Distinctness Analysis on Natural Landmark
Descriptors

Kai-Ming Kiang!, Richard Willgoss?, and Alan Blair3

1 School of Mechanical and Manufacturing Engineering, University of New South
Wales, NSW, 2052, Sydney, Australia kai-ming.kiang@student.unsw.edu.au

2 School of Mechanical and Manufacturing Engineering, University of New South
Wales, NSW, 2052, Sydney, Australia r.willgoss@unsw.edu.au

3 School of Computer Science and Engineering, University of New South Wales,
NSW, 2052, Sydney, Australia blair@cse.unsw.edu.au

Autonomous navigation using natural landmarks in an unexplored environ-
ment is a very difficult problem to handle. While there are many techniques
capable of matching pre-defined objects correctly, few of them can be used for
real-time navigation in an unexplored environment. One important unsolved
problem is to efficiently select a minimum set of usable landmarks for locali-
sation purposes. This paper presents a method which minimises the number
of landmarks selected based on texture descriptors. This enables localisation
based on only a few distinctive landmarks rather than handling hundreds
of irrelevant landmarks per image. The distinctness of a landmark is calcu-
lated based on the mean and covariance matrix of the feature descriptors of
landmarks from an entire history of images. The matrices are calculated in a
training process and updated during real-time navigation.

1 Introduction

Autonomous navigation in an unexplored environment is more challenging
than in a controlled environment. In particular, underwater environments
are mostly unexplored and do not have GPS access. Therefore navigation is
generally based on methods such as Simultaneous Localization and Mapping
(SLAM) [1] [2]. Most existing SLAM algorithms rely on artificial landmarks
which do not exist in an unexplored environment. Recently, methods have been
developed for extracting natural landmarks with representations that are in-
variant to scaling, distortion and perspective. Most of these methods select
landmarks based on local properties of points, such as extracting the extrema
[3] [4] or corner features [5]. The surrounding properties of these points are
then analysed and converted to a vector of feature descriptors. These meth-
ods can efficiently select invariant natural landmarks from each image, so that
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the same landmarks can be picked up under different geometric or lighting
conditions from different images.

However, such methods tend to generate hundreds of landmarks per im-
age. For real-time SLAM applications, it is computationally infeasible to com-
pare landmarks from the current image against a database of all landmarks
previously seen. SLAM does not only require a method for selecting natural
landmarks that are invariant, but also requires selection of a small enough
set of distinctive landmarks for computing the similarity between landmarks.
A method for selecting distinctive landmarks that is both economical and
efficacious is described in this paper.

2 Background

Scale Invariant Feature Transformation (SIFT) [4] is a method which has
received much attention recently for its robustness in representing landmarks.
It analyses the local gradients of the extrema extracted using Difference of
Gaussian (DOG) filters [6] . Its descriptors are claimed to be invariant under
changes in scale, rotation, shift and illumination conditions.

We have previously devised another method of representing landmarks
based on DOG and frequency distribution analysis [3] that could potentially
provide more robust descriptors than those based on gradient properties be-
cause the frequency properties used are usually less sensitive to noise.

Corner-based approaches, such as the Harris Matrix [7], claim to be also
invariant under affine transformation [5]. Other methods including phase con-
gruency [8], wide baseline stereo matching [9], intensity transformation [10]
and steerable filters [11], are also designed to provide invariant descriptors.
Some comparison of these techniques has been reported [12].

All of the methods mentioned above can be described in two main steps.
Firstly, select interest points based on local properties. Secondly, analyse and
represent the local properties of interest points by descriptors. The reason that
methods mentioned so far tend to generate hundreds of landmarks per image
is because the selection process occurs prior to descriptor transformation and
is therefore based only on raw image data. The main motivation of distinctness
analysis presented in this paper is to have a further selection process based
on the landmarks represented by descriptors i.e. a post-descriptor selection
process.

3 Distinctivness Analysis

The question arises as to how a few relevant landmarks out of a potentially
large set should be remembered. In Figure 1, it would be best to remember
the center object because it is the most distinctive among the set. If one
remembers any of the other objects, which are similar to each other, it will be
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hard to distinguish between them later on. The algorithm should maximize
the probability of recognizing and localizing correctly, based on the features
of just a few chosen landmarks.

BEsaes

Fig. 1. Simple diagram of a distinctive object among other objects

3.1 Mathematical Distinctness

Mathematically speaking, if each landmark is represented by descriptors using
a method noted in Section 2, each landmark becomes a feature vector of
descriptors in parametric space. Distinctness can be judged from analyzing
these vectors. The general philosophy of distinctness selection is to preserve
a set of parameters that appear less frequently whilst deleting those that
appear more frequently. If we consider all the feature vectors of landmarks as
containing random variables, the probability of appearance for each of them
can then be calculated by assuming a Gaussian distribution of the vectors
using the formula [13]:

1 1 L
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where:
1 n
B = n ij (2)
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C= 3 05— ) G — )’ 3)

j=1
where n = the number of landmarks.

