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Determination of Volume Transport Stream
Function

The P-vector inverse method has been successfully used to invert the absolute
velocity from hydrographic data for the extra-equatorial hemispheres, but not
for the equatorial region since it is based on the geostrophic balance. A smooth
interpolation scheme across the equator is described in this chapter to bring
together the two already known solutions (P-vectors) for the extra-equatorial
hemispheres, using the volume transport stream function Ψ.

8.1 Vertically Integrated Velocity

Starting from the basic (1.1a)–(1.1d), compute the depth-integrated (total)
horizontal velocity

(Û , V̂ ) =
∫ 0

−H

(û, v̂)dz, (8.1)

and geostrophic velocity,

(U, V ) =
∫ 0

−H

(u, v)dz (8.2)

where z = −H(x, y) represents the ocean bottom, and z = 0 refers to the
ocean surface. Depth-integration of (1.1a) and (1.1b) from the ocean bottom
to the ocean surface leads to

−f(V̂ − V ) = Az
∂û

∂z

∣∣∣∣
z=η

− Az
∂û

∂z

∣∣∣∣
z=−H

+Ah∇2
2Û − 2Ah∇2u−H · ∇2H − Ahu−H∇2

2H, (8.3)
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f(Û − U) = Az
∂v̂

∂z

∣∣∣∣
z=η

− Az
∂v̂

∂z

∣∣∣∣
z=−H

+Ah∇2
2V̂ − 2Ah∇2v−H · ∇2H − Ahv−H∇2

2H, (8.4)

where (u−H , v−H) are velocity components at the ocean bottom. The turbu-
lent momentum flux at the ocean surface is calculated by

Az

(
∂û

∂z
,
∂v̂

∂z

)∣∣∣∣
z=η

=
(τx, τy)

ρ0
, (8.5)

where (τx, τy) are the surface wind stress components. The turbulent momen-
tum flux at the ocean bottom is parameterized by

Az

(
∂û

∂z
,
∂v̂

∂z

)∣∣∣∣
z=−H

= CD

√
u2
−H + v2

−H(u−H , v−H), (8.6)

where CD = 0.0025 (Blumberg and Mellor 1987) is the drag coefficient. Sub-
stituting the thermal wind relations (1.4) and (1.5) into (8.2) yields

(U, V ) = (Uden + Hu−H , Vden + Hv−H), (8.7)

where

(Uden, Vden) =
g

fρ0

(∫ 0

−H

∫ z

−H

∂ρ

∂y
dz′ dz,−

∫ 0

−H

∫ z

−H

∂ρ

∂x
dz′ dz

)
(8.8)

is the density driven transport. Rearrange (8.3) and (8.4) into

Ah∇2Û + fV̂ = fVden + fVb − τx

ρ0
+ AhQ1, (8.9)

−Ah∇2V̂ + fÛ = fUden + fUb +
τy

ρ0
− AhQ2, (8.10)

where

Q1 ≡ (2∇u−H · ∇H + u−H∇2H), Q2 ≡ (2∇v−H · ∇H + v−H∇2H),

and

Ub =
(

H − CD

f

√
u2
−H + v2

−H

)
u−H , Vb =

(
H +

CD

f

√
u2
−H + v2

−H

)
v−H ,

(8.11)
are the transport due to the bottom currents, or in simple terms, it is called
the bottom transport. With the known bottom velocity vector (u−H , v−H),
the depth-integrated velocity (U, V ) can be determined from the wind, density,
and topographic data.
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For the extra-equatorial regions, the horizontal diffusion can be neglected
(see Sect. 1.1.2). Equations (8.10) and (8.9) become

U∗ = Uden + Ub +
τy

fρ0
, (8.12)

V ∗ = Vden + Vb − τx

fρ0
. (8.13)

With the known (u−H , v−H), the depth-integrated flow (U∗, V ∗) may be
directly calculated using (8.12) and (8.13). However, the computed (U∗, V ∗)
field using (8.12) and (8.13) is quite noisy and cannot be the final product.
Thus, the superscript “*” is used to represent the interim depth-integrated
velocity calculated using (8.12) and (8.13).

