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Analysis of Observational (T, S) Profiles

The P-vector method is to invert absolute velocity from hydrographic data
and usually requires regularly distributed (T, S). However, the (T, S) fields are
sampled irregularly in space and time. As a first step, the observational (T, S)
profiles should be analyzed. This chapter describes basic features of the obser-
vational (T, S)-profiles, two-type profile representations, thermal and haline
parametric models, and decorrelation scales. There are many hydrographic
data sets, however, only those data sets used in this book are described.

2.1 Historical (T, S) Profiles

The MOODS is a compilation of ocean data observed worldwide consisting
of (a) temperature-only profiles, (b) both temperature and salinity profiles,
(c) sound-speed profiles, and (d) surface temperatures (drifting buoy). It con-
tains the NODC temperature and salinity profiles. The measurements in the
MOODS are, in general, irregular in time and space. Due to the shear size
and constant influx of data to the Naval Oceanographic Office from various
sources, quality control is very important. The primary editing procedure in-
cluded removal of profiles with obviously erroneous location, profiles with large
spikes (temperature higher than 35◦C and lower than −2◦C), and profiles dis-
playing features that do not match the characteristics of surrounding profiles,
such as profiles showing increase of temperature with depth. The MOODS
contains more than six million profiles worldwide.

For example, after quality control the historical MOODS data contains
144,135 temperature and 13,768 salinity profiles for the South China Sea
(5◦S–25◦N, 105◦C–120◦E) during 1930–1997 (Chu et al. 1997c). The main
limitation of the MOODS data is its irregular distribution in time and
space. Certain periods and areas are over sampled while others lack enough
observations to gain any meaningful insights. Vertical resolution and data
quality are also highly variable depending much on instrument type and sam-
pling expertise. The monthly distributions of the total temperature (Fig. 2.1)
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Fig. 2.1. Spatial distribution of the MOODS temperature stations during 1930–
1997 (Chu and Li 2000, Journal of Physical Oceanography)

and salinity (Fig. 2.2) stations in the South China Sea show that the num-
ber of temperature stations is ten times more than the number of salinity
stations.

Yearly temperature (Fig. 2.3a) and salinity (Fig. 2.3b) profile numbers
show temporally uneven distribution with almost no observations in the whole
South China Sea, in certain years (e.g., 1944 for temperature, and 1944–1946,
1952–1954, 1993–1995 for salinity) and many observations in other years (e.g.,
more than 12,000 temperature profiles in 1966 and 1968, and more than 1,100
salinity profiles in 1981). Spatial and temporal irregularities along with the
lack of data in certain regions must be carefully weighted in order to avoid
statistically induced variability.
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Fig. 2.2. Spatial distribution of MOODS salinity stations during 1930–1997 (Chu
and Li 2000, Journal of Physical Oceanography)

2.2 Synoptic (T, S) Profiles

Expendable bathythermograph (XBT) and conductivity-temperature-depth
(CTD) are commonly used for hydrographic observations. Airborne XBT
(AXBT) and CTD (AXCTD) surveys can cover greater geographic extents
over shorter periods of time than ship surveys. The AXBT/AXCTD data
sets, by virtue of their large spatial extents and the relatively short times
required to complete them, essentially provide snapshots of thermal structure
(AXBT) and thermohaline structure (AXCTD) over a large portion of water.
The AXBT surveys are more frequent than the AXCTD survey.

For example, the Naval Oceanographic Office conducted an intensive
AXBT survey between May 14 and May 25, 1995, over the majority of the
South China Sea down to about 300 m depth. Figure 2.4 shows the daily
AXBT deployment. This data set provides something close to a snapshot of the
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Fig. 2.3. Temporal distribution of the MOODS stations during 1930–1997: (a)
temperature, and (b) salinity (Chu and Li 2000, Journal of Physical Oceanography)

temperature in the upper ocean in the South China Sea during the transition
time before the onset of the monsoon. Most of the 376 AXBTs were deployed
at six intervals over a 12-day period from May 14 to May 25, 1995. The major-
ity of the AXBTs were nominally capable of reaching a depth of 360–400 m.
The ensemble of temperature profiles (Fig. 2.5a) and the mean profile with
an envelope of a standard deviation (Fig. 2.5b) show the existence of a mixed
layer with depths ranging from 20 to 60 m and a thermocline with a vertical
temperature gradient of 6◦–7◦C per 100 m below the mixed layer.
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Fig. 2.4. Deployment of the AXBT survey in the South China Sea during 14–25
May 1995 (Chu et al. 1998d, Journal of Geophysical Research)

2.3 Representation of (T, S) Profiles

Usually, the (T, S) profiles for time t are represented by

Tobs = Tk(z, t), Sobs = Sk(z, t), (2.1)

where the subscript k denotes the horizontal location. Two types are avail-
able in profile data analysis. First, the analysis is conducted at the same
depth. This is the z-level analysis. Second, the profile data (2.1) can be rep-
resented by a set of parameters on the base of the physical characteristics
(Chu et al. 1997a,b, 1999a). The analysis is conducted for each parameter.
The parameter analysis is conducted as per the process given herewith.

The parameter analysis starts from analytical curve fitting of temperature
and salinity profiles. Determination of thermohaline structure (mixed layer,
entrainment zone, thermocline, and halocline) from observed temperature and
salinity profiles is important for the world oceans for several reasons. First,
the heat balance depends on the features of mixed layer, entrainment zone,
and thermocline. Mixed layer deepens by entrainment of water from the ocean
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Fig. 2.5. Temperature profiles of the AXBT survey in the South China Sea during
14–25 May 1995 (after Chu et al. 1998d, Journal of Geophysical Research)

below (Chu 1988; Chu et al. 1990; Chu and Garwood 1990, 1991). The mass
in the deep water is then transported to surface. Second, for polar oceans the
mixed layer acts as a buffer by storing solar heat input during the summer
and releasing it back to the ice throughout the fall and early winter (Maykut
and McPhee 1995). Non-polar and polar parametric models are available for
the analysis. For illustration, the Yellow Sea is taken as an example as the
non-polar model, and the Beaufort/Chukchi Seas are taken as examples as
the polar model.

2.4 Non-Polar Parametric Model

The Yellow Sea is a semi-enclosed basin covering roughly 295, 000 km2 and is
one of the most developed continental shelf areas in the world seas. While the
Yellow Sea covers a relatively large area, it is quite shallow reaching a maxi-
mum depth of about 140 m (Fig. 2.6). The Yellow Sea temperature profiles
are taken as an example as the single-structure pattern for illustration (Chu
et al. 1997a,b, 2006c,e).

2.4.1 Seasonal Variability

The water depth over most of the area in the Yellow Sea is less than 50 m.
The deepest water is confined to a north–south oriented trench which runs
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Fig. 2.6. Yellow Sea bathymetry (from Chu et al. 1997b, Journal of Geophysical
Research)

from the northern boundary south to the 100 m isobaths, where it fans out
onto the continental break. The gradients in slope across the bottom are very
small. Such a broad and shallow continental shelf leads to the fact that the
water is readily affected by seasonally varying atmospheric conditions such
as heating, cooling, and wind stress. Therefore, the seasonal variation of the
water masses is remarkably large (Chen et al. 1994). Another feature of the
depth distribution is the east/west asymmetry. Extensive shoals (<20m) are
located in the western Yellow Sea along the Chinese coast and are not generally
found in the South Korea coastal regions. Also, the 50 m isobaths is located
more than 100 km from the Chinese coast, but only about 50 km from the
South Korean coast. This asymmetry in bottom depth is important for the
shoaling mixed layer depth. Furthermore, the hydrographic character of water
masses in the Yellow Sea also depends on the degree of mixing of fresh water
originating from the China Continent river run-off with the intrusion of East
China Sea and Kuroshio waters (Park and Chu 2006b).

The Asian monsoon strongly affects the Yellow Sea thermal structure.
During the winter monsoon season, a very cold northwest wind blows over
the Yellow Sea as a result of the Siberian High Pressure System. The Jet
Stream is positioned to the south of the Yellow Sea and the Polar Front to
the north of Philippines. The mean surface wind speed over the Yellow Sea
in January is nearly 6m s−1. The sea surface temperature (SST) is 6◦C at
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Fig. 2.7. Eastern Yellow Sea (around 36◦N) temperature profiles during 1950–
1988: (a) January and (b) June. Solid dots show the observational stations (from
Chu et al. 1997b, Journal of Geophysical Research)

the northern extent and 10◦C at the southeastern extent. The horizontal SST
gradient largely impacts on the atmospheric circulation (Chu 1989).

January surface air temperature varies from 0 to 8◦C in the Yellow Sea,
roughly 2 to 6◦C cooler than SST. The Yellow Sea surface loses heat to the
atmosphere. The upward buoyancy flux at the air—ocean interface (thermal
forcing), together with the strong wind stress (mechanical forcing), gener-
ates turbulence and mixes the surface water with the deeper water. Taking
the eastern part of the Yellow Sea around 36◦N as an example, the Janu-
ary historical (1950–1988) temperature profiles (Fig. 2.7a) show a single-layer
structure (i.e., vertically uniform temperature from surface to the bottom).
The different lengths of these profiles in the vertical temperatures are caused
by the different water depths where the observations were taken (see Fig. 2.6).
This single-layer structure means a very deep mixed-layer extending from the
surface to the bottom.
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In summer, the wind stress is much weaker than in winter. The monthly
mean surface air temperature is quite uniform, around 24–26◦C, and is usually
1.5–2◦C warmer than the mean SST (Van Loon 1984). The warmer air causes
a downward heat flux at the air–ocean interface. This heat flux along with
the strong downward net radiation stabilizes the upper layer of the water
and causes the surface mixed layer to shoal, creating a multi-layer structure
(Fig. 2.7b). Below the thermocline, there is a cold water mass, commonly
referred to as Yellow Sea Bottom Cold Water, that remains unchanged and
nearly motionless throughout the summer (Li and Zeng 1992).

2.4.2 Model Description

During the summer monsoon season, most profiles in the Yellow Sea exhibit
a mixed-layer (for temperature), a thermocline, and a deep layer (Fig. 2.7b),
which can be outlined by a “typical” profile. To make the model more gen-
eral, we assume two deep layers below the thermocline (Fig. 2.8). When the
two deep layers have the same vertical gradients, they become one deep layer.
If two transition layers are added, the entrainment zone between mixed layer
and thermocline and the transition zone between the thermocline and the deep
layer, the Yellow Sea thermal structure during summer can be well resolved.
We use a parametric model with six layers (Chu 1995b; Chu et al. 1997b) to
diagnose shallow-water multi-layer structure from observed Yellow Sea tem-
perature profiles.

Each observed profile is modeled by a set of parameters, most of which
have physical meaning, including SST, isothermal layer depth, depth of the
base of the thermocline, gradient in the thermocline and deep layers, and ad-
ditional parameters describing curvature between the mixed-layer and ther-
mocline and curvature below the thermocline. Among them SST is taken as
the observed values. The model parameters for each observed profile are com-
puted in gradient space; more specifically, the depths and gradients of the
modeled features are fit to the vertical gradient of the observed profile. The
parametric model depicts the multi-layer structure. Determination of layer
number is based on overall features of the profiles (Fig. 2.7b). The thermal
parametric model consists of seven depths (i.e., six layers) and six gradients
as shown in Fig. 2.8b. The first and the last depths are assumed to be at
the surface and bottom, respectively, and the gradients within the isothermal
layer and thermocline are constrained to be constant. The gradients for the
four other layers are assumed to vary with depth linearly. The mean gradient
is taken as the representative value for these layers. The model parameters
are calculated in the gradient space, which will bring larger numerical errors
due to the differentiation. We will use the optimization to filter out the noise.

If we consider profiles in the gradient space, i.e., GT = ∂T/∂z, each profile
can be represented by the surface value (SST) along with the gradients,

[SST, GT (0, z1), GT (z1, z2), . . . , GT (zn−1, zn)] ,
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Fig. 2.8. Temperature and gradient space representations of the features or profile
characteristics modeled by the parametric model (from Chu et al. 1997b, Journal of
Geophysical Research)

for the temperature profiles. Here, n + 1, is the number of data points, and
zi (i = 1, 2, . . ., n) are the depths of the sub-surface data points. For example,
100 temperature/depth points would produce 99 gradient values. If the surface
value is included, we have the same amount of data in the gradient space as
in the original data set.

