-Infinite Body

Next, by substituting tM+1- e = Z2, which yields .JtM +1 - e =Z , 2zdz = -de
the following form of (4) is obtained:

q(tM+1)=~AcPf/;+1 - f; ,JtM+{+1 (_ 2Z)dZ (5)
1l i=l t.;1 - t, .JtM+l-ti Z

From the integration of the (5), one obtains a formula, which allows to
calculate heat flux at time point tM+1 [12]

q(tM+1)=2~ACPff;+1 =f;(J(tM+1-ti ) -J(tM+1-ti+1)) (6)
1l i=l t.;1 t l

Once we multiply the nominator and denominator under the summation
symbol by

(-JtM+1 - t, + -JtM+1 - ti+1 )

we obtain an alternative form of (6)

(7)

M =1, 2, 3, ... (8).( )_2~ACP~ f;+I- f;q tM+l - --L...J '
Jl ;=1 (-JtM+1 - t, + -JtM+1 - t;+1 )

Sampling intervals I1t
i
= t

i
+1 - t, do not have to be identical. Measurement

data f, i = 1, 2, ..., (M + 1) is often disturbed by random errors, which
cause oscillations in the calculated transient 4(t). In order to reduce or

eliminate the oscillations, the data can be "smoothed out" using digital fil­
ters, which are based on the local polynomial approximation [12]. When
locally approximating seven subsequent measurement points by means of
the third degree polynomial, one has

39ft +8/2 -4(13 + /4 - .15)+ 16 -2j,
Yl = 42 '

8ft +19/2 +1613 +6/4 -4.15 -716 +4j,
Y2 = 42 '

-4fi +16/2 +1913 +12/4 +2.15 -416 + j,
Y3 = 42 '

7 f; + 6(f;+1 + f;-l) + 3(f;+2 + f;-2) - 2(f;+3 + f;-3)
Yi= 21 '

i =4, ..., N -3.

(9)

(10)

(11)

(12)



(13)
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For the last three points (M - 1), M and (M + 1), the expressions that de­
scribe the smoothed temperature values have the form

/N-6 -4/N - 5 +2/N - 4 +12/N - 3 + 19/N - 2 +16/N- 1 -4/N
YN-2 = 42 '

4/N - 6 -7/N - 5 - 4/N - 4 + 6/N - 3 + 16/N - 2 + 19/N - 1 + 8/N
YN-l = 42 ' (14)

(15)

M=I,2,3, ... (16)

-2/N - 6 +4/N - 5 + /N-4 -4/N - 3 -4/N - 2 +8/N - 1 + 39/N
YN = 42

where N = M + 1 (Fig. 17.2).

"Smoothed" temperature values are used to calculate heat flux q(tM +1 )

.( )_2~ACP~ Yi+1-Yiq tM+l - --LJ '
1r i~1 (.JIM+1 - t, + .JIM+1 - li+1 )

Approximation by means of the spline function can be used to smooth
measured temperature transients. Number of programs are available in
such software packages as IMSL [7], Table Curve [11] and MATLAB [4,
9]. The Table Curve Program [11] is user friendly, since it allows to make
a quick graphical presentation of the obtained results and to evaluate the
quality of the approximation.

Exercise 17.3 Deriving Heat Flux Formula on the Basis
of a Measured and Polynomial-Approximated
Half-Space Surface Temperature Transient

Derive a formula for heat flux q(t) on the half-space surface by assuming

that measured time transient of the half-space surface temperature is ap­
proximated by the polynomial of m degree with respect to time.

Solution

Measured surface temperature transientf(t), i = 1,2, ..., N is approximated
by the polynomial

Y(t)=~+Alt+A2t2+...+Amtm, msN-l, (1)

Polynomial coefficients are determined by the least-squares-method
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(2)

where I, is the measured half-space surface temperature at time point t,
Commercial programs can be used to determine coefficients Ai' j = 0, ...,
m.

Heat flux on the half-space surface is calculated from (1) in Ex. 17.2

q(t)=l~'cp lfdy(e) 1 de. (3)
1r 0 de ~t-e

Once (1) is substituted into (3), one has

q(t)=~A.CP f(Al +2Aze+ ... +mAmem
-

1
) R de . (4)

1r 0 t-e

Due to the substitution of Z2 = t - e and the application of an algebraic bi­
nomial formula

n ,

(a +b)n ="" n. an-ibi
LJ .,( _ .), '
i=O J. n J.

n=1, 2, ... (5)

(6)

the following formula [12, 13] is obtained from (4) after transformations:

fkP{ m 2i-I

q(t)=2V7 A1Ji + 'f;/A;t-2 x

[

i-I (_l)k ]}
XI+i-1'( ). t; (2k +1) k! (i - 1- k )! .

In a case when m =7, the following expression for q(t ) is obtained from

(6):

.() ~A.CP( r: 4 G 8 t: 64 G 128 t:q t =2 -- AI'''t + - A2"t- + - A3"t- + - ~ " t' + - As"t +
Jr 3 5 35 63 (7)

512 A G1 1024 A ro)
+-£16"r~ +-- 7"r- .

231 429

Equation (7) can also be applied to polynomials of a lower degrees. When
m=3, one should assume then thatA

4=A s=A 6=A 7=
0, while whenm=5,

it is assumed that A
6
=A7=0. In the case of higher degree polynomials

(m > 5), one should take into consideration the fact that oscillations may
occur.
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Exercise 17.4 Formula Derivation for a Heat Flux
Periodically Changing in Time on the Basis
of a Measured Temperature Transient at a Point Located
under the Semi-Space Surface

Determine a formula for periodically changing heat flux in time under the
assumption that half-space surface temperature yet) is known from the
readings taken as well as the temperature IE inside the half-space, within
distance E ~ 8, where Sis the depth of heat flow penetration (Ex. 14.8) into
the half-space interior. Thermo-physical properties of the semi-infinite
body: A, C and p are constant.

Solution

From the surfaces of combustion chambers in combustion engines and
from the surfaces of pipes submersed in a fluid bed, heat flux q(t) (Fig.
17.3) can be divided into two components: q [steady-state; independent of

time] and qn(t) [transient; changes periodically in time].

(1)

T _

q~

f(t)

o x

Fig. 17.3. Diagram of the location of temperature measurement points

If the frequency of heat flux changes qn (t) is high, then the temperature

and heat flux change in time only in the vicinity of the element's surface,
at a depth of about 1+2 mm, while the temperature inside the element re­

mains constant with time. In order to determine components q and qn(t),
temperature is measured at two points (Fig. 17.3): on the heat-transferring
surface (x = 0) and within distance x = E from this surface. Distance E
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must be selected in a way that temperature at such point is independent of
time, i.e. so that fast-changing processes, which occur on the element's
surface, would be completely suppressed at this point. In the case of com-
bustion engines, it is usually assumed that E ~ 3 mm.

Temperature distribution in the region 0 s x s E is defined by the heat
conduction equation [12]

82T 1 8T

8x2 - a at
and boundary conditions

Tlx=o =f(t)=7+y(t),

(2)

(3)

Tlx=E = fE =const, SsE. (4)

It is not necessary to know the initial condition, since only the quasi­
stationary solution independent of the initial condition will be examined
here (Ex. 14.6). The effect of the initial condition on the determined tem­
perature distribution already vanishes after few cycles. Due to the linearity
of the problem (2)-(4), superposition principle is applied to solve it

T(x,t)=T(x)+T; (x,t) , (5)

where T(x) is the steady-state solution component, while Tn(x,t) a time­
dependent component (quasi-steady component).

Once (5) is substituted into (3)-(4), two partial problems are obtained;
the first one allows for determining temperature f (x )

d2 f (x)
--2-=0,

dx
OsxsE, (6)

fL=o =7, (7)

flx=E = fE, SsE, (8)

OsxsE,

the second for determining quasi-steady component Tn(t)

82Tn 1 ot:
8x2 --;81'

t; Ix=o = y(t) ,

(9)

(10)
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Boundary condition (11) can be replaced by two conditions

aTn I =0
at x~oo '

(12)

(13)

where the depth of heat penetration t5 is smaller than E and the boundary
condition at point x =E can be treated as a condition at an infinitely large
distance from the half-space surface.

Steady-state temperature distribution, which is the solution to the prob­
lem (6)-(8), has the form

(14)

In terms of the heat flux measurement on the inner cylinder surface of a
combustion engine or a compressor, periodic temperature changes yet) are
approximated by means of the Fourier series

N

y(t)= I[Ak cos(kOJt) +Bk sin (kOJt)] '
k=l

where

y(t)=f(t)-l,

1 p

1=- Ji(t)dt,
Po

(15)

(16)

(17)

2 P

~ =- Ji(t)cos(kOJt)dt,
Po

2 P

B, =- Ji(t)sin(kOJt)dt,
Po

2Jr
0)=­ ,

P

while p is the period.

k=I,2, ...,N,

k=I,2, ...,N,

(18)

(19)
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If the duration of a single cycle, suction-compression-decompression­
exhaust corresponds to two crankshaft revolutions, then frequency OJ is
equal to the half of crankshaft's angular velocity, i.e. OJ = Jrnl60 lIs, where
n is the number of shaft revolutions per minute.

The solution to the problem: (9), (10), (12), (13) while accounting for
(15), can be easily determined using the results obtained in Ex. 14.6. The
solution has the form then

t: (x,t) =fexp(-x [k;Jx
k=l V~

(20)

It is a quasi-steady solution, which describes steady-state temperature
fluctuations. This solution is not valid at the initial moments of the tran­
sient process, when the initial temperature distribution has an effect on
temperature distribution in the half-space.

By accounting for (14) and (20) in (5), one has

T(x,t) =7+ IE -7 x+ fexp(-x~klV Jx
E k=l 2a

(21)

Heat flux is expressed as

. aT]- jE ~mOJ (mOJJq(X,t)=-A-=A +AL..J -exp -x - xax E k=l 2a 2a

x{h [COs(klVt-XmJ-Sin(klVt-XmJ+

-s. [COs(ken - xmJ + Sin(kcot - xmJ]}.
Formula for surface heat flux has the form

(22)
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q(O,t) =A1- IE + ifJkW {~[cos(kwt) - sin (kwt)] +
E k=l 2a

+Bk [ cos(kwt) + sin (kwt)J} .
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(23)

Coefficients of the Fourier series, A
k
, B

k
, k = 1, ..., N and average surface

temperature f are determined when the measured surface temperature

transientf(t) is approximated by means of the Fourier series (trigonometric
polynomial)

N

/(t) = 1+I[~ cos(kwt) + s, sin (kwt)J. (24)
k=l

To determine A
k

, Bk' k =1, ..., N, one can use the programs from IMSL
library [7] or the Table Curve software package[ll].

Exercise 17.5 Deriving a Heat Flux Formula on the Basis
of Measured Half-Space Surface Temperature Transient,
Approximated by a Linear and Square Function

Determine formulas for heat flux on the surface of a construction element,
which can be considered as a semi-infinite body, if the measured surface
temperature of the element can be approximated by the following func­
tions:

a) yet) =To + bt,
b) yet) =To + bt',

(1)
(2)

where, To is the initial temperature of the element, while a and b are con­
stants. Determine heat flux by means of (7) derived in Ex. 17.3.

Solution

If the measured surface temperature is approximated by a polynomial

Y(I) =Ao + All+ A2/
2 +..... + As/s,

then heat flux is defined by (7) derived in Ex. 17.3

(3)
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.() ~ACP ( r; 4 G 8 r: 64 t: 128 ri)q t =2 -- AIvt +-A2"Jt- +-A3"Jt- +-~"Jt' +-As"Jr . (4)
Jr 3 5 35 63

In an instance when function a) is used for approximation, coefficients
of the polynomial (3) are

Ao =10 , Al =b, A2 = A3 =~ =As =0 .

From (4), one has

(5)

q(()= 2b~A; t . (6)

In a case when function b) is used for approximation, the coefficients of
the polynomial (3) are

Ao =10, Al =0, A2 =b, A3 =~ =As =0 .
From (4), one obtains

(7)

(8)q(()=~b~ACP (3 .

3 Jr

Equations (6) and (8) are both the same as the analytical formulas presented
in reference [16].

Exercise 17.6 Determining Heat Transfer Coefficient on
the Plexiglass Plate Surface using the Transient Method

Determine heat transfer coefficient on the basis of a surface temperature
measurement of the plexiglass plate, which is first heated to an initial tem-
perature of To = 66°C and then suddenly cooled by an airflow, which
moves along the plate surface at the temperature of Tcz =20oe.

a

plexiglass
x

S -0-f-7----,-~ ~....---r-r---r4t:-r-___7_~---~

~ [ ~__'__lf____'--"-----'-~----

Fig. 17.4. Diagram of the heat transfer coefficient measurement
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A plate, whose thickness is L = 1.27 ern (Fig. 17.4) can be regarded as a
semi-infinite body, while accounting for the fact that the time of heat pene­
tration to the opposite plate surface is about 2 min. Plate surface tempera-
ture measured by means of the liquid crystals is T

sm
=47.9°C after time t

m
=

87 s from the beginning of its cooling process.
Assume the following thermo-physical properties of the plexiglass for

the calculation: A = 0.187 W/(m·K), p = 1180 kg/m', e = 1440 J/(kg·K)
(Ex. 17.1, Table 17.1). Use graphical and numerical methods to solve this
exercise.

Solution

The method for determining a is discussed in Ex. 17.1.

Graphical method

Temperature diffusivity coefficient a = }J(ep) is a = (0.187/(1180·1440) =
1.08286.10-7 m2/s. Because dimensionless half-space surface temperature
() is

sm

(}sm = Tsm - To = 47.9 - 66 = 0.3935,
Tcz - 10 20 - 66

then from Fig. 14.2 in Ex. 14.4 for a calculated value of ~m and x/(at
m
)l/2=

0, one approximately obtains

a .Jatm ~ 0.6,
A

hence,

a e 0.6A = 0.6·0.184 =35.97~.
.Jatm .J1.08286.10-7.87 m

2·K

Value a can be determined more accurately by the numerical method.

Numerical method

Unknown value a is the root of a non-linear algebraic (4) in Ex. 17.1,
which will be written in the form

where

F(a)=O,

( ) t; - 10 [ (a -: [a 2

atm
)F a = _ -1+ 1-erf -'\Iatm exp --2- .

~ 10 A A

(1)

(2)
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After substitution of the numerical values, function F( a) has the following
form:

47.9-66 [ (a) I 7]F(a)= -1+ l-erf -- -vl.08286·10- ·87 x
20-66 0.187

(
a 2 ·1.08286·10-7 .87J

xexp
0.1842

'

F(a) = -0.606522 +[1- erf(0.016681a)Jexp(2.782633 ·10--4 a 2
) . (3)

Equation (3) can be solved using one of the commonly available methods,
such as the interval search method, interval bisection method, Newton meth­
od, or secant method.

Table 17.2. Transient of function F( a) formulated in (3)

-0.023700
-0.024479
-0.025255
-0.026030
-0.026804
-0.027575
-0.028345
-0.029113
-0.029879
-0.030644
-0.031407
-0.032168
-0.023700
-0.024479
-0.025255
-0.026030
-0.026804
-0.027575
-0.028345
-0.029113
-0.029879
-0.030644
-0.031407
-0.032168
-0.032928
-0.033685
-0.034441
-0.035196
-0.035948
-0.036699

25.00 0.054319 28.00 0.026454 31.00 0.000504 34.00
25.10 0.053357 28.10 0.025559 31.10 -0.000330 34.10
25.20 0.052398 28.20 0.024666 31.20 -0.001162 34.20
25.30 0.051441 28.30 0.023776 31.30 -0.001992 34.30
25.40 0.050486 28.40 0.022887 31.40 -0.002820 34.40
25.50 0.049534 28.50 0.022001 31.50 -0.003647 34.50
25.60 0.048584 28.60 0.021116 31.60 -0.004471 34.60
25.70 0.047636 28.70 0.020234 31.70 -0.005294 34.70
25.80 0.046690 28.80 0.019354 31.80 -0.006114 34.80
25.90 0.045747 28.90 0.018476 31.90 -0.006933 34.90
26.00 0.044806 29.00 0.017600 32.00 -0.007750 35.00
26.10 0.043868 29.10 0.016726 32.10 -0.008565 35.10
26.20 0.042931 29.20 0.015854 32.20 -0.009378 34.00
26.30 0.041997 29.30 0.014984 32.30 -0.010189 34.10
26.40 0.041065 29.40 0.014116 32.40 -0.010999 34.20
26.50 0.040135 29.50 0.013251 32.50 -0.011806 34.30
26.60 0.039208 29.60 0.012387 32.60 -0.012612 34.40
26.70 0.038283 29.70 0.011525 32.70 -0.013416 34.50
26.80 0.037360 29.80 0.010665 32.80 -0.014218 34.60
26.90 0.036439 29.90 0.009808 32.90 -0.015018 34.70
27.00 0.035520 30.00 0.008952 33.00 -0.015816 34.80
27.10 0.034604 30.10 0.008098 33.10 -0.016613 34.90
27.20 0.033690 30.20 0.007247 33.20 -0.017407 35.00
27.30 0.032778 30.30 0.006397 33.30 -0.018200 35.10
27.40 0.031868 30.40 0.005549 33.40 -0.018991 35.20
27.50 0.030960 30.50 0.004704 33.50 -0.019780 35.30
27.60 0.030054 30.60 0.003860 33.60 -0.020568 35.40
27.70 0.029151 30.70 0.003018 33.70 -0.021354 35.50
27.80 0.028250 30.80 0.002178 33.80 -0.022137 35.60
~7.92- 0_.0~7"""",3"""",51_3.Q.99 _._..._°"""",.2213_40_. ]]_.~_O.__-QJ"""",.)2"""",29_20_.~5·Z9_. ~~w.-
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Table 17.2. (cont.)

35.80
35.90
36.00
36.10
36.20
36.30
36.40
36.50
36.60
36.70
36.80
36.90
37.00
37.10
37.20
37.30
37.40
37.50
37.60
37.70
37.80
37.90
38.00

-0.037449 38.20
-0.038196 38.30
-0.038942 38.40
-0.039687 38.50
-0.040429 38.60
-0.041170 38.70
-0.041910 38.80
-0.042647 38.90
-0.043383 39.00
-0.044118 39.10
-0.044850 39.20
-0.045582 39.30
-0.046311 39.40
-0.047039 39.50
-0.047765 39.60
-0.048490 39.70
-0.049213 39.80
-0.049935 39.90
-0.050654 40.00
-0.051373 40.10
-0.052089 40.20
-0.052805 40.30
-0.053518 40.40

-0.05494140.60
-0.05564940.70
-0.05635740.80
-0.05706240.90
-0.05776741.00
-0.05846941.10
-0.05917041.20
-0.05987041.30
-0.06056841.40
-0.06126541.50
-0.06196041.60
-0.06265341.70
-0.06334541.80
-0.06403641.90
-0.06472542.00
-0.06541242.10
-0.06609842.20
-0.06678342.30
-0.06746642.40
-0.06814742.50
-0.06882742.60
-0.06950642.70
-0.07018342.80

-0.071533 43.00
-0.072206 43.10
-0.072877 43.20
-0.073547 43.30
-0.074215 43.40
-0.074882 43.50
-0.075548 43.60
-0.076212 43.70
-0.076874 43.80
-0.077536 43.90
-0.078195 44.00
-0.078854 44.10
-0.079511 44.20
-0.080166 44.30
-0.080821 44.40
-0.081473 44.50
-0.082125 44.60
-0.082775 44.70
-0.083423 44.80
-0.084071 44.90
-0.084717 45.00
-0.085361
-0.086004

-0.087286
-0.087925
-0.088563
-0.089199
-0.089834
-0.090468
-0.091100
-0.091731
-0.092361
-0.092989
-0.093616
-0.094242
-0.094866
-0.095489
-0.096111
-0.096731
-0.097350
-0.097968
-0.098585
-0.099200
-0.099814

29 a* 33

0,04

0,08,..-----------------,

F(a)

-0,04

o,oo+---------::ItP-----------1

37 41 45
a [W/(m2'K)]

Fig. 17.5. Function F(a) in the interval 25 W/(m2·K) S a S 45 W/(m2·K),

a* =31.06 W/(m2·K)
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In the given case, the simplest method was chosen: the interval search
method. Root a of (3) will be searched for in the interval [25, 45] with a
step ~a= 0.1 W/(m2·K).

The function F( a) is shown in Table 17.2 and in Fig. 17.5. It is clear
from both, the table and Fig. 6.2 that the unknown value a lies in the inter­
val 25 W/(m2·K)

S a S 45 W/(m2·K). By searching this interval with a
smaller step, which equals ~a =0.01 W/(m2·K), one can assume that the
unknown value is a = 31.06 W/(m2·K).

Exercise 17.7 Determining Heat Flux on the Basis of a
Measured Time Transient of the Half-Space Temperature,
Approximated by a Piecewise Linear Function

Determine the heat flux q(t) transient on the half-space surface. Assume
that the half-space surface temperature transients shown in Table 16.5 and
Fig. 16.20, in Ex. 16.11, are an accurate and approximate measurement
data for the calculation. Also assume that (Acp)l/2 = 35968 J/(m2·K·sl/2

) .

Present calculation results in the form of graphs; use them to compare cal­
culated and exact heat flux values. Enclose a computational program in
FORTRAN language.

Use, in the calculation, (8) and (16) from Ex. 17.2 for the exact and ap­
proximate measurement data, respectively. Carry out calculations for a
time step ~t = 1 s. For disturbed measurement data, carry out calculations
with and without smoothing using the seven-point digital filter given by
(9)-(12), Ex. 17.2.

Solution

Program for determining heat flux in time

PROGRAM p17_7
real temp(61),temp_z(61),temp_w(61)
Pi=3.14159
p_l_c_ro=35968.
dt=l.
OPEN(1,FILE='p17_7.in',STATUS='OLD')
OPEN(2,FILE='p17_7.out',STATUS='OLD')
do i=1,61

read(1,300) t,temp(i),temp_z(i)
write(2,300) t,temp(i),temp_z(i)
temp_w(i)=temp_z(i)

enddo
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call filtr_7t(61,ternp_w)
do rn=1,60

surna=O.
surna z=O.
surna w=O.
do i=l,rn

surna=surna+(ternp(i+l)-ternp(i))/
& (sqrt(dt*(rn)-dt*(i-l))+sqrt(dt*(rn)-dt*(i)))

surna_z=surna_z+(ternp_z(i+l)-ternp_z(i))/
& (sqrt(dt*(rn)-dt*(i-l))+sqrt(dt*(rn)-dt*(i)))

surna_w=surna_w+(ternp_w(i+l)-ternp_w(i))/
& (sqrt(dt*(rn)-dt*(i-l))+sqrt(dt*(rn)-dt*(i)))

enddo
surna=surna*2.*p_l_c_ro/sqrt(Pi)
surna_z=surna_z*2.*p_l_c_ro/sqrt(Pi)
surna_w=surna_w*2.*p_l_c_ro/sqrt(Pi)
write (2, *) (rn) *dt, surna, surna_ z, surna w
enddo

STOP
300 FORMAT (F7.0,3x,F9.4,3x,F9.4)

END

SUBROUTiNE filtr_7t(np,T)
INTEGER np
PARAMETER (NPOINT=61)
DiMENSiON T(NPOINT)
DiMENSiON F(NPOINT)
F(1)=1./42.*(39.*T(1)+S.*T(2)-4.*T(3)-4.*T(4)+

& T(5)+4.*T(6)-2.*T(7))
F(2)=1./42.*(S.*T(1)+19.*T(2)+16.*T(3)+6.*T(4)-

& 4.*T(5)-7.*T(6)+4.*T(7))
F(3)=1./42.*(-4.*T(1)+16.*T(2)+19.*T(3)+12.*T(4)+

& 2.*T(5)-4.*T(6)+T(7))
j=l
DO i=4,np-3
F(i)=1./21.*(-2.*T(j)+3.*T(j+l)+6.*T(j+2)+7.*T(j+3)+

& 6.*T(j+4)+3.*T(j+5)-2.*T(j+6))
j=j+l
ENDDO
j=np-6
F(np-2)=1./42.*(T(j)-4.*T(j+l)+2.*T(j+2)+12.*T(j+3)+

& 19.*T(j+4)+16.*T(j+5)-4.*T(j+6))
F(np-l)=1./42.*(4.*T(j)-7.*T(j+l)-4.*T(j+2)+6.*T(j+3)+

& 16.*T(j+4)+19.*T(j+5)+S.*T(j+6))
F(np)=1./42.*(-2.*T(j)+4.*T(j+l)+T(j+2)-4.*T(j+3)-
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& 4.*T(j+4)+8.*T(j+5)+39.*T(j+6))
DO j=l,np

T(j)=F(j)
ENDDO
END

t [s] 6040

A

20
OE+000 J!r------L..--~----L..--~----&..---.-

o

2E+006

lE+006

a) 3E+006~---- -----------,

q[W/m2
]

t [s] 604020
OE+000.!r------L..__...I...-_---L..__...I...-_-"-_---M'

o

lE+006

b)
3E+006.....------.....----------.,

q [W/m2]

2E+006
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c)
3£+006 -----.......-----------,

q [W/m2]

2E+006

lE+006

OE+OOO
o 20 40 t [s] 60

Fig. 17.6. Determined heat flux on the half-space surface: a) exact measurement
data, b) measurement data disturbed by random errors, c) measurement data
disturbed by random errors, which are smoothed by means of the seven-point digital
filter

From the analysis of results presented in Fig. 17.6, it is clear that the ac­
curacy of the heat flux determination, by means of (8) from Ex. 17.2, is
very high. From the analysis of results for the error-disturbed measurement
data, shown in Fig. 17.6 band c, one can see that data smoothing by means
of the digital filter considerably improves the accuracy of the obtained re­
sults.

Exercise 17.8 Determining Heat Flux on the Basis of
Measured Time Transient of a Polynomial-Approximated
Half-Space Temperature

By means of (7), derived in Ex. 17.3, determine a transient of heat flux
q(t) on the half-space surface by assuming that the measurement data dis-

turbed by random errors is the data from Table 16.5, in Ex. 16.11. Assume
for the calculation that (Acp)1/2 = 35968 J/(m2·K·s l12

) . Apply Table Curve
program [11] to approximate measurement data by means of the m-degree
polynomial. Carry out calculations for 3 degree (m = 3), 5 degree (m = 5)
and 7 degree (m = 7) polynomials. Present calculation results on a graph
and compare them with the exact heat flux transient.
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Solution

Measurement data is approximated by means of the Table Curve 2D v5.0
program; the following coefficients of the polynomial (1) in Ex. 17.3 are
obtained:
• 3 degree polynomial

Ao = -38.08713°C,
At = 13.962632°C/s,
A2 = 0.064750667°C/s2

,

A
3
= -0.0036616424°C/s3

;

• 5 degree polynomial
Ao = 11.145049°C,
At = -4.9820027°C/s,
A

2
= 1.6606051°C/s2

,

A
3
= -0.05288742°C/s3

,

A
4
=0.00060050935°C/s4

,

As = -2.2763261·10-6°C/ss
;

• 7 degree polynomial
Ao = -6.0269987°C,
At =11.172823°C/s,
A

2
=-1.5560632°C/s2

,

A
3

= 0.20486938°C/s3
,

A
4
=-0.009563855°C/s4

,

As =0.00020718291 °C/ss
,

A
6
= -2. 1616686·10-6°C/s6

,

A
7
=8.8072649·10-9°C/s7

•

The comparison of the determined polynomial transients with the meas­
urement data is presented in Fig. 17.7.

The results of heat flux calculation done by means of (7) (Ex. 17.3) are
presented in Fig. 17.8.

From the analysis of results presented in Fig.17.8, it is clear that the
highest accuracy is obtained for the 7-degree polynomial (m = 7).
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Fig. 17.7.Approximation of the measurement data disturbed by random measurement
errors by means of different m degree polynomials
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m 3
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Fig. 17.8. Heat fluxes determined by different degrees of a polynomial, which
approximates a half-space temperature transient
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18 Inverse Transient Heat Conduction Problems

In inverse problems, boundary conditions are determined on the basis of
temperature measurements taken at the selected internal points in a body.
Temperature, heat flux or heat transfer coefficient can be determined on a
boundary, if medium's temperature is measured as well. It is assumed also
thermo-physical properties of the body, A, C and p are known.

Inverse heat transfer problems also include optimization problems in the
field of heating or cooling of construction elements. In terms of the opti­
mization problems, boundary conditions should change in time so that
temperature at selected internal points or thermal stresses at a boundary
point or a point that lies inside the element would change as the assigned
time transient prescribes. In terms of thermal stresses, one has to determine
temperature changes of a medium (while heat transfer coefficient is as­
signed on the surface of a construction element) that thermal stresses
would not exceed the allowable stresses at selected points.

Exercise 18.1 Derivation of Formulas for Temperature
Distribution and Heat Flux in a Simple-Shape Bodies
on the Basis of a Measured Temperature Transient
in a Single Point

Derive formulas for temperature distribution and heat flux in a plate, cyl­
inder and sphere with constant thermo-physical properties: A, C and p.

Temperature transientj'(z), i =1,2, 3, ..., N on an insulated plate surface
or inside a cylinder or a sphere is known from the measurements taken.
Symbol N denotes the number of measurement points (~,f). Known tem­
perature transient at discrete points is approximated by function yet), which
one can differentiate a finite number of times.
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L ~ I ~
yet) f'y(t)

r r
r.

Fig. 18.1. Diagram of an inverse transient heat conduction problem

Solution

Temperature distribution is defined by the heat conduction equation

_1~(rm aT] == ~ aT
r" ar ar a at

and conditions

aTI == 0
ar r=O '

(1)

(2)

(3)

where: m = 0 for the plate, m = 1 for the cylinder and m = 2 for the sphere.
In contrast to direct heat conduction problems, conditions (2) and (3) are

assigned in an inverse problem on the same boundary r = O. Temperature
Ts(t) and heat flux qs (t) are determined on the boundary r =L or r =r. The
unknown temperature distribution has the following form [1, 9]:

00 dny
T{r,t)== Lhn{r)-n .

n=O dt

By substituting (4) into (1), one has

_1~(rm dh.J ] == 0 dla n == 0
r" dr dr

and

_1~(rm dhn] =~hn-l dla n =1,2, 3, ...
r" dr dr a

(4)

(5)

(6)
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By substituting (4) into conditions (2) and (3), one obtains

110(0)=1, hn(O)=O, n=I,2,3, ... (7)

and

dhn I =0, n =0, 1, 2, 3, ...
dr r=O

(8)

The solutions of (5) and (6) with conditions (7) and (8) will be discussed
for the plate, cylinder and sphere below.

Plate

The solution of (5) and (6) with conditions (7) and (8) has the following
form for m = 0:

(9)n=O,I, ...
1 r 2n

hn (r )= (2n)! 7 '
By substituting (9) into (4), a formula for the plate temperature distribution
is obtained:

00 1 ( r
2 In d

n
yT(r,t)=y(t)+L-(), - -n'

n=l 2n. a dt
(10)

Heat flux is determined from equation

(11)

By substituting r = L , the formula for heat flux on the surface of the plate
front face is obtained

Cylinder

The solution of (5) and (6) has the following form for the sphere and
cylinder:

2n

hn(r)= 2n(n!)(m+l)(m~3) ...(m+2n-l)an · (13)
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By substituting (13) into (4), one obtains for the cylinder (m =1)

Heat flux is determined from Fourier Law

. aT 00 nr2n
-

1 d"y
q(r t)=A-=A"---, or ~ 22n- 1 ( ,)2 n di"n-l n. a

(14)

(15)

Heat flux on the cylinder surface qs (t) is obtained by substituting r = r
into (15).

Sphere

Since for the sphere m = 2, then the expression for temperature distribu­
tion is obtained by substituting (13) into (4)

00 2n d"
T(r,t) =y(t)+L ( r), n y

n=l 2n +1 .a dt"

Heat flux q(r, t) is determined from Fourier Law

st 00 2nr 2n
-

1 d ny
q(r t)-A--AL---, - or - n=l (2n +1)! an dt"

(16)

(17)

Heat flux on the sphere surface qs (t) is obtained by substituting r = r intoz

expression (17).
The solutions for temperature distribution T(r,t) and heat flux q(r,t)

presented above are very sensitive to the small temperature measurement
random errors f(t). This is the result of temperature and heat flux extrapola­
tion, measured or known (e.g. from symmetry condition of temperature
field) at a point that lies inside the body in the direction of the body sur­
face.

In terms of the direct problems, fast changes in heat flux or temperature,
which occur on the body surface, are quickly suppressed inside it when
boundary conditions are known.

In the case of inverse problems, small measurement errors are amplified
even dozens of times, causing large oscillations in the determined heat flux
or surface temperature.

Additional information regarding the inverse problems can be found in
references [1, 9-12].
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Exercise 18.2 Formula Derivation for a Temperature
of a Medium when Linear Time Change
in Plate Surface Temperature is Assigned

Determine temperature changes of a fluid, which warms up an infinite
plate with thickness L. The surface temperature should change with time at
constant rate vr . The back plate surface is thermally insulated (Fig. 18.2).

T L

o

A, C,p

L

a

T (L,t) = To +Vrt

x

(1)

Fig. 18.2.Plate heating; surface temperature T(L,t) increases at constant rate v
T

Solution

Plate temperature distribution is defined by the heat conduction equation

a2T 1 et
ax2

- a at'
by boundary conditions

and by initial condition

AaTI =0
ax x=o '

(2)

(3)

(4)

The solution for initial-boundary problems (1)-(4) has the form [2, 15,
17]
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2 ( J2vrL at 1 x 1r(x t)=To+- -+- - --+
, a L2 2 L 2

(5)

~ (-lt
1 [(2n-I)Jr x] [(2n-1 J2 at]+2LJ cos exp - --Jr -

n=l ( 2n
2-1

JrJ 2 L 2 L
2

Heat flux is expressed as

(6)

Heat flux on the plate surface x =L is

{ [ J
2 [ 2 ]}

.. AVrL 00 2 2n-1 at
qs =q(L,t)=-a- 1-2~ (2n-I)Jr exp -(-2-JrJL2 • (7)

Temperature of the medium Tcz(t) can be determined from the boundary
condition of 3rd kind

orlA- =a(Tcz -rIX=L)ax x=L

and is

E; (t ) = To + vrt +~ ·
a

(8)

(9)

Once (7 ) is substituted into (9) and transformations are carried out, one
has
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{
I L2

Tcz(t)=To +Vr t+-.--
BI a

[ ]
2 [ ]}

2 L2
00 2 2n - I 2

--- exp - --ff Fo ,
Bi a ~ (2n-l)7Z" (2)

where Bi =aLIA, Fo =atll.',

Exercise 18.3 Determining Temperature Transient
of a Medium for Which Plate Temperature at a Point
with a Given Coordinate Changes According
to the Prescribed Function

547

(10)

Determine temperature transient of a medium TeJt) so that plate tempera­
ture at a point with coordinate xr would change according to the given
time function yet). Back plate surface is thermally insulated (Fig. 18.3).
Initial plate temperature is To.

Solution

If the medium's temperature Tez(t) is a function of time, then plate tempera­
ture at point xr can be determined by means of the Duhamel integral [2, 13]

t

J
8u(xr,t - B)[ ]

T (Xr ,t) =10 + T: ((}) - To d(}=
o at

(1)
t

= To + Jg(x,t - 0)[t: (0) - To ]dO,
o

where u(x,t) is the temperature transient of the plate with initial tempera­
ture at zero and with a unit step-increase in medium's temperature Tez =
1°C for t > 0 s, while g(x,t) is the plate temperature transient an impulse
function, i.e. Dirac's function J(t) [8, 16]. By applying Laplace transform
to the first integral from (1), one has

T(xr,s)= ~+[su(xr,s)-u(xr,O)J[fz(s)- ~l (2)
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T L

o

a

T(xr,t) = y(t)

x

Fig. 18.3. Plate heating or cooling in time; the plate temperature at the point with
coordinate xT changes according to the prescribed function set, Yet), i.e. T(x,t)=y(t)

If u(xT'0) = 0, then the medium's temperature transform fz (s) deter­

mined from (2) has the form

-( ) 10 -() 10T Xr, S - - y s --
-() 10 s 10 sTcz s =-+ =-+ .

S su(Xr.s ) s su(Xr,S )
(3)

(4)

One can determine transform U(Xr,S) by applying Laplace transform to

the following initial-boundary problem:

a2u 1 au
ax2 --;8('

hence

aul =0
ax x=O '

Aaul =a[l-u(L,t)],
ox x=L

ult=o =0,

d 2­

~_!...u=o
dx' a

clUl =0
dx x=O '

(5)

(6)

(7)

(8)

(9)
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Adiil =a[-!.-U(L,S)]. (10)
dx x=L S

The solution of (8) with boundary conditions (9) and (10) is

_ ( ) _ a cosh (qx)

u x,S - A S[qsinh (qL) + ~ cosh (qL)] ,

where q =~S/ a .

By substituting (11) into (3), one

- _ To [_ _ To] ~qSinh(qL)+COSh(qL)
Tcz (s) - + y (s) (). (12)

s s cosh qXr

In order to determine the medium's temperature transient Tcz(t) , one
should either find the inverse Laplace transform of function (12) numeri­
cally or by using analytical [3-6].

In the case of more complex time transients of function yet), it is rather
difficult to find analytically the inverse Laplace transform of function (12).
This is why the transient Tcz(t) can be determined numerically by inverting
(12) by means of, for instance, the INLAP program from IMSL library [9].

Exercise 18.4 Formula Derivation for a Temperature
of a Medium, which is Warming an Infinite Plate;
Plate Temperature at a Point with a Given Coordinate
Changes at Constant Rate

Determine temperature transient of a medium, which is warming up an in­
finite plate with thickness L; during the heating process, the plate tempera­
ture at the point with coordinate xr changes at constant rate vI" Back plate
surface is thermally insulated (Fig. 18.4). Determine temperature transient
of the medium Tcz(t) using Laplace transformation.

Solution

Temperature distribution in the plate is defined by the heat conduction
equation
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T L

o L

a

x

Fig. 18.4. Plate heating; during the heating process, the plate temperature at the point
XT increases at constant rate vT

by conditions

and by initial condition

a2T 1 et
ax2 --;;at'

AaTI =0
ax x=o '

TI _ =To + vrt
X-Xr

Tlt=o =To.

(1)

(2)

(3)

(4)

One can determine medium's temperature Tcz(t) by applying the inverse
Laplace transform to (12) from Ex. 18.3

_ _ To [_ To] ~ q sinh (qL) + cosh (qL)
Tcz(s)--+ y(s)-- ( ) (5)

8 8 cosh qXr

Because in the given case, transform y(8) is formulated as

-() To VTY 8 =-+-,
8 8

2

Equation (5) assumes the form

(6)
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T i qsinh (qL) + cosh (qL)
- () 10 Vr aTcz s =-+ 2 --------.

S S cosh (qxr )

551

(7)

According to Appendix H, first we will determine this part of the in­
verse c_1 ( (H.17), Appendix H), which corresponds to the double pole s =
O. Once we expand function

~q sinh (qL) + cosh (qL)
=Vr a est

S2 cosh (qxr )

into Taylor series, we have

1+ sL
2
(~+!)+ s2L

4

(!~+_1)+ ...
a aL 2 a2 6 aL 24

(
1 2 2 Jx 1+st+2"s t +... ·

Taking into account that (Appendix H)

(8)

(9)
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A=vr,

D=I,
2

E=!!-
2a'

4

F=~
24a 2

'

(10)

the quasi-steady part of the solution will have the form

s..»: AE =vr{t+ L
2 [_1+!(l- xi)]}. (11)

D D D 2 a Bi 2 L2

Next, we will determine this part of the inverse transform, which results
from the existence of multiple poles sn

Denominator in (12) is

g2 ( S ) =S2 cosh (qxr ) .

(12)

(13)

In order to find the poles sn' the characteristic equation has to be solved,
i.e.

cosh (qXr) = o. (14)

By substituting qX
T
= JIIi, the characteristic (14) has the form

cosh ( ~) =cosh(-i,u) =coeu =O. (15)

Roots of (15) are

. (2n -I)Jr
u, =zqnxr = 2 '

From (16), one obtains

n=I, 2, 3, ... (16)

2 2 2u; =-qnxr,
2 s, 2

Iln =--Xr,
a

2 ( )2 2s; =- a~n =_ 2n-l Jr
2

a.
Xr 2 Xr

(17)
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Derivative g~ (Sn) is determined as

g~(Sn)= d
g2(s)1 = [2SCOSh(qXT )+ S2XT

sinh (qXT )]
ds S=Sn 2aq S=Sn

=_S2_
X_Tsinh (qXT ) = is~xf sinh (_J.1nJ=

2aq S=Sn 2a( 2n
2
-1)n i

(18)

n =1, 2, 3, ...

Next, the numerator is determined

gl(sn)=VT[~qsinh (qL) + cosh (qL)] . (19)
S=Sn

If we take into account that

A . h ( L) A J.1n . h (J.1n L) A J.1n . h(. L )-qn SIn qn = --.-SIn -.- = --.-SIn -lJ.1n - =
a a 1Xr 1 Xr a 1Xr Xr

(20)

A J.1n [ . . ( L J] A L . ( L J= --.- -1 SIn J.1n - = ---J.1n SIn J.1n-
a 1Xr Xr aL Xr Xr

and

cosh(qL)I_ =COSh(~n ~)=COS(fJn~), (21)
S-Sn 1 Xr Xr

then (19) assumes the form

{
I (L J(2n -1) . ( 2n -1 L Jgl (Sn) = Vr --. - JrSIn --Jr- +

B1 Xr 2 2 Xr

(22)

(
2n - I L J}

+cos -2-n XT '

where Bi = a L/A.
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Once we account for (18) and (22), then (12) has the form

f gl (Sn) eSnt =
n=l g~ (Sn)

(
2n - 1 L J 1(L J(2n-1 J. (2n-1 L J

=Vrf cos -2-
Jr

-;; -ill -;; -2-~ sm -2-
Jr

-;; x (23)

n=l 2:f (-1r1(2n2-1J Jr3

[ ( J
2]at 2n-1

xexp - xf -2- Jr .

The solution to the problem (1)-(4) is given by

( ) 1 ( AEJ ~ gl (Sn) Snt
E; t ==10 +- At+B-- + LJ '( )e . (24)

D D n=l g2 s,

Substituting (11) and (23) into (24), yields

{
L2 [1 1( Xf J]}'Fez (t)=To +Vr t+-; Bi +"2 1- L2 +

[ ( J
2]at 2n-l

xexp - xf -2- Jr ,

where Bi = aLIA.

(
2n -1 JWhen xr = L, then, noting that cos -2-Jr == 0, from (25), we have
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(
L2 1)Tcz(t)=To+vr t+--. -
a Bl

(26)

( )
2 [ ]

2 VrL2
00 2 2n -1 2

---- exp - --1l Fo
Bi a ~ (2n-1)1£ (2 J '

where Bi =aLIA and Fo =un:
Equation (26) and (10) derived in Ex. 18.2 are identical.

Exercise 18.5 Determining Temperature and Heat Flux
on the Plate Front Face on the Basis of a measured
Temperature Transient on an Insulated BackSurface;
Heat Flowon the Plate Surface is in the Form
of a Triangular Pulse

Determine heat flux and temperature on the plate front face on the basis of
measured temperature transient on the insulated back surface. Generate
measurement data, using dimensionless temperature () (I,Fo) (Table 16.3
in Ex. 16.9). Assume the following data for the calculation, L = 0.1 m,
qN = 100000 W/m 2

, A = 50 W/(m·K), a = 1.10-5 m2/s, To = 20°C, FO
m

=

at
m
lL2 =0.75 and apply (11) and (12) derived in Ex. 18.1. Calculate time

derivatives dnyldtnusing the local polynomial approximation of the meas­
ured temperature transient t, = J(t), i = 1, 2, ..., 41. Develop a computa­
tional program in the FORTRAN language.

Solution

Measurement data contained in Table 16.3 (Ex. 16.9) was generated using
step ~Fo = 0.05. Therefore, time step ~t is

I1t = M'oI3 = 0.05· O,e = 50 s .
a 1.10-5

"Measured" temperature values were calculated from formula

r. -7'. _7' qNL(j. -20 100000.0.1(j. -20 200(j.
Ji -li -10 + 1 - + 1 - + 1·

A 50
(2)
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Formulas given in paper [14] will be used to calculate derivatives dy/dt,
d2y/dt2 and d3y/dt3 that one can determine by differentiating a local poly­
nomial yet) of the third degree, which approximates nine subsequent meas­
urement pointsf.

1
Yi =y(ti ) =-(-63j;-4 + 42j;-3 + 117 j;-2 + 162j;-1 + 177 j; + 162j;+1 +

693

+117 j;+2 + 42j;+3 - 63j;+4)'

, dyl 1 (Yi=- = 86j;-4 -142j;-3 -193j;-2 -126j;-1 +126j;+1 +
dt t=ti 1188~t

+193j;+2 + 142j;+3 - 86 j;+4 ),

yt= d 2YI 1 2 (28j;-4 +7j;-3 - 8j;-2 -17 j;-l - 20j; -
dt' t=ti 462(~t)

-17j;+l - 8j;+2 + 7 j;+3 + 28j;+4)'

m_
d 3Y

I 1 (Yi-- 3 -14j;-4+7j;-3+13j;-2+9j;-1-9j;+1-
dt' t=ti 198(~t)

-13 j;+2 - 7 j;+3 +14j;+4 ),

x o

Fig. 18.5. Diagram that illustrates how heat flux q;and plate surface temperature

x = L is determined on the basis of temperature fit) measured on the back plate surface

In (10) and (12), Ex. 18.1, only the first three terms are accounted for in
the infinite series.

Calculation results are presented in Table 18.2.



Exercise 18.5 DeterminingTemperatureand Heat Flux 557

Table 18.1. Measurementdata: temperatureof the insulated back plate surface

Ent.
t [s] f[OC] t [s] f[OC] t [s] f[OC]

no.
1 -200 20.00000 16 550 35.78754 1300 117.98048
2 -150 20.00000 17 600 39.87788 1350 121.38310
3 -100 20.00000 18 650 44.46552 1400 124.29120
4 -50 20.00000 19 700 49.55146 1450 126.70264
5 0 20.00016 750 55.13610 1500 128.61612
6 50 20.00032 800 61.22006 1550 130.03116
7 100 20.03000 850 67.74462 1600 130.97630
8 150 20.20522 900 74.47792 1650 131.56744
9 200 20.65190 950 81.16812 1700 131.93036
10 250 21.45732 1000 87.64070 1750 132.15220
11 300 22.67628 1050 93.78620 1800 132.28766
12 350 24.34242 1100 99.53728 1850 132.37036
13 400 26.47632 1150 104.85286 1900 132.42086
14 450 29.09052 1200 109.70782 1950 132.45168
15 500 32.19270 1250 114.08682 2000

Table 18.2. Results of temperature and heat flux calculations on the plate front
face

t[s]T= T(L,t) rOC] .qs [W/m
2
] It[s] T = T(L,t) rOC] qs [W/m

2
]

w~~_~,~,J~~~,~,__••~~~~.ww~_.~__~,_.~:~~~~ ~_~~~,__~~w~~~~~,

o 20.89 2454.00! 950 143.10 56350.00
50 22.32 5379.00 \1000 145.30 50920.00
100 24.78 9405.00 i 1050 146.70 45580.00
150 28.37 14180.00 : 1100 147.60 40350.00
200 33.00 19320.00 : 1150 148.00 35220.00
250 38.47 24540.00 ~ 1200 148.00 30130.00
300 44.54 29710.00 11250 147.40 25080.00
350 51.13 34820.00 '1300 146.30 20050.00
400 58.22 39890.00 i 1350 144.70 15030.00
450 65.80 44930.00 ~ 1400 142.60 10130.00
500 73.89 49960.00 '1450 140.30 5776.00
550 82.47 54970.00 1500 137.80 2461.00
600 91.55 59980.00 1550 135.70 383.30
650 101.10 64770.00 i 1600 134.10 -592.30
700 110.80 68470.00 '1650 133.10 -816.20
750 120.00 70090.00 : 1700 132.60 -676.90
800 128.20 69240.00 1750 132.50 -458.80
850 134.90 66190.00 : 1800 132.50 -287.70
900 139.80 61630.00
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From the analysis of results presented in Table 18.2, Fig. 18.6 and 18.7,
it follows that the accuracy of the obtained results is very good.

160,....---------------

120

80

40

a -- exactsolution
o measurement data
fj. determined temp.

o 300 600 900 1200 1500 1800
t [s]

Fig. 18.6. Measurement data and determined temperature of the plate front face

75 OOO...--------r---------.....,

4s [W/m2]

60000

45000

30000

15000

00 300 600 900 1200 1500 1800
t [s]

Fig. 18.7. Comparison of heat flux q; determined on the surface of the plate front
face with exact data
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Data for the program used to calculate heat flux and temperature of the plate
front face on the basis of measured temperature transient on the thermally
insulated back surface
p18_5.in
45 4 50.
20. 0.1 1.E-5
50. 100000.
o 20
o 20
o 20
o 20
o 20.00016
50 20.00032
100 20.03
150 20.20522
200 20.6519
250 21.45732
300 22.67628
350 24.34242
400 26.47632
450 29.09052
500 32.1927
550 35.78754
600 39.87788
650 44.46552
700 49.55146
750 55.1361
800 61.22006
850 67.74462
900 74.47792
950 81.16812
1000 87.6407
1050 93.7862
1100 99.53728
1150 104.85286
1200 109.70782
1250 114.08682
1300 117.98048
1350 121.3831
1400 124.2912
1450 126.70264
1500 128.61612
1550 130.03116
1600 130.9763
1650 131.56744
1700 131.93036
1750 132.1522
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1800
18S0
1900
19S0
2000

18 Inverse Transient Heat Conduction Problems

132.28766
132.37036
132.42086
132.4S168
132.47048

Program for the calculation of heat flux and temperature of the plate front
face on the basis of measured temperature transient on the thermally insu­
lated back surface

program p18 S
dimension w_f(SO),w_y(SO)
open(unit=l,file='pI8_S.in')
open(unit=2,file='pI8_S.out')
read(I,*)n_max,n_start,dt
read(I,*)t_o,s_l,s_a
read(I,*)s_lam, s q
do i=l,n_max

read(I,*)t, w_f(i)
enddo
write (2, ' (a) ')

&"CALCULATION OF PLATE TEMPERATURE DISTRIBUTION"
write (2, ' (/a) ') "INPUT DATA"
write(2,' (a,il0) ') "n max =",n_max
write(2,' (a,il0) ') "n start =",n start
write(2,' (a,el0.S,a) ') "t ° =",t_o," [C]"
write(2,' (a,el0.S,a) '} "L =",s_l," [m]"
write(2,' (a,el0.S,a) '} "a =",s_a, " [m"'2/s]"
write(2,' (a,el0.S,a) ') "lambda =",s_lam," [W/mK]"
write(2,' (a,el0.S,a) ') "q_N =",s q," [W/m2]"
s cro=s lam/s a

- - -

write(2,' (/a) ')"CALCULATED TEMPERATURE[C] AND q[W/m2]"
write(2,' (a,a) ')" t[s] T(L,t) q_s"
t=O.
t_max=(n_max-2*n_start-l)*SO.
do while (t.le.t_max)

write (2, ' (fS. 0, S (3x, el0. 4)) ') t,
& temperature (s_l,t,s_a,w_f,w_y,n max,n_start,dt),
& flux q(s l,t,s a,w_f,w y,n_max,n start,s cro,dt)

t=t+dt
enddo
end program p18 S

c according to equation (11)
function f1ux_q(r,t,s a,w f,w y,n max,n start,s cro,dt}
dimension w_f(*},w_y(*)
i=l+t/SO
call filtr_9pl(w_f,w y,n_max,n_start,dt)
str=w_y(i)*s cro*r
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call filtr_9p2(w_f,w_y,n_max,n_start,dt)
str=str+w_y(i)*s_cro*r*(r**2/s_a)/6
call filtr_9p3(w_f,w_y,n_max,n_start,dt)
str=str+w_y(i)*s cro*r*(r**2/s a)**2/120
flux_q=str
end function

c according to equation (10)
function temperature(r,t,s a,w_f,w_y,n_max,n start,dt)
dimension w_f(*),w_y(*)
i=1+t/50
call filtr_9(w_f,w_y,n_max,n start)
temp=w_y(i)
call filtr_9pl(w_f,w_y,n_max,n start,dt)
temp=temp+w_y(i) * (r**2/s_a)/2
call filtr_9p2(w_f,w_y,n_max,n_start,dt)
temp=temp+w_y(i)*(r**2/s_a)**2/24
call filtr_9p3(w_f,w_y,n_max,n_start,dt)
temp=temp+w_y(i) * (r**2/s a)**3/720
temperature=temp
end function

c according to equation (3)
subroutine filtr_9(w_f,w_y,n_max,n_start)
dimension w_f(*),w_y(*)
do i=l+n_start, n_max-n start

j=i-n_start
w_y(j)=1./693.*

&(-63.*w_f(i-4)+42.*w_f(i-3)+117.*w_f(i-2)+162.*w_f(i-1)
& +177.*w_f(i)
& +162.*w_f(i+l)+117.*w_f(i+2)+42.*
$ w_f(i+3)-63.*w_f(i+4))
enddo
end
subroutine filtr_9pl(w_f,w y,n max,n start,dt)
dimension w_f(*),w_y(*)
do i=l+n_start, n_max-n start

j=i-n_start
w_y(j)=1./(1188.*dt)*

&(86.*w_f(i-4)-142.*w_f(i-3)-193.*w_f(i-2)-126.*w f(i-l)
& +126.*w_f(i+l)+193.*w_f(i+2)+142.*
& w_f(i+3)-86.*w_f(i+4) )

enddo
end
subroutine filtr_9p2(w_f,w y,n max,n start,dt)
dimension w_f(*),w_y(*)
do i=l+n_start, n max-n start

j=i-n start
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w_y(j)=1./(462.*dt*dt)*
& (28.*w_f(i-4)+7.*w_f(i-3)-8.*w_f(i-2)-17.*w_f(i-l)
& -20*w_f(i)
& -17.*w_f(i+l)-8.*w_f(i+2)+7.*w_f(i+3)+28.*w_f(i+4))
enddo
end
subroutine filtr_9p3(w_f,w_y,n_max,n_start,dt)
dimension w_f(*),w_y(*)
do i=l+n_start, n_max-n_start

j=i-n_start
w_y(j)=1./(198.*dt*dt*dt)*

&( -14.*w_f(i-4)+7.*w_f(i-3)+13.*w_f(i-2)+9.*w_f(i-l)
& -9.*w_f(i+l)-13.*w_f(i+2)-7.*w_f(i+3)+14.*w_f(i+4)
enddo
end

Exercise 18.6 Determining Temperature and Heat Flux
on the Surface of a Plate Front Faceon the Basis
of a Measured Temperature Transient on an Insulated
BackSurface; Heat Flowon the Plate Surface
is in the Form of a Rectangular Pulse

Determine heat flux and temperature of the plate butting face on the basis
of a measured temperature transient on an insulated back surface. Generate
measurement data using dimensionless temperatue () (l,Fo) from Table
16.4 in Ex.16.10. Assume the following data for the calculation, L = 0.1 m,
qN =100 000 W/m2

, A =50 W/(m·K), a =1.10-5 m2/s, To =20cC and apply

(10) and (12) derived in Ex. 18.1. Calculate time derivatives d'yldt" using
local polynomial approximation of the measured temperature transient I, =
J(t), i = 1, 2, ...,43. Carry out the calculations using the program developed
in Ex. 18.5.
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x

L

A,c,p

o

lUi)' i = 1,2...