8.2 Volume Transport Stream Function

Integration of the continuity (1.1d) with respect to z from the bottom to the
surface yields,

∂Û

∂x
+ u−H

∂H

∂x
+

∂V̂

∂y
+ v−H

∂H

∂y
− w−H = 0. (8.14)

The water follows the bottom topography,

w−H = u−H
∂H

∂x
+ v−H

∂H

∂y
. (8.15)

Equation (8.14) becomes
∂Û

∂x
+

∂V̂

∂y
= 0, (8.16)

which leads to the definition of the volume transport stream function (Ψ),

Û = −∂Ψ
∂y

, V̂ =
∂Ψ
∂x

. (8.17)

Subtracting differentiation of (8.10) with respect to y from the differentiation
of (8.9) with respect to x yields

∇2Ψ = Π, (8.18)

where

Π ≡ 1
f

[
∂(fVden)

∂x
− ∂(fUden)

∂y

]
+

1
f

[
∂(fVb)

∂x
− ∂(fUb)

∂y

]

− 1
f

[
∂

∂x

(
τx

ρ0

)
+

∂

∂x

(
τy

ρ0

)]
+

Ah

f

(
∂Q1

∂x
+

∂Q2

∂y

)
, (8.19)

is the volume transport vorticity. Equation (8.18) is called the Poisson Ψ-
equation.
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8.3 Volume Transport Vorticity

8.3.1 Extra-Equatorial Region

For extra-equatorial region, the horizontal diffusion can be neglected, (8.19)
becomes

Π ≡ 1
f

[
∂(fVden)

∂x
− ∂(fUden)

∂y

]
+

1
f

[
∂(fVb)

∂x
− ∂(fUb)

∂y

]

− 1
f

[
∂

∂x

(
τx

ρ0

)
+

∂

∂x

(
τy

ρ0

)]
. (8.20)

The volume transport vorticity Π for the extra-equatorial regions can be
computed from observational data using (8.21). This is because (Uden, Vden)
depend on ρ only; (τx, τy) are wind stress components; and (Ub, Vb) are de-
termined by the bottom current velocity (u−H , v−H). The P-vector inverse
method described in Chaps. 5 and 6 is used to determine (u−H , v−H) from
hydrographic data.

The calculated volume transport vorticity Π is quite noisy even from cli-
matological data (Fig. 8.1). In this case, the climatological hydrographic data
(e.g., GDEM or WOA) are used to compute (Uden, Vden) [see (8.8)]. The cli-
matological surface wind stress (τx, τy) data are obtained from climatological
wind data such as the Comprehensive Ocean-Atmosphere Data Set (da Silva
et al. 1994). The bottom topography is obtained from the Navy’s Digital
Bathymetry Data Base 5-minute (DBDB5).

8.3.2 Equatorial Region (between 8◦S and 8◦N)

In the equatorial region, the Coriolis parameter f is small. The horizontal
gradient of the Reynolds stress cannot be neglected and (8.21) cannot be
used to determine the function Π. Summation of the differentiation of (8.9)
with respect to y and the differentiation of (8.10) with respect to x and the
use of (8.18) yield the volume transport vorticity equation,

∇2Π =
β

Ah
(V̂ − Vden − Vb)− 1

Ahρ0

(
∂τy

∂x
− ∂τx

∂y

)
+
(

∂Q2

∂x
− ∂Q1

∂y

)
. (8.21)

For the extra-equatorial regions, Ah
∼= 0, (8.21) becomes the Sverdrup (1947)

relation

β(V̂ − Vden − Vb) =
1
ρ0

(
∂τy

∂x
− ∂τx

∂y

)
. (8.22)

The northern and southern boundary values of Π are computed using (8.20).
The volume transport vorticity (8.21) is solved with the boundary values of
Π (Fig. 8.2) and the cyclic eastern and western boundary conditions, and
the Π-values in the equatorial region between 8◦N and 8◦S are obtained.
Figure 8.3 shows annual, January, and July mean distributions of Π-values for
the equatorial region (8◦S–8◦N). The computed Π-field is quite smooth.
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Fig. 8.1. Distributions of Π for the extra-equatorial regions (a) annual mean, (b)
January, and (c) July (from Chu and Fan 2006, Journal of Marine Systems)
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Fig. 8.2. Northern (8◦N) and southern (8◦S) boundary conditions of Π for the
tropical regions (from Chu and Fan 2006, Journal of Marine Systems)

