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Summary. Multiresolution analysis has received considerable attention in recent years by
researchers in the fields of computer graphics, geometric modeling and visualization. They
are now considered a powerful tool for efficiently representing functions at multiple levels-of-
detail with many inherent advantages, including compression, Level-Of-Details (LOD) dis-
play, progressive transmission and LOD editing.

This survey chapter attempts to provide an overview of the recent results on the topic of
multiresolution, with special focus on the work of researchers who are participating in the
AIM@SHAPE European Networks of Excellence 4.

1 Introduction

Multiresolution analysis has received considerable attention in recent years by re-
searchers in the fields of computer graphics, geometric modeling and visualization
[83]. Its attraction is its utility as a powerful tool for efficiently representing func-
tions at multiple levels-of-detail with many inherent advantages, including compres-
sion, Level-Of-Details (LOD) display, progressive transmission and LOD editing. A
plethora of publications can be easily found on these topics.

This survey chapter attempts to provide an overview of the recent results on the
topic of multiresolution, with special focus on the work of researchers who are par-
ticipating in the AIM@SHAPE European Networks of Excellence.

In Section 2, hierarchical freeform representations are introduced and discussed.
Multiresolution methods for freeform spline spaces are discussed in Section 3, in-
cluding linear and non-linear constraints, and intrinsic multiresolution decompo-
sition. Multiresolution representation of piecewise linear and triangular irregular
meshes are considered in Section 4. Finally, we conclude this chapter, in Section 5.

4 AIM@SHAPE Project, http://www.aimatshape.net
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2 Hierarchical Freeform Representations

Forsey and Bartels pioneered the idea of hierarchical B-splines [25]. B-splines can
be locally refined using overlays. Based on this model, these researchers created a
complex surface such as a dragon’s head from a rectangular domain with a hierarchi-
cal edition. However, since this model was established over tensor product splines, it
is restricted to tensor product mesh and topology.

Localized-hierarchical surface splines [32] extended the hierarchical spline
paradigm to surfaces of arbitrary topology. These are defined locally on a hierar-
chy of meshes using the “reference plus offset” model of Forsey and Bartels for
encoding the details. Since they are based on C1-surface-splines [72], the surface is
defined explicitly by low-degree triangular and quadrangular Bézier patches, while
requiring the structure to satisfy a particular regularity property through all levels of
the hierarchy.

Hierarchical triangular splines [90] are the most recent method for hierarchical
modeling of smooth surfaces of arbitrary topology. Based on the previously devel-
oped triangular interpolating scheme [45], this method enables LOD construction
and surface editing by interpolating the vertices of a hierarchy of locally refined
meshes. The initial mesh, referred to as the base mesh, can be any triangular two-
manifold mesh. Given a base mesh, a polynomial interpolating surface is computed.
It is smooth in the sense that it is overall tangent-plane continuous. LOD is then
added by iterative local refinement and editing of the surface. Each local surface
refinement replaces a set of coarse surface patches by a set of finer surface ones,
while maintaining both the overall tangent-plane continuity and the shape. The user
can add detail by editing the refined surface patches. A hierarchical editing tool is
also provided thanks to a “reference plus offset” representation. The main features
include:

◦ Any triangular mesh can be handled, which means there are no restrictions on
topology, geometry, genus or boundaries. It only has to be a two-manifold mesh.

◦ The surface interpolates a hierarchy of meshes, thus offering direct control for
surface modifications, in different resolutions.

◦ Uniform surface model: The same interpolant is applied to both the initial surface
and its different refinement steps, in order to locally recompute the new surface
part. Thus, only a few geometric quantities are stored for each surface patch in
order to completely evaluate the surface.

Further properties that the hierarchical surface inherits from the underlying sur-
face model include:

· Overall tangent-plane continuity.
· Each surface patch is represented as a parametric, polynomial triangular Bézier

patch of degree five.
· The surface has local control, i.e., the modification of a mesh vertex modifies

only the surrounding surface patches, leaving the surface unchanged outside this
region.
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Figure 1 presents a hierarchical editing process for a surface composed of tri-
angular patches. The different colors, from white through yellow to red, denote the
different levels of detail (see Figure CP-1 in Appendix C).

Fig. 1. Hierarchical surface representation and editing: From left to right, a hierarchical editing
of an object is shown. Colors correspond to different levels of detail. Starting with an initial
surface at the coarsest level, local refinements and local editings are gradually introduced.
Finally, the surface is edited at a vertex of the coarsest level, thus naturally deforming all finer
details depending hierarchically on this vertex.

3 Multiresolution Methods for Freeform Representations

In the literature, the term multiresolution (MR) is employed in different contexts,
including MR-based wavelets, subdivision and hierarchies or multigrids. Multireso-
lution representations based on wavelets have been developed for parametric curves
[14, 22, 62], and can be generalized to tensor-product surfaces [22, 52], to surfaces
of arbitrary topological type [61], to spherical data [80], and to volume data [15].
Wavelets provide a rigorous unified framework. Herein, a complex function is de-
composed into “coarser” low-resolution parts, together with a collection of detail co-
efficients and different resolution levels, necessary to recover the original function.
Other multiresolution representations exist for data defined for tensor-product sur-
faces, known as hierarchical B-splines [25], and for volumetric data sets represented
using tri-variate functions [75].

In the context of geometric modeling, LOD editing is an attractive MR appli-
cation because it allows modification of the overall shape of a geometric model
at any scale while automatically preserving all fine details. In contrast to classical
control-point-based editing methods where complex detail-preserving deformations
need to manipulate a lot of control points, MR methods can achieve the same effect
by manipulating only a few control points of some low-resolution representation; see
[22, 83]. However, there are application areas, including Computer Aided Geomet-
ric Design (CAGD) and computer animation, where deformations under constraints
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are required. It is obvious that constraints offer additional and finer controls over the
deformations applied to curves and surfaces.

The remainder of this section surveys recent results on MR methods in the con-
text of freeform spline geometry, with and without constraints. In Section 3.1 we
briefly describe B-wavelets, or wavelets of B-spline functions. In Section 3.2, direct
manipulation of freeform curves and surfaces are presented whereas in Sections 3.3
and 3.4 linear and non-linear constraints are discussed, respectively. In Section 3.5,
intrinsic MR decomposition of freeform geometry is considered, employing curva-
ture signatures of the shapes. The application of MR to metamorphosis is considered
in Section 3.6 and finally, variational design that aims at optimizing and/or fairing
the shape is discussed in the context of MR representations, in Section 3.7.

