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Introduction

A major task of physical oceanographers is to determine the ocean circulation
from real data. Due to the cost and time-consuming factors of current meter
measurement, physical oceanographers usually have a relatively frequent hy-
drographic observation. For example, the US Navy’s Master Oceanographic
Observational Data Set (MOODS) contains more than six million tempe-
rature profiles and nearly one million salinity profiles for the global ocean.
How to use the hydrographic data becomes important in inferring the state of
the ocean circulation, understanding it dynamically, and even perhaps fore-
casting it, through a quantitative combination of theory and observations
(Wunsch 1996).

1.1 Basic Physics of the Inverse Problem

1.1.1 Basic Equations

Let (x, y, z) be the coordinates with x-axis in the zonal direction (eastward
positive), y-axis in the latitudinal direction (northward positive), and z-axis
in the vertical direction (upward positive). The unit vectors along the three
axes are represented by (i, j, k). The linear steady state is reached with the
hydrostatic balance in vertical; and the balance among the Coriolis force,
pressure gradient force, and gradient of Reynolds stress in horizontal. With
the Boussinesq approximation, the basic equations are given by

−f(ṽ − v) = Az
∂2ũ

∂z2
+ Ah∇2

hũ, (1.1a)

f(ũ − u) = Az
∂2ṽ

∂z2
+ Ah∇2

hṽ, (1.1b)
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∂p

∂z
= −ρg, (1.1c)

∇h • Ṽ2 +
∂w̃

∂z
= 0, (1.1d)

where ρ is the in situ density; f = 2Ω sin ϕ, is the Coriolis parameter, Ω
the Earth rotation rate, and ϕ the latitude. Ṽ2 = (ũ, ṽ), is the horizontal
velocity; w̃ is the vertical velocity; ∇h = i∂/∂x + j∂/∂y is the horizontal
gradient operator; V2 = (u, v) is the geostrophic velocity representing the
balance between the Coriolis force and the horizontal pressure (p) gradient
force,

u = − 1
fρ0

∂p

∂y
, v =

1
fρ0

∂p

∂x
, (1.2)

where ρ0 is the characteristic value (1, 025 kg m−3) of the sea water density.
The two coefficients (Az, Ah) are the vertical and horizontal eddy diffusivities.
The horizontal diffusivity Ah is usually estimated by Smargrinsky parameter-
ization,

Ah =
D

2
∆x∆y

[(
∂ũ

∂x

)2

+
1
2

(
∂ṽ

∂x
+

∂ũ

∂y

)2

+
(

∂ṽ

∂y

)2
]1/2

.

Here, the nondimensional parameter D varies from 0.1 to 0.2 (Mellor 2003).
For horizontal grid of 1◦ × 1◦ as in many climatological temperature and
salinity datasets, and for spatial variability of the velocity of 0.1m s−1, the
horizontal diffusivity is estimated as

Ah = 1.5 × 103 m2 s−1.

1.1.2 Ekman Number

The Ekman number can identify the relative importance of the horizontal
gradient of the Reynolds stress (Ah∇2Vh) versus the Coriolis force (fVh),

E =
O(|Ah∇2

2Ṽ2|)
O(|fṼ2|)

=
Ah

|f |L2
.

Here, L is the characteristic horizontal length scale. For extra-equatorial re-
gions (north of 8◦N and south of 8◦S), |f | > 0.2 × 10−4 s−1 and for length
scale of motion L being larger than 200 km, the Ekman number is estimated
by

E <
1.5 × 103 m2s−1

(0.2 × 10−4s−1) × (2 × 105m)2
= 1.875 × 10−3.

The horizontal gradient of the Reynolds stress can be neglected against
the Coriolis force. For the equatorial regions especially near the equator, |f |
is very small. The Ekman number is not a small parameter. The horizontal
gradient of the Reynolds stress, (Ah∇2

hũ, Ah∇2
hṽ), cannot be neglected against

the Coriolis force in the equatorial region.
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1.1.3 Thermal Wind Relation

For large-scale motion in extra-equatorial regions, the geostrophic (1.2) and
hydrostatic (1.1c) balances are usually satisfied. Differentiating the two equa-
tions in (1.2) with respect to z and utilizing (1.1c) yield the thermal wind
relation,

∂u

∂z
=

g

fρ0

∂ρ

∂y
,

∂v

∂z
= − g

fρ0

∂ρ

∂x
. (1.3)

