
15

Applications to Data Assimilation

Ocean data assimilation is an important component in ocean modeling. For
practical application, near-real-time, global ocean data assimilation that pro-
vides, regular, complete descriptions of the temperature, salinity and velocity
structures of the ocean are important in support of operational oceanogra-
phy, seasonal-to-decadal climate forecasts and analyses, and oceanographic
research. Usually, observational (T, S) data are assimilated into models using
various techniques such as nudging, optimal interpolation, variational (VAR)
methods (3D VAR, 4D VAR), and Kalman filter. The velocity data are not
used due to lack of observations. Since ocean models usually have (T, S,V)
as the dependent variables, assimilation with (T, S) data only may be called
unbalanced data assimilation. Ideal approach is to assimilate the (T, S) along
with the corresponding balanced V data. This is called the balanced data
assimilation.

In this chapter, a simple assimilation method (nudging) is used as an
example showing the weakness of the unbalanced data assimilation and the
strength of the balanced data assimilation. With the (T, S) data, the absolute
velocity field (V) can be calculated using the P-vector inverse method and
therefore, using (T, S,V) is the balanced data assimilation.

15.1 Data Nudging

Ocean data assimilation is a procedure that combines observational data from
satellite or from ships and buoys (more direct measurements) with information
from dynamical models to give the best possible estimate or analysis of the
ocean state at a given time. This estimate can be used to initialize climate
prediction models or to study ocean phenomena. The forecast skill of climate
prediction models is sensitive to their initialization. Ideally, improvements in
ocean data assimilation are reflected in improved forecasts.

In ocean data assimilation, observations are combined with information
from predictive models in a manner that depends on statistical representations
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of the observational and model errors. By including more dynamical informa-
tion in the model error representation, observations are used primarily to
correct large-scale errors.

Nudging is a simple and popular data assimilation scheme. For example,
the GFDL/NOAA global data assimilation system uses the Newtonian nudg-
ing to assimilate the observational temperature data (Rosati et al. 1996),

∂T

∂t
+ . . . = −γN(T − Tobs)S, (15.1)

where γN is the Newtonian damping coefficient and Tobs is the observed tem-
perature. The nudging term [in right-hand of (17.1)] is to force T toward Tobs.
For sufficiently long time period,

Lim
t→∞

(T ) = Tobs. (15.2)

Burgers et al. (2002) used a shallow water model with data nudging to inves-
tigate the difference between balanced and unbalanced data assimilation for
seasonal forecast of equatorial oceans. They found that the unbalanced data
assimilation (updating the density field only) leads to distortion of the zonal
velocity field around the equator.

15.2 Linear Shallow Water Model

Similar to Burgers (2002), a shallow-water model is used to illustrate the weak-
ness of the unbalanced data assimilation. A linearized shallow water model
on an f -plane is given by

∂u

∂t
− f0v +

∂Φ
∂x

= 0, (15.3)

∂v

∂t
+ f0u +

∂Φ
∂y

= 0, (15.4)

∂Φ
∂t

+ Φ̄
(

∂u

∂x
+

∂v

∂y

)
= 0, (15.5)

where the Coriolis parameter is taken as a constant f0 (the midlatitude f -plane
assumption); Φ̄ = gh̄ and Φ = gh′ is the deviation from Φ̄; and h = h̄ + h′ is
the height of the free surface. Using Helmholtz’s theorem, the velocity can be
represented by a stream function ψ and a velocity potential (χ),

u = −∂ψ

∂y
+

∂χ

∂x
, v = −∂ψ

∂x
+

∂χ

∂y
. (15.6)
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Because of the f -plane assumption, the Coriolis parameter passes through
any differentiation. Thus, differentiating (15.3) with respect to y and (15.4)
with respect to x and subtracting the first equation from the second equation
yields the vorticity equation,

∂

∂t
∇2

hψ + f0∇2
hχ = 0. (15.7)

Differentiating (15.3) with respect to x and (15.4) with respect to y and adding
the two equations yields the divergence equation,