8.4 Boundary Conditions for Poisson Ψ-Equation

The computation described in Sect. 8.3 yields the global volume transport
vorticity (Π), which is the forcing term of the Poisson Ψ-equation (8.18).
In order to solve (8.18), we need boundary conditions. The flow across the
Antarctic Continent does not lead to the southern boundary condition

Ψ = C1, at the southern boundary y = ys (8.23)
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Fig. 8.3. Solutions of the volume transport vorticity (8.21) representing the distri-
butions of Π for the equatorial regions (a) annual mean, (b) January, and (c) July
(from Chu and Fan 2006, Journal of Marine Systems)

The horizontal convergence of the 2D flow (Û , V̂ ) at the North Pole does not
lead to the northern boundary condition

Ψ = C2, at the northern boundary y = yn, (8.24)

where C1 and C2 are constants (to be determined). The cyclic boundary
condition is applied to the western and the eastern boundaries (Fig. 8.4).

We integrate ∂Ψ/∂y = −U∗ with respect to y along the western (or east-
ern) boundary from the southern boundary (Ψ = 0) to the northern boundary
to obtain

Ψ|west(y) = −
∫ y

ys

U∗(xwest, y
′)dy′. (8.25)

The cyclic boundary condition gives

Ψ|east(y) = Ψ|west(y) (8.26)

8.5 Determination of Ψ-Values at Islands

Before solving the Poisson Ψ-equation (8.18) with the boundary conditions
(8.23)–(8.26), the Ψ-values at all islands should be given. These values
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Fig. 8.4. Boundary conditions of Ψ for the global ocean (from Chu and Fan 2006,
Journal of Marine Systems)

were subjectively set up in earlier studies. For example, in calculating the
geostrophic transport in the Pacific Ocean, Reid (1997) set up Ψ-value to be
0 for Antarctic, 135 Sv for Australia, and 130 Sv for America. In calculating
the geostrophic transport in the South Atlantic Ocean, Reid (1989) set up
Ψ-value to be 0 for Antarctic, 132 Sv for Africa, and 130 Sv for America. Such
a treatment subjectively prescribes 130 Sv through the Drake Passage and
132 Sv through the area between Africa and Antarctica. Godfrey (1989) used
the Sverdrup model to compute Ψ-values at islands. In this section, a more
general method on the basis of the Stokes circulation theorem is presented for
determining Ψ-value at islands.

8.5.1 Stokes Theorem

Let the ocean basin be defined as a domain Ω and islands as Ωj(j = 1, . . ., N)
in (x, y) space with uniform grids (∆x,∆y) and assume the multiple connec-
tion with horizontal boundaries of closed solid-wall segments (i.e., islands) of
δΩj , j = 1, . . ., N . The domain Ω may have open boundaries. Figure 8.5 shows
a schematic illustration of such a domain with open boundary segments and
islands.

In order to determine the boundary conditions for islands, McWilliams
1977 defined a simply connected fluid region between an island (δΩj) and
a clockwise circuit in the fluid interior (δωj). Let Cj denote the closed area
bounded by δΩj and δωj , and (n, s) be the normal (positive outward) and
tangential unit vectors along the boundaries of Cj .

The circulation around the boundary of Cj is calculated using the Stokes
Theorem,

−
∮

δΩj

V̂ · sdl +
∮

δωj

V̂ · sdl =
∫ ∫

Cj

k · (∇× V̂)dxdy (8.27)
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where l is the path along the boundary of Cj . The direction of closed integra-
tion

∮
is defined as anticlockwise. Substituting the volume transport stream

function (8.17) into the first term in the left-hand side of (8.27) yields∮
δΩj

∇Ψ · ndl =
∮

δωj

V̂ · sdl −
∫∫

Cj

k · (∇× V̂)dxdy, (8.28)

and determines the Ψ-value at Island-Ωj .
The smaller the area of Cj , the smaller the value of the second term in the

right-hand side of (8.28), i.e.,∮
δΩj

∇Ψ · ndl → Γj as Cj → 0, (8.29)

where
Γj =

∮
δωj

V · sdl

Thus, selection of δωj with a minimum Cj becomes a key issue in determining
the stream function, Ψ|Ωj