Vertical integration of the two equations in (1.3) with respect to z leads
to the thermal wind relation,

u = u0 +
g

fρ0

z∫
z0

∂ρ

∂y
dz′, (1.4)

v = v0 −
g

fρ0

z∫
z0

∂ρ

∂x
dz′, (1.5)

which is the linkage between the geostrophic velocity and the in situ density.
Here, (u, v), (u0, v0) are the geostrophic velocities at any depth z and at
a reference depth z0, respectively. It is noticed that only the density data
determine the geostrophic shear. The reference-level velocity (u0, v0) needs to
be determined. The continuity equation is given by

∇ •V = 0. (1.6)

where V = (u, v, w) is the three-dimensional velocity vector and w is the
vertical velocity; and

∇ ≡ i∂/∂x + j∂/∂y + k∂/∂z,

is the three-dimensional gradient operator. The density equation (or thermo-
dynamic equation) is generally written by

∂ρ

∂t
+ V •∇ρ = Source − Sink,

which changes into
V •∇ρ = 0, (1.7)

for steady-state and no source/sink terms (mass conservation).
The conservation of potential vorticity equation (Pedlosky 1986) can be

obtained by differentiating (1.7) with respect to z, using geostrophic and hy-
drostatic balances (1.1) and (1.2), and including the latitudinal variation of
the Coriolis parameter,

V •∇q = 0, (1.8)
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where q is the potential vorticity

q = f
∂ρ

∂z
. (1.9)

It is noted that neglect of relative vorticity may induce a small but systematic
error into the estimation of potential vorticity.

1.2 Reference Velocity

Determination of the reference-level velocity (u0, v0) needs the density conser-
vation (1.7) and potential vorticity conservation (1.8). If the two conservation
laws are not used, determination of the reference-level velocity becomes quite
subjective. The simplest technique is the level-of-no-motion assumption.

1.2.1 Level-of-no-Motion

Inability to determine the reference-level velocity distorted and stymied the
study of oceanography for many decades. Therefore, to avoid complete paral-
ysis, oceanographers made the assumption that if one went deeply enough
into the sea, the fluid movement would become as weak as to be negligible
(Wunsch 1996). The “level-of-no-motion” assumption,

u0 = 0, v0 = 0,

has been used widely by the oceanographic community with various levels (z0)
ranging from 500 to 4,000 decibars. Defant (1941) proposed to use the level
of minimum geostrophic shear representing the level-of-no-motion. Thus, the
level was permitted to slope across the ocean. Obviously, the two levels are
not the same. However, Defant’s method is a rational one in the absence of
any other criterion – the depth of minimum geostrophic shear is the depth for
which the resulting velocities and transports are least sensitive to perturbation
in the level-of-no-motion (Wunsch 1996).

1.2.2 Determination of Reference-Level Velocity

Several inverse methods have been developed to determine the reference-level
velocity (u0, v0) using the conservation of mass and density (1.6), (1.7) and
to avoid the ambiguity caused by the level-of-no-motion assumption. Those
inverse methods are classified into two major categories: area determination,
such as the box model (Hidaka 1940a,b; Wunsch 1978), and local determi-
nation, such as the β-spiral method (Stommel and Scott 1977; Schott and
Stommel 1978; Behringer and Stommel 1980) and the Bernoulli method (Kill-
worth 1986).



1.2 Reference Velocity 5

272

3

273

4

277
1

6

5

2

278

b

a

d

c

Fig. 1.1. Mass and salt conservation in defined triangular volumes used by Hidaka
(1940b) in estimating reference-level velocities v

(i)
0 (i = 1, 2, . . . , 6). Here, the circled

numbers are station identifiers, and boxed integers are interface labels used to identify
the flows between volumes

(a) Hidaka’s Attempt. Hidaka (1940a,b) made the first attempt to use the
mass and salt conservation for determining the reference-level velocity from
hydrographic data. He constructed triangles from the hydrographic stations
with the side connecting pair of stations. For four hydrographic stations, there
are six straight lines (Fig. 1.1). Let the reference-level velocity in each station
pair along each line be denoted v

(i)
0 (i = 1, 2, . . . , 6), which are unknowns. The

conservation requires that the product of net mass and salt flux with volumes
(three triangles) must be zero. Thus, Hidaka obtained six algebraic equations
with six unknowns. Hidaka (1940b) solved this system and obtained numerical
values of the reference-level velocities. However, Defant (1961) demonstrated
that such a system of equations was ill-conditioned and numerical values of
the reference-level velocities produced by Hidaka (1940b) were meaningless.