3.1 Wavelet Decomposition of B-spline Functions

Multiresolution manipulation of geometry draws from the ability to project geometry
Gi in space Si onto another subspace Si+1 ⊂ Si. Spline spaces are solely defined
by the knot sequences τi (and the orders oi). In [14, 62], wavelet decomposition of
spline spaces, both uniform and non-uniform, were presented. Subspaces are typi-
cally selected by removing every second knot, preserving the uniformity of the knot
sequence or possibly by weighing the importance of the knots, as is done, for exam-
ple, in knot removal algorithms [63].

Consider a curve C(t) ∈ Si with a uniform knot sequence τj = j. The re-
moval of a single knot, τk, creates a sub space Si+1 in which no discontinuity can be
present at parameter value τk. The B-spline wavelet (also known as B-wavelet) Ψk

that corresponds to knot τk spans the complementary subspace of Si − Si+1. While
many ways exist to define the function that spans the complementary space, seeking
a unique orthogonal representation to Ψk, we constrain Ψk to be orthogonal to all the
B-spline basis functions in Si+1. Since Ψk ∈ Si, Ψk has one additional degree of
freedom, which is typically used to normalize Ψk, for example with the constraint
of 〈Ψk, Ψk〉 = 1. By using only uniform knot sequences, all B-wavelets are just
translations (and scales) of each other. Yet, nothing in the above prevents one from
using non-uniform knot sequences with the cost of no possible precomputations.
All B-wavelets must now be reevaluated for every new knot sequence. Figures 2
and 3 show several B-wavelet functions for the quadratic and cubic cases, respec-
tively. Both uniform (computed once up to translation and scale!) and non-uniform
B-wavelets are shown.

A B-spline curve C(t) is typically decomposed into a low-resolution curve C0(t)
and a sequence of detail curves Di(t) at different resolutions so that

C(t) = C0(t) +
n∑

i=1

Di(t). (1)

C0(t) is the lowest or coarsest resolution and typically contains no interior knots in
its subspace. Every additional detail curve Di(t) contains additional knots all the
way to Dn(t). These knots are all shared by the original space of C(t). The vector
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Fig. 2. Quadratic B-wavelets for the uniform case (left) and multiple knots (middle and right).
Note a triple knot renders the quadratic B-wavelet discontinuous.

Fig. 3. Cubic B-wavelets for the uniform case (left) and multiple knots (middle and right).
Note a triple knot renders the cubic B-wavelet C0 continuous.

function addition in Equation (1) is always possible since both C0(t) and Di(t) re-
main in the subspace of the original space. In other words, by refinement, one can
always elevate C0(t) and Di(t) to the original space, where the sum presented in
Equation (1) reduces to adding the respective control points of the curves. Figure 4
presents one example of a multiresolution decomposition of a freeform curve.

Fig. 4. A decomposition of a B-spline curve into various resolutions. The original quadratic
curve is shown at the bottom right and contains over a hundred control points.

By modifying a single control point in C0(t), the entire shape of C(t) is affected.
By modifying the Di(t) vector functions, one is able to create modifications in dif-
ferent resolutions, from a coarse resolution for D1(t) all the way to fine details in
Dn(t). Figure 5 presents an example of manipulating a freeform curve at different
MR levels.

One typical application for MR analysis of spline geometry could be found in
the direct manipulation of a freeform shape (see also Section 3.2 below). The local
support of the B-spline representation is also the weakest point of the representa-
tion. Global modifications are no longer possible in a highly refined B-spline curve.
Recognizing this deficiency, in [36, 22], wavelet decomposition was proposed for
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Fig. 5. Modification of a B-spline curve at various resolutions. A vertical select-and-drag
operation at the top of the ’s’ character at four different resolutions. The original curve is
presented in gray.

uniform B-spline curves toward MR editing control of the shape. When the user
wishes to add small details to the shape, a fine subspace is used during the manipu-
lation whereas when global changes are necessary, a coarse resolution is employed.

One clear advantage of using uniform knot sequences is that it allows wavelet
decomposition to be performed a-priori, as the decomposition depends solely on the
subspaces of the splines and is completely independent of the control points of the
shapes. Yet, in reality, many curves and surfaces that are created using contemporary
geometric modeling tools possess non-uniform knot sequences. Further, in order to
preserve the uniformity of the knots, in a given curve with a uniform knot sequence,
every subspace must present half the number of knots of its immediate containing
space. That is, τi+1 of Si+1 will consist of half the knots in τi, with every second
knot in τi being removed, preserving the uniformity in the knot spacing.

The work of [36, 22] was extended to non-uniform knot sequences for curves and
surfaces, in [52]. Direct manipulation of non-uniform B-spline curves and surfaces
is presented in [52] with the aid of a B-wavelet decomposition [62]. Figure 6 shows
an example of MR interactive editing, in different resolutions, of a freeform tensor-
product B-spline surface in the shape of a chess knight (see also Figure CP-2 in
Appendix C).

3.2 Direct Freeform Curve and Surface Manipulation

As already stated, direct manipulation of freeform shapes is a crucial and vital tool
in any modern geometric modeling environment. Being able to sculpt the geometry
allows novice users to intuitively and interactively manipulate the shape.

Direct manipulation of freeform surfaces is not new and, for example, in [25], a
hierarchical representation of B-spline surfaces is presented that allows local and fo-
cused manipulation of freeform geometry. Adding degrees of freedom to a freeform
surface is usually translated into the insertion of new knots into the shape—an ac-
tion that affects a whole row or column in the mesh of the surface, and hence is not
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. An example of multiresolution editing of a tensor-product B-spline surface in the shape
of a chess knight. A forehead location is selected and dragged upwards in several different
resolutions. (a) shows the original surface, while (b) to (h) present the results of the select-
and-drag operations in the different resolutions from the highest (b) to to lowest (h).
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really local. In contrast, in [25], a hierarchy of partially independent surfaces is im-
posed that allows the end user to locally affect only a small region in a given surface,
by applying a small patch with the new detail at the desired location. This occurs
while fixing the outermost rows and columns of the new small patch to preserve the
proper continuity. A related scheme for volumetric representations was offered in
[75]. Here, a hierarchy of tri-variate functions of different resolution is used to de-
fine the sculpted surface. The (iso) surface itself is defined as the zero set of the sum
of these tri-variates.