A distinctness selection can then be made on the basis that the lower the
probability, the more distinctive a landmark is judged to be.
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3.2 Global Distinctness

Since distinctness selection is a process of minimizing the number of land-
marks, the selection criteria must select landmarks consistently from a variety
of images. The distinctness of a landmark must have a global meaning for it
to be call distinctive i.e. any possible matches should pick out landmarks that
are distinctive across images rather than within a particular image.

Referring to Equation 1, the distinctness of a landmark is calculated based
on a mean vector g and a covariance matrix C. To obtain these two matrices,
the sample feature vectors must be selected over a wide range of images of the
environment. However, remembering all the sampled feature vectors from each
image can accumulate to a huge database. This is avoided because the mean
and covariance are updated on every image without the need for recalculation
later on.

Let us denote the mean and covariance for the global distinctness by
and Cy respectively and those for the current image by p. and C.. Then p,
and C. can be calculated from Equations 2 and 3; assuming p¢ and Cy have
been initialised, they can be updated using the formula:

Bt = Ape—1 + (1= A)pe (4)

where A is the innovation factor, which determines how much the system
relies on history versus new data.
C is calculated on the following formula:

Ci(ay) = E(XY )t — fe(a) e(y) (5)

where E(XY) is the expectation value of the product of two dimensions
X and Y, which can be calculated from:

E(XY): = AE(XY )1 — (1 - A)E(XY). (6)

E(XY);—1 and E(XY). can be obtained by rearranging Equation 5 using
E(XY) as the subject with appropriate g and C matrices.

pt and Ci can be updated iteratively using p. and Cc. To initialize g
and Cg, they are assigned equal to pu. and C. for the first input image.
py and C; require the system to run over a series of images in order to
have confidence in global distinctness. A practical solution is to take a safe
walk in the environment of interest e.g. move forward a few steps then move
backward a few steps, before using the data for exploration into an unexplored
environment.

3.3 Probability of Similarity

Once distinctive landmarks have been extracted, they are compared to form
a judgment on how likely any two of them correspond to the same landmark.
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This involves calculating the probability of similarity between two selected
landmarks from different images.

Each landmark is extracted and converted into a feature descriptor i.e.
a p-dimensional vector, which is subject to sources of randomness. Firstly
there is random noise from the sensors. Secondly, the descriptor expression is
itself a simplified representation of the landmark. Lastly the two images being
compared could be viewing the landmark from a different perspective, which
causes geometric distortion. Therefore, each landmark can be considered as a
single sample of the observing object.

In making inferences from two landmarks in two different images, it is
in principle a standard significance test. However, comparison is only made
between two single samples. For this reason, the ANOVA test (The Analysis
of Variance) cannot be used because the sample size required should be large.

For multidimensional vector comparison, the x2 (Chi-Squared) distribu-
tion test is appropriate. Chi-Squared distribution is a combined distribution
of all dimensions which are assumed to be normally distributed. It includes an
additional variable v describing the degrees of freedom. Details can be found
in [13].

In multidimensional space, the x? variable is defined by:

Xo=NE-y)2 ' (x-7y) (7)
where:
X and ¥ are the mean of the measurements of X and Y respectively;
2 is the covariance matrix of noise;
N is a function related to the sample size of the two measurements.
Since our sample size is one, then N = 1, X = x and ¥ = y. Equation 7
simplifies to:

Xo=(x-y) X (x-y) (8)

If the noise of each dimension is independent of the other, the inverse
covariance is a diagonal matrix and hence can be further simplified to:

RN
i=1 i

where p is the number of dimensions of x.

Since x contains p independent dimensions, then the degree of freedom
v is p not (p — 1) as usually defined for the categorical statistic. Also o; =
V20, where o is the standard deviation for a single random variable on each
dimension.

With y2 and v obtained, the probability of similarity is defined to be
equal to the integrated probability at the x? value obtained. The integrated
probability of Chi-Square distribution can be found in statistical tables.
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4 Experimental

In this section, experiments were conducted on a series of sub-sea images
(courtesy of ACFR, University of Sydney, Australia). The configuration was
set such that the camera was always looking downwards on the sea floor.
This configuration minimised the geometrical distortion caused by different
viewpoints.

4.1 Initial Test of the Algorithm

For this experiment, the algorithm was written in Matlab V6.5 running on a
PC with a P4 2.4GHz processor and 512Mb of RAM.

To demonstrate how the distinctness analysis algorithm worked, a typical
analysis is now explained in detail. In the following example, we have trained
the distinctness parameters py and Cy over 100 images from the series. The
texture analysis described in [3] generated invariant landmarks on two partic-
ular images shown in Figure 2 which consist of partially overlapping regions.