∂

∂t
∇2

hχ − f0∇2
hψ + ∇2

hΦ = 0. (15.8)

Substituting (15.6) in (15.5) yields

∂Φ
∂t

+ Φ̄∇2
hχ = 0. (15.9)

Consider a periodic domain with dimensions 2πa in each of the x and y di-
rections. The solutions (ψ, χ,Φ) have the form,⎡

⎣ψ(x, y, t)
χ(x, y, t)
Φ(x, y, t)

⎤
⎦ =

∑
n

∑
m

⎡
⎣ ψ̂mn(t)

iχ̂mn(t)
f0

√
KΦ̂mn(t)

⎤
⎦ exp

[
i(mx + ny)

a

]
, (15.10)

where

K =
(m2 + n2)Φ̄

a2f2
0

. (15.11)

Substituting (15.10) in (15.7)–(15.9) yields

dψ̂mn

dt
+ if0χ̂

mn = 0, (15.12)

i
dχ̂mn

dt
− f0ψ̂

mn + f0

√
KΦ̂mn = 0, (15.13)

dΦ̂mn

dt
− if0

√
Kχ̂mn = 0. (15.14)

The solutions of (15.12)–(15.14) are given by⎡
⎣ ψ̂(t)

χ̂(t)
Φ̂(t)

⎤
⎦ =

⎡
⎣Amn

ψ

Amn
χ

Amn
Φ

⎤
⎦ exp(−if0σt), (15.15)

where (Amn
ψ , Amn

χ , Amn
Φ ) are the amplitudes for component (m,n), σ satisfies

the following algebraic equation,

σ3 − σ(K + 1) = 0, (15.16)



410 15 Applications to Data Assimilation

which has three roots

σ(1) = 0, σ(2) =
√

K + 1, σ(3) = −
√

K + 1. (15.17)

The three roots represent two dynamical modes: σ(1) for the geostrophic mode
(or the Rossby mode), and (σ(2), σ(3)) for the inertial-gravity mode. For each
mode, the linear shallow water model has the solutions,⎡
⎢⎣

ψ(x, y, t)
χ(x, y, t)
Φ(x, y, t)

⎤
⎥⎦ =

∑
n

∑
m

⎡
⎢⎣

Amn
ψ

iAmn
χ

f0

√
KAmn

Φ

⎤
⎥⎦ exp

[
i(mx + ny)

a

]
exp[(−if0σ(t − t0)],

(15.18)
with the initial conditions (without data assimilation),

⎡
⎢⎣

ψ(x, y, t0)
χ(x, y, t0)
Φ(x, y, t0)

⎤
⎥⎦ =

∑
n

∑
m

⎡
⎢⎣

Amn
ψ

iAmn
χ

f0

√
KAmn

Φ

⎤
⎥⎦ exp

[
i(mx + ny)

a

]
. (15.19)

When Newtonian nudging (15.1) is used to assimilate the observational data,
(15.7)–(15.9) are changed into

∂

∂t
∇2

hψ̃ + f0∇2
hχ̃ = −γN∇2

h(ψ̃ − ψobs), (15.20)

∂

∂t
∇2

hχ̃ − f0∇2
hψ̃ + ∇2

hΦ̃ = −γN∇2
h(χ̃ − χobs), (15.21)

∂Φ̃
∂t

+ Φ̄∇2
hχ̃ = −γN(Φ̃ − Φobs). (15.22)

The ocean model is integrated between the two consecutive time instances,
say from t = t0 to t = t1, the observational data (Φobs, ψobs, χobs) are treated
as time-independent during that period (t0 < t < t1). Equations (15.20)–
(15.22) constitute a set of coupled linear partial differential equations with
time-independent forcing terms: γN∇2

hψobs, γN∇2
hχobs, γNΦobs.