Rather than manipulating control points, Bartels and Beatty showed, in [2], how
to select any point on a B-spline curve and change its location, i.e., the curve is con-
strained to pass through a user-specified location. The new curve shape is computed
by minimizing the control points’ offset. In [28] Fowler and Bartels controlled the
shape of a B-spline curve by enforcing prescribed geometric constraints, such as
the position of a curve point, tangent direction and magnitude, or curvature magni-
tude. An extension to tensor-product B-spline surfaces is given in [26]. This satisfies
the user-defined position of surface points, normal direction, tangent-plane rotation
(twisting effect), and the first partial derivative’s magnitude (tension effect). Borel
and Rappoport [9] deformed B-spline surfaces by determining the displacement and
radius of influence for each constrained surface point. Hsu et al. [50] proposed points
selection for freeform deformations. Curve constraints, i.e., enforcing the surface to
contain a given curve or to model a character line, were considered in [12, 38, 71].
Direct shape manipulation techniques are closely related to variational design, where
the objective of obtaining fair and graceful shapes is achieved by minimizing some
energy; see Section 3.7. In general, a freeform shape has many more degrees of
freedom than constraints to satisfy. In order to compute a new shape, the remaining
degrees of freedom are stipulated by minimizing some energy functional, such as
bending. For example, Welch et al. [89] maintained the imposed constraints while
calculating a surface that is as smooth as possible. Celniker and Welch [12] derived
interactive sculpting techniques for B-spline surfaces based on energy minimization,
keeping some linear geometric surface-constrained features unchanged. Celniker and
Gossard [11] enforced linear geometric constraints for shape design of finite ele-
ments governed by some surface energy. While energy minimization affects the sur-
face globally, finite element methods allow for local control. Forsey and Bartels [25]
later used the technique of hierarchical B-splines in an attempt to overcome this
drawback for B-spline surfaces.

In the context of MR, [36, 22] offered direct multiresolution manipulation of uni-
form B-spline curves and surfaces. While no constraint support was offered in these
publications, they demonstrated, for the first time, the hidden power in MR editing
and direct manipulation of freeform curves and surfaces. Exact B-spline wavelet (B-
wavelets) decomposition was used to perform the MR analysis. In [52] and using
the results of [62], the approach of using precise B-wavelet decomposition in direct
curve and surface manipulation was extended to non-uniform B-spline space. Also
demonstrated in [36, 22] were abilities to add details of different shapes to an existing
curve—another modeling feature of high interest.
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The work of [22, 36, 52] computed the exact orthogonal projections of the
freeform geometry into lower dimensional spaces, employing the B-wavelet de-
composition of uniform and non-uniform B-spline representations. While fairly
simple to compute in the case of uniform knot sequences, this decomposition, in
the non-uniform case, must be recomputed for each newly defined space and is
computationally intensive. Fortunately, one can recognize that the explicit orthog-
onal decomposition is not really necessary [35], alleviating these computational
difficulties. In [20], an MR curve editor that is based on a non-orthogonal decomposi-
tion was also presented. The major deficiency of this non-orthogonal decomposition
lies in its ambiguous representation, by offering the user, for example, the option of
conducting many fine high-resolution operations, which can, in fact, be represented
as a few low-resolution operations. The (approximated) projection of a curve to a
low-dimensional space is simple, and for direct manipulation purposes, it might be
sufficient.

3.3 Linear Constraints

In [27, 29, 89], surface editing schemes that satisfy zero-dimensional constraints
such as positions, tangents and normals, were presented. The constraints, being lin-
ear, are efficiently solved, allowing for the interactive manipulation of the freeform
geometry. [89] also considered transfinite constraints where the constraints might
have a non zero dimensionality. While some cases might be of a finite dimension,
such as the containment of a polynomial curve in a polynomial surface when posed
as a composition, other cases might necessitate an approximation. The composition
of the polynomial curve γ(t) = (u(t), v(t)) and polynomial surface S(u, v) yields
S(t) = S(u(t), v(t)), a curve over S, which is a polynomial as well. The degree of
S(t) equals the product of the sum of the degrees of S and the degree of γ(t). Hence,
m linear constraints, where m is the order of S(t), fully prescribe a polynomial curve
over a polynomial surface. This result also extends to rationals.

Other finite linear constraints are treated with ease. A positional constraint,
following [27, 29, 89, 28, 19], could be prescribed as, for curves,

P = C(tp) =
∑

j

QjBi,n(tp),

and for surfaces,

P = S(up, vp) =
∑
jk

QjkBj,n(up)Bk,m(vp).

Similarly, a normal constraint could be written as

0 = 〈N,C ′(tn)〉 =
∑

j

〈N,Qj〉B′
i,n(tn),

for curves and the normal or tangent-plane constraint yields
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0 =
〈

N,
∂S(un, vn)

∂u

〉
=

∑
jk

〈N,Qjk〉B′
j,n(un)Bk,m(vn),

0 =
〈

N,
∂S(un, vn)

∂v

〉
=

∑
jk

〈N,Qjk〉Bj,n(un)B′
k,m(vn).

For surfaces, the normal constraint is related to tangency constraints. The two par-
tials of S, which span the tangent-plane if S is regular, also uniquely determine the
orthogonal, normal space, of S. That is, ∂S(un,vn)

∂u × ∂S(un,vn)
∂v �= 0. Hence, the

normal constraints as listed above could be similarly written as C ′(tn) = T with
one important difference. By coercing C ′(tn) = T , the length of the tangent field
is exactly fixed, achieving C1 continuity at this point. By posing the constraint as
〈N,C ′(tn)〉, G1 continuity is gained, necessitating fewer degrees of freedom.

3.4 Bi-Linear and Non-Linear Constraints

The advantage of having linear constraints is obvious. The solution is much simpli-
fied and is typically more robust to compute. Several types of non-linear constraints
could also be expanded and solved with little effort. The preservation of the area
enclosed by a closed planar curve is important, for example, when one designs a
cross-section of an airplane’s fuselage that is assumed to hold a fixed volume. This
area (and volume in R3) constraint could be represented as a bi- (tri-) linear con-
straint [19, 47].

Consider again C(t) = (x(t), y(t)) being a regular, closed planar parametric
curve. Employing Green’s theorem, the (signed) area, A, enclosed by C(t), equals
(see, for example [16, 31]),

A =
1
2

∮
−x′(t)y(t) + x(t)y′(t)dt =

1
2

∮
|C(t) × C ′(t)|dt. (2)

Equation (2) is clearly quadratic in t. Yet, in [19, 47], it is recognized that Equa-
tion (2) could be decomposed into a bi-linear form in t as A = x(t)My(t). This
decomposition eases the incorporation of an area constraint into an MR framework.
In [19], x(t) and y(t) are interleavingly fixed while solving the remainder of the lin-
ear constraint in y(t) and x(t), respectively. In Figure 7, a nose in an outline of a face
is pulled without constraints, and then with positional, and positional and area con-
straints. This comparison shows how positional constraints could anchor the shape
at certain points, and how the fixed area constraints have a global effect on the shape
even for local changes. A local nose expansion automatically reacts by shrinking the
entire shape, in order to keep the area constant.