The distinctness analysis described in Section 3 was then applied to further
select a smaller set of landmarks which were considered to be distinctive as
shown in Figure 3. The innovation factor A was chosen to be 0.9 weighting
the past significantly more than the present. The threshold for distinctness in
Equation 1 was chosen to be 0.2, a value that kept the number of landmarks
chosen to relatively few. In Figure 4, the two highest matches of landmarks
that scored higher than a threshold probability of 0.8 are shown with linked
lines.

The first selection of landmarks based on DOG techniques generated many
landmarks scattered all over the two images. More landmarks could usually
mean more confidence for matching. However, the computational time for
making comparison would also increase. In addition, since non-distinctive ob-
jects were not excluded, many of the matches could possibly have been gen-
erated by similar objects located at different places.

Figure 3 shows a selection of landmarks that the algorithm chose to be
globally distinctive. The number of landmarks was significantly reduced when
retaining useful matches between the two images. Since these landmarks
should not appear frequently in the environment, the possibility that simi-
lar objects appear in different locations is minimised.

The run-time of this algorithm depended on the complexity of the images.
On average, the time required to generate landmarks with descriptors took
~6 seconds per image while the selection process of distinctive landmarks re-
quired only ~0.05 second per image. Thus the extra time required to select
distinctive landmarks was comparatively small. The time required to calculate
the probability between any two landmarks was ~0.001 second. On average,
the sub images could generate 150 landmarks. Therefore there were 150 x 149
potential comparisons required to calculate between two images. The maxi-
mum time required would be ~0.001 x 150 x 150 = 22.5 seconds. But after
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Fig. 2. Two particular images from the Sub sea images. The different sizes of boxes
are landmarks generated using texture analysis described in [3].

applying the distinctness selection process, the number of landmarks reduced
to ~10 per image. The time required to make comparison thus reduced to
~0.1 second. The algorithm is currently being re-implemented in C which
should improve its speed significantly.

4.2 Global Distinctness Test

The performance of the algorithm was then tested with different images across
the environment. The test should reveal whether the algorithm could select
objects that are truly distinctive from a human’s perspective. The task is in
some ways subjective. A group of images are displayed in Figure 5 together
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Fig. 3. On the same two images of Figure 2. After applying the Distinctness selection
process described in Section 3, the number of landmarks is reduced.

with the landmarks selected by the algorithm. The reader can judge the per-
formance of the algorithm by noting what has been picked out.

As can be seen, the distinctive landmarks are usually the complicated
textural corals which tend to be sparsely distributed.

It can be seen that in some of these images, there is a single distinctive
object, in which case, the algorithm has concentrated the landmarks in that
region. However, in images that contain no obvious distinctive objects, the
algorithm has chosen fewer distinctive landmarks scattered over the whole
image.
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Fig. 4. After comparing each distinctive landmarks, two highest matches that con-
tains probability of over 0.8 are joined by lines for illustration.

4.3 Stability Test

A final test was conducted to check on the stability of chosen landmarks. By
stability, we mean that the same landmark should be picked out invariant to
any changes in shift, rotation, scale and illumination. A selection of image
pairs was made such that these pairs contained relatively large changes in
the previously mentioned conditions and contained overlapping regions. After
the algorithm was applied to each image to pick out distinctive landmarks,
an inspection was made within the overlapping region to count the number
of distinctive landmarks that appeared within a few pixels in corresponding
locations of the two images. By comparing this number with the number
of landmarks that did not correspond in both of the images, a measure of
stability was obtained. For example in Figure 3, there were four distinctive
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Fig. 5. Sample images from sub-sea series (courtesy of ACFR, University of Sydney,
Australia)
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landmarks appearing in corresponding locations of both images. On the other
hand, there were three which do not correspond in both images.

In Figure 6, 20 pairs of images have been analysed in the way indicated
above. On average, 47% of the landmarks selected as distinctive in one image
appeared correspondingly in both images. This was deemed a relatively high
hit rate for tracking good distinctive landmarks through image sequences and
shows promise for enabling map building in a SLAM context.
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Fig. 6. An analysis of finding stable landmarks over 20 pairs of images.

5 Conclusion and Future Work

The work reported here has shown that it is possible to differentiate image
data in such a way that distinctive features can be defined which can be
tracked on images as the features progress through a sequence of images in
an unexplored environment.

The paper presented an extended algorithm for selecting distinctive land-
marks among numerous candidates, that could also be adapted and combined
with existing invariant landmark generation techniques such as SIFT or Tex-
ture Analysis. In our experiments, the algorithm is demonstrated to discrimi-
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nate a small enough set of landmarks that would be useful in techniques such
as SLAM.

We are currently working to incorporate this landmark selection algorithm
with inertia sensor information to form a functioning SLAM system and de-
ploy it in a submersible vehicle.
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