
13

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Software
Product
Lines
Research Issues in Engineering
and Management

Timo Käkölä
Juan Carlos Dueñas (Eds.)

|

|

|

|

|

Software Product Lines

ABC

· Timo K k l J au n Carlos Due as (Eds.)

With 251 Figures and 62 Tables

ä ö ñä

Research Issues in Engineering and Management

Software Product Lines

©c

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is

or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

5 4 3 2 1 0

ISBN-10
ISBN-13

Printed on acid-free paper

Springer-Verlag Berlin Heidelberg 2006
springer.com

Editors
Timo K k l

University of Jyv skyl
 P.O. Box 35

40014 , Finland
 timokk@cc.jyu.fi

as
Dept. Telematic Systems Engineering

 Technical University of Madrid

 28040 Madrid, Spain
 jcduenas@dit.upm.es

3-540-33252-9 Springer Berlin Heidelberg New York
978-3-540-33252-7 Springer Berlin Heidelberg New York

ä ö

ä

ñä

ä

Jyv skylä ä

 Ciudad Universitaria

Dept. Computer Science and
Information Systems

Juan Carlos Due

Library of Congress Control Number: 2006924560

üCover design: K nkelLopka, Heidelbergüü

Typesetting by the authors and SPi, Pondicherry

45/ 3100/ SPi

Foreword by John D. McGregor

Software Product Lines: Research Issues in Engineering and Management comes at an
opportune time in the maturation of software product line engineering. The product line
strategy has reached the point of being noticed by the “Early Majority” technology
adopters. Many basic issues have been resolved and standard practices have begun to
emerge. This volume furthers our understanding of product line engineering by reporting
the results of a number of applied research studies that will serve to direct future practice.
The software product line strategy has allowed many organizations to significantly
improve productivity, reduce the time required to produce a new product, and address
niche markets that were previously not viable. The strategy has proven successful in a
variety of settings, including large and small organizations in business, industry, and
governmental sectors, and across a variety of domains. In particular, the strategy provides
a framework within which organizations can target and achieve specific goals through
analytic product selection from the pool of potential products as defined by the common
and variable features, design for architectural qualities, and appropriate production
techniques.

Markets that are changing too much too rapidly to permit payback, products that are too
diverse, and domains whose futures are uncertain pose great risk to the success of a
product line organization. Unlike one-at-a-time product development, a product line
organization must anticipate changes that will occur over the full time horizon of its
planned product producing lifetime. Economic modeling of a proposed product line is one
technique I have used to evaluate these risks. Wesselius presents an economic modeling
technique that accounts for risk by using scenarios to address the uncertainty of the future.
A comprehensive model of the product line aids in decision making by classifying costs
and benefits. This makes tradeoff analyses less complex and more accurate.

threads including Parnas’ notion of product families, the software architecture-centric
development approach of Bass, Clements, and Kazman, and the production planning
techniques of companies such as Toyota. The product line organization benefits from the
experience in each of these separate areas but the synergy of their integration enables even
more powerful opportunities such as the ability to provide highly customized products and
the agility to address new opportunities rapidly.

line organization. You will find a number of investigations into front-end activities,
including requirements representation, architecture evolution, and modeling. Bühne et al.
address the issue of developing product specifications from the product line requirements.
They provide a conceptual tool that assists the application requirement engineer in
traversing the various combinations of variability values made possible by the domain

The product line strategy does not fit into the development plans of every organization.

The product line approach to software development is the result of integrating many

The topics covered in this book reflect some of the most important practices in a product

VI Foreword by John D. McGregor

engineer. The theme of developing product-specific assets from the product line assets,
usually by resolving variabilities, is seldom discussed. Most of the variability literature
focuses on recognizing and representing variability choices in the various assets instead of
when actual choices of variants are made. This important issue is addressed in several
chapters.

which we consider reusing. The code reuse techniques of the 1990s’ consistently
produced 10–15% savings for their users. By including the front-end activities and by
considering the interactions of technical activities with management activities, product
line engineering organizations routinely achieve a return on investment of over 100% after
just three products. Product line organizations use the architecture as leverage for reuse of
many assets. The architecture is the driving force behind many product line practices.
Immonen presents a method for predicting reliability and availability from architectural
information. That method is one of a growing number of practices that use a detailed
architectural model to make decisions earlier in the development process than can be done
with vague, high-level architectures. Other chapters provide investigations into active use
of the architecture. Hallsteinsen et al. describe how to manage architectural variation.
Fægri et al. describe a security architecture that cuts across the product line architecture.