15.3 Balanced Data Assimilation

The balanced data assimilation is to use the observational data (Φobs, ψobs, χobs)
which are in geostrophic balance,

f0ψobs = Φobs, (15.23)

∇2
hχobs = 0. (15.24)
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Equations (15.20)–(15.22) can be transformed into homogeneous equations,

∂

∂t
∇2

hψ + f0∇2
hχ + γN∇2

hψ = 0, (15.25)

∂

∂t
∇2

hχ − f0∇2
hψ + ∇2

hΦ + γN∇2
hχ = 0, (15.26)

∂Φ
∂t

+ Φ̄∇2
hχ + γNΦ = 0, (15.27)

where
ψ̃(x, y, t) = ψ(x, y, t) + ψobs(x, y, t),
χ̃(x, y, t) = χ(x, y, t) + χobs(x, y, t),

Φ̃(x, y, t) = Φ(x, y, t) + Φobs(x, y, t).
(15.28)

The solutions of homogeneous linear equations (15.25)–(15.27) are given by

⎡
⎢⎣

ψ(x, y, t)
χ(x, y, t)
Φ(x, y, t)

⎤
⎥⎦ =

∑
n

∑
m

⎡
⎢⎣

Amn
ψ

iAmn
χ

f0

√
KAmn

Φ

⎤
⎥⎦ exp

[
i(mx + ny)

a

]
exp[(−if0σ̂(t − t0)],

(15.29)
where (πAmn

ψ , Amn
χ , Amn

Φ ) are the initial (t = t0) amplitudes for the component
(m,n) and σ̂ satisfies the algebraic equation,

(
σ̂ +

iγN

f0

)3

−
(

σ̂ +
iγN

f0

)
(K + 1) = 0, (15.30)

where
σ̂ = − iγN

f0
+ σ. (15.31)

The solutions of (15.20)–(15.22) are given by⎡
⎢⎢⎣

ψ̃(x, y, t)
χ̃(x, y, t)

Φ̃(x, y, t)

⎤
⎥⎥⎦ =

⎡
⎢⎣

ψobs(x, y, t)
χobs(x, y, t)
Φobs(x, y, t)

⎤
⎥⎦

⎡
⎢⎢⎣

ψ̃(x, y, t)
χ̃(x, y, t)

Φ̃(x, y, t)

⎤
⎥⎥⎦ =

⎡
⎣ψobs(x, y, t)

χobs(x, y, t)
Φobs(x, y, t)

⎤
⎦+
∑

n

∑
m

⎡
⎣ Amn

ψ

iAmn
χ

f0

√
KAmn

Φ

⎤
⎦

exp
[
i(mx + ny)

a

]
exp[(−if0σ(t − t0)] exp(−γNt). (15.32)
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Since σ has three real values (0,
√

K + 1,−
√

K + 1) [see (15.17)], the first
term in the right-hand side of (15.32) tends to 0 as t → ∞. This means
that the solutions are nudging to the observational values [second term in the
right-hand side of (15.32)] as t → ∞,⎡

⎢⎢⎣
ψ̃(x, y, t)
χ̃(x, y, t)

Φ̃(x, y, t)

⎤
⎥⎥⎦→

⎡
⎢⎣

ψobs(x, y, t)
χobs(x, y, t)
Φobs(x, y, t)

⎤
⎥⎦ , (15.33)

which satisfies the nudging condition (15.2). If we continue to integrate the
model, there are no spurious solutions to be generated since the observational
data are geostrophically balanced.

15.4 Unbalanced Data Assimilation

The unbalanced data assimilation is to use the observational data (Φobs, ψobs,
χobs) which are not in geostrophic balance. For example, ocean data assimila-
tion is usually using (T, S), but not (u, v) data. For the shallow water model,
it is equivalent to assimilate Φobs, but not (ψobs, χobs). The shallow water
equations with the Newtonian nudging are given by

∂

∂t
∇2

hψ̃ + f0∇2
hχ̃ = 0, (15.34)

∂

∂t
∇2

hχ̃ − f0∇2
hψ̃ + ∇2

hΦ̃ = 0, (15.35)