Fig. 18.8.Diagram that illustrates how heat flux q; and temperature are determined
on the plate surface x = L on the basis of a measured temperature f(t) on the back
plate surface

Table 18.3.Measurement data: temperature of an insulated back plate surface

~f[°C] _ ~~[09-~Etryno~oC]~~_
1 -200 20.00000 116 550 20.00000 [31 1300 96.79066
2 -150 20.00000 117 600 20.00000 '32 1350 105.19816
3 -100 20.00000 i18 650 20.00000 i33 1400 110.87166
4 -50 20.00000 U9 700 20.00000 134 1450 114.41436
5 0 20.00000 i20 750 19.81750 135 1500 116.58820
6 50 20.00000 121 800 20.05392 136 1550 117.91684
7 100 20.00000 122 850 21.57712 137 1600 118.72820
8 150 20.00000 :23 900 25.86132 138 1650 119.22356
9 200 20.00000 :24 950 32.29280 139 1700 119.52600
10 250 20.00000 125 1000 40.10320 40 1750 119.71062
11 300 20.00000 126 1050 48.76492 41 1800 119.82334
12 350 20.00000 127 1100 57.94768 142 1850 119.89214
13 400 20.00000 128 1150 67.44872 143 1900 119.93416
14 450 20.00000 129 1200 77.14410 44 1950 119.95980
15 500 20.00000 130 1250 86.95812 45 2000 119.97546

Solution

Measurement data from Table 16.4 in Ex. 16.10 was generated with a step
~Fo = 0.05. Therefore, time step ~t measures
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(1)

Measured temperature values, calculated from equation

are listed in Table 18.3.
In (10) and (12) in Ex. 18.1, only the first three terms will be accounted

for in the infinite series. Derivatives of function yet), which approximates
the measured temperature history, were calculated by means of (3) in Ex.
18.5.

The results from the calculation of the plate front face temperature were
compared with the analytical solution in Fig. 18.9, while the determined
heat flux was compared in Fig. 18.10. In both cases, a good accuracy of
solution was obtained for the inverse heat conduction problem. In spite of
the fact that temperature sensor is positioned at a considerable distance
from the front face, on which heat flux qs(t), is determined, and that time
transient of the determined hest flux qs(t), is complex, the accuracy of the
obtained results is good. The accuracy of temperature determination T(L,t)
is higher than the accuracy of heat flux determination qs = q(L,t) . In order
to improve the accuracy of temperature and heat flux determination on the
plate front face, one can in the given case, i.e. for the exact measurement
data, reduce b,.Fo to b,.Fo =0.03 (b,.t =30 s).

200,------------------.,

160

120

80

40

- exactsolution
o measurement data
£:. determined temp.

o 300 600 900 1200 1500 1800
t [s]

Fig. 18.9. Measurement data and determined temperature of the plate front face
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Fig. 18.10. Comparison of the determined heat flux qs on the plate front face with
the accurate data

Exercise 18.7 Determining Time-Temperature Transient
of a Medium, forwhich the Plate Temperature at a Point
with a Given Coordinate Changes in a Linear Way

Plate temperature at a point, which lies at a distance x
T

from the insulated
back surface, should change in time according to the following equation

y(t)=T(Xr,t)=1O +vrt, (1)

where To =20°C, v
T
=0.1°C/s. Time t is expressed in seconds. Plate thick­

ness is L = 0.1 m. Thermo-physical properties are as follow: A = 50
W/(m·K), a = }J(ep) =1·10-s

m
2/s. Carry out calculations for the two val­

ues xT: x
T

= 0.3L = 0.03 m and x
T

= L = 0.1 m, when the three values of the
heat transfer coefficient are: at = 200 W/(m2·K), a

2
= 500 W/(m2·K) and

as = 1000 W/(m
2·K).

Determine temperature transient Tcz(t) by numerically
inversing Laplace transform formulated in (7), Ex. 18.4 and by means of
the analytical (25) also derived in Ex. 18.4. Work out an appropriate com­
putational program in the FORTRAN language.
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Solution

INLAP program from IMSL library [9] will be used to find numerically
inverse transform (7) from Ex. 18.4

7' ~qsinh(qL)+cosh(qL)
T () 10 _ VT a

cz S - ---;- - S2 ~--c-o-sh-(-q-X-T-)--- ,

where q = (s/a)1I2 is based on the application of epsilon algorithm to com­
plex Fourier series. Calculations for xT =0.3, L =0.03 m were carried out
for time step I1t = ti+1-ti =30 s due to the fact that the inverse problem is
badly conditioned, since point x

T
is at a distance (L-x

T
) = 0.1 - 0.03 = 0.07

m from the plate front face, which is heated. When xT = L, i.e. the point at
which the plate temperature should be increasing at a constant rate, lies on
the plate front face, the problem becomes well conditioned and very good
results are obtained when the time step is significantly reduced to I1t = 3 s.
Calculation results Tc/t) for xT =L are presented in Fig. 18.11, while for xT

= 0.3L in Fig. 18.12.
From the analysis of Fig. 18.11 and Fig. 18.12 it follows that both, the

numerical inversion of transform (2) and the analytical (25) from Ex. 18.4
yield the same results. When x

T
= L (Fig. 18.11), both methods for deter­

mining Tcz(t) yield results that show slight divergence only in the second
place after the decimal point.

600.----------------,

Fig. 18.11. Transient of a medium's temperature excess [Tcz(t) - To]; the plate sur­
face temperature T(L,t) increases at a constant rate of vT =0.1"C!«, ~t =3 s
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18001200600

200
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600 ,.-.-------------------...
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- exactsolution
(T(Z"·,,To) 10e] numerical inv.of Laplace transform

Fig. 18.12. Transient of a medium's temperature excess [Tcz(t) - To]; the plate
temperature at point XT =0.03 m, which lies at a distance (L - xT) =0.07 m from the
front face, increases at a constant rate of V T = 0.1"C, ~t = 30 s

A program for calculating medium's temperature when plate temperature is
known at a point located at a distance xT from the insulated back plate sur­
face by means of the analytical formula and with the use of the numerical in­
version of the Laplace transform

program p18_7
INTEGER I, KMAX, N
REAL ALPHA,EXP,FINV(lOOOO),FLOAT, RELERR, T(lOOOO),

& TRUE(lOOOO),FO(lOOOO)
COMPLEX F
INTRINSIC EXP, FLOAT
EXTERNAL F, INLAP, UMACH
common a,vt,al,xt,slam,alfa
OPEN (2,FILE='p18_7.out',STATUS='OLD')

c a - thermal diffusivity m2/s
c vt - temp change rate K/s
c slam - lambda W/mK
c points calculated from the insulated back surface
c (where temperature is set)
c al- plate thickness m
c alfa- heat transfer coefficient W/m2K
c dt - time step s

a=1.E-05
vt=O.l
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al=O.l
c for next solution xt=al, relerr=0.lE-01, dt=0.3 s
c xt=al*0.3

xt=al
slam=50.
ALFA=1000.
dt=30.

DO 10 1=1,1000
T(I) = dt*FLOAT(I)

10 CONTINUE
c goto 40

N =1000
ALPHA 0
KMAX = 1000
RELERR = 0.2E-01
CALL INLAP (F, N, T, ALPHA, RELERR, KMAX, FINV)

c exact solution
pi=3.141592653
BI=ALFA*AL/SLAM
do i=1,1000
sl=O.
do j=1,20

beta=float(2*j-1)/2.*pi
fo(i)=a*t(i)/xt/xt
sl=sl +float((-1)**(j-1))*(cos(beta*al/xt)­

& (l./bi)*(al/xt)
1 *beta*sin(beta*al/xt))
2 /(beta**3)*exp(-(beta**2)*fo(i))

enddo
TRUE(i) =vt*(t(i)+al*al/a*

$ (0.5-0.5*xt*xt/al/al+1./bi))
1 +(vt/a)*2.*xt*xt*sl

enddo
write(2,'(a)')" ALFA RELERR XT"
write(2,*)ALFA,RELERR,XT
write(2,' (/a) ')"CALCULATED MEDIUM TEMPERATURE [C]"
write (2, , (a, a) ')" t [s] T (t) T exact (t) "
write(2,' (3(3x,e11.5)) ') (T(I),FINV(I),TRUE(I),I=1,100)
end
COMPLEX FUNCTION F (S)
COMPLEX S,q,csinh,ccosh
common a,vt,al,xt,slam,alfa
q=csqrt(s/a)
F=(vt/s**2)*((slam/alfa)*q*csinh(q*al)+ccosh(q*al))

& /ccosh(q*xt)
RETURN
END
COMPLEX FUNCTION ccosh(s)
COMPLEX s
ccosh=(cexp(s)+cexp(-s))/2.
RETURN
COMPLEX FUNCTION csinh(s)
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COMPLEX s
END
csinh=(cexp(s)-cexp(-s))/2.
RETURN
END

Exercise 18.8 Determining Time-Temperature Transient
of a Medium, for which the PlateTemperature at a Point
with a Given Coordinate Changes According to the Square
Function Assigned

Plate temperature yet) in a point located at a distance x
T

from thermally in­
sulated back surface should change in time according to the following
formula:

(1)

where Cl and C2 are constants. For the calculation assume that To = 20°C,
Cl = 297/1620°C/s and C2 =-33/1296000°C/s2

• Plate thickness is L = 0.1 m.
Thermo - physical properties are as follow: A = 50 W/(m·K), a = }jeep) =
1.10-5 m2/s. Carry out calculations for the two values x

T
: x

T
= 0.3L = 0.03 m

and xT = L = 0.1 m and for the two values of the heat transfer coefficient:
a l = 200 W/(m

2·K)
and a2 = 1000 W/(m2·K) Determine temperature tran­

sient Tcz(t) by numerically inversing Laplace transform defined by (12) in
Ex. 18.3. Carry out calculations by means of the INLAP program from
IMSL library, assuming that time step is I1t = 60 s for x

T
= 0.03 m and I1t =

3 s for x
T

= 0.1 m.

Solution

Wall temperature transient yet) at the point x
T

is presented in Fig. 18.13.
Laplace transform of function yet) formulated in (1) has the form

(2)

By accounting for (2) in (12), Ex. 18.3, one obtains

- _ To _( C
1

C
2
J~ q sinh (qL) + cosh (qL )

Tcz (s) - 2 + 3 (). (3)
s s s cosh qXr
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Fig. 18.13. Temperature transient yet) at a point with coordinate xT

12 000 t [s] 16 00080004000

200
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Determined temperature transients Tc/t) that ensure the required wall
temperature transient yet) at the point with coordinate xT' are presented, re­
spectively, in Fig. 18.14 and Fig. 18.15 for x

T
=0.1 m and x

T
=0.03 m.

800r-----------------a

Fig. 18.14. Temperature transient of a medium ~z(t), which ensures assumed wall's
front face temperature transient presented in Fig. 18.13, At =3 s
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1200080004000
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Fig. 18.15. Temperature transient of a medium Tcz(t), which ensures assumedwall's
butting face temperature transient yet) presented in Fig. 18.13 in a point located at a
distance Xr = 0.03 m from thermally insulated back surface, I1.t = 60 s

Literature

1. Burggraf OR (1964) An exact solution of the inverse problem in heat
conduction theory and applications. Transactions of the ASME, J. of Heat
Transfer: 373-382

2. Carslaw HS, Jaeger JC (1959) Conduction of Heat in Solids. Clarendon Press,
Oxford

3. Cialkowski M (1996) Selected methods and algorithms of solving inverse
problem for heat conduction equation (in Polish). Poznan Univ. of
Technology Press, Poznan

4. Cialkowski M, Frackowiak A (2000) Thermal function and its applying for
solving problems of heat transfer and mechanic (in Polish). Poznan Univ. of
Technology Press, Poznan

5. Crump KS (1976) Numerical inversion of Laplace transforms using a Fourier
series approximation. Journal of the Association for Computing Machinery
23: 89-96

6. Durbin F (1973) Numerical inversion of Laplace transform: efficient
improvement to Dubner and Abate's method. Compo J 17: 371-376

7. Honig G, Hirdes U (1984) A method for the numerical inversion of Laplace
transforms. J. Compo Appl. Math. 9: 113-132

8. Hoog FR, Knight JH, Stokes AN (1982) An improved method for the
numerical inversion of Laplace transforms. SIAM J. on Scientific and
Statistical Com. 3: 357-366



572 18 Inverse Transient Heat Conduction Problems

9. IMSL. Fortran Subroutines for Mathematical Applications (1994). Visual
Numerics, Houston

10. Naresh Sinha K (1991) Linear Systems. Wiley, New York
11. Taler J (1996) A semi-numerical method for solving inverse heat conduction

problems. Heat and Mass Transfer 31: 105-111
12. Taler J (1997) Uberwachung von instationaren Warmespannungen in

dickwandigen Bauteilen. Forschung im Ingenieurwesen 63: 127-135
13. Taler J (1997) Analytical solution of the overdetermined inverse heat

conduction problem with an application to monitoring thermal stresses. Heat
and Mass Transfer 33: 209-218

14. Taler J, Zima W (1999) Solution of inverse heat conduction problems using
control volume approach. Int. J. of Heat and Mass Transfer 42: 1123-1140

15. Taler J, Zborowski M (1998) Solution of the inverse problems in heat transfer
and thermal stress analysis. Journal of Thermal Stresses 21: 563-579

16. Taler J (1995) Theory and practice of heat transfer (in Polish). Ossolineum,
Wroclaw

17. Tautz H (1971) Warmeleitung und Temperaturausgleich. Verlag Chemie,
Weinheim

18. Zill DG (1986) Differential Equations with Boundary-Value Problems. PWS,
Boston

19. Pekhovitch AI, Dzjidkhin WM (1976) Calculations of thermal states of solid
bodies (in Russian). Leningrad, Energija



19 Multidimensional Problems.
The Superposition Method

In Chap. 19, the authors discuss how one-dimensional solutions can be
employed to determine two or three-dimensional temperature distributions,
using the superposition method. They also compile formulas for calculat­
ing temperature distribution with boundary conditions of 1st, 2nd and 3rd
kind. Formulas are derived for a transient temperature distribution in a
plate with convective boundary conditions or a surface-set heat flux. The
authors also present two computational examples that illustrate how tem­
perature can be determined in a cylinder of a finite length and in a cuboidal
steel block.

Exercise 19.1 The Application of the Superposition
Method to Multidimensional Problems

By knowing the solutions to transient heat conduction problems in a half­
space, plate and cylinder, one can determine formulas that describe tem­
perature distribution in the elements formed as a result of a mutual inter­
section of the aforementioned simple-shape bodies. Axes of these bodies
are perpendicular. The bodies can be anisotropic, but the thermo-physical
properties cannot be temperature-dependent. Initial temperature of a body
(To) is constant.

Solution

Due to the fact that different procedures must be applied, boundary condi­
tions of 1st and 3rd kind will be analyzed separately from boundary condi­
tions of 2nd kind.

BoundaryConditions of 1stand 3rd Kind

If we know the solutions to transient problems in a half-space (Ex.
14.4), plate (Ex. 15.1) and cylinder (Ex. 15.4), then temperature distribu­
tion in the body formed from the intersection of simple bodies is the prod­
uct of dimensionless solutions for these bodies. By denoting dimensionless
temperature of the plate as
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* T(x,t)-Tcze = ,
To - Tcz

the temperature of the cuboid is calculated from formula

e*(x,y,z,t)=e*(x,t) .e*(y,t). e*(z,t).

(1)

(2)

By substituting (2) into a heat conduction equation and boundary condi­
tions, one obtains three one-dimensional problems for the plate. If, subse­
quently, absolute temperature (1) is denoted for the half-space as S(x,t), for
the plate as P(x,t) and for the cylinder as C(r,t), then temperature of body
e* can be expressed as the product of the listed solutions. The form of the
solution for the nine different geometric figures is presented in Table 19.1.
It should be noted that temperature (T(x,t) - Tc)/(Tcz - To) (Ex. 14.4) was
determined for the semi-infinite body; therefore, temperature €l(x,t) is
formulated as

( )
* ( ) T (x, t ) - t: T (x, t ) - To

S x,t =e x,t = =1- .
To - E; E; - To

(3)

In the case of the boundary condition of the 1st kind, the body surface
temperature undergoes a step-increase from initial temperature To to tem­
perature Tcz. Basic geometric forms are presented in Fig. 19.1.

o

S(x,t)

x

C(r,t)

r

P(x,t)

x

Fig. 19.1. Diagram of a simple-shape body with an assigned boundary conditions
of 1st or 3rd kind

Boundary Conditions of2nd Kind

For boundary conditions of 2nd kind, temperature distribution in a body,
which is a combination of simple-shape bodies, is the sum of the initial
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temperature and temperatures that describe temperature distribution in
these bodies. In the case of a cuboid (Table 19.1), the temperature field is
formulated as

(4)

where T is the solution of a one-dimensional problem for the plate, when
p

the boundary condition of 2nd kind (Ex. 15.10) and the zero initial condi-
tion are assigned. It should be emphasized, however, that body surface
heat flux qs can be time-dependent. In Table 19.1, the authors list analyti-

cal formulas for boundary conditions of 1st or 3rd kind and boundary con­
ditions of 2nd kind.

TS(x,t) Tc(r,t) Tp(x,t)

Fig. 19.2. Diagram of a simple-shape body with an assigned boundary conditions
of 2nd kind

Table 19.1. Formulas for the calculation of temperature by means of the superpo­
sition method

Body shape Diagram
_____~_~ ~I!,~~~~l_formula ~~_~~__
Boundary condition Boundary condition
of 1st or 3rd kind of 2nd kind

Two-dimensional
comer

Three-dimensional
comer

y
Z

fl(x,y,z,t) =
S(x,t)·S(y,t),S(z,t)

T(x,y,t) = To+Ts(x,t)
+ Ts(y,t)

T(x,y,z,t) =
To+Ts(x,t)+Ts(y,t)
+Ts(z,t)
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Table 19.1. (cont.)

Body shape Diagram
_..~•.. ~>~. .. _.AnaJ1!!Ealf0f!!l~la__~....~.,~,,"__A

Boundary condo of Boundary condition
1st or 3rd kind of 2nd kind

Infinite plate

Infinitely long
rod with a rec­
tangular cross­
section

Semi-finite rod
with a rectangular
cross-section

A comer with a
finite width

A cuboid with a
coordinate system
that begins in the
center of the object

"-------

Semi-infinite cyl­
inder

A cylinder with a
finite length (the tr
coordinate system x r
has a point of ori-
gin in the cylinder /' - -, - ~

center)

g*(x,y,t) =
P(x,t)·S(y,t)

g*(x,y,t) =
P(x,t)·P(y,t)

g*(x,y,z,t) =
P(x,t)·P(y,t)·P(z,t)

g*(x,y,z,t) =
P(x,t)·S{y,t)·S(Z,t)

g*(x,y,z,t) =
- P(x,t)·P{y,t)·P(Z,t)

g*(x,r,t) =
S(x,t)· C(r,t)·P(Z,t)

e*(x,r,t) =
P(x,t)·C(r,t)

T(x,y,t) = To + T, (x,t)
+ Ts(y,t)

T(x,y,t) = To + T;(x,t)
+ Tp(y,t)

T(x,y,z,t) =To +
Tp(x,t) + T,(y,t) +
Tp(z,t)

T(x,y,z,t) =To +
Tp(x,t) + Ts(y,t) +
Tp(z,t)

T(x,y,z,t) = To+Tp(x,t)
+Tp{y,t)+Tp(z,t)

T(x,r,t) = To + TsCx,t)
+Te(r,t)

T(x,r,t) =To + T, (r.r)
+ Te(r,t)
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Exercise 19.2 Formula Derivation for Temperature
Distribution in a Rectangular Region with a Boundary
Condition of 3rd Kind

Using the superposition method, derive a formula for temperature distribu­
tion in an infinitely long rod with a rectangular cross-section 2b x 2d, and
is heated or cooled by a medium at constant temperature Tcz (Fig. 19.3).
Heat transfer coefficient on the side, which measures 2b in length is a

b
,

while on the side 2d equals ad. Initial temperature of the rod is constant
and equals To' while thermo-physical properties are temperature-invariant.

y

b

»<

x

Fig. 19.3. The quarter of a rectangular cross-section of an infinitely long rod

Solution

Due to a symmetry of the temperature field, 1/4 of the rod's rectangular
cross-section will be analyzed here. Temperature distribution within the
rectangular cross-section is described by a differential heat conduction
equation

by boundary conditions

a2T a2T 1 et
-+-=--ax2 8y2 a at ' (1)
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AaTI =0
ax x=o '

aTI-A- =ad (rl., - Tcz),
ax x=b

aTIA- =0,
By y=o

and by initial condition

Tlt=o =10.

(2)

(3)

(4)

(5)

(6)

According to with the superposition method, the solution of an initial­
boundary problem (1)-(6) will be searched for in the form

where,

0* (x,y,t) =ot (x,t).0; (y,t),

*( )_ T(x,y,t)-TczB x,y,t - ,
10 - E;

* ( ) _ 11 (x, t ) - i:B1 x,t - ,
10 - T;

*( )_12(y,t)-TczO2 y,t - .
10 - Tcz

(7)

(8)

(9)

(10)

By substituting (7) into (1)-(6), two one-dimensional problems are ob­
tained

a20t 1 e«
ax2 --;at

8Bt I =0
ax x=o '

(11)

(12)
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(13)

(14)

and

(15)

(16)=0,
8y y=o

a2o; 1 ao;
-----
8y2 a at

ao;

(17)

(18)

The solution of a one-dimensional problem was obtained in Ex. 15.1.
The appropriate solutions of the initial-boundary problems (11)-(14) and
(15)-(18 ) have the form

*( ) ~ Zsin zz, (x) ( 2 at)01 x.t =LJ. cos u, - exp -/In -2 '
n=l /In + sm u,cos u, b b

(19)

where /In are the roots of the characteristic equation

ctgzz = JlA, ,
adb

(20)

and

* ( ) ~ 2sin Pn . ( y) ( 2 at)O2 y,t =LJ. cos B; - exp -Pn -2 '
n=l B, + sm pn cos fin d d

(21)

where fin are the roots of the following characteristic equation

ctgp = pA, .
abd

(22)

Temperature T(x,y,t) can be determined from (8) once temperatures
0l*(X,t) and 02*(y,t) are calculated by means of the program developed in
Ex. 15.1 or by using the diagrams annexed to Ex. 15.3.
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Exercise 19.3 Formula Derivation for Temperature
Distribution in a Rectangular Region with Boundary
Conditions of 2nd Kind

By means of the superposition method, derive a formula for temperature
distribution in an infinitely long rod with a rectangular cross-section 2b x
2d and is heated by a heat flux Qlon the side, which is in length 2d and by

a heat flux Q2 on the side, which is in length 2b (Fig. 19.4). Initial tem­

perature of the rod is constant and equals To' while thermo-physical proper­
ties are temperature-independent.

y

x

(1)

b

Fig. 19.4. Quarter of a rectangular cross-section of an infinitely long rod

Solution

Due to a symmetry of the temperature field, 1/4 of the entire cross-section
of the rod will be analyzed below. Temperature distribution within the
cross-section is described by a differential heat conduction equation

a2T a2T 1 et
-+-=--ax2 8y2 a at '

by boundary conditions

A arl =0
ax x=o '

(2)
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;. aTI =q1,
ax x=b

aTIA- =0,
By y=O

;.aTI =q2
By y=d

and by initial condition

rl., =To.

581

(3)

(4)

(5)

(6)

According to with the superposition method, the solution of the initial­
boundary problems (1)+(6) will be searched for in the form

T-To=11{x,t)+12{y,t). (7)

Once (7) is substituted into (1)-(6), two one-dimensional problems are ob­
tained:

• in the direction of x axis

• in the direction of y axis

a211 1 a11
ax2 ---;at'

A a11 I =0,
ax x=O

/j alii _.
/1,,- -ql'

ax x=b

a212 1 a12
By2 --;;at'

A a121 =0,
By y=O

Aa121 _.By -q2,
y=d

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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(15)

The solution to (8)-(11) and (12)-(15) is presented in Ex. 15.1.
Using solution (31) from Ex. 15.10, temperature distribution given by (7)

can be presented in the form

T(x,y,z,t)-To =

41b[at 1(XJ2 1 2 ~(-lr ( xJ ( 2 2 atJ]=- -2+- - ----2L..J-2-COS nJr- exp -n Jr -2 +
A b 2 b 6 Jr n=l n b b

(16)

Numerical results obtained for a one-dimensional problem, presented in
Table 15.4, Chapt. 15, enable one to determine temperature distribution,
directly from (7).

Exercise 19.4 Calculating Temperature in a Steel Cylinder
of a Finite Height

A steel cylinder with a diameter of d, =50 mm, a height of 2h = 100 mm
and initial temperature of To = 650°C is abruptly submersed in a liquid,
whose temperature is Tez = 95°C. Heat transfer coefficient from the cylin­
der surface to a liquid is a =344 Wl(m2

•K).
The cylinder is made of a carbon steel with a carbon content of C =

0.5%. Thermo-physical properties of the steel at average temperature of
Tsr = 0,5(To + T

e
) = 372.5°C are A =43 W/(m·K) and a = 1.2.10-

5 m2/s.

Calculate temperature inside the cylinder at the point 0 after t =52.1 s,
from the moment the cylinder is submersed in the liquid.

Solution

Temperature inside the cylinder at the point 0 (Fig. 19.5) will be deter­
mined according the superposition method

0* (0,0, t)=p(0,t).C (0, t) ,

T (0,0, t ) - Tcz Tp ( 0, t) - Tcz . Tc (0, t ) - Tcz
To - E;

(1)

(2)
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a To I
~

~
N

.Tcz
0' r
I

_J-L
-> '.',

---f---

Fig. 19.5. Diagram of a cylinder with a finite height

First we will determine the Biot number Bi and the Fourier number Fo
for the plate

Bi= ah = 344·0.05 =0.4,
A 43

Fo =!!i = 1.2 .10-
5

• 52.1 = 0.25 .
h2 0.05 2

From the diagram in Ex. 15.3, one has

T, (0 FO)-TP(O,Fo)= p, cz =0.96.
10 - E;

The Biot and Fourier numbers for an infinitely long cylinder are

Bi = arz = 344·0.025 = 0.2
A 43 '

17 =!!i = 1.2 .10-
5

• 52.1 = 1 0
1'0 2 2' •

r, 0.025

From the Fig. 15.15 in Ex. 15.6, one obtains

C(O,Fo) = Tc(O,Fo)-Tcz =0.72.
10 - E;

Dimensionless temperature of the cylinder center determined from (2) is
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*( ) T(O,O,t)-~z() O,O,t = ~0.96·0.72=0.6912,
To -t:

where from, the temperature at point 0, is obtained

T( O,O,t) = 0,6912(To - ~z) +E; = 0.6912· (650 - 95) +95 = 478.6°C

Temperature in the cylinder center after t == 51 s from the moment the
cylinder is submersed in the liquid is 478.6°C.

Exercise 19.5 Calculating Steel Block Temperature

A steel block in the shape of a rectangular prism, with dimensions 2L
x

x

2L
y

x 2L
z
= 150 x 300 x 600 mm (Fig. 19.6) and with an initial temperature

of To = 20°C is placed in an oven with a temperature of Tcz = 1400°C. Cal­
culate temperature inside the block after time t = 120 s from the moment
the block is placed in the oven.

Fig. 19.6. Diagram of a steel block heated in an oven

Thermal conductivity and thermal diffusivity are, respectively, A = 37
W/(m·K), a = 7.5.10-6 m2/s, while the block surface emissivity is E= 0.8.

Solution

Temperature at point 0(0,0,0) will be calculated by means of (4) (Ex.
19.1)

T(O,O,O,t) =To +Tp (x,t)L=o + t; (y,t)L=o +t; (z,t)L=o' (1)



Exercise 19.5 Calculating Steel Block Temperature 585

where T, is one-dimensional temperature distribution in a plate with
boundary conditions of 2nd kind; a set heat flux qs on the front face and

the insulated back surface.
To determine temperature Tp , one can use (31) derived in Ex. 15.10 or

Table 15.4 in Ex. 15.11. First, the appropriate Fourier numbers will be cal­
culated for L =0.075 m, L =0.3 m and L =0.15 m

x y z

Fox=~= 7.5·10-6 ·120 =0.16
L; 0.0752

'

at 7.5.10-
6

·120 =0.01
Fo, = L2 0.32

y

v =~= 7.5.10-
6.120=004

1'Oz 2 2 ••
t: 0.15

To calculate heat flux transferred by the steel block, the following formula
will be applied

(2)

where a= 5.67.10-8 W/(m2·K4
) is the Stefan-Boltzmann constant.

Equation (2) is valid, if we assume that the inner surface area of the fur­
nace chamber is much bigger than the block surface area. Furthermore, one can
easily observe that when block surface temperature T, is not too high, then
heat flux qs depends, to a small extend, on temperature T,

Heat flux determined from (2) for T, = To = 20°C is

qs = 5.67 .10-8
• 0.8[(1400 + 273.l5f - (20 + 273.15f ] =

= 4.536.10-8 (7.836813 .1012 -7.385155.109
) = 355143 W1m2

•

For T, = 700°C, the heat flux is

qs = 5.67 .10-8
• 0.8[(1400 + 273.l5f - (700 + 273.l5f ] =

= 4.536 .10-8 (7.836813 .1012
- 8.968486.1011

) = 314797 W1m2
•

Due to a short warm-up time t = 360 s, the first value of heat flux qs =

355143 W/m2 is assumed for the calculation, since the block surface tem­
perature T, is not overly high during this time interval.

Dimensionless temperatures of the insulated plate surface (x =y =z =0)
when To = O°C are (Table 15.4, Ex. 15.11)
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ATp (x,Fox)1
___-...:.:....x=-:....o =0.035 ,

qsLx

hence, one has

T; (x,120 s)1 = 0.035 qsLx = 0.035. 355143· 0.075 = 25.2°C,
x=o A 37

ATp (y,Foy)1 _
___~y-_o=0.00

qsLy

and

Tp(y,120 s)1 =0.0. qsLy =0.0. 355143·0.3 =O°C ,
y=o A 37

and

hence,

Tp(z,120 S)I =5.7.10-6 • qsLz =5.7.10-6 • 355143·0.15 =8.2.10-3 oC

z=o A 37

Temperature inside the block is then

T(0,0,0,t)lt=120S =To +Tp(x,120 s)L=o +Tp(y,120 s)ly=o +

+t; (z,120 s)Iz=o = 20+ 25.2 + 0+ 0.008 ~ 45.2°C.



20 Approximate Analytical Methods for Solving
Transient Heat Conduction Problems

One of the most popular approximate analytical methods are thermal bal­
ance method [3, 4,6,7, 12-19,22+25] and the Biot method [1,2,9-11,
20]. Also the Gauss' principle of least constraint, known from the analyti­
cal mechanics, can also be applied when approximately solving the differ­
ential heat conduction equation [20]. In this chapter, the first of the afore­
mentioned methods will be discussed in greater detail.

Paper [21] lists number of examples in which the approximate methods
are applied when solving one and two-dimensional heat conduction
problems. Approximate analytical methods are especially useful when
carrying out different engineering analyses, since it is important to obtain
the results quickly and easily; the accuracy of results, however, is of less
importance.

Exercise 20.1 Description of an Integral Heat Balance
Method by Means of a One-Dimensional Transient Heat
Conduction Example

Characterize the integral heat balance method using the example of a one­
dimensional transient heat conduction.

Solution

Integral heat balance method was for the first time presented by Karman
[5], and following that extended by Pohlhausen [8]. Both papers are on the
integration of laminar boundary layer equations. In the integral heat bal-
ance method, the concept called the depth ofheat penetration J(t) is used;
it can be defined as the largest distance covered in a given time by a pene-
trating heat. This means that within distance x 2 J from the surface, one
can assume the body temperature to be approximately equal to the initial
temperature and the heat is transferred over a distance no larger than J(t).
The depth of heat penetration corresponds to the thermal thickness of a



(2)

(1)
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boundary layer in a convective heat transfer. In heat conduction calcula­
tions, the concept of depth of heat penetration Set) was introduced by Biot
[2]. In the integral heat balance method, the differential equation of the
transient heat conduction

cpaT =A a
2T

at ax2

is integrated over variable x within the limits from wet) to vet)

cp
VIaT dx =A[aTI _aTI ].
w(t) at ax x=v(t) ax x=w(t)

If we account for integral differentiation rules over parameter (Leibniz
rule), then (2) will have the form

{

d v(t) d d }
cp - fT(x,t)dx-T[v(t),tJ~+T[w(t),tJ~ =

dt w(t) dt dt

(3)

= A[ ~:Ix=v(t) -r.
When body dimensions do not change in time, for example, due to a
change of state, one can assume then that wet) =O. It is assumed, more­
over, that heat transfer conditions only change on the plate front face x = o.

x

o(t)

L

Fig. 20.1. Diagram of heat penetration in the first and second phase; 8(t) is the depth
of heat penetration
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This can be either the warming-up by a medium at a step-increasing tem­
perature or the warming-up by a heat flow at a density assigned for t > O.
The upper integration limit equals J(t) in the case of a semi-infinite space.
If temperature field is determined in an element with finite dimensions, for
example in a plate (Fig. 20.1), then one can distinguish two heat transfer
phases: the first one, when the depth of heat penetration is smaller than the
wall thickness, i.e. J ~ L; the second, when J =L. For the first heat transfer
phase, once we account for the conditions that arise from the depth of the
heat penetration concept vet)=J(t), we have

T[v(t),tJ=To , (4)

aTI =0
ax x=v(t) ,

(5)

and once we account that wet)= 0 and dw/dt = 0, (3) assumes the form

~[cP5(ii -t; )J=-A aTI '
dt ax x=o

(6)

(7)0~5~L.

where average temperature 1i is defined as

_ 1 0

Ti =- fT(x,t)m,
50

In the second heat transfer phase J(t) =L, the temperature of the rear
surface changes, i.e. TL=L =u(t) (Fig. 20.1). Equation (3) assumes the form

cpL dIn = A(aTI _aTI ) (8)
dt ax x=L ax x=o '

(9)

where In is the average temperature equal to

_ 1 L

IiI =- fTm.
L o

In order to determine temperature T(x,t) , one should assume a function
form that approximates temperature distribution in both, the first and sec­
ond heat transfer phase. Usually these are polynomials of 2nd or 3rd de­
gree. Integral heat balance method can be also applied to non-linear heat
conduction equations and non-linear boundary conditions [1]. When cp =
!t(n and A=hen, then once integral transformation is applied
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T

9(T)= JcpdT
o

(10)

calculation method resembles the method used when constant thermal
properties c, p and Aare applied. Also in the case of heterogeneous materi­
als, i.e. when cp = fJx) and A = hex), once integral transformation is ap­
plied

x dx

m=f-i(x)

it is possible to apply the heat balance method.

Exercise 20.2 Determining Transient Temperature
Distribution in a Flat Wall with Assigned Conditions
of 1st, 2nd and 3rd Kind

(11)

(1)

Determine transient temperature field in a flat wall (plate) with boundary
conditions of 1st, 2nd and 3rd kind. Assume that heat transfer conditions
only change on the plate front face. Use the integral heat balance method
to solve the problem.

Solution

Plate temperature distribution is defined by the heat conduction equation

1 et a2T
--;;at - ax2 '

by boundary conditions

aTI-A- + P1Tlx:o =r14n (t) ,ax x=o

and by initial condition

(2)

(3)
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Such formulation of boundary conditions enables one, by appropriately se­
lecting coefficients, to assign temperature, heat flux or convective heat
transfer on the plate surfaces, therefore, the boundary conditions of 1st,
2nd or 3rd kind respectively:

a) boundary conditions of 1st kind

(5)

/31 =0,

b) boundary conditions of 2nd kind

-}., arl = rl101 (t) =qOl (t),
ax x=o

c) boundary conditions of 3rd kind

(6)

arl-J- = a2[rlx=L - Ta2 J.ax x=L

(7)

According to the integral heat balance method, temperature distribution is
determined in two phases.
In the first heat transfer phase, when 0 S 5(t) s L, temperature distribution
should be approximated by a polynomial of the second degree

(8)

Constants ao' a1 and a2 are determined from the boundary condition (2) and
from conditions

(9)



(10)
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By substituting the determined constants into (8), temperature distribution
in the first heat transfer phase has the form

1 /31 T()2 - r, T(B (I) /31T()2 - r, 101 (I )
Ii =102 - - 8 + x -

2 !P18+A !PI8+A
2 2

1 /31102 - r,101 (I) 2
-----X, 0~x~8

28 !P18+A
2

and

T; =102, 8~x~L. (11)

If (10) is substituted into (7) (Ex. 20.1) for average temperature ~, then

the following equation is obtained

(12)

However, when (12) is substituted into (6) (Ex. 20.1) and boundary condi­
tion (2) is accounted for, one obtains, after transformation, the following
differential equation to describe 8 (t):

(13)
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In the second heat transfer phase, temperature distribution should also
be approximated by a polynomial of the second degree

(14)

Once constants a.; a
4

and as are determined from boundary conditions (2)
and (3) and from condition

(15)

and again substituted into (14), one has

(16)

Accounting for (16) in (9) (Ex. 20.1), one obtains, after transformation

(17)

If (17) is substituted into heat balance (8) (Ex. 20.1), then differential
equation is obtained that serves as a tool for determining u(t)
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In the examples given, (13) and (18) will be solved for the few cases
that are of particular importance in the field of engineering.

Example 1

Tal (t) =Tal =const, Ta2 =O. (19)

This case corresponds to a so called thermal shock in tanks or other con­
structions, when a wall, insulated on one side, is suddenly warmed-up or
convectively cooled down on the other side.

Temperature distribution in the first heat transfer phase is obtained once
(19) is substituted into (10)

Bi(5) ( XJ2
Bi(8)+2 ToI 1- g11=

0,

Osxs5,

ss s-u;

(20)

where Bi(5) = a18lA.
In the second phase, temperature distribution is obtained from (16) once

(19) is allowed for

Bi(L) (XJ2111= o() (ToI-U) 1-- +U,
Bz L +2 L

(21)

where F0
1

= at/L2
; time t

l
is a moment when 8 = L. The solution of (13),

when initial condition is 5t=o = 0 and (19) accounted for, is

_1 + 1 _ 2 In Bi(o)+2 =Fo(o) (22)
12 3Bi(O) 3[Bi(O)T 2 '

where Fo(5) =at/5
2

•

Fourier number F0
1

is obtained once 8 = L is substituted into (22). Cal­
culation of temperature distribution in the first phase is done in the follow-
ing way. First we assume that 8, for example, 8= 0.5L, then we determine
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time t from (22) that corresponds to the assumed value 8. (20) enables one
to determine spatial temperature distribution. Following that (18) must be
solved when initial condition is u(Fo) =O. Once we account for (19), we
have

where

u(t) =t; [1- e-p'(Fo-FOI) J,

2 3Bi{L)
f.1 = 3+Bi(L) .

(23)

(24)

One can easily observe, by comparing (23) to the analytical solution (Ex.
15.1), that J.l is an approximation of the first root of the characteristic equa­
tion

ctgz,=;i · (25)

In order to evaluate the accuracy of the approximate solution (24), one
should compare the first root of (25), determined from (24) with the exact
values III * calculated in Ex. 15.2.

Table 20.1. Comparison between the exact value of the first root III * of the charac­
teristic (25) and approximate values III calculated from (24)

Bi 0.002
III 0.0316 0.0447
~.0316 0.0447
Bi 2.0 4.0

1.0954 1.30993
1.2646

0.004 0.01
0.0632 0.0998
0.0632 0.0998
10.0 30.0
1.5191 1.6514
1.4289 1.5202

0.2 0.8
0.4330 0.7947
0.4328 0.7910
60.0 100.0
1.6902 1.7066
1.5451 1.5552

From Table 20.1 it follows that the accuracy of the approximate (24) is
higher for the smaller values of the Biot number Bi. Temperature distribu­
tion in the second heat transfer phase is calculated from (21) by accounting
for (23).

Example 2

rlx=o =101(1), 102 =o. (26)
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(27)0~x~8,

This case is a good example of an ideal thermal shock on a unilaterally in­
sulated flat wall surface.

Temperature distribution in the first heat transfer phase is obtained from
(10) by accounting for (26)

Tol (t)(I- ~)2 ,
11= u

0, 8~x~L. (28)

From the heat balance (13), the following differential equation is obtained

() ss 2 dToI ( )Tol t 8-+8 --=6aToI t .
dt dt

(29)

By substituting z = 82 into (29), one reduces it to a linear differential equa­
tion

( ) dz dToI ( )Tol t -+2z--=12Tol t .
dt dt

(30)

It is easy to solve this equation by means of the integrating factor. The so­
lution of (30), when initial conditions are 8!r=o = 0, has the form

(31)

where

2 dToI (t)
p=

Tol (t) dt
(32)

When surface temperature is defined by function

(33)

(34)

then, by substituting (33) into (32), the following is obtained from (31):

z =8 2 = 12at .
2m+l
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For different values of m, we have

3.464~, m=O,

2~, m=l,
J = (35)

1.549~, m =2,

1.309~, m=3.

Due to the application of the Biot method, one has J =3.36~ for m =0

and J =2.29~ for m = 1. In the second heat transfer phase, the tempera­
ture field assumes the following form, once we account for conditions (26)
in (18)

F01 ~Fo. (36)

(37)

When all mathematical operations, which resemble those in example 1, are
carried out, the following is obtained for m = 1

_ CL
2 [17 1 (17 1) -3(FO-FOI)]u--- rO--- rOl-- e

a 2 2 '

where F0 1 = at/L2
•

Time t
1
is determined from (34) for m =1 once we substitute J =L.

The Fourier number F0
1
is of 0.25. Temperature distribution in the second

heat transfer phase can be also easily determined for m = 0, 2, ..., n. Plate
temperature distribution for the first and second heat transfer phase, for m
= 1 is presented in Fig. 20.2 and 20.3.

12,0 I+---I--__�_--I--...f...-----I

T~50
10.0 ~~-__I_--I--...f...-----I

8.0 1r-----fII~_+_--I--...f...-----I

4,0 ~--+~

() 0,4 0,6 0,8xIL],O

Fig. 20.2. Temperature distribution in a flat wall; dependence on the Fourier number
Fo =ian: in the first heat transfer phase (Example 2), T =I:a/(CL2

)



598 20 Approximate Analytical Methods

10,0

T~10
8,0

6,0 ~--+--+--~--+------4

4,0

° 0,2 0,4 0,6 0,8 1,0
x/L

Fig. 20.3.Temperature distribution in a flat wall; dependence on the Fourier number
Fo =at/L\ T* =Tna/(CL

2
) in the second heat transfer phase.

Example 3

Temperature distribution in the first heat transfer phase is obtained from
(10) by accounting for (38) first

{
40 (/)8 (1- ~)2 ,

t: = 2 5

0, 5~x~L.

(39)

Equation (13), once (38) is accounted for, assumes the following form:

~ [qO (t)02J = baq« (t).

The solution of (40), when initial condition is 8t=o = 0, is function

[ ]

1/2
1 t.

0=& 40(t)!qo(t)dt ,

which yields, once we account for (38)

O=~ 6at .
n+l

(40)

(41)

(42)
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In the second heat transfer phase, temperature distribution is expressed
as.

t; = 40 (t)L (1-~J2 +u
2A L '

(43)

Once we account for conditions (38) in (18) and integrate the equation
when the initial condition is ut=t l =0, we have

u(t)= 40 (t)L (2FO -IJ+ 40 (ll )L ( I _ 2FOIJ, (44)
2A n+l 2A n+l

where time I} , determined from (42) once 8= L is substituted, is I} = (n+
I)L2/6a.

Example 4

102 =0, (45)

(46)

The first heat transfer phase is described by formulas that are identical to
the ones used in Example 1. In the second phase, temperature distribution
is expressed by (16), which, once we account for (45), assumes the form

7' Bi1Toi + Bi-u+ 2u 2Bi1u + Bi.Bi-u- 2BiiToI x
111 = + -+

Bi + 2 Bil + 2 L

+ BilToI - BilBi2u - Bi2u - Bi1u (~J2 ,
Bil +2 L

When (18) is integrated, while (45) is accounted for when initial condition
is «l.. =0, one has

(47)

(48)

where

2 12( Bil + Bi2 + Bi1Bi2 )

f.1 = 12+ 4Bi1 + Bi1Bi2 + 4Bi2

Equation (48) is the approximation of the first root of characteristic equa­
tion
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Ii Bi1( Bi1)-1ctgli=-.-- 1+-. .
Bl 2 Ii Bl 2

(49)

(1)

Table 20.2 displays the values of root Ii calculated from (48) for the se­
lected values Bi, and Bi2•

Table 20.2. Values of f.1 calculated from (48)

0.002 0.0632 0.6564 0.8675 1.5206
0.5 0.6564 0.9608 1.1390 1.7755
1.0 0.8675 1.1390 1.3093 1.9540
10.0 1.5206 1.7755 1.9540 2.7386

In all the analyzed cases, the analytical formulas have a relatively
simple form. Moreover, it is not necessary to determine the roots of char­
acteristic equations.

Exercise 20.3 Determining Thermal Stresses in a Flat Wall

Determine thermal stresses in a flat wall caused by the temperature differ­
ence across the wall thickness. Next, calculate thermal stresses on the plate
front face, which is L = 0.06 m thick. Temperature of the plate, which at an
initial moment is zero degrees, increases on the front surface to TOl =
100cC. Back surface is thermally insulated. Calculate stresses, which occur
in the dimensionless time when Fo = 0.0075, assuming that thermo­
physical properties of the steel K18, from which the plate is made of, are
as follow: thermal expansion coefficient f3 = 1.2.10-5 11K, longitudinal
elasticity modulus E = 19.13.104 MPa, Poisson ratio V= 0.3 and thermal
diffusivity coefficient a = }J(ep) = 1.325·10-5m2/s.

Solution

Thermal stresses in the flat wall caused by a temperature drop across the
wall thickness (in the direction of x axis) are expressed as

() () 1 (NT 12MTx J
(j =(jyy x = (jzz x =-- --+ 3 - Ef3T ,

I-v L L

where a and a are normal stresses in the direction of y axis and z axis,
yy zz

respectively. Force NT and moment MThave the form
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L

Nr =EpfT(x)dx,
o

L

Mr =EpfXT(x)dx.
o

(2)

(3)

If the plate ends are able to lengthen, but not able to bend, one should
assume that MT = 0 and NT "* 0 in (1); if, however, it is not possible for the
plate to lengthen or bend, then MT=0 and NT =O.

When the wall of a cylindrical tank with a large diameter is treated as a
flat wall, then one assumes that MT= 0 and NT "* 0 in (1). In this case, (1)
assumes the form

(J"= Ep [T{t)-T{x,t)J.
I-v

Because in the first heat transfer phase TI =0 for t5~ x ~ L, therefore, aver­
age temperature ~ is determined in the following way:

- 1 L 1 (J L J 1 J11 =- f1l (x,t)dx =- f1l(x,t)dx+ f1l(x,t)dx =- f1l(x,t)dx. (4)
L o L 0 J L o

Once reference temperature is assumed T
od

' thermal stresses in the first
heat transfer phase will be presented in the dimensionless form

* CT{I-v) 1[1 Jf ]
CTI = =- - 1I{x,t)dx-1I{x,t) ,

EPTod t: L 0

O~x~t5, (5)

* CT{I-v) 1 1 J

fCTI = =- - 11 {x,t)dx,
Ept; t; L 0

t5~x~L. (6)

In the second heat transfer phase, thermal stresses are given by

* CT (1- v) 1 [ - {)J
CTn = =- Tn <T« x,t ,

EPTod t;

where

o~ X ~ L, (7)

(8)
_ I L

Til =- fTIl(x,t)dx.
L o

Stress distribution (temperature distribution calculated in the example 1,
Ex. 20.2) across the flat wall thickness is presented in Fig. 20.4. It has been
assumed that reference temperature is T

od
= Tol • For Fo = 0.0075, the di-

mensionless stresses on the plate surface equal CT* = -0.9. Dimensional
stresses are, therefore
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(J = (J* EPTad =_0.9 19.13.1.325.10-
5

·100 =-296.65 MPa.
I-v 1-0.3

(9)

These stresses occur in time

FoL2 0.0075.0.062

t=--= 6 =2.04s.
a 1.325 ·10-

Fo = 1,0000 --+------4

0,5000
0,2000
0,0833
0,0300
0,0075

0,4 ,......-----r--........--........--...------.

a*
0,2 t-----+---+--~...,........~.....---..._..ot

-0,8

-0,6

0,8 x/L 1,00,60,40,2
-1 °L.....-_----L.__--L-__--'-__..L.-_----',°

Fig. 20.4. Distribution of thermal stresses in a back-wall-insulated flat wall with a
step-change in the front face temperature. 0'* = 0' (1 - v)/ (£%01)
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21 Finite Difference Method

Analytical methods allow to determine the temperature field in a simple
shape bodies, such as the plate, cylinder or sphere. It is possible to find the
analytical solution to two-dimensional problems only for regular-shape­
regions, e.g. for a rectangle or spherical regions. Another problem, which
stands as a barrier in the application of analytical methods is the complex
mathematical apparatus, which everyone who intends to determine analyti­
cal solutions should be thoroughly familiar with. It should be emphasized,
however, that analytical solutions are frequently used to help evaluate the
accuracy of numerical solutions.

Finite difference method belongs to one of the earliest developed meth­
ods that allow to determine temperature values at discrete spatial points
(nodes) and temporal points [1-9,11,13]. In the finite difference method,
one can approximate partial derivatives in the heat conduction equation by
difference quotients, without the need of going into the physics of the
problem.

Similar method to finite difference method was simultaneously being
developed; it was called the elementary balance method, also known as the
control volume method [9] or, latelY,finite volume method [1,2,5, 12].

Finite volume method was developed mainly by engineers, who were at­
tempting to solve complex heat-flow problems, which they came across in
practice, by means of the simplest methods available. This method is based
on an energy (heat) balance for an isolated finite volume. The condition
that satisfies the heat balance for individual control volumes enables one to
determine, with high accuracy, the transient heat flux and temperature dis­
tribution.

In the case of the classical finite element method (FEM), the energy
preservation condition for fictious control volumes around the nodes of fi­
nite element mesh was not satisfied. In order to ensure appropriate calcula­
tion accuracy, the analyzed region must be divided into a very large num­
ber of finite elements. For this reason, the finite element balance method or
finite volume method are utilized in the heat transfer and fluid mechanics.
The differences between these two methods dissipate. The main difference
lies in the fact that in FEM the functions are used to interpolate tempera­
ture distribution (or other quantities) inside the element, while they are not
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used in the finite volume method. Furthermore, in the classical FEM,
thermal capacity of an element is distributed at different weight among in­
dividual element nodes. In control volume method, thermal capacity of a
control volume is concentrated in a single point. In comparison to finite
difference method, it is easier to apply the control volume method in prac­
tice, especially when the analyzed region has an irregular boundary and the
thermo-physical properties are temperature-dependent.

In this chapter, three methods will be evaluated in greater detail: ex­
plicit, implicit and Crank-Nicolson method. They are preceded with a basic
information on the boundary condition approximation methods.

Exercise 21.1 Methods of Heat Flux Approximation
on the Plate Surface

Discuss methods of heat flux approximation on the plate surfaces with dif­
ferent degrees of accuracy by assuming that T = T(x, t).

Solution

Plate discretisation together with the marked nodes are shown in Fig. 21.1.
Heat flux on the front face and the back plate surface (Fig. 21.1) is for­

mulated as

0' =-A BTlq x=O a '
x x=O

°1 =_ABTIq x=L a .
x x=L

(1)

(2)

Derivatives in (1) and (2) should be approximated by difference quo­
tients, i.e. by means of the finite difference method. In order to derive the
difference formulas, a function expanded into a Taylor series was applied
around point Xi =(i - I)Ax, Ax =U(N - 1). Using the notation T, =T(xi,t),
the value of temperature T, 1 = T(X

i
+1,t) can be calculated by means of the

Taylor series

'T. = 'T. (BT] A ...,. (B2T)
(At)2 (B3T)

(At)6
li+l i ; + L..l.A+ 2 + 3 + ...Bx

1
· Bx.2 Bx.6

1 1

(3)
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~x ~x

~x 2" ~x ~x ~x ~x 2" ~x

II I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I I I• • • I • • I •0 2 . 11 N-I N1N+I1-,

I
I
I
I
I
I
I
I
I

L
x

Fig. 21.1. Difference mesh (control volumes) together with the marked nodes

The first derivative (aT/ax). determined from (3) is
I

(aT) = 1;+1 - 1; _(a2T) (Lix) _(a3T)
(L\x)2 + ...

ax I' Lix ax2. 2 ax3, 6
1 1

The first term on the right-hand-side is the forward difference quotient

The remaining terms

O(Lix)=_(a
2T)

(Lix) _(a
3T)

(L\x)2 + ...
ax2 ,2 ax3, 6

1 1

(4)

(5)

(6)

are the Taylor series truncation error, while the first term contains Ax to the
first power. One can state, therefore, that the approximation accuracy of
derivative (5) is of the first order. Symbol O(ilx) stands for the first ap­
proximation order and, at the same time, means that the lowest power with
Lix equals 1 in the omitted part of the Taylor series.

Backward difference quotient can be determined in a similar way. Ex-
pansion of T

i
_

1
into Taylor series around T, has the form

(
aT) (a2T) (_Lix)2 (a3T) (_Lix)3

1;-1 =1; + - (-Lix)+ -2 + -3 + ... ,
Dx ), ax.2 aX.6

1 1

(7)
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where from one can determine the difference quotient (aT/ax); in reverse

(
aT) =1'; - 1';-1 +0 (& ) ,
ax i Llx

(8)

(9)

Approximation accuracy of the derivative (aT/ax); by means of the for­
ward or backward difference quotient is relatively low. For this reason, the
approximation of the first derivative by means of the central difference
quotient is applied more frequently. Once (3) and (7) are subtracted on
both sides, one has

1;+1-1;-1 ==2(OT) (Llx)+2[(i~) (&)3 + ... ,
Dx ), ox

i
6

where from, one can determine a formula for the first derivative

where

(10)

(11)

(12)

The accuracy of the derivative approximation by means of the central dif­
ference quotient is of the second order.

One can also derive a formula for the unilateral difference quotients
with the accuracy of the second order by expanding the function into a
Taylor series. Temperature distribution within the vicinity of the boundary
is approximated by the second degree polynomiaL

Constants co' C 1 and c2 are determined from conditions

T (0) = 71 , T (Ax) = 12 i T (2Ax ) = 1;

(13)

(14)

From the first condition, one obtains Co = T1, while from the second and
third, two additional equations
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Co +cI(Ax)+C2(Ax)2 =12,

Co + 2cI (Ax) + 4C2 ( Ax)
2

= T3.

By multiplying the first equation by four and then subtracting (15) on both
sides, one has

3co + 2Cl ( Llx) = 412 - 13 . (16)

The solution of (16) with respect to c l ' while accounting that Co=T1 ' has
the form

Because

-311 + 412 - 13
CI = 2(Ax)

aTI- =Cl
ax x=o '

(17)

(18)

the first derivative approximation by means of the forward difference quo­
tient has the form

-311 + 412 - 13
2(Llx)

(19)

(20)

To demonstrate that the approximation accuracy of the first derivative
by means of (19) is of a second order, function T(x,t) will be expanded into
Taylor series around node 1 (Fig. 21.1)

T(x,t)=l1 +(aTJ x+((f~J ~+(a3~J ~+ ...
aX I ax 1 2 ax 16

On the basis of the comparison made between (13) and (20), one can
deduce that the approximation accuracy T(x,t) defined by (20) is of the
third order. The numerator in the expression contains temperatures T

l
, T

2

and T3, which are defined by means of (13) with an accuracy of O[(L1X)3].
Accounting that (L1x) is present in the denominator of (19), the accuracy of
determining (aT/ax)l lowers to O[(L1X)2]. It is evident, therefore, that the de­
rivative (19) has the accuracy of the second order, i.e.