. Such a circuit (δω∗
j ) is called the minimum circuit

along the island Ωj (Fig. 8.5). Let (Il, Jl) (l = 1, . . ., N + 1) be the anticlock-
wise rotating grid points along δω∗

j with (IN+1, JN+1) = (I1, J1), and let the
circulation along δω∗

j be denoted by Γ̂j and computed by

n

δΩ

v

Ωi
Ω4

Ω1

Ω2

Ω3

Fig. 8.5. Multiple connected domain. The arrows indicate the directions of integra-
tion along the line as the integral paths defined in the text (from Chu and Fan 2006,
Journal of Marine Systems)
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Γ̂j =
1
2

N∑
l=1

[V̂(Il,Jl) + V̂(Il+1, Jl+1)]·[i(Il+1−Il)∆x+j(JL+1−Jl)∆y], (8.30)

which depends solely on the island geometry and the velocity field (V̂).

8.5.2 Algebraic Equation for Ψ-Value at Island-Ωj

The left-hand side of (8.29) is discretized by

∮
δΩj

∇Ψ · ndl
.=

N∑
l=1

(Il+1 − Il)∆x

∆y
[Ψ(Il, Jl − 1) + Ψ(Il+1, Jl+1 − 1)

−Ψ(Il, Jl + 1) − Ψ(Il+1, Jl+1 + 1)] +
N∑

l=1

(Jl+1 − Jl)∆y

∆x

×[Ψ(Il + 1, Jl) + Ψ(Il+1 + 1, Jl+1)

−Ψ(Il − 1, Jl) − Ψ(Il+1 − 1, Jl+1)]. (8.31)

Since the grid points on the island Ωj are always on the left side of the
anticlockwise circulation Γ̂j (Fig. 8.6), half grid points of (8.31) are in the
island and half in the water. Thus, (8.31) can be rewritten by

(In+1,Jn+1)

(In,Jn)δωj

Ψ|Ωj

(a)

(In+1
−In)dx

Ψisland

Vn+1
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(In, Jn)

(J
n+

1−
J n

)d
y

Vn
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(b)

Fig. 8.6. Grid points around the island, Ωj (from Chu and Fan 2006, Journal of
Marine Systems)
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Γ̂j = AΨ|Ωj
+ Γ(w)

j , (8.32)

where Γ(w)
j is the circulation in the water and

A = −
N∑

l=1

(
|Jl+1 − Jl|∆y

2∆x
+

|Il+1 − Il|∆x

2∆y

)
. (8.33)

The volume transport stream function at Island-Ωj is computed by

Ψ|Ωj
=

Γ̂j − Γ(w)
j

A
. (8.34)

8.5.3 Iteration Process

Equation (8.34) cannot be directly used to compute Ψ|Ωj
even if the vertically

integrated velocity (Û , V̂ ) is given. This is because that the Ψ-values at sur-
rounding water is still undetermined. Thus, we use an iterative process to de-
termine Ψ|Ωj

from a first guess value. Suppose all the islands Ωj (j = 2, . . ., N)
in Fig. 8.5 has to be removed, with the given boundary conditions at δΩ1, we
solve the Poisson Ψ-equation (8.18) and obtain the solution Ψ∗(x, y). The aver-
age of Ψ∗ over Ωj leads to the first guess Ψ-values at islands Ωj (j = 2, . . ., N),

Ψ|Ωj
(0) =

∫ ∫
Ωj

Ψ∗(x, y)dxdy. (8.35)

Let Ψ-values and the circulation Γ̂j be given at the mth iteration such that

Ψ|Ωj
(m) =

Γ∗
j (m) −

∑
k

BkΨk(m)

A
, (8.36)

where the minimum circuit circulation at the mth iteration, Γ∗
j (m), might not

be the same as Γ̂j . We update Ψ|Ωj
using

Ψ|Ωj
(m) =

Γ∗
j (m) −

∑
k

BkΨk(m)

A
. (8.37)

Subtracting (7.40) from (7.41) yields

Ψ|Ωj
(m + 1) = Ψ|Ωj

(m) +
Γ̂j − Γ∗

j (m)
A

, (8.38)

which indicates the iteration process (a) solving the Poisson Ψ-equation (8.18)
with Ψ|Ωj