∂Φ̃
∂t

+ Φ̄∇2
hχ̃ = −γN(Φ̃ − Φobs). (15.36)

Since the variable Φ̃ occurs in (15.30) and (15.31), it is hard to transform
(15.29)–(15.31) into homogeneous equations directly [unlike (15.20–15.22)].
The dependent variables are decomposed into Fourier components⎡

⎢⎢⎣
ψ̃(x, y, t)
χ̃(x, y, t)

Φ̃(x, y, t)

⎤
⎥⎥⎦ =

∑
n

∑
m

⎡
⎢⎢⎣

ψ̂mn(t)
iχ̂mn(t)

f0

√
KΦ̂mn(t)

⎤
⎥⎥⎦ exp

[
i(mx + ny)

a

]
. (15.37)

Substituting (15.37) in (15.34)–(15.36) yields

d
dt

⎡
⎢⎢⎣

ψ̂mn

χ̂mn

Φ̂mn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −if0 0

−if0 0 if0

√
K

0 if0

√
K −γN

⎤
⎥⎥⎦
⎡
⎣ ψ̂mn

χ̂mn

Φ̂mn

⎤
⎦+

⎡
⎣ 0

0
γNΦmn

obs(t)

⎤
⎦ , (15.38)
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which can be written in the matrix form,

dX
dt

= AX + F, (15.39)

with

X(t) =

⎡
⎢⎢⎣

ψ̂mn(t)
χ̂mn(t)

Φ̂mn(t)

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0 −if0 0

−if0 0 if0

√
K

0 if0

√
K −γN

⎤
⎥⎥⎦ , F(t) =

⎡
⎢⎣

0
0

γNΦmn
obs(t)

⎤
⎥⎦ .

(15.40)
Integrating (15.39) from t0 to t gives

X(t) = T(t, t0)X(t0) +
∫ t

t0

T(t, s)F(s)ds, (15.41)

where
d
dt

T(t, s) = AT(t, s), (15.42)

and T(T, S) is the transition matrix. Since the solution X(t) depends on F
not only at time instance t but during the time period [t0, t], the solutions of
(15.34)–(15.36) are not likely nudging to the observational data at certain time
instance. Therefore, unbalanced data assimilation should be avoided. Weak-
ness of unbalanced data assimilation needs further investigation theoretically
and numerically.

MODAS is the US Navy’s ocean operational system to assimilate a wide
range of ocean observations into twice daily global three-dimensional (T, S)
fields with various horizontal resolutions (see Sect. 3.2.1). MODAS (T, S) fields
are regarded as pseudo-“observational” data set and used for ocean model
assimilation and acoustic calculation.

If only the MODAS (T, S) data are assimilated into ocean models, it is
the unbalanced data assimilation. To avoid this, three-dimensional absolute
velocity field (V) should be calculated from the MODAS gridded (T, S) fields
using the P-vector inverse method.

Questions and Exercises

(1) Discuss the major differences between balanced and unbalanced data as-
similations.

(2) Mathematical difference between balanced and unbalanced data assimi-
lations is in the eigenvalue equation. The eigenvalue equation for the bal-
anced data assimilation is written by(

σ̂ +
iγN

f0

)3

−
(

σ̂ +
iγN

f0

)
(K + 1) = 0, (E15.1)
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which is similar to the dynamical system without data assimilation,

σ3 − σ(K + 1) = 0. (E15.2)

The eigenvalue equation for the unbalanced data assimilation does not
have such a form. Why the balanced data assimilation will provide more
realistic solutions?

(3) Select a region and a numerical ocean model of your interest. The monthly
WOA (T, S) data are used. The corresponding absolute velocity (V) data
are downloaded from the enclosed DVD-ROM. The balanced data assimi-
lation is to use (T, S,V) data. The unbalanced data assimilation is to use
(T, S) data. Run the numerical model with the two types of data assimila-
tion for several years. Analyze the difference between the two model runs,
and discuss the results.