(
all J = -311 +412 -13 +O[(Ax)2].
ax 1 2(Llx)

(21)
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Heat flux on the boundary x = 0 can be, therefore, approximated by
means of the following formulas:

(22)

(23)

(24)

Temperature at an apparent (fictious) point To' which lies beyond the
analyzed region, is eliminated by means of the discrete form of the differ­
ential equation at point Xl = O. Heat flux on the second boundary X = xNcan
be determined in a similar way

(25)

(26)

(27)

It should be added that all types of heat flux approximation, formulated
in (22)-(27), are applied in practice to transient temperature field calcula­
tions. When applying (22) and (25) with the accuracy of the first order, the
node number N should be large , so that LU and the approximation error
will be small.

Exercise 21.2 Explicit Finite Difference Method
with Boundary Conditions of 1st, 2nd and 3rd Kind

Describe how explicit finite difference method is applied to a one­
dimensional transient heat conduction problem. Derive appropriate equa­
tions, while allowing for boundary conditions of 1st, 2nd and 3rd kind.
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Solution

In order to solve the heat conduction equation

1 et a2T
-;81- ax2

a flat wall should be divided into a finite number of control volumes with a
width of Ax= U(N - 1) (Fig. 21.2).

•o • • • • • •
2 i-I i+ I N-I

I
I
I
I
I

I I
N1N:I 1

I I
I I
I I
I I
I I
I I

Fig. 21.2. Flat wall division into control volumes (finite)

Temperature will be calculated in nodes Xi = (i - 1)Ax, i = 1, ..., N at time
points t

n
=rust, n =0, 1, .... Derivatives after time and space will be ap­

proximated by means of the forward and central difference quotient

(
8T )n= T;n+! -T;n +O(~t) , (2)
at i 111

By substituting (2) and (3) into (1), one has

1 T;n+l - T;n T;~1 - 2T;n + T;~1

a ~t (Llx)2
(4)
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From (4), the unknown T.n
+

1is determined
I

(5)

where Mo = a(I1I)/(&)2.
A diagram of space-marching in time created on the basis of (5) is pre­

sented in Fig. 21.3. The order of accuracy of the explicit method formu­
lated in (5) is 0(111) + 0[(&)2]. To obtain a good calculation accuracy,
both time step 111 and spatial step & should be very small. If dimen­
sionless time step Mo is too big, the explicit method becomes unstable;
this is manifested by very big temperature oscillations at individual time
steps and by the inability to reach the steady-state when 1~ 00.

n+2

t1.t
2 i-I i+I N-I N

n+I
2 i-I i+I N-I N

n
2 i-I i+I N-I N

n-I
2 i-I i+I N-I N

0 L\x L x

Fig. 21.3. Diagram of a computational molecule that illustrates space-marching in
time in the finite difference method

From the stability analysis of the explicit method carried out by means of
the von Neumann method or matrix method, it is evident that stable solu­
tion is obtained when the coefficient, which stands next to a temperature
value in a given node in the previous time step, as for e.g. in Tin, is larger
than or equal to zero. From (5) it follows, therefore, that the condition of
solution stability for internal nodes 1< i < (N - 1) has the form

hence

1-2(Mo)20,

(111) 1
Mo=a--s-.

(Lh)2 2

(6)

(7)

In the case of the boundary condition of 3rd kind, time step 111 should be
even smaller than the computational step from (7).
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Equations for boundary nodes 1 and N have the form:

• for boundary conditions of 1st kind

Tlx~o =fi(t) ,

rl,., = IN (t ) ,

(8)

(9)

where ft(t) and/N(t) are the assigned functions.
Temperature t;' is calculated for nodes 2sis (N - 1), since temperatures

in nodes 1 and N are known:

It =fi(tn ) ,

T; = IN (r.):

• for boundary conditions of 2nd kind

-A aTI =ql (t),
ax x~o

-A aTI =qN(t),
ax x~L

(10)

(11)

(12)

(13)

(14)

where 41 (t) is the flow density, which flows into the plate through the sur­

face x = 0; 4N(t) is the heat flux, which recedes from the plate through the

surface x =L.
In boundary condition (12), the derivative at point x = 0 is approximated

by the central difference quotient ((11), Ex. 21.1)

_ 1 t; - Ton I _. n
/l. - ql ,

2Ax x~o

where q; =ql (tn ) ·

Equation (5) assumes for node i =1 the following form:

l1n
+! =(M'o )Ton +[1-2(M'o)Jl1n + (M'o )T2

n. (15)

Temperature is eliminated from (14) and (15) in an apparent node To' From
(14) one has

ron =12n+ 2 4fL1x .
A

By substituting (16) into (15), one has

(16)
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n=O,I, ... (17)

Approximation accuracy of the differential heat conduction equation at
node 1 achieved by means of (17) is of the order O(~t) and O[(LU)2].

One should emphasize that (17) can be easily obtained from the energy
balance equation for node 1, if we account that the width of control vol­
ume is tu12. Energy balance equation for node 1 has the following form:

LU .n: aTI .Cp---=A- +q1, (18)
2 dt ax i+1/2

hence, we have

A.,.... 'T m+1 rpn Tn rpn
L.U 11 -11 'J 2 -11 - n

Cp 2 ~t = /L, ~ + q1 , (19)

(20)

(21)

Equations (17) and (20) are identical. Boundary condition (13) is approxi­
mated in a similar way, by simply approximating the derivative by means
of the central difference quotient

'J n: -tt, I _. n
-/L, -qN,

2ilx x=L

where q'lv =qN (tn ) .

Equation (5) assumes for node N the following form:

tt: =(M'O)T~-l+[1-2(M'o)JT~+(M'O)T~+l'

By eliminating temperature T
N

+
1
from (21), one has

rp n Tn 2q'lv~
IN+1 =IN-1 - --.

A

Once (23) is substituted into (22) and transformations are carried out

(22)

(23)

tr: = 2(M'o )T~-l +[1-2(Mo )JT~ - 2q'kAtu Mo. (24)

Temperature in nodes i = 1, ..., N is calculated by means of the explicit
method from the following formulas:
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n =2, ..., N -1 , (26)

TjJ+l == 2(M'o )tz• + [1- 2(M'o) ] TjJ - 2 ilJ.r}.,~ M'o . (27)

Calculations begin from n = O. Temperatures in nodes are present on the
right-hand-side of (25)-(27) at an initial moment t = O. In terms of the ex­
plicit method, therefore, there is no need to solve the algebraic equation
system. It is easy to program (25)-(27):

• for boundary conditions of 3rd kind

aTI-A- =al(-Tlx=o + Tcz,l) ,
ax x=O

aTI-A- =aN(Tlx=L - Tcz,2) ,
ax x=L

(28)

(29)

(30)

(31)

where Tcz,l is the temperature of the medium that is in contact with surface
x = 0; Tcz,2 the temperature of the medium that flows over surface x = L.
Heat transfer coefficients a

1
and aN are assigned on surfaces x = 0 and x =

L, respectively.
Boundary conditions (28) and (29) can be approximated by means of the

central difference quotient, using apparent points. The same results, as
shown in the case of the boundary conditions of 2nd kind, can be obtained
by writing heat balance equations for nodes 1 and 2 (Fig. 21.2)

Llx at. aTIcp---=al(Tcz,l-li)+A- ,
2 dt ax i+l/2

cp~ dTN ==aN(T
CZ 2

-TN )+)., aTI .
2 dt ' ax N-l/2

As a result of the derivatives approximation after time with forward differ­
ence quotients, one obtains, respectively

(32)
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A.,.,. Tn+I rrn rrn Tn
LU iN -iN _ ('Tn Tn) .,.iN-I-iNcp -aN icz2 -iN +/l., ,
2 111 ' Ax

hence, after transformations

Tin
+

1
= 2(M'o )[12n + (Mil) T~,I ] +

+[1- 2(M'o) - 2(Mil)(M'o)Jlt,

rz: =2(M'o)[ti, +(Mh )Tc~,2] +

+[1- 2(M'o) - 2(Mi2 ) ( M'o) JTfJ,

(33)

(34)

(35)

where Mil =a I(Ax)/1, Miz =a2(~)/1.

In order to ensure calculation stability, the coefficients by TIn and TN

n

should be larger than or equal to zero

1- 2(M'o) - 2(MiI)(M'o) ~ 0,

1- 2(M'o) - 2(Mi2)(M'o) ~ 0,

(36)

(37)

hence, the following conditions of stability for the explicit method are ob­
tained

(M'o)[1+ (Mil)J::;!,
2

(M'o )[1 +(Mh)J::; ~.

(38)

(39)

Difference equations for internal points i = 2, ..., N-l are formulated in
(26).

Exercise 21.3 Solving Two-Dimensional Problems
by Means of the Explicit Difference Method

Derive formulas for two-dimensional temperature field calculations by
means of the explicit difference method and determine the appropriate
conditions of stability. Use the control volume method to derive difference
equations.
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Solution

In order to illustrate the method used to derive the difference equations for
two-dimensional problems, one should analyze internal nodes first (Fig.
21.4).

Lo x

I
I

: i,j+l
I •
I
I
I

I I:- - - - -~~~-~ - - - --:
I I ~ I

I. ./~ • I

: i-I,} V;:i0 i+1,}:

~----~~r----J
I I

I I
I I

I • I

: i,j-l :
I I

I I

[-A~-J

~y

(2)

Fig. 21.4.Diagram of a control volume that lies inside the analyzed region

Heat balance equation for node (i,j) has the form

.A "" A d1; j' "A 1;-1 j' - 1; j' "A 1;+1 j' - 1; j'CpL.3..Any--' == Any , '+ Any , '+
dt L\x L\x

(1)

hence, once the derivative after time is approximated by the forward dif­
ference quotient, one has

Tn-:-l_r: [Tnl ' - t: Tn
1 , - t: T". 1 - t", tr, 1 - Tn.]I,j I,j == a 1- ,j l,j + 1+ ,j l,j + l,j+ l,j + l,j- l,j.

/1t (/1x)2 (/1x)2 (/1y)2 (/1y)2

Next, temperature 1;J+l is determined from (2)



618 21 Finite Difference Method

where Mox = a(i1t)/(&)2 and Moy = a(i1t)/(i1y)2.
In terms of the uniform mesh & = i1y, (3) assumes the form

Next, one should derive the heat balance equation for a node that lies on
the boundary on which the boundary conditions of 3rd kind are assigned.

• ~y

i-I,}

I
I
I
I
I
I

0-
I

i,}+l

i.j

a

i,j-l

Fig. 21.5. Diagram of a control volume attached to a body edge

Heat balance equation for node (i,j) that lies on the boundary (Fig. 21.5)
has the form

Ax dI . II' - I .cp-i11J- 1
, } = A~lJ I-,} I,} + a~lJ(T _ I .) +2 ~ dt ~ Ax ~ cz I,}

(5)

+A Ax T;,j+l - T;,j + AAx T;,j-l - T;,j

2 ~y 2 ~y ,

hence, once the derivative after time is approximated by the forward dif­
ference quotient and the right-hand-side of equation calculated at the time
point tn= tn+l - ~t, one has
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(6)

Next, temperature It/1 is determined from (6)

(7)

where i1Bi = a(i1x)/A.
x

In the case of the uniform mesh of control volumes tix = i1y, (7) is sim-
plified to a form

Itt = (M'o)[ 2T;~l,j + T;~j-l +tr: +2(MJi)Tc~ ]+
(8)

+[1- 4(M'o) - 2(MJi)(M'o) JT;~j'

From condition

1-4(M'o) - 2(MJi)( M'o) ~ 1

one obtains the condition of calculation stability

(M'o)(2+MJi)~~.
2

(9)

(10)

Heat balance equations for comer nodes are derived in a similar way; one
should analyze the outer comer first (Fig. 21.6).

Heat balance equation for node (i,j) has the form

Llx ~y dI;,j 1 ~y I;-l,j - I;,j ~y (T T)CPTT---:it == /l- 2 Llx + aT icz -ii,j +

(11)

1 Llx I;,j-l - I;,j Llx (T _7'. .)+/l- +a icz ii}.
2 i1y 2 '

By carrying out the same operations as before, from (11) one has
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ai-I,j

1

Ay/2 1
1

- - - T - - - - - - - -I

1 I
I 1
I i-I,j-I I

Ay 1 • I i,j-I
I 1
I I
I I

- - j - - - - - - - _1- __
I IyL ~x ,~x/2

o x

Fig. 21.6. Diagram of a comercontrol volume

(12)

hence, one can determine temperature It/ 1

(13)

+[1- 2(Mox ) - 2(Moy ) - 2(M3ix ) ( Mox ) - 2(ss; )(Moy ) ]T/j,

where ~Bix = a (&)/Aand ~Biy = a (~y)/A.
When & = ~y, then (13) assumes the form

Itt = 2(Mo)[tr., + tr., + 2(M3i)T~ ] +

(14)

+[1-4(Mo)- 4(M3i)(Mo)]1i~j'

From condition

[1-4(Mo)- 4(M3i)(Mo)] 2 0 (15)

one obtains the condition of calculation stability



i+ I,j

Exercise 21.3 Solving Two-Dimensional Problems 621

(MO)[l+(Mi)J~±. (16)

In terms of the inner comer, operations arecarried out in a similarway.
Heatbalance equation for node (i, j) has the form

~CPL1x~Y dI;,j =A~Y I;-i,j - I;,j + A~Y I;+i,j - I;,j + AL1x I;,j+i - I;,j +
4 dt L1x 2 Ax ~y

(17)

I •
I i+ I,j+ 1

Ax I

--~~-~

. -----.........-._-....
i-I,j

a

Lo x

Fig. 21.7. Diagram of inner comer

By carrying out similar operations as before, one has

tr: -tr, [4 r: ._~n. 2tz, .-r: 4t: 1 -rr.
l,j l,j =a 1- ,j l,j + l+ ,j l,j + l,j+ l,j +

M 3 (L1x)2 3 (L1x)2 3 (~y)2

(18)

2 T;'j-l - T;~j 2 a (Tn Tn) 2 a (Tn Tn)]
+3 (~y)2 +3A(L1x) cz- i,j +3A(~Y) cz- i,j ,
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hence, one can determine temperature It/1

Itt = j(M'ox)[ 2T;~1,j +n; + (Mix )T~ ]+

(19)

For uniform mesh, when Ax =~y (19) is simplified to a form

(20)

+[1- 4(M'o) -~(Mi)(M'o) ]T;~j,

The condition of calculation stability has the form

(M'o)(3+Mi)~i.
4

Exercise 21.4 Solving Two-Dimensional Problems
by Means of the Implicit Difference Method

(21)

Derive formulas for the calculation of transient temperature fields by
means of the implicit difference method. To derive the difference equa­
tions, apply the control volume method. Compile computational formulas
in a table by assuming that Ax = ~y.

Solution

Implicit method will be presented on the basis of an example in which the
transient temperature distribution is determined in a thick-walled plate,
which is convectively heated or cooled on its front face or thermally insu­
lated on its back surface. Control volume division and node location are
presented in Fig. 21.2. Once the derivative after time is approximated by
the forward difference quotient in the heat conduction equation ((2), Ex.
21.2) and the right-hand-side of equation is expressed in the node tempera­
ture function at an instant t + ~t , one gets
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(1)

where from, after transformation, the following algebraic equation is ob­
tained

where ~Fo =a~t/(&)2. For node 1, which lies on the boundary, the differ­
ence equation has a similar form to the form of (32) from Ex. 21.2. The
right-hand-side of this equation in the implicit method is expressed by
temperatures at time point t + ~t

J)u tr: _ ];I n r n+1 tr:
cp 2 !1t =al(T~+I_lln+l)+A 2 ~ 1

After transformations, the algebraic (3) has the form

(3)

[1+2{M'o){1+Mi)Jlln+I- 2{M'o)Tr1 =2{M'o){Mi)T~+1 +lln,
(4)

where Mi == a(&)/A.
For node i = N, one has

(5)

The implicit method is unconditionally stable. The accuracy order of the
method is O(~t) and 0[(&)2]. In order to obtain a good calculation accu­
racy, both flt and & should be, respectively, small. It is best to carry out
the calculations for a few decreasing values, ~t and &. If calculation re­
sults do not change as ~t and Ax decreases, then one can assume that the
accuracy of results is high.

Basic difference equations, which result from the application of the
implicit finite difference method to the solution of two-dimensional tran­
sient heat conduction problems, are compiled in Table 21.1.

In the implicit method, the algebraic equation system must be solved at
every time step n + 1, i.e. at time point t + ~t. For one-dimensional prob­
lems, the system is tri-diagonal, while for two-dimensional, penta­
diagonal. To solve these systems, one can use the direct methods from lin­
ear algebra like, for example, Gauss elimination method, Gauss-Jordan
method or iterative methods, such as Gauss-Seidel method or over­
relaxation method. An algebraic equation system, whose unknowns are

temperatures t:', i = 1, ..., N can be written in the form
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Table 21.1. Implicit difference equations in two-dimensional transient heat conduction
problems

i.j

i,j-I

Internal
node

Body sur­
face node

Outer cor­
ner node

I

-I- - - - - - - i, j+1
I
I
I

& I
I
1&
I

i-I,j -+- i.j
1
I

~ :
I
I

_L______ i,j-l
I
I
I. ~ •

[1+ 2(M'0 )(2 +MJi) ] Ttt - (M'0) [ 21;~t,~ + 1;'j+!1 + 1;~j~1 + (MJi)Tc~+1 ] =r;
~-I,j

I
I

~ I
I
I ~/2

-i------
i-l,j-11

I ~... .
[1 +4(M'o)(1 +MJi) ] 1;'j+l - 2(M'o) [ 21;~t,~ + 1;'j+!1 + 2(M3i)Tc~+1 ] = 1;'j

(1)

(2)

(3)
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Table 21.1. (cont.)

&/2

Internal
node

~v~.~,~._.!Y£~mm.vmQi.~~!am an~ the di!!~~~nce ..~~ion .!~m~~~~~'-~"Nm=HHHNmH.v.~.,.vHNN~mm~~ __N'~N__mm=mmmN

I l~j+1 I

-:-- ----+------i-
I &1 I
I I
1& I I
I I I
I I

i-I, j I I i+I, j
-~-

: i,j I

I
I
I
I
I i,j-I

--1-------
I

AT=b (6)

where A is the coefficients matrix whose dimensions are N· N, T =cr;',
T

2

n+1
, ••• , TNn+I)T a column vector, while b a column vector of the equations'

right-hand-side.
It is easy to find the solution once the inverse matrix A-I is determined

first:

T == A-lb. (7)

In simple (direct) transient heat conduction problems, matrix A is not
singular when the boundary conditions and the initial condition are known,
while the inverse matrix A-I can be determined with a great accuracy. In
the case of one-dimensional problems, Thomas algorithm is used to solve
the equation system.

Finally, to culminate the discussion on the implicit finite difference
method, one should mention here about the Crank-Nicolson method in
which the right-hand-side of the heat conduction equation is in one-half
approximated by the temperature function Tin, while in the second-half by
the temperature function t:'

(8)
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The order of accuracy of the method is O[(~t)2] + O[(Ax)2]; it is higher,
therefore, than it is in the case of the explicit and implicit method. Due to
the ongoing advances in computer technology, namely in the computer
processing speed, such advantage no longer plays the kind of role it did
few decades ago. By carrying out calculations by means of, for e.g., the
implicit method with a smaller time step ~t, one can obtain the same accu­
racy as one does in the case of the Crank-Nicolson method.

Exercise 21.5 Algorithm and a Program for Solving a
Tridiagonal Equation System by Thomas Method

Describe Thomas algorithm for solving tridiagonal algebraic equations
system. Write an appropriate program in FORTRAN language.

Solution

The system in question, i.e. N equations system with N temperature un­
knowns in nodes has the form

(1)

(2)

(3)

(4)

(5)

The system is tri-diagonal with other-than-zero coefficients only on the
main diagonal (coefficients d), lower diagonal (coefficients a) and upper
diagonal (coefficients b). The above equation system can be written in the
form

AT=c (6)
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d1 ht 0 0 0 0 0

a2 d2 b2 0 0 0 0

0 a3 d3 ~ 0 0 0
A= (7)

0 0 aN-l dN-1 bN-1

0 0 aN dN

Thomas algorithm is the result of an application of the Gaussian elimi­
nation method to a tri-diagonal equation system. In order to eliminate coef­
ficients from the lower diagonal, (1) is multiplied by a

2

By multiplying (2) by d, ' one has

aidiT: + d1d212 + d1b213 =d1C2 .

Subtracting (8) from (9) results in

(d1d2- hta2)12 + d1b213 =d1C2 - c.a«.

hence, once both sides are divided by d}. one obtains

(
a2 ht) c.a,d2 --- 12 + b213 =C2--
d, d,

If (11) coefficients are denoted by

d~ =d
2

_ ~ a2

d, '

then (11) can be written in a simpler form

d~12 + b213 =c~ .

(8)

(9)

(10)

(11)

(12)

(13)

(14)

By continuing the elimination process, (14) should be multiplied by a
3

a3d~12 +a3b213 =a3c~ . (15)

By multiplying (3) by a; one has

a3d~12 +d~d313 +d~b3I4 =c3d~ .
Subtracting (15) from (16) yields

(16)
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hence, when both sides are divided by d~, one has

(
a 3b2) a3C~d, --- 13 +~T4 =C3 ---.
d~ d~

(17)

(18)

(19)

(20)

Equation (18), similarly as (11), does not have a term on the lower di­
agonal. From the analysis of (11) and (18), one can see that we can obtain
(11) from (2), if the first term that contains T

1
is disregarded and coeffi­

cient d.. which lies on the main diagonal, is substituted by

di _ a2bI

d, '

while the part of the term that contains T
3

is is left unchanged. Coefficient c
2

in (2) is replaced in (11) by

CIa2
C2--·

d,

From the comparison of (18) and (3), it is evident that similar processes
take place between these equations. The first term in (3), i.e. a

3
T

2
, does not

occur in (18). Coefficient d, from the main diagonal in (3) is replaced by

(21)

in (18). The third term of (3) and (18) is the same. The right-hand-side of
(3) is substituted by

(22)

It is evident, therefore, that coefficients of the new matrix A', obtained af­
ter the elimination process, are formulated as follow:

and

a! = 0, b:= b., i = 1, ..., N,

d' =d, - aibi-I • 2 N
I I d' , 1 = , ..., ,

i-I

(23)

(24)
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,
, Ci-Iai

C· =C'--­lid' '
i-I

i=2, ...,N. (25)

The equation system, transformed as a result of the lower diagonal
elimination, has the form

dI l1 + ht12
d~12 + b213

d;13 +~14

d~-ITN-I + bN-ITN

d~TN

C~-I

(26)

This system can be easily solved, if one starts from solving the last
equation first, one obtains

,
r =~

N d~'
(27)

From the next-to-last equation and the equations that precede it, one has

i=N -I, N-2, ...,I. (28)

Equations (27) and (28) are called the backward substitution.
Below, you will find the subprogram for calculating node temperature

by means of the Thomas algorithm.

Program for solving a tri-diagonal algebraic equation system by means of the
Thomas algorithm.

subroutine triada (a,d,b,c,n,t)
c elimination of coefficients ai & calculation new
c coefficients

dimension a (*), d (*),b (*), c (*), t (*)
do i=2,n

f=a (i) /d (i-I)
d(i)=d(i)-b(i-I)*f
c(i)=c(i)-c(i-I)*f

enddo
c calculation of t i

t(n)=c(n)/d(n)
do i=l,n-1

k=n-i
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t (k) = (c (k) -b (k) *t (k+l)) /d (k)

enddo
c write(2,'(3ht =,lO(3x,ell.4))') (t(i),i=l,n)

return
end

Exercise 21.6 Stability Analysis of the Explicit Finite
Difference Method by Means of the von Neumann Method

Conduct the stability analysis for the explicit finite difference method by
means of the von Neumann method.

Solution

In numerical methods, calculations are done by marching in time with an
assigned time-step I1t. If calculation error increases when moving from a
given time point t to the next t+l1t, the error is reinforced and the calcula­
tions become unstable. Calculation instability is manifested by large oscil­
lations in calculated temperature in time, whose amplitude tends towards
infinity as it marches in time. If calculation error decreases when moving
to the next step, calculations are usually stable [1, 2, 5, 10].

Numerical solution of the partial equation is burdened with a discretiza­
tion error d.

l

i=l, ...,N (1)

and rounding error e, in computer calculations

(2)

where Ta,j is the analytical solution of the partial equation in node i; Td,j' an
accurate solution of the difference equation in node i; T, a temperature in
node i is computer-calculated with finite accuracy by means of the numeri­
cal method.

Numerical solution T.
n

formulated as
l

satisfies (4) from Ex. 21.2

1 T;n+l - T;n T;~l - 2T;n + T;~l

a!1t {L1x)2

By substituting (3) into (4), one has

(3)

(4)
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1 Tdn-:l + c~+l - Td
n. - &~

,I VI ,I I =
a ~t

(5)
'7""n+l n+l 2'7""n 2 n rrn 2 n1d,i+l + &i+l - 1d,i - &i + 1d,i-l - &i-l

=

Equation (5) is simplified to a form

1 &t+
1

- &t &i:~l - 2&t - 2&t-l

a I1t (~)2
(6)

since the numerical solution T, fully satisfies, in accordance with the defi­
nition, the difference (4). The solution of (4) given by (5), Ex. 15.2 is sta­
ble, when the ratio of the error's absolute values at time step n+1 and n sat­
isfies the condition

I
n+ll

G= £~r ::;;1. (7)

If the boundary conditions are periodic, then error ~n can be expanded
into a Fourier series. Assuming that transient temperature distribution is
searched for in the region -L ~ x ~ L, then the error can be approximated
by function

N

&(x,t)= L Am(t )eikmX
,

m=-N

(8)

where Am(t) is the time-dependent amplitude, i =H , kma wave number,
N the intervals number (N =LI&).

Figure 21.8 shows the example of an error transient en =e(tn,x) and the
accepted notations for the stability analysis. Maximum wave length equal
to Amax = 2L is the basic frequency. The corresponding wave number is at its
minimum then and is equal to krnin = 2nlAmax = 2nl2L = nIL. The shortest
wave length on the spatial grid with a step I1x is A

min
=2& (Fig. 21.8b).

The largest is the wave number that corresponds to the minimum wave
length; it is

k
_ 21t _ 21t _ N1t

max --------.

Amin 2~ L
(9)

Wave number km that appears in (8) can be presented in the following
way:
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1t
k; =mk-: =m-,

L

a)

m=1,2, ... (10)

x

b)

x=L
x

Fig. 21.8. Approximation of the error &n(x) by means of the Fourier series within
region -L S x s L

Therefore, error ~n can be written in the form
N8r = 8(Xi,tn) = L Am (tn)eikmXi ,

m=-N

(11)

where Xi is the coordinate of the spatial i-node. If the amplitude Am(tn) is
expressed as

Am (r,) =ePmtn ,

where Pm is a constant, then (11) can be written as follows:
N8r = L ePmtneikmXi .

m=-N

(12)

(13)

By accounting that the difference (6) is linear and by applying the super­
position principle, it is sufficient to analyze only one term in the series (13)

(14)

Amplification factor G formulated in (7) can be calculated using (14)
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In order to determine e
Pml1t

, (14) should be substituted into (6)

--------=
a dt

Once (16) is divided by e
Pmtn

eikmXi , one has

1 e Pml1t - 1 e ikmtM - 2 + e -ikmtM

a dt (Llx)2

hence, after transformation

ePmfl.t =1+ a/1t (eikmdx + e -ikmdx - 2) .
(Llx)2

If,

then (18) can be transformed into a form

fi 2adt[ Je mAt =1+--
2

cos(kmAx)-l .
(Llx)

633

(15)

(16)

(17)

(18)

(19)

(20)

By accounting for condition (7) and (15) and (20), a formula for amplifica­
tion factors is obtained

G = 11 + 211Fo[COS (km l'1x) -1JI::;; 1.

Condition (21) can be transformed using identity

. 2 kmLlx 1- cos(kmLlx)
SIn --= .

2 2

One has then

1- 411Fosin2 (km:X) ::;; 1,

where ~Fo =a~t/(1ix)2.

(21)

(22)

(23)
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If,

1-4Mosin2 (km:,xJ~ 0,

then (23) is always satisfied, since I1Fo > O. When

1-4Mosin2 (km:,xJ< 0,

then (23) assumes the form

• 2 (km~J1-4Mosln -2- ~-1.

Inequality (26) is satisfied when

1
Mos-.

2

(24)

(25)

(26)

(27)

(28)

Condition (27) must be satisfied in order to make the calculations, car­
ried out by means of the explicit finite difference method, stable. If we as­
sume that the region is divided into control volumes with a width Ax, then
time step I1t should satisfy the condition that follows from (27)

!1t -:;, (Ax)2 .
2a

Exercise 21.7 Calculating One-Dimensional Transient
Temperature Field by Means of the Explicit Method and a
Computational Program

A thick infinite plate with the initial temperature of To = 300°C is suddenly
cooled on one of its surfaces by a jet of flowing water at a temperature of
T = 20°C. Heat transfer coefficient on the plate surface is a = 2000cz

W/(m2·K).

Assume that the thermo-physical properties of the plate material (steel)
are taken for the calculation as follow: A = 50 W/(m·K), a = 1.10-5 m2/s.

Determine temperature distribution in the plate for the first 60 s, while
treating the plate as a semi-infinite body. Use explicit finite difference
method to determine temperature distribution. Compare the obtained re­
sults with temperature values calculated by means of the analytical solu­
tion presented in Ex. 14.4.
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Solution

The division of the plate into control volumes is shown in Fig. 21.9.
The solving process of one-dimensional transient heat conduction prob­

lems by means of the explicit finite difference method is discussed in Ex.
21.2.

~x

2 ~x

a

Fig. 21.9. Division of a half-space into control volumes

Temperature in node 1 (Fig. 21.9) is defined by (34), which in the given
example assumes the form

1\n+! =2(M'o)[12n+ (MJi)Tcz ]+[1-2(M'o)-2(MJi)(M'o)]1\n, (1)

where ~Fo =a~t/(1h)2 and ~Bi =a(Ih)/A.
In node 2 and in subsequent nodes, temperature is calculated by means

of (5) from Ex. 21.2

i=2, ..., N. (2)

(3)

The condition of calculation stability (1) has the form

(M'o)(l+MJi)::;;!.
2

For internal nodes, calculations are stable, when

1sn.«-: (4)
2

If one assumes for the calculation that Ih = 0.025 m, then one obtains
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tilli= a(~) =2000.0.025 =1.0.
A 50

From (3) it follows that

1(Mo)(I+I)s-,
2

(~)2 (0 025)2
i11S!--= 1. =15.625 s.

4 a 4 1.10-5

In order to increase calculation accuracy, a smaller time step is assumed,
i.e. ~t = 5 s (~Fo = 0.08). Equations (1) and (2) have then the form

tr: =0.16(12n+20)+0.68T;n, (5)

i=2, ...,N. (6)

At an initial moment t = 0, all node temperatures equal initial tempera­
ture

1;0 = 3000 C, i =1, ...,N + 1. (7)

It is assumed, moreover, that the depth of heat penetration in time 0 s t

s 60 s is smaller than XN+1 = (N - 1)~, i.e. r:+1 =To, n = 0, 1, .... For the

subsequent calculations, one assumes that N =10, therefore r;+l =3000 C,

n = 0,1, ....
Table 21.2 gives calculation results for nodes no. 1 (x = 0 m) and 5 (x =

0.1 m) and shows how they compare with temperatures calculated by
means of the analytical (9), derived in Ex. 14.4.

Table 21.2. Comparison of temperature values in nodes no. 1 (x = 0 m) and no. 5
(x =0.1 m) calculated by means of the explicit difference method and analytical
method

-'" lNode no. 1 (x"=0m)~--- . ~ode no. 5-(x = 0.1 m)

t [8] k Solution Solution

0"f;0~;;~~1, ITg 3;:;;c~~~[°9-
5 1l255.20 229.00 300.00 300.00
10 ~224.74 207.80 1300.00 300.00
15 1203.45 193.90 1300.00 300.00
20 1188.10 183.40 1300.00 300.00

~~ I~~~:~~ ~~~~_~.J~~:~ ~~~_'*""""..=:.~.~... -.
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Table 21.2. (cont.)

---rN"ode ~(). 1 (x = Om) , .. . . . .. rOde no. 5 (x = 0.1 til) ." . .
t [s] I Solution Solution

~:;;~T[O~;:;~~[OC]-ir;soical,T[0C]

40 1154.96 156.90 ~~9.94 300.00
45 1150.06 152.40 '299.88 299.90
50145.82 148.30 299.80 299.90
55 142.08 144.60 299.68 299.80
60 138.74 141.30 299.53

Table 21.3. Node temperatures calculated by means of the explicit difference method and
the exact analytical method at two time points t =20 sand t =40 s

x [m] 0,025 0,05 0,075 0,1 0,125 0,15 0,175 0,2 0,225

~~::p-~ 5 ~~w.~~=QZ==Wffff'~==~~W=~~=_=

t = Imethod 1188.1 284.7 299.0 299.9 300.0 300.0 300.0 300.0 300.0 300.0
20 s ilAnalyticaH

~
~~.~99~99.~0~0390~O~0300~3qO&300~

jNumericall
t = lmethod 1154.9 259.3 292.8 299.2 299.9 300.0 300.0 300.0 300.0 300.0
40 s IAnalyticaU
---!neth.2d ~.9257:8 293.1299.4:299.9300.0 300.0 300.0 300.0300.0

Table 21.3 presents the results of node temperature calculations in time
t = 20 sit = 40 s and compares them to the analytical solution.

From the comparisons shown in Tables 21.2 and 21.3 one can conclude
that the accuracy of the obtained results is very good, despite the presence
of a large spatial step At. Moreover, a computational algorithm, which is
simple and easy to programme, is an additional advantage of the explicit
method. The program written in FORTRAN language, by means of which
the results given in Tables 21.2 and 21.3 were obtained, is presented be­
low.

Program in FORTRAN language for calculating one-dimensional transient
temperature distribution by means of the explicit method and the exact ana­
lytical solution

p_21_07.in
10 12 300. 20.
1.E-5 2000. 50. 0.025 5.
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P 21 07.for
c Calculation of one-dimensional transient temperature
c distribution by means of explicit method and
c exact analytical solution

program p_2l_07
dimension t(50),tt(50)
open(unit=1,file='p_2l 07.in')
open(unit=2,file='p_2l_07.out')
read(l,*)n,n_time,t_pocz,t_cz
read(l,*)a,alfa,s lambda,dx,dt

write (2, , (a) ')
&"CALCULATION OF ONE-DIMENSIONAL TRANSIENT TEMP.
& DISTRIB."
write(2,' (/a) ') "INPUT DATA"
write(2,' (a,ilO) ') "equation number n=",n
write(2,' (a,ilO) ') "max number of time steps=",n time
write(2,' (a,e10.5,a) ')"initial temp. t_pocz=",

& t_pocz,"[C]"
write(2,' (a,elO.5,a) ')"medium temp. t_cz=",t_cz,"[C]"
write(2,' (a,elO.5,a) ')"coefficient a=",a," [m2/s]"
write(2,' (a,elO.5,a) ')"coefficient alfa=",alfa,"

& [W/m2 /K] "
write(2,' (a,elO.5,a) ')"coeff. lambda=",s lambda,"

& [W/m/K] "

write(2,' (a,e10.5,a) ')"space step dx=",dx," [m]"
write(2,' (a,elO.5,a) ')"time step dt=",dt," [sJ"

DFo=a*dt/dx**2
DBi=alfa*dx/s lambda

do i=l,n+l
t(i)=t_pocz

enddo
write (2, , (/a) ') "CALCULATED TEMPERATURE"
write(2,' (a) ')" Time T1[C] T5[C]"
i=O
time=i*dt
write (2, , (f5. 2, 3x, ell. 6, 3x, ell. 6) ') time, t (1) , t (5)
i=i+l
do while (i.le.n_time)

tt(1)=2.*DFo*(t(2)+DBi*t cz)+(1.-2.*DFo-
& 2.*DBi*DFo)*t(1)

do j=2,n
tt(j)=DFo*(t(j-l)+t(j+l))+(1.-2.*DFo)*t(j)

enddo
do j=l,n

t(j)=tt(j)
enddo
time=i*dt
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write (2, ' (f5 . 2 , 3x, ell . 6, 3x, ell. 6) , ) time, t (1) , t (5 )
i=i+1

enddo
end program p 21 07

Exercise 21.8 Calculating One-Dimensional Transient
Temperature Field by Means of the Implicit Method and a
Computational Program

Solve Ex. 21.7 by means of the implicit finite difference method. Assume
the following data for the calculation: To = 300°C, T

cz
= 20°C, a = 2000

W/(m
2·K),

A, =50 W/(m·K), a =1.10-5
m

2/s. The plate division into control
volumes is presented in fig.21.1O.

~x

2 ~x

a

Fig. 21.10. Division of a half-space into control volumes

Solution

Energy balance equation for node 1, which lies on the surface, has the
form ((4), Ex. 21.4)

[1+ 2(Mo)(1 + Mi)] Ii n
+

1
- 2(Mo)T;n+l =2(Mo)(Mi)Tc~+1 + Iin. (1)

For internal nodes, energy balance equations have the form ((2), Ex. 21.4)



640 21 Finite Difference Method

i =2, ...,N -1, (2)

where ~Fo = a~t/(~)2, N = 10.
It is assumed, moreover, that the temperature in node

1';+1 =~~ =To =300°C, i.e. at time 0 ~ t ~ 60 s when the heat does not

penetrate into a depth of XII and the temperature in node N + 1 = 11 equal
initial temperature To. A system of 10 linear algebraic equations must be
solved at every time step t + ~t. Thomas method, already discussed in Ex.
21.5, will be applied to solve the (1)-(2). Coefficients of the tri-diagonal
equation system are formulated as follow:

o. =0, d, =1+2(Mo)(1+Mi),

ht = -2(Mo), Cl =2(Mo)(Mi)Tc~+1 v T",

a, =-Mo, i=2, ...,N,

di =1+2(M o), i=2, ...,N,

bi=-Mo, i=2, ...,N-1, bN=O,

(3)

(4)

(5)

(6)

ci e T", i=2, ...,N-1, cN=T~+(Mo)T~:I=T~+300(Mo). (7)

Calculations will be made for ~ = 0.025 m and ~t = 5s [~Bi = a(~)/

A = 2000 - 0.025/50 = 1 and ~Fo = a~t/(~)2 = 1.10-5.60/0.0252 = 0.08].
The system of (1) and (2) assumes the form

1.3211n+1-0.1612n+1=3.2+11n
,

i=2, ...,N-1, (8)

whereN= 10.
Table 21.4 presents the results of temperature calculations in nodes no.

1 (x = 0 m) and 5 (x = 0.1 m) and compares them to temperatures calcu­
lated by means of the analytical (9) derived in Ex. 14.4.

Table 21.5 presents the results of node temperature calculations at time
t = 20 sand t = 40 s and compares them with the analytical solution.
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Table 21.4. Comparison of temperature values in nodes no. 1 (x = 0 m) and no. 5
(x = 0.1 m) calculated by means of the implicit difference method and analytical
method

"IN~=~--.·~n~-··_..".,,:x_.,

t [s] I Solution ~ Solution
% ~

~##.»»_»,#"""§·w#,_u,~[O~T~A~IYtical,T [09.-

~ ~~~:~~ ~~~:~~ !~gg:gg ~gg:gg
10 1239.37 207.80 1300.00 300.00
15 1218.79 193.80 1299.99 300.00
20 1202.54 183.40 P99.97 300.00
25 1189.56 175.00 1299.94 300.00
30 1179.04 168.10 1299.90 300.00
35 h70.39 162.10 ~99.83 300.00
40 1163.18 156.90 1299.74 300.00
45 h57.09 152.40 1299.63 299.90
50 1151.86 148.30 1299.49 299.90
55 1147.32 144.60 1299.31 299.80
60 1143.32 141.30 ~299.11 299.70
""''''''''''''~''''''''''"",*,''''''''''''''''$'«;'''''''''''''<'''''''''''''''_'''''««''''-'''''''''''''=;«'''='''''''''''''''''''","''''',.;"",,,._,,,,,,,,,,,,-.=,,,.-_.,,,,,,,,,,..__t,=...,,,,,,=_,,,,,,,;,,=w__.,,,,.,......,,,,,,,,,,,,,,,,...,,,,.«>.<»,_",.-_=",~"""""",-=""""""<_"'.

Table 21.5. Node temperatures calculated by means of the implicit difference
method and exact analytical method at two time points t = 20 sand t = 40 s

283.56 297.75 299.73 299.97 300.0 300.0 300.0 300.0 300.0

183.40 283.10 299.30 299.90 300.00 300.0 300.0 300.0 300.0 300.0

163.18 261.31 291.49 298.42 299.74 299.96 300.0 300.0 300.0 300.0

10
0.2250.125 0.15 0.175 0.2

6 7 8 92 3 4 5
0.025 0.05 0.075 0.1

t=
40 S tAn~hTtll'~ln

156.90257.80 293.10 299.40 299.88 299.99 300.0 300.0 300.0 300.0

From the comparisons presented in Tables 21.4 and 21.5, one can con­
clude that the accuracy of the obtained results is very good. When compar­
ing, however, the results from Tables 21.2 and 21.3 and 21.4 and 21.5 by
means of the explicit and implicit method, respectively, it is evident that
both methods are almost equally accurate, when the spatial step and time
step are the same. Explicit method is slightly more accurate. However, the
order of accuracy in both methods is identical: O(~t) + 0[(&)2]. In order
to increase the accuracy of the numerical calculations, one can reduce the
spatial step Ax and time step ~t or apply a different method, which
demonstrates a higher order of accuracy, for example, the implicit
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Crank-Nicolson method with an accuracy of O[(~t)2] and O[(Ax)2]. By re­
ducing Ax and ~t, one can practically obtain the same results as one does
in the case of the exact analytical method. A simple computational algo­
rithm and the ease, which the calculations are programmed with are the
main advantages of the explicit method. The program in FORTRAN lan­
guage for solving the equation systems (1) and (2) is presented below.

Program for calculating one-dimensional half-space temperature distribution
with an assigned convective boundary condition

p_21_08.in
10 12 300. 20.
1.E-5 2000. 50. 0.025 5

p_21_08.for
c Calculation of one-dimensional transient temp.
distribution
c by means of implicit method and exact analytical solution

program p_21_08
dimension ta(200),td(200),tb(200),tc(200),tt(200)
dimension t(200)
open(unit=1,file='p_21_08.in')
open(unit=2,file='p_21_08.out')
read(l,*)n,n_time,t_pocz,t_cz
read(l,*)a,alfa,s lambda,dx,dt
write (2, , (a) ')

&"CALCULATION OF ONE-DIMENSIONAL TRANSIENT TEMP.
& DISTRIB."
write(2,' (/a) ') "INPUT DATA"
write(2,' (a,i10) ') "equation number n=",n
write(2,' (a,i10) ') "max number of time steps =",n time
write(2,' (a,e10.5,a) ')" initial temp t_pocz=",

&t_pocz,"[C]"
write(2,' (a,e10.5,a) ')"medium temp. t_cz=",t_cz,"[C]"
write(2,' (a,e10.5,a) ')"coefficient a=",a," [m2/s]"
write(2,' (a,e10.5,a) ')"coefficient alfa=",alfa,"

& [W/m2/K]"
write(2,' (a,e10.5,a) ')" coeff. lambda=",s lambda,"

& [W/m/K]"
write(2,' (a,e10.5,a) ')"space step dx=",dx," [m]"
write(2,' (a,e10.5,a) ')"time step dt=",dt," [s]"
DFo=a*dt/dx**2
DBi=alfa*dx/s lambda
do i=l,n

t(i)=t_pocz
enddo
write(2,' (/a) ')"CALCULATED TEMPERATURE"
write (2, , (a) ') "Time T1 [C] T5 [C]"
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j=O
time=j*dt
write(2,' (f5.2,3x,ell.6,3x,ell.6) ')time,t(l) ,t(5)
j=j+l
do while (j.le.n_time)

td(l)=1.+2.*DFo*(1.+DBi)
tb(l)=-2.*DFo
tc(l)=2.*DFo*DBi*t cz+t(l)
do i=2,n

ta(i)=-DFo
td(i)=1.+2.*DFo

enddo
do i=2,n-l

tb(i)=-DFo
tc(i)=t(i)

enddo
tb(n)=O.
tc(n)=t(n)+T pocz*DFo
call triada (ta,td,tb,tc,n,tt)
do i=l,n

t(i)=tt(i)
enddo
time=j*dt

c write(2,' (f5.2,3x,ell.6,3x,ell.6) ')time,t(l),t(5)
write(2,' (f5.2,10(3x,ell.6)) ')time, (t(i),i=l,n)

j=j+l
enddo
end program p_21 08

subroutine triada (a,d,b,c,n,t)
c elimination of coefficients ai & calculation new coeff.

dimension a(*) ,d(*) ,b(*) ,c(*) ,t(*)
do i=2,n

f=a(i)/d(i-l)
d(i)=d(i)-b(i-l)*f
c(i)=c(i)-c(i-l)*f

enddo
c calculation of t i

t(n)=c(n)/d(n)
do i=l,n-l

k=n-i
t(k)=(c(k)-b(k)*t(k+l))/d(k)

enddo
c write(2,'(3ht =,10(3x,ell.4))') (t(i),i=l,n)

return
end
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Exercise 21.9 Calculating Two-Dimensional Transient
Temperature Field by Means of the Implicit Method and a
Computational Program; Algebraic Equation System is
Solved by Gaussian Elimination Method

A long chamotte element with a rectangular cross-section is unilaterally
warmed-up by a superficial electric heater at a temperature T, of 250°C.
Once the whole element is warmed-up to a temperature of To = T, = 250°C,
it is subjected to an air cooling phase at the temperature of Tcz = 30°C; the
cooling airflow moves along the three sides of the element (Fig. 21.11).
During the cooling process, the temperature of the electrically heated sur­
face remains constant and equals initial temperature. Heat transfer coeffi-
cient is a = 50 W/(m2·K).

Assume for the calculation that the chamotte has the following thermo-
physical properties: p =1851.85 kg/m', c =900 J/(kg·K), A=1.0 W/(m·K).
The determined temperature distribution should be compared with the re­
sults obtained by means of FEM while using the ANSYS program. Use
implicit difference method to determine temperature distribution.

2w = 0,24 ill

.~

x

y t /a

I
I 8

N
~

I 0

a/
II

/ I
~

I Ts = 250°C

a

Fig. 21.11. Diagram of an analyzed region and boundary conditions

Solution

Due to the symmetry of the temperature field with respect to y axis, tem­
perature field will be determined only for the one half of the element's
cross-section (Fig. 21.12).

Appropriate difference equations were derived in Ex. 21.4.
Equation (3) from Table 21.1 assumes the following form for node l :
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By accounting for (2) from Table 21.1, the difference equation for node
2 can be written in the form

The difference equation for node 3 is obtained from (1), Table 21.1

[1 + 4(LlFo)]13n
+

1
- LlFo(T6n

+
1 + tr: + T; + 14n

+
1

) == 13n
• (3)

By accounting for (2) from Table 21.1, the difference equation for node 4
assumes the form

y~
w=O,12m

4
I I ~

I I ~

--...J-------L--
I I
I I
I I ~
I • I <]
I 3 I
I I
I I----,-------1--
I I ~

I I ~

I1x/2

o
/I
i.o".:l

........
x

Fig. 21.12. Division of an analyzed region into control volumes

(4)

Heat balance equation for node 5 has the following form:
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Ax Axd15 Ax Ax
Cp-·_--=A--(T4 -15)+A--(16 -15)+

2 2 dt 2(Ax) 2(Ax)
(5)

As prescribed by the implicit finite difference method, (5) is approximated
as follows:

(6)

where from, after transformations, one has

-2(Mo)14n
+

1 +[1+4(Mo)+2(Mo)(Mi)]15n
+
1-2(Mo)16n

+
1 =

(7)

The equation for node 6 is obtained from (2), Table 21.1 by assuming
that Mi = 0

(8)

In (1)-(8), the following notations were assumed: Mi = a (Ih)/A and f).Fo

=a(f).t)/(1h)2. By allowing that

Ax=~= w = 0,12 =0.06m
2 2 2 '

a=~= 1 =6.0.10-7 m
2

cp 900 ·1851.85 s

and assuming that time step equals f).t=60 s, one has

MJi= a(L1x) = 50·0.060 =3
AI'

Mo= a(ilt) = 6.10-
7

·60 =0.01.
{L\x)2 0.06 2

(9)
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Once data is ordered and accounted for together with (9) in (1)-(8), one
has

(10)

-0.0111n
+

1
- 0.0213n

+
1 + 1.114n

+
1

- 0.0115n
+

1 =1.8+ 14n
,

The solution of the equation system (10) has the form

(11)

where A-l is the inverse coefficients matrix, b the right side vector.
Subprogram MATINV is used to determine the inverse matrix A-I.

Transient temperature distribution is also calculated by FEM using
ANSYS program.

From the comparison presented in Table 21.6, one can conclude that the
accuracy of the implicit difference method is very good, despite the fact
that the analysed region is divided into a rather small number of control
volumes. Calculations done by means of FEM should be regarded as more
accurate, since the analyzed region, presented in Fig. 21.12 was divided
into1600 elements (grid 40 x 40). Therefore, the results obtained by means
of FEM can be used to evaluate the accuracy of the results obtained by
means of the implicit finite difference method. In order to increase the ac­
curacy of calculations carried out by means of the implicit difference
method, the spatial step Ax and time step ~t should be reduced.
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Table 21.6. Comparison of temperature values in nodes no. 1, 2 and 5 calculated by
means of implicit difference method and finite element method

Node no. 1
Difference method FEM

T [OC] T [OC]
t [min] ~t =60 s ~t =60 s ~t =30 s ~t =10 s

0 250.00 250.00 250.00 250.00
10 109.87 75.31 74.36 73.74
20 67.35 57.96 57.57 57.31
30 52.55 50.49 50.27 50.12
40 46.65 46.33 46.19 46.09
50 43.73 43.73 43.63 43.56
60 42.18 41.97 41.90 41.85
70 41.22 40.73 40.67 40.64
80 40.56 39.82 39.78 39.75
90 40.08 39.14 39.10 39.08
100 39.71 38.62 38.59 38.57
110 39.42 38.21 38.19 38.17
120 39.20 37.90 37.88 37.87

Node no. 2
Difference method FEM

T [OC] T [OC]
t [min] ~t =60 s ~t =60 s ~t =30 s ~t =10 s

0 250.00 250.00 250.00 250.00
10 162.08 128.16 127.40 126.89
20 122.08 105.23 104.78 104.48
30 103.15 92.69 92.36 92.15
40 93.40 84.77 84.53 84.37
50 87.79 79.41 79.23 79.10
60 84.19 75.62 75.47 75.38
70 81.67 72.86 72.74 72.66
80 79.80 70.79 70.70 70.63
90 78.37 69.22 69.14 69.09
100 77.25 68.02 67.95 67.91
110 76.36 67.08 67.02 66.99
120 75.65 66.34 66.30 66.27

Node no. 5
Difference method FEM

T [OC] T [OC]

t [min] ~t =60 s ~t =60 s ~t =30 s ~t =10 s
0 250.00 250.00 250.00 250.00
10 160.88 128.83 128.03 127.50
20 118.04 107.58 107.19 106.93
30 96.40 95.83 95.59 95.43
40 84.64 87.65 87.47 87.35
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Node no. 5
Difference method

T rOC]
t [min] ~t =60 s ~t = 60 s ~t = 10 s
50 77.62
60 73.00
70 69.71
80 67.21
90 65.25
100 63.68
110 62.42
120 61.39

81.40
76.43
72.44
69.23
66.65
64.57
62.90
61.57

81.24
76.29
72.31
69.11
66.53
64.47
62.81
61.49

81.13
76.19
72.22
69.03
66.46
64.40
62.75
61.44

Computational program in FORTRAN language used for determining
nodetemperatures is presented below.

0.00
0.00

-0.01
0.00

-0.02
1.04
2.50

0.00
0.00
0.00

-0.01
1.10

-0.01

1.80

-0.02
0.00

-0.01
1.10

-0.02
0.00
1.80

Program for calculating two-dimensional temperature distribution in the
region presented in Fig. 21.12 by means of the implicit difference method

p_21_09.in
6 120 60. 250.
1.16 -0.02 0.00

-0.01 1.10 -0.02
0.00 -0.01 1.04

-0.01 0.00 -0.02
0.00 0.00 0.00
0.00 0.00 -0.02

3.60 4.30 2.50

p_21_09.for
c Calculation of two-dimensional temperature
c distribution in the region presented in Fig. 21.12
c by means of the implicit difference method

program p_21_09
dimension ta(50,50),tbo(50),tb(50),tc(50,50),tt(50)
dimension t(50)
open(unit=1,file='p_21_09.in')
open(unit=2,file='p_21_09.out')
read(l,*)n,n_time,dt,t_pocz
write (2, , (a) ')

& "CALCULATION OF TWO-DIMENSIONAL TRANSIENT TEMP.
& DISTRIB."
write(2,' (/a) ') "INPUT DATA"
write(2,' (a,i10) ') "equation number n=",n
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write(2,' (a,i10) ') "max number of time steps =",n time
write (2, , (a, e10. 5, a) ') "time step dt=", dt," [sJ"
write(2,' (a,e10.5,a) ')"initial temperature t_pocz=",

& t_pocz,"[CJ"
read(l,*) ((ta(i,j),j=l,n),i=l,n), (tbo(i),i=l,n)
write(2,*) 'A'

do i=l,n
write (2, , (10f8. 2) ') (ta (i, j) , j=l, n)

enddo
write(2,*) 'B'

write(2,'(10f8.2)') (tbo(i),i=l,n)
call matinv(ta,n,tc)
write(2,*) 'C=AA-1'
do i=l,n

write (2, , (10f8. 2) ') (tc (i, j) , j=l, n)
enddo
do i=l,n

t(i)=t_pocz
enddo
write (2, , (/a) ') "CALCULATED TEMPERATURE"
write (2, , (a) ')" Time [min] T1 [C] T2 [C] T5 [C]"
ii=O
time=ii*dt
write (2, , (f7. 2,10 (3x, ell. 6) ) ') time, t (1) , t (2) , t (5)
ii=ii+1
licznik=l
do while (ii.le.n time)

do i=l,n
tb(i)=tbo(i)+t(i)

enddo
do i=l,n

sum=O.
do j=l,n

sum=sum+tc(i,j)*tb(j)
enddo
tt(i)=sum

enddo
do i=l,n

t(i)=tt(i)
enddo
time=ii*dt
if (licznik. 10) then
wr i t e (2, , (f7 . 2 , 10 (3x, ell . 6) ) , ) time / 60 , t (1) , t (2) , t (5)

licznik=l
else

licznik=licznik+1
endif
ii=ii+l
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end program p 16 09
c Gauss method
c aa - matrix of coefficients, n - matrix dimension,
c ainv - inverse matrix

subroutine matinv(aa,n,ainv)
dimension aa(50,50), ainv(50,50), a(50,100), id(50)
nn=n+1
n2=2*n
enddo
do 100 i=l,n
id(i)=i
do 100 j=l, n

100 a(i,j)=aa(i,j)
do 200 i=l,n
do 200 j=nn,n2

200 a(i,j)=O.
do 300 i=l,n

300 a(i,n+i)=l
k=l

1 call exch(a,n,n,n2,k,id)
2 if (a(k,k)) 3,999,3
3 kk=k+1

do 4 j=kk,n2
a(k,j)=a(k,j)/a(k,k)
do 4 i=l,n
if(k-i) 41, 4, 41

41 w=a(i,k)*a(k,j)
a(i,j)=a(i,j)-w
if(abs(a(i,j))-O.OOOl*abs(w)) 42,4,4

42 a(i,j)=O.O
4 continue

k=kk
if(k-n)1,2,5

5 do 10 i=l,n
do 10 j=l, n
if (id(j)-i) 10,8,10

8 do 101 k=l,n
101 ainv(i,k)=a(j,n+k)
10 continue

return
999 write(*,*) 'Matrix is singular'

return
end
subroutine exch(a,n,na,nb,k,id)
dimension a(50,100),id(50)
nrow=k
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ncol=k
b=abs(a(k,k))
do 2 i=k,n
do 2 j=k,na
if (abs (a (i, j) ) -b) 2,2,21

21 nrow=i
ncol=j
b=abs(a(i,j))

2 continue
if(nrow-k)3,3,31

31 do 32 j=k,nb
c=a(nrow,j)
a(nrow,j)=a(k,j)

32 a(k,j)=c
3 continue

if(ncol-k)4,4,41
41 do 42 i=l,n

c=a(i,ncol)
a(i,ncol)=a(i,k)

42 a(i,k)=c
i=id(ncol)
id(ncol)=id(k)
id(k)=i

4 continue
return
end

Exercise 21.10 Calculating Two-Dimensional Transient
Temperature Field by Means of the Implicit Method
and a Computational Program; Algebraic Equation System
Solved by Over-Relaxation Method

Solve Ex. 21.9; apply over-relaxation method to solve the equation system
(10) from Ex. 21.9. Write an appropriate computational program. Compare
the obtained results to the calculations done by means of FEM with an area
division into 1600 elements (grid 40 x 40), as presented in Fig. 21.11.