software engineering, technical management, and organizational management practices
that constitute the strategy. These synergies support the coordination needed to exploit the
commonalities among products and to control their variations. Traditional approaches to
software reuse have missed these essential interactions and, as a result, failed to deliver
substantial benefits. Mansell addresses the interaction of managerial and technical
concerns by examining the concerns of organizations implementing systematic reuse
programs.

been recognized and the projects scheduled with the intention of exploiting the
commonality. In some cases, a separate “platform” team was formed to facilitate sharing
of the common behavior among products. In the 1980s and 1990s these attempts often
ended in failure when technical problems combined with insufficient, or short sighted,
managerial planning prevented the use of artifacts across multiple products from
happening. The software product line community has developed approaches that more
closely coordinate the business planning and product implementation techniques for
producing multiple products so that these opportunities are not lost.

of assembling products from those parts into different teams. This division allows each
role to focus more clearly and precisely on their specific responsibilities. The group
creating product parts focuses on enabling sufficient breadth of variation in those parts to
accommodate the entire product portfolio. The group assembling products focuses on
selecting the appropriate feature variations for their product. The two groups must
collaborate. The assets produced by parts developers must be of use to the product
builders. The product builders must provide feedback to the parts developers where assets
are not sufficient. Oldevik et al. discuss the evaluation of product line engineering tools
that will enable this coordination and collaboration.

the products in the product line. These assets are not limited to code. The assets include

Product line engineering has been successful because it has broadened the scope of assets

The success of the product line strategy is directly related to the interactions among the

I have participated in several projects where the similarity among a set of products had

Many product line organizations separate the role of producing product parts and the role

The successful product line organization achieves strategic levels of reuse of assets across

Foreword by John D. McGregor VII

the requirements, software architecture, and testing assets. This strategic level of reuse
results in savings of production costs and time. These savings only take place if the
organization has discipline in planning, process, and execution. Several of the chapters in
this book present interesting perspectives on these assets, how they are created, managed,
and evolved. Isabel John, for example, investigates bootstrapping a new product line by
mining requirements from user documentation of legacy products. Rommes and America
consider using scenarios to create architectures.

even in the same direction. The product line organization needs techniques for managing
evolution of all the assets, including the goals of the product line itself. Arciniegas et al.

Engelsma addresses evolution of individual assets and presents a technique for
coordinating the evolution of sets of assets that interact.

certain assets such as tools that automate development tasks. Developing generators for
producing product-specific assets such as documentation becomes a cost-effective
solution. Bertolino et al. take advantage of product line requirements to derive test cases
to be reused for the products of the line, while Nebut et al. take advantage of the strategic
levels of reuse to offer a comprehensive test strategy that includes automatic generation of
test assets.

perspective of specifying variability options in the assets and resolving variabilities in the
products. A variety of modeling approaches have been proposed for capturing variability
in a software design. This is a difficult problem since there is a broad range of variability
mechanisms that are applied at a variety of binding times. Bayer et al provide a
comprehensive description and evaluation of a number of modeling approaches and
provide a metamodel for variability modeling. In product line organizations the
specification of variation often begins with developing scenarios that describe product
situations. Reuys et al. illustrate this technique as they discuss how to define and then use
generic test cases. As with many product line activities, their generic test cases begin with
use cases and their scenarios, the identification of variation points in the scenarios, and
then developing test cases with corresponding decision points.

much of my recent work. I have found that much of the product line literature focuses on
issues about the assets that will be used to produce products. Less attention is given to
actually producing the products on the grounds that we have been doing this for a long
time. The problem is, in a product line, product production is different from previous
practices. Ziadi et al. report on an investigation into model transformations that can be
used to derive products from a description of the product line.

particular, they provide descriptions of hypothesized theories for new practice which are
supported by industry-based studies. The practical nature of these studies greatly enhances
the value of this book. The constraints on validation and the decisions necessary to fit the
studies into an industrial context are useful examples of how research can be conducted in
industrial settings.

strategy forward and for those charged with translating state-of-the-art ideas into state-of-

Assets evolve over the life of the product line. They do not all evolve at the same rate or

The similarity among the products in the product line reduces the cost of developing

The roles of building product parts and building products can be viewed from the

Producing products is the ultimate goal of any product line organization and the focus of

The chapters of this book contribute to the evolution of the product line strategy. In

This volume is a valuable resource for researchers wishing to move the product line

describe a holistic approach to managing the evolution of assets through the architecture.