(m) to obtain solutions and in turn to get Γ∗
j (m), (b) replacing the

Ψ-values at islands using (8.38). The iteration process (Fig. 8.7) repeats until
it reaches a certain criterion
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calculate Γi*  from eq. (8.32)
update  Ψi  from eq.(8.38) 
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Fig. 8.7. Flow chart, showing the iteration method for determining Ψ|Ωj

|δΓ∗|
|Γ̂|

≤ ε, (8.39)

where

|Γ̂| ≡

√√√√ 1
N

N∑
j=1

[Γ̂j ]2, |δΓ∗| ≡
√

1
N

[Γ∗
j (m + 1) − Γ∗

j (m)]2, (8.40)

and ε is a small positive number (user input), which is set to be 10−6 in this
study. As soon as the inequality (8.39) is satisfied, the iteration stops and the
final set of {Ψ|Ωj

, j = 1, 2, . . ., N} become the optimal Ψ-values for islands.

8.6 Verification of Island Algorithm

8.6.1 A Channel with Two Islands

Consider a channel (length: L, width: W ) with a uniform depth and two
irregular shaped islands (Fig. 8.8), where a larger one (Island-1) is located in
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ψ =−1.5(2y2−4y3/3) ψ =−1.5(2y2−4y3/3)

ψ =−1

ψ = 0

Fig. 8.8. Boundary conditions of the channel flow. Note that y is nondimensional

the middle of the channel, and a smaller one (Island-2) is located southwest
of Island-1.

Let x- and y-axes be along the southern and western boundaries with
the origin at the southwest corner and be nondimensionalized by W . The
northern and southern boundaries of the channel are rigid, and the western
and eastern boundaries are cyclic. A nondimensional mathematical model for
the test consists of the Poisson equation [see (8.18)]

∇2Ψ = Π,

with the boundary conditions (Fig. 8.8)

Ψ|y=0 = 0, Ψ|y=1 = −1, Ψ|x=0 = Ψ|x=L/W = −1.5
(

2y2 − 4
3
y3

)
,

(8.41)
where the mean inflow (outflow) velocity is taken as a unit velocity. We will
test if the method has the capability to determine Ψ-values at the islands for
a given forcing

Π =
d2Ψ(0)

dy2
= −6(1 − 2y). (8.42)

8.6.2 Twin Experiments

Twin experiments are designed to test the validity of the method and to get
the “exact” Ψ data for the verification. In the first experiment (control run),
we integrate the Poisson Ψ-equation (8.18) with (8.41) and with the given
Ψ-values at the two islands (Ψ(I)

1 ,Ψ(I)
2 ), we obtain the solution Ψ(ex)(x, y) as

the “exact” data for the evaluation. Here,

Ψ(I)
1 = (−1,−7/8,−3/4,−1/2,−3/8,−1/4,−1/8, 0)Ψ(I)

2 = −0.1. (8.43)

The varying Ψ(I)
1 changes the flow pattern. As Ψ(I)

1 = −0.5, the flow is almost
symmetric north and south of Island-1. As Ψ(I)

1 = 0, the flow almost totally
passes through between the north boundary and Island-1. As Ψ(I)

1 = −1, the
flow almost totally passes through between the south boundary and Island-1
(Fig. 8.9). Also, the velocity field computed by
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Fig. 8.9. Left panels: comparison between Ψ(ex)(x, y) (solid contours) and Ψ(x, y)
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Û (ex) = −∂Ψ(ex)

∂y
, V̂ (ex) =

∂Ψ(ex)

∂x
, (8.44)

is used to compute the circulation Γ̂1 and Γ̂2 around the two islands for the
second experiment (sensitivity run).

In the second experiment (sensitivity run), the Ψ-values at the two is-
lands are unknown. We use (8.30) and (8.38) to compute the Ψ-values at the
two islands and then to solve the Poisson Ψ-equation (8.18). The evaluation
is achieved through the comparison of the two solutions. To test the capa-
bility of the scheme, we perform several sensitivity studies by varying the
location and Ψ(I)

1 -value for Island-1 and keeping them the same for Island-2,
i.e., Ψ(I)

2 = −0.1.

8.6.3 Sensitivity to Ψ(I)
1 -Value

Island-1 is kept as the same location and the Ψ(I)
1 -value is varied [see (8.43)].