Solution

Temperature distribution is determined by means of the enclosed program.
Calculation results with the over-relaxation coefficient to = 1.2 (in the
program w = 1.2) are presented in Table 21.7. From the comparison of re­
sults presented in Tables 21.5 and 21.6, one can conclude that the Gaussian
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elimination method and over-relaxation method practically yield the same
results. In order to increase the accuracy of calculations done by means of
the over-relaxation method, one can increase the niter iteration number in
the computational program or lower the calculation tolerance to, for e.g.
0.0001.

Program for determining temperature distribution in the region presented in
Fig. 21.12

p_21 10.in
-

6 120 60. 250.
1.2 30 1.0E-3
1.16 -0.02 0.00 -0.02 0.00 0.00

-0.01 1.10 -0.02 0.00 0.00 0.00
0.00 -0.01 1.04 -0.01 0.00 -0.01

-0.01 0.00 -0.02 1.10 -0.01 0.00
0.00 0.00 0.00 -0.02 1.10 -0.02
0.00 0.00 -0.02 0.00 -0.01 1.04
3.60 4.30 2.50 1.80 1.80 2.50

p 21 10.for
c Calculation of two-dimensional transient temperature
c distribution in the region presented in Fig. 21.12
c by means of over-relaxation method

program p_21_10
dimension ta(50,50),tbo(50),tc(50,51),tt(50)
dimension t(50)
open(unit=1,file='p_21_10.in')
open(unit=2,file='p_21_10.out')
read(l,*)n,n_time,dt,t_pocz
read(l,*)w, niter, toler

write (2, , (a) ')
& " CALCULATION OF TEMP. DISTRIB. BY OVER-RELAXATION
& METHOD"
write(2,'(/a)') "INPUT DATA"
write(2,' (a,i10) ') "equation number n=",n
write (2, , (a, i10) ') "max number of time

& steps=",n_time
write(2,' (a,e10.5,a) ')"time step dt=",dt," [s]"
write(2,' (a,e10.5,a) ')"initial temperature t_pocz=",

& t_pocz,"[C]"
write(2,' (a,e10.5) ') "relaxation coeff. w=",w
write (2, , (a, i10) ') "max number of iteration

& niter=",niter
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write(2,' (a,elO.5,a) ')"solution tolerance
toler=",toler,
& "[C]"

read(l,*) ((ta(i,j),j=l,n),i=l,n), (tbo(i),i=l,n)
write(2,*) 'A'
do i=l,n

write(2,' (10£8.2) ') (ta(i,j) ,j=l,n)
enddo
write (2, *) 'B'

write(2,'(10f8.2)') (tbo(i),i=l,n)
do i=l,n

do j=l,n
tc(i,j)=ta(i,j)

enddo
enddo
do i=l,n

t(i)=t_pocz
enddo

write (2, , (/a) ') "CALCULATED TEMPERATURE"
write (2, , (a) ')" Time [min] Tl [C] T2 [C] T5 [C]"

ii=O
time=ii*dt
write(2,' (f7.2,10(3x,ell.6)) ')time,t(1),t(2),t(5)

ii=ii+l

licznik=l
do while (ii.le.n time)

do i=l,n
tc(i,n+l)=tbo(i)+t(i)

enddo
call sor(tc,50,5l,n,tt,w,niter,toler,k)

write(*,' (a,ilO) ') "final iteration number=",k
do i=l,n

t(i)=tt(i)
enddo
time=ii*dt
if (licznik.eq.lO) then
write (2, , (f7. 2,10 (3x, ell. 6)) ') time/60, t (1), t (2), t (5)

licznik=l

else
licznik=licznik+l

endif
ii=ii+l

enddo
end program p 21 10



Exercise 21.10 Calculating Two-Dimensional Transient Temperature Field 655

subroutine sor(a,nmax,mmax,n,xi,w,niter,toler,k)
dimension a(nmax,rnrnax),xi(nmax)
k=l
err=l.
do while ((k.le.niter) .and. (err.gt.toler))

c err is used for solution tolerance
err=O.O
do i=l,n

s=O.O
do j=l,n

s=s-a(i,j)*xi(j)
enddo
s=w*(s+a(i,n+l))/a(i,i)

err=err+s*s
xi(i)=xi(i)+s

Table 21.7. Comparison of temperature values in nodes no. 1, 2 and 5 calculated
by means of the finite difference method and finite element method; algebraic
equation system was solved by over-relaxation method

Node no. 1
Difference method

T [OC]
t [min] ~t =60 s
o 250.00
10 109.87
20 67.35
30 52.55
40 46.56
50 43.73
60 42.18
70 41.22
80 40.56
90 40.08
100 39.71
110 39.42
120 39.20

FEM
T [OC]

~t =60 s ~t =30 s
250.00 250.00
75.31 74.36
57.96 57.57
50.49 50.27
46.33 46.19
43.73 43.63
41.97 41.90
40.73 40.67
39.82 39.78
39.14 39.10
38.62 38.59
38.21 38.19
37.90 37.88

Node no. 2

~t = 10 s
250.00
73.74
57.31
50.12
46.09
43.56
41.85
40.64
39.75
39.08
38.57
38.17
37.87

Difference method
T [OC]

t [min] ~t = 60 s
o 250.00
10 162.08
20 122.08

FEM
T [OC]

~t =60 s ~t =30 s ~t =lOs
250.00 250.00 250.00
128.16 127.40 126.89
105.23 104.78 104.48
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Table 21.7.
Node no. 2

Difference method FEM
T [OC] T [OC]

t [min] ~t =60 s ~t =60 s ~t =30 s ~t =10 s
30 103.15 92.69 92.36 92.15
40 93.40 84.77 84.53 84.37
50 87.79 79.41 79.23 79.10
60 84.19 75.62 75.47 75.38
70 81.67 72.86 72.74 72.66
80 79.80 70.79 70.70 70.63
90 78.37 69.22 69.14 69.09
100 77.25 68.02 67.95 67.91
110 76.36 67.08 67.02 66.99
120 75.65 66.34 66.30 66.27

Node no. 5
Difference method FEM

T [OC] T [OC]
t [min] ~t =60 s ~t =60 s ~t =30 s ~t =10 s

0 250.00 250.00 250.00 250.00
10 160.88 128.83 128.03 127.50
20 118.04 107.58 107.19 106.93
30 96.40 95.83 95.59 95.43
40 84.64 87.65 87.47 87.35
50 77.62 81.40 81.24 81.13
60 73.00 76.43 76.29 76.19
70 69.71 72.44 72.31 72.22
80 67.21 69.23 69.11 69.03
90 65.25 66.65 66.53 66.46
100 63.68 64.57 64.47 64.40
110 62.42 62.90 62.81 62.75
120 61.39 61.57 61.49 61.44
~_._. .. . .~__:..... m~;m:.w_·_·.""" my;mwm.".. =.'.: mwm.·~.««~~~__...•.~_..-...... _.....~
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22 Solving Transient Heat Conduction Problems
by Means of Finite Element Method (FEM)

Theoretical fundamentals and the application of finite element method
(FEM) [1-3,6,7,9, 11-18,20,21] are presented in Chap. 11 for solving
steady-state heat conduction problems. In this chapter, the authors discuss
how FEM is applied when solving transient heat conduction problems.
They also present the methods for integrating ordinary differential equa­
tion systems after time, which describe body temperature changes in nodes
in the function of time and the differences between Galerkin- method­
based FEM and the FEM based on the heat balance method, which was
discussed in Chap. 21. Furthermore, the authors describe FEM-based fi­
nite volume method and the difference between this method and the
Galerkin-method-based FEM, in which the finite elements are regarded as
bodies with a lumped thermal capacity. Also the transformation of coordi­
nates will be discussed as it facilitates the calculation of integrals in FEM.
The authors also give a practical example in which FEM is used to deter­
mine transient temperature distribution in a complex-shape fin.

Exercise 22.1 Description of FEM Based on Galerkin
Method Used for Solving Two-Dimensional Transient Heat
Conduction Problems

Derive basic equations for FEM based on Galerkin method for solving
two-dimensional transient heat conduction problems. Assume that tem­
perature field is source-based, while the three boundary conditions (of l st,
2nd and 3rd kind) are assigned on the body boundary. Account for the fact
that the medium is anisotropic, i.e. A "* A.x y

Solution

Find a solution for the transient heat conduction problem
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aT a ( aT) a ( etJ .cp-=- Ax- +- Ay - +qv
at ax ax ay ay

when initial condition is

T(x,y,t)lt=o =To(x,y)

and boundary conditions are

and

(1)

(2)

(3)

(4)

(5)

The method for calculating node temperature is very similar to the
method used to calculate steady-state temperature (Ex. 11.10). Galerkin
method is applied to make an approximate determination of temperature in
element nodes: ~e,j =1, ..., n

[ aTe a( et:J a( et:J .] eJcp--- Ax- -- Ay - -qv Ni (x,y)dxdy=O,
sr at ax ax ay ay

(6)

where temperature distribution inside the element is formulated in (13),
Ex. 11.10. Once similar transformations are carried out as those in Ex.
11.10, the following ordinary differential equation for temperature in node
i of element e is obtained

~(Me dT/ KeTeJ I'e I'e I'L.J ij--+ ij j =jQ,i+jq,i+ja,i,

j=l dt
where

s; =K:,ij -i«,

Mij = JcpN;Njdxdy ·
,ae

i =1, ... , n, (7)

(8)

(9)

The remaining terms in (7) are defined in Ex. 11.10. Matrix [M] is usually
called the thermal capacity matrix or mass matrix.
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The elements of the capacity matrix

(10)

(12)

(14)

can be determined by means of (9) once the dependence on the shape func­
tion presented in Ex. 11.9, is employed. For a rectangular element, matrix
[Me] has the form

[Me] = Jcp[Nf [N]dxdy =
ne

(Ntf N{N~ N{N; N{N:

N{N~ (N~f N~N; N~N:
(11)

= Jcp
(N3f

dxdy.
n e N{N; N~N; N;N:

N{N: N~N: N;N: (N:f

Once calculations are carried out the way they were in Ex. 11.11, the fol­
lowing thermal capacity matrix is obtained

421 2

Ae 2 4 2 1
[M e ]=cp "36 1 2 4 2

2 1 2 4

where A
e

is the surface area of the element.
Thermal capacity matrix (10) for a triangular element has the form

(Nlef N{N~ N{N;

[Me] = Jcp N{N~ (N~f N~N; dxdy. (13)
ne

(N3fN{N; N~N;

Once calculations are carried out the way they were in Ex. 11.11, one has

2 1 1
Ae

[Me ]=cPU 1 2 1 ,

1 1 2

where Ae is the surface area of the element.



662 22 Solving Transient Heat Conduction Problems

For a one-dimensional linear element, the thermal capacity matrix [Me]
has the form

(15)

where L is the length of the element.
The equation system, which one can use to determine node temperature

in a single element e, can be written as follows

where matrixes and vectors from (16) are defined in Ex. 11.10. Symbol i
stands for aT/at.

Next, one should create global equation system by summing up along
the sides of (16) for all N elements, which the analyzed region was divided
to. This problem is discussed in Ex. 11.15. Details regarding the formation
of global equation system are also presented in Ex. 11.16-11.19.

References [1,3-5,7,8, 10-12, 14, 15,21] discuss how FEM is applied
to solve transient heat conduction problems; the references also give a de­
tailed description of the FEM method.

Exercise 22.2 Concentrated (Lumped) Thermal Finite
Element Capacity in FEM

Discuss how thermal capacity is concentrated in finite elements in one,
two and three-dimensional problems by assuming that linear functions are
used to interpolate temperature distribution inside an element.

Solution

Ex. 11.15 presents the methods for creating global equation system in
FEM. According to the second method for creating such a system, the dif-
ferential equations for node i shared by element (i-I) and element i (Fig.
22.1) will be written out first.

Temperature distributions in elements (i-I) and i are described by func­
tions
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r':' _ 'T'. N i- 1 'T'.Ni- 1 _ Xi -X 'T'. X-Xi-l 'T'.
-ii-l 1 +ii 2 - ii-l + ii,

Xi - Xi-l Xi - Xi-l

(1)

(2)

Differential equation for node i in the global equation system has the fol­
lowing form:

Xi ari-1. Xi+l ari. Xi a2ri-1 .
cp J--N~-ldx+cpJ-N{dx-A J--2-N~-ldx-at at ax
~ ~ ~

(3)

By substituting (1) and (2) into (3) and carrying out calculations, the equa­
tion for node i is obtained. Such equation can be also determined using the
capacity matrix [Me], stiffness matrix [Ke] and vector {f;}.

N(x)
I

I

:8
--------f------- -

I
1Ni-1
: 2
I
I
I
I
I
I
I
I

(I>:

CD

x

Fig. 22.1. Shape functions N2

i
-

1 i N/ for node i that lies on the boundary of ele­
ments (i-I) and i

The local numeration of node i in the global coordinate system is num­
ber (2). The first term on the left-hand-side is obtained by multiplying the
second row in the capacity matrix (15) by the vector of derivatives with re­
spect to time from node temperatures, i.e.
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cp2a~~-I N~-Idx =cp:HNt
l N~-I ,( N~-IrJdx{;:~:}=

=Cp(Xi - Xi-I) [1, 2]{7;~I} =CPl'J.xi- 1 (7;-1 +27; ).61;6
(4)

The second component on the left-hand-side of (3) can be calculated in a
similar way:

(5)

The third term on the left-hand-side is obtained by multiplying the second
row in therigidity matrix

[ K e
] = A[1 -1]

L -1 1
(6)

(7)

for a one-dimensional element by the temperature vector in the nodes of
element (i-I)

Xi a2r i
-

I
z-r A {1;-I} A

-A J~N2 dx=t-I [- I, 1] T = 1'J.x0_ (-1;-1+1;).
Xi_I" I

The fourth term on the left-hand-side is obtained as a result of multiply­
ing the first row vector in the stiffness matrix [K e

] formulated in (6) by the
temperature vector in nodesof element i

(8)

where At i- I = Xi - Xi-I' Ati = X i+I - Xi" Accounting that vector {f;} for a one­

dimensional element and linear shape functions has theform

{f&} =4;L {a
the terms on theright-hand-side canbe expressed as follow:

(9)
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a)

T

xXhlXi~~l

Til i

I I
I ....1------,
, I

..----., I
18xi-1 18xj

b) 1+3

i+4

i+6
c)

f--~I,j+l i,j+1 1+1,}+1

(4) (3) (4) (3)

CD CD

i·~-l,j
(1) (2) 0) (2)

i+l,j
(4) (3) (4) (3)

i.]

CD CD
(1) (2) 0) r»

\.4./

j---I,ll
i,j-J i+1,l-·-1

Fig. 22.2. Diagrams that illustrate the concentration of thermal capacity in node i
of a) one-dimensional elements, b) two-dimensional triangular elements, c) two­
dimensional tetragonal elements
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Xfi . N i- 1d Xif+l. Nid _ qvAxi- 1 q.Sx,
qv 2 X + qv 1 X - +-- ·

2 2
Xi-l Xi

By accounting for (4), (5), (7), (8) and (10) in (3) one has

(10)

(11)

For equal element lengths, when Ax;-l = Ax; = Ax, (11) can be written in
the form

CPAx(~ 4~ ~ )_ 1 1;-1 -21; +1;+1 _ . A ..,.
1i-l + i , + 1i+l /l" - qvD.A .

6 Ax
(12)

From the analysis of (12) it follows that the derivatives after time from
temperatures in three nodes appear on the left-hand-side of the equation.
Nodes (i-I) and (i+ 1) located next to node i, which has the largest weight
equal to 4/6, weigh 1/6. Thermal capacity concentration (lumping) is based
on the assumption that the temperature change rate in all three nodes is
equal (Fig. 22.2a), i.e.

(13)

By accounting for this assumption in (12), one has

(14)

Identical equation is obtained when the straight line method, character­
ized by a very good accuracy, is applied.

If we assume that temperature change rates in all element nodes are
identical, then the forms of thermal capacity matrixes are simplified as fol­
low:

• one-dimensional element

(15)

• triangular element
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1 0 0

[Me]=Cp
:

e
0 1 0

0 0 1

• tetragonal element
1 0 0 0

[Me] = C~Ae 0 1 0 0

0 0 1 0

0 0 0 1

(16)

(17)

(18)

In each of the elements with common node i , one can single out a re­

gion with constant temperature change rate ~e that can be subsequently

used to calculate heat accumulation. In the case of a one-dimensional ele­
ment, the length of the region measures Le/2. For a triangular element, the
surface area is Ae/3, while in the case of the tetragonal element, the surface
area is Ae/4 (Fig. 22.2). In the global equation system for the entire region,
in the equation for node i, a term appears on the left-hand-side of the equa­
tion that describes thermal changes in time of the heat accumulated within
the region that can be assigned to node i. In the case of a one-dimensional
problem, such region measures in width (1h;_/2 + 1h/2). If node i is sur­
rounded by triangular elements (Fig. 22.2b), then temperature change rate

Ne

d'I', /dt in region 1/3LA) is equal. Symbol Ne stands for the number of
)=1

triangular elements, which share common node i. In a case when the re­
gion is divided into tetragonal elements, the region with an equal tempera­
ture change rate is formed by summing up 1/4 of the elements surface area
with common node i (Fig. 22.2c). It is evident, therefore, that the change in
heat quantity Q

ok
in time within the control volume, whose surface is

Ne

1/4L A) is expressed as(Fig. 22.2c)
)=1

dQok =!I,A'cp dT; .
dt 4 )=1 dt

One should add that the procedure in the finite volume method (control)
is identical to the procedure discussed above, as one assumes that tempera­
ture change rate is constant within the entire control volume and equals
d'T[dt, where i is the node that lies inside the finite volume and is assigned
to this volume. Concentrating thermal capacity of a control area in a single
node has its advantages; it facilitates calculations and enables one to



668 22 Solving Transient Heat Conduction Problems

integrate the global system of ordinary differential equations, which define
temperatures in element nodes with a larger time step I1t. Thermal capacity
concentration does not decrease the accuracy of FEM, but rather it in­
creases calculation stability.

Exercise 22.3 Methods for Integrating Ordinary
Differential Equations with Respect to Time Used in FEM

Describe basic integration methods for a global ordinary differential equa­
tion system with respect to time. Such system is obtained in a semi­
discrete FEM by dividing a region into finite elements.

Solution

If a differential equation system is known for an individual element (16)
presented in Ex. 22.1, one can create a global equation system the way it is
described in Ex.ll.15. Global ordinary differential equation system for
node temperature has the form

MT+KT=F, (1)
where,

N

M=[M]= I[Me], (2)
e=l

N

K = [K] =I([K:J+[K~ J), (3)
e=l

F = {fQ} + {h} + {fa} , (4)

. [. .rT = 11, ..., TN , (5)

T =[11, ... , TNr' (6)

where N is the node number in the entire analyzed region.
Capacity matrix [Me] is discussed in Ex. 22.1 and Ex. 22.2, while stiff-

ness matrixes [K
c

e
] and [Ka

e
] and vectors lf

Q
} , ~} and lfa} are determined

for different elements and boundary conditions in Ex. 11.11-11.15. A gen-
eralized Crank-Nicolson method, also known as ()method, will be applied
to numerically integrate the equation system.
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Between the temperatures in time t n
+

1 and t" =ntst, n =0, 1, ... the fol­
lowing relation occurs

r+! =r- +[ (1- e) t n +etn+! ]!'1t , (7)

where 0 ~ ()~ 1.
Equation (7) is known as a generalized trapezoidal approximation. The

global equation system (1) will be written for t n
+

1 and t" first

(8)

(9)

The first equation system should be multiplied on both sides by (), while
the second by (1- ())

e(Mtn+1+Kr+1)=eFn+1, (10)

(11)

By adding the sides of (10) and (11), one has

M[(l-e)tn +etn+!]+K[(1-e)r +er+1]=(1-e)Fn +eFn+1, (12)

while after allowing for (7), the equation has the form

As a result of simple transformations of (13), one has

(~tM+eK)r+1=[~tM-(1-e)KJr +(l-e)Fn +eFn+1.
(14)

If () ~ 1/2, then the solution stability is ensured for the arbitrary time
step I1t. However, time step I1t should be small due to the accuracy of tem­
perature determination. Depending on the value of parameter () , the fol­
lowing methods are obtained:

()= 0

()= 1/2
()= 2/3
()= 1

- explicit method; it is stable under the condition that time
step I1t is smaller than the reliable boundary value,

-Crank-Nicolson method, which is unconditionally stable,
- Galerkin method, which is unconditionally stable,
- implicit method, which is unconditionally stable.
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Explicit method (() = 0) ensures high calculation accuracy with a small
time step. The smaller the quotient Aela is, the smaller the time step should
be. The accuracy order of the explicit method is 1, i.e. O(~t). It is very
easy to determine temperatures in nodes T n

+
l by means of the formula ob­

tained from (14) with () = 0

r+1=r +M(M-1Fn -M-1Kr) (15)

when matrix M is diagonal due to the concentration (lumping) of the ele­
ments thermal capacity, and when it is easy to determine the inverse matrix
M-1. Despite the limitations of the time step I1t, the explicit method is fre­
quently used, since it is very accurate for a small time steps, especially
when the temperature change rate for a solid is high. From the calculations
in Chapter 21, one can conclude that the explicit method is no less accurate
than the implicit method (()=1) when the time step ~t is the same for both
methods.

The advantage of the explicit method is that Tn+1can be easily deter­
mined, since there is no need to solve the equation system for every time
step when matrix M is diagonal. Implicit method does not have this advan-
tage, when ()=1. In the implicit method, the linear algebraic equation sys­
tem must be solved at every time step by means of the direct methods,
such as for e.g. Gaussian elimination method or by iterative methods, such
as for example Gauss-Seidel method or over-relaxation method (SOR).
The examples of solving the equation system with the implicit method are
presented in Chap. 21.

Crank-Nicolson method (()= 1/2) has the second order of accuracy, i.e.
O[(~t2)] and is unconditionally stable. If, however, the time step ~t is too
large, then the solution becomes less accurate and exhibits oscillations,
which do not occur in reality. As in the case of the implicit method, the
linear algebraic equation system must be solved for every time step.

Aside from the basic algorithms discussed above, which are used to
solve the ordinary differential equation system, many other effective algo­
rithms can be applied, for example. Rung-Kutt method or the algorithms of
the prediction-correction type.
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Exercise 22.4 Comparison of FEM Based
on Galerkin Method and Heat Balance Method
with Finite Volume Method

Compare different methods used for solving equations, which describe
heat conduction in a flowing fluid or in a solid that flows at a velocity of
w =U

x

et et a2T qv
-+u-=a-+-.at ax ax2 cp

(1)

Carry out the discretization of (1) for an internal node by means of
• FEM based on Galerkin method,
• integral heat balance method discussed in Chap. 20,
• finite volume method (finite difference method).

Also discuss thermal capacity concentration (lumping) of an element in
FEM and integral heat balance method. Finite element mesh is non­
uniform.

Solution

First, (1) will be discretisized by means of FEM based on the Galerkin
method [7] as it is done in Ex. 17.2. Once Galerkin method is applied, (1)
is approximated according to FEM by means of equation

(2)

Xi Xi+l

= fqvN~-1dx+ fqvNfdx.
Xi-l Xi

Accounting that shape functions N; and N;-l have the form

N i - 1 _ X - Xi-1
2 - ,

Xi -Xi-1

N i _ Xi+1-X
1-

Xi+1- Xi

(3)

and that temperature distribution in elements i-I and i (Fig. 22.3a) is de­
scribed by (1) and (2) from Ex. 22.2, from (2) one has
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(4)

(5)

where a =}J(ep). If nodes i are evenly spaced out, (4) has the form

Ax ( . ..) U 1;-1 - 21; + 1;+1 qv
- 1;-1 +41; +1;+1 +-(1;+l-1;-l)-a =Ax- .
6 2 Ax cp

Next, equations will be derived by means of FEM based on the heat bal­
ance method, which was thoroughly discussed in Chap. 20.

a)
T

I
" I
"~.iI,,~l'vi

I "
I "" -,

I O---~,- - II~,

NI-.. I I I
, I ""I

T II r,
i-I I

I I I
/II@, CD

~Xi-I = Xj-Xi_l

~Xi=Xi+1 -Xi

Fig. 22.3. Approximation of a one-dimensional transient temperature field at a se­
lected moment t: a) FEM, b) finite volume method



(8)

(9)

Exercise 22.4 Comparison of FEM Based on Galerkin Method... 673

Accounting that temperature distribution between the nodes is approxi­
mated by a straight line by means of (1) and (2) from Ex. 22.2, the heat
balance equation has the form

Xi ari-1 Xi+l er Xi ari-1 Xi+l er
cp f--dx+Cp f-dx+cpu f--dx+cpu f-dx-

at at ax ax
Xi-l Xi Xi-l Xi

(6)

Once mathematical operations are carried out, the following results are ob­
tained:

(7)

In a case when the finite element mesh is uniform, when Xi+l
- Xi = Xi­

Xi- l = At, (7) has the form

~ ( . ..) U 7;-1 - 27; + 7;+1 qv
- 7;-1 + 67; + 7;+1 + -(7;+1 - 7;-1) - a =~- .
8 2 Ax cp

In the finite (control) volume method (Fig. 22.3b), the equality of tempera­
ture change rate is assumed for nodes (i - 1), i and (i + 1), i.e.

d7;-1 at: d7;+1
--=-=--

dt dt dt

By accounting for (9) in (7), one has

Xi+1- Xi-1 T U(T T) (7; -7;-1 7; -7;+1)_
---.Ii+-.Ii+1-.Ii-1 +a + -

2 2 Xi -Xi-1 Xi+1 -Xi

2 cp

If the mesh is uniform, then (10) assumes the form

(
A ......)T U (T T) 7;-1 - 27; + 7;+1 _ A ...... qv
LU t , +- .Ii+1-.Ii-1 -a -LU-.

2 ~ cp

(10)

(11)
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Identical equation is obtained by means of the finite difference method,
if derivatives aT/ax and a 2T/ax2 are approximated by central difference
quotients. From the comparison of (5), (8) and (11) one can conclude that

weight coefficients with i; are, respectively 4/6, 6/8 and 1. One can see

that the smallest coefficient occurs in the Galerkin-based FEM, a slightly
larger one in the FEM based on the integral balance method, while the
largest one in the control volume method (of finite differences). It is easi­
est to solve the equations obtained from the control volume method (11)
by means of the numerical methods.

The solution of the equation system (11) for all nodes enables one to ac­
curately determine temperature distribution (Chaps. 21, 23).

Exercise 22.5 Natural Coordinate System
for One-Dimensional, Two-Dimensional Triangular
and Two-Dimensional Rectangular Elements

Discuss the natural coordinate system for one-dimensional elements and
two-dimensional triangular and rectangular elements and linear shape
functions in the natural coordinate system.

Solution

a. One-dimensional elements
In the local coordinate system (Fig. 22.4), one-dimensional temperature
distribution is described by function

T" =(1- ~) Tie + ~ t: =»tt: + N~Tz" =[NiN~ ] {~:} . (1)

2

Fig. 22.4. Linear approximation of temperature distribution in the element e
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Once local dimensionless coordinate system is introduced (Fig. 22.5)

j: = 2:X -1
';, L ' (2)

the coordinate for node 1 is ; = -1, while the coordinate for node 2 is
;= 1.

Accounting for (2) in (1), one has

T" =~(1- ~nl1e +~(1 +q)Tz" =stt: +N~T{ =[NtN~J{~:}. (3)

where,

N\e =~(l-q),

N~ =!(l+q)
2

(4)

(5)

are linear shape functions.
One should note that local coordinate :x can be expressed by means of

formula

Thus, (3) and (6) are very similar in form.

(6)

~=-1

L

~=1

(7)

Fig. 22.5. Local dimensionless coordinate system (natural coordinate system)

b. Two-dimensional tetragonal elements

Local dimensional and dimensionless coordinate systems (natural) are pre­
sented in Fig. 22.6. If natural coordinates are introduced

- -x y
q= b - 1 and 17 = ~ - 1,

then linear shape functions, described by (19) in Ex. 11.9, assume the fol­
lowing form:
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YJ

YJ=l

~

~=1

0
b ~

-

2a

o yJ =-1 2b x

Fig. 22.6. Local (x,y) and natural (;,17)coordinate systems

Nt =±(1-;)(1-17),

N2=~(1+;)(1-17),
4

1N; =- (1+ ~) (1+ 17 ),
4

N4=!(1-;)(1+17).
4

(8)

c. Two-dimensional triangular elements

Linear shape functions for a triangular element are defined by (7) in Ex.
11.9. Natural (area) coordinate system is presented in Fig. 22.7.
By connecting point P = P(x, y) with the vertices of triangle 123, three
smaller triangles are obtained whose surface areas are AI' A2 and A

3
(Fig.

22.7). Natural coordinate system (~,17,') is defined as follows:

Al
L1 =; =7 '

A2

L2 =17=7'

A3

L3 =s=7'

where Ae =Al + A2 + A
3

is the area of the whole triangle 123 (Fig. 22.7).

(9)
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y

o

7
~o .

.x

(10)

Fig. 22.7. Natural (area) coordinate system

Only two of the natural coordinates ;,1],;are linearly independent, since

Al A2 A3 Ae

-+-+-=-=1=;+1]+; .
A e Ae Ae Ae

From (10) it follows that coordinate s: for example, can be expressed by
functions ; and 1]

;=1-;-1]. (11)

All three natural coordinates change at interval [0,1]. If point P, which

lies inside the element, is moved to node 1, then Al = At23 (Fig. 22.7) and

natural coordinates equal; = 1, 17 =0 and S=o.
If point P becomes identical with point Q, which shifts along side 23,

then Al =0, A 2 *- 0, A 3 *- 0 and the respective natural coordinates are ~ =0,
1] *- 0 and;*- O.

Similarly, when point P becomes identical with point M, which shifts
along side 13, then the natural coordinates are ~ *- 0, 17 =0 and;*- O.

If shape functions that interpolate temperature distribution inside the
element are linear, then

N1
e =L1 =;,

N~ =L2 =1],

N; =L3 =;.
(12)

Between the natural coordinates ;, 1] and ; and global coordinates x, y
and z the following relationships exist
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X=~Xl +17 X2 +SX3,

Y =~yl + 17 Y2 +SY3 ,

1=~ + 17+s.

(13)

Once the equation system (13) is solved with respect to ~, 17 and S, one
gets

(14)

where 2 At23 is defined by (5) in Chap. 11. Coefficients a;, a;, a;, bt,

b;, u, c;, c; , c; are described by (8) in Chap. 11. The superscript e
means that the quantities refer to a single element e.

Natural coordinates are introduced with an aim to simplify the calcula­
tion of surface integrals by means of the Gauss-Legendre quadratures
method.

Only linear shape functions were analyzed. Analogically, the same pro­
cedure applies in the case of higher degree shape functions, for example
quadratic or cubic [12, 21].

Exercise 22.6 Coordinate System Transformations
and Integral Calculations by Means
of the Gauss-Legendre Quadratures

Discuss the transformation of coordinate systems for arbitrarily-shaped
tetragonal and triangular elements and the calculation of integrals by
means of the Gauss-Legendre quadratures.

Solution

In Chap. 11, the integrals that occur in the coefficients of conduction ma­
trixes and also other integrals of an algebraic equation for i-node are ana­
lytically calculated. This is possible for rectangular or triangular elements.
If a region is divided into arbitrary quadrilaterals, then the analytical calcu­
lation of the integrals becomes rather problematic. In large commercial
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programs, integrals are usually calculated numerically by means of the
Gauss-Legendre quadratures. For this purpose, an arbitrarily-chosen quad­
rilateral is transformed in the coordinate system (x,y) into the, so called,
model element whose dimensions are 2 x 2 in the new coordinate system
(~,1]). The model is a square: 1 S ~ S 1, 1 S 1] S 1.

Coordinate transformations are only applied in order to calculate the in­
tegrals. The transformation of element B is shown in Fig. 22.8. After the
transformation of coordinates (x,y), the elements of integration in the new
coordinate system (~,17) become more complex; in effect, therefore, a nu­
merical method, usually the Gauss-Legendre method, is applied to calcu­
late these integrals.

The real element B in the system (x,y) is transformed into the model ele-
ment in the system (~, 17) by means of the transformation

m

x= LxjNj(~,17),
j=l

m

y =LyjNj (~,17),
j=l

where ~e(~,17) is the shape function in the model element.
The examples of such transformation are (6) and (13) in Ex. 22.5.

(1)

4 1] = 1 3

;=-1 "L ; = 1
;

B

17 =-1 2--

/
/

Fig. 22.8. Transformation of an arbitrary tetragonal element B in the Cartesian co­
ordinate system (x,y) into a quadratic model element in the coordinate system
(;,1])
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Temperature distribution in element e is expressed as
n

t: :=Te(x,y)= IrtN;(x,y),
j=l

(2)

where n is the number of nodes in element e.
Natural number m , which occurs in (1) does not have to be equal to

number n in (2). Depending on the relations between m and n, the elements
can be divided into

• subparametric (m < n), approximation order of coordinates x and y is
lower than the approximation order of temperature (in the general case of
a dependent variable),

• isoparametric (m = n), approximation orders of coordinates x and y and
temperature are identical,

• superparametric (m > n), approximation order of coordinates x and y is
higher than the approximation order of temperature.

Most frequently, the isoparametric elements are used, for which m = n.
Next, the transformation of coordinates will be discussed in greater detail.

The quantities, which should be transformed are

e( ) aN; aN; d d dN j X,y, --, -- and rA= x y.
ax 8y

(3)

They occur in integrals, which result from the application of FEM. For in­
stance, the coefficients of conduction matrixes K;,ij ((26), Chap. 11) are

formulated as follow:

x:.. = f(A aNi
e

aN; +AaNi
e

aN; )dXd .
c,l) x a a Y a rl., Ysr X X Y vy

(4)

It is easy to express quantity N; (x, y) in functions ~ and 17 once the (1)
is allowed for. The derivatives from the shape function are calculated in
the following way:

aNt aNi
eax aNi

eay
--=----+----
a~ ax a~ 8y a~'

aNi
e aNi

e ax aNt ay
--=----+----.
a'7 ax a17 8y a17

Equations (5) and (6) can be written in the matrix form

(5)

(6)
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aNi
e ax ay aNt

a; a; a; ax
(7)=aNi

e ax 8y aNi
e

-
a1] a1] a1] ay

where the square matrix with dimensions 2x2 is a Jacobian determinant

ax 8y

J=
a; a;
ax 8y
-
a1] a1]

(8)

The transformation of coordinates is unique when the Jacobian J is not
singular, i.e. when Jacobian determinant is other than zero at every point
(;,1])

ax ay ax 8y
J=detJ=------:;t:O.a; a1] a1] a; (9)

Derivatives from integral (4) are determined from the transformation of
(7)

aNt aNi
e

ax -l-'l ' -a;
(10)aNi

e aNi
e

ay a1]
The required derivatives for the calculation of the Jacobian determinant

(9) are obtained after the differentiation of

(11)

(12)
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The element of surface area dxdy equals

dxdy =det Jd~d17. (13)

From (10) or directly from the solution of the equation systems (5) and (6),
one has

aNi
e
__1_[ By aN; _ By aN;]

ax - detJ a17 a~ a~ a17 '
(14)

(15)

Integral (4) can be transformed into a new coordinate system when the de­
rived relationships are applied. The first component of this integral can be
transformed by means of the (13)-(15) into a form

r = J(AX aN;" aN; )dXdY=
sr ax ax

(16)

One can see, therefore, that after the transformation of coordinates, the
subintegral expressions are more complex in the new coordinate system
(;, '7) than they are in the coordinate system (x, y). These integrals are usu­
ally numerically calculated using the Gauss-Legendre quadrature [1, 3, 11-
17,21]. If the subintegral function is denoted by F(~,17), one can calculate
the integrals in the new coordinate system by means of a relatively simple
formulas.

a. One-dimensional elements

The integral is calculated by means of formula

1 n

1= JF(;)d;= LW;F(;i)'
-1 i=1

(17)

where ~i are the Gaussian point coordinates (Fig. 22.9).
Coordinates ~ are the zeros of Legendre polynomials [13]. Coordinates

~ and weights Wi' which occur in (17) are compiled in Table 22.1.
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-0,577350 0 577350

-1

b)

-1

-0 774597 0774597

Fig. 22.9. The location of Gaussian points during the calculation of a one­
dimensional integral: a) n =2, b) n =3

Table 22.1. Legendre polynomials and the coefficients of the Gauss-Legendre
quadratures

~>_~~_~~Ees-SL~ _
1 0,0
2 ±0,577350
3 0,0

±0,774597
4 ±0,339982

±0,861136
5 0,0

±0,538469

Weight coefficients Wi

2,0
1,0
8/9 =0,888 .
5/9 =0,555 .
0,652145
0,347855

0,568889
0,478629
0,236927

The integration by means of the Gaussian quadratures yields accurate
results for n integration points, when F(~ is the polynomial of degree
2n-1 or lower. In general, the larger the number of Gaussian points n, the
more accurate the calculation of integral (17) is. Now we will discuss the
approximate calculation of two-dimensional integrals for tetragonal and
triangular elements.
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b. Tetragonal elements

Formulas for the calculation of an integral in a two-dimensional region
are used to determine integrals for quadrilateral elements.

1 1 1[ n ]

1= IlF(~'17)d~d17=l ~WjF(~h17) d17=

=~Wk[~WjF(~h17k)]= ~~WjWkF(~h17k)'
(18)

where n is the Gaussian point number in a single direction. For n = 2, the
integral (18) can be written as follows:

I =Wlw1F(;1 ,'71)+ W1 w2F(;1,'72) + W2 w1F(;2,'71)+ W2 w2F(;2,'72), (19)

where the coordinates of Gaussian point are ~, '7i =±1/3t12 =±O.57735 and
z z 1wt =wtWZ =W z = .

Table 22.2. Calculating integrals in a quadrilateral region by means of (20)

4o

m i

1 _1/31/2 _1/31/2 'YJ = 0.577 .......

4
2 +1/31/2 _1/31/2
3 _1/31/2 +1/31/2

4 +1/31/2 +1/31/2
'YJ =-0.577 ... -

I

~=-0.577 ...

1 _(3/5)1/2 _(3/5)1/2

2 0 _(3/5)1/2 7,
3 +(3/5Y/2 _(3/5)1/2 'YJ = 0.774... -
4 _(3/5)1/2 0

9 5 0 0
6 +(3/5)1/2 0
7 _(3/5)1/2
8 0 \

9 ~ = 0.774 ...

1 1 0
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One can see, therefore, that once the numeration of nodes i = j + (k - l)n
is introduced, the integral (18) can be written in the form

m

1= IF(;i,17i)Wi ,
i=l

(20)

where m = n', J:. = a., n. = a
k

and w. = w.w
k

• Quantities a. and w. denote co-
'='1 ) '/1 1 } } }

ordinates ~ and weights Wi' respectively, compiled in Table 22.2 and are
used to calculate two-dimensional integrals.

c. Triangular elements

To calculate the integral, coordinates (x,y) are transformed into area co­
ordinates L} and L

2
, which are linearly independent, since once we account

for the (11) from Ex. 22.5, coordinate L
3

can be calculated from formula

L3 =1- L1 - L2 •

By allowing for equation

aNt aNie

ax =[Jr aLl
aNie aNie
ay aL2

where
ax ay

-

[J] =
aLl u.
8x 8y

-
aL2 8L2

surface integral I for a triangular element is calculated from formula

1 1-~ m

1= JJF(LJ,L2,L3 )d~dLl ~ LF(Ll,i,L2,i,L3,i )Wi
o 0 i=l

(21)

(22)

(23)

The locations of integration points and weight coefficients for the triangu­
lar element [1, 3, 11, 12, 14, 15, 21] are compiled in Table 22.3.

In both, Chap. 11 and this chapter, the discussion was limited to one
and two-dimensional steady-state and transient heat conduction problems.
Three-dimensional problems are solved analogically, in keeping with the
rules that were applied in the examples of two-dimensional problems,
which were discussed above.
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P
. tCoordinatesWeights

Oln
L1, L2, L3 Wi

Error

Table 22.3. The location of integration and weight points for a triangular element

Integration
points Point location
number

1 1 1
-, -, -

1

3
1

3
1

3

333

1 1 1 27
3' 3' "3 48

0,6; 0,2; o,2)
25

0,2; 0,6; 0,2 48

0,2; 0,2; 0,6

~ ~ °2' 2'

° ~ ~, 2' 2

~ ° ~2' , 2

a

a

d

c

3

4

0,2250000000
1 1 1

3' 3' 3a

b

e
f
g

al /31 /31)
/31 al /31 0,1323941527

/31 /31 al

a-, /32, /32)
/32, o., j32 0,1259391805

j32, j32, a,

Constants at' a2, PI and 132 are a1 = 0.059715871 7, PI = 0.4701420641,
=0.7974269853, =0.1012865073.

7
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Exercise 22.7 Calculating Temperature in a Complex­
Shape Fin by Means of the ANSVS Program

Oval pipes with an attached aluminum plate-fins, l\ = 0.08 mm thick are
used in car radiators [19]. Due to the division of plate-fin into fictions
(equivalent) fins, temperature distribution in the entire lamella can be de­
termined when temperature distribution only in half of the fin is analyzed
[19].

The maximum length of the pipe diameter is d
max

= 11.82 mm, while the
minimum «: =6.35 mm (Fig. 22.10). The height of the fin half section is
h =9.25 mm, while the width s = 17.0 mm. Initial temperature of the fin is
To =20°C. The temperature of surroundings is also Tcz =20°C. At an in­
stant t = 0 s , the fin base temperature increases by a step from temperature
To = 20°C to Tp = 95°C.

ANSYS

Fig. 22.10.The division of 1/4 of a plate-fin into finite elements

Determine transient fin temperature distribution at time t
1
= 1.0 sand t

1
=

0.2 s and temperature transient in the upper-left fin corner in the function
of time. Heat transfer coefficient on the fin surface is a = 75 W/(m2·K).

Heat is given off by the fin to surroundings through the lateral surfaces and
through the left lateral front face. The upper and right-hand-side surfaces
are thermally insulated. Straight sections of the fin base are also thermally
insulated due to the symmetry of the temperature field with respect to the
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=95
=79.0509
=81.331
=83.154
=84.976
=86.799
=88.621
=90.444
=92.266
=94.089

D
E
F
G

H

I

Al·r~r:ts 5. 5 •3
AUG 1 2001
18:27:13
NODAL SOLUTION
STEP=1
SUB =1
TItIE=l
TEMP
SMN =78.598
SI!X
A
B
C

!Dr

Lame La 2

.li..NSYS 5. 5 .3

P..UG 1 2001
19:43:38
lJODAL SOLUTION
TIME=.2
TEI1P (AVG)
RSYS=O
Po'(verGraphics
EFACET=l
AVRE:3=Mat
SHN" =40.551
SHX =95
A. =43.576
B =49.626
C =55.676
D =61.726
E =67.776
F =73.82.5

G =79.875
H =85.925
I =91.975

Fig. 22.11. Distribution of isotherms in a fin: a) t1 = 1.0 s, b) t2 = 0.2 s
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horizontal axis of the pipe cross-section. The pipe axis is at a distance of 9
mm from the left side. Assume for the calculation that the aluminium has
the following thermo-physical properties: A = 207 W/(m·K), C = 879
Jz(kg-K) and p = 2696 kg/m'.

Solution

Due to the symmetry of the temperature field in the fin shown in Fig.
22.10, the temperature distribution will be determined only for one-half of
the fin, which is in thickness Jz/2 = 0.04 mm. The back surface of the fin is
thermally insulated, while the heat is given off to surroundings on the fin's
front surface.

A quarter of the conventional fin was divided into 1500 elements (Fig.
22.10). Temperature was determined in 3198 nodes. Only one finite ele-
ment is located at 5/2 = 0.04 mm. Calculations were carried out by means
of the ANSYS program. The isotherm history on the lateral fin surface at
time t

1
= 1.0 s is presented in Fig. 22.11a, while at time t

2
= 0.2 s in Fig.

22.11b. It is evident that the fin quickly becomes heated and at an instant
t, = 1.0 s temperature distribution is almost steady-state.

Temperature history for the upper left-hand-corner of the fin (point MN
in Fig. 22.11) is presented in Table 22.4 and in Fig. 22.12.

Steady-state temperature at the point MN is TMN =78.958°C. It is clear,
therefore, that already after time t = 1.2 s temperature differs by

Table 22.4. Temperature history for the upper left-hand-comer of the fin (point
MN)

Entry no.
Time Temperature

Entry no.
Time Temperature

t t
1 0.00 20.00 11 1.00 77.81
2 0.10 23.78 12 1.10 78.17
3 0.20 40.55 13 1.20 78.30
4 0.30 54.85 14 1.30 78.41
5 0.40 63.93 15 1.40 78.49
6 0.50 69.55 16 1.50 78.53
7 0.60 73.03 17 1.60 78.56
8 0.70 75.18 18 1.70 78.57
9 0.80 76.50 19 1.80 78.58
10 0.90 77.59 20 1.90 78.59
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e =78.304 - 78.598 .100 =-0.37%
78.598

From the steady-state temperature.
Fin temperature quickly reaches the steady-state, since for the aluminum

thermal diffusivity is very high and is a = }J(ep) = 207/(879·2696) =
8.735.10-5 m2/s.

J\NSYS

8,s

eo T1

7f2

=:. 6.4
---J
-c::C
> 56

.4B

.40

'Jf2

2"'i

rs
0

TIME
Lame La 2

Fig. 22.12. Temperature history in the upper left-hand-corner of a fin (point MN in
Fig. 22.11)
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23 Numerical-Analytical Methods

Numerical-analytical methods are based on the method of lines [14,28,31,
36-38], which underwent particularly intensive development at the begin­
ning of 1970s [10, 11, 14, 15, 22, 26, 28, 31, 36-38]. These methods are
also called semi-analytical or semi-numerical methods. The method of
lines not only can be used for solving steady-state and transient heat con­
duction problems [16,41,42,48], but also for heat-flow problems [10, 11,
15, 22, 26, 28, 38, 40]. The method is also an effective tool for solving in­
verse transient heat conduction problems [13, 20, 25, 40, 43-45]. In nu­
merical methods, only spatial derivatives are usually discretisized in the
heat conduction equation. Due to the application of the control (finite) vol­
ume method to the heat conduction equation, one has (Chap. 11)

where

p (1; )c (1;) V; ~ = ~x, [t, (t)- 1; (t )]+ qv (1;) V; , (1)

(2)

Coefficient D .. is, in general, a function of a distance l. between nodes, a
y y

function of the surface area Sjj' through which the heat flows from node j to
node i, while in the case of irregular meshes, in which the node-connecting
straight line is not perpendicular to surface Sij' it is also a temperature func­
tion in nodes adjacent to nodes i and j. Symbol n is the number of control
volumes, which share a common side with volume n.

If thermo-physical properties A, c and p are temperature-independent,
then Kjj coefficients are constants. Usually, the explicit or implicit Euler
method or the Crank-Nicolson method, which will be briefly discussed, is
used to integrate the ordinary differential equation system (1).
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Explicit Method

Derivative after time is approximated by the forward difference quotient

d1; ~ 1; (t + L\t) - 1; (t )
dt ~ L\t ·

(3)

By accounting for (3) in (1), one obtains (assuming that thermo-physical
properties and qvare constant) the following expression, which makes it

possible to determine temperature T, in all nodes at the new time point t +
L\t

L\t[n [pc~ n J .]1;(t+L\t)=-. IKijT;(t)+ -- IKij 1;(t)+qv~ .pc~ j=l L\t j=l

Implicit Method

(4)

Derivative after time is approximated by a difference quotient (3), while
the right side of (1) is calculated in the temperature function at time t + L\t

7;(t + ~t) - 7;(t ) n .
peV; =IKij[T;(t+L1t)-T;(t+M)]+qvV;. (5)

L\t j=l

By transforming (5), one obtains

L\t [[pc~ ~ J ~ ] qvL\t-. -+ LJKij 1;(t+L\t)- LJ Kij1j(t+L\t) =1;(t)+-.
pc~ L\t j=l j=l pc

Algebraic equation system (6) must be solved at every time step.

Crank-Nicolson Method

(6)

Crank and Nicolson proposed [13] to approximate the right side of (1) us­
ing the arithmetic mean taken from the values calculated for t and t + I1t.
Equation (1) is approximated as follows:
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1; (1 +L11) - 1; (1) 1{ n

pc V; =- IKij[1j(t)-1i(t)J+
L11 2 j=l

+~Kij[Tj(t+M)-1i(t+M)J}+qvV;.
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(7)

Once (7) is transformed, the algebraic equation system is obtained; its
form is as follows:

(
PCV 1 n) 1 n
-+-IKij 1;(t+L1t)-- IKij1j(t+L1t)=

L1t 2 j=l 2 j=l

(
PCV 1 n) 1 n qv

= ---IKij 1i(t)+-IKij1j(t)+-..
L1t 2 j=l 2 ]=1 pci',

(8)

In (1)-(8) Vi is the volume of a control area (control volume), while n is
the number of control volumes j, which are adjacent to the analyzed vol­
ume i. Nodes are located in the control volumes' centers of gravity.

The procedure discussed above is typical of the finite difference
method. In numerical-analytical methods, the system of ordinary differen­
tial equations (1) can be directly integrated by means of one of the numer­
ous methods used for solving ordinary differential equations [16, 31].

Runge- Kutta Method of 4th order ensures high solution accuracy. If the
equation system (1) is linear, the matrix method can be applied; it requires
the calculation of the exponential matrix e", where A is the coefficient ma­
trix of the equation system (1). This method will be discussed in greater
detail in Ex. 23.2.

Exercise 23.1 Integration of the Ordinary Differential
Equation System by Means of the Runge-Kutta Method

By applying the method of lines, which is used to discretisize only spatial
derivatives in the transient heat conduction equation, one obtains the ordi­
nary differential equation system

t =A(T)T + F(T,t) , (1)

where t is the vector of the first derivatives after time of the node tem­
peratures, while the dimensions of the coefficient matrix A(T) are NEx NEo
Coefficients of this matrix can be temperature dependent for a variable
thermo-physical properties. Vector F(T), which in general depends on the
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determined node temperatures, measures NE and is the boundary condition
function.

Discuss Runge-Kutta method of 4th order used for solving (1).

Solution

Runge-Kutta method of 4th order is frequently used in practice, because it
is highly accurate [6, 8, 16, 23, 51]. The accuracy order of the method is
O[(~t)4].

Equation (1) will be written in the form

T=Q(T,t),

where Q(T,t) = A(T) T + F(T,t).
Initial conditions have the form

Tlt=o =To'

(2)

(3)

(4)n=O, 1, ... ,

where vector To contains components, which are the temperatures in nodes
at time t = O. Once the integration step ~t is assumed to be constant, tem­
peratures T are calculated at time points t

n
=rust, n =1, 2, ... according to

the following algorithm:

~t
Tn+1 =Tn +-(k1 +2k2 +2k3 +k4 ) ,

6

where

(5)

In the case of a single differential equation

dT
-=Q(T,t),
dt

algorithm (5) is simplified to a form

rl., =To (6)
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where

n=O, 1, ... , (7)

(8)

In order to demonstrate the accuracy of the Runge-Kutta method of 4th
order, [51] will be solved

with an initial condition

dT ( )2-= t+T-l
dt

T(O)=2.

(9)

(10)

The obtained solution will be compared with Euler method, according to
which the (6) is solved as follows:

n=O, 1, ... (11)

The comparison results for I1t =0,1 sand I1t =0,05 s are presented in
Table 23.1. The Table shows that the results obtained by means of the
Runge-Kutta method are highly accurate.

Table 23.1. The solutions of (1) obtained by means of the explicit Euler method
and Runge-Kutta method of 4th order for the two integration steps: J1t =0.1 sand
J1t = 0.05 s
-.mW<lti'''I§f¥W/ljM==~W.~'''''''''''''''·_ .. c=."""""""'_:-.;:",m""",,,,_~~~~_

lL1t =0.1 s ~t =0.05 s I.
r"-----n.-----·,,~v-'~-~--~o,~-,n.-'-n.-,·»---·»»--t-~,n.-~-'~-~-n.-_n.--·_-----~-~1AnalytIcal

:Eulera Rune-Kutta !Euler Runge- Kutta solution
Method Method Method Method .

0.102.1000 2.1230 '2.1105 2.1230 \2.1230
0.20 12.2440 2.3085 :2.2727 2.3085 :2.3085
0.302.4525 2.5958 12.5142 2.5958 12.5958
0.40 12.7596 3.0649 12.8845 3.0650/3.0650
0.50 13.2261 3.9078 '3.4823 3.90823.9082
:wn.>z.~.ffl.w#&mf*::.:~_._',.:v..x_.. WW:.. ::::::'_~»»P»k.~&~«~~m«.~:mffl"hS~.«~,*~::mx:*W$h"'»YA(W'&«<,(,~-:mY,..;m.m::~~~.w#.«<:w$.:X~~~~_·,·_•• ":~.t«$~-=.
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Exercise 23.2 Numerical-Analytical Method for Integrating
a Linear Ordinary Differential Equation System

As a result of the application of the method of lines to linear transient heat
conduction problems, one obtains a linear ordinary differential equation
system with respect to time, in which the unknowns are the temperatures in
the control volume nodes.

Discuss the exact analytical method for integrating a linear equation sys­
tem by means of the exponential matrix function. Use step function or
piecewise linear function to approximate boundary conditions.

Solution

The application of the finite volume method or the finite element method
to spatial derivative disrectisation in a transient heat conduction equation
leads to the ordinary differential equation system [41]

T=AT+Bu, (1)

where T = tT; ..., TN)T is the N-dimensional temperature vector in nodes; A
the matrix of coefficients, which size is N x N; u = (uI , ••• , UM)T is the M­
dimensional boundary-assigned temperature or a heat flux vector; B a rec­
tangular matrix, which size is N x M; its coefficients depend on the bound­
ary conditions assigned. Initial temperature vector is also assigned in nodes

rt., =To . (2)

First we will present the solution of a linear differential equation of the 1st
order obtained by means of the variation of constant method, so that later
we can analogically solve initial problems (1) and (2).