VIII Foreword by John D. McGregor

the-art practice processes and activities. Those interested in the product line strategy
should be familiar with the results presented here and consider how the results can be
applied to their product lines.

John D. McGregor
Clemson University

johnmc@cs.clemson.edu
Clemson, South Carolina 29634-0974, USA

Foreword by Frank van der Linden

Introduction

Between July 1999 and June 2005 a group of European companies, research institutes,
and universities executed the EUREKA-ITEA projects ESAPS, CAFÉ, and FAMILIES on
the topic of product line engineering. The projects originated from the need of the industry
to improve software engineering performance by organizing product development in
product lines. The results obtained within the projects have been implemented in several
large industries (e.g., automotive, e-business, medical systems, and mobile phones). They
involve a radical shift in software construction and production. The most important
research results of the projects are collected in this book.

presumably earlier. In the 1980s, good architects in many telecommunications com-
panies based their architectures on the ideas of David Parnas, who published on the
subject of “program families”. They were facilitated by the CHILL language widely
used by the telecommunications companies. This language deploys the same modularity
principles as the Modula programming language family. Modularity is a crucial
ingredient for implementing systems with a component-based architecture. Being able
to compose the products of components is an important mechanism in all product line
architectures.

1995, the company experiences reached the academia and since then people in companies
and academia have collaborated widely on this subject. The ESAPS, CAFÉ, and
FAMILIES projects manifest an institutionalized form of this collaboration.

three projects. Although initially we needed some time to get acquainted with, for
example, the varying terminologies and aims of partners from numerous countries, the
level of mutual understanding between project partners got better and better throughout
the projects. People from all partners in the projects participated in regular meetings and
learned good and not-so-good practices from each other. Academia obtained research
ideas and presented the results within the projects, often leading to improved insights
within the companies. Several bilateral collaborations with companies and academia
started in this way.

Product line engineering was already applied within industry in the 1980s and

In the 1990s, the product line ideas started to gain ground in other industries. Around

As the project leader I was very happy with the excellent collaboration spirit within the

X Foreword by Frank van der Linden

As can be seen from this book, the research results were not obtained just within academia
and research institutes. In fact, because of the working collaboration, people in industry
found ways to introduce their ideas into research leading to new approaches that could not
have been obtained within industry or academia alone. This means that the research
results are based on company experiences founded, in turn, by the results.

the field was available to be applied in practice and further developed in academia and
there was no need to continue collaborating in such a broad scope any more. Instead, new

development of software by introducing managed reuse, supported by managed variability.
It enables the companies to focus more on new features, leading, for example, to a shorter

legacy systems find their way as parts of other products in the product line. Therefore the
time spent on maintaining legacy software is still valuable for the companies.

available at even shorter times to market. The improvements brought by software product
line engineering have not got to an end. Further improvements need to be made, partially

automation only gives reliable results if it is based on good theory. This book presents the
early steps in the theory development needed to achieve an ever more extensive, reliable,
and comprehensible software product line engineering environment in future.

software developed by third parties. This is a challenge for companies leveraging software
product line engineering, since that is a well-managed way of producing software.
Software obtained from third parties cannot be controlled as well as own software. The
situation that large parts of the software are beyond full control can only be dealt with
effectively if software product line engineering is a well-understood discipline easily
deployable by third parties as well. This book provides research results to be used to
provide and acquire such an understanding.

This book has been designed to meet the highest quality criteria with respect to both new
scientific knowledge validated using rigorous research methods and practical relevance.
Only chapter submissions with careful scientific validation and interesting, new, and
enduring contributions to the knowledge base in the software product line field have been
incorporated in this book by the editors. All chapters have been reviewed and revised

initiatives have been and will be started, which focus on more narrow issues like the
ones addressed by individual chapters in this book.