(b) Box model. Following Hidaka’s (1940a,b) lead on the conservation of
mass and salt with the flow into and out of a volume of ocean (Fig. 1.2),
Wunsch (1978) constructed an inverse method (or called the box model) to
determine the reference-level velocity. In the recent book, Wunsch (1996) de-
scribed his method as follows. Consider a closed volume depicted in Fig. 1.2,
the flow into and out of the volume should conserve the mass. Make the con-
vention that velocities and transports are positive to the north and/or east
and that the sign of the unit normal for a closed volume is positive inward.
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Fig. 1.2. Mass conservation for each layer of the volume

Choose a reference depth z0(sj) where s is an arc length along the volume
periphery and j denotes the station pair number, and compute the thermal
wind relation to this reference-level for each station-pair. If the Ekman flow is
assumed negligible, consider first the total amount of fluid moving geostroph-
ically into and out of the closed volume shown in Fig. 1.2,

J∑
j

K∑
k

ρj(k) [vRj(k) + v0j ]δj∆aj(k) � 0, (1.10)

where vRj(k) and ∆aj(k) are the thermal wind (relative velocity) and the dif-
ferential area for the station pair j at the depth interval k; v0j is the reference-
level velocity, and δj is the unit normal (±1) for the volume with the pair j.
Equation (1.10) is a discrete approximation to the area integrals over the
boundary section and can be carried out in a variety of different approxima-
tions. Everything is known in (1.10) except for the reference-level velocities.
Equation (1.10) has been written as approximately equal to zero, rather than
precisely so, in anticipation of the need to grapple with errors in the various
terms of the sum.

Equation (1.10) is one equation with J unknowns, v0j(j = 1, 2, . . . , J), and
addition of some further constraints would be helpful. It is assumed that the
volume of water in the ocean lying in fixed density intervals does not change
significantly. Define the depth of fluid of density ρi as

z(ρi, x, y) = ki(x, y).
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Then mass conservation in the density interval ρi < ρ < ρi+1 is

J∑
j

ki+1(j)∑
ki(j)

ρj(k) [vRj(k) + v0j ]δj∆aj(k) � 0. (1.11)

Since vRj(k)is assumed as known, (1.11) can be written as

J∑
j

ki+1(j)∑
ki(j)

ρj(k)v0jδj∆aj(k) � −
J∑
j

ki+1(j)∑
ki(j)

ρj(k)vRj(k)δj∆aj(k). (1.12)

Usually, the number of unknowns (v01, v02, . . . , v0J ) is larger than the number
of the constraints in the box model (under-determined system). Obviously,
if the velocity does not have vertical turning, vRj(k) = 0, the reference-level
velocities cannot be obtained by the box model.

(c) β-Spiral method. On the basis of geostrophic balance (1.1), hydrostatic
balance (1.2), conservation of mass (1.6), and conservation of potential vortic-
ity (1.8), the β-spiral method was developed (Stommel and Scott 1977; Olbers
et al. 1985) to determine the reference-level velocity locally. Solving the den-
sity conservation (1.7) for w leads to

(
∂ρ

∂z
)2

∂w

∂z
= −

(
∂ρ

∂z

)(
∂u

∂z

∂ρ

∂x
+ u

∂2ρ

∂x∂z
+

∂v

∂z

∂ρ

∂y
+ v

∂2ρ

∂y∂z

)
(1.13)

+
(

u
∂ρ

∂x
+ v

∂ρ

∂y

)
∂2ρ

∂z2
.

Substitution the equation of the geostrophic balance (1.1) into the mass con-
servation equation (1.6) leads to the linear vorticity balance,

βv = f
∂w

∂z
, β =

df

dy
, (1.14)

which eliminates w. The thermal wind relations (1.4)–(1.5) are used

uR =
g

fρ0

z∫
z0

∂ρ

∂y
dz′, vR = − g

fρ0

z∫
z0

∂ρ

∂x
dz′, (1.15)

Substituting (1.4)–(1.5) in (1.13) and using (1.15) yields

(uR + u0)
[

∂ρ

∂x
− ∂ρ

∂z

∂2ρ

∂x∂z

]

+ (vR + v0)

[
∂ρ

∂y
− ∂ρ

∂z

∂2ρ

∂y∂z
− β

f

(
∂2ρ

∂z2

)2
]

= 0,

(1.16)
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which is the algebraic equation for determining the reference-level velocity
(u0, v0). If the vertical axis is discretized into a series of depths zi, then i =
1, 2, . . . , I. There are I equations in (1.16) and two unknowns u0, v0. Usually
I is much larger than two. Thus, the β-spiral method is an over-determined
system.