On the basis of the continuity of T and ∂T/∂z at interfaces of any two
layers, a parametric model can be constructed as

T̂ (m)(z) = G
(m)
T z + SST, z ∈ [−d1, 0], (2.2a)

T̂ (en)(z) =
(z + d1)

2(d2 − d1)

[
(G(th)

T + G
(m)
T )(d2 − d1) − (G(th)

T − G
(m)
T )(z + d2)

]

+T̂ (m)(−d1), z ∈ [−d2,−d1], (2.2b)

T̂ (th)(z) = G
(th)
T (z + d2) + T̂ (en)(−d2), z ∈ [−d3,−d2], (2.2c)

T̂ (tr)(z) =
(z + d3)
(d4 − d3)

[
(G(th)

T − Ḡ
(tr)
T )z + d4G

(th)
T − d3G

(m)
T

]

+ T̂ (th)(−d3), z ∈ [−d4,−d3],

(2.2d)
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T̂ (d1)(z) = T̂ (tr)(−d4) + (z + d4)Ḡ
(d1)
T

+ (z+d4)(z+d5)
(d5−d4)

[G(tr)
T (−d4) − Ḡ

(d1)
T ], z ∈ [−d5,−d4],

(2.2e)

T̂ (d2)(z) = T̂ (d1)(−d5) + (z + d5)Ḡ
(d2)
T

+ (z+d5)(z+H)
(H−d5)

[G(d1)
T (−d5) − Ḡ

(d2)
T ], z ∈ [−H,−d5],

(2.2f)

where T̂ (m), T̂ (en), T̂ (th), T̂ (tr), T̂ (d1), and T̂ (d2) are modeled temperatures in
the mixed-layer (or called isothermal layer), entrainment zone, thermocline,
transition zone, and first and second deep layers. H is the water depth, d1

the mixed layer depth for temperature (MLDT ), d2 the depth of the top of
thermocline, d3 the depth of the bottom of thermocline, d4 the depth of the
top of the first deep layer, and d5 the bottom of the first deep layer (Fig. 2.8).
Here, we assume constant vertical temperature gradients in the ocean mixed-
layer (very small, G

(m)
T � 0) and in the thermocline (very large G

(th)
T ), and

linearly varying with z in the entrainment zone, the transition zone, and the
two deep layers with average values Ḡ

(en)
T , Ḡ

(tr)
T , Ḡ

(d1)
T , and Ḡ

(d2)
T . Here, the

mean gradient in the entrainment zone is the average of the isothermal layer
and thermocline gradients,

Ḡ(en) =
1
2
(G(m)

T + G
(th)
T ).

By forcing this parametric model (2.2) to each observed profile, we should
have a first-guess of the five depths (d1, d2, d3, d4, d5) and a high resolution
of temperature/depth points in the vertical gradient in order to obtain the
five temperature gradients (G(m)

T , G
(th)
T , Ḡ

(tr)
T , Ḡ

(d1)
T , Ḡ

(d2)
T ). Such a treatment

provides the most important features from the observational data.
Each temperature profile is linearly interpolated to ∆z = 0.5m, Tj =

T (zj), where zj = zj−1 − 0.5m(z0 = 0). If the five depths (d1, d2, d3, d4, d5)
are known, the high resolution profile data set (zj , Tj) can be divided into
six parts (isothermal layer, entrainment zone, thermocline, transition zone,
first deep layer, and second deep layer). For each layer the data (zj , Tj)
are fitted to the parametric model (2.2), and a set of temperature gradients
(G(m)

T , G
(th)
T , Ḡ

(tr)
T , Ḡ

(d1)
T , Ḡ

(d2)
T ) are obtained.

2.4.3 Iteration Method

A modeled profile with 0.5-m resolution can be established by using the para-
metric model (2.2) if the five depths (d1, d2, d3, d4, d5) are given. In reality,
these depths are not known prior to processing the data and vary from one
profile to the other. The iteration method is used to obtain the optimal mod-
eled profile.

First, start with a set of first-guess values of the depths and the five gra-
dients (two constants and three mean values),
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D(0) = [d(0)
1 , d

(0)
2 , d

(0)
3 , d

(0)
4 , d

(0)
5 ],

G
(0)
T = [G(m0)

T , G
(th0)
T , Ḡ

(tr0)
T , Ḡ

(d10)
T , Ḡ

(d20)
T ].

(2.3)

For example, Chu et al. (1997b) chose,

D(0) = [20m, 24m, 32m, 38m,H],

G
(0)
T = [0, 0.5◦C m−1, 0.05◦C m−1, 0, 0],

for the Yellow Sea thermal structure. Let (zj , T̂
(k)
j ) be the kth iterated model

profiles. For each high resolution profile, the 0th iterated model profile is
easily obtained from the first guess depths and gradients (2.3). The root-
mean-square error (rmse) for mismatch of Tj and T̂

(k)
j is computed by

rmse(k) =

√√√√ 1
n

n∑
j=1

(T̂ (k)
j − Tj)2. (2.4)

It is expected that rmse(0) to be large.
Second, use the iteration method to obtain optimal modeled profile for

each observed high resolution profile. Each depth can only be adjusted one
vertical grid (∆z or −∆z) for iteration. From the kth iteration (k starting
from 0, the first-guess) set of depths, D(k), we have 242 (=35 − 1) different
combinations of the depth adjustment,

D(k+1)
m = D(k)

m + δD(k)
m , (2.5)

where

δD
(k)
1 = (∆z, 0, 0, 0, 0),

δD
(k)
2 = (−∆z, 0, 0, 0, 0),

. . . . . .

δD
(k)
242 = (0, 0, 0, 0,−∆z).

Equations (2.2a)–(2.2f) are used to obtain 242 modeled profiles, among
which we pick a profile with minimum rmse as the (k + 1)th iterated set
of depths, D(k+1). This procedure is repeated until the minimum rmse is
achieved. We have two check points to terminate the iteration: the maxi-
mum number of iterations kmax, and the rms error criterion Rc. At each
iteration (k < kmax), rmse(k) is compared to a user specified criterion Rc. If
rmse(k) < Rc, we terminate the iteration and obtain an optimal set of depths.
If rmse(k) > Rc, we continue the iteration until k = kmax. If the rmse at the
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kmax iteration is still greater than Rc, we should reject the parametric model
(2.2), i.e., the observed profile cannot be fitted by the parametric model. The
rejected profiles are discarded.

Chu et al. (1997b) chose kmax = 400, and Rc = 0.4◦C. This rms cri-
terion (0.4◦C) was chosen due to the accuracy of the temperature/depth
(±0.2◦C,±2m) measured by the bathythermograph. This criterion can be
greatly reduced if the data are obtained by more accurate instruments (e.g.,
thermometer). The six temperature gradients are updated each iteration. A
set of their six optimal gradients is obtained when the rms error of the tem-
perature profile is less than the criterion.

2.5 Polar Parametric Model

2.5.1 Seasonal Variability

The Chukchi Sea is a shallow sea with a mean depth of 40–50 m, having gen-
tle knolls and several troughs which are shallow but with a relief which has a
substantial fraction of the mean depth. The Beaufort Sea is a semi-enclosed
basin with quite a narrow continental shelf (30–80 km) and a deep submarine
canyon, the Mackenzie Canyon. The deepest water is confined to the bowl-
shaped Mackenzie Canyon which is enclosed by the 3,000 m isobaths. The
gradients in slope across the bottom are very large. The 150 m isobaths ap-
proximately characterizes the Beaufort Sea shelf break (Fig. 2.9). The shallow
continental shelf waters are affected by seasonally varying atmospheric condi-
tions such as heating, cooling, wind stress, and the formation and melting of
ice. The seasonal variation of the water masses is remarkably large. Thus, we
have two different types of profiles: (a) shelf profiles (water depth ≤ 150m)
and (b) deep water profiles (water depth > 150m).
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Fig. 2.9. The Beaufort/Chukchi Sea bathymetry. Numbers show the depth in 100m
(from Chu et al. 1999a, Journal of Atmospheric and Oceanic Technology)
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variation of number of profiles (from Chu et al. 1999a, Journal of Atmospheric and
Oceanic Technology)

Among the historical (1970–1993) temperature and salinity profiles (3,562)
obtained from the Naval Oceanographic Office, 3,384 profiles are shelf profiles,
and 178 profiles are deep water profiles. For the area 120–180◦W, 65–75◦N, the
MOODS (CTD and STD) has 3,562 (T, S) profiles during 1970–1993 after re-
jecting certain data during quality control. These primary editing procedures
included removal of profiles with obviously erroneous location, profiles with
large spikes, poor vertical resolution, and profiles displaying features that do
not match the characteristics of surrounding profiles.

There is a data sparse area north of 73◦N (Fig. 2.10a). The periods of 1971–
1972, 1977, 1979, and 1985–1989 are found to have a relatively large number
profiles averaging around 200 profiles per year (Fig. 2.10b). Most profiles were
observed during the summer season (Fig. 2.10c). August has the most obser-
vations (1,253) while no observations have been recorded in the data set in
December and January.

The surface radiative flux strongly affects the Beaufort/Chukchi Sea shelf
thermohaline structure. During the winter (November–April), long periods of
darkness together with low solar elevation give rise to a prolonged period of
radiative loss from the surface. The radiative cooling at the surface destabilizes
the upper layer through strong upward heat flux and salt rejection by ice
freezing, and causes the formation of deep mixed layer, which on the shallow
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shelves might reach the bottom resulting in an isothermal/isohaline structure
(Figs. 2.11a,b).

Different lengths of these profiles in the vertical gradients are caused by the
different water depths where the observations were taken (Fig. 2.9). During
the summer (August), long daylight hours together with relatively high solar
elevation give rise to a period of radiative deposition to the surface. The
radiative warming at the surface stabilizes the upper layer through downward
heat flux and fresh water influx by ice melting, causing the mixed layer to shoal
and forming a multi-layered structure (i.e., a mixed-layer, upper and lower
thermoclines and haloclines, and a deep layer), as shown in Figs. 2.11d,e. The
number and spatial distribution of observations are much greater in summer
than in winter (Figs. 2.11c,f).

In the deep water off the shelf the near surface waters of the Beaufort
Sea also experience seasonal variations. During the winter (November– April),
surface cooling causes the formation of a deep thermal mixed layer (Fig. 2.12a).
However, the surface salt flux caused by local ice freezing generates a relatively
shallow salinity mixed layer (Fig. 2.12b). Below both the thermal and salinity
mixed layers there exists a lower thermocline and halocline, appearing at 160–
300 m depth (Figs. 2.12a,b). During summer (August), surface warming and
associated ice melting increase the SST (a maximum value near 8◦C), decrease
the sea surface salinity (a minimum value near 20 ppt), and cause both the
thermal and salinity mixed layers to shoal (Figs. 2.12d,e). We also notice that
both winter and summer stations (Fig. 2.12c,f) do not extend far from the
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Fig. 2.12. Seasonal variation of T, S profiles over the Beaufort/Chukchi Sea deep
water: (a) winter (November–April) T profiles, (b) winter S profiles, (c) distribution
of winter stations, (d) summer (August) T profiles, (e) summer S profiles, and (f)
distribution of summer stations. The shaded areas indicate shelf region (water depth
≤ 150m) (from Chu et al. 1999a, Journal of Atmospheric and Oceanic Technology)

shelf break, and the intermediate waters (below 150 m depth) do not exhibit
a seasonal variation.

2.5.2 Multiple Thermohaline Structures

The historical Beaufort/Chukchi Sea temperature and salinity profiles
(Figs. 2.11 and 2.12) demonstrate the existence of several basic profile shapes
which are deep mixing, shallow mixing, and advection.

(a) Deep mixing type (T, S) profiles. This type of T, S profiles is char-
acterized by a single well-mixed layer in the shelf region (Fig. 2.13a) and a
deep surface isothermal layer (Fig. 2.14a) and a thermocline in the deep water
region. This type of T, S profiles are caused by surface destabilization, such
as strong wind forcing, surface cooling, and brine rejection due to ice freezing.
They are most prevalent during winter.

(b) Shallow mixing type (T, S) profiles. This type of T, S profiles is charac-
terized by a multi-layered structure: shallow isothermal layer, isohaline layer
(or called mixed layer for salinity), entrainment zone, thermoclines and halo-
clines, and a sub-layer in both the shelf region (Figs. 2.13b,d) and the deep
water region (Figs. 2.14b,d). This profile type is generally present during the
summer and is caused by surface stabilization, such as weak wind forcing,
surface warming, and fresh water influx due to ice melting and river run-off,
and therefore usually has a warm SST and a low sea surface salinity.

Beneath the mixed layer the thermocline/halocline profile is complex re-
flecting the seasonal adjustment. Thus, shallow mixing profiles feature a
monotonic decrease of temperature with depth in the upper thermocline and a
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Fig. 2.13. Typical T, S profiles for the shelf water: (a) deep-mixing type, (b)
shallow-mixing type T , (c) advection type T , and (d) shallow-mixing type S (from
Chu et al. 1999a, Journal of Atmospheric and Oceanic Technology)

monotonic increase of salinity with depth in the upper halocline (Figs. 2.13b,d
and 2.14b,d).

(c) Advection type T-profiles. Advection type T profiles also have a multi-
layer structure (shallow isothermal and isohaline layers, entrainment zone,
upper and lower thermoclines, and a sub-layer) in both the shelf region
(Fig. 2.13c) and the deep water region (Fig. 2.14c).

This type of profiles, identified by a nose-shape curve in the upper thermo-
cline (monotonic increasing T with depth to a maximum value Tmax and then
monotonic decreasing with depth), is generated by a prominent hydrographic
feature on the Beaufort Sea shelf: a sub-surface temperature maximum,
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Fig. 2.14. Typical T, S profiles for the deep water: (a) deep-mixing type T, S, (b)
shallow-mixing type T , (c) advection-type T , and (d) shallow-mixing type S (from
Chu et al. 1999a, Journal of Atmospheric and Oceanic Technology)

generally found at about 20–30 m depth in the deep water and at about
10 m depth in the shelf water. This temperature maximum is associated
with the eastward flowing Bering Sea water (Coachman and Barnes 1961;
Aagaard 1989). The warm water that enters the Beaufort Sea comes through
the eastern Bering Strait and follows the Alaskan coast around Point Barrow.
Mountain et al. (1976) identified this warm intrusion as the combination of the
two water masses: warm (5–10◦C) and fresh (salinity below 31.5 ppt) Alaskan
Coastal Water, and more saline Bering Sea Water. The two water masses mix
rapidly with the ambient surface water as they move eastward. Aagaard (1989)
estimated that the Alaskan Coastal Water is not clearly identifiable east of
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147–148◦W, and the Bering Sea Water east of 143◦W. Thus, the longitude of
141◦W is chosen as the separation for the western and eastern parts of the
Beaufort Sea Shelf Water.