The “exact” solutions Ψ(ex)(x, y) for seven different Ψ(I)
1 -values are the solid

contours in the left panels of Fig. 8.9. The corresponding solution,Ψ(x, y),
for the second experiment is represented by the dashed contours (Fig. 8.9).
The difference between the two experiments (control minus sensitivity run),
as illustrated in the right panels of Fig. 8.9, reveals a dual cyclonic-eddy
(anticyclonic-eddy) structure in the leeward side and upwind side, respec-
tively, when the Ψ(I)

1 -value is larger (smaller) than −0.5. The leeward eddy
(i.e., the error) is twice as strong as the upwind eddy. Its absolute values reach
a maximum around 0.007 (leeward) as Ψ(I)

1 = 0,−1. The errors decrease (in-
crease) with Ψ(I)

1 -value from 0 to −0.5 (from −0.5 to −1). When Ψ(I)
1 = −0.5,

we have a minimum difference between the two experiments.
In the sensitivity run, using the method, the computed stream function

at the two islands (Ψ1,Ψ2) might not be the same as (Ψ(I)
1 ,Ψ(I)

2 ), and the
solution of (8.18), Ψ(x, y), might not be the same as Ψ(ex)(x, y). We calculate
the relative root mean square error (rrmse) between Ψ(x, y) and Ψ(ex)(x, y)

rrmse =

√∑
i

∑
j

[Ψ(ex)(xi, yj) − Ψ(xi, yj)]
2

∑
i

∑
j

[Ψ(ex)(xi, yj)]
2 , (8.45)

for the whole channel and the relative errors

E1 =
|Ψ(I)

1 − Ψ1|
|Ψ(I)

1 |
, E2 =

|Ψ(I)
2 − Ψ2|
|Ψ(I)

2 |
, (8.46)

for the two islands.
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Fig. 8.10. Dependence of rrmse between Ψ(x, y) and Ψ(ex)(x, y) over the whole
channel (denoted by asterisk), and the relative errors E1 (dash-dotted) and E2

(dashed) on varying Ψ
(I)
1 -values

Figure 8.10 shows the dependence of rrmse, E1, and E2 on Ψ(I)
1 . The three

relative errors have the following features (a) they are lesser than 1% with the
maximum relative errors,

max(rrmse, E1, E2) = (5.7, 2.0, 1.2) × 10−3; (8.47)

(b) Minimum relative errors occur when the volume transport is relatively
symmetric to Island-1 Ψ(I)

1 = −0.5,

min(rrmse, E1, E2) = (0.92, 0.61, 0.72) × 10−4; (8.48)

(c) The three relative errors have a similar dependence onΨ(I)
1 . They all de-

crease with Ψ(I)
1 monotonically from the maximum errors [(5.7, 2.0, 1.2)×10−3]

at Ψ(I)
1 = −1 (flow mostly south of Island-1) to the minimum errors [(0.92,

0.61, 0.72)×10−4] at Ψ(I)
1 = −0.5 – (flow relatively symmetric north and south

of Island-1); and then increase with Ψ(I)
1 monotonically to the maximum errors

at Ψ(I)
1 = 0 (flow mostly north of Island-1).

8.6.4 Sensitivity to Location of Island-1

The Ψ(I)
1 -value (−0.5) is kept unchanged and its location (in the y-direction) is

varied. The solutions Ψ(ex)(x, y) for seven different locations are shown as the
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solid contours in the left panels of Fig. 8.11. The corresponding results for the
second experiment are shown as the dashed contours. The difference between
the two experiments (first minus second experiment), as illustrated in the
right panels of Fig. 8.11, reveals an elliptic anticyclonic-eddy structure with
the maximum value of 0.01 (maximum error). As Island-1 “moves” northward,
the “anticyclone” weakens and splits into two smaller “anticyclones” with the
leeward one being stronger than the other. When Island-1 “moves” to the
center of the channel, the errors become very small. As Island-1 continues to
“move” northward, a cyclonic-eddy first occurs at the leeward side of Island-1,
expands toward the west, and reveals an elliptic cyclonic-eddy structure with
the maximum error of 0.011.