Quality Assurance

The series of collaboration projects ended in 2005 because the basic knowledge base in

Software product line engineering has shown to be an important way to improve the

Companies still feel the increasing demand for having even more software functionality

As the demand for software is growing fast, companies are increasingly dependent on

by automating activities needed during software product line engineering. But

time-to-market. Legacy software still needs attention and maintenance, but large parts of

 XI

several times, some even more than 10 times. The revisions have typically taken several
months of exhaustive work. The reviewers of the chapters, some of whom have been
external to the three projects that have lead to this book, have worked enthusiastically and

authors have really made the difference in this book. They delivered the best results of
their research but did not know when they submitted the first drafts how much work
would lay ahead of them. They have successfully met all the requirements of the editors
and reviewers due to their willingness and ability to deliver an exceptionally high-quality
book.

consolidation process. The results of this effort are well worth the time spent: the
stakeholders involved have had a unique learning experience, the results of which have
been consolidated into a coherent set of chapters. I expect this book to set the frontier of
scientific knowledge for product line engineering research, upon which the communities
of research and practice can pursue further research.

the editor-in-chief, has reviewed all chapters several times; participated in the writing of
chapters when authors have needed extensive guidance in revisions; managed the review
process so the authors have been able to evaluate, take into account, and participate in the

Frank van der Linden
Philips Medical Systems
Postbus 10.000, 5680 DA, Best, The Netherlands
Frank.van.der.Linden@philips.com

Foreword by Frank van der Linden

hard. They are acknowledged in the acknowledgment sections of the chapters. And the

To ensure maximum coherence and cross-referencing across the chapters, Timo Käkölä,

development of all related chapters; written the preface, part introductions, and the

holders; and coordinated the publication process with the publisher. Juan Carlos Dueñas,
glossary and index of this book in collaboration with the authors and other key stake-

the associate editor, has also reviewed most chapters many times. Without the enthusiasm
and diligent work of the editors the quality objectives could not have been met.

The editors have invested two years in designing and implementing the review and

Preface

Introduction

software products and software-intensive systems faster, at lower costs, and with better
quality.

based on the European Eureka-ITEA projects ESAPS (1999–2001), CAFÉ (2001–2003),
and FAMILIES (2003–2005) and published by Springer. It is for systems and software
engineering researchers, lecturers, students, and professionals alike.

aligned the terminology to the maximum possible extent with the first book of the series:
Software Product Line Engineering – Foundations, Principles, and Techniques by Klaus
Pohl, Günter Böckle, and Frank van der Linden. The first book is primarily targeted for
educational purposes, thus leveraging the most widely adopted results of the three
projects, while this book presents research results, most of which have already been
experimented in the industrial arena, but have not been put into the mainstream yet.

ways:
1. It needs two distinct development processes: domain engineering and application

engineering. Domain engineering defines and realizes the commonality and
variability of the software product line, thus establishing the common software
platform for developing high-quality applications rapidly within the line.
Application engineering derives specific applications by exploiting the variability
of the line.

2. It needs to explicitly define and manage variability. During domain engineering,

Are you interested in producing differentiated software products or software-intensive
systems at lower costs, in shorter time, and with higher quality? Or are you interested in
researching or teaching these issues? If so, this is the book for you.

Software product line engineering is an industrially validated methodology for developing

This book is the second in the series of three software product line engineering books

In this book, we use the term “software product line” or “product line” as identical to
what is also commonly known as “software product family” or “system family.” We have also

Software product line engineering differs from single system development in two primary

processes, the modeling and management of variability, and the design and use of tools
This book provides experience-based knowledge about the two distinct development

variability is introduced in all domain artifacts such as requirements, architectural
models, components, and test cases. It is exploited during application engi-
neering to derive applications tailored to the needs of different customers.

to support the management of product line related knowledge and to automate tasks. It

XIV Preface

1. Product line management
2. Product line requirements engineering
3. Product line architecture
4. Product line testing
5. Specific product line engineering issues

line realization, a complete process to
• design in detail and implement reusable software assets with adequate variability

during domain engineering based on the product line reference architecture and
• implement applications during application engineering by designing and

implementing application-specific components and interfaces and configuring
them with the right variants of the reusable assets into applications.

product line realization is not completely covered in this book, we have decided not to
include a separate part for it. Such a part would be valuable between Parts 3 and 4 to
cover the product line engineering life-cycle even more fully.

less developed and known than application engineering. While the concept of application
engineering appears in all the parts of the book, specific techniques and tools for creating
and deriving products within a product line are described in Part 5.

Why This Book?