2.5.3 Characteristics from Profiles

(a) Heterogeneous mesh difference scheme. Second derivatives ∂2F (zj)/∂z2 (F
is T or S) are used to describe the features of profiles and to identify various
types of T , S profiles in the polar region. For each profile (temperature or
salinity), F (zj), j = 1, 2, . . . , N , the following heterogeneous mesh difference
scheme is used for the second-order derivatives,

∂2F

∂z2
|zj

� 1
zj+1 − zj−1

(
Fj+1 − Fj

zj+1 − zj
− Fj − Fj−1

zj − zj−1
), (2.6)

where j = 1 refers to the surface, with increasing values indicating downward
extension of the measurement. Equation (2.6) shows that two neighboring val-
ues, Fj−1 and Fj+1, are needed to compute the second-order derivative at zj .
For j = 1, N , the next point value is used, i.e.,

∂2F

∂z2
|z1 =

∂2F

∂z2
|z2 ,

∂2F

∂z2
|zN

=
∂2F

∂z2
|zN−1 . (2.7)

After the second-order difference is computed, we can use the following model
to determine the top and bottom of the upper thermocline and halocline.

(b) Features of the shelf water profiles. Three types of profiles (deep-
mixing, shallow-mixing, and advection) are found in the shelf water. The
deep-mixing T , S profiles reveal a single layer structure (Fig. 2.13a), i.e., the
surface mixed layer extends to the bottom of the shelf (vertically uniform).
The shallow-mixing T -profiles are characterized by a minimum/maximum of
∂2T/∂z2 at the top/bottom of the thermocline. Thus, the depths of the first
minimum and the first maximum of ∂2T/∂z2 are taken as the top, d

(T)
1 , and

the bottom, d
(T)
2 , of the thermocline (Fig. 2.13b).

The advection-type T -profiles are depicted by maxima of ∂2T/∂z2 at both
top of the upper thermocline and bottom of the lower thermocline and a depth,
dT
max, with the maximum temperature TU

max. The depths of the first and second
maxima of ∂2T/∂z2 are taken as top,dT

1 , and bottom, dT
2 , of the upper/lower

thermoclines (Fig. 2.13c).
The shallow-mixing type S-profiles are featured by a maximum/minimum

of ∂2S/∂z2 at top/bottom of the halocline. From the ocean surface downward,
the depths of the first maximum and the first minimum of ∂2S/∂z2 are taken
as top,dT

1 , and bottom, dT
2 , of the halocline (Fig. 2.13d).

(c) Features of the deep water profiles. The deep-mixing type T -profiles
reveal a thick surface mixed layer (Fig. 2.14a) above a positive gradient ther-
mocline. The shallow-mixing type T -profiles are characterized by a mini-
mum/maximum of ∂2T/∂z2 at top/bottom of the upper thermocline. Thus,
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the depths of the first minimum and the first maximum of ∂2T/∂z2 are taken
as top, dT

1 , and bottom, dT
2 , of the upper thermocline (Fig. 2.14b). Below the

upper thermocline, a region of cold, nearly isothermal water exists which is
a remnant of the previously cooling and convective mixing of water. Beneath
this isothermal layer, there is a positive gradient lower thermocline similar to
that described by the deep-mixing profiles.

The advection type T -profiles are depicted by maxima of ∂2T/∂z2 at both
top and bottom of the upper and lower thermoclines and at a depth,dT

max, with
a maximum temperature TU

max. The depths of the first and second maxima
of ∂2T/∂z2 are taken as top, dT

1 , and bottom, dT
2 , of the upper thermocline

(Fig. 2.14c). Below the depth of intrusion of warm Bering Sea water, the tem-
perature profile is similar to that described by the deep-mixing profiles.

The shallow-mixing type S-profiles are characterized by a maximum/
minimum of ∂2S/∂z2 at top/bottom of the upper halocline. From the ocean
surface downward, the depths of the first maximum and the first minimum
of ∂2S/∂z2 are taken as the top, dS

1 , and bottom, dS
2 , of the upper halocline

(Fig. 2.14d). A lower halocline, when present, is often concurrent with the
positive thermocline of the shallow-mixing type T -profile and is characterized
by a minimum of ∂2S/∂z2 at the lower halocline.

(d) Mixed layer depth. MLD for temperature and salinity is usually esti-
mated by dF

1 ,
MLDF = dF

1 . (2.8)

When dF
1 tends to an infinitesimally small depth (dF

1 � 0), the upper thermo-
cline (halocline) reaches the surface and the surface mixed layer disappears.
Such profiles may be called stratified layers and treated as special case of the
ordinary shallow-mixing or advection type profiles.

(e) Lower thermocline. The lower thermocline appears in the Beaufort Sea
Deep Water. The major feature of T -profiles is the existence of minimum and
maximum temperatures below the upper thermocline for the shallow-mixing
and advection type profiles (Figs. 2.14b,c),

Tmin = min
z<−dT

2

T (z), Tmax = max
z<−dT

2

T (z), (2.9)

dT
3 = −{z|T (z) = Tmin}, (2.10)

dT
4 = −{z|T (z) = Tmax}, (2.11)

where dT
3 and dT

4 are the depths of the minimum and maximum temperatures
below the upper thermocline, the corresponding data are T (−dT

3 ) and T (−dT
4 ).

The layer between dT
3 and dT

4 may be identified as the lower thermocline.
Usually, between the upper and lower thermoclines there exists a transition
zone with a very weak vertical gradient.
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2.5.4 Vertical Gradients

After the four depths,dF
1 , dF

2 , dF
3 , and dF

4 , are determined (F is T or S), some
important physical parameters can be obtained from each T, S profile.

(a) Isothermal and isohaline layers. The water above the depth of dF
1 is

taken as the mixed layer. Within the isothermal (isohaline) layer, the tem-
perature (salinity) is assumed to be uniform with depth, i.e., the mixed layer
temperature is the same as theSST,

F̂ (z) = F (0), −dF
1 < z ≤ 0. (2.12)

(b) Entrainment zone. The entrainment zone below the mixed layer is
assumed to be infinitesimally thin near the depth of dF

1 . The temperature
(salinity) at the top of the entrainment zone is the same as the mixed layer
temperature, and the temperature (salinity) at the bottom of the entrain-
ment zone equals the temperature (salinity) at the top of the thermocline.
Therefore, the temperature and salinity jump across the entrainment zone is
represented as

∆F = F (0)−F (−dF
1 ). (2.13)

(c) Upper thermocline and halocline. The upper thermocline and halocline
are located between z = −dF

1 and z = −dF
2 . Vertical gradients of the upper

thermocline (GU
th) and halocline (GU

ha) for the shallow mixing type T , S profiles
are,

GU
th =

T (−dT
1 )−T (−dT

2 )
dT
2 −dT

1

, GU
ha =

S(−dS
1 )−S(−dS

2 )
dS
2−dS

1

. (2.14)

The vertical gradient of the upper thermocline (GU
th) for the advection

type T -profiles is estimated by

GU
th =

1
2

[∣∣T (−dT
1 )−T (−dT

max)
∣∣

dT
max−dT

1

+

∣∣T (−dT
max)−T (−dT

2 )
∣∣

dT
2 −dT

max

]
. (2.15)

(d) Lower thermocline and halocline. The lower thermocline and halocline
are located between z = −dF

3 and z = −dF
4 . Vertical gradients of the lower

thermocline (GL
th) and halocline (GL

ha) are estimated by

GL
th =

T (−dT
3 ) − T (−dT

4 )
dT
4 − dT

3

, GL
ha =

S(−dS
3 ) − S(−dS

4 )
dS
4 − dS

3

. (2.16)
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2.5.5 Thermohaline Parametric Description

The thermohaline parametric model turns any profile into physical parame-
ters: four depths (dF

1 , dF
2 , dF

3 , dF
4 ), temperature or salinity jump ∆F , upper

and lower thermocline (halocline) strength. Taking shallow-mixing type (T, S)
profiles as an example (remember that the deep-mixing type is a special case
of the shallow-mixing type), the thermohaline parametric model is represented
by

F̂ (z) = F (0), −dF
1 < z ≤ 0,

F̂ (z) = F (−dF
1 ) − z+dF

1
dF
2 −dF

1
[F (−dF

2 ) − F (−dF
1 )], dF

2 ≤ z ≤ −dF
1 ,

F̂ (z) = F (−dF
2 ) − z+dF

2
dF
3 −dF

2
[F (−dF

3 ) − F (−dF
2 )], −dF

3 ≤ z ≤ −dF
2 ,

F̂ (z) = F (−dF
3 ) − z+dF

3
dF
4 −dF

3
[F (−dF

4 ) − F (−dF
3 )], −dF

4 ≤ z ≤ −dF
3 ,

c F̂ (z) = F (−dF
4 ) − z+dF

4
dF

N
−dF

4
[F (−dF

N ) − F (−dF
4 )], −dF

N ≤ z ≤ −dF
4 ,

(2.17)

which is vertically uniform in the mixed layer and piecewise linear with depth
below the mixed layer to the deepest depth of the observational point, z =
−dF

N . Note that the “model profile” takes the value of F (−dF
1 ) at the mixed

layer base z = −dF
1 .

The advection type profiles can also be represented by (2.17) except for
the upper thermocline (−dT

2 ≤ z ≤ −dT
1 ) which should be parameterized by

T̂ (z) = T (−dF
1 ) − z + dT

1

dT
max − dT

1

[T (−dT
max) − T (−dT

1 )], −dT
max ≤ z ≤ −dT

1 ,

T̂ (z) = T (−dF
max) −

z + dT
max

dT
2 − dT

max

[T (−dT
2 ) − T (−dT

max)], −dT
2 ≤ z ≤ −dT

max,

(2.18)

where
T (−dT

max) = TU
max.

2.5.6 Statistical Tests

For any profile, F (zj), j = 1, 2, . . . , N , using (2.17) or (2.17) and (2.18), we
obtain a corresponding model profile, F̂ (zj). Both F (zj) and F̂ (zj) have the
same values at the depths 0, depths −dF

1 ,−dF
2 ,−dF

3 ,−dF
4 , and −dF

N , but do
not necessarily have the same values at the other observational depths. If
F̂ (zj) fits F (zj) well, the difference δF (zj) = F (zj) − F̂ (zj) should be very
small at all observational points. We need to test if the difference is small
enough to be neglected. The first test (t-test) is used to justify whether the
mean value of δF (zj) is taken as zero. The second test (correlation test) is
utilized to see if F̂ (zj) correlates well with F (zj).



2.6 Curve-Fitting Model 33

After calculating the mean and standard deviation of δF (zj),

δF =
1
N

N∑
j=1

δF (zj), s2
δF =

1
(N − 1)

N∑
j=1

[δF (zj) − δF ]2, (2.19)

we begin with the null hypothesis that δF is zero. The significance level (α)
is the probability that the given value of

t =
δF

sδF /
√

N
(2.20)

is exceeded purely by chance. This value satisfies the t-distribution with
(N − 1) degrees of freedom. If |t|> tα,N−1, we reject the null hypothesis,
the modeled profile F̂ (zj) does not fit the observed profile F (zj) and should
be rejected.

After a modeled profile F̂ (zj) passes the t-test, we start with the null
hypothesis that F̂ (zj) does not correlate with the observation F (zj). The
significance level (α) is the probability that the given value of

µ =

N∑
j=1

∣∣∣F̂ (zj) − ¯̂
F
∣∣∣2

N∑
j=1

∣∣∣F̂ (zj) − F (zj)
∣∣∣2 /(N − 2)

(2.21)

is not exceeded purely by chance. This value satisfies the F -distribution with
(1, N − 2) degrees of freedom. If µ > Fα(1, N − 2), we reject the null hy-
pothesis and conclude that the modeled profile F̂ (zj) does correlate with the
observation F (zj).

2.6 Curve-Fitting Model

In the thermohaline parametric models described in Sects. 2.3 and 2.4, temper-
ature and salinity are vertically continuous, but their gradients are discontin-
uous at the layer transition. If the vertical gradients are required continuous,
we need to use a curve-fitting model. The basic concept of this model is to de-
termine a set of analytical curves (mathematical expressions with parameters)
that represent the vertical distribution of T, S profiles. Different families of
representative curves have been chosen for three sub-models, shallow top, mid-
depth, and deep ranges, with each chosen such that the number of parameters
required would yield a smooth profile. The matching conditions through the
depth range transitions are chosen so that no discontinuities in vertical gradi-
ents occur. This requires overlapping of the two connected layers. For exam-
ple, in constructing the US Navy’s Generalized Digital Environmental Model
(GDEM), Teague et al. (1990) suggested division of three sub-models as fol-
lows: shallow top sub-model (0–400 m), mid-depth sub-model (200–2,450 m),
and deep sub-model (2,000 m to bottom).
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2.6.1 Top Shallow Sub-Model (0–400 m)

The basic functional form used in GDEM to fit the top 400 m of tempera-
ture (top most temperature profile) is the squared amplitude response of the
Butterworth filter (Oppenheim and Schafer 1975). This expression describes
the vertical profile from the surface (z = 0) to the base of the seasonal thermo-
cline (i.e., z = −d). It is then merged with an exponential tail which extends
the fit to 400 m (z = −Htop = −400m). The fitted temperature is given by

T̂ (z) =
(T0 − T−d)

[
1 + (d/A)2B

]
(d/A)2B [1 + (−z/A)2B ]

+ T−d − (T0 − T−d)
(d/A)2B

, 0 ≥ z ≥ −d,

(2.22a)

T̂ (z) = (T−HTOPT−d)xax+b + T−d, x ≡ − z + d

HTOP − d
, −d ≤ z ≤ −HTOP,

(2.22b)

where T0 is SST. T−d is the temperature at the base of the seasonal thermo-
cline z = −d. T−HTOP is the temperature at the depth HTOP (400 m). Each
temperature profile in the top layer (0–400 m depths) is represented by a set
of eight parameters,

(T0, T−d, T−HTOP,d,A,B, a, b).