In the second experiment, the computed stream function at the two islands
(Ψ1,Ψ2) using this method is usually not be exactly the same as (Ψ(I)

1 ,Ψ(I)
2 ),,

and the solution Ψ(x, y) might not be exactly the same as Ψ(ex)(x, y). Fig-
ure 8.12 shows the dependence of rrmse, E1, and E2 on the location of Island-1.
The three relative errors have the following features (a) they are lesser than
1% with the maximum relative errors

max(rrmse, E1, E2) = (3.7, 3.2, 1.9) × 10−3; (8.49)

and (b) the three relative errors have a similar dependence on the location of
Island-1. They all decrease with northward “displacing” Island-1 monotoni-
cally from the maximum errors [(3.7, 3.2, 1.9)] when Island-1 is located near
the southern boundary (first on the left panels) to the minimum errors [(0.92,
0.61, 0.72) ×10−4] when Island-1 is located near the middle of the channel; and
then increase with northward “displacing” Island-1 monotonically to the max-
imum errors [(6.7, 3.2, 2.0)× 10−3] when Island-1 is located near the northern
boundary.

8.6.5 Sensitivity to Noise

In reality, the velocity data contain errors. In order to test if the noisy data
destroy the solution, or in other words, to test the model capability in handling
the noisy data, we use a random number generator to produce a white noise
(Unoise, Vnoise) with different noise levels (0.00417–0.05) for each grid pointing
independently and adding it to the “exact” velocity,

Ũ = Û (ex) + Unoise, Ṽ = V̂ (ex) + Vnoise, (8.50)

which is used to calculate (Γ̂1, Γ̂2) around the two islands for the second
experiment.

The “exact” solution Ψ(ex)(x, y) is obtained for

Ψ(I)
1 = −0.5, Ψ(I)

2 = −0.1, (8.51)
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Fig. 8.12. Dependence of rrmse between Ψ(x, y) and Ψ(ex)(x, y) over the whole
channel (denoted by asterisk), and the relative errors E1 (dash-dotted) and E2

(dashed) on varying location of Island-1

and Island-1 located at the middle of the channel for the first experiment
(shown in middle panels of Fig. 8.11). This “exact” solution has the minimum
root mean square error in the twin experiments.

The solution Ψ(ex)(x, y) is also shown as the solid contours in Fig. 8.13.
The corresponding results for the second experiment are shown as the dashed
contours. As the noise level increases, the solution from the second experiment
becomes noisy, but the flow pattern is quite stable. Figure 8.14 shows the rrmse
between Ψ(x, y) and Ψ(ex)(x, y) for the whole channel and the errors E1 and
E2 for different noise levels. Generally, the rmse increases with the noise level
from 1.6 × 10−3 (at the noise level of 0.0125) to 0.01 (at the noise level of
0.05). For the noise level of 0.05, the errors E1 and E2 are 0.053 and 0.02,
respectively. This indicates that the use of this method to estimate the Ψ-
values for islands will bring the error similar to (0.05 for Island-1’s stream
function) and less than (0.02 for Island-2’s stream function) the noise level.
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8.7 Global Volume Transport Stream Function

8.7.1 Ψ-Values for Global Islands

The iteration method developed in Sect. 8.5 is used to determine Ψ-values
at islands. Figure 8.15 shows the distribution of Ψ-values for each conti-
nent/island computed from the annual, January, and July mean hydrographic
and wind data. Taking the annual mean as an example, we have: 0 Sv for
the American Continent, 157.30 Sv for Antarctica, −21.74 Sv for Australia,
−27.17 Sv for Madagascar, and −21.74 Sv for New Guinea.

8.7.2 Ψ-Values for Global Oceans

With the given values at the boundaries and islands, the Poisson Ψ-equation
(8.18) is solved with the climatological annual and monthly Π-fields and obtain
annual and monthly global Ψ-fields. After that, we use (8.17) to recompute
the depth-integrated velocity (Û , V̂ ). Since the NOAA WOA 1◦×1◦ hydro-
graphic (Levitus and Boyer 1994; Levitus et al. 1994) and wind data (da Silva
et al. 1994) are used to compute Ψ-fields, small-scale topographic features
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Fig. 8.15. Computed Ψ-values for each continent/island (a) annual mean, (b) Jan-
uary, and (c) July (from Chu and Fan 2006, Journal of Marine Systems)

such as English Channel, Taiwan Strait, Gilbralta Strait, and Bering Strait
cannot be resolved. The global Ψ-field (Fig. 8.16) and depth-integrated veloc-
ity vector (Û , V̂ ) field (Fig. 8.17) agree reasonably well with earlier studies
(e.g., Reid 1989, 1994, 1997; Semtner and Chervin 1992) and show the capa-
bility of the P-vector method for determining main characteristics of global
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circulation, such as the strong Antarctic Circumpolar Current, the well-
defined subtropical and subpolar gyres, and the equatorial current system.