In [47] another area preserving MR editing method for uniform B-splines was
introduced. Herein, a wavelet-based MR analysis similar to [22] has been used. It
enables in particular the derivation of a multiresolution representation of the area
functional for the curve at any level of resolution. Let us briefly introduce this MR
framework here, since it is different from the non-uniform multiresolution setting of
Section 3.1. In this setting we are given some functional space E and some nested
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(a) (b) (c)

Fig. 7. Multiresolution editing with linear and bi-linear area constraints, before (wide gray)
and after (thin black) the editing operation. In (a), the nose is interactively pulled to the left
with no additional constraints. In (b), two positional constraints are placed at the base of the
nose, while in (c), the area is fixed.

linear approximation spaces Sj ⊂ E with S0 ⊂ S1 ⊂ · · · ⊂ Sn. Since we are
dealing with closed curves, these spaces have finite dimension. Let Sj be spanned
by a set of basis functions (ϕj

i )i, called scaling functions. A space W j being the
complement of Sj in Sj+1 is called the detail space. Its basis functions (ψj

i )i are
such that together with ϕj they form a basis of Sj+1. The functions ψj

i are called
wavelets. The space Sn can, therefore, be decomposed as follows:

Sn = Sn−1 ⊕ Wn−1 = Sn−2 ⊕
n−1⊕

j=n−2

W j = · · · = S0 ⊕
n−1⊕
j=0

W j . (3)

Condition (3) implies that the scaling functions are refinable; that is, for all j ∈
{0, . . . , n} there must exist some matrices P j and Qj such that the following refine-
ment equations hold:

ϕj−1 = (P j)T ϕj ,

ψj−1 = (Qj)T ϕj .
(4)

On the other hand, the “fine” scaling functions ϕj can be constructed from the coarser
scaling functions and wavelets with the aid of some matrices Aj and Bj :

ϕj = (Aj)T ϕj−1 + (Bj)T ψj−1. (5)

Note that [P j | Qj ] and
[

Aj

Bj

]
are both square matrices, and that

⎡⎣P j Qj

⎤⎦⎡⎣ Aj

Bj

⎤⎦ = I. (6)

The choice of the scaling functions determines the structure of the matrices P j , Qj ,
Aj , and Bj . Sparse matrices are desirable for most of the applications.
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Based on this framework let an MR curve C(t), t ∈ I be defined as an element of
some functional space Sn. Let D2n be the dimension of the space Sn, with D =
dim(S0). C(t) can be written as:

C(t) =
D2n−1∑

i=0

xn
i ϕn

i = (xn)T (ϕn), (7)

where xn is a column vector of D2n scaling coefficients xn
0 , . . . , xn

D2n−1 ∈ R
2. In

a more general setting, the vector of scaling coefficients xn can be thought of as a
discrete signal with D2n samples.

The relations (4) and (5) now allow us to create a low-resolution signal xn−1

with less samples by using the low pass filter matrix An:

xn−1 = Anxn,

where An is of size (D2n−1×D2n). The details, which have been lost in this filtering
process, can be captured as another signal dn−1 using the high-pass filter matrix Bn:

dn−1 = Bnxn,

where Bn is also a (D2n−1×D2n) matrix. The process of splitting a signal xn into a
coarser signal xn−1 with details dn−1 can now be repeated recursively with the new
signal xn−1. Finally, the original signal will be decomposed into a low-resolution
signal x0 and details d0, . . . ,dn−1. This recursive process is known as a filter bank
[64]; see Figure 8. At any intermediate level of resolution, L, the original signal is
decomposed into a coarser signal xL and details dL, . . . ,dn−1. Note that the vector
dj is of size D2j , j = 0, . . . , n − 1.

(xn) −→ (xn−1) −→ · · · (x1) −→ (x0)

↘ ↘ ↘

(dn−1) (dn−2) · · · (d0)

Fig. 8. A filter bank

Using the matrices P j and Qj the original signal xn can be reconstructed recur-
sively with

xj = P jxj−1 + Qjdj−1, for j = 1, . . . , n.

Since the filter bank also applies to the scaling coefficients of an MR curve (7), such
a curve can be represented at any level of resolution, L ∈ {0, . . . , n}, by some coarse
coefficients xL that form approximations of the initial coefficients and by the detail
coefficients dL, . . . ,dn−1 as follows:
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C(t) = (xL)T (ϕL) + (dL)T (ψL) + · · · + (dn−1)T (ψn−1), L = 0, . . . , n. (8)

In this wavelet-based MR framework, the area functional (2) of an MR curve (8)
can now be evaluated at any level of resolution L. This leads to the bi-linear equation

2A = (XL)
[

ML

]
(Y L)T , ∀L ∈ {0, . . . , n}, (9)

where XL and Y L are the line vectors of the x- and y-coordinates, respectively, of
all D2n coefficients (coarse and wavelet coefficients) of the MR representation of
the curve, i.e., (

XL

YL

)
= (xL,dL,dL+1, . . . ,dn−1),

and

ML =

⎡⎣ I(ϕL, ϕL) I(ϕL, ψl)n−1
l=L

I(ψk, ϕL)n−1
k=L I(ψk, ψl)n−1

k,l=L

⎤⎦ =

⎡⎣ A B

−BT C

⎤⎦ . (10)

The MR area constraint is then linearized during the optimization process in
order to locally or globally deform a curve at any level of resolution while preserving
the enclosed area; see Figure 9.

Fig. 9. Multiresolution editing of a coarse level of resolution with preservation of the enclosed
area and a positional constraint.

Some works that preserve volume while manipulating the shape are also avail-
able. In [74], a cuboid volume was manipulated while preserving its volume, han-
dling the problem as a non-linear optimization problem. In [19], it was also shown
that the volume constraint, which is cubic in general, could also be posed as a tri-
linear constraint. Volume-preserving editing of MR surfaces represented by wavelets
for uniform tensor-product B-splines following the MR setting described above has
been developed in [77]. An example of volume-preserving MR editing is shown in
Figure 10.
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(c)
(b) (c)(a)

Fig. 10. An example of multiresolution editing with volume-preservation. (a) shows the orig-
inal tensor-product B-spline surface. In (b), a deformation is applied at a coarse level of reso-
lution without volume-preservation. In (c), the same deformation is applied but the volume of
the original surface is preserved.

Other non-linear constraints that are commonly considered are second-order
differential constraints such as convexity [51], and first- and second-order fairing
constraints, typically in the form of strain and stress surface shape optimization
functionals [89]. Another non-linear constraint of high interest is the preservation
of the arc-length of the curve. In [78], the arc-length of a curve was presented as a
non-linear constraint that is preserved during the curve’s manipulation. Herein the
constraint is integrated into an MR editing system that allows intuitive control of the
deformation’s extent and aspect. In [79] this length-constrained MR deformation has
been integrated in a wrinkling tool for soft tissue modeling.

The exploitation of first and second differential order constraints, in real-time,
is also highly intensive computationally. In [73], an interactive surface editing sys-
tem that supports real-time surface manipulation with convexity/developability con-
straints was reported. It exploits a careful symbolic pre-computation of the curvature
fields.

3.5 Intrinsic Multiresolution Decomposition of Freeform Shapes

The fundamental problem of MR decomposition is that the decomposition is typi-
cally not intrinsic. A curve or a surface could be arbitrary closely approximated using
different knot sequences and even different control points. Likewise, two similarly
looking objects could be represented using completely different polygonal meshes,
as it is evident by the vast remeshing results that have been published in recent years.

It is, therefore, plausible to try and execute this MR decomposition in a way that
is independent of the representation underneath, taking into account only the intrinsic
geometry, and ignoring, for example, the parameterization.

One such possibility with regard to a planar C2 freeform curve is to represent the
shape by its curvature signature, κ(t):

κ(t) =
x′(t)y′′(t) − x′′(t)y′(t)

(x′2(t) + y′2(t))3/2
, (11)
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assuming C(t) is regular or ||C ′(t)|| �= 0.
Assume C(s) is an arc-length parameterized curve. Then, κ(s) = x′(s)y′′(s) −

x′′(s)y′(s). Further,

C ′(s) = T (s), C′′(s) = T ′(s) = κ(s)N(s),

where T (s) and N(s) are the unit tangent and normal fields of C(s). T (s) =
(x′(s), y′(s)) is a unit size vector and hence is always on the unit circle. Let θ be
the angle between T (s) and the x-axis,

θ(s) = tan−1

(
y′(s)
x′(s)

)
,

and consider θ′(s),

θ′(s) =
(

tan−1

(
y′(s)
x′(s)

))′

=
1

1 +
(

y′(s)
x′(s)

)2

(
y′(s)
x′(s)

)′

=
x′2(s)

x′2(s) + y′2(s)
x′(s)y′′(s) − x′′(s)y′(s)

x′2(s)

=
x′(s)y′′(s) − x′′(s)y′(s)

x′2(s) + y′2(s)
= x′(s)y′′(s) − x′′(s)y′(s).

In other words, θ′(s) = κ(s) or a curve C(s) could be reconstructed from κ(s) by
(see also [10])

C(s) =
∫ s

0

T (s̄)ds̄ =
∫ s

0

Circ

(∫ s̄

0

κ(s̃)ds̃

)
ds̄,

up to a rigid-motion, where Circ(·) is an arc-length parameterized unit circle. We
are now able to switch back and forth between a regular parametric form of a planar
curve C(t) and its curvature signature κ(t), up to rigid-motion.

While polynomial parametric curves are not arc-length, in general, one can ap-
proximate a given polynomial parametric curve as an arc-length polynomial para-
metric curve to an arbitrary precision; see, for example [18]. Figure 11 shows one
example of a curvature signature computed to an approximation of an arc-length
polynomial curve.

Multiresolution decomposition could now be applied to κ(s) instead of C(s).
Alternatively, details could be added to low-resolution shapes by modulating the
base κ(s) signature and reconstructing the curve. Practical attempts of this procedure
turned out to be quite slow and a large number of κ(s) samples were necessary to
achieve a reasonable reconstruction.
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Fig. 11. A (portion of a) curvature signature (left) of an approximately arc-length parameter-
ized curve (right).

An actual intrinsic MR decomposition of a freeform curve using its curvature
signature is presented in Figure 12. A multiresolution analysis of κ(t) was performed
using Haar wavelets. New curvature functions κsmall, κmean, κlarge were computed
by partially reconstructing the wavelet decomposition using only detail coefficients
greater than a given (small, mean, large) threshold. The curves were then obtained
by the integration of the new curvature functions.

Further research in this direction of intrinsic MR decomposition of freeform
geometry is in order. One such research direction should seek an ability to preserve
the continuity of closed, periodic curves throughout the intrinsic MR process.

3.6 Multiresolution Morphing

Morphing (or metamorphosis) is known as the smooth and progressive transforma-
tion of one shape into another. The shape can be an image or a planar curve in 2D
space, or it can be a surface or a volume in 3D space. The problem is to create an aes-
thetic and intuitive transition between two shapes. The intermediate shapes should
preserve the appearance and the properties of the input shapes. A trivial linear inter-
polation is often not appropriate, since the intermediate shapes tend to vary a lot in
their volume or they lose the proportions of their shape features. Another negative
effect is that the geometric details can disappear and re-appear later during the tran-
sition. Good results are generally achieved not by interpolating the positions of the
boundary representation but by interpolating elements of alternative representations.
In the case of 2D polygonal shapes, Sederberg et al. [81] represented polygons by a
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Fig. 12. Multiresolution analysis and partial synthesis of a seahorse curve based on an intrinsic
curvature signature.

set of lengths and angles. Shapira and Rappoport [82] used a star-skeleton represen-
tation. Goldstein and Gotsman [30] used an MR representation based on curve evo-
lution. Alexa et al. [1] morphed compatible triangulations by locally least-distorting
maps. There is also the MR mesh morphing technique by Lee et al. [59]. The key
to a successful method thus seems to be the use of a representation based on intrin-
sic properties of the object geometry such that interpolation of its elements achieves
automatically pleasing morphs.

The morphing method we report on in this section is based on a new intrinsic
MR representation. It decomposes the source and the target shapes into a coarse
approximation and a set of detail coefficients. It computes separately the sequence of
coarse intermediate shapes and details, and then reconstructs all intermediate shapes.
The choice of the MR representation is crucial for the quality of the resulting shapes.
For example, a wavelet-based MR analysis would not preserve the orientation of the
details during deformation. In fact, the details here are encoded in a global coordinate
system. An MR representation that encodes the details using local frames similar to
[22] solves this problem, but the coarse representation of the curve in [22] is still not
intrinsic.

In [46] a curvature-based MR representation for 2D polygonal curves was intro-
duced. This MR representation is based on an intrinsic parameterization of both the
coarse shape and the detail coefficients. All coefficients will be represented intrinsi-
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cally by lengths and angles. Similar to local frames, the MR representation preserves
the orientation of the details during deformation.

Let Pi = (xi, yi), i = 0, . . . , N − 1 denote the vertices of a polygon to be MR-
analyzed. The initial polygon needs to be transformed from (x, y)-coordinates into
so-called (θ, l)-coordinates, where θi = ∠(Pi−1Pi, PiPi+1) is the counterclock-
wise angle of the two consecutive polygon segments at Pi and li = ‖PiPi+1‖,
i = 0, . . . , N − 2. The (x, y)-coordinates of the control points Pi can be recov-
ered directly using, for example, P0 as an anchor point and P0P1 as an anchor line
(determining the translation and rotation, rigid-motion, degrees of freedom). Note
the (θ, l)-coordinates are rigid-motion invariant.