2.6.2 Mid-Depth Sub-Model (200–2,450 m)

An orthogonal polynomial expansion,

F̂ (D) = a0 + a1PN1(D) + · · · + aMPNM (D) (2.23)

is used to fit observed temperature and salinity profiles (F ) for the depth
range 200–2,450 m and salinity profiles over the range of 0–400 m (top sub-
model salinity profile). Here, D represents the depth index; D = 1, 2, . . . , N for
evenly spaced data in the layer. The polynomials, PNK(D), K = 1, 2, . . . ,M ,
are orthogonal Gram polynomials (Wylie 1975) defined by

PNK(D) =
K∑

I=0

(−1)ICI
KCI

K+I

DI

N I
. (2.24)

The benefit of using orthogonal polynomial expansions is that computation
of higher-order coefficients does not require re-computation of the lower-order
coefficients. Each temperature (or salinity) profile is represented by a set of
parameters, (a0, a1, . . . , aM ). In GDEM, M = 6.0 the maximum allowed rms
error of fit is 0.1 ppt for the top salinity model, 0.05 ppt for the mid-depth
salinity model, and 0.25◦C for the mid-depth temperature model.
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2.6.3 Deep Sub-Model (2,000 m to Bottom)

Deep temperature and salinity profiles are least squares fitted to a simple
quadratic polynomial,

F̂ (z) = b0 + b1z + b2z
2, (2.25)

with rms errors less than 0.25◦C for temperature and 0.05 ppt for salinity. The
thermohaline parametric models (2.2), (2.17), and curve-fitting model (2.22)–
(2.25) transform observed profiles with different data points in vertical into a
set parameters. For example, the non-polar thermal parametric model (2.2)
has 12 parameters with SST, five depths (d1, d2, d3, d4, d5), and six gradi-
ents (G(m)

T , G
(th)
T , Ḡ

(en)
T , Ḡ

(tr)
T , Ḡ

(d1)
T , Ḡ

(d2)
T ). Since winter (December through

April) profiles reveal a single-layer structure (Fig. 2.7a), the set of charac-
teristic parameters reduces to (SST, H). The curve-fitting model has eight
parameters in the shallow top sub-model, seven parameters in the mid-depth
sub-model, and three parameters in the deep sub-model. The temperature and
salinity profiles with irregular vertical sampling space can be represented by
parameters with same number of data points. Furthermore, these parameters
represent important physical features.

The non-polar parametric model (2.2) is used to process 4.5 million tem-
perature profiles (Levitus and Boyer 1994) from NODC. Here, we present
global (60◦S–60◦N) MLD (d1) data for illustration. It is noted that the den-
sity depends non-linearly on temperature, salinity, and pressure. The MLD
for density (MLDρ) might not be the same as the MLD for temperature
(MLDT ).

2.7 Mixed Layer Depth

Two kinds of methods are used to determine the MLD: simple criteria and
parametric modeling. The former were used by many oceanographers, and the
later emerges after the parametric model was proposed (Chu et al. 1997b).
Sections 2.4 and 2.5 describe the parametric models to determine the ther-
mohaline parameters including the MLD. Here, we only present the simple
criteria.

2.7.1 Simple Criteria

There are two types of criteria, difference and gradient, for determining HT

and HD in the upper ocean. The difference criterion requires that the value
for deviation of temperature (density) from its surface need to be smaller than
a certain fixed value. The gradient criterion requires the vertical derivative of
temperature (density) to be smaller than a certain fixed value.

The criterion for determining MLDT varies from 0.5◦C (Wyrtki 1961a,b;
Monterey and Levitus 1997) to 0.8◦C (Kara et al. 2000). The criterion for
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determining MLDρ from potential density (σt) profile is given by (Miller 1976;
Spall 1991),

∆σt = 0.125σt(0), (2.26a)

or by (Sprintall and Tomczak 1992; Ohlmann et al. 1996; Monterey and Lev-
itus 1997),

∆σt = 0.5◦C(∂σt/∂T ). (2.26b)

Here, ∂σt/∂T is the thermal expansion coefficient evaluated using the sur-
face values of temperature and salinity. The difference in criterion (2.26b) is
based on the assumptions that the salinity effect on the seawater expansion
is negligible, and that MLDρ is corresponding to the depth with temperature
difference of 0.5◦C from the surface (Sprintall and Tomczak 1992).

Defant (1961) was among the first to use the gradient method. He
used a gradient of 0.015◦Cm−1 to determine HT of the Atlantic Ocean.
Bathen (1972) chose 0.02◦Cm−1, and Lukas and Lindstrom (1991) used
0.025◦Cm−1. The following gradient criterion is widely used (e.g., Lukas and
Lindstrom 1991)

∂σt/∂z = 0.01 kg m−4. (2.26c)

2.7.2 MLDT

MLDT is obtained from the MOODS data using the parametric model. The
global (60◦S–60◦N) ocean is divided into 10◦ latitude by longitude boxes.
Means and standard deviations are calculated for each box. Each MLDT data
point in the box is checked against the statistics. Any MLD data whose value
exceeds three times the standard deviation is flagged out. Such a check is
only performed if there are more than five or more MLD data points in the
box. After the first check, means and standard deviations are re-calculated,
excluding individual values which failed the first check. Such a procedure is
repeated three times.

After the standard deviation check, we built up a raw MLDT data set which
contains 3.5 million data points. The data are unevenly distributed in space
and time. Certain periods and areas are over sampled while others lack enough
observations to gain any meaningful insights. Both North Pacific Ocean and
North Atlantic Ocean, especially the Gulf Stream and Kuroshio, are featured
as dense sampled regions. But, the Southern Hemispheric oceans are featured
as low sampled regions. Quite a few areas have no MLDT data both in January
(Fig. 2.15a) and July (Fig. 2.15b) especially in the Southern Hemisphere. The
temporally uneven distribution can be seen from Fig. 2.16, which indicates
yearly number of temperature observations during 1958–1992 for the global
oceans (Fig. 2.16). The year of 1966 is found to have the maximum number of
profiles (around 120,000 profiles in the global oceans), and the year of 1992
is found to have the minimum number of profiles (near 10,000 profiles in the
global oceans).



2.7 Mixed Layer Depth 37

60

30

30 60 90 120 150 180 −150

Longitude (E)

Longitude (E)

(a)

(b)

La
tit

ud
e 

(N
)

−120 −90 −60 −30 0

30 60 90 120 150 180 −150 −120 −90 −60 −30 0

0

−30

−60

60

30

La
tit

ud
e 

(N
)

0

−30

−60

Fig. 2.15. MLDT data distribution for the world oceans between 60◦S and 60◦N: (a)
January, and (b) July (From Chu and Liu 1999, Proceedings on the 10th Symposium
on Global Change Studies, American Meteorological Society)

The monthly mean gridded MLDT data set is established using the opti-
mal interpolation on 1◦ × 1◦ grid points. Let MLDT data be represented by
HT (xi, yj , τk, tl), where, τk = 1958, 1959, . . ., 1992, is the time sequence in
years, and tl = 1, 2, . . ., 12, the time sequence of month within a year. Be-
fore investigating the monthly variation of MLDT , two temporally averaging
operators are defined,

H̄T (xi, yj , tl) =
1

∆τ

1992∑
k=1958

HT (xi, yj , τk, tl), ∆τ = 35 yr, (2.27a)
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Fig. 2.16. Temporal variability of MLDT data points of the world oceans (From
Chu and Liu 1999, Proceedings on the 10th Symposium on Global Change Studies,
American Meteorological Society)
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which is the long-term mean value for the month tl (or called climatological
monthly mean) and

¯̄HT (xi, yj) =
1
12

12∑
l=1

H̄T (xi, yj), (2.27b)

which is the climatological annual mean.
It is noted that the MLDT climatology (i.e., climatological monthly

and/or annual mean) computed here is different from the MLDT climatology
calculated from the monthly mean temperature profiles (Monterey and Levi-
tus 1997). The MLDT climatology is quite different between the two
approaches because the spatial average of MLDT from observed temperature
profiles (first approach) is different from the MLDT of the spatially averaged
temperature profiles over that data set (second approach). Usually, the MLDT

calculated using the second approach is much thicker than the one using the
first approach.

Monthly mean MLDT (Fig. 2.17) show several interesting features: (a) deep
mixed layer (MLDT ≥ 60m) in the northeast part of the North Atlantic
Ocean, (b) zonally asymmetric pattern in the tropical Pacific with deep MLDT

(≥ 40m) in the western part, and shallow MLDT (≤ 20m) in the eastern part.
Different characteristics of the El Nino-Southern Oscillation (ENSO)

between the 1980s duration and the 1960s and 1970s durations lead to the
investigation of connection between SST inter-annual and inter-decadal vari-
abilities. The connection should also be identified using the MLDT data. To
do so, the seasonal variability should be filtered out, and the MLDT anomaly
to the climatological monthly mean is calculated

ĤT (xi, yj , τk, tl) = HT (xi, yj , τk, tl) − H̄T (xi, yj , tl). (2.28)

Since the data ĤT (xi, yj , τk, tl) are not sufficient to obtain statistically signif-
icant results on 1◦ × 1◦ grid, the latitudinally averaged (10◦S–10◦N) anom-
alies for the Pacific Ocean and zonally averaged anomalies for the Pacific
and Atlantic Oceans are calculated. The inter-annual variability can be iden-
tified from latitudinally averaged MLDT anomaly in the equatorial Pacific.
Time-longitude plot of MLDT anomaly from January 1958 to December 1992
(Fig. 2.18) shows westward propagated equatorial Rossby waves and eastward
propagated equatorial Kelvin waves. Most negative MLDT anomalies propa-
gate westward from the eastern Pacific with speeds from 25 to 10 cm s−1. The
westward propagating events with maximum negative anomaly (−10m) are
identified during 1959–1960, 1971–1974, 1981–1985, and 1988–1992. It takes
2–5 years across the basin. This indicates that the mixed layer shallows as
the equatorial Rossby waves propagate. This confirms the results from ear-
lier numerical mode simulations (McCreary and Anderson 1984). The decadal
variability can be identified from zonal averaged MLD anomaly in the Pacific
and Atlantic Oceans from time-latitude plot of MLDT anomaly from January
1958 to December 1992 (Fig. 2.19).
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Fig. 2.17. Climatological monthly mean MLDT : (a) January, (b) April, (c) July,
and (d) October (From Chu and Liu 1999, Proceedings on the 10th Symposium on
Global Change Studies, American Meteorological Society)

2.8 Barrier Layer

There are areas of the world ocean where MLDT (represented by HT ) is larger
than MLDρ (represented by HD) (Lindstrom et al. 1987; Lukas and Lind-
strom 1991; Sprintall and Tomczak 1992; You 1995, 1998; Chu et al. 2001d).
When the “barrier layer” occurs (HT > HD), the barrier layer thickness is
defined as the difference, HT –HD (Fig. 2.20). There is a little temperature
change (near-zero vertical gradient) and a great density change in the bar-
rier layer, which isolates the density mixed layer from the cool water below
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Fig. 2.18. Time-longitude plot of monthly MLDT anomaly in the equatorial Pacific
averaged between 10◦S and 10◦N (From Chu and Liu 1999, Proceedings on the 10th
Symposium on Global Change Studies, American Meteorological Society)

the thermal mixed layer (i.e., the thermocline). Such insolation makes SST
vary in a short period when the net surface heat flux is not negligible, which
has impacts on ocean heat budgets (Swenson and Hansen 1999) and affects
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the heat exchange with the atmosphere. Therefore, understanding spatial and
temporal distributions of a barrier layer leads to accurate estimate of upper
ocean thermohaline structure and the air–ocean fluxes.
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Fig. 2.20. A sketch diagram of isothermal, mixed, and barrier layers (from
Chu et al. 2001d, Journal of Physical Oceanography)

Barrier layer occurs in open oceans and regional seas. Identification of the
barrier layer can be conducted after analyzing the hydrographic data. For
example, Chu et al. (2001d) identify the occurrence of barrier layer in the
Sulu and Celebes Seas from the CTD data of the MOODS data.

2.8.1 Two Mechanisms for the Occurrence of Barrier Layer

Two major factors determining HT (HD) are: (1) surface winds and net
heat (buoyancy) flux and (2) thermal (density) stratification underneath the
isothermal (mixed) layer. Thus, the condition (HT > HD) is caused by the
surface fresh water flux (precipitation excess evaporation) and strong salinity
stratification underneath the mixed layer. Thus, the barrier layer can be clas-
sified as (a) rain-formed, and (b) stratification-formed (weaker thermal and
strong salinity stratification).