(d) Equivalence between the β-spiral and box models. Davis (1978) pointed
out that the β-spiral method (Stommel and Scott 1977) and the box method
(Wunsch 1978), no matter how different in appearance, are based on the same
order of dynamical sophistication and differ from implicit assumptions about
the scales of oceanic variability and different definitions of the smooth field.
The physical principle for both methods are the existence of a conservative
tracer which allows determination of a family of material (usually the potential
vorticity) surfaces z = h(x, y) such as

∇h •

h+δh∫
h

[VR + V0]dz = 0, (1.17)

which comes from the box model. Taking the variation of (1.17) with respect
to h, Davis (1978) obtained

V0 •∇h
∂h

∂z
− β

f
v0 = − ∂

∂z
(VR •∇hh) +

β

f
vR, (1.18)

which differs from the original β-spiral method (Stommel and Scott 1977)
by the term, −(∂VR/∂z) •∇hh. Coats (1981) used (1.18) to calculate the
absolute velocity in the northeastern Pacific Ocean.

1.3 Necessary Conditions for Inversion

After mathematical manipulation on (1.1), (1.2), (1.6), and (1.7) Needler (1982)
obtained the following equation

ρV(x, y, z) =
gk • (∇ρ ×∇q)

∇(f∂q/∂z) • (∇ρ ×∇q)
(∇ρ ×∇q), (1.19)

to determine geostrophic velocity (V) from density (ρ). Here, k is the unit
vector along the z-axis. As pointed by Needler (1982), direct use of (1.19)
for calculating V is almost impossible. The validity of the Needler’s formula
(1.19) requires

∇ρ ×∇q �= 0, (1.20a)

∇(f∂q/∂z) �= 0, (1.20b)

∇(f∂q/∂z) • (∇ρ ×∇q) �= 0. (1.20c)
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Vertical derivative of the left-hand side of (1.20a) gives,

f
∂

∂z
(∇ρ ×∇q) = kβ

∂(ρ, q)
∂(z, x)

+ ∇ρ ×∇
(

f
∂q

∂z

)
. (1.21)

The condition of
∇(f∂q/∂z) = 0,

is equivalent to the disappearance of vertical turning of the horizontal com-
ponent of the vector ∇ρ ×∇q.

Three necessary conditions can be derived for determination of the ab-
solute velocity V from the density field ρ using the Needler’s formula. Equa-
tion (1.20a) implies noncoincidence of theρ-surface with the q surface (first
necessary condition). Equation (1.20b) shows the existence of vertical turning
of the horizontal component of the vector ∇ρ ×∇q (second necessary condi-
tion). Equation (1.20c) requires that the vector ∇ρ ×∇q should not exist on
the iso-surface of f∂q/∂z (third necessary condition). If the three necessary
conditions are satisfied, the absolute velocity can be determined exclusively
from the density field.

Questions and Exercises

(1) Starting from the mass conservation,

V •∇ρ = 0, (E1.1)

and using the geostrophic and hydrostatic balances, derive the conserva-
tion of potential vorticity,

V •∇q = 0, q = f
∂ρ

∂z
, (E1.2)

Discuss the physical significance of the potential vorticity conservation.
(2) Derive the Needler’s formula from (1.1), (1.2), (1.6), and (1.7),

ρV(x, y, z) =
gk • (∇ρ ×∇q)

∇(f∂q/∂z) • (∇ρ ×∇q)
(∇ρ ×∇q), (E1.3)

and list all the vectors in the Needler’s formula, and find the relationships
among these vectors.

(3) Does the level-of-no-motion exist? Why?
(4) Derive the formula for the β-spiral method,

V0 •∇2
∂h

∂z
− β

f
v0 = − ∂

∂z
(VR •∇2h) +

β

f
vR, (E1.4)
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from mass conservation of the box model (1.17). Discuss the difference
between the β-spiral and box methods.

(5) What conditions can be drawn from the Needler’s formula (E1.3)?
(6) Since the Needler’s formula (E1.3) directly relates the absolute velocity

to the density field, can it be used to compute the absolute velocity from
density? If not, explain why?