Following the filter bank algorithm presented in Figure 8, an angle-length MR
representation can be computed as follows. From a polygon with 2n+1 segments,
one analysis step creates a polygon with 2n segments and 2n detail coefficients,
which are represented by two-dimensional vectors of the form:

(θn+1, ln+1) → (θn, ln)
↘

(αn, βn),

where θn = (θn
0 , . . . , θn

2n−1) and is analogous for ln, αn, βn.

The MR analysis is the recursive procedure of splitting the vector of coefficients
of a polygon (θn+1, ln+1) into a vector of coarse coefficients of a lower resolution
polygon (θn, ln) and a vector of detail coefficients; see Figure 13. Let the upper
index n denote the level of resolution. Both coarse shape and detail coefficients of
level n must be computed directly from (θn+1, ln+1) and vice-versa. The coarse
shape and detail coefficients are computed using the basic cosine trigonometric rule
for triangles (also known as the Al-Kashi formula for triangles); see [46] for more
details.

Given two polygons with the same number of corresponding control points PS

and PT , called source and target polygons, the MR morphing algorithm constructs
in-between polygons Pt that gradually change PS into PT for t ∈ [0, 1], where
PS = P0 and PT = P1. For both polygons one disposes of two sets of coarse coeffi-
cients and of two sets of detail coefficients. In principle, the in-between morphs are
now generated by interpolating the coefficients of this intrinsic MR representation.
However, the coarse coefficients are interpolated using the locally least distorting in-
terpolation [1] in order to get “as-rigid-as-possible” intermediate morphs. Figure 14
shows two examples of curves with a complex shape and with a lot of fine details
that are difficult to interpolate with standard morphing techniques.

3.7 Variational Multiresolution Methods for Freeform Surface

The variational modeling paradigm is used in order to find the “best” curve or surface
amongst all solutions that meet some constraints. The constraints may result from
the particular modeling technique used, for example, sample point approximation,
or direct curve manipulation (see Section 3.2), or they may be one of the constraints
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Fig. 13. The analysis. The dotted polygon belongs to resolution level n + 1, the fat polygon
belongs to level n.

Fig. 14. Two examples of intrinsic multiresolution morphing. The tree curves have 2048 con-
trol points. The animal curves have 1536 control points. The algorithm applies a multiresolu-
tion analysis to the source (left) and target (right) polygons. Then, the coarse shape and detail
coefficients are independently interpolated, and the intermediate curves are reconstructed. The
resulting curves are shown alongside the coarse polygons.

described in Section 3.3. In the context of smooth curve and surface design, the
notion of “best” is formulated by minimizing some energy functional.

Variational Shape Design

Although it is difficult to define exactly, in mathematical terms, what fairness of a
curve or surface is, it is commonly accepted that smooth and graceful shapes are
obtained by minimizing the amount of energy stored in the surface. The energy
functionals originating from elasticity theory, such as the bending energy for curves∫

κ2(t)dt or the thin-plate energy for surfaces
∫

κ2
1+κ2

2dA, are in general non-linear.
These and other higher order, non-linear, energy functionals were used in [67, 37].

In order to accelerate computations, linearized versions of these energy function-
als are generally used; see, for example, [11, 12, 89, 33]
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E =
∫

σ

(α stretch + β bend)dσ,

where α and β are weights on the stretching and bending energies. These produce
a surface that tends to minimize its area to avoid folding and to distribute curvature
over large regions in order to result in fair shapes. The stretch-and-bend functionals
are typically approximated via the following quadratic terms: α11X

2
u +α12XuXv +

α22X
2
v and β11X

2
uu + β12X

2
uv + β22X

2
vv , respectively, only to be linearized in the

optimization process.
Historically, the use of such energy functionals goes back to early spline and

CAGD literature [65, 76] and has today led to a research area called variational
design (of smooth curves and surfaces) [21, 43, 42, 7, 44].

Variational Multiresolution Modeling

Gortler and Cohen [33] showed how the variational constraint, which generalizes
least-squares, can be solved through an MR formulation of a planar curve. A wavelet-
based MR curve satisfying some linear constraints and minimizing a linearized bend-
ing energy functional may be found by solving the following linear system [89]:[

H̄ ĀT

Ā 0

] [
x̄
λ

]
=

[
0
b

]
,

where Ā is the constraint matrix, H̄ is the Hessian matrix of the basis functions,
and λ is the vector of Lagrange multipliers. The bars signify that the variables
are wavelet coefficients. The wavelets allow acceleration of the iterative conjugate
gradient-solving of the variational problem.

Variational subdivision is another modeling technique where constraints are com-
bined with classical subdivision. Instead of applying explicit rules for the new ver-
tices, Kobbelt’s variational subdivision scheme [56] computes the new vertices such
that a fairness functional is minimized. At each step a linear system has to be solved.
The resulting curves have minimal total curvature. Furthermore, [58] showed how
wavelets can be constructed by using the Lifting Scheme [85], which is appropriate
for variational subdivision curves. Weimer and Warren [86, 87, 88] developed varia-
tional subdivision schemes that satisfy partial differential equations for, for instance,
fluid or thin-plate equations.

4 Multiresolution Analysis for Irregular Mesh-based
Representations

A lot of work has been done in the past ten years on MR analysis of models based
on a decomposition of the shape into triangles. This section will focus on two types,
scalar data defined on triangulations and mesh-based freeform surfaces.

Only certain types of data sets can be analyzed by wavelet MR analysis. One
principal restriction is that the grid on which the data is defined has to be obtained
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by successive subdivisions of a coarse grid. These subdivisions define a sequence of
grids such that the cells of one grid are subdivided by the cells of the next grid. Such
a sequence of grids is deemed “connected by subdivision”. This restriction is due
to the fact that wavelet analysis needs a nested sequence of approximating spaces;
see Section 3.1. In the case of quadrilateral or triangular grids, the regular four-way
split, as illustrated in Figure 15, is generally used to create a grid with subdivision
connectivity, since the grids will not tend to degenerate after several subdivisions.

Fig. 15. Regular four-way split for a quad mesh and a triangle mesh.

However, data defined on triangulations as well as freeform surface meshes are
generally of more complex structure due to acquisition techniques such as obser-
vation and laser range scanning. Thus, classical wavelet theory cannot be adapted
directly to these so-called irregular meshes, since it is impossible to associate a se-
quence of grids with subdivision connectivity to this data. In the case of quadrilateral
grids with subdivision connectivity, the one-dimensional wavelet-based MR analysis
applies directly by tensor-product [84, 66]. If the data is defined on a regular trian-
gular grid, classical wavelet theory can, and has also been adapted as well [68, 80].
Nevertheless, the case of freeform surfaces is more complicated since surfaces of
arbitrary topology cannot be parameterized on regular quad or triangle meshes.