There are two regimes in the ocean mixed layer dynamics (Chu 1988;
Chu et al. 1990; Chu and Garwood 1990, 1991; Chu 1993): entrainment and
detrainment. The detrainment process occurs with weak winds, and strong
surface warming (or excessive precipitation over evaporation). The two depths
HT and HD are determined by

HT =
C1u

3
∗

C2α∗gF/ρ0cp
, HD =

C1u
3
∗

C2B
, (2.29)

where C1 and C2 are tuning coefficients, g the gravity, α∗ the thermal ex-
pansion coefficient, ρ0 the characteristic density, cp the specific heat under
constant pressure, F the net surface heat flux (downward positive). In detrain-
ment regime, we have F > 0. The ratio between the two depths is calculated
by
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HT

HD
= 1 +

β∗(P − E)S
α∗F/ρ0cp

, (2.30)

where P and E are the precipitation and surface evaporation rate, and β∗ is
the salinity contraction coefficient. Thus, the rain-formed mechanism (P–E >
0) becomes evident in the detrainment regime with weak winds, weak surface
warming (low positive value of F ), and strong surface fresh water flux [(large
positive value of (P–E)].

The stratification-formed mechanism is evident in the entrainment regime.
Suppose that the rain-formed mechanism is absent (P =E) and that the initial
HT coincides with HD,

HT |t=0 = HD |t=0. (2.31)

The ratio of the initial entrainment velocities (we = dH/dt) between isother-
mal and mixed layers is given by (Chu 1993)

w
(T )
e

w
(D)
e

=
[−(ρ − ρ−HD

)]
α∗(T − T−HT

)
. (2.32)

A larger density jump

[−(ρ − ρ−HD
)] > α∗(T − T−HT

) (2.33)

causes a larger entrainment velocity for the mixed thermal layer than the
mixed density layer. Since the density stratification is determined by the
temperature and salinity stratifications, the stratification-formed mechanism
becomes important when the salinity stratification is strong. Thus, the strati-
fication-formed mechanism becomes evident in the entrainment regime with
strong winds, strong surface cooling (negative value of F ), and strong salinity
stratification. Usually, both rain-formed and stratification-formed mechanisms
may take place at the same time; and precipitation may also strengthen the
stratification.

2.8.2 Sulu and Celebes Seas

The Sulu and Celebes Seas are the two major marginal seas in the outer
southeastern Asia region (Fig. 2.21), which consists of an island arc stretching
across some 5,150 km along the equator at about 94◦E–14◦E and 15◦N–11◦S,
and which has two contrasting zones (Arief 1998). The Sulu Sea belongs to
the western zone where approximately 15–20% of the global freshwater dis-
charge enters (Toole 1987) from freshwater influx that is supported by a high
annual rainfall, between 2 and 4my−1, (ASEAN Subcommittee on Climatol-
ogy 1982). The Celebes Sea belongs to the eastern zone which is composed of
deep-basin chains of 1,000–4,000 m depth and filled mainly by western Pacific
water masses. This zone has a low annual rainfall, less than 2my−1 (ASEAN
Subcommittee on Climatology 1982).
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Fig. 2.21. Geography and isobaths showing the bottom topography of the Sulu and
Celebes Seas (from Chu et al. 2001d, Journal of Physical Oceanography)

2.8.3 Barrier Layer in the Sulu Sea

The two depths, HT and HD, are obtained from 221 CTD profiles. Monthly
CTD stations (denoted by the symbol “o”) and the stations with the barrier
layer occurrence (HT > HD, represented by the symbol “+”) in the Sulu Sea
(Fig. 2.22) show a rather frequent occurrence of barrier layer. For example,
among 16 (6) CTD stations in September (November), there are 15 (6) sta-
tions where the barrier layer occurs. The rate of occurrence reaches 94% in
September and 100% in November (Table 2.1). When barrier layer occurs, the
barrier layer thickness is computed as the difference between HT and HD. The
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Fig. 2.22. Monthly CTD stations (denoted by the symbol “o”) and the stations
with the barrier layer occurrence (HT > HD, represented by the symbol “+”) in the
Sulu Sea (after Chu et al. 2001d, Journal of Physical Oceanography)

climatological characteristics are outlined as follows: (a) barrier layer occurs
most frequent in September–November (fall) with a frequency of 90–100%
and least frequent in April and May (spring) with a frequency of 50%; (b)
MLD has a minimum value of 3 m in May and a maximum value of 30.5 m
in February; and (c) barrier layer depth has large values (39.7–47.6 m) in
September–October and small values (9–11.3 m) in April and May. It is noted
that the sample size is not sufficiently large, thus the statistical features men-
tioned here may have bias values, especially in May.
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Table 2.1. Monthly occurrence frequency and climate features of the barrier layer
in the Sulu Sea

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

N 12 13 19 8 2 61 16 19 16 31 6 18
B 8 11 17 4 1 48 11 16 15 28 6 14
B/N (%) 67 85 89 50 50 79 69 84 94 90 100 78
mean MLD (m) 29 30.5 19.5 16.5 3 16.4 14.2 12.9 11.1 14.9 21.2 12.1
mean barrier layer
thick-ness (m)

27.5 29.9 14.1 11.3 9.0 12.2 28.7 29.3 39.7 47.6 33.7 45.3

N is the number of station, and B is the number of barrier layer occurrence (after
Chu et al. 2001d, Journal of Physical Oceanography)

Sulu Sea (Jan, -Feb. 1949)
100

90

80

70

60

50

H
T

(m
)

40

30

20

10

0

100

90

80

70

60

50

40

30

20

10

0
0 20 40 60 80 100

Sulu Sea (Jul, -Sep. 1949)
100

90

80

70

60

50

H
T

(m
)

HD(m)

40

30

20

10

0
0 20 40 60 80 100

Sulu Sea (Oct. 1949)
100

90

80

70

60

50

HD(m)

40

30

20

10

0
0 20 40 60 80 100

0 20 40 60 80 100

Sulu Sea (Feb, -Mar. 1972)

0

Fig. 2.23. Scatter diagrams (HT versus HD) of the Sulu Sea for the four selected
periods: (a) January–February 1949, (b) February–March 1972, (c) July–September
1949, and (d) October–December 1973 (after Chu et al. 2001d, Journal of Physical
Oceanography)

Scatter diagrams of HT and HD (Fig. 2.23) show that the barrier layer
occurs quite often in both summer and winter, with more evidence in the
summer months. For example, HD is lesser than HT at almost all stations
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in October 1973. Comparing among the four periods, the barrier layer has
relatively thin barrier layer in July–September 1949.

The Comprehensive Ocean-Atmosphere Data Set (COADS) provides
monthly mean sea surface wind stress and net heat and freshwater fluxes
(Fig. 2.24). The surface wind stress, net heat flux (F ), and net fresh wa-
ter flux (P–E) have seasonal variability in the Sulu Sea. The wind stress
strengthens in December–February (6.57–6.67× 10−2 Nm−2) and weakens in
April–November (0.63–3.66 × 10−2 Nm−2). The net heat flux is negative in
November–January (−25.4 to 0W m−2, surface cooling) and becomes largely
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positive in March–May (60–110.3W m−2, strong surface warming). The sur-
face fresh water flux (P−E) is weak in January–May (<0.6myr−1) and strong
in June–November (>1myr−1).

In April and May the Sulu Sea is under the influence of weak winds
(1.3–3 × 10−2 Nm−2), strong net heat flux (60–110.3W m−2), and weak sur-
face fresh water flux (0.52–0.56myr−1). The strong heat flux and weak winds
cause shallow isothermal layer (small HT ). The weak fresh water flux cannot
strengthen the salinity stratification. Thus, the frequency of the barrier layer
is the least in April and May. In September and October the Sulu Sea is un-
der the influence of weak winds (0.63–2.19× 10−2 Nm−2), weak net heat flux
(24.6–29.2W m−2), and strong surface fresh water flux (3.1myr−1 in Septem-
ber). These conditions lead to the detrainment regime for the upper ocean and
favor the rain-formed mechanism (excessive precipitation over evaporation).

In December the Sulu Sea is under the influence of strong winds (6.57 ×
10−2 Nm−2), surface cooling (−25.4W m−2), and relatively weak surface fresh
water flux (0.8myr−1). These conditions favor the entrainment regime in the
upper ocean and the stratification-formed mechanism for the occurrence of
barrier layer.

2.8.4 Barrier Layer in the Celebes Sea

The two depths (HT and HD) for the Celebes Sea are obtained from process-
ing 179 CTD profiles. Monthly CTD stations (denoted by the symbol “o”)
and the stations with the barrier layer occurrence (HD < HT , represented
by the symbol “+”) in the Celebes Sea (Fig. 2.25) show a rather frequent
occurrence of barrier layer in the Celebes Sea. For example, among 14 CTD
stations in December, there are 13 stations where barrier layer occurs. The
rate of occurrence reaches 93% (Table 2.2). The barrier layer thickness has a
maximum value of 62.0 m in April and a minimum value of 9.6 m in June. The
climatological features of barrier layer are outlined as follows: (a) barrier layer
occurs most frequent in December with a frequency of 93% and least frequent
in April with a frequency of 36%; (b) MLD has a minimum value of 7.3 m in
March and a maximum value of 28.1 m in September; and (c) barrier layer
thickness has a maximum value in March–April (49.7–62.0 m) and a minimum
value of 9.6 m in June. These numbers might not have statistical significance
due to the size of the sample being small.

Scatter diagrams of HT and HD (Fig. 2.26) show that the barrier layer
occurs quite often in winter and fall and less often in spring. For example, HD

is lesser than HT at almost all stations in January 1941. At Station 16, HD

and HT are 25 and 100 m, respectively with a barrier layer thickness of about
75 m. Among the four periods, the barrier layer has relatively thin barrier
layer in July 1941 and May–June 1972.

The surface wind stress, net heat flux (F ), and net fresh water flux (P–
E) have less seasonal variability in the Celebes Sea than in the Sulu Sea
(Fig. 2.24). The wind stress varies between 0.45 × 10−2 Nm−2 (November)
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Fig. 2.25. Monthly CTD stations (denoted by the symbol “o”) and the stations
with the barrier layer occurrence (HD < HT , represented by the symbol “r”) in the
Celebes Sea (after Chu et al. 2001d, Journal of Physical Oceanography)

and 2.6 × 10−2 Nm−2 (February). The surface net heat and fresh water
fluxes are positive all year round with F varying from 17.5W m−2 (Janu-
ary) to 87.4W m−2 (March) and (P–E) varying from 0.17myr−1 (April) to
2.1myr−1 (January). Thus, the Celebes Sea is under the influence of weak
winds, surface warming, and surface fresh water flux all year round. These
conditions favor the rain-formed mechanism.

In December–January the Celebes Sea is experienced weak net heat flux
(17.5–24.5W m−2), and strong surface fresh water flux (1.14–2.06myr−1).
These conditions may cause the detrainment regime for the upper ocean and
favor the rain-formed mechanism (excessive precipitation over evaporation).

In April, the Celebes Sea experiences strong net heat flux (80.4W m−2),
and weak surface fresh water flux (0.17myr−1). The strong heat flux and weak
winds cause shallow isothermal layer (small HT ). The weak fresh water flux
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Table 2.2. Monthly occurrence frequency and climate features of the barrier layer
in the Sulu Sea

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

B 8 11 17 4 1 48 11 16 15 28 6 14
N 12 13 19 8 2 61 16 19 16 31 6 18
B/N (%)

67 85 89 50 50 79 69 84 94 90 100 78
mean MLD (m) 29 30.5 19.5 16.5 3 16.4 14.2 12.9 11.1 14.9 21.2 12.1
mean barrier layer
thick-ness (m) 27.5 29.9 14.1 11.3 9.0 12.2 28.7 29.3 39.7 47.6 33.7 45.3

N is the number of station, and B is the number of barrier layer occurrence (after
Chu et al. 2001d, Journal of Physical Oceanography)
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Fig. 2.26. Scatter diagrams (HT versus HD) of the Celebes Sea for the four selected
periods: (a) January–February 1949, (b) February–March 1972, (c) July–September
1949, and (d) October–December 1973 (after Chu et al. 2001d, Journal of Physical
Oceanography)

strengthens the salinity stratification slightly. Thus, the barrier layer occurs
least frequently in April.
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2.9 Determination of Vertical Temperature Structure
from SST

The most difficult problem in physical oceanography is the lack of in situ
observations. With the help of electromagnetic techniques, especially satellite
remote-sensing, we may obtain global coverage of temporally varying surface
data such as SST. Can we determine the vertical thermal structure from
satellite SST observations? To answer this question we should first examine
the linkage between SST and sub-surface thermal structure (Fig. 2.27). The
key issue is how to compress a large profile data set into a small parameter
(or coefficient) data set. Parametric models (see Sects. 2.4 and 2.5) uses the
layered structure (mixed layer, entrainment zone, thermocline or halocline,
and deep layer) to transform the profile data into a set of physical parameters
such as SST, MLDT , thermocline bottom depth, thermocline temperature
gradient, and deep layer stratification (Chu et al. 2000a). Using parametric
models depicted in Sects. 2.4 and 2.5, a vertical temperature profile can be
transformed into several parameters: SST, MLDT , thermocline bottom depth,
thermocline temperature gradient, and deep layer stratification.

These parameters vary on different time scales: SST and MLDT on scales of
minutes to hours, the thermocline bottom depth and thermocline temperature
gradient on months to seasons, and deep layer stratification on an even longer
time-scale. If the long time-scale parameters such as the thermocline bottom
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Fig. 2.27. SST and temperature profile (after Chu et al. 2000a, Journal of
Atmospheric and Oceanic Technology)
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depth, thermocline temperature gradient, and deep layer stratification are
known (or given by climatological values), the degree of freedom of a vertical
profile fitted by the model reduces to one: SST. When SST is observed, we
may invert MLDT , and, in turn, the vertical temperature profile with the
known longtime-scale parameters. Using the parametric model, the inversion
of the sub-surface thermal structure from satellite SST becomes a relationship
between SST and sub-surface parameters.