The ESAPS, CAFÉ, and FAMILIES projects produced numerous results usable for
companies leveraging or planning to adopt software product line engineering. These large
and ambitious projects were executed during 6 years in nine European countries (Austria,
Finland, France, Germany, Italy, the Netherlands, Norway, Spain, and Sweden) with more
than 100 million euros of European public money. It is thus the duty and the privilege of
the projects to publish coherently to the European community and to the world as many
high-quality results as possible. The three books lay down three views on the experience
obtained in the projects.

the practical organizational and process enactment and improvement within the industry.
This book deals with research results that have the potential to improve the practices
within the industry even further. It is a basis for future research and improvement and,
expectedly, for a better fundamental understanding of the issues touched upon in the other
two books.

during application engineering. However, little research has been performed on it. Since

It should be noted that only a few chapters in this book address certain aspects of product

Product line realization relies upon mature detailed design and implementation processes

Product line engineering research has mostly focused on domain engineering that has been

The other two books deal with validated organizational and technical knowledge related to

holistically covers the interacting domain and application engineering life-cycles from ini-

system design, component design and implementation, and testing to delivering products
to markets and, to some extent, revising the product line and the products based on feed-
back from the markets. The book has thus been divided into five parts corresponding to the
main areas of software product line engineering and management research:

tial product line planning through requirements engineering, reference architecture design,

Preface XV

institutes. It is equivalently useful for software and systems engineers and project,
product, and quality managers in industry who face problems in their daily work in
software product line engineering. Although the research results may not always be
immediately applicable, they give ample insights in the causes of the problems and how
the problems can eventually be tackled. The book probes the different phases in product
line engineering, and its five-part structure is aligned with the traditional generic system
development phases relevant to product line engineering as well.

structures in place. The book is thus useful for technology managers and R&D-technology
policy makers who play central roles in steering and resourcing the organizational

The primary questions addressed by the five parts of this book are discussed next. Part 1
provides answers to the following questions:

– How should long-term and short-term business needs be balanced when
designing and evaluating product line architectures?

– Why should the expected economic values of alternative product line
architectures be evaluated? How can a business decision be made on when and
how much to invest in domain engineering in order to realize the product line
benefits (e.g., reductions in time-to-market, increased development efficiency,

are applied?
– What are the primary organizational and managerial problems in introducing the

software product line culture and practices in an organization and what are the
ways to overcome these bottlenecks?

Part 2 provides answers to the following questions:
– How can a product line be built from legacy products by extracting commonality

and variability information (e.g., requirements and features) from the
documentation of the legacy products and transforming this information into
requirements specifications and other product line models?

– How can application requirements engineers be made aware of the capabilities of
the product line so they can systematically and consistently reuse or adapt the
product line requirements during application requirements engineering?

– Which information elements compose a consolidated metamodel for software
product line variability that can be used for all artifacts across all product line
engineering phases to facilitate (a) the standardization of variability modeling
with respect to terminology, representation, and concepts and (b) the creation of
effective model-driven product line engineering tools?

Which Questions are Answered by This Book?

This book is a valuable resource for researchers and lecturers in universities and research

The book recognizes that substantial organizational learning and investments are typically
needed to fully leverage the product line strategy by establishing the common set of domain
artifacts, building products from it, and having supportive processes and organizational

the strategy can truly be achieved.
learning, adoption, and execution of product line practices so that the benefits afforded by

and improved quality) that outweigh the investments when economic criteria

XVI Preface

Part 3 provides answers to the following questions:
– How can architectural variations in product line reference architectures be

modeled when the product line members have substantial variations in
architecturally significant requirements and how can the models preserve the
support for product derivation (a complete process of building products from the
product line) normally associated with more focused product lines?

– Is it viable to represent architectural security knowledge in a reference
architecture? If so, is such a reference architecture useful for designing software
product line architectures that effectively deal with security?

– How can product line evolution be supported by leveraging architectural
recovery and conformance methods, techniques, and tools to meet nonfunctional
architectural security requirements for distributed system environments?

– How can critical quality attributes such as reliability and availability of the
product line architecture be analyzed prior to implementing the architecture,
when changes are easier and cheaper to perform and the proper design decisions
can still be made?

Part 4 provides answers to the following questions:
–

a) model common and variable product line requirements from an external
point of view?

b) guarantee the conformance of the derived products with respect to the
product line requirements?

c) derive (1) domain test plans for testing the common features across the
product line and (2) application test case scenarios for validating that the
derived products satisfy the user requirements?

– How can the generation of application system tests, for any chosen product, from
product line requirements be automated?

– How can generic test artifacts for system and integration testing be systematically
designed and reused?

Part 5 provides answers to the following questions:
– How can the domain engineering organization synchronize the work products

from all areas of expertise engaged in developing the components so that
increments for components can be efficiently integrated and tested before
delivery to the application engineering organization?