With

and initial condition

dT
-=aT+bu(t)
dt

(3)

(4)

one can find the solution by means of the variation of constant method [24,
29,51]

t

T(t)::::: Toea(t-to) + eat fe-aSbu(t) ds.
to

(5)
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If scalars are exchanged in (5) for the vectors and matrices, then the solu­
tion to problems (1) and (2) will have the following form [3, 7, 12, 24, 29,
39, 51]

t

T(t) =TOeA(t-to) + e" fe-ASBu(s)ds.
to

(6)

(8)

Although Equation (6) is an accurate solution to the problems (1) and (2),
it does not have the proper form, which would enable one to conduct nu­
merical calculations. Equation (6) contains matrix e", which can be calcu­
lated by means of the power series. Because function eX can be expanded
into Maclaurin power series

00 x" x2 x3 x4
eX == L-==I+x+-+-+-+... (7)

n=O n! 2! 3! 4! '

matrix e" can be expressed by means of a similar series

Jl2 t2 Jl3 t3 Jl4t4
e" ==I+Jlt+--+--+--+ ...

2! 3! 4!

Due to a complex, although frequently encountered in practice, transient
of the boundary conditions in the function of time, calculation of T(r) is
carried out in a discrete way by approximating net) with a step function or
a piecewise linear function.

3. Approximating net) with a step function

If temperature or heat flux, assigned on a body surface as boundary condi­
tions, are approximated with step lines, then vector n(t) can be expressed
in the following way (Fig. 23.1):

u(t) == u(kLlt) , kLlt < t ~ (k +1)Llt, k == 0, 1, 2, ... (9)

where Llt is the respectively selected time interval (time step). If tempera­
ture distribution in time kLlt is known, then the distribution can also be de­
termined in time (k + l)Llt. In (6), the initial time is to = kLlt and the upper
limit of integration is t = (k + I)Llt

(k+l)(At)

T[kilt+ M] =eA(At)T[k(M)]+ eA[kAt+At) f e-ASBu(s)ds. (10)
k(At)

Denoting (10) by

(11)
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(k+l)(~t) 0 ~t

G = f eA[k(At)+At-sJBds=- feArdrB = feArdrB, (12)
k(~t) ~t 0

where r= (k)~t+ (~t) - S, the (10) can be written in the form

T[k(I1t) + (11t)] =FT[k(I1t)] +GU[k(I1t)] . (13)

Accountind that matrix F is formulated as

F=F[(I1t)]=I+A(l1t)+ ~![A(l1t)r +;![A(I1t)T +..., (14)

it is easy to calculate the integral G according to (12)

G=G[(l1t)]={I+A(l1t)+ ~![A(l1t)r +;![A(I1t)T +..-}B(l1t). (15)

u(t)

k~t ~ t ~(k+ l)~t

,
/ , ,

/
/ ,,

I
I U3 ,

'"U2 "-
Ul

Uo

0 f)"t 2(f)"t) 5(f)"t) 7(f)"t)

Fig. 23.1. Approximation of temperature or heat flux assigned on a body boundary
by means of a step line

If time step (~t) is chosen in a way that satisfies criterion IAml(~t) < 0,5,
where Am is the largest eigenvalue of matrix A, then it is sufficient to allow
for the first 12 terms in series (14) and (15) [see 39]. From the conducted
calculations, it is evident that the value of time step ~t should resemble the
values used in the explicit methods, as in, for example, the Runge-Kutta
method, in order to ensure that the temperature field is accurately deter­
mined.

Many other methods, presented in papers [3, 12,39], can be used to cal­
culate matrix eAt; they allow to achieve a very good accuracy in tempera­
ture field calculations.
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b. Approximating o(t) with a piecewise linearfunction

Temperature or heat flux changes in time, assigned on the boundary of a
region, can be approximated by means of a piecewise linear function [41]
(Fig. 23.2)

[Ik +(.M)-I](Uk -Uk+l)
U(t)=Uk+l + , tk ~t~tk+l, k=O, 1, 2, ... (16)

~t

Once (16) is substituted into (6) and subsequently integrated, one gets

T k +1 =eA(At)Tk + (eA(At) -I)A-1Bu k+l +

(17)

u(t)

\

o ~t 2(~t) 5(~t) 7(~t)

Fig. 23.2. Approximation of temperature or heat flux assigned on a body boundary
by means of a piecewise linear function

It is rather problematic to use (17), since the inverse matrix A-lmust be
calculated. To avoid this, the expression for T

k
+

1
can be determined by ex­

panding function exp[A(~t)] into the power series. Once (8) is substituted
into (6), one has
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where F and G are formulated in (14) and (15), respectively and

(k+l)(~t) ( )

J A[k(~t)+~t-s] i, + ~t - sH= e B~.

k(~t) (~t)

If a new variable is introduced

from where it follows that

(18)

(19)

s =k (~t ) +(~t ) - r,

the integral H can be written as follows:

dt =-ds, (20)

°
H=- JeAr-r-Bdr=

~t (~t)

O( A
2
r

2
A

3
r

3 J t
=-JI+Ar+-,-+-,-+'" -()Bdr=

~t 2. 3. ~t

(21)

One can sequentially determine temperature distribution in the subse­
quent time points by means of (18). The methods discussed above for inte­
grating the ordinary differential equation system refer to linear systems
when thermo-physical properties of a material are temperature­
independent. Equations (13) and (18) can be also applied to systems in
which thermo-physical properties of a material are temperature-dependent.
Once a non-linear equation system (1) is exchanged for a linear system
when matrices A and B are temperature-dependent



Exercise 23.3 Determining Steel Plate Temperature by Means... 703

Equations (13) and (18) can be applied to determine temperature distribu­

tion ~~;I) .The proper solution is already obtained after few iterations.

The methods described above can be used for solving both, simple [41]
and inverse heat conduction problems [17-19,46,47].

Exercise 23.3 Determining Steel Plate Temperature
by Means of the Method of Lines, while the Plate
is Cooled by Air and Boiling Water

A plate made of a low-alloyed steel, which contains 1% Cr and is 2L =
0.04 m thick, is submersed in water at the temperature of T =T =100°C

cz n

= 373.15 K and the pressure of p = 1.0133 bar. Initial plate temperature
is To = 500°C. Bubble boiling takes place on the plate surface; during the
process, the heat transfer coefficient is high and expressed as aw =
137.5(TL=L - T

c
)2[W/(m

2·K)],
where TL=L is the plate surface temperature.

Determine surface temperature transient of the plate TL=L and tempera-
ture differences i1T= Tlx=o - TL=L in the function of time. Compare the ob­
tained results with temperature transient of the plate cooled in an open air.
Heat transfer coefficient on the plate surface, which allows for natural
convection and radiation, is defined by formula a

p
= 9.7 + 0.04(TL=L - Tc)

[W/(m
2·K)]

, where T
cz

= 20 0 e = 293.15 K. Assume that thermo-physical
properties of the steel are as follow: A=52 W/(m·K), c =460 Jz(kg-K), P =
7865 kg/m',

Determine temperature distribution over the plate thickness for selected
time points. Continue calculations until the plate surface temperature
reaches 110°C.

Solution

Due to the symmetry of the problem, only one-half of the plate's thickness
will be analyzed below (Fig. 23.3).

Heat balance equations written for individual control volumes are as fol­
low:
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1 o. 12 - t: ( )-cpAx- = A--+ a T - 7;12 dt Ax cz ,
(1)

A -v d1; 1 Ii-I - 1; 1 Ii+1 - 1;
CpLiA-=At +At ,

dt ~x ~x
i=2, ... , N -1, (2)

1 .A dTN 1 TN - 1 -TN
-cpuX-- =At
2 dt ~X

(3)

After transformations, the ordinary differential equation system assumes
the form

(4)

i == 2, ... , N - 1 , (5)

(6)

where Bi =aox!A. Initial conditions have the form

i=l, ... , N. (7)

~x

~x 2

I
I
I

I I
I I
I I
I I
I I
I I
I I

• I • • • I •
3

I
4 \N-I NI

I I
I I
I I
I I
I I
I I
I I
I I
I I

I

0

~x

2" Llx

x

a

• •
Tcz 2

Fig. 23.3. Plate division into control volumes L\x=L/(N - 1)
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(8)

Heat transfer coefficient differs for both, water cooling and air cooling
[2,5,30,34]. Biot number MJi occurs in (4); it is formulated, therefore, as

MJi = 137.5(11 - Tcz )2Llx for water,
A

MJi = [9.7 + 0.04(11- Tcz)J~ for air. (9)

The system of (4)-(6) will be solved by the Runge-Kutta method, as­
suming that N = 21. Thermal diffusivity is at

a=~= 52 =1.4373.10-5 m
2

,
cp 460·7865 s

Llx=~= 0,02 =0.001 m,
N-l 21-1

MJi = aLix = a ·0.001 = _I_a.
A 52 52000

(10)

The maximum heat transfer coefficient, when the plate is water-cooled,
is

aW,lIlllX = 137.5(10 - tz)2 = 137.5(500- 373.15)2 =

=2212501.8 W/(m2 ·K),

MJimax =42.548 .

(11)I1FoS ( ) ,
2 1+ I1Bi

Time step I1t in the Runge-Kutta method will be selected from the condi­
tion of stability of the explicit method

1

where

(12)

From condition (11), one has
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(13)
0.0012

---------=
2 ·1.4373.10-5 (1 + 42.548)a.: ~ )2a(1+Mimax

=7.988·10-4 s.

Once the plate surface temperature is lowered Tlx=L to 400 K, the heat
transfer coefficient is

aw =137.5(400-373.15)2 = 99127W/(m2·K),

Mi = awAx =1.906.
A

From condition (11), one obtains

O.ooe = 0.012 s.
2 ·1.4373.10-5 (1 +1.9063)

Due to the fact that criterion (11) was approximated, the integration step
in the Runge-Kutta method will be selected in the following way:

i1.1 =O.OOOls for 400 K ~ rt.. ,
and

LlI =O.Ols for rt.. < 400 K.

In the case of air cooling, time step St can be much larger, since the
maximum heat transfer coefficient is rather small

ap,max =9.7 + 0.04(500- 373.15) =14.78W/ (rrr' . K),

Mi= ap,maxLl:t" = 14.78·0.001 =2.84.10-4.
A 52

From (9), one has

(Ax)2 2
!1t = = 0.001 = 0.0347 s .

2a(1+ Mi) 2 ·1.4373·1 0~5 (1+ 2.84 .10-4)

It is assumed that the integration step during the air-cooling of the plate is
Llt= 0.025 s.
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Temperature calculation results for the water-submersed plate are pre­
sented in Fig. 23.3. The transient of the plate surface temperature during
air-cooling is also presented in Fig.23.3.

Tables 23.2 and 23.3 present spatial temperature distribution across the
plate thickness when the plate is air-cooled and boiling-water-cooled. It is
evident that it takes longer to cool the plate with air than it does with boil­
ing water.

Table 23.2. Temperature distribution in [K] across the plate thickness during wa­
ter cooling

21
Node no.

Time t [s] 1 6 11 16
Coordinate x [m]

Q.?.Q~Q. ...9?QJ~,. . 9.'.9..!..9. .Q'.QQ~,. 'w' '" .•.Q.~.QQQ .
o 500,00 500,00 500,00 500,00 500,00
1 391,59 462,65 493,32 499,40 499,95
2 389,69 444,65 479,85 494,73 498,17
5 387,40 424,18 453,97 472,82 479,20
10 385,46 409,29 429,18 442,35 446,95
20 382,62 393,39 402,32 408,21 410,27
30 380,56 38~;,,79 389,91 322,66 393,62

Table 23.3. Temperature distribution in [K] across the plate thickness during air
cooling

21
Node no.

6 11 16
Coordinate x [m]

Q'..Q~Q, ". .9.,Q.!.?.. .. .9.'.Q..!.Q.. "H...9'..99.?H ",H.9,'.9.99. .
500,00 500,00 500,00 500,00 500,00
484,02 488,75 492,18 494,25 494,94
472,83 476,30 478,84 480,39 480,91
460,68 463,03 464,75 465,80 466,15
445,10 446,42 447,38 447,96 448,15
428,55 429,17 429,62 429,89 429,98
419,51 419,89 420,16 420,32 420,38
413,63 413,88 414,07 414,18 414,22
409dL.,=wiQ2~?9 409,73 499,81 409,~4.

Time t [s] ·.·.·.· ·.·.·.·.·.·.·.·.·.·.·.·ow.·.·.w.·.·.·.·.·.w ·.·.·.·.·.·.·.·ow ·.w.•·.,..·.·.·.w.·.·.w.·.·.·.·.·.·.w.w.·,,·.·.·.·.·.w.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·._.·.w.·.·.·.w.·.w.w.·.·.·..·.w.·.·.·.·.·.·.·.·.·.·.·.·.·••....." ·.·.·.'O'.·.·.·.·.·"'w.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·....•.............•".

o
10
30
60
120
240
360
480
600

The transients of the plate surface temperature TL = L= T
1
and tempera­

ture difference I1T=TL=L - TL=D =T1 - T21 are presented in Fig. 23.4 and
Fig. 23.5.
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From the analysis. of Fig.23.4 and 23.5, it is evident that the process of
plate cooling by means of water is much faster. Temperature difference
across the wall thickness during water-cooling is significantly larger than it
is during air-cooling.

520...------------------,

T1 [K] ------ -- __

480

440

400

... ... ....
....

.... ,,,
\

\
\

\
\

\
\

\ ,,,,,,
"
""

10010
360"-----'---'--L...............""'----..............................""'--.............................1.I.I....-.............~""'"'----..................................

o 1000t [s]10000

Fig. 23.4. Plate surface temperature transient TL = L = T1 during water and air
cooling

120...--------------------,

air
water

100

1==

10o

80

40

D.T [K] -

1000 t [s]10000

Fig. 23.5. Temperature difference transient across the plate thickness I1T=TL =L ­

TL=o = T1 - T21 during water or air cooling
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Exercise 23.4 Using the Exact Analytical Method
and the Method of Lines to Determine Temperature
of a Cylindrical Chamber

Using the method of lines, determine temperature distribution in a cylin­
drical chamber of a steam attemperator in the 2nd superheater of a steam
boiler. A chamber whose outer diameter is d, == 355 mm and the wall
thickness g == 70 mm is made of a steel of type 10CrM0910 (C == 0.15%,
Cr== 2-;-2.5%, Mo == 0.9-;-1.1%, Mn == 0.4-;-0.6%, Si == 0.15-;-0.5%). Initial
temperature of the chamber is Tp == 20°C. Temperature of the medium Tcz

undergoes a step-increase from the temperature Tp to 100°C. The outer sur­
face of the chamber is thermally insulated. Heat transfer coefficient on the
inner surface is a == 5000 W/(m2·K). For the calculation, assume that the
thermo-physical properties of the steel 1OCrM091 0 with temperature Tsr ==

(20 + 100)/2 = 60°C are, according to Table [48], as follow: A = 37
W/(m·K), C = 469 J/(kg·K), p = 7823 kg/tm'), Compare the obtained tem­
perature distribution with the results obtained by means of the exact for­
mula for the following time points: t 1 =60 S, t2 =120 S, t3 =240 S, t4 = 480 s,
ts =720 S, t6 =900 sand t, = 1800 s. Furthermore, present temperature
distribution determined by means of the method of lines in the graphical
form.

Solution

Temperature distribution will be determined by means of the control vol­
ume method. Heat balance equation for node i (Fig. 23.6) has the follow­
ing form, assuming that thermo-physical properties are constant:

(1)

The above equation can be transformed into the following form:

.n: a [( MJ (MJ l :-=--2 1-- (1;-1-1;)+ 1+- (1;+1-1;), 1=1, ... , N, (2)
dt (I1r ) 2Ri 2Ri
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I I
& I
T I I

I
I I
Il~r·l
I

Vcz 2 i-II i i+ 1 N-l

I

I1r
T

R

Fig. 23.6. Wall division into control volumes J1r = (rz - rw)/(N - 1); 0 are apparent
nodes

where,

A
a=­ ,

cp
~r = rz -rw •

N-l
(3)

Temperature is determined in N evenly spaced points (nodes). Apparent
nodes Land R (Fig. 23.6) lie outside the cylinder wall and will be used for
the approximation of boundary conditions with the accuracy of O[(~r)2].

Node location is expressed as

Ii =r; + (i -1)Sr,

R, =R; +(i -l)M,

i=O, ... , N,

i =0, ... , N +1,

(4)

(5)

where R =r Ir.
w w z

In such equations, temperatures To = TL and TN+1 = TR appear at the ap-
parent points Land R for i =1 and i =N. These temperatures can be elimi­
nated from the equation system (2), using the boundary conditions on the
inner and outer surface of the chamber.
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From the inner surface boundary condition

aTI-A- =a( fez - rlr=rw)ar r=rw

(6)

and after the approximation of a derivative with a central difference quo­
tient

aTI 12 -TL

a; r=rw ~ 2M

one has

12-TL ( )-A =a Tcz-Ii .
2~r

Once (8) is transformed, one obtains

10 =TL =12 + 2kMBi (Tcz -Ii) ,

where

(7)

(8)

(9)

Bi=arw/A. (10)

The outer surface of the chamber is thermally insulated

AaTI =0.
ar rvr:

(11)

As a result of the approximation with the central difference quotient, one
has

(12)

(13)

Differential equation system (2) and conditions (9) and (13) will be
solved by the Runge-Kutta method of the 4th order. Exact analytical solu­
tion can be found in paper [9] and also in papers [1, 21]. The graphs,
which one can use to determine temperature and heat flux, can be found in
paper [52].

Temperature distribution in the chamber wall is formulated as [9, 21]

(14)
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where

. [JI (fin) + Bi Jo(fin )]JI (kJln)
A =1[ BI Jln

n fin [JI(fin)+ Z~ JO(fin)J -[1+(Z~J]JI2(kfin)' (16)

u, =JI(kfin)Yo(~ fin )-}J(kfin)Jo(~ fin)'

Functions Jo and J
1
are the 1st kind Bessel functions of a 0 and 1st order,

respectively, while functions Yo and Y1 are the 2nd kind Bessel functions of
a 0 and 1st order.

Characteristic equation, from which the roots Il
n

are determined, has the
form

(17)

The first twelve terms are allowed for in solution (14). Roots of the
characteristic (17) were determined by Muller method [27, 33], using
ZREAL procedure from IMSL library [27].

Ordinary differential equation system (2) with conditions (9) and (13)
was integrated by the Runge-Kutta method of 4th order, assuming that the
node number was N = 21 and the time step was ~t = 0.5 s.

In the case of the analytical solution, one should select the starting root
values of (17). Allowing that r =0.1775 m, r = 0.1075 m, k = r Ir =z w Z w

1.6512 and Bi = arj): =5000·0.1075/37 = 14.53, the following starting
root values are assumed:

JlI(O) =1.9, JliO) =6.5, lliO) =11.0,

Jl~O) =15.6, Jl~O) =20.2, Jl~O) =24.9,

1l~0) =29.7, JliO) =34.4, 1l~0) =39.1,

(0) - 43 9 (0) - 48 7 (0) - 53 41110 - ., 1111 - ., 1112 - ..
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It is not easy to select the starting values f.1/
0) when there is a large num­

ber of roots. This is why it is best at the beginning to determine only the
first root f.11' by assigning only f.11(0). Once the first root f.11 is determined, the
following two roots can be determined next. With this purpose in mind,
one should assume that f.11(0) is the real root value and estimate only the
starting value for the second root f.12(0). The procedure is repeated when cal­
culating the subsequent roots. This is how we can obtain an arbitrary num­
ber of subsequent roots of the characteristic (17).

Determined root values are as follow:

f.11 =1.94646,

f.14 =15.61542,

f.17 =29.64960,

f.110 =43.91528,

f.12 =6.52383,

f.1s =20.25182,

f.18 =34.38900,

f.111 =48.69436,

f.13 = 11.03881,

f.16 =24.93406,

f.19 =39.14574,

f.112 =53.48100.

Table 23.4. Temperature distribution in an attemperator chamber determined by
means of the method of lines and the exact method

t [s] r =142.5 mm
Method Exact Method Exact Method Exact Method Exact Method Exact
of lines method of lines method of lines method of lines method of lines method

.~.",. .- ~...- - ·· n.···

60 85.22 85.12 55.15 54.90 35.95 35.68 26.39 26.17 23.68 23.49
120 88.85 88.80 65.45 65.32 48.64 48.45 38.75 38.55 35.57 35.35
240 92.59 92.57 76.99 76.91 65.58 65.46 58.73 58.58 56.49 56.33
480 96.65 96.64 89.59 89.56 84.43 84.38 81.33 81.27 80.32 80.25
720 98.49 98.48 95.29 95.28 92.96 92.93 91.56 91.53 91.10 91.07
900 99.16 99.16 97.40 97.39 96.12 96.10 95.34 95.33 95.09 95.07
1800 99.96 99.96 99.87 99.87 99.80 99.80 99.76 99.76 99.75 99.75
2700 100.00 100.00 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99

The results obtained by means of the method of lines and the exact ana­
lytical method are presented in Table 23.4. It is clear that the accuracy of
the method of lines is very good. Fig. 23.7 presents temperature distribu­
tion across the chamber thickness at selected time points.



714 23 Numerical-Analytical Methods

720 s

480 s

1800s

900 s

0,14250,1250

t= 30 s
40

60

100r----------------"-----,

80

Fig. 23.7. Temperature distribution across the chamber thickness determined by
the method of lines for N = 21 and df = 0.5 s

Exercise 23.5 Determining Thermal Stresses
in a Cylindrical Chamber using the Exact Analytical Method
and the Method of Lines

On the basis of the determined temperature distribution in Ex. 23.4, deter­
mine radial, circumferential and axial thermal stresses in the attemperator
chamber described in Ex. 23.4. Treat the chamber as if it is an infinitely
long hollow cylinder with free endings. Analyze two cases: (1) when tem­
perature is determined at discrete spatial points by means of the method of
lines; (2) when temperature distribution ((14) from Ex. 23.4) is obtained by
means of the exact method. Compare both stress calculation methods, i.e.
the approximate and the exact method on the basis of a determined radial,
circumferential and axial stress distribution across the chamber wall thick­
ness at time points t1 =30 s, t2 =60 S, t3 =240 sand t4 =720 s given in Ex.
23.4. Assume for the calculation the same data that was used in Ex. 23.4.
Material constant EfJI(1 - v) is at 3.524 MPalK.
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Solution

Radial stresses a , circumferential stresses (Yep and axial stresses ~ in the
hollow cylinder, caused by a non-uniform temperature distribution in the
cylinder wall in the radial direction T(r,t) can be formulated as follow:

{5, = tfJ )(1- r~)[Tm(t)-Tr,m(r,t)J, (1)
2 I-v r

{5~ = 2(~~v)[(I+ :~)Tm(t)+(I- :~)Tr,m(r,t)-2T(r,t)l (2)

a, = EfJ [Tm(t)-T(r,t)], (3)
I-v

where: E is the Young modulus, f3 - a linear temperature expansion coeffi­
cient, v- a Poisson ratio.

While (1)-(3) were being introduced, it was assumed that the endings of
the infinitely long cylinder are free and defined by the following formulas
[1, 21, 32, 48, 50].

Mean temperatures are

One can see that

2 rz

Tm(t)= 2 2 frTdr,
rz -rw rw

2 r

Tr,m(r,t)= 2 2 frTdr.
r - rw r

w

(4)

(5)

(6)

If temperature at the discrete points is known, then stresses (1)-(3) are
calculated at points r; i =1, ..., N (Fig. 23.6). Mean temperature Tm(t) is de­
termined from the approximate formula

211r N

Tm (t) ~ 2 2L 0,5 (n-II;-l +nI;) . (7)
rz - rw i=2

Temperature T can be calculated in a similar way
ri,m

1;.1,m =T; (8)

i=2,3, ... , N, (9)
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where

i =0, ... , N +1, (10)

(11)(Fig. 23.6, Ex. 23.4).J1.r = rz - rw

N-l

Equations (7), (8) and (9) were obtained from (4) and (5), respectively,
once the integrals were calculated with the trapeze method. In terms of the
exact solution ((14) from Ex. 23.4), the mean temperature is calculated
first

(12)

by means of (4), which, once the dimensionless quantities are introduced,
assumes the form

2 k

Om(t)=-2-fRB dR.
k -11

Substituting (14) from Ex. 23.4 into (13) and accounting that

(13)

(14)

(15)

one obtains, after transformations

2 00 1 2
Om =-2-LAn-[J 1(fln)1\ (kfln) - J 1(kfln)1\ (fin)Jexp(-flnFo), (16)

k -1 n=1 u;

where k = r Ir , Fo = atlr 2.z w w

Constant An is formulated in (16), Ex. 23.4. Once Om is calculated first,
according to (16), Tm(t) is determined next from the (12)

t: (t )=i: - (Tcz - t; )Om (t ) (17)

Temperature Tr,m(t) defined in a similar way is calculated from formula

Tr,m (r,t) =E; - (Tcz - Tp )Br,m (R,t), (18)

where T is the initial temperature,
p
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2 001

Br,m (r,t) =-2-LAn-[RJ1(kfln)Y1 (Rfln) - J1(kfln)Y1 (fln)-
R -1 n=l u; (19)

-RJ1 (Rfln )Y1 (kfln )+J1 (fln)Y1 (kfln)] exp( - fl~Fo).

oc----------------=_

·····4

-8

-12

t =30 s

0,1600 [ .]0~1775r 111
e. 14250,1250

-16 L..-----J._-...a.-_---I-_-'--_"-----i._-.L-_--'

0,1075

Fig. 23.8. Distribution of radial thermal stresses ~ in a chamber wall of an attem­
perator at different moments

100----------------.

(]4> [MPaJ

50

-100

-150

OJ075

Fig. 23.9. Distribution of circumferential stresses CYrp in a chamber wall of an at­
temperator at different moments
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0.1600r [m]0.17750.1425

- - - - -method of lines
-- method of lines

o exact data

o12500.1075

-50

-150

-100

100.....-------------~

Gz [MPa]

50

Fig. 23.10. Distribution of axial stresses a; in a chamber wall of an attemperator at
different moments

By substituting (17) and (18) into (1)-(3), one can calculate thermal stress
components.

Figs. 23.8-23.10 show thermal stresses calculated with the method of
lines. In Fig. 23.10, the axial stresses calculated by means of the approxi­
mate formula are compared with the stresses calculated by means of the
exact formula.

The chamber wall was divided into twenty control volumes (N = 21).
One can see from the comparison presented in Fig. 23.10 that the accu­

racy in determining thermal stresses with the method of lines is very good.

Exercise 23.6 Determining Temperature Distribution
in a Cylindrical Chamber with Constant
and Temperature Dependent Thermo-Physical Properties
by Means of the Method of Lines

By means of the method of lines, determine temperature distribution in a
cylindrical chamber of a steam attemperator, discussed in Ex. 23.4. Carry
out two separate calculations, for the following two cases:

• when thermo-physical properties of a steel 10CrMo910 are constant,
temperature-independent and defined at average temperature;
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• when thermo-physical properties are temperature-dependent and de­
fined by [35]

A(T) =35.3 + 2.14 ·10-2 T -4.30 ·10-5T2
, (1)

a(T) =(10.2 - 0.48 .1O-2r - 5.06 .1O-6r2
) .10-6

, (2)

when thermal conductivity A is expressed in W/(m·K), temperature diffu­
sivity in a in m2/s, while temperature Tin °C. Temperature of a medium is
rising at a constant rate of v

T
= 3 K/min from the initial temperature T

p
=

100°C to finishing temperature T,= 545°C (Fig. 23.11). Heat transfer coef­
ficient on the inner surface of the chamber is a = 700 W/(m

2·K).

Determine inner and outer surface temperature transient in the cylinder
and average temperature across the wall thickness of the chamber in the
function of time. Also determine temperature difference transient of the
inner surface and average temperature transient across the wall thickness.

Provided that the thermo-physical properties are constant, assume for
the calculation that A = A(Ts,) and a = a (Ts,), where Tsr = 0.5(T

p
+Tk) =

0.5(100 + 545) =322.5°C.

600,...--------------.---.

l~.z rOC] - - - - - - -- - - - - - - - - - - - - - - - - -

500

400

300

Vr = 3 Kzmin = 0,05 K/s
200

600040002000 8000 t [s] 10 000

Fig. 23.11. Time changes of fluid temperature Tcz(t)
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Solution

Changes in the thermal conductivity A(T) and temperature diffusivity aCT)
expressed, respectively, in (1) and (2) are presented in Fig. 23.12.

34

369,OE-006

7,OE-006

8,OE-006

6,OE-006

1,IE-005r-----------------, 38

a [m2/s] A[W/(m' K)]

I,OE-o05

5,OE-006 32
o 100 200 300 400 500 600

T rei
Fig. 23.12. Thermal conductivity A changes and thermal diffusivity a changes in
function of temperature

If we assume that properties are constant, then

A,(Tsr) = ..1,(322.5°C) = 37.73 W/(m. K),

a(Tsr) =a(322SC) =8.126 .IQ-{; m2/s .

(3)

The heat conduction equation, which describes the temperature field in
the chamber wall, has the form

c(T)p(T) aT =.!.~[A,(T)r aT].at rar ar
Boundary condition of 3rd kind is assigned on the inner surface

(4)

while the outer surface is thermally insulated
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-[A(T)~~] =0. (5)
r=rz

Initial temperature T
p

is uniform:

Tlt=o =Tp • (6)

The division of the chamber wall into control volumes is shown in Fig.
23.6, Ex. 23.4.

When nodes Sr are spaced at equal intervals, the lower and upper con­
trol volume limit is, respectively

(7)
2

11-1 +11 Sr
--=11--

2

11 + 11+1 Sr
--=n+-2 1 2 '

where

A rz - rw
L.J.r=--

N-l'
N is the node number.

Heat balance equation for the i-control volume has the form [48]

(8)

Left side of the equation can be approximated as follows:

ri+f:..r/2 aT
f C(T)p(T) 8irdr ~

ri -f:..r/2

(Ii + !1r/2)2 - (Ii - !1r/2)2 ( ) ( ).n:
~ c T, p T, -.

2 1 1 dt

(9)

Derivative aTtar, which occurs on the right-hand-side of (8), is approxi­
mated by the difference quotient, whereby one has

and
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[ ( ) aT] A(~-l)+A(~)( J1rJ~-~-lATr- ~ 11--.
ar n-/).r/2 2 2 J1r

(11)

Once (9), (10) and (11) are substituted into (8) and transformations carried
out, one obtains

(12)

i=l, ... , N,

where A. =A(T.), a. =a(T.).
1 1 1 1

In equations (12) for i = 1 and i =N, temperatures To =TL and TN+1 =TR

in the apparent nodes Land R appear. To eliminate temperatures To and
T

N
+

1
from the balance (12), the boundary conditions (4) and (5) will be

used. Once the derivative aT/ar is approximated in the condition (4) by the
central difference quotient, one obtains

( )12 - 1'0 ( )-A 11 -2--=a t: -11 ,J1r
where from To is determined

a I1r ( )1'0 =12 +2-(-) t: -11 ·
A 11

(13)

(14)

By following the same procedure in the case of the boundary condition (5),
one has

(15)

hence the equality

(16)

Ordinary differential equation system (12) together with the condition
(14) for i =1 and condition (15) for i =N is solved when the initial condi­
tions, which follow from (6), are

i=l, ... , N. (17)

Average temperature across the wall thickness is calculated from the
expression
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2 rz

Tm(t)= 2 2 frT(r,t)dr. (18)
rz - rw r

w

Once the integral is calculated using the trapeze method, one has

~r N
t: (t) ~ 2 2 ~:[li-1T;-1 (t) + -t:(t)J.

rz - rw i=2

(19)

Calculation results for N = 21 and ~t = 0.5 s are presented in Fig. 23.13
and 23.14. From the analysis of Fig. 23.13 and 23.14, it is clear that the as­
sumption that thermal conductivity and diffusivity are constant can lead to
significant errors in the determined transients of temperature difference ~T
=T(rw,t) - Tm(t), which are used for calculating axial thermal stresses (Ex.
23.5).

The method of lines makes it possible to allow for the dependence of
the material's thermo-physical properties on temperature, without compli­
cating the computational algorithm.

- - - - - constantproperties
--temp. dependent prop

600040002000

400

200

500

300

8000 10000
t [s]

Fig. 23.13. Temperature transients of the inner surface Tir, t), outer surface Tir, t)
and average temperature across the wall thickness Tm(t) for constant and tempera­
ture dependent thermo-physical properties
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60004000

- - - - K constantproperties
--temp. dependentprop

2000

,.-,­,
~

~

I
I

I
I,,,

l

O-------'----'-......&...-----L.--&..-----L.-...a....-----I..-..&.....----I

o

8

4

12

AT[K]

8000 10000
t [s]

Fig. 23.14. Temperature difference transient I1T = T I r = r - T; for constant and
temperature dependent thermo-physical properties W

16,..------------------,

Exercise 23.7 Determining Transient Temperature
Distribution in an Infinitely Long Rod with a Rectangular
Cross-Section by Means of the Method of Lines

Determine transient temperature distribution in an infinitely long rod with
a rectangular cross-section, with 2d = 0.1 m and 2b = 0.2 m. Time-
dependent heat flux 42 =15t is assigned on the two opposing surfaces,

which are in width 2b while heat flux 41 =45 t is assigned on the two re­

maining surfaces with a width 2d = 0.1 m. The rod is made of a steel with
the following thermo-physical properties: A = 40 W/(m·K) and cp = 4.106

J/(m 3·K).
Carry out the calculations using the exact analytical method and the

method of lines. Apply the Runge-Kutta method of 4th order and the ana­
lytical (matrix) method, in which the heat flux changes are approximated
by a step line and piecewise linear function, to integrate the ordinary dif­
ferential equation system. Depict temporal temperature transients at three
selected cross-section points calculated by means of the exact analytical
method and compare all four calculation methods on the basis of an exam­
ple of a temperature transient in one of the three previously selected points.
Present the comparison results in a tabular form.
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Solution

Due to the symmetry of the problem, only a quarter of the rod's cross­
section will be analyzed here (Fig. 23.15).

y

d=O,05m

2 3 4 5

b=O,ltll

6 7 8 9

18

27

x

(1)

Fig. 23.15. Division of a quarter of a cross-section into control volumes; • ­
nodes, 0 - nodes in which temperature transients were determined and presented
in Fig. 23.16

Temperature field in the quarter of the rod's cross-section is defined
by the heat conduction equation

1 et a2r a2r
--=--+--
a at ax2 ay 2

and by boundary conditions

A arl =0
ax x=o '

AaTI =Q1,
ax x=b

A aTI =0,
8y y=o

(2)

(3)

(4)
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AaTI _.
;h, <qi,
vy y=d

where,

(5)

(6)

(7)

while PI and P2 are constant heating rates.
If the superposition method is applied and the solution of one­

dimensional problem is used for the plate, which is back-surface-insulated
and heated on its front face by a heat flux that changes at constant rate
[49], then the solution of the problem (1)-(5) can be presented in the form

T( x,y,z,t) =Ii (x,t) +12 (y,t) =

=_1 P1b
3

[6(~+!£)2 _(£+!)2 _
12 Aa b2 2 b2 b2 2

at 29 24 00 (_l)n+l ( x) ( 2 2 at)]-2-+---'" cos nJr- exp -n Jr - +
b2 60 Jr4 ~ n4 b b2

+_1 P2d3

[6(~+!L)2 _(L+!)2 _
12 Aa d 2 2 d 2 d 2 2

at 29 24 00 (_I)n+l ( y) ( 2 2 at)]
-2-+-.--'" cos ns:-: exp -n Jr - •

d? 60 Jr4 ~ n4 d d 2

Heat flux change rates are PI = 45 W/(m
2·s) and P2 = 15 W/(m

2·s).
While

temperature T(x,y,z,t) was determined, the ten terms in the infinite series
were accounted for. Following that, the same problem was solved using
the method of lines. Fig. 23.15 shows the division of the analyzed region
into control volumes. Energy balance equations for control volumes have
the following forms:

i =1,

dx i\y d'I, A T;+1 - T; i\y AT;+N - T; dx . dx
cP2 2 dt = dx 2 + i\y 2 +q2 2 ;

i =2, ... , Nx -1,

c dx L\y dT; =AT;-1 - T; L\y +A T;+1 - T; i\y +A T;+N - T; dx+·2 dx ·
P 2 dt dx 2 dx 2 i\y q 2'
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i =N, + 2, ... , 2Nx -1 oraz i =2Nx + 2, ... , 3Nx -1,

A "V A d1; 1 1;-1 - 1; A 1 1;+1 - 1; A 1 1;-N - 1; A"v + (8)
CPUM.J.y dt =/I" Ax UY + /I" Ax UY + /I" Lly L.U

+,.1 1;+N - 1; ilx'
~y ,

i =2Nx oraz i =3Nx ,

C Ax Ll dT; = A. T;-N - T; Ax + A. T;+N - T; Ax + A. T;-I - T; Ll + · Ll .
P 2 Jl dt Lly 2 Lly 2 Ax Jl ql Jl,

i =3Nx + 1,

C Ax Lly dT; = A. T;-N - T; Ax + A. T;+I - T; Lly .
P 2 2 dt Lly 2 Ax 2'

i=3Nx +2, ... , 4Nx -1,

C Ax Lly dT; = A. T;-l - T; Lly + A. T;+I - T; Lly + A. T;-N - T; Ax'
P 2 dt Ax 2 Ax 2 Lly ,

i =4Nx ,

Ax ~y d'I, A1;-N - 1; ilx A1;-1 - 1; ~y . ~y

cPTT dt = Lly 2 + Ax 2 +qIT'

where ~ = bl(N - 1), ~y = d13, N = 9 is the number of nodes in x axis di­
rection (Fig. 23.15).

System of 36 ordinary differential equations was solved using the
Runge-Kutta method of 4th order, by assuming time step ~t =0.5 s for the
calculation, and with the analytical method using the exponential matrix
(Ex. 23.3).
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500,.....------------......

T[OC]

400

300

200

100

o 1000 t [s] 2000

Fig. 23.16. Temperature transients in nodes 9, 10 and 33 determined by means of
(7)

Table 23.5. Comparison of temperature transients in node no. 9 in [OC], calculated
by means of the exact analytical method and the method of lines; different meth­
ods for integrating the ordinary differential equation system were applied

1.0 -0.18 ··························lo·~·oo···w.

10.0 0.00 10.08
50.0 1.24 J.18
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200.0 10.2210.04
300.0 19.08 J8.86
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1000.0 134.90 i134.45
1500.0 273.96273.35
1900.0 418.96 1418.23
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0.09
1.20
3.48
10.08
18.91
42.51
73.70
134.57
273.52
418.42

t [s]

Method
' ~~NNW'N."N'N'NN.'.N.·....,~~N'o·HNNN...., ·NN.:..",., • • ....,N'N'M·..,....".·N..NHNo' HNo' N • • ..",., ..N N.· • NN........."...NNN<M/"" v.HN."I',u..N N'o'N N .." • ...., .............., YN." N.'h'NN....,.....,.".,. NHHNA'NlN'HVW'.· N .v.v.-NNNN ..
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0.00
0.10
1.21
3.51
10.12
18.96
42.58
73.79
134.68
273.68
418.63

Heat flux changes ql and q2 were approximated by a step line and a
piecewise linear function. In both cases, the integration step was ~t = 1 s.

The results of temperature calculations carried out in nodes no. 9, 10
and 33 by means of the exact analytical method (7) are presented in Fig.
23.16.

Results obtained by means of the exact analytical method (7) are com­
pared in Table 23.5 with the results obtained by means of the method of
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lines, which the three different methods were applied to in order to inte­
grate the ordinary differential equation system. One can see that the accu­
racy of the finite volume method is very good in all three cases. In com­
parison to the approximation carried out by means of the step line, the
application of the piecewise linear function, in the matrix method, to the
approximation of the heat flux changes in time only negligibly improves
the accuracy of the obtained results.

Furthermore, one should emphasize that finite volume method is highly
accurate in spite of the small number of volumes the analyzed region was
divided to.
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24 Solving Inverse Heat Conduction Problems
by Means of Numerical Methods

This chapter presents simple algorithms for solving inverse heat conduc­
tion problems, the so called space-marching methods.

If one assumes that temperature is measured at the inner point x = E, in
which also the heat flux qE (t) is known, one is able to determine tempera-

ture Ts(t) and heat flux qs(t) on the surface x = o.
It is more difficult to solve inverse problems than simple problems (di­

rect). Usually measurement dataj{t i) , i = 1, 2, ... is burdened with random
measurement errors, which are strengthened during step-marching from a
measurement point to body surface. The method for solving inverse tran­
sient heat conduction problems cannot be too sensitive to random meas­
urement errors, since the determination of temperature or heat flux on the
body surface can prove to be unstable.

In contrast to direct problems, the implicit finite difference method is
less stable than the explicit method, since explicit methods are better at al­
lowing for the phenomenon of delay in temperature changes at the meas­
urement point x = E than they are in the case of changes on the surface
x == o.

Exercise 24.1 Numerical-Analytical Method for Solving
Inverse Problems

Describe a semi-numerical method for solving one-dimensional transient
heat conduction problems, in which only derivatives are discreticised by
means of the control volume method. Measure temperature of the insulated
back plate surface fi, i = 1, 2, ... The unknowns to be calculated are tem­
perature and heat flux on the plate front face and temperature distribution
across the plate thickness.
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Solution

Assume that thermo-physical properties of the plate material are constant.
Two conditions at the point x = E are known: temperature fit) and heat
flux qE (t). On the plate front face (Fig. 24.1), the boundary condition is

unknown. A more comprehensive engineering problem will be solved in
this exercise. Temperature measurement point 0 ~ E ~ L can lie at an arbi­
trary point across the plate thickness; in special case, on the back surface
E = L. When the back surface is thermally insulated, then qE =O.

In general, the boundary condition on the back plate surface is known.
The plate, therefore, can be divided into two regions: inverse and direct.

inverse region direct region

~~

c:;>
4s(t)

o

I f(t)

Vc:;>
I 4E(t)

I

L

known boundary
condition

x

Fig. 24.1. Inverse heat conduction problem for a plate

Heat conduction equation has the form

1 et a2T
----2·
a at ax

(1)

Furthermore, two conditions are known at the temperature measurement
point

T(E,t)=!(t),

_AoTI =qE(t).
ax x=E

(2)

(3)

Both, temperaturef{t) and heat flu 4E(t) are known at the discrete time

points ~,j = 1, 2, ..., N, where N is the number of temperature measure-
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ment points. In order to solve the inverse problem, one should determine
the solution of the direct problem first in the region 0 ~ x ~ L with a
boundary condition of the first kind (2) and with the assigned boundary
condition on the back surface x == L. Once the direct (simple) problem is
solved, the heat flux qE(t) is calculated

qE(t)=-A aTI .
ax x=E

(4)

If the thermocouple lies on an insulated back surface (E == L), then it is
not necessary to solve the simple problem. Heat flux qE(t) in such a case

equals zero.
Inverse problems (1)-(3) will be solved by the step-marching method.

Spatial derivatives will be approximated with difference quotients by
means of the control volume method. Partial parabolic (1) will be ap­
proximated in this way by the ordinary differential equation system. Such
method of solving partial equations is called the method oflines [4].

In the space-marching method, calculations begin from point x == E
(i==M), and then temperature at point i == M - 1 is determined. Next, tem­
perature in node i == M - 2 is calculated from the heat balance equation for
node i == M - 1.

Temperature calculations are carried out in the subsequent points, space­
marching in the direction of surface x == O. From the energy balance equa­
tion for node i == 1, the expression for plate surface heat flux qs (t) is ob-

tained.
In order to derive heat balance equations for individual nodes, the in­

verse region should be divided into control volumes. Nodes are also lo­
cated on the boundaries x == 0 and x == E, since heat flux can be accurately
determined at such points. Control volume boundaries divide the distance
between adjacent nodes in half. In order to obtain the appropriate calcula­
tion accuracy, the node number should be sufficiently large.

In direct problems (simple), the node number M within the limits I0 ~ M ~

20 is adequate. In inverse problems, the node number can be much smaller,
since the input dataj{t) and qE(t) is attenuated and increasing node num­
ber M does not improve calculation accuracy. Usually a rather small node
number 3 ~ M ~ 5 ensures high calculation accuracy. In order to evaluate
the effect the node number M has on the accuracy of the obtained results,
various divisions of the inverse region, presented in Fig. 24.2, will be
evaluated below.
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a) inverse
region

. "
direct b) inverse direct c) inverse direct
region region region rezion region

/ / ....
'"' "

E
L

tls(t) I I I
¢ III

o 0
1 I 2 I 3 14 f(t)

~ IAxlAxl

LL
E

o x o x o x

Fig. 24.2. Division of the inverse region into two (M= 2), three (M= 3) and four
(M = 4) control volumes; x = E is a temperature measurement point

a. Division ofan inverse region into two control volumes (Fig. 24.2a)

Heat balance equation for nodes 2 and 1 has the form:

• node 2

(5)

• node 1

(6)

According to the earlier described method, temperature T1 is determined
from (5) first

T. = f + qEE +!E
2

df .
1 A 2 a dt

Next, heat flux qs is calculated from (6), once (7) is substituted into (6)

q = q + }"E (df+ E
2

d
2f) +! E

2

dqE .
sEa dt 4a dt' 2 a dt

(7)

(8)

Equations (7) and (8) allow to calculate temperature and heat flux on the
plate front face.
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b. Division ofan inverse region into three control volumes (Fig. 24.2b)

Increasing the number of control volumes results in the appearance of a
higher order time derivatives in temperature and heat flux solutions of
functionsf{t) and iJE(t).

Heat balance equations for individual control volumes have the follow­
ing form (Fig. 24.2b):

• node 3

• node 2

.n, A A
c I1Ax- == - ( f - T )+-(1'. -T)

r-: dt Ax 2 Ax 1 2'

• node 1

.n, A ( ).c I1Ax- == - T -1'. +q
r: dt Ax 2 1 s :

where Ax == E/2.
First (9) is solved with respect to T2

T = f + (ill)2 df + (hill .
2 2a dt A

(9)

(10)

(11)

(12)

Once (12) is substituted into (10) and solved with respect to Tt, one has

Once we account that Ax == E/2, (13) can be written in the form

1 E2 df 1 E4 d 2 f . E 1 E3 da
1'. =f +---+-----+~+--~.

1 2 a dt 32 a2 dt: A 8 Aa dt

(13)

(14)

Heat flux iJs is determined from (11) once (12) and (14) are substituted

into this equation
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(15)
1 £2 dq· 1 £4 d 2 •+ E + -.!k
2 a dt 32 a2 dt' .

Solutions (7), (14) and (8) and (15) depict temperature and heat flux de­
pendence at the plate surface on the derivatives with respect to time from
functions that represent a measured temperature transient j{t) and heat flux
qE (t) at point x == E. The order of the highest derivative depends on the

number of control volumes. The order of the highest derivative from func­
tion j{t) equals the number of control volumes in the expression for heat
flux qs (t) .

c. Division ofan inverse region into four control volumes (Fig. 24.2c)

Heat balance equations for control volumes no. 4, 3, 2 and 1 have, re­
spectively, the following form

at, A A
cp~-==-(T -T )+-(j-T)dt Llx 2 3 Llx 3'

at; A A
cp~-==-(1'. -T )+-(T -T)dt Llx 1 2 Llx 3 2'

Llx .n; A ( ).cp---==- T -1'. +q2 dt Llx 2 1 s ,

(16)

(17)

(18)

(19)

where Llx == £/3.
Once (16)-(19) are solved successively, the following expressions for the

plate surface temperature and heat flux are obtained:

1 £2 df 1 £4 d 2 f 1 £6 d 3f

1; = f +"2--; dt +27 -;; dt 2 +1458-;[ dt 3 +
(20)
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(21)

Formulas presented in this exercise for T1 and qs resemble in form the

exact solution presented in papers [2, 3] and in Ex. 23.1. Once only the
first three terms are accounted for in an infinite series, the exact solution
has the following form:

1 E2 df 1 E4 d 2 f 1 E6 d 3f qEE
1; = f +"2-;; dt +247 dt 2 +720 -;[ dt 3 +T+

(22)

(23)

One can see that exact and approximate solutions have a similar form.
From the comparison of (20) with (21), one can see that the approximate
solution (20) does not contain the term d 3qE / dt 3

• Approximate solution
(21), which allows to calculate heat flux qs on the plate surface, contains
term d'Y/dt 4

, which does not appear in the exact solution. Other space­
marching methods, used for solving one-dimensional inverse problems, are
presented in references [5, 9, 10], while for two-dimensional problems in
[8].

Exercise 24.2 Step-Marching Method in Time Used
for Solving Non-Linear Transient Inverse HeatConduction
Problems

Describe the method for solving inverse heat conduction problems in a
flat, cylindrical and spherical wall, which accounts for the dependence of a
material's thermophysical properties on temperature [9, 10]. On the basis



(2)
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of the wall temperature measurement at an inner point rt: determine tem­
perature T1 and heat flux 4s on an inner wall surface while assuming that

the boundary condition on an outer surface is known.

Solution

From the two methods presented in papers [9, 10], the Method 2 will be
discussed here, in which the derivative after time is discretisized.
Temperature is measured at point r == re== rN (Fig. 24.3).

Temperature distribution in the inverse region is defined by the heat
conduction equation

c(T)p(T) aT = __1 ~(rm4), (1)
at r" ar

where heat flux 4 is defined by Fourier Law

q=_2(T)aT.
ar

Exponent m depends on the shape of a wall and is

• m == 0 for a flat wall,
• m == 1 for a cylindrical wall,
• m == 2 for a spherical wall.

Thermophysical properties are functions of temperature and can be de­
fined by different dependencies, for example:

c(T) =CO (I + a.T + atT
2+ a3T

3
) ,

p(T) =Po (I + bIT+b2T
2+b3T

3
) ,

2(T)=~(I+CIT+C2T2 +c3T
3

) ,

(3)

(4)

where a!, az, a-; hI, hz, b-, CI, Cz and C3 are constants.
Quantities Co, Po and Ao are, respectively, specific heat, density and

thermal conductivity at temperature T == oac.
In order to simplify the notation, dimensionless variables are introduced

C = .!:.- .Q =~ A =~ X = rE - r = rE - r
Co ' Po' Ao ' rE - rw E'

17 _ aot ()= TAo H =.!L
1'0- 2' , ,

E 40E 40
where ao == Ao/(CoPo) is thermal diffusivity at temperature T == oac.
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Fig. 24.3. Division of an inverse region into N control volumes; rE - temperature
measurement point, rN ::; r ::; rN+M - simple solution region

Equation systems (1) and (2) can be written in the form
aH ae
-=CH+c(e)Q(e)-ax 1 aFo' (5)

ae
ax

H
A(e) , (6)
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where

c = mE'
1 m-XE*'

Initial conditions have the form

[ ae]A(e)- =HE(Fo),
ax x=o

where

(7)

(8)

(9)

In the initial condition (7), heat flux qE appears at temperature meas­

urement point r = rE; one can determine temperature once the direct prob­
lem is solved in the region re 5 r 5 r, (Fig. 24.3). Once we determine tem­
perature distribution in the direct solution region re S r S rz , we can
calculate heat flux by means of a formula with the accuracy of a second
order. The first dependence, which can be applied for the calculation of qE
has the form

The second formula for qE can be obtained from the energy balance equa­

tion for a control volume that lies in a direct region, on the boundary on
which node N lies (Fig. 24.3)

( ~rT+1

m+l

c(T
N

)p(T
N

) r
E +2 -r

E
dTN

m + I dt (11)

_ m· ( ~rJmA(f)+A(TN+l)TN+l-f
- rEqE + rE+ .

2 2 Ar
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From (11), one obtains an expression for qE

(12)

In order to solve the inverse problem, the derivative with respect to time
8e18Fo, which occurs in (5) is approximated by means of the difference
quotient P,

80 IFO. ,;::;P..
8Fo } }

(13)

Once we denote H,= H(X,Foj ) and ~ = e(X,Foj ) , the (5) and (6) together
with conditions (7) and (8) are reduced to an initial problem for the ordi­
nary differential equation system

dH j =C1H.+C(O.)n(o.)p.,
dX } } } } (14)

dOj == H j

dX A(ej ),

j==o, ..., NT, (15)

where (NT + 1) is the total number of time points, in which the tempera­
ture distribution was determined. Initial conditions have the form

where

Hjlx=o =HE(Foj),

Bjlx=o=F(Foj), j=O, ...,NT,

(16)

(17)

. . ao(i1f)
FOj==J(M'O)==J 2' (NT+I) is the number of time steps. (18)

E

One can see, therefore, that the discretizations of the time derivative in
the heat conduction equation leads, in the case of the inverse problem, to
the initial problem for the ordinary differential equation system with
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respect to a coordinate X Equations (14) and (15) together with the initial
conditions (16) and (17) can be solved by means of the Euler method,
Runge-Kutta method or by means of many other widely available methods.
Additional attribute is a good knowledge of calculation results at different
integration steps M. Results obtained for the integration interval 0 ~ X ~ 1
when 0.01 ~ M ~ 0.25 do not differ much. Furthermore, programs devel­
oped for the purpose of integrating equation systems by means of the
Runge-Kutta method are available in number of commercial software
packages.

The accuracy of the obtained results depends, to a large degree, on the
method used to approximate time derivative P. -(13).

Stable solution algorithm is obtained once the time derivative is ap­
proximated by the central difference quotient

(19)

The results from paper [9] show that the optimum time step M'o lies in the
interval 0.03 ~ M'o ~ 0.05, although for larger M'o the calculation error is
insignificant. When M'o ~ 0.07, then mean square temperature and heat
flux calculation error is not much greater than it is with the optimum time
step. For the first and last time step respectively, the approximation with a
difference quotient is carried out backwards and forwards due to the lack
of measurement data

T(X,M'o)-T(X,O)
Pro =--------

M'o '
(20)

(21)

Difficulties in making the approximation of the time derivative in the first
and last time step by means of quotient (19) can be avoided by adding one
fictional measurement point at the beginning and end of the analyzed in­
terval.

Time derivative p, can also be approximated by means of digital filters
presented in paper [7]. When calculating P, using local polynomial of the
second degree, which approximates seven consecutive time points T(Xti) ,

one has
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p =_-_39_1:_1_-_6_I;_+_15_T_3 _+_2_4_~_+_2_1_T:_5_+_6_~_-_21_T_7

1 84(LlFo) ,

P =-29~ -6T2 +9~ +16~ +15Ts +61;; -ll~
2 84( LlFo) ,

Po = -19~ -6T2 +3~ +8T4 +9Ts +6T6 -~

3 84(LlFo) ,

-3T. 3 -2T. 2 -T. 1 +T. 1 +2T. 2 +3T. 3
P. = J- J- J- J+ J+ J+ 4 NT 3

()
, j = ,..., -,

J 28 LlFo

1
PNT- 2 =84(LlFo) (TNT-6 - 6TNT- 5 - 9TNT- 4 - 8TNT-3 -

- 3TNT- 2 + 6TNT- 1 + 19TNT ),

1
PNT- 1 = 84(LlFo) (llTNT _6 -6TNT _5 -15TNT _4 -16TNT _3 -

- 9TNT- 2 + 6TNT- 1 + 29TNT ),

1
PNT = 84( LlFo) (21TNT_6 - 6TNT - 5 - 21TNT _4 - 24TNT _3 -

(22)

-15TNT_2 + 6TNT- 1 + 39TNT ),

where

~ =T(X,FoJ.

Due to the application of filter (22), the accuracy of the method for
small time steps increases, since the method becomes less sensitive to ran­
dom temperature measurement errors.

To approximate the first derivative ~ = ae lone can also use filters
8Fo Fa.