2.9.1 Methodology

Keeping the minimal possible degrees of freedom, the thermal parametric
model (2.2a)–(2.2f) can be simply depicted by (see Fig. 2.27),

T (z) = TS, (0 ≥ z ≥ h1), (2.34a)

T (z) = TS + Gth(z + h1), (−h1 ≥ z ≥ −h2) (2.34b)

T (z) = Td + (Ttb − Td) exp
[
zα
0 − (z0 − z − h2)α

Hα

]
, (z ≤ −h2), (2.34c)

where TS, Ttb, and Td are SST, temperature at the thermocline bottom depth,
and a deep temperature; h1, h2,H are MLDT , thermocline bottom depth, and
a lower layer e-folding scale, respectively; and Gth is thermocline temperature
gradient. The deep temperature, Td, is the temperature at the deepest ocean
depth such as 5,500 m in the climatological data (Levitus and Boyer 1994).
For shallow water regions, Td is, of course, not a real observed value but an
extrapolated value to the deepest depth (e.g., 5,500 m). We use Td to keep the
data above the bathymetry, fitting the parametric model (2.34).

Here, the thermocline is featured by a linear profile (constant Gth), and
the lower layer is characterized by a non-linear profile. To guarantee T (z) and
dT (z)/dz continuous at z = −h2,

T (h2 + 0) = T (h2 − 0),
dT (h2 + 0)

dz
=

dT (h2 − 0)
dz

= Gth (2.35)

determines the two additional parameters, z0 and a. Differentiating (2.34)
with respect to z and using (2.35) yield

z0 =
[

HGth

a(Ttb − Td)

]1/(a−1)

. (2.36)

The parameter a cannot be zero nor be greater than or equal to one. Other-
wise, z0 becomes very large and distorts the e-folding decrease of temperature
with depth. Chu et al. (2000a) use a = 0.5. Thus, from a vertical temper-
ature profile we may extract three temperatures (TS, Ttb, Td), three depths
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(h1, h2,H), and one gradient Gth, seven parameters in total. We require con-
tinuity of temperature z = −h2,

TS − Gth(h2 − h1) = Ttb. (2.37)

Therefore, any six of the seven parameters (TS, Ttb, Td, h1, h2,H,Gth) deter-
mine a vertical profile. Thus, the degrees of freedom of the thermal parametric
model are six.

2.9.2 Example – South China Sea

The South China Sea has bottom topography (Fig. 2.28) that makes it a
unique semi-enclosed ocean basin that is seasonally forced by a pronounced
monsoon surface wind. Extended continental shelves (less than 100 m deep)
exist along the north boundary and across the southwest portion of the basin,
while steep slopes with almost no shelf are found along the eastern boundary.
The deepest water is confined to an oblate bowl oriented SW–NE, centered
at 13◦N. The maximum depth is around 4,500 m. The MOODS temperature
profiles of the South China Sea are used for the analysis. After quality control,
a subset is used consisting of May (1932–1994) 10,153 profiles (Fig. 2.29).

In May, for the years 1986–1994, there are 40 daytime Multi-Channel SST
(MCSST) and MOODS data points which are co-located in the same week,
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Fig. 2.28. Geography and isobaths showing the bottom topography of the South
China Sea (from Chu et al. 2000a, Journal of Atmospheric and Oceanic Technology)
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Fig. 2.29. Distribution of the MOODS profiles in May 1932–1994 (from Chu
et al. 2000a, Journal of Atmospheric and Oceanic Technology)

marked by “*” in Fig. 2.30. Note that the number of “*” in Fig. 2.30 is much
less than 40. This is due to several data points sharing the same spots. The
40 MOODS profiles were treated as a test data set. The MOODS data set
excluding the test data is the training data set, consisting of 10,113 profiles.

The parametric model (2.34) and the iteration method illustrated in
Sect. 2.4.3 are used to obtain a set of thermal parameters (TS, Ttb, h1, h2,H,
Gth, Td) for each profile. The thermal parameters are averaged within 1◦ × 1◦

grid. The averaged values are taken as the representative values for the grid
cell. These values might not be representative in high gradient and coastal
regions. Three types of cells were found in the South China Sea, representing
co-located MCSST and MOODS data points (“*”), MOODS data points less
than ten (“+”), and MOODS data points more than ten ( “o”), as shown in
Fig. 2.30.

Usually early May is the time of the summer monsoon onset in the South
China Sea (Tao and Chen 1987). The thermal parameters obtained from
processing the MOODS data set (May 1932–1994) may represent the ther-
mal response of the South China Sea to the monsoon onset. Figure 2.31 shows
the mean thermal parameter fields in May averaged over 1932–1994. Surface
warm water (29.5◦C) with a maximum temperature 30◦C occupies most of
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Fig. 2.30. Three types of 1◦×1◦ cells represented by center grid points: co-locating
and co-appearing of MCSST and MOODS data points (“*”), MOODS data points
less than ten (“+”), and MOODS data points more than ten (“o”) (from Chu
et al. 2000a, Journal of Atmospheric and Oceanic Technology)

the southern half of the South China Sea (Fig. 2.31a). The 29.5◦C isotherm
extended from the southeast corner of the Vietnam Coast (near 108◦E, 11◦N)
northeastward to the southwest coast of the Luzon Island (near 120◦E, 15◦N).
MLDT (h1) varied from 10 to 40 m and had a latitudinal variation (Fig. 2.31b).

The southern South China Sea (south of 13◦N) was characterized by a deep
mixed layer (h1 ≥ 20m) region with a maximum value of 40 m near Palawan
Island. This suggests strong turbulent mixing in the southern part of the
South China Sea immediately after the summer monsoon onset. The northern
South China Sea (north of 13◦N) has a shallow mixed layer (h1 ≤ 20m)
with a depth of 10 m. In the continental shelf regions, thermocline bottom
depth (h2) was quite shallow (≤ 100m) and in the deep South China Sea
basin, h2 was deeper (> 100m) with a maximum value of 400 m in Luzon
Strait (Fig. 2.31c), where however, a weak thermocline (Gth) was found with
a vertical temperature gradient around 0.04◦Cm−1 (Fig. 2.31d). Temperature
at z = −h2 (Ttb) was coldest (12◦C) in Luzon Strait and warmest (22◦C)
in the southern shelf region near Natuna Island (Fig. 2.31e). The lower layer
e-folding thickness (H) represents the stratification in the layer below the
thermocline. The smaller the value of H, the stratification of this layer is
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Fig. 2.31. Horizontal distributions of mean thermal parameters obtained from
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Chu et al. 2000a, Journal of Atmospheric and Oceanic Technology)

stronger. In the deep basin, H is quite small (100–200 m), indicating weak
stratification below the thermocline (Fig. 2.31f). Thus, the South China Sea
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thermal response to the monsoon onset can be characterized by a northward
advancement of warm surface water, strong turbulent mixing in the southern
part with deeper mixed layers, and a relatively uniform deep layer below the
thermocline in the deep basin.

2.9.3 Regression Method

For each 1◦ × 1◦ grid cell, the mean values (for that cell) are subtracted from
each of the thermal parameters (TS, Ttb, h1, h2,H,Gth) to obtain the thermal
parameter anomalies (T ′

S, T ′
tb, h′

1, h
′
2,H

′, G′
th), to compute the correlation co-

efficients (Table 2.3), and to show the scatter diagrams (Fig. 2.32) between
T ′

S and the sub-surface parameter anomalies (T ′
tb, h′

1, h
′
2,H

′, G′
th). Both Ta-

ble 2.3 and Fig. 2.32 indicate that among the sub-surface parameters, T ′
S has

the strongest linear association with h′
1. The significance of the correlation

can be evaluated by

t =
r
√

n − 2√
1 − r2

, (2.38)

(a) cc=−0.12 k=−1.9

(c) cc=0.053 k=0.011

(e) cc=−0.012 k=−0.19

(d) cc=−0.016 k=−0.069

(b) cc=−0.031 k=1.9
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Table 2.3. Correlation coefficients with the SST anomaly

h′
1 h′

2 G′
th T ′

th H ′

−0.12 0.03 0.05 −0.01 −0.01

Table 2.4. The t-values of various correlation coefficients

h′
1 h′

2 G′
th T ′

th H ′

−15.77 3.98 6.64 −1.33 −1.33

which has a t-distribution with (n − 2) degrees of freedom. Here, r is the
correlation coefficient; n is the number of samples (10,153). We begin with
the usual null hypothesis that there is no linear association between T ′

S and the
sub-surface parameter anomalies (T ′

tb, h′
1, h

′
2,H

′, G′
th). The critical t-value at

significance level of 0.005 (t0.005) is 2.576. Three absolute values of t computed
by (2.38) are larger than the critical value (2.576): −15.77 between T ′

S and
h′

1, 6.64 between T ′
S and G′

th, and 3.98 between T ′
S and h′

2 (Table 2.4).
Considering various correlation coefficients (Table 2.3) we may conclude

that the correlation between the two short time-scale parameters T ′
S and h′

1 is
stronger than the correlation between T ′

S and the long time-scale parameters
(T ′

tb, h′
2,H

′, G′
th). This in turn confirms the multi-time-scale hypothesis for

the South China Sea thermal parameters.
A negative correlation between T ′

S and h′
1 might not be true everywhere

in the ocean. For example, Tully and Giovando (1963) found it difficult to
establish such a relationship at least for a portion of the eastern sub-Arctic
Pacific Ocean. However, Chu (1993) pointed out the possibility of such a neg-
ative correlation using an analytic ocean mixed layer model for the equatorial
Pacific.

For each grid cell, the mean temperature profile, T̄ (z), is computed. The
temperature anomaly T ′(z) is obtained from subtracting the mean profile
from each profile in the MOODS training data set. The simplest method of
estimating sub-surface T ′(z) from SST′ is to regress

T ′(z) = b(z)SST′, (2.39)

where b(z) is the regression coefficient obtained from the training data set.

2.9.4 Multi-Time-Scale Method

Having the current SST information in the inversion, we need to use the multi-
decorrelation time-scale hypothesis. This hypothesis will reduce the degrees
of freedom of the parameter space. The seven parameters vary on different
time-scales: TS and h1 on a short decorrelation time-scale, Ttb, Td, h2,H, and
Gth on a long decorrelation time-scale. The parameters on a long decorrelation
time-scale are treated as a background data set which may be pre-determined
by historical data. The parameters on the short time-scale are determined by
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the inverse method. If the five parameters on the long time-scale are assumed
to be pre-determined, the degree of freedom of this model reduces to one.
Between the two short time-scale parameters TS and h1, only one parameter is
independent. Usually, we take TS as the independent parameter. If TS is given
by satellite observation, (2.37) can be used to determine h1, and therefore the
vertical profile. This is called the multi-time-scale method. The MOODS data
for the South China Sea in May are used to verify this method.

If SST from the MOODS test data (40 data points) (Fig. 2.30) is taken
as known values for the short time-scale parameter T ′

S, we may use (a)
the background long time-scale parameters: Ttb, h2,H,Gth to determine h1

(Figs. 2.31b,e); or (b) the temperature continuity condition at z = −h2 (2.37)
to determine h1; in addition, the May climatological values for Td (Levitus and
Boyer 1994). With all the seven parameters given, vertical profiles T̂ (z) can
be easily constructed using (2.34). The 40 inverted profiles agree quite well
with the observed profiles, however, the 40 regressed profiles have a larger
mismatch with the observed profiles (Fig. 2.33).

2.9.5 Verification

Any model, including the regression and inverse models presented here, should
be verified before claiming any practical usefulness. Usually, the model verifi-
cation contains two parts: the rms error and the correlation coefficient between
modeled and observed profiles.

The May climatological profiles at the MCSST points are used as the
“least-effort” profiles. The standard deviation of the climatological profiles
represents the first criterion for the model validity. If the model rms error is
larger than the climatological standard deviation, the model does not have any
practical usefulness. The model becomes valid only if its rms error is smaller
than the climatological standard deviation.

Figure 2.34a shows the vertical distribution of the model rms and clima-
tological standard over the whole test data area. The rms errors for both
regression and inverse methods increase with depth from the surface to max-
imum values around 1.8◦C near 100 m depth, and then reduce relatively with
depth. At all depths except near 100 m depth, the rms errors for the inverse
model are smaller than the rms errors for the regression model, which in turn
are smaller than the climatological standard deviation. The depth of 100 m is
approximately the mean thermocline bottom depth (Fig. 3.31). This implies
some difficulty in inverting the temperature at the thermocline bottom depth.
Overall, the vertically averaged inverse model ems error (around 0.72◦C) is
smaller than the regression model rms error (around 1.06◦C), which in turn
is smaller than the climatological standard deviation (1.51◦C).