– How can product derivation be formalized using a UML model transformation in
the context of product line engineering?

– What are the generic requirements for product line engineering tools and how to
evaluate such tools to partially automate tasks such as system modeling,
variability modeling, model analysis, model transformation, system derivation,
code generation, and model traceability?

that let readers understand how the chapters interrelate and how they fit within the big
All five parts have introductions to provide the chapters in this book with proper contexts

How can the textual use cases notation be extended and modified to

Preface XVII

picture of software product line engineering. In addition, we provide at the end of the
book:

– A glossary for software product line engineering
– The index

Acknowledgments

Timo Käkölä is grateful to Günter Böckle from Siemens Corporate Technology and Frank
van der Linden from Philips Medical Systems, who invited him to serve as the editor-in-
chief of this book, and Nokia, TEKES (the Finnish Funding Agency for Technology and
Innovation), the University of Jyväskylä, and the University of Oulu for supporting this
work.

Eureka-ITEA projects on product lines from the very beginning; the Ministerio of
Educación y Ciencia of Spain, which supported his work under the reference TIC2002-
12426-E; and the Spanish company Telvent and Universidad Politécnica de Madrid for
supporting this work. Special thanks go to Timo Käkölä for his enthusiastic dedication to
the book.

projects ESAPS (1999–2001), CAFÉ (2001–2003), and FAMILIES (2003–2005). Most of
the results presented in this book have been achieved in these projects.

indirectly were involved in creating this book.

Timo Käkölä University of Jyväskylä, Finland
Juan Carlos Dueñas Universidad Politécnica de Madrid, Spain

Juan C. Dueñas is grateful to Frank van der Linden for inviting him to participate in the

We thank Eureka-ITEA and all the other national public authorities for funding the

Finally, our thanks go to our collaborators within academia and industry who directly or

July 2006

We thank Ralf Gerstner and Ulrike Stricker from Springer-Verlag, Heidelberg, and
Shylaja Gattupalli from SPi, Pondicherry, for their support in getting this book to market.

Contents

Part 1: Product Line Management

1. A Scenario-Based Method for Software Product Line Architecting3
1.1. Introduction ..3

1.1.1. Research Questions...4
1.1.2. Existing Architecting Methods ...4
1.1.3. The Use of Scenarios in Architecting ...5
1.1.4. Applicability of Scenario-Based Architecting ..6
1.1.5. Structure of This Chapter..6

1.2. Research Method ..6
1.3. Method Overview ...8

1.3.1. The Views...8
1.3.2 The Process..11

1.4. Scenario-Based Architecting Applied...14
1.4.1. Running Example: The 3D Cathlab..14
1.4.2. Strategic Scenarios..15
1.4.3. Explore Architecture Choices...17
1.4.4. Create Architecture Scenarios ..24
1.4.5. Evaluate Candidate Architectures...29
1.4.6. Select Architecture..39
1.4.7. Artifacts in the CAFCR Views ...40

1.5. Conclusions and Future Research...49
References ...50

2. Strategic Scenario-Based Valuation of Product Line Roadmaps...........................53
2.1. Introduction ..53
2.2. Research Question ..54
2.3. Research Method ..55
2.4. Overview of Our Value Evaluation Approach..56

2.4.1. Net Present Value Calculations ..57
2.4.2. Scenario-Based Value Evaluation ..57

2.5. Existing (Product Line) Cost and Value Models ..59
2.5.1. COCOMO II and Function Points ..60
2.5.2. Breakdown of Product Line Cost..61
2.5.3. Product Line Engineering Cost Reduction Model62

2.5.6. Combining the Models ...67
2.5.5. CBAM ...66
2.5.4. NPV-Based Product Line Adoption Modeling ...65

XX Contents

2.6. Product Line Pitfalls and Benefits ..69
2.6.1. Pitfall: Platform Over-Design and Perfectionism69
2.6.2. Pitfall: Short-Term Focus ...71
2.6.3. Pitfall: Lack of Vision and Clear Decision Making (No Constancy)72
2.6.4. Benefit: Time-to-Market Reduction ...72
2.6.5. Benefit: Cross-Product Compatibility...75

2.7. A Case “Inspired By Reality”...76
2.7.1. Description of the Case...76
2.7.2. Strategic Scenario 1: Level of Alignment of Business Goals77
2.7.3. