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Coordinate Systems

The hydrographic data are usually represented in the z-coordinate (or using
pressure to represent depth) system. However, many inverse methods use the
isopycnal coordinate system such as the box model (Wunsch 1978), original
β-spiral method (Stommel and Scott 1977), and the P-vector model (Chu and
Li 2000). This chapter describes isopycnal coordinate system, semi-isopycnal
coordinate system, and the transformation of hydrographic data from the z
to isopycnal and semi-isopycnal coordinate systems.

4.1 Isopycnal Coordinate System

As pointed out by Wunsch and Grant (1982), in determining large-scale circu-
lation from hydrographic data, we can be reasonably confident on the assump-
tions of geostrophic balance, mass conservation, and no major crossisopycnal
mixing (except where water masses are in contact with the atmosphere). The
potential density ρ of each fluid element would be conserved.

The isopycnal coordinate system is represented by (x, y, ρ) with x- and
y-axes in the horizontal plane, ρ-axis in vertical with unit vectors (i, j, k)
in the three directions, repetitively. The benefit of using the isopycnal coor-
dinate system is that the density ρ can be treated as constant in horizontal
differentiation. The geostrophic balanced motion on an isopycnal surface (ρ)
with a pressure p is given by Bleck and Smith (1990),

V =
1
f
k ×∇M, (4.1)

where V = (u, v, 0), is the geostrophic velocity; M = p/ρ + gz, is the Mont-
gomery potential. The hydrostatic balance is written by

p

ρ2
+

∂M

∂ρ
= 0. (4.2)
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The adiabatic density conservation and incompressible continuity equations
are combined to give an equation for the thickness, ∂p/∂ρ. The continuity
equation is given by

∇ ·
(

∂p

∂ρ
V
)

= 0. (4.3)

Note that the differentiations with respect to x and y are on the isopycnal
surface. Differentiation of (4.1) with respect to ρ and use of (4.2) lead to the
thermal wind relation

∂V
∂ρ

= − 1
fρ2

k ×∇p. (4.4)

The continuity (4.3) can be rewritten by

V · ∇
(

∂p

∂ρ

)
+

∂p

∂z
∇ · V = 0, (4.5)

Using (4.1) yields

∇ · V = ∇
(

1
f

)
· (k ×∇M) = − 1

f
∇f · V. (4.6)

Substituting (4.6) in (4.5) yields the conservation of potential vorticity (q) on
the isopycnal surface,

V · ∇q = 0, (4.7)

where
q =

fg

∂p/∂ρ
. (4.8)

The derivative ∂p/∂ρ represents the thicknesses between two adjacent isopy-
cnal levels. The (p, q) fields are computed on the isopycnal surface can be
computed numerically after the hydrographic data are processed in the isopy-
cnal surface. The climatological (p, q) fields on σ2 = 35.47(kg m−3) isopycnal
surface are calculated using the NODC annual mean climatological T, S data
(Fig. 4.1).

4.2 Semi-Isopycnal Coordinate System

Consider a series of potential density (σθ) surfaces, each marked by a constant
value of σ with the depth,

z(σ) = R(x, y, σ), (4.9)

where R is the decreasing function with σ. The vertical distance between two
closely spaced σ surfaces with increment of ∆σ is given by

h(σ) =
∂z(σ)

∂σ
∆σ. (4.10)
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Fig. 4.1. Climatological (p, q) data on σ2 = 35.47(kg m−3) isopycnal surface: (a)
pressure (unit: db) and (b) potential vorticity (unit: 10−11 m−1 s−1) (from Chu and
Li 2000, Journal of Physical Oceanography)

The semi-isopycnal coordinate system is represented by (x, y, z(σ)) with x-
and y-axes in the horizontal plane, z(σ)-axis in vertical with unit vectors
(i, j, k) in the three directions, repetitively (McDougall 1988).

The geostrophic balanced motion in the (x, y, z(σ)) is given by

V(σ) =
1
fρ

k ×∇σp, (4.11)

which is similar to (1.1) for the z-coordinate system. Here, the gradient oper-
ator at the z(σ)-level is defined by

∇σ ≡ i
∂

∂x

∣∣∣∣
σ

+ j
∂

∂y

∣∣∣∣
σ

. (4.12)

The continuity equation can be expressed by considering the flow between two
isopycnal surfaces separated by an increment, h(σ), together with the diapy-
cnal velocities w

(σ)
u and w

(σ)
l across the upper and lower isopycnal surfaces

(Fig. 4.2). The continuity of an ocean is represented by

1
h

∂(h(σ)u)
∂x

∣∣∣∣
σ

+
∂(h(σ)v)

∂y

∣∣∣∣
σ

+
w

(σ)
u − w

(σ)
l

h
= 0. (4.13)

For infinitesimally small h, (4.13) becomes

V(σ) · ∇σ[ln(h(σ))] + ∇σ · V(σ) +
∂w(σ)

∂z
= 0. (4.14)
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Fig. 4.2. Vertical discretization of the multilayer ocean with the kth layer having
potential density ρk, layer thickness ĥk, top and bottom pressures (p̂t

k, p̂b
k), respec-

tively (Chu and Li 2000, Journal of Physical Oceanography)

Horizontal divergence can be calculated from (4.11),

∇σ · V(σ) = −∇σf

f2ρ
· (k ×∇σp) = −∇σf

f
· V(σ). (4.15)

Substituting (4.15) in (4.14) yields the conservation of potential vorticity,

V(σ) · ∇σ[q(σ)] =
∂w(σ)

∂z
, q(σ) ≡ ln[Q(σ)], Q(σ) ≡ f

h(σ)
, (4.16)

where Q(σ) is the potential vorticity; and q(σ) is a conservative quantity repre-
senting the potential vorticity (we may call it the pseudo potential vorticity).
The diapycnal velocity w(σ) is not only from the vertical diffusivity, thermo-
baricity, and cabbeling, but also from lateral mixing along the neutral tangent
plane (McDougall 1988).

4.3 Isopycnal Surfaces Determined from Data

Three reference levels: (surface, 2,000 decibar (db), 4,000 db) are used for
potential density computation (Keffer 1985; Talley 1988): σ0 (or sometime
called σθ) using the surface, σ2 using 2,000 db, and σ4 using 4,000 db. The
potential densities σ2 and σ4 provide better representations for levels near
2,000 and 4,000 db. Here,

σm = ρm − 1, 000 kg m−3, m = 0, 2, 4. (4.17)

The following ranges for the σm-values are considered,

22.200 ≤ σ0 ≤ 27.725, 31.625 ≤ σ2 ≤ 37.150, 41.30 ≤ σ4 ≤ 45.90. (4.18)



4.4 Data Transformation 113

Note that 27.725, 37.15, and 45.90 are maximum values forσ0, σ2, and
σ4computed from the GDEM T , S data set. The potential densities (σ0, σ2,
σ4) are discretized with the increment,

∆σ = 0.025 kg m−3, (4.19)

for σ0, σ2 and
∆σ = 0.02 kg m−3, (4.20)

for σ4. Thus, there are 222 σ0 -layers, 222 σ2-layers, and 280 σ4 -layers. Within
each layer, the density is vertically uniform.

The cubic spline is used to interpolate T , S data into 246 z-levels with three
different increments in order to well resolve isopycnal surfaces: 5 m from 0- to
100-m depth, 10 m from 100- to 1,000-m depth, 20 m from 1,000- to 2,500-m
depth, and 50 m below 2,500-m depth. Thus, a high-resolution z-coordinate
data set [T̂ (z), Ŝ(z), σ̂m(z)] has been built. The symbol “hat” indicates the
data either directly from observations or computed from observational data.
For simplicity and no loss of generality, we will use σθ(σ0) for illustration.

4.4 Data Transformation

The transformation is fulfilled by comparing the z-coordinate potential density
data σ̂θ(zj) with the discrete σθ-values at the bottom of the kth isopycnal
layer, σb

θ (k),

σb
θ (k) = 22.1875 + (k − 1)∆σθ, σθ(k) =

1
2
[σb

θ (k) + σb
θ (k + 1)], (4.21)

where the superscript b indicates the bottom of the kth isopycnal layer. The
geometric depth for the bottom of the σθ(k)-layer is obtained by

D̂b
k = −zj , if σ̂θ(zj) = σb

θ (k), (4.22)

and

D̂b
k = −zj −

σθ(k) − σ̂θ(zj)
σ̂θ(zj+1) − σ̂θ(zj)

, if σ̂θ(zj) < σb
θ (k) < σ̂θ(zj+1). (4.23)

The thickness of the kth isopycnal layer is calculated by

ĥk = D̂b
k − D̂b

k−1. (4.24)

After ĥk is obtained, we may compute the hydrostatic pressure field. Starting
from the surface (k = 1), the kth layer has density ρk and thickness ĥk, as
shown in Fig. 4.2. Pressure is not uniform within the layer with

p̂t
k = g

k−1∑
i=1

ρiĥi, (4.25)
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at the top of the kth layer, and

p̂b
k = g

k∑
i=1

ρiĥi, (4.26)

at the bottom of the kth layer. The mean value

p̂k ≡ p̂t
k + p̂b

k

2
= g

(
k−1∑
i=1

ρiĥi +
1
2
ρkĥk

)
, (4.27)

can be used to represent the pressure at the middle of the kth layer (Fig. 4.2).
The potential vorticity (4.18) is discretized by

q̂k =
fgδσθ

p̂b
k − p̂t

k

. (4.28)

Earlier work of McCartney (1982), Keffer (1985), and Talley (1988) also shows
the benefit of using potential vorticity in ocean circulation studies.

Questions and Exercises

(1) Derive the conservation of the potential vorticity equation for the isopyc-
nal coordinate system from the geostrophic balance,

V =
1
f
k ×∇M, (E4.1)

the hydrostatic balance,
p

ρ2
+

∂M

∂ρ
= 0, (E4.2)

and the continuity equation,

∇ ·
(

∂p

∂ρ
V
)

= 0. (E4.3)

(2) The potential vorticity is defined by

q =
fg

∂p/∂ρ
, (E4.4)

in the isopycnal surface coordinate and by

q(σ) ≡ ln
[

f

h(σ)

]
, (E4.5)

in the semi-isopycnal surface coordinate, discuss the difference between
the two.

(3) What is the similarity and difference between the isopycnal and semi-
isopycnal coordinate systems? When you analyze the (T, S) profile data,
what coordinate system will you choose among z-coordinate, isopycnal-
coordinate, and semi-isopycnal coordinate? Why?