The correlation coefficients between modeled and observed profiles at all
depths represent the second criterion for the model validity. The correlation
coefficient for the inverse model varies with depth between 1 and 0.5 and has
a vertical mean value of 0.79. Use of (6) leads to t = 3.559 for n = 40, and
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Fig. 2.33. Comparison between 40 regressed (dotted), inverted (dash-dotted), and
observed (solid) profiles (from Chu et al. 2000a, Journal of Atmospheric and Oceanic
Technology)

r = 0.5. This value is much larger than the critical t-value (2.576), which
means significant correlations at confidence level of 0.005 between the in-
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sion model rms errors (dotted) and climatological standard deviation (circle), and
(b) correlation coefficients between observed and inverted (solid), observed and re-
gressed (dotted) profiles (from Chu et al. 2000a, Journal of Atmospheric and Oceanic
Technology)

verted and the observed profiles for all depths exist. However, the correlation
coefficient for the regression model decreases rapidly from one at the sur-
face to zero near 100 m depth, and then becomes negative below that depth
(Fig. 2.34b), which indicates no significant positive correlations between the
regressed and the observed profiles for the sub-layer depths. The small mean
rms error (0.72◦C) and high positive correlation coefficient (0.79) make this
multi-time-scale inverse method valid for practical use.

2.9.6 Limitation of the Multi-Time Scale Hypothesis

The key issue of inverting sub-surface thermal structure from SST is to reduce
the degree of freedom of the thermal parameter space by multi-time-scale
hypothesis. To apply this method globally, we should first test the validity of
this hypothesis. This can be done by the correlation analysis. If correlation
between T ′

S and h′
1 is stronger than the correlation between T ′

S and the other
parameters (T ′

tb, h′
1, h

′
2,H

′, G′
th), the multi-time-scale hypothesis is confirmed

and the use of this inverse method is feasible. If correlation between T ′
S and h′

1

is not significant, such as Tully and Giovando (1963) found in one region of the
North Pacific, it is very hard to use this method for that region. Furthermore,
the rms error and correlation tests should be conducted after the inversion to
see the real usefulness.
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2.10 Autocorrelation Functions

Various ocean systems such as fronts, eddies, and water masses have different
temporal and spatial scales. These scales feature a system’s life span and spa-
tial extent both horizontally and vertically. For example, White et al. (1982)
identified spatial correlation scales in the western Pacific of about 600 km in
the tropics (south of 17.5◦N) and 300 km in the sub-tropics (north of 17.5◦N);
Ozsoy et al. (1989) found the spatial scales to be 200–250 km in the Levantine
Basin of the Mediterranean Sea; Chu et al. (1997a; 2002b) identified the sea-
sonal variation of the temporal and spatial scales in the Yellow Sea and Sea of
Japan (known as the East Sea in Korea) using the autocorrelation function:
90 km from 158 km in winter to 251 km in summer, and the seasonal variation
of the surface temporal decorrelation scale is around 2.4 days from 14.7 days
in winter to 12.3 days in summer.

The autocorrelation function of (T, S) fields,

η(l) =
1
s2

∫
L

θ′(l0)θ′(l0 + l)dl0, (2.40)

can be used to represent (temporally and spatially) thermohaline variability.
Here, θ represents temperature or salinity and θ′ is its anomaly; l0 denotes the
independent space/time vectors defining the location of points in a sampling
space L; l is the space/time lag; and s2 is the variance of θ; η is computed by
paring the anomalies into bins depending upon their separation in space/time,
l. The values η will be obtained from calculating the correlation coefficient for
all the anomaly pairs in each bin, which will be constructed for the combina-
tion of different lags.

2.10.1 Bin Method

For quasi-isolated basin such as the Yellow Sea and the Japan Sea, it is reason-
able to assume that the autocorrelation function depends only on the distance
between two locations in order to reduce the number of bins. Without this as-
sumption, the number of bins is very large, e.g., 27,000 if each of the temporal
and spatial (x and y) lags has 30 bins.

Chu et al. (1997a; 2002b) proposed a simple bin method to calculate the
autocorrelation function for the East Asian marginal seas such as the Yellow
Sea and Sea of Japan. For each observation θobs at depth z (or some equivalent
vertical coordinate), the closest grid point climatological value (such as GDEM
described in Sect. 3.1.2) θ̄c is found and the anomaly,

θ′ = θobs − θ̄C,

is computed. Every individual anomaly,θ′, is paired with the other data points,
θ̂′, within the temporal domain for analysis (such as same season). The tem-
poral and spatial differences or lags are calculated between the two anomalies.
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The anomaly pair (θ′, θ̂′) is then placed in the corresponding temporal lag
bin with increment ∆t (such as one day) and spatial lag bin with increment
∆r (such as 10 km). If the spatial lag is within ∆r0 (5 km) and the temporal
lag is within ∆t0 (0.5 day), the corresponding pair is placed into bin (0, 0). If
the horizontal lag is between m∆r−∆r0 and m∆r + ∆r0, and the temporal
lag is between n∆t−∆t0 and n∆t + ∆t0, the pair is placed into the bin (m,
n) with the pair number P (m, n).

After the anomaly pairs have been spatially and temporally sorted, the
autocorrelation function for each bin (m, n) is computed by

η(m,n) =

∑
bin(m,n) θ′θ̂′∑
bin(m,n) (θ′)2

, (2.41)

which varies with the spatial and temporal lags (m, n). Equation (2.41) in-
dicates that the computed η for the bin (m, n) is in fact the estimation of
the autocorrelation coefficient of pairs in that bin. A t-value for verifying the
significance of a sample correlation coefficient is given by (see a statistical text
book

t =
η
√

P − 2√
1 − η2

, (2.42)

which is a value of the statistic T having a t-distribution with (P − 2) degree
of freedom. Using α as the level of significance, a criterion ηα is obtained

ηα =
tα√

P − 2 + t2α
. (2.43)

The estimated autocorrelation function is significant on the level of α if
η(m,n) > ηα.

The measured variance s2 is divided into signal (s2
s ) and noise (s2

n) whereby

s2 = s2
s + s2

n. (2.44)

The noise variance is brought on from two sources, geophysical and instru-
mentation errors. Here, the geophysical error is unresolved thermal variability
with scales smaller than the typical time and space scales between two tem-
perature profiles. In this study the unresolved scales are 0.5 day and 5 km.
The autocorrelation function at the first bin (0, 0) does not represent the cor-
relation between profiles paired by themselves, and therefore does not equal
one. Following Sprintall and Meyers (1991), the signal-to-noise ratio (SNR) is
computed by

λ =
ss

sn
=

√
η(0, 0)

1 − η(0, 0)
. (2.45)

The larger the value of λ, the less geophysical error exists. If η(0, 0) = 1, there
is no noise, λ = ∞; and if η(0, 0) = 0, there is no signal. If λ > 2, the ratio
of the signal variance,s2

s , to the noise variance, s2
n, is greater than four, which

is considered quite good conditions by White et al. (1982) and Sprintall and
Meyers (1991).
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2.10.2 Autocorrelation Function in Deep and Shallow Water

Difference is found in calculating the autocorrelation function between deep
and shallow (such as continental shelf) water. The deep ocean temperature
profiles tend to follow the pattern of mixed layer, a thermocline, and a deeper
layer with a slow decrease in temperature with depth. Shallow water does
not consistently mimic this pattern. It may range from the classical profile to
completely isothermal. The coastal water is largely affected by bathymetry,
river run-off, internal waves, and tides. Therefore, the temporal and horizontal
scales are also under the strong influence of these forcing factors, and should
have different vertical structure from the deep water. For deep waters, the
vertical variation of the temporal and horizontal scales are usually obtained
from the temperature fields at certain depths (e.g., 100, 200, and 300 m in
White et al. 1982) or from SST and the depth of certain temperature (e.g.,
depth of 20◦C in Sprintall and Meyers (1991). For deep water, these depths
are easily determined (Fig. 2.35a).

top model

Surface

50%

80%

top model

(a)

(c)

(b)

middle model
middle
 model

Fig. 2.35. Depths for computing autocorrelation function for the Yellow Sea: (a)
horizontal levels for deep water, (b) horizontal levels for continental shelf, and (c)
bottom following levels (from Chu et al. 1997a, Journal of Geophysical Research)
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2.10.3 Shallow Water – Yellow Sea Temperature Field

(a) Topographic – following level. For shallow water (such as the Yellow Sea,
see Fig. 2.6), horizontal and temporal scales should not be identified at given
depths. This is because a single layer structure in the Yellow Sea appearing in
winter, which makes the depth of certain isotherm non-representative for the
sub-surface thermal fields; and because of a strong influence of horizontally
varying bathymetry on the shallow water, which causes the temperature fields
at different depths to be non-representative of sub-surface fields. A sloping bot-
tom for shallow water, any chosen depths will lead to some areas (hashed area
in Fig. 2.35b) not covered by any sub-models. Therefore, it is more reasonable
to calculate the autocorrelation function at terrain-following coordinate,

σtopo = − z

H
. (2.46)

Here H is the water depth, and z is the vertical coordinate. Mid-water prop-
erties are represented by σtopo = 5, and the near-bottom water features are
portrayed by σtopo = 8 (Fig. 2.35c). The analysis on the σtopo-coordinate sys-
tem benefits initializing popular σtopo-coordinate coastal models, such as the
Princeton Ocean Model (Blumberg and Mellor 1987), but has disadvantage
during weakly forced and stratified periods. The deeper σtopo-levels will be
within the mixed layer environment in shoal areas and below the mixed layer
in the deeper portions of the basin.

(b) Pair-number. The MOODS data have approximately 35,658 profiles
(during 1929–1991) for the Yellow Sea shelf. The pair-number distributions,
P (m, n), for the four seasons are depicted in Fig. 2.36. Uneven distribution is
seen in the temporal and spatial bins. Almost everywhere P (m, n) is equal or
more than 500. The maximum P (m, n) is located in bins with near 1–2 day
temporal lags and 80–120 km spatial lags.

Since the pair-number for each bin, P (m, n), is given, the criterion for
the autocorrelation function (ηα) for a particular level of significance (α) can
be calculated using (2.43). The criterion ηα has a strong seasonal variation
(Fig. 2.37) due to the change of pair numbers P (m, n). It is smaller for most
bins in summer than in winter. Figure 2.38 shows the dependence of η(m,n)
on the temporal and spatial lags in winter and summer. The autocorrelation
function decreases with temporal and spatial lags faster in winter than in
summer.

When
η(σ)(m,n) > ηα, (2.47)

the estimated autocorrelation function is significant on the level of α. Since
both η(σ)(m,n) and ηα have seasonal variations, the significance level should
also be changed with seasons. The significant surface autocorrelation function
estimation (α = 0.10) is limited to the left lower corner of the (τ , r) plane
with τ < 15 day and r < 200 km in winter (Fig. 2.37a) and occupies nearly
the whole left part of the (τ , r) plane with τ < 20 day in summer (Fig. 2.37b).
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Sea for (a) spring, (b) summer, (c) fall, and (d) winter (from Chu et al. 1997a,
Journal of Geophysical Research)

Such a seasonal variability in significant autocorrelation function estimations
leads to a significant difference in statistical parameters such as decorrelation
scales.

(c) Temporal lag. After the anomaly pairs have been spatially and tempo-
rally sorted, the autocorrelation function of temperature is computed using
(2.41). Temporal dependence of the autocorrelation η(σ)(m,n) can be easily
discussed by η − n curves at several different spatial lags, e.g., m = 0 (“no
lag”), m = 1 (10 km lag), and m = 15 (150 km lag). These curves are plotted
for different seasons and three σtopo levels (0, 0.5, and 0.8) in order to see the
seasonal and vertical variations. The three winter curves, η(σ)(0, n), η(σ)(1, n),
and η(σ)(15, n), are plotted for the surface, σtopo = 0 (Fig. 2.39a), the mid-
level, σtopo = 0.5 (Fig. 2.39b), and the near-bottom, σtopo = 0.8 (Fig. 2.39c).

The three summer curves, η(σ)(0, n), η(σ)(1, n), and η(σ)(15, n) are plotted
for the surface, σtopo = 0 (Fig. 2.40a), the mid-level, σtopo = 0.5 (Fig. 2.40b),
and the near-bottom, σtopo = 0.8 (Fig. 2.40c). The autocorrelation function
has the following features: (1) Its temporal variability weakens as the spa-
tial lag increases, and becomes extremely small (near constantly low val-
ues) at the spatial lag m = 15 (150 km) except for the summer surface
field (Fig. 2.40a), where it decreases quasi-linearly with the time lag (dot-
ted curve line in Fig. 2.40a). (2) Its vertical variability is quite small during
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Fig. 2.39. Winter temporal variation of autocorrelation function at different spatial
lags: m = 0 (no lag, dash-dot curve), m = 1 (10 km lag, solid curve), and m = 15
(150 km lag, dotted curve) for three levels: (a) surface (σtopo = 0)), (b) mid-level
(σtopo = 0.5), and (c) near bottom (σtopo = 0.8) (from Chu et al. 1997a, Journal of
Geophysical Research)

winter (Fig. 2.39) and not so small during summer (Fig. 2.40). This coincides
with the single-layer structure in winter and the multi-layer structure in sum-
mer (see Sect. 2.4). (3) During summer its temporal variability weakens with
depth. The surface autocorrelation function shows a fast reduction with time
lag n (Fig. 2.40a). At mid-level (σtopo = 0.5), it has slower reduction than the
surface as n increases (Fig. 2.40b). At near-bottom (σtopo = 0.8), it fluctuates
around certain values (0.5 for no-spatial lag, 0.28 for 10 km lag, and almost 0
for 150 km) as n increases (Fig. 2.40c).

(d) Spatial lag. The spatial dependence of autocorrelation function,η(σ)

(m,n), can be easily discussed by η − m curves at several different temporal
lags, e.g., n = 0 (no lag), n = 1 (one day lag), and n = 15 (15 day lag).
These curves are plotted for different seasons and three σtopo levels (0, 0.5,
and 0.8) in order to see the seasonal and vertical variations. The three winter
curves,η(σ)(m, 0), η(σ)(m, 1), and η(σ)(m, 15), are plotted for the surface, the
surface, σtopo = 0 (Fig. 2.41a), the mid-level, σtopo = 0.5 (Fig. 2.41b), and the
near-bottom, σtopo = 0.8 (Fig. 2.41c).