J

based on 9 or 11 points T(X,Foj ) .
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Exercise 24.3 Weber Method Step-Marching
Methods in Space

Describe step-marching methods, which are based on the finite difference
method. Derive computational formulas that are applied to Weber method
[11]. Also derive formulas by approximating time and space derivative in
the heat conduction equation with the following finite differencies:

(
aT )n -3Tn +4T n

+
1_Tn

+
2

"'-I I I I

at i - 2(M)
(1)

(2)

(3)

Assume that temperature fit) is measured on the back plate surface with
the assigned heat flux q£(t).

Solution

First Weber method will be discussed [11]. The starting point of the analy­
sis is the hyperbolic heat conduction equation

a2T or a2T
r-+-=a-

at2 at ax2
'

where t is the relaxation time.
This equation was selected due to a greater numerical calculations sta­

bility, when t> o. Once derivative after time and space is approximated by
central difference quotients, (3) has the form

(4)

Next, temperature in node (i-I) is determined from (4)
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a)

n = 1 ..-......- __---4It-......- __---4It-__.-......---1.....

nodesin direct
~ regionor
I apparent nodes

-0

l
3

o

2

LAx=--
(N-I)

t = n J1.t, n = 0, ..., n t

n = 0 __---4I..-......- __---4It-__.-__---II--__- ......~.....

i = 1

L x inverse region
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r-.
~ ...
'" [nt +2(N-l )]..

b)

IV = 11

i nodesin direct
V region or

apparent nodes
~ .

tI n
= 1

~
n=O

i=~ i=2 3 4

I

I

L x

f

5 N·····I N N+l
fu-~
I .- (N .. I)

t = n ~t, n = 0, ..,~ 11,

inverse region

Fig. 24.4. Diagram of space-marching from node i = N (N = 11) located on the
back surface to node i = 1, which lies on the butting face: a) Weber method, b) al­
gorithm presented in this work
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i=N, ...,2,

749

(5)

where

M'o=a (Lll)
(ilxl'

Calculations should begin from node i == N. Equation (5) for i == N assumes
the following form:

r;_l =-[2(~O) -F)r;-1+2(I-F)r;+[2(~O)+F)r;+I-r;+IO (6)

From the boundary condition on the back surface

~ aTI _.
-/1,,- -qE

ax x=o
(7)

one can determine temperature in node T;+l.

Once the derivative aT/ax is approximated by the central difference quo­
tient, the boundary condition (7) has the form

hence, one obtains

t: 2qE~ t:
N+l =--A-+ v-i :

(8)

(9)

Once (9) is accounted for in (6), the expression for T;_l assumes the form

r;_l =~[-[2(~O) -F)r;-l+2(I-F)r; +

[
1 F)T n+1 2qE~]+ ( )+ N + .2 M'o A

(10)

Temperature in nodes (N-2), ..., 1 is determined from (5). Front face heat
flux will be determined from the heat balance equation for node 1
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!J.x d'T, . 1 ~ - ~Cp--=q +/1,,--
2 dt S !J.x'

where from, one has

• 1 T; - ~ !J.x d'I,
q =/I,,--+Cp--.

S !J.x 2 dt

(11)

(12)

Accounting that derivative after time is approximated by the central differ­
ence quotient, (12) assumes the form

(13)

The method is also stable when parameter F = O. The optimum value of
parameter F ~ 0 is selected by way of trial and error.

In the second method, (1) and (2) will be used to discretisize the heat
conduction equation

et a2T
-=a-at ax2

Once difference quotients (1) and (2) are substituted into (14), one has

-3Tn+ 4Tn+1
_ T n+2 T" 2Tn T"

1 1 1 = a i-I - i + i+l

2~t (~)2·

Temperature 1;:1 determined from (15) has the form

(14)

(15)

(- 3Tn+4Tn+l _Tn+2 )
T" 1 1 1 2Tn T"

i-I = 2(Mo) + i - i+1'
i =N -1, ..., 1, (16)

where Mo = al1t/(!J.x)2. For i = N, (16) assumes the following form once
(9) is accounted for

-3Tn+ 4Tn+1
- r n+2 q. (!J.x)

Tn = N N N + r,n + E. (17)
N-l 4(Mo) N A-

Heat flux qs on the plate surface is calculated from (12). Taking into ac­

count that in the given case the derivative after time is approximated by
(1), (12) for qs has the form

(18)
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Due to the approximation of the derivative after time by means of (1),
the so called future time steps are accounted for in the second method; they
have a stabilizing effect on the conducted calculations.

Exercise 24.4 Determining Temperature and Heat Flux
Distribution in a Plate on the Basis of a Measured
Temperature on a Thermally Insulated Back Plate
Surface; Heat Flux is in the Shapeof a Rectangular Pulse

Determine temperature and heat flux distribution in a plate on the basis of
a measured temperature on the thermally insulated back plate surface. Ap­
ply formulas derived in Ex. 24.2. Artificially generate measurement data
on the back surface fit), assuming that heat flux changes on the front face
in time in the way presented in Fig. 24.5.

qs[~] ~ f(t)

qE= 0

E

100000 -----

50000

0 0,73 1,23 Fa

Fig. 24.5. Changes in heat flux qs on the plate front face in Fourier number func­

tion F0 == at/E2

Thermophysical material properties of the plate c and p are constant and
temperature independent. Assume the following data for the calculation: E
== 0.1 m; A == 40 W/(m·K), a == 1.10-5 m2/s and 40 == 1.105 W/m2

• Heat flux
4s changes in time are in the shape of a pulse
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for

for

for

O~Fo < 0.73,

O. 73 ~ Fo ~ 1.23,

1.23 < Fo.

(1)

Analyze the effect the size of time step I1t has on the accuracy of tem­
perature determination and on the heat flux of the plate front face.

Solution

Accurate measurement data was generated by means of (6)-(8) presented
in Ex. 16.10. Real measurement data was obtained once pseudo-random
numbers from interval ±0.3 were added to the exact data; the numbers had
normal distribution and a mean equal to zero. They also simulated random
measurement errors. Figure 24.6 presents time transient of the temperature
measured on the back surface and disturbed by random measurement er­
rors.

140r---------------------,

j(t) [OC]

100

80

60

40

20

oI--------~

-20 0 500 1000 1500 t [s] 2000

Fig. 24.6. Measurement data generated by means of (6)-(8) presented in Ex.
16.10, which are burdened with random errors from interval ±0.3 K

Calculations will be carried out using different approximation methods
for the time derivative in the heat conduction equation. Time derivative
will be approximated by the central difference quotient ((19), Ex. 24.2), by
a digital seven-point filter that is based on the polynomial of 2nd degree
((22), Ex. 24.2) and by a digital nine-point filter that is based on the poly­
nomial of 3rd degree. Accuracy and stability of the applied method relies,
to a large degree, on the time step I1t, while to a smaller extend on the spa­
tial step Ax. In order to evaluate the accuracy of the obtained solution and
to find the optimum integration step Mo = al1t/E2

, the mean square error
values will be calculated below
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1 N d 2

ST= -I(r; -r;) , (2)
N -1 i=l

& 1 ~('d .)2q = N -1 f:t qi - qi , (3)

where Tid and qf are the exact temperature and heat flux values; T, and qi'
are, respectively, temperature and heat flux values on the front face calcu­
lated at N time points.

Measurement data is loaded onto the computational program in a di­
mensionless form f{t)A/{qNL). Also calculation results are obtained in
the dimensionless form: temperature B{X,Fo) =T{x,Fo )A/{qNL) and
heat flux on the front face q/qN • Fourier number is defined as F0 == atlL2

•

Calculation results orin time step function ~t are presented in Fig. 24.7.
Measurement data was disturbed by random errors from interval ±0.3 K.

Calculations were carried out for N == 5, N == 21 and N == 101, i.e. during a
division of the inverse region into four, twenty and hundred control vol­
umes, respectively, from which the first and the last volume measure in
thickness &/2, while the remaining Llx. The central difference quotient,
seven-point filter and nine-point filter were used for the approximation of
the time derivative. Regardless of the number of the control volumes used
and the type of the time derivative approximation, the optimum time step
value ~t is present in each case, where the value of error ~T reaches its
minimum.

If the value of time step b"t is too small, the method becomes unstable
and the value of error bT rapidly increases. This results from a delay in and
the suppression of changes in the temperature recorded on the back surface
with respect to the changes that take place on the front face.

If the entire time interval ~ttotal == (NT - 1)~t, which is used when calcu­
lating time derivative and which consist of NT measurement points, is too
small, then the changes that take place on the front face within time inter­
val ~ttotal have no (visible) effect on the back surface temperature. There­
fore, there is no cause-and-effect relationship between the step function on
the front face and the response function on the back surface. In such an in­
stant, a poor conditioning of the inverse transient heat conduction problem
lets itself be known.

Increasing time step, improves calculation accuracy, since with larger
~ttotal temperature changes on the front face affect back plate surface tem­
perature. When, however, the total time interval b"ttotal == (NT - 1)~t is too
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long, then the 3rd or 2nd degree polynomial, which approximates back sur­
face temperature changes, is not able to accurately approximate real meas­
ured temperature changes.

Averaging of temperature or heat flux changes on the front face is too
strong and so the method becomes less accurate, i.e. ~T increases.

a) 50 ....--~---.----....-----r---....---~--.,..---__

--..- N=5
40 ~ N=21

--·N=101

14012060 80 100
Timestep ~t [s]

4020o

10

~
6' 30
II
~
E-:::;
<'C 20

b) 50-........-.....--------------....---------,

---II-- N= 5
40 --0-- N= 21

-- N=101
~
6' 30
II
,~
E:::;
<'C 20

10

o 20 40 60 80 100
Timestep ~t [s]

120 140
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1401204020o 60 80 100
Timestep J).t [s]

Fig. 24.7. Mean square temperature determination error of the front faces or in
time step function 111 for 4, 20 and 100 spatial steps Ax, for measurement data dis­
turbed by random errors from interval ±0.3 K: a) time derivative approximation by
means of the central difference quotient, b) time derivative approximation by
means of the digital seven-point filter based on the polynomial of 2nd degree, c)
time derivative approximation by means of the nine-point filter based on the poly­
nomial of 3rd degree

With a larger value of f1ttotal, the ability of the method to reconstruct
temperature changes on the front face diminishes. From Fig.24.7 it follows
that the optimum value of time step I1t is as follows:

• f1topt ~ 27-40 s (Mo = 0.027-0.04), for the approximation of the time
derivative by means of the central difference quotient,

• f1topt ~ 18-20 s (Mo = 0.018-0.02), for the approximation of the time
derivative by means of the seven-point filter, which is based on the poly­
nomial of 2nd degree,

• f1topt ~ 8-12 s (Mo = 0.008-0.012), for the approximation of the time
derivative by means of the nine-point filter, which is based on the poly­
nomial of 3rd degree.

Fig. 24.8 presents the history of temperature of the plate front face de­
termined on the basis of a measured temperature transient on the back sur­
face, disturbed by random errors from interval ±0.3 K.



756 24 Solving Inverse Heat Conduction Problems

------- exactdata
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------- exactdata
---e--!V= 5
--N=lOl

c) 220

200

U
2.....160
0
II
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1)
;.....
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td;..... 801)
c,
E
~

40

0~~~~~~~::.....L_.....L_......L_.l-_..L-_L--.:1
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TinIe t [5]

Fig. 24.8. Comparison of the plate front face temperature, determined on the basis
of a temperature measurement taken on the back surface, with the exact solution
of the direct problem; the measurement data was disturbed by random errors from
interval ±0.3 K: a) approximation of the time derivative by the central difference
quotient when 111 = 27 s; or= 3.03 K for four spatial steps (N = 5) and or= 3.02
for hundred spatial steps (N = 101), b) approximation of the time derivative by
means of the seven-point filter 111 = 21 s; or= 2.34 K for four spatial steps (N = 5)
and or= 4.96 K for hundred spatial steps (N = 101), c) approximation of the time
derivative by means of the nine-point filter 111 = 11 s, or= 2.05 K for four spatial
steps (N = 5) and or= 4.19 K for hundred spatial steps (N = 101)
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Fig. 24.9. Comparison of the plate front face heat flux, determined on the basis of
a temperature measurement taken on the back surface, with the exact solution of
the direct problem; the measurement data was disturbed by random errors from
interval ±0.3 K: a) approximation of the time derivative by the central difference
quotient when I1t = 27 s; 84 = 16880.6 W/m2 for N = 5 and 54 = 15784.2 W/m 2

for N = 101, b) approximation of the time derivative by means of the seven-point
filter f1t = 21 s, 84 = 12262.5 W/m2 for N = 5 and 5q= 14538.6 W/m2 for N = 101,
c) approximation of the time derivative by means of the nine-point filter when
f1t = 11 s; 84 = 10381 W/m 2 for N = 5 and 8q = 12688.2 W/m2 for N = 101
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From the analysis of Fig. 24.8 it follows that for optimum time steps, the
accuracy of the method is very good, regardless of how the time derivative
is approximated. In contrast to simple (direct) problems, increasing the
number of spatial steps does not improve the accuracy of the inverse solu­
tion. The accuracy of the temperature and heat flux determination on the
plate front face is already very good when the plate is divided into four
control volumes ~ (N == 5). Similar results were obtained in the case of
the plate surface heat flux (Fig. 24.9).

From the analysis of Fig. 24.9 it follows that in the case of the time de­
rivative approximation with the central difference quotient, the method is
less sensitive to the value of spatial step ~. Results obtained for N == 5 and
N == 101 do not differ much. The method, however, is more sensitive to
random temperature measurement errors. This is particularly discernible in
those time intervals in which the flow qs on the plate surface equals zero.

Exercise 24.5 Determining Temperature and Heat Flux
Distribution in a Plate on the Basis of a Temperature
Measurement on an Insulated Back Plate Surface; Heat
Flux is in the Shape of a Triangular Pulse

Determine heat flux and temperature of the plate front face on the basis of
temperature measured on an insulated back surface. Use for the calculation
identical data to the data used in Ex. 18.5: L = 0.01 m, qN = 100000
W/m2, A=50 W/(m·K), a = 1.10-5 m2/s, To = 20oe, FO

m
=atfl;', Apply

measurement data presented in Table 18.1, Ex. 18.5. Apply to the calcula­
tion both step-marching methods discussed in Ex. 24.3. Present calculation
results, temperature T/t) and heat flux qs(I) on the plate front face in the
tabular and graphical form. Using diagrams, compare the obtained results
with transient qs(I), which was assumed for the solution of the direct
problem, and with surface temperature T/t) calculated from the exact solu­
tion of the direct problem.

Solution

Back plate surface is thermally insulated; therefore, q£(/)== o. Calculation
results of surface temperature Ts(/) and heat flux qs(I) determined by
means of the Weber method are presented in Table 24.1, while by means
of the second method are presented in Ex. 24.3 and described by (15)-(18)
in Table 24.2.
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Table 24.1. Calculation results of temperature Ts(t) and heat flux qs(t) on the
plate front face determined by means of the Weber method

o 20.00 0.00 91.23 60320.00 1200 148.20 29680.00
50 21.68 0.00 100.80 65240.00 1250 147.60 24680.00
100 24.39 9703.00 110.80 69660.00 1300 146.60 19670.00
150 28.37 15110.00 120.60 72160.00 1350 145.00 14670.00
200 33.12 20240.00 800 129.20 70850.00 1400 142.90 9713.00
250 38.48 25270.00 850 135.40 65930.00 1450 140.40 5008.00
300 44.43 30290.00 j900 139.50 60100.00 1500 137.70 1256.00
350 50.93 35310.00 ~50 142.60 54850.00 1550 135.40 -590.20
400 57.97 40320.00 11000 144.90 49790.00 1600 134.00 -630.40
450 65.52 45320.00 11050 146.60 44740.00 1650 133.40 -218.50
500 73.58 50330.00 It 100 147.70 39710.00 1700 133.10 -91.27

~

550 82.16 55330.00 n150 148.20 34700.00 1750 132.80 0.00
~~=~:-=r&~:. .=...~~.... =-=_~.= W'm=~===.=~v".~

The results obtained by means of both methods are also presented in a
graphical form in Figs. 24.10-24.13. Calculations were done for N == 6.
From the analysis of results one can see that both methods are almost
equally accurate; this is especially evident in the case of the front face
temperature Ts(t).

Table 24.2. Calculation results of temperature Ts(t) and heat flux qs(t) on the
plate front face determined by means of the method proposed in Ex. 24.3 (the sec­
ond method)

t~] ~rC] t~/m~~[~ ~[~]'t [~~'t[~ ~[OC]'i [W/~~'
.m,_,~wNNm__m_••mN_,~~.mN~_~N,._~wNmN#'_Nm_~wtNmNN'.Nm='WNm_NmN=~wm~.N='WNm'_NN#N'_NN_'WN._'W~.N_.=••NN_=~N~mN#NmNN•• m •• ==NN.·mm_N.wmNNNN'mm.·••Nm

o 19.41 1024.00 1500 73.64 50190.00 1000 144.90 49630.00
50 21.33 5551.00 !550 81.98 54110.00 1050 146.60 44640.00
100 24.42 10430.00 1600 90.89 60640.00 1100 147.70 39660.00
150 28.41 15390.00 1650 101.50 69530.00 1150 148.20 34660.00
200 33.13 20370.00 1700 112.90 74430.00 1200 148.20 29560.00
250 38.49 25350.00 1750 122.70 73290.00 1250 147.60 24730.00
300 44.43 30350.00 1800 129.90 69230.00 1300 146.70 20270.00
350 50.94 35330.00 1850 135.30 64460.00 1350 145.20 14510.00
400 57.96 40330.00 1900 139.40 59550.00 1400 142.60 7566.00

l
450 65.53 45540.00 !950 142.60 54600.00 1450 139.30 0.00
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Fig. 24.10. Exact measurement data and front face temperature Ts(l) determined
by means of the Weber method
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Fig. 24.11. Comparison of the front face heat flux qs(t) determined by means of
the Weber method with the exact data (heat flux qs (I) ) used to generate meas­
urement data
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Fig. 24.12. Exact measurement data and front face temperature Ts(t) determined
by means of the second method
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Fig. 24.13. Comparison of the front face heat flux qs (t) determined by means of
the second method with the exact data (heat flux qs (t) ) used to generate meas­
urement data
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25 Heat Sources

Heat sources can be homogenous or concentrated. The latter can be also
divided into point sources, linear sources and surface sources. Sources can
be instantaneous or perpetually active in time. The basic solutions that ac­
count for the presence of point, linear and surface heat sources in an infi­
nite space are presented in references [2,4, 5, 8, 14, 23, 25]. The analysis
of transient temperature fields during the welding process is the object of a
discussion in references [7, 10, 17,20,21,24], while the analysis of tem­
perature fields, which are formed during material processing tasks, such as
grinding or machine cutting, is discussed in references [3, 6, 9, 13, 18, 26,
29]. When analyzing temperature fields created by instantenous (impulse­
like) heat sources, one can make use of the Dirac function [11, 31], which
satisfies the following conditions:

8(t)=O dla t*O,
00

f8(t)dt=1.

(1)

(2)

Dirac function, therefore, equals zero for all values of t with an exception
of t =0, when t is infinite. Definition of this function differs from the clas­
sical definition of a function. It can be interpreted graphically (Fig. 25.1).

Surface area of a rectangle, which is 2& in width and 1/(2&) in height is
equal to a one unit. If the width of the pulse presented in Fig. 25.1 ap­
proaches zero, then the height of the rectangular pulse approaches infinity,
i.e. Dirac function can be defined as follows:

8(t)=lim8c; (t)
c;~O

(3)

If the energy Qo emitted by the heat source in a very short time interval
at a selected spatial point, then the source power can be expressed in the
following way, provided that the heat source is activated at the moment t

=0:

(4)

According to (1), one has
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~I~

-E 0 E t

Fig. 25.1. Approximation of the Dirac function t5 (t) by means of a rectangular
pulse with a width of 28

(5)

Laplace transform is frequently used to determine transient temperature
distribution. Laplace transform from the Dirac function 8(t - to) has the
form [11, 31]

Y {8 (t - to )} = e-sto •

When the impulse appears at the initial moment to = 0, then

Y{8(t)} =1.

(6)

(7)

If temperature history h(t) is known at a given spatial point To in the im­
pulse function, then one can determine temperature transient T(t) produced
by the time-dependent impulse function u(t)

t

T(t)= fh(t)u(t-z-)dT.
o

(8)

Once the analyzed time interval is divided into steps under ~t and t =k~t,

(8) can be written in the form
k

T( k~t) =~tLh(i~t) u (k~t - i~t),
i=O

(9)

where k = 0, 1, 2, ...
In the case of heat sources, which are continuously active within the

whole body volume, the heat conduction equation has the form



(1)
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C(T)p(T)aT =V{A(T)VT]+4v(r,t,T), (10)
at

where 4v(r,t,T) is the density of the generated thermal power (heat flow),

i.e. thermal power generated per unit of body volume.
Good examples of thermal energyemission within a whole body volume

are exothermic chemical and nuclear reactions, inductive and resistant
electric heating and heat dissipation processes during a liquid flow. The
determination process of temperature fields in the presence of heat sources
active within the whole body volume is not, in essence, significantly dif­
ferent from the process of solving source-free problems and will not be
discussed separately.

Exercise 25.1 Determining Formula for Transient
Temperature Distribution Around an Instantaneous
(Impulse) Point Heat Source Active in an Infinite Space

Determine transient temperature distribution around an instantaneous point
heat source, which is active in an infinite space. Thermo-physical proper­
ties of the body are temperature independent. Initial temperature To is con­
stant and independent of position.

Solution

Laplace transform will be used to determine temperature distribution
around the point heat source. First, we will determine temperature field
around the spherical void inside the infinite space (Fig. 25.2).

Thermal energy Qo =4JZ"r~qw is emitted in an impulse form on an inner

surface of the void at a time t =0, where qw is the thermal energy per unit
of void surface.

Temperature distribution around the void is described by the equation

ae =a(a2~ +3. ae),
at ar r ar

by boundary conditions

(2)
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(3)

and by initial condition

(4)

where

B= T - To' qw =Qo/(41Cr~),

To is the initial temperature, Set) is the Dirac function.

Fig. 25.2. Spherical void in an infinite space

Once the Laplace transform is applied to (1), conditions (2) and (3), one
has

(5)

-:i oB
or

(6)

1f1 =0,
r-.:;oo

where q2 =s/a.
The solution of (5) has the form

_ e" e-qr

B=A-+B-.
r r

(7)

(8)

Once condition (7) is accounted for, one obtains A = 0 and (8) is simplified
to

-qr

1J =B_e _ .
r

(9)
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Once constant B is determined from boundary condition (6) and substi­
tuted into (9), one has

Q -q(r-rw)o=_o__e__
4JrAr 1+ qrw

If r ~ 0, then (10) has the form
w

(10)

(11)

Accounting that (Table 14.2, Ex. 14.1)

(12)

one obtains

(13)

where Qo is the energy emitted by the point heat source and expressed in J.

0,030,020,01
0,0 ...............- -~----I..-.-..------I...-....L.----&.--"'---___I

0,00

15,0

eleR

12,0

9,0

r/ro= °
6,0

3,0

0,04 0,05
Fo = atlr5

Fig. 25.3. Dimensionless temperature transient by thermal impulse point source
calculated from (14) and; radius '0 is an arbitrary distance from r = 0, where the
heat source is located
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If reference temperature OR =Qo/(cpr~), dimensionless radius rlr;and the

Fourier number Fo =atlr
0

2 are introduced, then (13) can be written in the
form

1 -(f.r 4~O----e
(4trFo )3/2

(14)

Quantity ro is the arbitrarily chosen radius.
Figure 25.3 shows dimensionless temperature transient in the dimen­

sionless radius function (rlro) and the Fourier number Fo =atlr
0

2
• From the

analysis of Fig. 25.3, it is evident that temperature decreases more rapidly
the greater the distance from point r = 0, in which the impulse point source
lies. Maximum temperature occurs at time t

max
= r2/(6a). The maximum

temperature value quickly decreases the greater the distance from r =O.

Exercise 25.2 Determining Formula for Transient
Temperature Distribution in an Infinite Body Produced
by an Impulse Surface Heat Source

Determine transient temperature distribution in an infinite body produced
by an impulse surface heat source. Heat source emitted energy per unit of
surface area is qs = QolA and is expressed in 11m2

• Initial temperature To is
constant.

Solution

The position of the surface heat source and the assumed coordinate sys­
tem is given in Fig. 25.4.

x

impulsesurface
heat source

Fig. 25.4. Impulse surface heat source in an infinite space
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Temperature distribution in the infinite space is only a function of the
coordinate x and is defined by the heat conduction equation

8B 8B
-=a-
8t 8x2

'

by boundary conditions

8B! 1-A- =-qs8(t),
8r x=o 2

BI =0
x~CX)

and by initial condition

(1)

(2)

(3)

(4)

where B= T - To.
Boundary condition (2) contains qs/2, since a half of the generated heat

flows to an upper section of the half space, while the second half to a
lower section due to the symmetry of the temperature field with respect to
x=o.

Once Laplace transform is applied to (1) and conditions (2) and (3), one
has

ifl =0,
x~CX)

where if is the Laplace transform from {}, q2 = s/a.
The solution of (5)-(7) has the form

where from, after accounting for condition (7), one has

(j =Be" ,

(5)

(6)

(7)

(8)

(9)

since A = o.
Once constant B is determined from (6) and substituted into (9), one ob­

tains
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1 -qx

o=_ 9.£ _e_.
2 A q

(10)

Once the inverse Laplace transform is determined (Table 14.2, Ex.
14.1), one obtains

?te;X) = {ge-X'/(4at) . (11)

(12)

After substituting (11) into (10), a formula for temperature distribution in
infinite space is obtained

o(x,t) = qs e-x'/(4at) .

2cp~1[at

The (12) resembles in form (13), Ex. 25.1, which describes temperature
distribution around the thermal impulse point source in infinite space.

Exercise 25.3 Determining Formula for Transient
Temperature Distribution Around Instantaneous Linear
Impulse Heat Source Active in an Infinite Space

Determine transient temperature distribution around the instantaneous lin­
ear impulse heat source, which is active in an infinite space. Heat source
emitted energy per unit of length is qz =QolL [JIm]. Initial temperature of
the body To is constant.

Solution

Fig. 25.5 shows the position of the linear heat source and the assumed co­
ordinate system.

Heat conduction equation, which describes transient temperature field
has the form

ao =a[a2~ +! ao),
at ar r ar (1)

where ()=T - To.
The to-be-determined temperature distribution should satisfy the following

boundary conditions:
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01 =0
r~oo

and initial condition

773

(2)

(3)

(4)

r

Fig. 25.5. Linearheat source in infinite space

Once Laplace transform is applied to (1) and then solved, one obtains

(j =st, (qr ) + BKo(qr ) , (5)

where (j is the Laplace transform from 0, q =-r;;; .
It is difficult to find the inverse Laplace transform, since the modified

zero order Bessel functions of the first and second kind, i.e. Io(qr) and
Ko(qr) do not approach zero, when r~ o.

One can, however, rather easily find a solution to problems (1)-(4), if it
is observed that Eqs. (13) in Ex. 25.1 and (12) in Ex. 25.2 are similar in
form, which in the case of the linear source can be expressed as follows:

O(r,t) =H (t)exp[-~). (6)
4at

Once we assume that the heat source has a length L, we can calculate the
energy emitted from the source to surroundings. When the analyzed spatial
interval is infinitely long, the energy Qo emitted by the source equals the
energy absorbed by the surroundings

00 00

Qo = fcp2mLB(r,t)dr = 2JrLcp frB(r,t)dr ·
o 0

(7)
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By substituting (6) into (7), one obtain

Qo =2JZ"LcpH(t)}reXP(-~)dr.
o 4at

If a new variable is introduced

s=_r_
~4at '

Equation (8) can be written in the form
00

Qo =8JZ"LcpH(t)at f?e-;2 d?,
o

(8)

(9)

(10)

(11)

hence, allowing that the integral equals1/2, one can determine H(t)

H(t)= Qo/L =~=-!lL
41lcpat 41lLAt 41lAt'

By substituting (11) into (6), one obtains an expression that defines the
temperature field

e(r,t)=-!lLexp(-~), (12)
41lAt 4at

where q/ = QolL [Jim].
The determined temperature distribution (12) satisfies the differential

(1) and conditions (2)-(4).

Exercise 25.4 Determining Formula for Transient
Temperature Distribution Around a Point Heat Source,
which Lies in an Infinite Space and is Continuously Active

Determine transient temperature distribution around a point heat source,
which lies in an infinite space and is continuously active. Thermo-physical
properties of the medium are constant and temperature independent. Initial
temperature of the body To is constant.

Solution

The superposition method (Chap. 16) will be applied to determine tem­
perature distribution for a continuously active point source and the solution
determined in Ex.25.1 for a thermal impulse point source.
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Heat source activity, with a time-variable power, can be presented as the
sum of all activities of an infinite number of impulse sources, which are
successively being added at an infinitely small time intervals. Assume that
new impulse heat sources emit Q; energy at the successive time points t.;
i = 0, 1, ... The first heat source added at the moment to = 0 emits Qo en­
ergy. Temperature distribution can be calculated from (13), Ex. 25.1; the
calculation is limited to interval 0 ~ t ~ t

1

Q [r
2

)00 (r,/) = 0 3/2 exp -- ,
cp(4Jral) 4al

(1)

(2)

The second impulse heat source is added at the moment t = t.; it emits
Q1 energy. To determine temperature distribution in interval t

1
~ t ~ t

2
one

can use (13) from Ex. 25.1 by counting time from the moment the source
was switched on, from t = t.. This means that t should be replaced in (13)
by (t - t)

()() Qo [r 2

]1 r, I - 11 = 3/2 exp ,
cp[4Jra(t-tl ) ] 4a(t-tl )

In accordance with the superposition method (Chap. 16), temperature
distribution around the source is defined by the following expressions:

o~ I ~ 11

11 ~ I ~ 12 •

(3)

In the case of a successively switched n heat sources, temperature distribu­
tion at time t = t is formulated as

n

() (r, t) =()o(r, t) + ()I (r, t - tl ) + ... + ()n-I (r, t - tn-I) + ()n (r, t - tn) . (4)

If a heat source with power Q(t) is continuously active, then the ther­

mal energy emitted at interval ~t is

(5)

When ~t ~ 0, while the number of time intervals is n ~ 00, then the sum
in (4) can be replaced by an integral and that gives

t Q(T) [r 2
]B(r,t) = J 3/2 exp dt .

o cp[4Jra(t-1")] 4a(t-1")
(6)
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By substituting

;= r
~4a(t-r)

and accounting that

dt; = 2ardr
[4a(t-r)J/2 '

[ J
3/ 2

4a(t-r)
dr= d;

2ar

Equation (6) can be transformed into a form

1 2 OOJ. 2

B(r, t)=- c Q(;)e-~ d;.
4JrAr "Jr ~=r/~

If the heat source power is constant

Q=Qo'

then, accounting that [16, 28]

(7)

(8)

(9)

(10)

(11)

2
00

2

erfct;=l-erft;= c Je-x dx,
"Jr ~

Equation (10) assumes the form

erfc( (0) =0 (12)

e(r,t)=~erfc[ ~J.
4JrAr \/4at

In a steady-state, when t ~ 00 and erfc(O)=1, one has from (13)

B(r)=~
4JrAr·

(13)

(14)

Due to the fact that (14) has a simple form and power Qocan be easily
measured, (14) is used to measure thermal conductivity A of a medium in
which a continuously active point heat source is located. Aside from Qo'
the value of temperature B(r) is also measured at one or few points.
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Exercise 25.5 Determining Formula for a Transient
Temperature Distribution Triggered by a Surface Heat
Source Continuously Active in an Infinite Space

Determine transient temperature distribution due to a surface heat source,
which is continuously active in an infinite space. Heat flow generated by
this source is 4s(t) per unit of source surface. Thermo-physical properties
of the medium are temperature independent. Initial temperature of the me­
dium is To.

Solution

Continuously active surface heat source can be described as the sum of an
infinitely large number of active impulse sources that individually generate
thermal energy (per unit of source surface) equal to

(1)

where ~t is the infinitely small time interval.
x

Fig. 25.6 Continuously active surface heat source in an infinite space

On the basis of solution (12), from Ex. 25.2, the superposition method
can be applied as it was in Ex. 25.4 and the following expression for tem­
perature distribution can be obtained

B(x,t) =f tis (Z") 1/2 exp[ x
2

] dt .
o 2cP [ na(t- Z")] 4a(t - Z" )

In order to calculate integral (2), a new variable is introduced

S=lxl/~4a(t-Z") .

(2)

(3)
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Once (3) is differentiated on both sides, one has

[ J
3/2

4a(t-r)
dr= II ds·2a x

Moreover, if

(4)

t =0, to (5)

t =t, to S~ 00 ,

and if one accounts for (3) and (4) in (2), one has

When iJs =const, then (7) is simplified to a form

. I I 00 _t;2

( ) qs x f eB x.t =-c -2dS ·
2A'\ITC t;=lxl/~ s

Because

and

(6)

(7)

(8)

(9)

2
00

2

erfcz" = c fe- x dx,
'\ITC t;

then (8) assumes the form

erfc (00 ) =0 , (10)

iJs{.E (x
2

) 4slxl (IXI )B(x,t)=- -exp -- --erfc -- .
cp TCa 4at 2A ~4at

(11)

Equation (11) contains a module from coordinate x, since it can assume
positive and negative values (Fig. 25.6). One can notice that identical for­
mula is obtained when determining temperature distribution in a half
space, either heated or step-cooled by a heat flow with a density iJs /2 (Ex.

14.3, (11)).
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Exercise 25.6 Determining Formula for a Transient
Temperature Distribution Around a Continuously Active
Linear Heat Source with Assigned Power 4/ Per Unit
of Length

Determine transient temperature distribution around a continuously active
linear heat source and a power iIi assigned per unit of length. Thermo-

physical properties of the medium are temperature independent. Initial
temperature of the medium is To.

Solution

Continuously active linear heat source can be presented as the sum of infi­
nitely large number of active impulse sources, which individually generate
thermal energy (per unit of source length) equal to

(1)

where ~t is the infinitely small time intervaL
Once solution (12), from Ex. 25.3, and the superposition method are ap­
plied, the way they are in Ex. 25.4, the following expression, which de­
scribes temperature distribution, is obtained

Once the new variable is introduced

r2

U=---
4a(t-r) ,

and both sides are differentiated, one has

4a(t-r)2
dr= 2 du.

r

Accounting for (3) and (4), (2) has the form

If iIi = const, then (5) is simplified to

(2)

(3)

(4)

(5)



(6)

(7)
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• 00 -u

B(r,t)=3!- J~du.
4JrA r 2/(4at) u

Once the definition of the exponential integral function is accounted for
[16, 28]

00 -u

Ei(-~) =- J~du
~ u

Equation (6), which defines temperature distribution,can be written in the form

B(r,t)=-~Ei(-~). (8)
4JrA 4at

Exponential integral function Ei( -;) can be calculated from [16, 28]

Ei(-~)=0,577216+1n~+ I(-lfL. (9)
n=l n ·n!

Selected values of function -Ei(-;) are listed in Table 25.1.

Table 25.1. The values of exponential integral function -Ei(-~

~~~
0.00 00 10.15 1.4645 10.70 0.3738 11.50 0.10002
0.01 4.0379 10.20 1.2227 10.75 0.3403 11.60 0.08631
0.02 3.3547 10.25 1.0443 iO.80 0.3106 12.00 0.04899
0.03 2.9591 10.30 0.9057 10.85 0.2840 12.50 0.02499
0.04 2.6813 !0.35 0.7942 10.90 0.2602 i3.00 0.01305
0.05 2.4679 10.40 0.7024 10.95 0.2387 13.50 0.00697
0.06 2.2953 10.45 0.2849 11.00 0.2194 \4.00 0.00378
0.07 2.1508 10.50 0.5598 !1.10 0.1859 14.50 0.00207
0.08 2.0269 10.55 0.5034 11.20 0.1584 15.00 0.00115
0.09 1.9187 10.60 0.4544 11.30 0.13545 16.00 0.00035
0.10 1.8229 10.65 0.4115 11.40 0.1162217.00 0.00012
~~~~U»»"iI'~-?~*»"~.«;g.~mw.~_~»':'«'««"*W$'«~~'<§'~:IWZ~¥h~~~h'm::~~_._:~g.«-t'..m?)yk~K.m-~_•• ·~

If time t is sufficiently long or radius r is small, when r2/(4at) « 1, one
can neglected the infinite series in (9) and the (8) for temperature distribu­
tion has the form

B(r,t) = 4~A [In( :~t)- 0.577216J r 2

-«1.
4at

(10)

Equation (10) can be applied when it is necessary to experimentally deter­
mine the thermal conductivity A~ on the basis of measured temperature
value () (r,t) at one or more points, and the measured value qz == Qo /L

[W/m2
] , where L is the length of the heating duct.
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Exercise 25.7 Determining Formula for Quasi-Steady­
StateTemperature Distribution Caused by a Point Heat
Source with a Power 00 that Moves at Constant Velocity v
in Infinite Space or on the Half Space Surface

Determine quasi-steady-state temperature distribution produced by a point

heat source with a power Qo that moves at constant velocity v in infinite

space or on the half space surface. Also evaluate quasi-steady-state solu­
tion, which describes temperature distribution in a thin plate due to a linear
heat source that moves at constant velocity v. Thermo-physical properties
of both mediums are temperature invariant.

Solution

In order to find the solution, assume that the coordinate system moves at a
constant velocity v with a point of origin 01 inside the moving source (Fig.
25.7).

Transient conduction equation

a2f) a2f) a2f) 1 af)
-+-+-=-­
ax2 0'2 az2 a at

will be transformed once coordinate ~ is entered into the mobile coordinate
system, which originates at point 01 and moves at constant velocity in the
direction of x axis

~ =x-vt.

Accounting that

af) af)

ax - o~'

a2f) a2f)

ax2 - a~2 '

af) af) a~ af) af) af)
-=-·-+-=-v-+-
at a~ at at a~ at

Equation (1) can be written in the form

a2f) a2f) a2f) v so 1 eo
-2+-2+-2=---+--.
o~ oy oz a o~ a ot

(2)

(3)

(4)
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a) P(;,'y~z)

heat
~\

source
11

0 01 x,;

~
~

vt

I
.~ ".. ~ ··1

b)

Fig. 25.7. Point heat source, which moves at constant velocity v along x axis: a) in
infinite space, b) on the half space surface; 0 is the point of origin of the immobile
system of coordinates x,y,z; 01 is the point of origin of the mobile system of coor-
dinates ~,1],z that moves along with the heat source

Symbol () = T - Tcz is the excess of body temperature T above the me­
dium's temperature Tcz•

In the case of thin plates with thickness 5, (4) can be simplified while ne­
glecting the temperature drop across its thickness. If we assume that the
coordinate of the lower plate surface is z = -812, while of the upper surface
z =812, then (4) can be integrated over coordinate z

5/2 (a2B a2B a2B)
5/2 ( v aB 1 aB)J --2 +--2 +--2 dz= J ---+-- dz.

-5/2 a; By az -5/2 a a; a at
From the definition of average temperature

1 5/2

B=- J(}dz
J -5/2

(6)
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one has

512
05 = f Odz . (7)

-512
By accounting for (7), (5) has the form

5a2~ +5a2~ + aOI _aOI =_ v5 ao + 5 ae. (8)
a; 8y az z=-512 az z=512 a a; a at

If we account for the boundary conditions on the lower and upper plate
surface

aOIA- =aOlz=_512'az z=-512

aOIA- =aOlz=512az z=512

(9)

(10)

(11)

and assume that °~°due to the insignificantly small temperature drop
across the plate thickness, then (8) can be written in the form

a20
+ a20

+ 2a 0=_:!- ao +! ao
a;2 8y2 Ab a a; a at

In a quasi-steady-state, one should assume that ao/at = 0 in (4) and
(11). Temperature distribution in the infinite space and the quasi-steady­
state is described by the simple function [7, 15]

where

(12)

; =x -vt, (13)

Once (12) is substituted into (4) and all the mathematical operations car­
ried out, it becomes clear that solution (12) is correct; however, one should
allow that ao/at = O. Equation (12) can also be obtained once the transient
problem (4) is solved and the quasi-steady state is analyzed, when t ~ 00.

Such method of determining (12) is thoroughly discussed in Ex. 25.8.
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If the heat source moves around the half space surface, then the entire
heat flow moves over to the half space, i.e. temperature excess () (;, r) is
twice as large as the excess obtained from (12) and has the form

(14)

(15)

where J; =~~2 + l + Z2 .

Symbol Qo is the source power expressed in W. The remaining nota­

tions are shown in Fig. 25.7. Equation (14) can be applied in the case of

thick plate welding, as the plates can be treated as semi-infinite bodies.

thin-walled
plate

Fig. 25.8. Diagram of a linear heat source that moves at constant velocity v along
x axis

Quasi-steady state solutions are frequently used to determine tempera­

ture fields during the welding processes. A good example of such a solu­
tion is the expressions that defines temperature distribution in a thin­
walled plate with thickness b (Fig. 25.8). Electric arc is treated as a linear
heat source, whose power per unit of length is q/ = Qo /8. The solution has

the form [12, 22, 25, 27,30,32] (Fig. 25.8)

e(~,Y)=~Ko(u)exp[- v~],
21rAb 2a

where
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(16)

(17)

One can easily check that (15) is the solution of (11) by simply substituting
(15) into (11) and carrying out all the transformations. Equation (15) can
be also obtained by determining the solution of the transient problem first,
using the method described in Ex. 25.8, and by assuming next that t~ 00.

If the plate gives off heat on one of its surfaces to surrounding air at
temperature Tcz' while the opposite surface is thermally insulated, then one
should assume in (16) that m =1. When the plate is two-sided cooled, then
m = 2. If the plate is insulated on one side, then one assumes that m = 0
in (16). Symbol a in (16) is the heat transfer coefficient on the plate sur­
face, while K, a modified Bessel function of the second kind of zero order.
The values of function K, are tabulated [16], but one can also calculate
them by means of the library programs, such as for example [10].

Exercise 25.8 Determining Formula for Transient
Temperature Distribution Produced by a Point Heat
Source with Power Qothat Moves at Constant Velocity v
in Infinite Spaceor on the Half Space Surface

Determine transient temperature distribution due to a point heat source
with power Qo' which moves at constant velocity v in an infinite space or

on the half space surface. Thermo-physical properties of the medium are
temperature independent, while the medium's temperature To is constant.

Solution

A diagram of the point heat source that moves at constant velocity is pre­
sented in Fig. 25.9.

The superposition method will be used to determine temperature distri­
bution; the method was already discussed in Chap. 16 and applied in Ex.
25.4 in order to determine temperature distribution around a stationary
continuously active point source.



786 25 Heat Sources

o

nextheat source
initialization

vr

vI

x

heat

P(~,y, z)

x,~

(1)

Fig. 25.9. A point heat source, which moves at constant velocity v along x axis; 0
is the starting point of the stationary system of coordinates x.y.z; 01 is the starting
point of the moving system of coordinates ~,y,z that moves at constant velocity v

A continuously active heat source can be treated as the sum of an infi­
nite number of impulse sources successively activated at an infinitely
small time intervals. In terms of the moving source, one should also ac­
count for the time-changing distance r, (Fig. 25.9) between the instan-
tenous heat source switched at time rand the point P =P(x,y,z) =P(~,y,z).

Temperature at time t, when the source traversed vt, is the effect of an infi­
nite number of active impulse sources that are being successively switched
on at time interval [O,t]. In terms of the impulse source activated at time t,
the temperature at point P can be calculated from (13) derived in Ex. 25.1

_ Qo [ (x - V r)2 + y2 + Z2 ]
Bp - 3/2 exp .

cp(4JZ"ar) 4ar

Distance r, between the impulse heat source at point (vr,O,O) and the
point P(x,y,z) (Fig. 25.9) is

r, = ~r--(x---vr-)-2-+-y-2-+-Z-2 . (2)

In accordance with the superposition method, the temperature distribu­
tion produced by the moving heat source is formulated as [13, 22, 27] (also
Ex. 25.4)

If Qo [ (x - V If + l + Z2 ]
B(x,y,z,t) = 3/2 exp () dt ·

ocp[4Jra(t-T)] 4a t-T

By introducing new variables

If/ = I - r, ; =x - vi ,

(3)

(4)
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from which the following relationships result

dlf/ =-dt ,

x - vr =v(t - r) +; =Vlf/ +; ,

r=O~lf/=t,

r=t~lf/=O,

one is able to write (3) in the form

Qo tf{ 1 [(; + Vlf/)2 + y2 + Z2 ]}
B(;,y,z,t)= 3/2 3/2exp dw .

cp[4Jra ] 0 If/ 4a If/

Once simple transformations are carried out, (9) assumes the form

O(~,y,z,t)= Qo 3/2 exp(- ;VJx
cp[ 4Jra] 2a

t [1 (;2 + 2+ 2J ( 2 J]xf 3/2exp y z exp - v If/ dip.
o If/ 4a If/ 4a

In order to simplify (10), one should introduce a new variable [27]

v
2lf/

(j)=-.
4a

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Once we account for (11) and carry out appropriate transformations, (10)
has the form

Qov (;VJ4a 1 ( u
2 JB(; ,y, z, t ) = 3/2 exp - - f3/2exp -OJ - - dto ,

16AaJr 2a 0 to 4(j)

where

~V
U=-

2a'

(12)

(13)

Radius r, is the distance of the heat source from point P at the moment t.
The integral in (12) is the dimensionless coefficient and resembles the
modified Bessel function of the second type of zero order
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(15)
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1 00 1 ( U
2

)Ko(u)=- J-exp -0)-- dto .
2 0w 4w

The longer the heating time t with the moving heat source is, the higher
the value of the integral in (12) is and the higher the temperature at point
P. The integral in (12) does not have the analytical solution and is numeri-
cally calculated. Quasi-steady state solution is obtained when time t ~ 00.

It is clear from the calculation, however, that when the upper integration
limit from (12) satisfies condition [13]

2

~25
4a

the temperature field is already quasi-steady.
One can assume, therefore, on the basis of condition (15) that the quasi­

steady state of temperature distribution is already formed for time

20a
12-

2
• (16)

v

It is clear, therefore, that the quasi-steady state is formed very quickly.
Using the superposition method and solution (1), one can determine tem­
perature distribution formulas for sources of different shapes and heat
fluxes on the surface [13] that also move at constant velocity v.

Equation(12)wasderived for the infinite space. In thecaseof the source withthe
same power Qo that moves on the half space surface in (12), number 8 ap-
pears instead of number 16, since the total power Qo emitted by the source
moves to the half space. In terms of the infinite space, the heat source
power disintegrates into two equal parts. The condition (16) is especially
important in the case where integral (12) is numerically calculated by
means of, for example, trapeze or rectangle method. One can determine,
however, the analytical solution for t ~ 00 using (10). A new variable
should be introduced

u2 =~2 /(4alj/)

the following relationships accounted for

'If =r/ /(4au
2

) ,

2

dlj/=-£du,
2au

and, next, (17)-(19) accounted for in (10), to have

(17)

(18)

(19)
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Q _v~ 00 _u 2 _ L
B(;,y,z,t) = 3/~ e2a fe u

2

du ,
21i AT; 0

where
VT;

p=-.
4a

Once we account that

00 2 p2 I

f
-u -- '\j1i

e u
2 du =_e-2p

o 2

Equation (20) has the following form:

(20)

(21)

(22)

(23)

By comparing (23) to (12) from Ex. 25.7, one can see that both formulas
are identical. In the case of the heat source, which moves on the half space
surface, temperature distribution is formulated in (14) from Ex. 25.7, i.e.
temperature excess Bis twice as large as the excess calculated from (23).

Exercise 25.9 Calculating Temperature Distribution along
a Straight LineTraversed by a Laser Beam

During a welding process, a laser moves over the surface of a thick steel
plate at a temperature of 20°C. Plate absorbed heat flow (power) is 2800
W. Laser moves at a speed of 3.3 mm/s. Calculate temperature distribution
along the straight line, traversed by the laser beam. Assume that the
thermo-physical properties of the plate are as follow: A= 50 W/(m·K), p =
7800 kg/m', c =460 J/(kg·K). Treat the plate as a semi-infinite body, while
the temperature calculate under the assumption that the temperature distri­
bution is in a quasi-steady state.

Solution

For the calculation, apply (14) from Ex. 25.7

(1)
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where

Equation (1) is valid for ((16), Ex. 25.8)

20a
tc.-

2
•

v

(2)

(3)

The point of origin of coordinates ~,y (Fig. 25.8, Ex. 25.7) moves along
with the heat source (the laser beam).

Accounting that in the given case y = 0 and r, = I~I (Fig. 25.10), (1) as­
sumes the form

Temperature diffusivity is

a =~ = 50 = 1.3935 .10-5 m2/s.

cp 460·7800

Quasi-steady state is formed after time

> 20 .1.3935.10-
5 =25 6

t - 2. s.
(3.3.10-3

)

heat source moving at v velocity

P(~)

o

Fig. 25.10.A diagram that illustrates the movement of a laser along axis;

After substitution, (4) assumes the form

B() 2800 [ 3.3.10-
3

( I I)]
~ = 27l"' 5ol~1 exp 2 .1.3935 .10-5 ~+ ~ ,

8.9127 [ ()Je(~)= I~I exp -118.407 ~+I~I .

Temperature distribution is presented in Table 25.2 and Fig. 25.11.

(4)
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Temperature T( c;> is formulated as

T (;) =To + ()(;) =20 + ()(;) .

In the vicinity of the heat source, temperature is much higher than it is at
steel melting; therefore, in this region the solution is strictly theoretical in
character, since the formula employed for the calculation does not allow
for steel melting and the subsequent heating in the liquid state.

Table 25.2. Temperature distribution along axis;

~CJ~~.~[~C]~].TrC]_
-0.1 109.1 ~0.015 614.18 ~0.004 2248.18 uooi 7053.35 p.006 378.74
-0.075 138.84 ~0.01 911.27 ~0.003 2990.9 p.002 2795.14 p.007 262.65
-0.05 198.25 ~0.008 1134.09 ~0.002 4476.35 ~.003 1479.98 P.008 187.55
-0.025 376.51 ~0.006 1505.45 ~O.OOI 8932.7 p.004 884.09 10.009 137.53
:.0.020 46~64 f-0.005 180~.54 ~)'oOO 00. p.~05 565.~1.r.Ol0103.47

From the analysis of results presented in Table 25.2, one can see that the
temperature behind the moving heat source decreases at much slower rate
than it does in the region located in front of the source that moves at con­
stant velocity.

1800.,0......------------------.

T rOC]

1500,0

900J)

600J)

30CtO

0,00 0,05 g[n1] 0,10

Fig. 25.11. Temperature distribution along the laser-traversed straight line

Figure 25.11 presents calculated temperature distribution in the distance
function of a given point from the heat source. One can see that the plate
temperature abruptly decreases as it moves away from the source, espe­
cially in the region located in front of the source.
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Exercise 25.10 Quasi-Steady StateTemperature
Distribution in a Plate During the Welding Process;
A Comparison between the Analytical Solution and FEM

Determine distribution of isotherms in quasi-steady state during butt weld­
ing of metal plates, which is in thickness 6 = 6 mm. The electrode moves
at 1 mm/s. The welding parameters are as follow: U = 20 V, current inten-
sity I = 180 A, heating efficiency TJ = 0.6. Thermo-physical constants of
the steel are A = 41,9 W/(m·K), C = 570 J/(kg·K), p = 7350.8 kg/m', Heat
exchange with surroundings takes place through both plate surfaces when
the heat transfer coefficient is a = 4.19 W/(m2

•K). Initial temperature of
the metal plate To equals the temperature of the medium Tcz =20°C. Also
determine temperature distribution along the straight line traversed by the
electrode and along the parallel line to a welding axis, which lies at a dis­
tance y = 1 cm. Use FEM and the approximate (15) from Ex. 25.7 to de­
termine temperature distribution.

Solution

ANSYS programs will be employed to determine the isotherms. Thermal
arc power IS

Q== U117 == 20 ·180·0.6 == 2160 W . (1)

(2)

B

Temperature distribution in a quasi-steady state is defined by (15) from
Ex. 25.7, which in the given case assumes the form

• v~ ( 2 JQ -- v 2a
B==T-T ==--e 2aK r -+-

cz 2JrA6 0 t 4a2 .,16 '

where ~ = ~;2 + l .Once (2) is replaced, one has

2160 ~;~~lfK [~;2 2 O.OOe 2· 4.19 J
2.3.14.41.9·0.006

e
0 Y 4.(1.1O-st + 41.9·0.006 '

(}=1368.135·e- SOq Ko(50332~;2 +l), (3)

where x, y and ~ are expressed in m. Temperature excess () [OC] is pre­
sented in Table 25.3. Temperature excess ()was calculated by means of the
Mathcad program [19]. Next, temperature distribution was determined us­
ing the ANSYS program [1].
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Table 25.3. Temperature excess in the plate ()rOC]

SJcm] ~=20 _= .-15_..._.. -1 0w.~. __5~~=.w.w~::l-_~~l~.~._..=L~.~~~~_.w'M.~'=
y =0 498.70 583.11 720.28 1012.7 1281.3 1528.2 2014.0 2693.3 781.76 210.62 63.21
~ 1 492.2 572.87 700.96 956.12 1158.8 1308.0 147~.5 1269.4 575.81 181.45 57.44

Calculations were done under the assumption that temperature field is
three-dimensional. It was assumed that the length of the plate is H = 0.6 m,
while the width W = 0.6 m. Electric arc was treated as a linear heat source
with a power iJ[=Qo/J= 2160/0.006 = 360000 W/m. It has been as­
sumed, for the calculation with FEM, that the arc is a volumetric source,
which measures 5x5x6 mm and whose center of gravity is located at the
point of origin of coordinates (0,0,0). Once the new coordinate is intro­
duced

; =x-vt

the transient heat conduction (4) from Ex. 25.7 has the form

c (aT _vaT) =A.-(fiO + flo +a
20).

p at a~ a~2 8y2 az2

(4)

(5)

In the new coordinate system (~,y,z), the electrode is stationary, while
the plate moves in the direction of ~ axis at a speed of -v (Fig. 25.12).

electrode

a
-v..

Fig. 25.12. Longitudinal cross-section of a plate with an assumed coordinate sys­
tem

Calculation results for temperature distribution on the plate surface are
presented in Table 25.4. Due to the symmetry, the temperature field was
determined in 1/4 of the plate volume, with dimensions HxW/2xJl2 =
0.6xO.3xO.003 m.
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a)
ANSYS 5.5.3
NOV 29 2001
11:55:18
NODAL SOLUTION
TIME=130
TEMP (AVG)
RSYS=O
Power:-Gr:-aphics
EFACET=l
AVRES=Mat
SMN =20.058
SMX =2707
_

20.058
_ 318.65-~~~:~~~
- 1214--~~~;o-~~~~
- 2707

spew

b)
ANSYS 5.5.3
NOV 29 2001
11:48:46
NODAL SOLUTION
STEP=l
SUB =600
TIME=600
TEMP (AVG)
RSYS=O
Power:-Gr:-aphics
EFACET=l
AVRES=Mat
SMN =20.125
SMX =2714=;~9~~~9
- :i::~~;=1217

LTillJ] i~i~

iii ~~i~
- 2714

spaw

Fig. 25.13. Distribution of isotherms around anelectrode: a) t = 130s; b) t =600 s
- quasi-steady state; the presented plate fragment measures 0.35 x 0.11 m; the
electrode is located on the bottom edge at a distance of 0.05 m from theright-hand
side
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Table 25.4. Plate temperature excess e [DC] determined by means of FEM for a
quasi-steady state; z = 0,003 m

- 20 -15 -10 - 5 - 3 - 2 -1 0 1 2 3
y =0 498.70583.11720.281012.71281.31528.22014.02693.3781.76210.6263.21
~ =1 492.2 572.87700.96956.121158.81308.01473.51269.4575.81181.4557.44

Temperature distribution was calculated in a quasi-steady time by assum­
ing that aT/at = O. Results given in Table 25.4 are for t = 600 s when aT/at
~ O. The goodness of fit for the results obtained by means of (2) and FEM
is very good (Tables 25.3 and 25.4). The distribution of isotherms on the
plate surface, determined by means ofFEM, is presented in Fig. 25.13.