The aim of the present section is to focus on MR analysis for irregular mesh-
based representations. Section 4.1 addresses the simplification of numerical data at-
tached to an irregular mesh. Section 4.2 covers the simplification of surface meshes.

4.1 Irregular Triangulations

Wavelet methods assume that the mesh on which the data is defined can be reached
by recursive subdivision of a basic mesh. Thus, every wavelet-based scheme is asso-
ciated with hierarchies that have a tree structure (where every parent node is subdi-
vided into a set of child nodes). Wavelet volume visualization [39] is related to Octree
structures. Wavelet radiosity [34] and wavelets over triangulated domains [61, 68, 80]
are based on Quadtree structures.

On the other hand, irregular triangular meshes cannot be reached by subdivi-
sion rules, therefore hierarchical structures that have been developed to handle them
are more complicated than trees. These include, for example, hierarchical Delaunay
triangulations [55, 23], or progressive meshes [48, 49]. These data structures are
appropriate for LOD models, see [24], but not for MR analysis as described in the
present chapter.



104 G.-P. Bonneau et al.

The approach introduced in [3] fills the gap between wavelet methods (on sub-
division hierarchies) and hierarchical structures on irregular triangular meshes for a
special type of data set, i.e., for piecewise constant data defined on irregular planar
or spherical triangulations.

The basic idea is to relax the restrictions imposed by classical wavelet-based
MR analysis, while preserving good properties such as constant memory require-
ments, linear computational time, and the ability to accurately approximate data
with few detail coefficients. The relaxed restrictions are related to the approxima-
tion spaces associated with the MR analysis. These spaces are the functional spaces
that correspond to each level of resolution where the original function is successively
approximated during the analysis. These spaces have to be nested, i.e., the space cor-
responding to one resolution has to be a subspace of all spaces corresponding to finer
resolutions. This property of nested spaces is the reason why the grids of data have
be to connected by subdivision.

The generalized framework of MR analysis for irregular triangulation introduced
in [3] does not require the nested property. The latter is replaced by a weaker condi-
tion that is related to the growth of the approximation spaces. If the data is defined
on irregular triangulations, it becomes possible to associate them with a sequence of
approximation spaces corresponding to coarser irregular triangular grids. There exist
numerous algorithms for reducing the number of triangles in a mesh—independently
of the data that is defined on this mesh. Delaunay-removal can be applied to planar
or convex triangular meshes, and edge-collapse to general triangular meshes. If the
mesh comes from the recursive four-way split of some triangles in a base mesh, then
the obvious way to simplify it, is to replace each group of four sub-triangles by their
parent triangle. The common setting of these decimation algorithms is that a set of n
triangles is replaced by a set of m triangles covering the same domain, with m < n,
as is shown in Figure 16.

Fig. 16. Local triangle decimation.

A sequence of triangulations obtained by successive decimation is generally not
nested because it is not connected by subdivision. However, the generalized frame-
work allows the development of MR analysis algorithms that generate a coarse ap-
proximation of the original data and a set of detail coefficients. Therefore, the same
types of applications that are mentioned in Section 3.1 are possible by selecting a
subset of the detail coefficients and by synthesizing the data set using only the se-
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lected coefficients. This idea has been used for different types of data sets defined on
irregular triangulations in [8, 4, 5, 6]. Below, we describe the basic principle.

Let T denote a triangle of the domain and s a data value (scalar) defined on
a triangle. The superscript f (fine) denotes quantities before the local decimation
algorithm, and c (coarse), after the decimation. Bold letters denote vectors. The pair
(T, s) denotes the piecewise constant function equal to si on the triangles Ti. If Q is
a matrix, then Qk denotes the k-th column vector of Q.

Let us focus here on the following setting: we are given a piecewise constant
function (Tf , sf ) on n triangles, and a set of m triangles Tc covering the same
domain on the surface, with m < n.

The essence of an MR analysis is the filter bank algorithm [64] explained in Sec-
tion 3.4. It consists of the local decomposition and reconstruction algorithm. In the
present irregular setting this algorithm is the same as in wavelet theory: a function
living in a fine space (in our case, the piecewise constant function on the finer trian-
gulation) is decomposed into a coarser approximating function (piecewise constant
on the coarser triangulation) and error functions (piecewise constant on the finer tri-
angulation). These error functions have two properties: they can be used to recover
the original data exactly, and their norm is a measure of the error between the input
function and the approximation.

Intuitively, we have to define one smoothing operator that maps the input function
onto its approximation, and one error operator that captures the difference between
the input function and its approximation. These two operators are defined by two
rectangular matrices A and B of size m × n and (n − m) × n, respectively:

sc = Asf (12)

d = Bsf (13)

The smoothing operator (12) computes the coarser coefficients sc from the finer co-
efficients sf , and the error operator (13) computes the detail coefficients d. The
actual computation of the so-called analysis matrices A and B is detailed in [3]. One
step of the filter bank algorithm can thus be illustrated as follows:

sf −→ sc

↘
d

In order to keep a constant memory size for the data values, the original coeffi-
cients sf are cleared from memory after the decimation, and replaced by the coarse
and detailed coefficients sc and d. Of course, the sum of the sizes of sc and d equals
the size of sf . Since sf is cleared from memory, the decomposition formulas (12)
and (13) have to be invertible, in order to be able to recover the original data values.
This is the purpose of the reconstruction formula:

sf = Psc + Qd. (14)

The so-called synthesis matrices P and Q are of sizes n × m and n × (n − m),
respectively. Intuitively, the operator P is the inverse of the smoothing operator A:
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P acts as a subdivision operator, although subdivision is not possible if the triangular
domains are non-nested. The operator Q adds the details d to the oversampled data
Psc, in order to recover the original data sf . The matrices P and Q can be computed
from A and B by: (

P Q
)

=
(
A
B

)−1

.

To be more precise about the properties of our decomposition, let us rewrite the
reconstruction formula (14) with a functional point-of-view instead of a coefficient
point-of-view:

(Tf , sf ) = (Tf ,Psc) +
n−m∑
k=1

dk(Tf ,Qk), (15)

where Qk denotes the k-th column vector of Q, and dk denotes the k-th detail coef-
ficient of d.

Fig. 17. Local decomposition by 4-to-1 split: finer, intermediate and coarser approximations
on top, detail coefficients times wavelet functions on bottom. In this case, the coarse and
fine triangular domains are nested, and therefore, the intermediate approximation equals the
coarser approximation. The relative high magnitudes of the detail coefficients (bottom part)
show the large L2 error between the fine and coarse approximations.