The three summer curves, η(σ)(m, 0), η(σ)(m, 1), and η(σ)(m, 15), are plot-
ted for the surface, σtopo = 0 (Fig. 2.42a), the mid-level, σtopo = 0.5
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Fig. 2.40. Summer temporal variation of autocorrelation function at different spa-
tial lags: m = 0 (no lag, dash-dot curve), m = 1 (10 km lag, solid curve), and
m = 15 (150 km lag, dotted curve) for three levels: (a) surface (σtopo = 0), (b)
mid-level (σtopo = 0.5), and (c) near bottom (σtopo = 0.8) (from Chu et al. 1997a,
Journal of Geophysical Research)

(Fig. 2.42b), and the near-bottom, σtopo = 0.8 (Fig. 2.42c). The autocorre-
lation function has the following features: (1) Its spatial variability weakens
as the temporal lag increases, and becomes very small (smaller than 0.2) at
the time lag n = 15 day except for the summer near-bottom field (Fig. 2.42c),
where the horizontal variability of the autocorrelation function at n = 15
day is quite close to that at n = 0 (no time lag) and n = 1 day lag, as
shown in Fig. 2.42c. This indicates that during summer the tidal effect (on
the time-scale is less or equal than one day) is important for the Yellow Sea
bottom thermal field. (2) Its vertical variability is quite small during the winter
(Fig. 2.41) and not so small during the summer (Fig. 2.42). This coincides with
the single-layer structure in the winter and the multi-layer structure in the
summer months (see Sect. 2.4.2). (3) During summer, the spatial variability
of the autocorrelation function strengthens with depth. The surface auto-
correlation function shows a relatively weak reduction versus spatial lag
(Fig. 2.42a). The mid-level (σtopo = 0.5) autocorrelation function has a
stronger reduction than the surface as the spatial lag increases (Fig. 2.42b).
The near-bottom (σtopo = 0.8) autocorrelation function has the strongest
reduction versus spatial lag (Fig. 2.42c).
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Fig. 2.41. Winter spatial variation of autocorrelation function at different temporal
lags: n = 0 (no lag, dash-dot curve), n = 1 (one day lag, solid curve), and n = 15
(15 day lag, dotted curve) for three levels: (a) surface (σtopo = 0), (b) mid-level
(σtopo = 0.5), and (c) near bottom (σtopo = 0.8) (from Chu et al. 1997a, Journal of
Geophysical Research)

2.11 Temporal and Spatial Decorrelation Scales

Various ocean systems such as fronts, eddies, and water masses have different
temporal and spatial scales. These scales feature a system’s life span and spa-
tial extent both horizontally and vertically. For example, White et al. (1982)
identified spatial decorrelation scales in the western Pacific of about 600 km in
the tropics (south of 17.5◦N) and 300 km in the sub-tropics (north of 17.5◦N)
while Ozsoy et al. (1989) found the spatial scales to be 200–250 km in the
Levantine Basin of the Mediterranean Sea. Chu et al. (1997a; 2002b) use
the Gaussian model to fit the autocorrelation function and then to identify
the decorrelation scale as the scale for the spatial or temporal variability.
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Fig. 2.42. Summer spatial variation of autocorrelation function at different tempo-
ral lags: n = 0 (no lag, dash-dot curve), n = 1 (one day lag, solid curve), and n = 15
(15 day lag, dotted curve) for three levels: (a) surface (σtopo = 0), (b) mid-level
(σtopo = 0.5), and (c) near bottom (σtopo = 0.8) (from Chu et al. 1997a, Journal of
Geophysical Research)

2.11.1 Gaussian Model

The Gaussian model

η̂(σ)(m,n) = η̂(σ)(0, 0) exp
[
−A2

σ(m∆r)2 − C2
σ(n∆τ)2

]
, (2.48)

is often used to fit the autocorrelation function (Clancy and Pollak 1983; Phoe-
bus 1988; Chu et al. 1997a; 2002b). Here, η̂(σ)(m,n) denotes the Gaussian fit
of the autocorrelation function at the level σtopo in the bin with the spa-
tial separation m∆r, and the temporal separation n∆τ with (∆r,∆τ) the
increments for the space/time separation. A−1

σ and C−1
σ are horizontal and

temporal decorrelation scales at the level σtopo. The dominant space/time
scales obtained from the autocorrelation function are important not only in
determining sampling density but also for the optimum interpolation of the
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observed data. For example, the US Navy’s Optimal Thermal Interpolation
System runs everyday, combines real-time data, climatology, and predictions
from ocean mixed layer models to represent an accurate picture of the ocean
thermal structure on global and regional scales (Phoebus 1988; Clancy and
Pollak 1983). Before running this system, the temporal and spatial scales, A−1

σ

and C−1
σ , should specify.

2.11.2 F -Test for the Gaussian Model

One can test the null hypothesis H0 to indicate that the Gaussian model
(2.48) is not significant by merely forming the ratio (see any statistics book)

F =
SSR/k

SSE/(l − k − 1)
, (2.49)

where k = 2, l is the total number of bins in either spatial or temporal lags,
and

SSR =
∑
m

∑
n

[
ln η̂(σ)(m,n) − mean(ln η̂(σ)(m,n))

]2
, (2.50)

SSE =
∑
m

∑
n

[
ln η̂(σ)(m,n) − ln η(σ)(m,n)

]2
, (2.51)

denote a regression sum of squares and a residual mean square, respectively.
When

F > Fα(k, l − k − 1), (2.52)

the null hypothesis H0 is rejected. The Gaussian model is significant. Here
Fα(k, l − k − 1) satisfies the F -distribution with ν1 = k, ν2 = l − k − 1, and a
confidence level of α. The F -values for different levels and seasons are listed in
Table 2.5. All the F -values exceed the critical value (5.45) of the F -distribution
for 2 and 28 degrees of freedom at α = 0.01. Therefore, the Gaussian model
is reasonable for the Yellow Sea thermal autocorrelation function.

2.11.3 Seasonal Variability of the Decorrelation Scales

The computed autocorrelation function for different seasons and levels (σtopo =
0, 0.5, 0.8) are then fitted to a Gaussian function of the form of (2.48) by the
regression method, which lead to the spatial and temporal decorrelation scales,

Table 2.5. F -values for estimating the Yellow Sea autocorrelation function

σtopo−level winter summer

surface 28.64 12.26
0.5 26.43 11.71
0.8 25.01 11.34
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Table 2.6. Seasonal and vertical variations of decorrelation scales of the Yellow Sea

Season Level temporal scale (day) spatial scale (km) SNR (λ)

Winter 0 14.7 158 2.06
0.5 14.7 167 1.88
0.8 15.2 172 2.21

Summer 0 12.3 251 3.00
0.5 15.8 169 2.21
0.8 17.2 157 3.00

A−1
σ and C−1

σ , respectively. Table 2.6 presents these decorrelation scales and
SNRs for winter and summer.

The SNR for both winter and summer are higher than that for the deep
waters of the Eastern Equatorial Pacific, which is around 1.0 as reported by
Sprintall and Meyers (1991). This infers that the temperature signal in the
Yellow Sea shelf is stronger than in the open waters. In both winter and
summer seasons, the largest noise occurs at the mid-level (σtopo = 0.5). This
is expected since this is the transition layer where both the meteorological
and topographic effects occur. The SNR is greater in summer than in winter.

The vertical variation in temporal and spatial decorrelation scales is
smaller in winter than in summer. In winter, the temporal scale varies only a
half-a-day and the horizontal scale changes only 14 km among three different
levels (σtopo = 0, 0.5, 0.8). This vertically quasi-uniformity in decorrelation
scales also represents the winter single-layer structure caused by the strong
surface forcing. In the winter season, the Yellow Sea shelf has strong mix-
ing due to both strong winds and the upward buoyancy flux. With a large
part of the Yellow Sea having depths less than 50 m, vertical mixing reaches
the bottom and creates isothermal profiles. Thus, decorrelation scales will be
similar from the surface to the near-bottom (σtopo = 0.8) water column. In
summer, the temporal scale increases five days and the horizontal scale de-
creases 94 km from the surface (σtopo = 0) to the near-bottom (σtopo = 0.8)
waters. This vertically varying decorrelation scales also implies the summer
multi-layer structure.

Surface horizontal decorrelation scales are almost 100 km longer in summer
than in winter. This is due to the strong solar heating in summer, causing a
relatively uniform SST field. Surface temporal decorrelation scales are 2.4 days
shorter in summer than in winter. This might be caused by the shallower
surface mixed layer in summer (less thermal inertia). Only the upper layer
water is affected in summer by the atmospheric forcing rather than the entire
water column as in winter. The surface temporal decorrelation scale should
be shorter in summer than in winter.

An interesting feature shown in Table 2.6 is the increase of temporal decor-
relation scale with depth in both summer (evident) and winter (slight). The
near-bottom water (σtopo = 0.8) has the longest temporal scale in summer,
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which could be directly related to the existence of the Yellow Sea Cold Water
throughout the summer in the middle of the Yellow Sea.

2.11.4 Usefulness of the Decorrelation Scales

The decorrelation scales are widely used in the OI system to map irregular
data into regular grid points and in the observational system design to de-
termine the horizontal and temporal resolution of the observational network.
Since interpolating irregular data into regular grid points will be discussed in
the next chapter, we only discuss the application to the observational network
design.

As mentioned in Sect. 2.10.1, the noise comes from instrumental and geo-
physical errors. Since the instrumental error in XBT measurements is usually
about 0.1◦C (Barnett and Bernstein 1980), and even smaller in CTD measure-
ments, the instrumental error is generally neglected against the geophysical
error. This implies that the curtailment of noise must be accomplished by the
reduction of geophysical error. This is usually done by increasing the sam-
ple density. Having determined the statistical structure of thermal variability
in the Yellow Sea shelf, the minimum sampling density required to detect
thermal variability can now be arbitrated as two or three samples per decor-
relation scale (Sprintall and Meyers 1991). This would mean that spatially,
any temperature measurement in both summer and winter may be conducted
at 50–80 km and 4–6 day intervals with the knowledge that the sub-surface
features will also be adequately sampled.

Questions and Exercises

(1) What are the major features of the ocean observational data such as CTD,
XBT, or AXBT measurements?

(2) What are the two kinds of representation of a temperature (or salinity)
profile? What are the advantages and disadvantages of using each repre-
sentation?

(3) When are the major characteristics of the thermal parametric model for
the non-polar regions depicted in Fig. 2.8? How many independent para-
meters are there in this thermal parametric model?

(4) When are the major characteristics of the thermal and haline parametric
models for the polar region depicted in Figs. 2.13 and 2.14? How many
independent parameters are there in this thermal parametric model?

(5) For the polar region, what are the major differences of the (T , S) profiles
among the shallow-mixing, deep-mixing, and advection-types?

(6) What are the major differences between parametric and curve-fitting mod-
els? Please discuss the advantages and disadvantages of each model.

(7) What are the objective and subjective determination of ocean mixed layer
depth? What is the major difficulty in objective determination of the
mixed layer depth from the profile data?
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(8) There are two types of criteria (difference and gradient) in subjective de-
termination of the mixed layer depth. Please discuss the difference between
the two.

(9) Work with your (T , S) profiles such as XBT measurements. Please (a)
compute the second derivatives ∂2F (zj)/∂z2 (F is T or S) using (2.6)
and determine the mixed layer depth objectively; (b) determine the mixed
layer depth subjectively using the difference criterion (2.26a) or (2.26b);
(c) determine the mixed layer depth subjectively using the gradient cri-
terion (2.26c). Compare the three sets of the mixed layer depth data and
discuss the difference among them.

(10) Under what conditions, the subjective (difference and gradient) and ob-
jective methods will cause large errors?

(11) Two approaches exist to establish climatological mean mixed layer depth
field: (a) determine the mean mixed layer depth from the climatological
mean (T , S) profiles, (b) the synoptic mixed layer depth from observa-
tional (T , S) profiles and then average the synoptic mixed layer depth to
get the climatological mean mixed layer depth (described in Sect. 2.7.2).
Why is the mixed layer determined from the first approach always larger
than that from the second approach? If you want to build up climato-
logical mean mixed layer depth (or thermocline/halocline depth), which
approach will you take? Why?

(12) From the time-longitude plot of monthly mean mixed layer depth in the
equatorial Pacific (Fig. 2.18), what kinds of wave motion can be identified?

(13) What is the barrier layer? What are the major mechanisms causing the
barrier layer? Why?

(14) Can barrier layer occur in high latitude oceans? Why?
(15) What are the major difficulties to determine temperature profile from

SST? What is the advantage to use the multiple time-scale method?
(16) What errors do you make when you use the bin method (2.41) to calculate

the autocorrelation function η defined by (2.40)? Why?
(17) What is the difference between deep and shallow water in computing the

autocorrelation function from observational (T , S) profiles? Why?
(18) What is the limitation of using the Gaussian model to fit the autocorre-

lation function computed from the observed (T , S) profiles?

η̂(σ)(m,n) = η̂(σ)(0, 0) exp
[
−A2

σ(m∆r)2 − C2
σ(n∆τ)2

]
(19) Discuss the usefulness and application of the autocorrelation function and

associated decorrelation scales.