1200...-------------------.,

T[Oe]

t[s] 600400200

-------------------------

OL....-_--"'--__~_ ___L____..L....__ ____L...._ ____'

o

,
~

I
I

I
I,,,

400 '

800

Fig. 25.14. Plate temperature history at points PI and P2 located, respectively, at a
distance c; =1 cm and c; = -5 em from the electrode axis, Yt = Y2 = 0

The analyzed region HxW/2x&2 was divided into 7200 (120x60x1)
elements. To evaluate how quickly the quasi-steady state is formed,
calculations were also carried out during the transient state, assuming that
Tez = 20°C, T (~,y,z,O) = To = Tez = 20°C. The history of temperature excess
() = T - T at pointsez

~(~l'Yl'Zl): ~1 =0.01 m; Y1 =0.0 m and Zl =8/2=0.003 m,

~(~2'Y2,Z2): ~2=-0.05m; Y2=0.Om and z2=8/2=0.003m,
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in the function of time is presented in Fig. 25.14. From the analysis of
temperature time transients at points PI and P

2
presented in Fig. 25.13, one

can conclude that the quasi-steady state of temperature is already formed at
time t> 200 s.

Literature

1. ANSYS 5.5.3(1998). ANSYS Inc., Urbana
2. Baehr HD, Stephan K (1994) Warme-und Stoffiibertragung. Springer Berlin
3. Barber JR (1967) Distribution of heat between sliding surfaces. J. Mech. Eng.

Sci. 9: 351-354
4. Becker M (1986).: Heat Transfer. A Modem Approach. Plenum Press, New

York - London
5. Becker M (2000) Nonlinear transient heat conduction using similarity groups.

Transactions of the ASME, J. of Heat Transfer 122: 33-39
6. Bos J, Moes H (1995) Frictional heating of tribological contacts. Transactions

of the ASME, J. Tribology 117: 171-217
7. Carslaw HS, Jaeger JC (1959) Condution of Heat in Solids. Ed. 2 Oxford

University Pres, London
8. Dowden JM (2001) The Mathematics of Thermal Modeling. An Introduction

to the Theory of Laser Material Processing. Chapman & Hall/CRC, Boca
Raton-London

9. Francis HA (1970) Interfacial temperature distribution within a sliding
hertzian contact. ASLE Trans. 14: 41-54

10. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for
welding heat sources. Metall. Trans. 15B(6): 299-305

11. Goode SW (2000) Differential Equations and Linear Algebra. Prentice Hall,
Upper Saddle River

12. Havalda A (1963) Thermal processes in electrical welding (in Polish). WNT,
Warsaw

13. Hou ZB, Komanduri R (2000) General solutions for stationary/moving plane
heat source problems in manufacturing and tribology. Int. 1.of Heat and Mass
Transfer 43: 1679-1698

14. Industrial Thermics. User's Guide (1996). Visual Analysis GmbH, Munchen
15. Jaeger JC (1942) Moving sources of heat and the temperature at sliding con­

tacts. Proc. Roy. Soc. NSW pp. 203-224
16. Janke E, Emde F, Losch F (1960) Tafeln hoherer Funktionen. Issue 6.

Teubner Verlag, Stuttgart
17. Kasuya D, Yurioka N (1993) Prediction of welding thermal history by a com­

prehensive solution. Weld. Journal 72(3): 107-115
18. Ling FF (1973) Surface Mechanics. Wiley-Interscience, New York
19. MathCad 2000 (2000), MathSoft, Cambridge



Literature 797

20. Moore JE, Bibby MJ, Goldak JA, Santyr S (1986) A comparison of the point
source and finite element schemes for computing weld cooling. In Nippes EF,
Ball DJ (eds) Welding Research: The State of the Art. ASM, Miami, pp. 1-9

21. Myers PT, Uyehara OA, Borman GL (1967) Fundamentals of heat flow in
welding. Welding Research Council Bulletin 123: 1-46

22. Mysliwiec M (1972) Thermo-mechanical fundamentals of welding (in Polish).
WNT, Warsaw

23. Pilarczyk J (1983) Thermal phenomena in the process of welding (in Polish).
In: Engineer's Guide. Welding Technology Vol. I. WNT, Warsaw, pp. 32-55

24. Radaj D (1992) Heat Effects of Welding. Springer, New York
25. Schneider PJ (1973) Conduction. Section 3. In: Rohsenow WM, Hartnett JP

(eds) Handbook of Heat Transfer. McGraw-Hill, New York
26. Shaw MC (1984) Metal Cutting Principles. Oxford University Press, Oxford
27. Sluzalec A (1969) Metallurgic and thermal welding processes. Part II. Ther­

mal welding processes (in Polish). Czestochowa University of Technology,
Czestochowa

28. Thompson WJ (1997) Atlas for Computing Mathematical Functions. Wiley­
Interscience Publication, New York

29. Tian X, Kennedy FE (1994) Maximum and average flash temperatures in slid­
ing contact. Transactions ASME, J. Tribology 116: 167-174

30. Wegrzyn J (1971) Thermal and metallurgical welding processes (in Polish).
Silesian University of Technology, Gliwice

31. Zill DG (1986) Differential Equations with Boundary-Value Problems. Prin­
dle Weber & Schmidt, Boston

32. Baghranskij KW, Dobrotina ZA (1968) Theory od welding processes.
Kharkov Univ. Press, Kharkov



26 Melting and Solidification (Freezing)

Melting and solidification are the two phenomena that frequently occur in
nature and in many technological processes. Good examples of the phe­
nomena that occur in nature are ice melting and water freezing, ground
freezing (the uppermost surface layer), solidification of vulcanic lava and
the melting processes that evolve deep under the earth surface. Examples
of the phenomena that occur in many technological processes are the freez­
ing and thawing of food products, casting, production of plastic products,
welding, electrolytic machining and thermal energy accumulators, which
make use of the metal or wax melting or freezing phenomena. In the cases
when pure metals, ice or eutectic alloys undergo a phase change, one can
observe a clear cut line between a liquid and a solid and a definite melting
point t

m
•

In glass materials, the transition from a liquid to a solid phase is gradual,
since a sudden change in properties does not occur during the transition
from one phase to the other. Figure 26.1 gives examples of phase changes
that occur on a half space surface. For instance, solidification process dur­
ing ice production or cast freezing is shown in Fig. 26.1a.

a)
T

s(t)

b)
T

c)
T

o x o x o x

Fig. 26.1. Phase changes on the surface of a solid: (a) solidification (freezing), (b)
decomposition, (c) ablation
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In terms of the thermal or chemical decomposition, the layer of the de­
graded material is not removed from a body surface (Fig. 26.1b). A good
example of decomposition is the carbonization of wood or fibre­
strengthened plastics. Fig. 26.1c presents a case of ablation, when a layer
of a melted material is being immediately removed from a surface of a
solid (e.g. glass melting or Teflon sublimation).

It is assumed that in all three cases presented in Fig. 26.1, the phase
change occurs at constant temperature T

m
, as it does, for instance, in the

cases of pure metals or water. During the phase change, a substancial
change in the enthalpy of the substance occurs. If the enthalpy of a solid
phase is designated by li, [J/kg], while a liquid phase by hi [J/kg], then a
change in enthalpy during the transition from a solid to a liquid phase is

(1)

A change in enthalpy hsi is also called the latent heat of melting and fre­
quently denoted by a symbol L. During the melting of a material, the heat
must be carried to a body, while during solidification (freezing), carried
away from the body. Heat is absorbed or given off on a phase boundary,
whose position changes in time. In the case of freezing, a liquid changes
into a solid and the change in enthalpy is

(2)

Negative values of his mean that at the phase boundary heat moves to­
wards the body, which is being solidified or undergoes freezing. If L is the
latent heat of melting or freezing, then

hsi =-his =L > 0 . (3)

Heat balance equation, which describes the solidification process (freez­
ing), has the following form:

A a1; AI - A aT. AI =d(mlAs )
I ox s s ox s dt

(4)

(5)

where dm; = PsAds is the increment of the frozen mass from the liquid
phase, which occurred at time dt, while symbol A is the surface area on
which the phase change occurs. If we allow that

d(mlAJ =h dmls=h d(PsAs) = h Ads
dt is dt is dt P, is dt'

then (4) can be written in the form
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b)

T

set) ds

T
A

o x o x

(7)

(6)

Fig. 26.2. Diagram of solidification (a) and melting (b) of semi-infinite body; set)
- location of a phase boundary, ds - increment of a solid phase (a) or a liquid
phase (b) in time (t, t + dt)

A or; I - A or: I = h ds
7 a saPs Is d. .

x x=s X x=s t

By means of (6), we can determine the position of boundary set) be­
tween the solid and the liquid phase. Later, latent heat of melting h

s1
= =L

> 0 will be applied, irrespectively of the process of solidification or melt­
ing. By allowing for (3) in (6), one obtains

_ 1 aT; I 1 ar: I = h ds
/'vI + /'vs Ps sl •ax x=s ax x=s dt

If we are going to move the first term of the equation above to its right­
hand-side, this will signify that the heat flow, which moves towards the
solid phase equals the sum of the heat flow, which moves towards the liq­
uid and the heat flow that develops as a result of liquid freezing (Fig.
26.2a). In the case of melting (Fig. 26.2b), the heat flow, which moves to­
wards the solid, consists of a heat flow that moves from the liquid side mi­
nus the heat flow used for the melting of the solid

- AA or; I =- AA or: I - Ap h ds (8)
7 a s a s sl d. ·

x x=s X x=s t

After transformations of (8), one has
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-A, a1; I + A, aT, I =-p h ds (9)
I a s a s sf d. .

x x=s X x=s t

From the comparison of (7) with (9), it follows that both, the process of so­
lidification (freezing) and the process of melting can be described using a
single formula

-A, a1; I + A, aT, I =± h ds
I a saPs sf dt '

x x=s X x=s

(10)

where symbol "+" refers to solidification, while symbol "-" to melting.
The phenomenon of liquid freezing and melting on the half space sur­

face was the subject of work of J. Stefan [12]. Stefan has determined the
thickness of the frozen liquid layer set)by assuming that half space surface
temperature To < T

m
is constant. Additional assumption, which simplified

the problem, was that constant temperature of a liquid equaled the melting
point T

m
• Heat conduction phenomenon in the liquid phase was taken into

account by F. Neumann [5].
In many engineering problems, it is important to determine the time, af­

ter which the total solidification or freezing of a product occurs. Such
problem was solved by R. Plank [10], who assumed that in the layer of a
solidified or a melted material the temperature distribution is in a steady­
state, i.e. he neglected the heat accumulation in the developing layer of a
solid or liquid phase with thickness set).

K. Nesselmann [9] and H. Martin [8] also worked on the same type of
quasi-steady solutions. The accuracy of quasi-steady solutions is higher for
larger enthalpies h

sI
' when heat released during liquid freezing or absorbed

during the melting of a solid plays a greater role in the course of the occur­
ing phenomenon than the transient processes of heat accumulation in the
developing layer of a solid or a liquid phase. Such situation occurs during
water freezing, when water displays a high latent heat of freezing h.,

Ablation on the half space surface is analyzed in paper [13] with a con­
vective boundary condition of 2nd kind, i.e. when there is a step-increase
in heat flux. Ablation is used in thermal protection systems of bodies that
are exposed to very high temperatures such as, for instance, space shuttles
or jet nozzles. Large heat flows are transferred by a melting material,
which is being immediately removed from the surface of an element due to
large shear forces caused by objects or combustion gases, which move at
high speed. The insulation of other construction elements is ensured at the
expense of losing parts of thermal shields. Heat transfer problems that
arise during melting or solidification (freezing) processes are the object of
discussion in references [1, 3,4,6, 11, 14].
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In this chapter, we will discuss in greater detail the process of solidifica­
tion (freezing) on a half space surface, assuming that the temperature of
the inner, deeper buried layers of a medium remains constant for x ~ set)
and equals the melting temperature T We will also discuss a more com­
monplace problem, in which the process of heat conduction in a solid and
liquid phase will be accounted for as well as the approximate quasi-steady
state method for solving heat conduction problems, in which a phase
change occurs. Using the second of the aforementioned methods, we will
determine the freezing times for simple-shape food products and basic pa­
rameters, which characterize the ablation process with boundary conditions
of 2nd and 3rd kind.

Exercise 26.1 Determination of a Formula which
Describes the Solidification (Freezing) and Melting
of a Semi-Infinite Body (the Stefan Problem)

Derive formulas, which describe solidification (freezing) and melting of a
semi-infinite body (the Stefan problem [12]), assuming that surface tem­
perature is To. In the case of solidification, assume that the temperature of a
liquid is constant and equals the melting temperature T

m
; do the same in the

case of melting for the solid phase. Derive formulas for temperature distri­
bution in a solid phase and liquid phase for the processes of solidification
and melting, respectively. Also derive dependencies for the thickness of a
solidified or melted layer in the function of time and the rate of phase
boundary relocation.

Solution

Solidification and melting of semi-infinite body is illustrated, respectively
in Fig. 26.3a and 26.3b.

a. Solidification (freezing) ofa semi-infinite body (Fig. 26.3a)

Temperature distribution in a solid phase is described by the heat conduc­
tion equation

et, a2r:
-=a - O<x<s(t), t>O,at s ax2

'

by boundary conditions

(1)

(2)
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(3)

by initial condition

t > 0,

and the condition at the solid-liquid boundary

et; I dsAs- =Pshs/-'ax x=s dt

while

(4)

(5)

(6)

a)

T

b)

T

o s(t) x o s(t) x

(7)

Fig. 26.3. Solidification (a) and melting (b) of a semi-infinite body, s(t) -the
thickness of a solidified (frozen) or melted layer

The solution of the heat conduction (1) for a half space is the function

T:=Ta+cerf[ ~J'2vQ st

which satisfies condition (2). By substituting (7) into condition (3), one ob­
tains

(8)
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If temperatures T
m

and To in (8) are constant and do not depend on time,
then the argument of function erf must be independent of time. If the ar-
gument of function erf is equal to a certain constant f3

hence,

_8_=/3
2M '

s=2PM,

(9)

(10)

(14)

then (8) can be written in the form

Tm = To + Cerf/3 . (11)

Once constant C is determined from (11) and substituted into (7), the
temperature distribution in the solid phase is formulated as

while constant /3 is determined from (5).
From (10) it follows that

: =pfi· (13)

It is easy to calculate heat flux on the phase boundary A/8TsI8x)L=s once
we account that

d (erfx) 2 _x2
--.,;...-~=-e

dx J; .

Accounting for expressions (12) and (14), one has

As (8r:JI =As(Tm-To) 2e-P
' p = As(Tm-To)e-

P
' • (15)

8x x=s J;erffJ 8 J;M erffJ

Substituting (13) and (15) into (5) yields

peP' erfp = S;; , (16)

where Ste is the Stefan number

(17)
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In order to determine j3for the assigned value of Stefan number Ste, one
should solve a non-linear algebraic (16) with one of the known methods,
e.g. interval search method, interval bisection method, or secant method.
Transient j3in function Ste is presented in Fig. 26.4.

1,2

f3
1,0

0,8

0,6

0,4

0,2

0,0

° 2 3 4 5 Ste, 6

Fig. 26.4. The root of (16) in the Stefan number function Ste,

Knowing the value of {3, one can determine temperature distribution
T/x,t) and set). One can also calculate solidification (freezing) time for a
layer with the assigned thickness s = d. Therefore, from (10), one has

d 2

td = - -2 - . (18)
4/3 as

Time t
d

is directly proportional to the square of the layer's thickness d and
inversely proportional to the temperature diffusivity of the solid.

b. Melting (Fig. 26.3b)

Temperature distribution in the liquid phase is described by the heat con­
duction equation

or; a2r;

-=a--
at I ax2 '

boundary conditions

O<x<s(t),

t > 0,

(19)

(20)
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initial condition

~I =Tl x=s m »
1>0,

x>O

(21)

(22)

and the condition at the liquid-solid boundary ((10), Chap. 26)

et,I dsA,- =p,hs' - ' 1>0,ax x=s dt

while

s/t=O =0.

(23)

(24)

Once problems (19)+(24) are solved, as in the case of solidification, one
obtains

where fJ is the root of equation

R {32 f~R _ Sle,
pe er jJ - .[;'

while

1 >0, (25)

(26)

(27)

The thickness of the liquid layer set) is calculated from formula

s(t)=2f3;;;;t. (28)

(29)

It is easy to determine from (28) the melting time of a layer with a thick­
ness s =d

d 2

td =--2-·

4fJ 0,

One can observe that (16) and (26) have a similar form. Once the Stefan
number Ste, is calculated from (27), the value fJ can be read out from Fig.
26.4 or Table 26.1.
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Table26.1. fJ of (16) or (26) in the Stefan number function Ste,

f3 Stes -L_~~---il__~ Ste_s _

0.01 0.0002 0.39 0.33700.77 1.7870
0.03 0.0018 0.41 0.37650.79 1.9240
0.05 0.0050 0.43 0.41890.81 2.0700
0.07 0.0098 0.45 0.46440.83 2.2250
0.09 0.0163 0.47 0.51300.85 2.3910
0.11 0.0244 0.49 0.56500.87 2.5690
0.13 0.0342 0.51 0.62050.89 2.7580
0.15 0.0457 0.53 0.67980.91 2.9610
0.17 0.0589 0.55 0.74310.93 3.1770
0.19 0.0740 0.57 0.81070.95 3.4080
0.21 0.0908 0.59 0.88270.97 3.6560
0.23 0.1096 0.61 0.95950.99 3.9210
0.25 0.1303 0.63 1.0410 1.01 4.2040
0.27 0.1531 0.65 1.1290 1.03 4.5080
0.29 0.1780 0.67 1.2220 1.05 4.8340
0.31 0.2050 0.69 1.3210 1.07 5.1830
0.33 0.2343 0.71 1.4260 1.09 5.5580
0.35 0.2660 0.73 1.5390 1.11 5.9600
0.37 0.3002 0.75 1.6590

Exercise 26.2 Derivation of a Formula that Describes
the Solidification (Freezing) of a Semi-Infinite Body
Under the Assumption that the Temperature of a Liquid
is Non-Uniform

Initial temperature of a liquid measures T
p

and is higher than the melting
temperature T

m
• The surface temperature of a semi-infinite space was sud­

denly lowered to the temperature To (Fig. 26.5), lower than the temperature
T

m
• Determine temperature distribution in the solid and liquid phase and

the position of the boundary between the solid and liquid phase.

Solution

This problem was solved by F. Neuman [5] and also presented in the work
by H. S. Carslaw and J. C. Jaeger [2]. Temperature distribution in the solid
phase is described by the heat conduction equation

et; a2r:
-=a-at s ax2

'
O<x<s(t), t >0 (1)
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T

To

set)

o x

Fig. 26.5. Solidification (freezing) on the half space surface

and boundary conditions

I: Ix=s =r;

1 >0,

1 >0.

(2)

(3)

(4)1 >0,S(/) < x < 00,

Temperature distribution in the liquid phase is also described by the heat
conduction equation

et, a2T;
-=a--al I 8x2 '

by boundary conditions

1:/ =Tl x=s m : 1>0, (5)

1>0 (6)

and by initial condition

x>O. (7)

Heat balance equation is also satisfied at the phase boundary x =s

A, aT, I - A, aT; I = h ds.
s ax 1 ax P, sf dt

x=s x=s

(8)
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Temperature distribution in the solid phase, which satisfies boundary
condition (2), has the form

t; (x,t) = To + Aerf(xl~4a/),
while for liquids the solution, which satisfies condition (6), has the form

(9)

1; (x,t) =Tp + Berfc(xI~4alt )· (10)

From condition (3) it follows that solution (9) can satisfy such condition, if
the argument of function erf is a constant

s(t)
13=­

2M'
(11)

hence, the expression that defines the position of the phase boundary is ob­
tained

s(t)=2PM ·

Once we account for (9) and (11), condition (5) assumes the form

To + Aerfj3 =Tm '

while after allowing for (10) and (11)

Tp + Berfc[pJ¥) =Tm •

(12)

(13)

(14)

Constants A and B, determined respectively from (13) and (14), have the
form

(15)

(16)

By substituting constant A into (9) and constant B into (10), the expression
for temperature distribution in the solid and liquid phase is obtained
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(17)

(18)

Once (12), (17) and (18) are substituted into (8) and all transformations
carried out, one has

(19)

where the Stefan number Ste is formulated as
s

(20)

The appropriate value of constant fJ is obtained for the assigned value
Ste, once the non-linear algebraic (19) is solved. Knowing the value of fJ,
one can calculate set), Ts(x,t) and ~(x,t) successively.

Exercise 26.3 Derivation of a Formula that Describes
auasi-Steady-State Solidification (Freezing)
of a Flat Liquid Layer

Determine basic dependencies that describe the solidification (freezing)
process in a quasi-steady-state of a liquid layer with thickness d. Assume
that the plate is being symmetrically cooled on both sides. Heat transfer
coefficient on the plate surface a is constant.

Assume that temperature distribution in the solid phase is in a steady
state. Temperature of the liquid equals the temperature of melting T

m
­

Compare the obtained approximate solution with the analytical solution for
a~oo.
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Solution

Such method of analysis for the processes of solidification and melting,
based on the assumption that the solidified or melted body layer has a
steady-state distribution, is described as a quasi-steady state. The accuracy
of the quasi-steady-state analysis is usually very good, since the latent heat
of melting h, or freezing hls is much higher, with respect to the absolute
value, than the specific heat of a liquid or a solid. Therefore, transient heat
accumulation in a layer with thickness set) does not play a greater role.
Moreover, solidification or freezing are usually long-lasting processes;
therefore, temperature distribution in a solidified layer of a material re­
sembles a steady-state distribution.

A diagram of the analyzed problem is presented in Fig. 26.6. Due to the
symmetry, only a half of the plate will be analyzed below.

T
.t4--------~

n

thermalinsulation
~ or symmetry axis

.X

Fig. 26.6. Solidification (freezing) of a flat liquid layer; temperature distribution in
the solid phase is in a quasi-steady-state

Temperature distribution is defined by the heat conduction equation

d
2

T, =0 (1)
d x' '

when boundary conditions are

1 or: I - (T I - T ) (2)/l-s - a s x=o cz'ox x=o
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and heat balance equation on the phase boundary x = s is

A aT, I - h ds
s a - Ps sl d. '

x x=s t

Slt=o =o.
Once (1) is twice integrated, one has

J: (x ) =A + Bx ,

while, after (5) is substituted into conditions (2) and (3), one obtains

A=Tm -Bs,

(4)

(5)

(6)

If one accounts for constants (6) in (5), then temperature distribution in the
solidified layer is formulated as

(7)

By substituting (7) into (4), the following differential equation is ob­
tained

ds a(Tm-~z)ph -=-----.,;"....
s sf dt as'

1+-
As

which, once a new variable is introduced,

a
z=I+-s

As

has the form

dz a
2 v: -~z )

z-=----
dt AsPshsl '

d( Z2/2) a 2 (Tm- T.,z)

dt AsPshsl

(8)

(9)

(10)
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As a result of the separation of variables and the integration of the equation
from s =0 for t =0 to s =set) for t, one obtains

2 l+{-S 2 (T - T )z a m cz- = t
2 1 ASPshs1 '

(11)

The thickness of the solidified (frozen) layer determined from (11) is
expressed as

(12)

When a ~ 00, then boundary condition of 3rd kind changes into the condi­
tion of 1st kind; that is, the temperature of the half space surface Tcz is as­
signed. From (12), one obtains then

where Ste = cJTm - Tc)/hs1 is the Stefan number.
Accounting that ((9), Ex. 26.1)

fJ=_s­
2N

Equation (13) can be transformed into a form

s(t) ~Stes/3=-= -
2M 2'

(13)

(14)

(15)

The above formula allows to make an approximate determination of the
root of (16) in Ex. 26.1

(16)

for small Stefan numbers: Ste, < 0.5. Fig. 26.7 shows how the root fJ calcu­
lated from (16) compares with the root determined from the approximate
(15). From the analysis of this figure, it is clear that condition Ste < 0.5 is
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well satisfied in the cases of water freezing or the freezing of substances,
which contain a lot of water, such as food products.

If we assume the following data for water (1) and ice (s), Tcz = -20oe,P,

= 917 kg/m', Pi = 1000 kg/m', hsi = 333 kJ/kg, cs = 2.05 kl/tkg-K), As = 2.2
W/(m·K) and T; = O°C, then we will obtain the following values of Stefan
number Ste:

s

c (T - T) 2.05[0 - (-20)J
Ste = s m cz = =0.1231.

s ~l 333

0.8...----------------

""""'"

,,"
,,",,,,,,,,,,,.,

~

~

f3

0.4

0.6

0.2

0.2 0.4

eq. (16)

eq. (15)

0.8 Ste, 1.0

Fig. 26.7. Comparison of root f3 determined from the analytical (16) and approxi­
mate (15) equations

(17)

It is evident, therefore, that the quasi-steady-state analysis of the food
freezing and defrosting phenomena is fully justified. The freezing time (so­
lidification) i, of a two-sided cooled product with thickness d (or with
thickness d12, cooled on one surface and insulated on the other) is deter­
mined from (11) once it is assumed that s = dl2

tz = Pshs' (l.. d +.!. d
2 J.

t; -~z 2 a 8 As

The product Pshsi =qz is a unit latent heat of freezing expressed in JIm3
,

whose values for different food products can be found in literature on re­
frigerating engineering.
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Exercise 26.4 Derivation of Formulas that Describe
Solidification (Freezing) of Simple-Shape Bodies:
Plate, Cylinder and Sphere

Derive formulas, which describe solidification (freezing) of simple-shape
bodies (plate, cylinder, sphere) by assuming that temperature field is in a
steady-state in a solidified (frozen) layer. Also assume that the product is
enclosed in a thin-wall casing (package) with a thickness g, through which
the heat is carried away to surroundings at temperature Tcz (Fig. 26.8).

T

x

r~ g

o r

Fig. 26.8. Solidification of a body in a simple-shape casing with thickness g

Solution

Solidification process is treated as a steady-state process; therefore, the

heat flow Q, which develops during the solidification of a liquid at tem­

perature T
m

, passes to surroundings. The heat flow, which forms during the
liquid solidification on the liquid-solid boundary r = x can be written in the
form

. dx
Q=-Pshs1A(x)-.

dt

Symbol "-" results from the negative value of the derivative dx/dt.

The heat flow Q, which is carried away to surroundings, can also be

calculated from formula

(2)
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In (1), A(x) is the surface area on the phase boundary. This area is for­
mulated as

- A(x) =HW
- A(x) = 2JrxL
- A(x) = 4Jrx2

for the plate (H - plate height, W - plate width),
for the cylinder (L - cylinder height),
for the sphere.

Heat transfer coefficient k refers to the surface area A(r), which is de-z z
fined by the following formulas:

- A(r)=HWz

- A(r) = 2Jrr Lz z

- A(r) = 4Jrr 2

z z

for the plate,
for the cylinder,
for the sphere.

Heat transfer coefficient k has the form
z

(3)

where

(4)

is the component of the heat transfer resistance v.: = l/k
zew

) that results
from thermal wall resistance and thermal resistance from convective heat
exchange on the outer surface.

The values of exponent n are as follow: n =0 for the plate, n =1 for the
cylinder and n = 2 for the sphere.

Thermal resistance of the solidified (frozen) layer with thickness (r - x)
is

~ =~(1-~) for the plate,
k; As rz

~ =~ In(rz J for the cylindrical layer,
kx As x

.l.=~(rz -lJ for the spherical layer.
k; As x

(5)

(6)

(7)

Once we equate (1) and (2), we will obtain the following differential equa­
tion:
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(8)

If we allow for (3)-(7) and corresponding surface areas A(x) and A(r) in
(8), we will obtain the following differential equation:

(9)

where, n = 0 for the plate, n = 1 for the cylinder, n = 2 for the sphere.
Due to different forms of kz(x), the equation above will be separately in­

tegrated for each element.

a. Plate

Once (3) and (5) are accounted for in (9), the variables separated and then
integrated within appropriate limits, one has

As a result of the integration, one has

(10)

t; -~z---to
Pshs1

(11)

Solidification time (freezing) for the whole plate is obtained once x = 0
is substituted into (11)

(12)

b. Cylinder

Once (3) and (6) are accounted for in (9), the variables separated and then
integrated within appropriate limits, one obtains

(13)

Once we determine integral
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f 1 2 fl 2 1 1 2 1 2xlnxdx =-x lnx- -x ·-dx =-x lnx--x
2 2 x 2 4

819

(14)

and integrate (13) while accounting for (14), we have

!(~lnr -~lnx+!~+_I_J~_!(!~+_I-Jr = Tm-1;,z t. (15)
2 As z As 2 As s.: rz 2 2 As kzew z Pshs1

We can determine solidification time (freezing) i, for the whole cylinder
by substituting x = 0 into (15)

1 Pshs1 (1 rz

2

rz J (16)
t, =2 t; - Tcz 2As + k

zew
•

c. Sphere

Once (3) and (7) are accounted for in (9), the variables separated and then
integrated within appropriate limits, one has

(17)

After integration, one obtains

(!~_!~+!~J _! r} _!~= Tm-1;,z t. (18)
2 As 3 Asrz 3 rz

2«: 6 As 3 s.: Pshs1

If one assumes that x = 0 in (18), one obtains the freezing time for the
sphere tz

(19)

(20)

From the comparison of (12), (16) and (19), one can see that the freez­
ing time for the plate (n =0), cylinder (n = 1) and sphere (n = 2) can be
expressed using a single formula only

1 Pshs1 (1 rz

2

rz J
t, = n +1t; - 1;,z 2As + k

zew
•

Equation (20) can also be written in the form

1 1 rz
2

( 1 1 J
tz = n+l Stes -;;: 2+ Biz '

(21)
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Bi = kzewrz
Z A

s

In technical literature, for example in [4], (20) is usually written in the
form given below, assuming that g =0

tz = Pshs1 (R d2

+Pd) , (22)
t; -~z As a

where,

p= 1
2(n+l)'

R = 1 d d 2
( )

an = rz •

8 n+l
(23)

Symbol d is the thickness of the two-sided cooled plate and the diameter of
the cylinder or a sphere.

Equation (22) is of significance to package-free frozen products, when g =O.
The values of coefficients P and R are given in Table 26.2.

Table26.2. Values of coefficients P and R calculated by means of (23)

Element P R
·...~....NN'~~~.·,.·~·NNN....NW'<M.~.u._·~...~""""'H'.'oVJVW'NNV....N"~

Plate 1/2 1/8
Cylinder 1/4 1/16
SEhere 1/6 1/24

For complex-shape products, appropriate values of coefficients P and R
can be found in [4]. Solidification time (freezing) t, determined from (22)
is the minimum time, since the initial temperature of the body can be
higher than the temperature of solidification Tm• Equation (22) is valid for
smaller values of Stefan number Ste due to the fact that steady-state tem­
perature distribution was assumed for the layer of the frozen product. For
water and food products with a large water content, e.g. fruits, vegetables,
meat, fish, fruit juices, ice cream, condition Ste < 0,5 is met and (22)
yields satisfying results.

Exercise 26.5 Ablation of a Semi-Infinite Body

Present basic dependencies that describe the ablation process on the sur­
face of a semi-infinite body, assuming that the boundary condition of 3rd
and 2nd kind are assigned on the surface of a solid.
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Solution

Initial temperature of the semi-infinite body T
p

is lower than the tempera­
ture of melting T

m
• Temperature distribution in a semi-infinite body with

the boundary condition of 3rd kind is defined by the heat conduction equa­
tion (Fig. 26.9a)

er a2T
-==-a -at s ax2

'

by boundary conditions

aTI [ ]-A - -a T -T
S a - cz L=S(I)'

X x=s(t)

and by initial condition

a) rl.... __ b) rl.... __
I I

t: I
I I-
I I~Tm
I I
I I
I I
I I
1...... -- 1...... --

s(t) s(t)

0 x 0 x

(1)

(2)

(3)

(4)

Fig. 26.9. Diagram of ablation on the surface of a semi-infinite body: a) boundary
condition of 3rd kind, b) boundary condition of 2nd kind

The solution to problem (1)-(4) is given in paper [13]. First the body
surface is heated from the initial temperature T

p
to temperature T

m
• The

heating time t
m

of the half space surface from temperature T
p

to tempera­
ture Tm can be determined using (9) for the half space temperature derived
in Ex. 14.4.
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Time t
m

is the solution of the non-linear algebraic equation

Tm=Tp =1_exp[(a)2a/m]erfC(a Ft:).
~zTp A- A-

For time t » t
m

' the ablation rate v is constant. Quasi-steady ablation rate,
which follows from the balance equation of the heat flow on the surface x
= set), is calculated from formula

(6)

Temperature distribution in the quasi-steady state can be determined
from [13]

_T_-T~p =exp[-~(x-s )],
T: -Tp as

X2S. (7)

(8)

When heat flux 4s is assigned on the half space surface [7], then the

boundary condition on the surface x = set) has the form

-As aTI =4s.
ax x=s(t)

Temperature field is, therefore, expressed by (1), conditions (3) and (4)
and by boundary condition (8). Time t

m
, after which the initial surface tem­

perature T
p

of the semi-infinite body increases to the temperature of melt­
ing T

m
is determined from (12) derived in Ex.14.3. Time t

m
is calculated

from formula

( )

2
1r T -T

tm =4" PsCsAs miI
s

p • (9)

Quasi-steady ablation rate V
s
= ds/dt follows from the balance equation

of a heat flow on the surface x =set)

(10)

Temperature distribution in the semi-infinite body for t » t
m

is calcu­
lated from (7).

Ablation phenomenon is used in thermal shields of space shuttles and
rockets [3]. Melted material transfers a lot of thermal energy and is imme­
diately removed from the body surface as a result of an active
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aerodynamic shear forces. Materials used for the thermal shields are tantalum,
wolfram, teflon, asbestos-phenol materials, cork, silicon-elastomers, ny­
lon-phenol and quartz-phenol materials.

Exercise 26.6 Solidification of a Falling Droplet of Lead

A droplet of melted lead, which is in diameter d = 3 mm and whose initial
temperature is Tp =400°C, falls from a height of h =20 m and solidifies at
the moment it touches the ground. Air temperature Tez is of 20°C. Use the
following lead data for the calculation: temperature of solidification T

m
=

327°C, specific heat c = 130 J/(kg·K), density p = 11340 kg/m' and latent
heat of solidification hs1 = 24.7 kJ/kg. Determine heat transfer coefficient
on the droplet surface.

Solution

The falling time of the lead droplet t will be calculated under the assump­
tion that the droplet falls at a uniformly accelerated motion

h =~gt2 , (1)

t = fIE =~2. 20 =2.02 s .Vg 9.81

Heat flow emitted during the lead drop cooling is transferred to sur­
roundings

d(mkcT) _ (- )----aAk T ~z •
dt

Once variables are separated, one has

~=_aAkdt.
t -r; mkc

Equation (3) can be also written in the form

d(T-~z) aAk----=--dt.
i-t: mkc

Once (4) is integrated, one obtains

(2)

(3)

(4)
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In(T -T )-In(T -T )=-aAk tm cz p cz chl '
mkc

After transformation of (6), one can easily determine time t
chI

4 3

t = _ mkcIn(Tm- Tcz ) = 3pnr c I (Tm- 1;,z )
chi aA

k
(T

p
- t: ) a4 nr2 n (T

p
- t: )'

__ rpc I (Tm - ~z )

tchl - n ( ).3a T-Tp cz

(5)

(6)

(7)

(8)

By substituting data into (7), one has

t == -0.0015 ·11340 ·130 In 327 - 20 == 157.20 .
chI 3a 400 - 20 a

After time t
chI

' the droplet reaches the temperature of solidification T
m

•

The solidification time t
m

is determined from the balance equation of heat
flows during solidification. Heat flow emitted during lead solidification is
transferred to surrounding air

_d(_m_hs_l ) =a(T -T )A .
dt m cz k

After the separation of variables and the integration of (9), one obtains

mk tk

hsl fdm = fa(Tm - t; )Akdt,
o 0

hence,

(9)

(10)

4 3
- Jrr phsl3 (11)

(12)
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By substituting data into (12), one has

0.0015 ·11340·24700 456.2
t =-------
k 3(327 - 20)a a

If,

157.2 456.2
t=tchl +tk =--+--,

a a
then

a =157.2 +456.2 =613.4 =303.7 W/(m2 • K).
t 2.02

(13)

(14)

Heat transfer coefficient on the lead droplet surface is then, a = 303.7
W/(m2·K).

The cooling time of the droplet is

157.2
t hl =--=0.52 s
c 303.7 '

while the solidification time

- 456.2 -1 50tk - -. s.
303.7

Exercise 26.7 Calculating the Thickness
of an Ice LayerAfter the Assigned Time

Calculate the thickness of an ice layer after time t
1
= 10 min, t

2
= 100 min

and t3 = 1000 min on the surface of a deep pond, when the temperature of
surroundings is t =-18°C. Heat transfer coefficient a on the ice surface is
15 W/(m2.K).

cz

Moreover, carry out calculations for a ~ 00, i.e. when the ice-surface
temperature is of -18°C.

Solution

For the calculation, apply (12) from Ex. 26.3

(1)
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If we account for the following properties of ice, P, =917 kg/m', As =
2.25 W/(m·K), hs1 =333. kJlkg and T

m
=O°C, then from (1) we obtain

s(t)= 2.25[ 1+ 2.15
2

[0-(-18)J t -I) =0,15(~1 + 1.1775 ·10-5 t -1).
15 2.25·917·333400

The thickness of ice layers is

s =0.53 mm after time t1 =10 min =600 s,
s =5.21 mm after time t2 =100 min =6000 s,
s =45.95 mm after time t, =1000 min =60000 s.

If the ice surface is cooled more intensively, i.e. a ~ 00, one can calcu­
late the thickness of the ice layer from (13), in Ex. 26.3

(2)

By substituting data into (2), one has

s (t)=5.1472 .10-4Ji .
The thickness of ice layers is

s =12.6 mm after time t1 =10 min =600 s,
s =39.9 mm after time t2 =100 min =6000 s,
s =126.1 rom after time t3 =1000 min =60000 s.

One can see, therefore, that the results differ for a = 15 W/(m2·K) and a
~ 00; that means that the wind speed affects to a large degree the rate of
pond freezing. With a large wind velocity, both, the heat transfer coeffi­
cient and the rate of ice formation is higher.

Exercise 26.8 Calculating Accumulated Energy
in a Melted Wax

Paraffin wax is used to accumulate thermal energy in an installation that
utilizes solar energy. The problem can be regarded as one-dimensional due
to a large volume of the accumulation block, which is in the shape of a
thick-walled plate that transfers and gives off heat on its lateral surfaces.
Initial temperature of the accumulation block Tp equals the temperature of
melting at T

m
=28°C. The question is how long is it going to take the wax
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to melt to a depth of s =0.1 rn, if the temperature of the block surface sud­
denly increases to a temperature To = 58°C? For the calculation, assume
the following thermo-physical properties of wax: a

z
=1,09·10-

7m2/s,
P, =P

z

=814 kg/m', hsz=241 kJ/kg, Cz=2.14 kl/tkg-K). Carry out the calculations
by means of the Stefan analytical solution and the quasi-steady solution.
Calculate the energy accumulated in wax per 1 m' of the plate surface, on
which the wax is heated.

Solution

Melting time t can be determined by means of (28) and (26) from Ex. 26.1

where f3 is the root of equation

R /32 ffJ _ Ste/
pe er -j;'

(1)

(2)

(3)

In the case of the quasi-steady solution, (15), derived in Ex.26.3, will be
applied in order to determine f3, which in the given case assumes the form

p=~S~1 . (4)

Melting time t will be calculated from (1). First we will determine the
Stefan number Ste,

2.14(58-28)
Ste = =0.2664. (5)

/ 241

Equation (2) assumes the form

f3e/3
2

erff3 = 0,1503 . (6)

Root f3 of the equation determined by means of the search method in the
interval 0.34 ~ f3 ~ 0.37 is f3 = 0.35. By substituting the determined value
of f3into (1), one has

o12

t = . =187231 s =52 h .
4.0.352 .1.09.10-7
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When the approximate (4) is applied, one obtains p= 0.365 and

0.12

t= 2 7 =172158 s=47.8h.
4·0.365 ·1.09·10-

The goodness of fit for the obtained results is good, since the value of
Stefan number is small.

The accumulated energy in the melted wax per 1 m' of the heated wax
surface is

It is a lot of energy, which would be difficult to accumulate in another
form.

Exercise 26.9 Calculating Fish Freezing Time

Calculate the time one needs to freeze a fish, which one can regard as a
cylinder whose diameter is d = 0.08 m. Initial temperature of the fish
equals the temperature of freezing T

m
=-1°C, while the temperature of the

cooling air is T = -25°C. Heat transfer coefficient on the fish surface is
a =60 W/(m2.K).Assume the following data for the calculation: As =1.35
W/(m·K), P, =992 kg/m', h, =210 kJ/kg.

Solution

Equation (22), derived in Ex. 26.4, will be used to calculate the freezing
time i, If we allow for the cylindrical shape of the fish (P = 1/4 and R =
1/16), then the freezing time is

t = Pshs' (~d2 +!d) = 992· 210000 (~ 0.08
2 +! 0.08) =

z Tm-~z 16 As 4A -1-(-25) 161.35 4 60 (1)

= 5465.2 s = 1.52 h.
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A.1. Gauss Error Function

Table A.I. Gauss error function

x "erf ex) ~ erf (;) kerf (x) . x erf (x) ~. erf (x) .~=

oo-~ 0.328627 ~~.60 0.603856 ~.900:7969081120 0.910314
0.01 0.011283 10.31 0.338908 10.61 0.611681 ·0.91 0.801883 11.21 0.912955
0.02 0.022565 10.32 0.349126 !0.62 0.619411 10.92 0.806767 11.22 0.915534
0.03 0.033841 10.33 0.359279 10.63 0.627046 10.93 0.811563 11.23 0.918050
0.04 0.045111 10.34 0.369364 10.64 0.634586 10.94 0.816271 1.1.24 0.920505
0.05 0.056372 10.35 0.379382 10.65 0.642029 10.95 0.820891 11.25 0.9229
0.06 0.067622 10.36 0.38933 10.66 0.649377 0.96 0.825423 11.26 0.925236
0.07 0.078858 10.37 0.399206 !0.67 0.656627 10.97 0.82987 11.27 0.927513
0.08 0.090078 10.38 0.409009 10.68 0.663782 0.98 0.834231 11.28 0.929734
0.09 0.101281 10.39 0.418739 ,0.69 0.67084 10.99 0.838508 11.29 0.931898
0.10 0.112463 10.40 0.428392 10.70 0.677801 JI.OO 0.842701 \1.30 0.934008
0.11 0.123623 10.41 0.437969 10.71 0.684665 a.01 0.84681 11.31 0.936063
0.12 0.134758 10.42 0.447467 1°.72 0.691433 JI.02 0.850838 11.32 0.938065
0.13 0.145867 10.43 0.456887 10.73 0.698104 il.03 0.854784 11.33 0.940015
0.14 0.156947 10.44 0.466225 10.74 0.704678 11.04 0.85865 11.34 0.941914
0.15 0.16799610.45 0.475481 10.75 0.711155 a.05 0.86243611.35 0.943762
0.16 0.179012 10.46 0.484655 10.76 0.717537 11.06 0.866143 11.36 0.945561
0.17 0.189992 10.47 0.493745 10.77 0.723821 1I.07 0.869773 h.37 0.947312
0.18 0.200936 10.48 0.50275 [0.78 0.73001 J.08 0.873326 a.ss 0.949016
0.19 0.21184 10.49 0.51166810.79 0.736103 J.09 0.876803 11.39 0.950673
0.20 0.222703 10.50 0.5205 !0.80 0.742101 ].10 0.880205 11.40 0.952285
0.21 0.233522 10.51 0.529244 10.81 0.748003 JI.11 0.883533 \1.41 0.953852
0.22 0.244296 10.52 0.537899 10.82 0.753811 "1.12 0.886788 11.42 0.955376
0.23 0.255023 !0.53 0.546464 10.83 0.759524 i1.13 0.88997 11.43 0.956857
0.24 0.2657 10.54 0.554939 !0.84 0.765142 a.14 0.893082 11.44 0.958296
0.25 0.276326 10.55 0.563323 10.85 0.770668 11.15 0.896124 ;1.45 0.959695
0.26 0.2869 10.56 0.571616 10.86 0.7761 JI.16 0.899096 11.46 0.961053
0.27 0.297418 10.57 0.579816 10.87 0.78144 JI.17 0.902 i1.47 0.962373
0.28 0.30788 10.58 0.587923 10.88 0.786687 a.18 0.904837 11.48 0.963654
0.29 0.318283 10.59 0.595936 10.89 0.791843 JI.19 0.907608 h.49 0.964898
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Table A.1. (cont.)
~'$::::m~~:=>1&S:-~::&~·;_... ·*Z.>::~l&&8r'?';;~~~~~~.- -.~£y~~~:.--",-'''''''''''''--~~~..6if&~.&:..0.&>-*W&:~$»~~~~~~w.'*UX*&~~~~x:&:~~~~

~~,~_~~r(~l~,=~~~_,,»_=_~!f (x)~.~,L",_»_~fJx) ~=~>_ ~ __~~_~ii~l~",«<_..l~_~_=~rf=(:!l <__

1.50 0.966105 1.1.80 0.98909 12.10 0.99702 12.40 0.99931212.70 0.999866
1.51 0.967277 11.81 0.989524 !,2.11 0.997155 [2.41 0.999346'2.71 0.999873
1.52 0.968413 11.82 0.989943 1.2.12 0.997284 12.42 0.999379j2.72 0.99988
1.53 0.969516 11.83 0.990347 ~.13 0.997407 12.43 0.99941112.73 0.999887
1.54 0.970586 !l.84 0.990736 12.14 0.997525 12.44 0.999441 12.74 0.999893
1.55 0.971623 11.85 0.991111 12.15 0.997639 12.45 0.999469 12.75 0.999899
1.56 0.972628 11.86 0.991472 i2.16 0.997747 ~.46 0.99949712.76 0.999905
1.57 0.973603 11.87 0.991821 12.17 0.997851 !2.47 0.99952312.77 0.99991
1.58 0.974547 11.88 0.992156 12.18 0.997951 12.48 0.99954712.78 0.999916
1.59 0.975462 11.89 0.992479 12.19 0.998046 12.49 0.999571 \2.79 0.99992
1.60 0.976348 11.90 0.99279 12.20 0.998137 12.50 0.999593 '2.80 0.999925
1.61 0.977207 11.91 0.99309 12.21 0.998224 12.51 0.99961412.81 0.999929
1.62 0.978038 11.92 0.993378 12.22 0.998308 ~.52 0.9996352.82 0.999933
1.63 0.978843 h.93 0.993656 12.23 0.998388 12.53 0.99965412.83 0.999937
1.64 0.97962211.94 0.993923 F.24 0.998464 ~.54 0.999672 !2.84 0.999941
1.65 0.980375 ;1.95 0.994179 [2.25 0.998537 12.55 0.999689 ,2.85 0.999944
1.66 0.981105 11.96 0.994426 12.26 0.998607 12.56 0.999706'2.86 0.999948
1.67 0.98181 11.97 0.994664 12.27 0.998674 12.57 0.99972212.87 0.999951
1.68 0.9824931.98 0.994892 12.28 0.998738 f.58 0.999736\2.88 0.999954
1.69 0.9831531.99 0.995111 12.29 0.998799 12.59 0.99975112.89 0.999956
1.70 0.983790 12.00 0.995322 12.30 0.998857 12.60 0.9997642.90 0.999959
1.71 0.984407 12.01 0.995525 12.31 0.998912 12.61 0.999777 12.91 0.999961
1.72 0.985003 j2.02 0.995719 12.32 0.998966 12.62 0.999789:2.92 0.999964
1.73 0.9855782.03 0.9959062.33 0.999016 12.63 0.999812.93 0.999966
1.74 0.98613512.04 0.996086 12.34 0.999065 12.64 0.9998112.94 0.999968
1.75 0.9866722.05 0.9962582.35 0.999111 12.65 0.99982112.95 0.99997
1.76 0.987192.06 0.996423 \2.36 0.999155 12.66 0.9998312.96 0.999972
1.77 0.987691 12.07 0.996582 F.37 0.999197 12.67 0.999841 2.97 0.999973
1.78 0.988174 12.08 0.996734 12.38 0.999237 12.68 0.999849 2.98 0.999975
1.79 0.98864 !2.09 0.996882.39 0.999275 12.69 0.999858 2.99 0.999976

()
2 x

J
P

erf x = r= e dt,
'\jJr 0

erfc (x ) =1- erf (x ) ,

~(erf(x))= ~e-x2.
dx '\jJr

Gauss error function can be calculated by means of series [1]

(A.I)
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2 00 (_I)n X2n+1

erf(x)=-I (A.2)
J; n=O n! (2n +1)

or approximate formula

erf(x)=1-(c1y+c2l +c3l )e-x 2

,

where

(A.3)

1
y = , c1 = 0,3480242, c2 = -0,0958798, c3 = 0,7478556.

1+ 0,47047x

Maximum error in calculating function erf(x) by means of formula (A.3) is
2,5.10-5

•

A.2. Hyperbolic Functions

Hyperbolic functions are defined as follows [1,2]:

Sinh(x)=~(ex_e- x);

(A.4)

Derivatives of hyperbolic functions:

~(sinhu)=(coshu)du ;
dx dx

~(coshu) =(sinhu) du;
dx dx

d (1 JdU- tanhu = -
dx( ) cosh2 u dx'

(A.5)
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Table A.2. Hyperbolic functions

x sinh x cosh x tanh x

0.0 0.0000 1.0000 0.0000
0.1 0.1002 1.0050 0.0997
0.2 0.2013 1.0201 0.1974
0.3 0.3045 1.0453 0.2913
0.4 0.4108 1.0811 0.3800
0.5 0.5211 1.1276 0.4621
0.6 0.6367 1.1855 0.5371
0.7 0.7586 1.2552 0.6044
0.8 0.8881 1.3374 0.6640
0.9 1.0265 1.4331 0.7163
1.0 1.1752 1.5431 0.7616
1.1 1.3356 1.6685 0.8005
1.2 1.5095 1.8107 0.8337
1.3 1.6984 1.9709 0.8617
1.4 1.9043 2.1509 0.8854
1.5 2.1293 2.3524 0.9052
1.6 2.3756 2.5775 0.9217
1.7 2.6456 2.8283 0.9354
1.8 2.9422 3.1075 0.9468
1.9 3.2682 3.4177 0.9562
2.0 3.6269 3.7622 0.9640
2.1 4.0219 4.1443 0.9705
2.2 4.4571 4.5679 0.9757

A.3. Bessel Functions

x sinh x cosh x tanh x

2.3 4.9370 5.0372 0.9801
2.4 5.4662 5.5569 0.9837
2.5 6.0502 6.1323 0.9866
2.6 6.6947 6.7690 0.9890
2.7 7.4063 7.4735 0.9910
2.8 8.1919 8.2527 0.9926
2.9 9.0596 9.1146 0.9940
3.0 10.018 10.068 0.9951
3.5 16.543 16.573 0.9982
4.0 27.290 27.308 0.9993
4.5 45.003 45.014 0.9998
5.0 74.203 74.210 0.9999
5.5 122.34 122.35 1.0000
6.0 201.71 201.72 1.0000
6.5 332.57 332.57 1.0000
7.0 548.32 548.32 1.0000
7.5 904.02 904.02 1.0000
8.0 1490.5 1490.5 1.0000
8.5 2457.4 2457.4 1.0000
9.0 4051.5 4051.5 1.0000
9.5 6679.9 6679.9 1.0000
10.0 11013 11013 1.0000

(A.6)

(A.7)

Bessel functions In(x) and Yn(x) are the solution of a differential equation

2 d
2

d (2 2) .
X -2y+x-y+ x -n y=O, gdzie n=O, 1, ...

dx dx

where In(x) and Yn(x) are the Bessel functions of the first and second kind
of integer order n.

Modified Bessel functions In(x) and Kn(x) are the solution of the follow­
ing equation:

2 d
2

d (2 2) .
X -2y+x-y- x +n y=O, gdzie n=O, 1, ...

dx dx

where In(x) and Kn(x) are modified Bessel functions of first and second
kind of integer order n.
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Appendix B Thermo-Physical Properties of Solids

B.1. Tables of Thermo-Physical Properties of Solids
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Table B.2. Metals in a solid state - melting temperature and thermal properties at
temp. 300 K

Aluminium
pure 933
Duralumin (4.4% Cu, 1.0% Mg,
0.75% Mn, 0.4% Si) 775
alloy 195, cast(4.5% Cu)

Beryllium 1550
Bismuth 545
Cadmium 594
Copper

Pure 1358
electrolytic (Cu + Ag 99.90 mini-
mum)
bronze - alloy (10A1) 1293
Brass (30% Zn) 1188
New silver (15% Ni, 22% Zn)
Constantan (40% Ni)
constantan (45% Ni)

Gold 1336
Iron

Pure 1810
armco (99.75% Fe pure)
Cast (4% C)

Carbon steel
AISI 1010 (0.1% C, 0.4% Mn)
AISI 1042, annealed (0.42% C. 0.64%
Mn, 0.063% Ni, 0.13% Cu)
AISI 4130, hardened (0.3% C,
0.5% Mn, 0.3% Si, 0.95% Cr, 0.5%
Mo)

Stainless steel
AISI 302 (18-8) (0.15% C, 2% Mn,
1% Si, 16-18% Cr, 6-8% Ni)
AISI 304 (0,08% C, 2% Mn, 1% Si,
18-20% Cr, 8-10% Ni) 1670
AISI 316 (0.08% C, 2% Mn, 1% Si,
16-18% Cr, 10-14% Ni, 2-3% Mo) ­
AISI 410 (0.15% C, 1% Mn, 1% Si,
11.5-13% Cr)

Lead 601
Magnesium

Pure 929
Alloy A8 (8% AI, 0.5% Zn)

2702 903

2770 875
2790 883
1850 1825
9780 122
8650 231

8933 385

8950 385
8800 420
8530 380
8618 410
8920 420
8860
19300 129

7870 447
7870 447
7272 420

7830 434

7840 460

7840 460

8055 480

7900 477

8238 468

7770 460
11340 129

1740 1024

237

174
168
200
7.90
97

401

386
52
111
116
22.7
23
317

80.20
72.70
51

64

50

43

15

15

13

25
35.30

156

97.10

71.80
68.10
59.20
6.59
48.40

117

112
14.10
34.20
32.80
6.06

127

22.8
20.7
16.7

18.80

13.90

11.90

3.88

3.98

3.37

7.00
24.10

87.60
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TableB.2. (cont.)