Figs. 17 and 18 illustrate the local decomposition on two examples. In both fig-
ures, the top part shows, from left to right, the finer function (Tf , sf ), the inter-
mediate function (Tf ,Psc), and the final coarser function (Tc, sc). The bottom
part shows the detail coefficients times the wavelet functions: d(Tf ,Qf ). Figure
17 shows the local decomposition on a 4-to-1 split example. This leads to a tradi-
tional Haar wavelet decomposition for irregular triangular meshes. Note in this case
that the intermediate function (Tf ,Psc) (top-middle), although defined over a finer
mesh, equals the coarser function (Tc, sc) (top-right). In Figure 18, the block re-
sults from the removal of one interior vertex. Therefore, two detail coefficients are
computed (bottom part).
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Fig. 18. Local decomposition by Delaunay-removal: finer, intermediate and coarser approx-
imations on top, detail coefficients times wavelet functions on bottom. Since the triangular
domains are non-nested, the intermediate approximation differs from the coarse approxima-
tion. The relative low magnitude of the detail coefficients (bottom part) shows the small L2

error between the fine and coarse approximations.

Fig. 19. Original data set with 1.3 M faces. Middle: partial reconstruction with 60000 faces.
Right: partial reconstruction with 150000 faces.

Combining successive removal of sets of non-adjacent vertices with the filter
bank algorithm leads to the construction of a hierarchy of triangulations that cor-
responds to an MR analysis of the initial data set. Threshold reconstruction is one
of the possible applications of such a wavelet-based MR analysis. It consists of ap-
plying the reconstruction formula (15) only to the blocks of the hierarchy whose
wavelet coefficients are greater than a fixed threshold. The visual effect is illustrated
in Figure 19. The original data set (ETOP05 data set) in Figure 19 (left) has been
fully analyzed with the preservation of the coastlines. Figures 19 (middle and right)
show two partial threshold reconstructions. See also Figures CP-3 in Appendix C.
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4.2 Surface Meshes

Developing MR modeling methods for large manifold surface meshes has been the
subject of a great many research papers. Motivated by the ever-increasing size of
polygonal meshes resulting from laser range scanners, researchers have tried to gen-
eralize the theory of wavelet MR analysis, successfully applied to 2D images, in
order to compress, efficiently render, transmit, and edit such large meshes. One in-
novative application of MR methods for surface meshes is the ability to perform
editing operations at different resolutions, as illustrated in Section 3.1 for curves.
However, these surface meshes are generally irregular meshes, i.e., they do not have
subdivision connectivity. Different approaches exist in the literature to define an MR
analysis for manifold surface meshes.

For example, one of the early papers [17] first computes an approximation of the
original data, a two-dimensional manifold triangular mesh, using new data defined
on a grid with subdivision connectivity. The new data can then be analyzed with a
wavelet analysis.

The groundbreaking work in the area of MR mesh representation was done
by [61]. This paper also proposed a theory close to wavelet MR analysis. Its MR
surface mesh model is closely related to subdivision surfaces. In general, in every
MR analysis/synthesis scheme, the synthesis (or reconstruction) process can be seen
as the combination of a subdivision step with a correction step. Based on this ob-
servation, [61] built an MR analysis/synthesis scheme on top of well known sur-
face subdivision schemes, including Loop and Butterfly subdivision schemes (see
the Chapter on Subdivision surfaces and applications in this volume). It turns out
that only interpolating subdivision schemes lead to a linear time analysis process,
while the synthesis process can always be performed in linear time. In order to build
an MR analysis/synthesis scheme on top of a surface subdivision scheme, Louns-
berry et al. [61] introduced a scalar product for functionals defined on the surface
domain, and used this scalar product in order to define wavelet functions with good
approximating properties. Based on this MR scheme, a fine mesh with subdivision
connectivity can be represented on a wavelet basis. Thus, compression of the mesh
can be performed by neglecting small wavelet coefficients. Progressive transmission
is efficiently implemented by sorting the wavelet coefficients and transmitting them,
starting with the most significant. The progressive transmission and its application to
MR mesh viewing is the topic of [13].

This pioneering work was followed by [91] and [57]. These two papers did not
rely on a genuine wavelet decomposition of the meshes. Rather, they mimicked the
analysis process of the wavelet MR representation, by using a smoothing procedure
to convert fine meshes into coarser meshes, and by encoding the error occurring
during this smoothing procedure. [91] introduced highly adaptive procedures, with
the aim of being able to edit large meshes in real-time. While [91] was still restricted
to meshes with subdivision connectivity, [57] proposed a generalization to arbitrary
meshes.

The idea of remeshing the irregular surface mesh into a semi-regular mesh
(see Figure 20) with subdivision connectivity [60, 41] before computing wavelet-
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Fig. 20. Multiresolution analysis of a semi-regular mesh.

based MR analysis has also been used for signal processing applications, such as
coding and compression of surface meshes. The compression allows a compact
storage or a fast transmission of these surface data in a bandwidth-limited appli-
cation. Wavelets are now frequently exploited to perform efficient compression.
Based on MR analysis, wavelet coders do not only achieve better compression rates
[61, 54, 40, 53, 69, 70] than methods based on signal quantization, but also make the
progressive transmission and adaptive display easier.

5 Conclusions and Open Issues

Multiresolution representations play an increasing role in geometric design. Their
use for both polygonal meshes and freeform polynomial and rational representations
is expected to increase as their usefulness is further recognized. Nevertheless, many
issues are still open and need to be resolved before the full power of this representa-
tion can be revealed.

Starting with MR representation for B-spline curves, both uniform and non-
uniform knot spacings are, by now, fully supported and understood. Yet, the compu-
tation of the B-wavelet basis functions for spaces with non-uniform knot sequences
is expensive and methods should be sought to reduce this cost.

Another related problem is the question of the inherent imprecisions of inter-
active MR editing of freeform curves. Being imprecise, it is difficult to employ in
precise engineering design. In order to improve the precision, linear constraints are
already embedded with interactive MR editing as well as a few non-linear constraints
such as area and arc-length. The efficiency in solving linear constraints makes them
attractive but also limited. Other families of non-linear constraints should be em-
bedded with MR as well. Examples include curvature prescriptions, fairing require-
ments, higher order moments, etc.

Features are, many times, viewed as high frequency details of the geometry. A
smooth shape of some animation could be combined with high frequency details of
hair, thorns, or just scales. However, the simple algebraic sum of the two shapes
would yield a result that is not necessarily the most appealing one. This is due to
the fact that the details, when added algebraically, are not oriented along the smooth
shape’s geometry. Different MR decomposition schemes, which are intrinsically geo-
metric and not algebraic, might be able to resolve such problems. In this sense,
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intrinsic MR decomposition schemes, such as the presented curvature signatures,
should be further explored.
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