8.8 Sensitivity to Observational Errors

Usually, errors occur in hydrographic and wind data (observational errors)
and in model discretization (i.e., computational errors). Sensitivity study
is conducted on the solutions to the observational data errors before dis-
cussing the calculated circulation characteristics. Suppose the observational
data errors have to be represented by a Gaussian-type random variable with
a zero mean and a standard deviation of σ, then a random number generator
(FORTRAN function, Ranf) is used to produce two sets of random noises for
each grid point independently, with mean value of zero and standard deviation
of σ (1) three-dimensional temperature error field with standard deviation of
0.2◦C and (2) two-dimensional surface wind stress error field with standard
deviation of 0.05N m−2.

Stability of the inverse model is confirmed through the comparison be-
tween the annual mean Ψ-field with random errors in temperature data and
surface wind stress data (Fig. 8.18b) and with the Ψ-field having no error
added (Fig. 8.16). The inverse model has the capability to filter out noise in
the forcing terms because of the major mathematical procedures of the model
containing two integrations of the Poisson equation.

Questions and Exercises

(1) Derive the equations for the depth-integrated horizontal velocity

−f(V̂ − V ) = Az
∂û

∂z

∣∣∣∣
z=η

− Az
∂û

∂z

∣∣∣∣
z=−H

+ Ah∇2
2Û

−2Ah∇2u−H · ∇2H − Ahu−H∇2
2H, (E8.1)

f(Û − U) = Az
∂v̂

∂z

∣∣∣∣
z=η

− Az
∂v̂

∂z

∣∣∣∣
z=−H

+ Ah∇2
2V̂

−2Ah∇2v−H · ∇2H − Ahv−H∇2
2H, (E8.2)

from the basic (1.1a)–(1.1d).
(2) Discuss the physical significance of each term of the interim depth-

integrated flow (U∗, V ∗),

U∗ = Uden + Ub +
τy

fρ0
, (E8.3)

V ∗ = Vden + Vb − τx

fρ0
. (E8.4)
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Fig. 8.16. Computed global volume transport stream function (Ψ) (a) annual mean,
(b) January, and (c) July (from Chu and Fan 2006, Journal of Marine Systems)
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(3) Discuss the similarity and dissimilarity of the following equation

∇2Π =
β

Ah
(V̂ − Vden − Vb) − 1

Ahρ0

(
∂τy

∂x
− ∂τx

∂y

)
+
(

∂Q2

∂x
− ∂Q1

∂y

)
,

(E8.5)
and the Munk equation.

(4) For a domain Ω with islands as Ωj(j = 1, . . . , N) shown in Fig. 8.5, prove
that the volume transport stream function at Island-Ωj can be computed
approximately by
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Ψ|Ωj
=

Γ̂j − Γ(w)
j

A
, (E8.6)

where Γ(w)
j is the circulation in the water and

A = −
N∑

l=1

(
|Jl+1 − Jl|∆y

2∆x
+

|Il+1 − Il|∆x

2∆y

)
,

Γ̂jj
=

1
2

N∑
l=1

[V̂(Il,Jl) + V̂(Il+1, Jl+1)]

·[i(Il+1 − Il)∆x + j(JL+1 − Jl)∆y].

(5) Search the literature and compare the Ψ-values of global islands identified
using the Stokes Theorem and other methods.

(6) What are the major characteristics of the global circulation identified
from the global volume transport stream function (Fig. 8.16) and depth-
integrated horizontal velocity (Fig. 8.17)?

(7) Are the effects of noises in the temperature and wind observations large
on the calculated annual mean global volume transport stream function
form in comparison between Fig. 8.18 and Fig. 8.16a? Justify your answer.