Nickel
Pure
Heat-resisting alloy -X750 (15.5% Cr,
1% Nb, 2.5% Ti, 0.7% AI, 7% Fe)
Nichrome (20% Cr)
Nimonic75 (20% Cr, 0.4% Ti)
Hasteloy B (38% Mo, 5% Fe)
Nickeline (50% Cu)
chromel-P (10% Cr)
alumel (2% Mn, 2% AI)

Palladium
Platinum

Pure
60 Pt-40 Rh
40Rh

Silicon
Silver
Tantalum
Tin
Titanium

Pure
Ti-6Al-4V
Ti-2AI-2Mn

Tungsten
Tin
Zirconium

Pure
zircaloy-4 (1.2-1.75% Sn, 0.18-0.24%

1728 8900

1665 8510
1672 8314

8370
9240
8800
8730
8600

1827 12020

2045 21450
1800 16630
3
1685 2330
1235 10500
3269 16600
505 7310

1993 4500
4420
4510

3660 19300
693 7140

2125 6570

444

439
460
461
381
421

244

133
162

712
235
140
227

522
610
466
132
389

278

91

11.7
13
11.7
12.20
19.5
17
48
71.80

71.6
47

148
429
57.50
66.6

21.90
5.80
8.40
174
116

22.70

23.00

3.13
3.40
3.03
3.47
5.26

24.5

25.1
174

89.2
174
24.70
40.1

9.32
2.15
4.00
68.30
41.80

12.4

Table B.3. Metals in solid state - temperature-dependent thermal conductivity
A [W/(m·K)]
~~~;X-;XW#&«-WH/.oi(;W~~AQ; '~AM.~__~/.(..

Metal Temperature [K]
200 300 400 500 600 800 1000 1200 1500

Aluminium
Pure 237 237 240 236 231 218
Duralumin 138 174 187 188
alloy 195, cast 168 174 180 185

Copper
Pure 413 401 393 386 379 366 352 339
bronze - alloy 42 52 52 55
Brass 74 111 134 143 146 150
New silver 116 135 145 147
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Table B.3. (cont.)
:W'~..:w_~R~m_··_."""'"

Metal Temperature [K]
200 400 500 600 1000 1200 1500

Iron
armco 81 73 66 59 53 42 32 29 31
Cast 51 44 39 36 27 23

Carbon steel
AISI1010 64 59 54 49 39 31
AISI1042 52 50 48 45 37 29 26 30
AISI4130 43 42 41 40 37 31 27 31

Stainless steel
AISI302 15 17 19 20 23 25
AISI304 13 15 17 18 20 23 25
AISI316 13 15 17 18 21 24
AISI410 25 25 26 27 27 29

Lead 37 35 34 33 31
Magnesium

Pure 199 156 153 151 149 146
Alloy A8 84

Nickel
Pure 105 91 80 72 66 68 72 76 83
Heat-resistant alloy-
X-750 10.30 11.70 13.5 15.10 17.00 20.5 24.00 27.60 30.00
Nichrome 13 14 16 17 21

Platinum 73 72 72 72 73 76 79 83 90
Silver 420 429 425 419 412 396 379 361
Tantalum 58 58 58 59 59 59 60 61 62
Tin 73 67 62 60
Titanium

Pure 25 22 20 20 19 19 21 22 25
Ti-6AI-4V 5.80 -

Tungsten 185 174 159 146 137 125 118 112 106
Zirconium

Pure 25 23 22 21 21 21 23 26 29
zircalo~-4 13.30 14.20 15.2 16.20 17.20 19.20 21.20 23.20 -

Table B.4. Metals in a solid state - temperature-dependent specific heat c
[J/(kg·K)]

Metals Temperature [K]
200 300 400 500 600 800 1000 1200 1500

Aluminium
Pure 798 903 949 996 1033 1146 -

Duralumin 875
alloy 195, cast- 883

Copper
Pure 356 385 397 412 417 433 451 480
bronze - alloy 785 420 460 500
Brass 360 380 395 410 425
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TableB.4. (cont.)

Metals Temperature
200 300 400 500 600 800 1000 1200 1500

Gold 124 129 131 133 135 140 145 155
Iron

armco 384 447 490 530 574 680 975 609 634
Cast 420

Carbon steel
AISI1010 434 487 520 559 685 1168 -
AISII042 500 530 570 700 1430 -
AISI4130 500 530 570 690 840

Stainless steel
AISI302 480 512 531 559 585 606
AISI304 402 477 515 539 557 582 611 640 682
AISI316 468 504 528 550 576 602
AISI410 460

Lead 125 129 132 136 142
Magnesium

Pure 934 1024 1074 1170 1170 1267 -
Alloy A8 1000 -

Nickel
Pure 383 444 485 500 512 530 562 594 616
Heat-resistant
alloy-X-750 372 439 473 490 510 546 626
Nichrome 480 500 525 545

Platinum 125 133 136 139 141 146 152 157 165
Silver 225 232 239 244 250 262 277 292
Tantalum 133 140 144 145 146 149 152 155 160
Tin 215 227 243
Titanium

Pure 405 522 551 572 591 633 675 680 686
Ti-6AI-4V 610

Tungsten 122 132 137 140 142 145 148 152 157
Zirconium

Pure 264 278 300 312 322 342 362 344 344
zircaloy-4 300 314 327 348 369

TableB.5. Dielectric in a solid state - thermal properties

Dielectric T p c A a

[K] [kg/m3] [J/(kg·K)] [W/(m·K)] [!ll2/s]xl06

Aluminium oxide, Al20 3
Sapphire 300 3970 765 46 15.20
Aluminium oxide 300 3970 765 36 11.90

400 - 940 27 7.20
600 - 1110 16 3.60
1000 - 1225 7.60 1.60
1500- 5.40

Carbon
Diamond (type lIb) 300 3300 510 1300 772
ATJ-S sraphite 300 1810 1300 98 42
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TableB.S. (cont.)

Dielectric
T p c A a
[K] [kg/m'] [J/(k~ K)] [W/(m·K)][m2/s]x106

1000 - 1926 55 16
2000 - 2139 38 9.80
3000 - 2180 33 8.40

Pyrolytic graphite 300 2210 709 1950 1240
Alongitudinal to the layers 600 - 1406 892 287

1000 - 1793 534 135
2000 - 2043 262 58

Aperpendicular to the layers 300 2210 709 5.70 4.10
600 - 1406 2.68 2.10
1000 - 1793 1.60 1.67
2000 - 2043 0.81 1.51

Epoxide graphite fibres 200 1400 640 8.70 9.70
(25% of volume) composite 300 - 935 11.10 8.50
Alongitudinal to the layers 400 - 1220 13.00 7.6
Aperpendicular to the layers 200 1400 640 0.68 0.76

300 - 935 0.87 0.66
400 - 1220 1.1 0.64

Carbon fibres 300 1860 810 110 73
1000 - 1800 56 17
2000 - 2140 36.50 9.20
3000 - 2220 34.50 8.40
4000 - 2260 34 8.10
5000 - 2270 34 8.10

Ice 273 910 1930 2.22 1.26
Artificial materials 8

Acetylcellulose 300 1300 1510 0.24 0.12

neoprene rubber 300 1250 1930 0.19 0.079

phenol, bands 300 1760 1260 0.50 0.23
polyamide (nylon) 300 1140 1670 0.24 0.13
polyethylene (high density) 300 960 2090 0.33 0.16
Polypropylene 300 1170 1930 0.17 0.075

Polyvinyl chloride 300 1714.001050 0.092 0.051
Teflon 300 2200 1050 0.35 0.15

400 - 0.45 0.19
Silicon dioxide, Si0

2
200 2650 - 16.40

Crystalline (quartz) 300 - 745 10.40 5.30
Alongitudinal to axis c 400 - 885 7.60 3.20

600 - 1075 5.00 1.70
Aperpendicular to axis c 200 2650 - -9.5

300 - 745 6.20 3.1
400 - 885 4.7 2.00
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TableB.5. (cont.)

Dielectric T peA a
~~..~.~._~~mlO«~~~·K~[m~~xl~
Polycrystal (burned quartz
glass)

Titanium dioxide, Tif), (ore)

Uranium dioxide, UOz

300 2220 745
400 - 905
600 - 1040
800 - 1105
1000 - 1155
1200 - 1195

300 4157 710
600 - 880
1200 - 945

300 10890 240
500 - 265
1000 - 305
1500 - 325
2000 - 355
2500 - 405

1.38
1.51
1.75
2.17
2.87
4.00

8.40
5.00
3.30

7.90
6.00
3.90
2.6
2.3
2.50

0.83
0.75
0.75
0.88
1.11
1.51

2.8
1.40
0.84

3.00
2.10
1.20
0.79
0.59
0.57

TableB.6. Insulating and construction materials - thermal properties

Material T peA a
. . J~] l.~g.(!.!!~.J.[!(.(~.~.,.~21w[~(~.!!!.:..!5)II!!l.~!.~I~ ..~..Q~.,
Asbestos-laminar and corru­
gated

4 layers

8 layers

300 190
320 ­
340 ­
360 ­
380 ­
300 300
320 ­
340 ­
360 ­
380 -

0.078
0.085
0.091
0.097
0.101
0.068
0.073
0.077
0.080
0.083

0.45

0.35

0.92

0.751.4

0.03
0.04
2.3
2.5
2
0.9
1.4
1.7
1.8
0.72
1.3

2100 880

600
1300 -
400 3010 835
800 -
1200 -
400 2645 960
800 -
1200 -
1600 -
300 1920 835
300 2083 -

Refractory

Chromited

Simple
Face brick

Concrete
Building stone 1-2-4 mixture 300

Brick
B&W K-28 insulating
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Table B.6. (cont.)

Material
T p c A a

................................... ............................................................................................... 1~1 .........J~g!.~~1J~!.(~l~ ....~).J. ....I~[(!I.?:J\)]1~.~!~.l~}.9~ ..
Cotton 300 80 1300 0.06 0.58
Glass:

Quartz glass 300 2220 745 1.38 0.83
Pyrex glass 300 2640 800 1.09 0.51
Soda-calcium glass (25%
Na

20,
10% CaO) 300 2400 840 0.88 0.44

Foam glass 240 - 0.048
260 - 0.051
280 - 0.054
300 145 0.058
320 - 0.063
340 - 0.067

Glass fibre 300 16 835 0.046 3.4
300 40 0.035
260 - 0.029
280 - 0.033
300 28 0.038
320 - 0.043
340 - 0.048
360 - 0.054
380 - 0.06
400 - 0.066

Loose filling
Cellulose, wood pulp, 290 - 0.038
Chemical paper pulp 300 45 0.039

310 - 0.042
Vermiculite 240 - 0.058

260 - 0.061
280 - 0.064
300 122 0.069
320 - 0.074
240 - 0.052
260 - 0.056
280 - 0.059
300 80 0.063
320 - 0.068

Mangan oxide 85% 300 270 0.062
350 - 0.068
400 - 0.073
450 - 0.078
500 - 0.082

Paper 300 930 2500 0.13 0.056
Polystyrene, rigid 240 - 0.023

260 - 0.024
280 - 0.026
300 30-60 1210 0.028 0.4-0.8
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TableB.6. (cont.)

Material
T p c A a

........I~J .......... J~g!~~J..J!!(~g ...~).J ..IW!(~.~~l]I~~f.~.l~.~.9~ ..
Polyurethane resins 300 70 0.026
Rubber

ebonite, hard rubber 270 1200 2010 0.15 0.062
Neoprene rubber 300 1250 1930 0.19 0.079
Rigid foam 260 0.028

280 0.03
300 70 0.032
320 0.034

Snow
Fresh 273 110 0.049
Dense 500 0.19

Soil
Dry 300 1500 1900 1 0.35
Wet 300 1900 2200 2 0.5

Wood
oak, longitudinal to fibres 300 820 2400 0.35 0.18

Perpendicular to fibres 300 820 2400 0.21 0.11
White pine, longitudinal to
fibres 300 500 2800 0.24 0.17

Perpendicular to fibres 300 500 2800 0.1 0.071

Table B.7. Tthermal conductivity A [W/(m·K)] for selected materials at cryogenic
temperatures

=->.~-------_=->.=->._----------

Material Temperature [K]

Metals
aluminium (2024-T4) 3.50 7.70 21 50 72
Brass 71 94
Copper (OFRC) 950 430 400
Carbon steel (1020) 4.30 12 34 64 70
Staainless steel (303) 0.29 0.71 3.50 9.00 12
Stainless steel (304) 0.16 0.82 3.30 9.50 13
Titanium 0.15 0.80 2.00 4.50 6.5

Non-metals
Diamond 45 310 3300 10000 -

Pyrex glass 0.56 0.89
Glass, Phoenix 0.11 0.17 0.55
nylon-66 0.018 0.033 0.21
Polyethylene 0.04 0.15 0.75
Silicon 350 2000 4700 900
Silicon rubber 0.18 0.21
Teflon 0.18 0.62 1
Vacuumgrease (Dow-
Corning silicone) 0.021
Lacquer (G.E. #7031,
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7.854 7.83 7.799 7.765 7.731 7.694 -
7.859 7.836 7.805 7.772 7.738 7.702 7.664 ­
7.854 7.831 7.8 7.767 7.733 7.698 7.661 ­
7.89 -
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Table B.9. Thermal conductivity A [W/(m·K)] for selected ferretic boiler steels
~»»>f&.~%.;/)!;///.#m'1-'i_·_··~.I9!~_"""'_"".'_"~#~ww.""ww..'...~..... ~._.""""'.. '~~-'.. _':':::(.(.;::" W#/~~~~=.W»>ii·····~"""",·· ~#.W5.~~:':r.:~:' ~

Steel Temperature [OC]

§y!!!.!?2!....(~N) ..................§.y!P:.!?2.!..O?!.Nt..... 20 100 200 300 400 500 600 700
K10 St 35.8 57.5 56.4 53.6 49.8 45.4 41.1 37.6 -

K18 St 45.8 54.1 53 50.5 47 43.2 39.4 36.4 -

16M 15Mo3 48.5 48 46.5 44.2 41.3 38.2 35
15HM 13CrMo44 44.1 44.6 44 42.2 39.8 37 34.1 -

10H2M 10CrMo910 36 37.8 38.5 37.8 36.3 34.6 33.1 -

13HMF 14MoV63 48.5 48 46.5 44.2 41.3 38.2 35
20H12M1F X20CrMoV121 24 24.3 24.8 25.2 25.6 26 26.4 -

St36K HI 57.5 56.4 53.6 49.8 45.4 41.1 -

St41K H II 57.5 56.4 53.6 49.8 45.4 41.1 -

19G2 19Mn5 43 44.1 43.7 42 39.5 36.6 -

15NiCuMoNb5
15NCuMNb (WB 36) 39.5 41.1 41.5 40.5 38.5 36

22NiMoCr37 43.1 45.7 47 46.4 44.7 42.3 39.9 -

15MnNiMoV53 38.1 40.7 42 41.4 39.7 37.3 34.9 -

HCM2S 7CrMoVTiB10-10 - 37.1 37 36.3 35.2 34.3 31.9 30.3
(SUMITOMO (Mannesmann com-
com an s mbol) an s mbol)

Table B.I0. Density p [kg/m'] x 10-3 for selected ferritic boiler steels

Steel Temperature [OC]

§.y~!?2! <~N.) §.Y~!?2.! ...<Q!N1 20 Nm~ •.,!.99 200 300 ~Q.Q ~.QQ §9Q.,"' "'..?.90
K10 St 35.8 7.839 7.814 7.781 7.746 7.71 7.671 7.631 -
K18 St 45.8 7.834 7.809 7.777 7.743 7.706 7.668 7.628 -
16M 15Mo3 7.849 7.825 7.792 7.759 7.723 7.685 7.646 -
15HM 13CrMo44 7.849 7.825 7.793 7.759 7.724 7.687 7.648 -
10H2M 10CrMo910 7.834 7.811 7.781 7.75 7.716 7.682 7.645 -
13HMF 14MoV63 7.844 7.821 7.791 7.759 7.726 7.69 7.654-
20H12M1F X20CrMoV121 7.76 7.74 7.713 7.686 7.657 7.627 7.595 -
St36K HI 7.839 7.816 7.784 7.752 7.717 7.681 -
St41K H II 7.839 7.816 7.784 7.752 7.717 7.681 -
19G2 19Mn5 7.829 7.806 7.775 7.742 7.707 7.671 ­

15NiCuMoNb5
15NCuMNb (WB 36)

22NiMoCr37
15MnMoNiV53

HCM2S 7CrMoVTiB10-
(SUMITOMO 10
company sym- (Mannesmann



300 400 500 600 700
0.555 0.612 0.681 0.762 ­
0.555 0.612 0.681 0.762 ­
0.555 0.612 0.681 0.762 ­
0.555 0.612 0.681 0.762 ­
0.555 0.612 0.681 0.762 ­
0.555 0.612 0.681 0.762 ­
0.552 0.619 0.703 0.804 ­
0.555 0.612 0.681 -
0.555 0.612 0.681 -
0.555 0.612 0.681 -
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Table B.II. Specific heat capacity c [kJ/(kg·K)] for selected ferritic boiler steels

Steel Temperature [OC]

~~~.!!!!?.2! t~N1.. . §.y.!!!!?2.! {Q.!N.1. ~ 20 100 200
KI0 St 35.8 0.464 0.48 0.511
K18 St 45.8 0.464 0.48 0.511
16M 15Mo3 0.464 0.48 0.511
15HM 13CrMo44 0.464 0.48 0.511
10H2M 10CrMo910 0.464 0.48 0.511
13HMF 14MoV63 0.464 0.48 0.511
20H12MIF X20CrMoV121 0.456 0.47 0.503
St36K H I 0.464 0.48 0.511
St41K H II 0.464 0.48 0.511
19G2 19Mn5 0.464 0.48 0.511

15NiCuMoNb5
15NCuMNb (WB 36) 0.464 0.48 0.511 0.555 0.612 0.681 -

22NiMoCr37 0.464 0.48 0.511 0.555 0.612 0.681 0.762 -
15MnMoNiV53 0.464 0.48 0.511 0.555 0.612 0.681 0.762 -

HCM2S 7CrMoVTiBI0- - 0.486 0.516 0.552 599 0.663 0.719 0.915
(SUMITOMO 10
company sym- (Mannesmann

Table B.12. Average linear expansion coefficient p [1/K]xl05 in an interval from

oce to temperature T for selected ferritic boiler steels

Steel Temperature [OC]

~.Y.!!!!?2! ...(~N2. "' ........."'......~.Y.!!!!?.2! ...(Q.!~2. ....... 20 100 200 300 400 500 600 700
.---- -- --.-.-- -.--.-.- -.--.-.-.-.- -.-.-.-.-.--.-.'.- -- -.-.-.-." -.--~- ...-.....•-...-...-.-...- .•.-.-.-....•-...'........ '•..' •.•.•. '...'..........'..............-......~..•'•...•..

KI0 St 35.8 1.23 1.28 1.35 1.41 1.46 1.51 1.55 -

K18 St 45.8 1.21 1.26 1.33 1.39 1.44 1.49 1.53 -

16M 15Mo3 1.19 1.25 1.32 1.38 1.43 1.47 1.5
15HM 13CrMo44 1.18 1.24 1.31 1.37 1.42 1.46 1.49 -

10H2M 10CrMo910 1.13 1.18 1.24 1.29 1.33 1.37 1.4
13HMF 14MoV63 1.13 1.19 1.25 1.3 1.34 1.38 1.41 -

20H12MIF X20CrMoV121 1.04 1.07 1.11 1.14 1.18 1.21 1.23 -

St36K HI 1.15 1.21 1.28 1.33 1.38 1.42 -

St41K H II 1.15 1.21 1.28 1.33 1.38 1.42 -

19G2 19Mn5 1.15 1.21 1.28 1.33 1.38 1.42 -

15NiCuMoNb5
15NCuMNb (WB 36) 1.17 1.23 1.29 1.35 1.4 1.44 -

22NiMoCr37 1.17 1.22 1.27 1.32 1.36 1.4 1.43 -

15MnMoNiV53 1.17 1.22 1.27 1.32 1.36 1.4 1.43 -

HCM2S 7CrMoVTiB10-10 - 1.23 1.27 1.3 1.33 1.34 1.36 1.38
(SUMITOMO (Mannesmann com-



B 1 Tables of Phermo-Physical Properties of Solids B.2. Diagrams 851

Table B.13. Linear expansion coefficient f3 [11K] x l 05 at temperature T for se­
lected ferretic boiler steels

Steel Temperature [DC]

§.Y.!!!.!?.2!.....(~~.2. .. ....§.Y!!!.!?2,!..(Q!~2. 20 100 200 300 400 500 600 700.--.--.-.--.-.-.-.--.-.--.-,-.-.-.',-.-.-.'.---,--.-.-.---.-.-........................ .-.-.-.-•...~.-•..-.-.-.-•......-.-..-•........•-..•-...-'.-~.- .....•-..'...-•...•...~ ...•....'.......•.....'....-',".-,",- ·.·.·.-.·.·.·~.·~,·u ..... .-.-.-.-..-.-.-.-.-.-.-.-.-•..-..-..•-............ '....•-..-......-•...•....'....•'............'•.....•...•..-.-.-.•..-.-....-.---.-.............

K10 St 35.8 1.24 1.35 1.48 1.58 1.66 1.72 1.76 -

Kl8 St 45.8 1.22 1.33 1.46 1.56 1.64 1.7 1.74 -

16M 15Mo3 1.2 1.32 1.45 1.54 1.62 1.66 1.68 -

15HM 13CrMo44 1.19 1.31 1.43 1.53 1.6 1.64 1.66 -

10H2M 10CrMo910 1.14 1.24 1.35 1.43 1.5 1.55 1.57 -

13HMF 14MoV63 1.15 1.25 1.36 1.44 1.51 1.56 1.58 -

20H12M1F X20CrMoV121 1.05 1.11 1.18 1.24 1.3 1.35 1.39 -

St36K HI 1.17 1.28 1.4 1.49 1.56 1.6
St41K H II 1.17 1.28 1.4 1.49 1.56 1.6
1902 19Mn5 1.17 1.28 1.4 1.49 1.56 1.6

15NiCuMoNb5
15NCuMNb (WB 36) 1.3 1.51 1.57 1.62 -

22NiMoCr37 1.27 1.46 1.52 1.57 1.59 -

1.52 1.57

Table B.14. Longitudinal elasticity modulus (Young's modulus) E [GPa] for se-
lected ferretic boiler steels

Steel Temperature [DC]

.~Y~Q.2.! ..(r~U ............~.y~Q.2.L.<P!~) 20 100 200 300 400 500 600 700
....................................................·.·A·A··.·A~-'"···"·······

KIO St 35.8 212.7 207 199.5 191.7 183.4 174.8 165.9 -

Kl8 St 45.8 212.7 207 199.5 191.7 183.4 174.8 165.9 -

16M 15Mo3 213.7 208 200.5 192.7 184.4 175.8 166.9 -

15HM 13CrMo44 214 208.7 201.7 194 185.9 177.2 168
10H2M 10CrMo910 214 208.7 201.7 194 185.9 177.2 168
13HMF 14MoV63 214 208.7 201.7 194 185.9 177.2 168
20H12M1F X20CrMoV121 217.2 212.9 206.3 198.3 189.1 178.4 166.4 -
St36K HI 212.7 207 199.5 191.7 183.4 174.8 -
St41K H II 212.7 207 199.5 191.7 183.4 174.8 -

1902 19Mn5 213.7 208 200.5 192.7 184.4 175.8 -
15NiCuMoNb5

15NCuMNb (WB 36) 213.7 208 200.5 192.7 184.4 175.8 -

22NiMoCr37 212.7 207 199.5 191.7 183.4 174.8 165.9 -

15MnMoNiV53 212.7 207 199.5 191.7 183.4 174.8 165.9 -

HCM2S 7CrMoVTiB10- - 209 205 200 194 187 176 161
(SUMITOMO) 10
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Table B.15. Poisson ratio v for selected ferretic boiler steels

Steel Temperature [OCl

§~!QQ2.! ..(.~~J .,.....~y~Q,2! ...(Q!~1, ..... 20 100 200 300 400 500 600
-,-. -,"-. -----,"-------.-,-,--.'.-.'.-~ -~.·~.·N ........~...................~..•.•-.-".v.-.-.-.-.-,",-,-,-,-,-.-.-.-.-.-.-,-,",-.-,-.-.-.-•.•••-.-.-•.•-•.•-.-.-•.•-•.•-•.•••-•.•-.-•••-.-.-.-.-•••.•-•.•-.-.-•••-.-•••--.-.-.",-,-.".-.-.-.-.-,".-,".-,",-.-,-.-,-.-.-,-." -,",--,-.",---.·.·.-.·.-a.-.-.-.-.·.-...·.'.-.·.-.·.-.-.-.-.·.-.- -.-._._ .•...-........~.- -.-..._...~..v· ...·•·..... ".".......'•••'.....-...........-.-•.. -~

K10 St 35.8 0.283 0.285 0.288 0.292 0.298 0.305 0.314
K18 St 45.8 0.283 0.285 0.288 0.292 0.298 0.305 0.314
16M 15Mo3 0.283 0.285 0.288 0.292 0.298 0.305 0.314
15HM 13CrMo44 0.283 0.285 0.288 0.292 0.298 0.305 0.314
10H2M 10CrMo910 0.283 0.285 0.288 0.292 0.298 0.305 0.314
13HMF 14MoV63 0.283 0.285 0.288 0.292 0.298 0.305 0.314
20H12M1F X20CrMoV121 0.283 0.285 0.288 0.292 0.298 0.305 0.314
St36K HI 0.283 0.285 0.288 0.292 0.298 0.305 -

St41K H II 0.283 0.285 0.288 0.292 0.298 0.305 -
19G2 19Mn5 0.283 0.285 0.288 0.292 0.298 0.305 -

15NiCuMoNb5
15NCuMNb (WB 36) 0.283 0.285 0.288 0.292 0.298 0.305 -

22NiMoCr37 0.283 0.285 0.288 0.292 0.298 0.305 0.314
15MnMoNiV53 0.283 0.285 0.288 0.292 0.298 0.305 0.314

Table B.16. Chemical composition of selected austenitic steels; percentages (%)
stand for mass fractions

Mn P S

Steel symbol
(DIN or ASME

Steel composition, %

C Si AICr Cu Mo Ni Ti

X8CrNiNb1613 <0.1 0.3-0.6 1-1.50.0190.01 - 15-17 1.6-2.012-14-

X8CrNiMoNb1616 ~ 0.1 0.3-0.6 1-1.50.0320.016 - 15.5-17.5- _ 15.5-
17.5

X10NiCrAITi3220
(Incoloy) 0.08 0.05 0.7 0.011 0.0020.321

1 2
0.55- 32 0.36

Table B.17. Thermal conductivity A [W/(m·K)] for selected austenitic steels
~~W>;~;;~~;';$~:xm='._ •.__• """"'_.'h'!~M»~~H»X_~~M»;;'».~Y:.:f.:);::~~:x:~"""""•• =~'m*ws.wA""«-.~_·. ~~_=...=<ml.=X<.. '«;(.w~~:::::::.::.:w~_.. _••_._

Steel symbol Temperature [OCl
(DIN or ASME Code

20 100 200 300 400 500 600 700

X8CrNiNb1613 16.4 17.3 18.4 19.5 20.6 21.7 22.9 24.1
X8CrNiMoNb1616 15.7 16.6 17.8 19 20.2 21.4 22.6 23.8
XlONiCrAITi3220
(Incoloy) 12.8 14 15.5 17 18.4 19.8 21.2 22.6
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TableB.18. Density p [kg/m3
] x103 for selected austenitic steels

Steel symbol Temperature [OC]
(DIN or ASME Code

20 100 200 300 400 500 600 700

X8CrNiNb 1613 7.847 7.814 7.772 7.729 7.593 7.545
X8CrNiMoNb1616 7.917 7.884 7.842 7.799 7.755 7.709 7.662 7.614
X10NiCrAITi3220
(lncoloy) 7.923 7.893 7.855 7.816 7.775 7.733 7.689 7.644

TableB.19. Specific heat capacity c [kJ/(kg·K)] for selected austenitic steels

Steel symbol Temperature [OC]

(DIN or ASME Code 20 100 200 300 400 500 600 700

X8CrNiNb1613 0.504 0.52 0.539 0.558 0.576 0.611 0.628
X8CrNiMoNb1616 0.504 0.52 0.539 0.558 0.576 0.594 0.611 0.628
X10NiCrAITi3220
(Incoloy) 0.459 0.474 0.494 0.515 0.536 0.558 0.58 0.603

rZ~~~l~w.~!§} ~.16) =~k>=Q;±~l. 0~4~?. »,2.523 0.543 0~«~~~~574 .0~5.~2. 0.599

Table B.20. Average linear expansion coefficient p [11K] x l 05 in an interval from

temperature ooe to temperature T for selected austenitic steels

symbol Temperature [OC]
(DIN or ASME Code

20 100 200 300 400 500 600 700N47}....
X8CrNiNb1613 1.66 1.7 1.75 1.8 1.84 1.87 1.91 1.94
X8CrNiMoNb1616 1.65 1.69 1.74 1.79 1.83 1.86 1.9 1.93
X10NiCrAITi3220
(lncoloy) 1.47 1.52 1.57 1.62 1.66 1.7 1.74 1.77
TP316 AISI316) 1.53 1.61 1.68 1.74 1.79 1.82 1.86 1.89

TableB.21. Linear expansion coefficient f3 [11K] x l 05 at temperature T for selected
austenitic steels

Steel symbol
(DIN)

X8CrNiNb1613
X8CrNiMoNb1616
X10NiCrAITi3220

Temperature [OC]
20 100 200

1.75 1.85
1.66 1.74 1.84

1.93
1.92

1.99
1.98

2.1
2.09

2.13
2.12
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Table B.22. Longitudinal elasticity modulus (Young's modulus) E [GPa] for se-
lected austenitic steels

Steel Temperature [OCl
(DIN or ASME Code

20 100 200 300 400 500 600 700

X8CrNiNb1613 197.5 190.5 181.9 173.5 165.4 157.5 149.9 142.4
X8CrNiMoNb1616 197.5 190.5 181.9 173.5 165.4 157.5 149.9 142.4
X10NiCrAITi3220
(Incoloy) 197.5 192 185.1 178 170.8 163.5 156 148.5
TP316 (AISI 316) 196 192 187.5 181 173 164.5 155 142

Table B.23. Poisson ratio v for selected austenitic steels

Temperature [OCl
(DIN or ASME Code

20 100 200 300 400 500 600 700

X8CrNiNb1613 0.278 0.282 0.287 0.292 0.298 0.305 0.312 0.319
X8CrNiMoNb1616 0.278 0.282 0.287 0.292 0.298 0.305 0.312 0.319
X10NiCrAITi3220
(Incoloy) 0.278 0.282 0.287 0.292 0.298 0.305 0.312 0.319
TP316 (AISI 316) 0.278 0.282 0.287 0.292 0.298 0.305 0.312 0.319

Table B.24. Chemical composition of selected new martensitic steels that contain
9-13% Cr

Steel symbol
Steel composition, %
C Si Mn P S k\l Cr tu Mo Nb Ni ~ W

tp91 0.08 0.2- 0.3 0.85 0.06
(H9AMFNb) ~O.12 0.5 -0.6 ~0.02~0.015~0.048-9 ~0.25-1.05 ~0.1 ~0.4,- -

tp 92 Kl.07 0.3 8.5 0.3 Kl.04 0.15 1.5
(NF616) ~O.13 ~0.5 -0.6 ~0.02~ 0.01 ~0.04 -9.5 ~ -0.6 ~0.09 ~0.4r-0.25 -2.0
[122 ~.07 10 ~.3 0.25 ~.04 0.15 1.5
(HCM12A) ~0.14 ~0.5 ~0.7 ~0.02~0.01 ~0.04 -12.5 ~1.7 -0.6 ~O.1 ~0.5 ~0.30 -2.5

Table B.25. Thermal conductivity A [W/(m·K)] of high-temperature-creep­
resistance ferritic steel (martensitic)

Steel symbol

P 91 (H9AMFNb)
P 92 (NF616)
T122

Temperature [OCl
20 100 200
28.7 29 29.6
27 27.8 28.2

300
29.7
28.5

400
29.7
28.8

500
29.6
29

600
29.3
27.8

700
28.4
27.4



Steel symbol

B 1 Tables of Thermo-Physical Properties of Solids B.2. Diagrams 855

Table B.26. Specific heat capacity c [J/(kg·K)] of high-temperature-creep­
resistance ferritic steels (martensitic)

Temperature [OCl
20 100 200 300 400 500 600 700

p"~j'i'*"'(iI"9AMFNb)"'<-""'" 448 486 523 565 620 703 804 -
P 92* (NF616) 448 486 523 565 620 703 804 -

!I:~"~.":i!!£"M,,L~'~~'o""::'*"K,w:'''''''''''''"&''''''''''''K''''K''':"'"''''''''·''·''''''''''''''·'''''''''''''''''''''''''',K'K'''''''''~,2.,2":"2"K'K"~,2,§<:"2",,,~,2,,~:.2,,,,2,2&2.,;,,~,,,,ZQ2":,iH§K"~§":"2,,w22"~K:,,,~,,,,,L~~2':~"K*
*Values assumed for steel X20CrMoV121.
Steel density at temperature 20°C: for P91 - P ~ 7750 kg/m', for P92 - P ~ 7750 kg/m', for
T122 - P ~ 7870 kg/m',

Table B.27. Average linear temperature expansion coefficient p [11K] x l 05 of

ferritic steel (martensitic) at an interval from temperature 20°C to temperature T

Steel symbol Temperature [OCl
100 200 300 400 500 600 700

................ -...................

P 91 (H9AMFNb) 0.98 1.06 1.09 1.12 1.13 1.15 1.16
P 92 (NF616) 1 1.07 1.11 1.14 1.15 1.17 1.17
T122 (HCM12A) 0.94 1.06 1.07 1.1 1.12 1.15 1.16

Table B.28. Longitudinal elasticity modulus (Young's modulus) E [GPa] of high­
temperature-creep-resistant ferritic steels (martensitic)

Steel symbol

P 91 (H9AMFNb)
P 92 (NF616)
T122 (HCM12A)

Temperature [OCl
20 100 200

.·.·.·.·.·.·.·.·.·.·.·.·.·.v.·.·.·.·.·.·.·~·.·.·.·.· ~ ~ .

239 228 214
239 228 214
216 211 204

300
200
200
196

400 500
.... "' ..

186 172
186 172
185 174

600 700
. - .

158 144
158 144
158 132
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B.2. Diagrams

P lj} AI203 Si0 2 Fe203 CaO !vlg0
Curves

kg/m'' 0/0-
1 2850 0.171 1.6 2.9 5.3 2.0 88.3
II 2980 0.158 1.8 2.4 4.8 2.3 88.9
III 2400 0,4 5.0 1.6 1.7 92.1

IV 2340 0.34 6.5 2.7 4.4 - 86.4
V 2010 - 14.8 22.5 2.5 4.9 53.5
VI 2560 2.6 4.7 87.9
VB 2350 - 0.2 0.2 9.3 0.3 88.8
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Fig. B.1. Thermal conductivity of magnesite [7]; p -density, If/-volume fraction
of piping
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Fig. B.2. Thermal conductivity of chamotte [7]; p -density, If/ -volume fraction
of piping



B 1 Tables of Thermo-Physical Properties of Solids B.2. Diagrams 857
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Fig. B.3. Comparison of the selected properties of the new high-temperature­
creep-resistance martensitic. P91 and P92. steels [10] with standard steels: P22 ­
low-alloyed ferritic steel, whose equivalent is the Polish steel 10H2M or German
10CrMo910; X20CrMoV121 - German martensitic steel, TP316 - American aus­
tenitic steel: a) thermal conductivity A, b) average linear expansion coefficient 7i
from temperature of 20°C to given temperature, c) longitudinal elasticity modulus
(Young's modulus) E

B.3. Approximated Dependencies for Calculating Thermo­
Physical Properties of a Steel [8]

Densityp at temperature 20°C

• carbon and low-alloyed steels. which contain Cr < 1%

p=(7.84±O.04)·103 kg/m3
, (B.1)
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• alloy steels. which contain 1-26% Cr, no Al

p=(7.82-0.008.Cr[%]±0.06).103 kg/m3
,

• chromium steels, which contain 1-26% Cr and Al ~ 1%

p = (7.74 -1.2.10-2
• Cr[%] ±0.03) .103 kg/m3

,

• austenitic steels

p = (8.001- 0.1092.10-2
• Si[%] ±0.05) .103 kg/m3

•

Thermal conductivity A in a temperature function

(B.2)

(B.3)

(B.4)

• carbon and low-alloyed steels based on the example of steel St41K (H II)

for 0 ~ T ~ 650°C

A= 52.1- 0.0159· T -1.86 .10-5
• T 2 ± 0.5 W/(m· K), (B.5)

where T is expressed in [OC];

• steels that contain 5-26% Cr based on the example of steel

X20CrMoV121 for 0 ~ T ~ 600°C (Cr = 11.8%)

A = 23.9 + 0.41.10-2
• T + 0.01.10-5

• T2 ± 0.1 W/(m. K), (B.6)

where temperature T is expressed in [OC];

• austenitic steels of type Cr-Ni and Ni-Cr for 0 ~ T ~ 1000°C

A = 14.6 + 1.27.10-2
•T ± 0.3 W/(m. K).

where temperature T is expressed in [OC].

Specific heat capacity c in a temperature function

(B.7)

• carbon and low-alloyed steels for 0 ~ T ~ 650° C

c=422+0.931·T-2.14·10-3 ·T2 +2.64.10-6 ·T3 ±14 J/(kg·K), (B.8)

where temperature T is expressed in [OC];

• austenitic steels of type Cr-Ni and Ni-Cr for 0 ~ T ~ 1000°C

c=454+0.388·T-3.22·10-4·T2+1.1·10-7 ·T3±12 J/(kg·K), (B.9)

where temperature T is expressed in [OC].
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Longitudinal elasticitymodule(Young's modulus) E in function of
temperature

• carbon and low-alloyed steels for 0:::; T :::; 600° C

E = (214- 5.2 .10-2
• T - 4.7.10-5 1 2 ± 5.6) .109 Pa,

where temperature T is expressed in [OC];
• austenitic steels of typeCr-Ni and Ni-Cr for 0:::; T :::; 800° C

E = ( 200 - 8.3 .10-2
• T ± 4.2) .109 Pa.

where temperature T is expressed in [OC].

(B.lO)

(B.11)

Average temperature expansion coefficient f3 within temperature
intervalfrom 20°C to a given temperature Texpressed in [OC]

• carbon and low-alloyedsteels for 0:::; T :::; 600° C

,8 =(11.4 +8.23 .10-3
• T - 4.8 .10-6

•T2 ± 0.8) ·10-6 11K,

• chromium steels. whichcontain 5-;-26% Crfor 0:::; T:::; 600°C

,8=(10.0+5.7.10-31-2.6.10-6 ·T2 ±1.0).1O-6 11K,

• austenitic steels of typeCr-Ni for 0:::; T :::; 700° C

,8 =(15.8 + 6.1.10-3
• T - 2.6·10-6 1 2 ± 0.8) .10-6 11K.

Poisson ratio v in function of temperature

• carbon and low-alloyedsteels for 0:::; T :::; 600° C

v = 0.283 + 4.0 .10-5
• T ± 0.001,

where temperature T is expressed in [OC];
• austenitic steels of typeCr-Ni and Ni-Cr for 0:::; T :::; 800° C

v =0.292 + 5.4.10-5
• T ± 0.02,

where temperature T is expressed in rOC].

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

Numbers with a sign ± at the end of a (B.l) -(B.16) are a maximum
error is determining a given quantity.
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Appendix C Fin Efficiency Diagrams
(for Chap. 6, part II)

Efficiency of fins:

- straight (Fig. C.l),
- circular (Fig. C.2),
- square (Fig. C.3),
- hexagonal (Fig. C.4).

5

triangular
cross-section

2

O(Xl) =(~~t
Lc=L

4 L (2aJ2

clAf

rectangular
~~cross-section

32

O'--- --L-_~ ____'__ ~__...,,__----l

o

1]

fin efficiency

0.2

0.8 I----~~~----+-----..."

Fig. e.l. Efficiency of simple fins with different cross-sections [2]
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Fig. C.2. Efficiency of a circular fin of constant thickness [2]

calculation of effective
radius r2

Fig. C.3. Efficiency of square fins [1]
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Appendix D Shape Coefficients for Isothermal
Surfaces with Different Geometry (for Chap. 10,
Part II)

Table D.I. Shape coefficients S for isothermal surfaces of different shapes;

Q= 811(1; - Tz)

1. Flat wall, lateral surfaces ther­
mally insulated

coefficient S Comments
If lateral surfaces are
not thermally insu­
lated, then
L>5J,

h>5J

2. Pipe with square cross-section 21rL a
and length L with insulated endings S = a b> 1.4 ,

0.93In- - 0.0497
b

b

a

or

s = 21rL

0.785In~
b

!!- < 1.4
b
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Table D.I. (cont.)

coefficient S Comments
3. Long rectangular duct in a semi­
infinite body

b •

L(5.7+~)
S == 2a

In 3.5h
aO.75b°.25

4. Long beam that connects two flat S == O.54L
walls with isothermic surfaces

5. Corner hexahedron at the joint of S == O.15t5
three identically thick walls

L > 5t5 ,
T} - inner surface wall
temperature,
T2 - outer surface wall
temperature and mount
(ends) temperature of a
beam
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Table 0.1. (cont.)

S =:. 21fL h > 4r
2h'

In-
r

7. Row of pipes spaced at
equal intervals in a semi­
infinite body

8. Two pipes in semi­
infinite body

9. Two long pipes of dif­
ferent diameters in an in­
finite medium

869

L - pipe length
L»r,
L»h,
s ~ 3r

L - pipe length
L» 'i,r2 ,

arcoshx =

= In(x + -JXl - 1) ,

x z l
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Table D.I. (cont.)

r 2

A

~ ..c

I T1

a

L»a

r' 2

A~ ~

ITI

b

11. Long pipe inside a square- 2;rL
shaped block S = ( aJ

T In 0.54-
r

12. Long pipe perpendicular S = 2JrL
to semi-infinite body surface In( 2

rL

J
with a thermally insulated
pipe end

insulation

L»r

13. Two long off-centre cyl­
inders

L »'1 - cylinder

length,
arcoshx =

= In(x+ ~X2 -1),
x~1
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Table 0.1. (cont.)

871

14. Long hollow cylinder

T2 s =1:[;'J
Comments
L - pipe length,

L» 'l

1.). IV numner or long pipes spaced 2:rL L - pipe length,

out at equal intervals inside a cy- S = (r
2
J 1 I ( NrJ r« 'l, N» 1 ,

lindrical area In - - - n - N - number of pipe,
I'j N I'j Shape coefficient S

refers to one pipe

Q=NSA(~ -1;)

16. Long elliptical duct

17. Hollow sphere

T2
S=~

1 1

2 b2 2 b2al - 1 = a2 - 2'

L»al
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Table D.I. (cont.)

coefficient S Comments
18. Sphere in a semi-infinite
body

19. Hemisphere caved in a
semi-infinite body

s =Znr

h>r

The inner hemi­
sphere surface at
temperature T1 is
also thermally insu­
lated

20. Sphere in a semi-infinite S = 4;rr
body with thermally insulated (1+ 2rh)
surface

insulation

h>r

T2

21. Two spherical cavities in
an infinite medium s= 2;rr2 'i < r2 '

(;J s
-~5

r2 1-
_ 2r2

r2-+

1-(;J'i s
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Table 0.1. (cont.)

873

coefficient S Comments
22. Two spherical cavities
with identical diameters

23. Two spherical cavities
with identical diameters 10- s = 4;r [1 +~+(~J+(~J+2<~ <5

+2(~J +3(~J+..]

24. Long wires

a) ·O,5Q

s = 21CL

1Ch +In(~)
2s 1Cr

L -length,
L»r,
r« h,s ,
Shape coefficient S
refers to a single
wire,
Q =NSA(~ -T2 ) ,

where N is the
number of wires
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Table D.I. (cont.)

coefficient S Comments
25. Long wires in a semi-infinite me- 2;rL L -length,

dium S == nh ( s) L » r ,
-+In - r«h s ,
s nr '

Shape coefficient S re-
fers to a single wire,

Q== NSA(~ - 1;),
where N is the number
of wires

h/b C

3 0.5696
4 0.2708
5 0.1606
6 0.1067
8 0.0570
10 0.0354
00 0

b
L» r , - ~ 10

r

N C

r2->10, L»'1'
'1

N - number of sides
s= In(~ J-c

2b

26. Long bar wires in a cross-section
of a regular polygon with N sides

27. Long rectangular bar with a wire S == 21CL

inside ( )
In :~ -c

T2 2r

;~ ~
1.00 0.1658
1.25 0.0793
1.50 0.0356
2.00 0.0075
2.50 0.0016
3.00 0.0003
00 0

28. A strip made of a thin long metal (a )0.24 L -length of the strip,

Plate a) S == 2.38L - L » a h
h ' ,

a) r b) t h
2 2 ( a )0.32 0.5 < - < 12

b) S == 2.94 - a
h
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Table 0.1. (cont.)

coefficient S Comments

29. Disk made of thin metal plate in S = 4Jl"r !!.- > 2
a semi-infinite body :r ( r ) r

JIIIIIPIIII..........-IJ~P...2.,...,...... 2- arctan 2h

30. Two parallel disks in an infinite 8 = 2:rr h
body ( ) - ~ 5

~-arctan ~ r

875

31. Disk in a semi-infinite body
8 = 4:rr ~ > 2

:r ( r ) r-+arctan -
2 2h

32.
8=~

b
-+8.8 z

S - Fig. D.l,
L - length measured
perpendicularly to the
diagram plane



876 Appendix D Shape Coefficients for Isothermal Surfaces

Table n.r. (cont.)

coefficient S Comments
33.

34.

(
2b ) S - Fig. D.I,

S =N J +2St L N - numberof fins,
L - length measured perpen­
dicularly to the diagram plane

(
b ) as above

8 =N -+28. Lt5 z

35.

36.

2b 2b

8=_L_
b
-+8.t5 z

8= L
2b +28.
t5 z

as above

as above
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Table D.I. (cont.)

as above
S== L

2b +2S~
"0 8 Z

.~~1!:P~N.wN'~_.~.'=NNo~'_~V.==_No.'.V.w'.'~V._.~__==~~~!l~!.~oef!~.w~~!!~v_.~~£!!!!!!N~E!'~ ..~'_.'NoVNo~.wN_=V.~=V._.w._N.wNNNo _No._No_'_~

37. S=(2b+2S~)L S:-Fig.D.2,
8 Z L - length measured perpen­

dicularly to the diagram plane

0.60

0.80

h/d = 0.95

0.40

0.20

1.5 2b/o 2.01.00.5

1.0 t----jf-----f-2IIK:..------f---+------1

0.5 1-+-1'----#-+----+----+------1

1.75,..----.-----.,..----,...------.

Sf:
1.5.------II---~~ r--r-...,....-,.....,......,......,......,...~

Fig. D.I. Shape coefficient S for unilaterally finned plates with respect to the unit
of length measured perpendicularly to the diagram plane
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1.75 r--- ..,------.~...,..---__r__--_..,

Sf
1. 5 I-----t--\~-

0.90

1. 0 I-----f-~---+---_+_--__I

0.80

O. 5 I-----t~r-----+----_t_--__t

0.60

0.40

0.20

1.5 2b/o 2.01.0
oL---l::=:1::======:::t======t======:::t
o 0.3 0.5

Fig. D.2. Shape coefficient Sf for unilaterally finned plates with respect to the
unit of length measured perpendicularly to the diagram plane



Appendix E Subprogram for Solving Linear
Algebraic Equations System using Gauss
Elimination Method (for Chap. 6, Part II)

Subprogram for solving linearalgebraic equations system using
Gauss method

c Gauss method
c aa - matrix with coefficients, n - matrix dimension,
c ainv - inverse matrix

subroutine matinv(aa,n,ainv)
dimension aa(50,50), ainv(50,50), a(50,100), id(50)
nn=n+1
n2=2*n
do 100 i=l,n
id(i)=i
do 100 j=l, n

100 a(i,j)=aa(i,j)
do 200 i=l,n
do 200 j=nn,n2

200 a(i,j)=O.
do 300 i=l,n

300 a(i,n+i)=l
k=l

1 call exch(a,n,n,n2,k,id)
2 if (a(k,k)) 3,999,3
3 kk=k+1

do 4 j=kk,n2
a(k,j)=a(k,j)/a(k,k)
do 4 i=l,n
if(k-i) 41, 4, 41

41 w=a(i,k)*a(k,j)
a(i,j)=a(i,j)-w
if(abs(a(i,j))-O.OOOl*abs(w)) 42,4,4

42 a(i,j)=O.O
4 continue

k=kk
if(k-n)1,2,5

5 do 10 i=l,n
do 10 j=l,n
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if (id(j)-i) 10,8,10
8 do 101 k=l,n
101 ainv(i,k)=a(j,n+k)
10 continue

return
999 write(*,*) 'Matrix is singular'

return
end

subroutine exch(a,n,na,nb,k,id)
dimension a(50,100),id(50)
nrow=k
ncol=k
b=abs(a(k,k))
do 2 i=k,n
do 2 j=k,na
if(abs(a(i,j))-b) 2,2,21

21 nrow=i
ncol=j
b=abs(a(i,j))

2 continue
if(nrow-k)3,3,31

31 do 32 j=k,nb
c=a(nrow,j)
a(nrow,j)=a(k,j)

32 a(k,j)=c
3 continue

if(ncol-k)4,4,41
41 do 42 i=l,n

c=a(i,ncol)
a(i,ncol)=a(i,k)

42 a(i,k)=c
i=id(ncol)
id(ncol)=id(k)
id(k)=i

4 continue
return
end



Appendix F Subprogram for Solving a Linear
Algebraic Equations System by Means of Over­
Relaxation Method

Subprogram SOR section appendix f subprogram,for solving a linear
algebraic equations system by means of over-relaxation method

subroutine sor(a,nmax,mmax,n,xi,w,niter,toler,k)
dimension a(nmax,mmax),xi(nmax)
k=l
err=l.
do while ((k.le.niter) .and. (err.gt.toler))

c variable err is solution tolerance
err=O.O
do i=l,n

s=O.O
do j=l,n

s=s-a(i,j)*xi(j)
enddo

s=w*(s+a(i,n+l))/a(i,i)
err=err+s*s
xi(i)=xi(i)+s

enddo
err=sqrt(err)

k=k+l
enddo
k=k-l
return
end



Appendix G Subprogram for Solving an Ordinary
Differential Equations System of 1st Order using
Runge-Kutta Method of 4th Order (for Chap. 11,
Part II)

Subprogram for solving an ordinary differential equations system of
1st order using Runge-Kutta method of 4th order

SUBROUTINE RUNGE(N,T,F,TAU,DT,M,K)

DIMENSION T(204),F(204),CAPY(204),P(204)
M = M+l
GO TO(I,2,3,4,5),M

2 DO 12 I=I,N
P(I) = F(I)
CAPY(I)=T(I)

12 T(I) = CAPY(I)+O.5*DT*F(I)
11 TAU = TAU+O.5*DT

1 K = 1
RETURN

3 DO 13 I=I,N

P(I) = P(I)+2.0*F(I)
13 T(I) = CAPY(I)+O.5*DT*F(I)

K = 1
RETURN

4 DO 14 I=I,N
P(I) = P(I)+2.0*F(I)

14 T(I) = CAPY(I)+DT*F(I)
GO TO 11

5 DO 15 I=I,N
15 T(I) = CAPY(I)+(P(I)+F(I))*DT/6.0

K = 2
M = 0
RETURN
END



Appendix H Determining inverse Laplace
Transform (for Chap. 15, part II)

When applying Laplace transformation to the solving of transient heat
conduction problems, the main difficulty lies in the fact that one needs to
find inverse Laplace transform

?1 [F] =_1_. o+r F(s)eS1ds,
Lni b-ioo

(H.I)

where F(s) is the solution of the transient heat conduction problem in the
image domain. Value 8 is chosen in a way that all poles (roots of a de­
nominator) F(s) would lie on the left-hand-side of the path of integration,
which lies on the right-hand-side of an imaginary axis [1-4].

The process of determining an integral in (H.1) is very complex and
rarely applied when solving transient heat conduction problems. Below,
we will describe the method for determining inverse Laplace transform
usually applied in practice. Temperature distribution transform is obtained
in the form [1, 2]

()
-() gl (s)

F s =T s =-(-).
g2 S

(H.2)

Function g2(S) in denominator has many zero points sn' which satisfy equa­
tion

(H.3)

If s ~ sn' then function F(sn) ~ 00; if, however, s "* sn' then the function
has a finite value. Points sn are called poles or singularities. Three cases
will be analyzed here:

a) denominator g2(S) has individual poles, also called simple poles,
which are other than zero

b) denominator g2(S) has a single pole s = 0 and many simple poles sn'
n =1,2, ...,

c) denominator g2(S) has k- number of zero poles s =0 and many simple
poles sn' n = 1,2, ...
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Ad a) With different poles sn' when each one is other than zero, inverse
transform g;1 [F(s)] is formulated as

(H.4)

where

(H.5)

Ad b) Denominator g2(S) of transform (H.2) can be in the given case writ­
ten in the form

(H.6)

Pole s =0 is a single pole; other single poles sn' n =1, 2, ... are determined
from equation

Derivative g; (s) is given by

h(s)=O. (H.?)

hence, for s =0 one has

while for s =s
n

(H.8)

(H.9)

n=l, 2, ... (H.lO)

Because for s = 0, est = 1; therefore, formula (H.4) assumes the form

It is a Heaviside formula.
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Ad c) Inverse transform can be also calculated from formula
1 8+ioo 00

?1[F(s)J=-. f F(s)estds= IRes[F(sn)esntJ. (H.l2)
21Cl 8-ioo n=O

Residuum, which occurs under the summation sign, has the form

Res[F(sn)esntJ= ( 1 ) dkk~l [(s-snt F(s)estJI ' (H.I3)
k -1 !ds S=Sn

where k is the multiplication factor of a given pole.
If transform F(s) is expressed by (H.2), then g2(S) can be expanded

into a Taylor series around pole sn

(H.I4)

Once we account for characteristic equations (H.3) and (H.I4) from
(H.I3), we have

(H.I5)

therefore, formula (H.4).
If the multiplicity factor of pole sn is k, then the determination of a re­

siduum from (H.I3) is rather complex. In such a case, function F(s)esnt

is expanded into a Laurent series around pole sn

F(s)est=gl(S)est= c_k k+ C-k+1k1+...+ c_1 +
g2(S) (s-sn) (s-sn) - (s-sn) (H.I6)

+CO+c1(s-sn)+··· ,

where k is a multiplication factor of pole sn.
Residuum of function F(sn)esnt is equal, in such a case, to coefficient c-

1

(H.I7)

Inverse Laplace transform is, thus, formulated as

(H.I8)

It is an expanded Heviside formula. In order to determine coefficient c-
1

'

functions gl(S), g2(S) and est are expanded into Taylor series around a mul­
tiple pole sn. Allowing that So = 0 is the multiple pole in heat conduction
problems, the corresponding Taylor series have the form



888 Appendix H Determining inverse Laplace transform (for Chapter 15, part II)

(H.19)

() ~ 1 ( )m d
m
g2(So) k ( 2)g2 S = ~-, s-so m =s D+Es+Fs +... , (H.2D)

m=O m. ds.,

(H.21)

where So =O.
For So =Dtransform F(s)e

st can be written as follows:

F ( ) sf = gl (s) sf = A +Bs + Cs
2
+... (1 S2 t2 ) (H 22)

s e g2(s) e Sk (D + Es +Fi +...) + st + 2 +..., ·

where from, once we carry out the operations, we get

( )
sf 1 [A 1 ( AE )F s e =- -+- At+B-- s+

Sk D D D

1 ( AE A 2 AF BE AE
2

) 2 ]
+D C+Bt-Iit+"2 t -Ii-Ii+ D 2 s +....

(H.23)

It is easy to determine coefficient c-
1

present in formula (H.18) by
means of (H.23). What follows from formula (H.23) is that for a single
pole (k =1) present in s =0, coefficient c- 1 is

A
c =­

-1 D'

when k = 1.
For a double pole (k = 2) present in s = 0 from (H.23) one has

1( AE)c =- At+B-- .
-1 D D

(H.24)

(H.25)

Formulas for c-
1
when k = 3 and higher multiplication factors of poles in

s = 0 can be derived in a similar way.
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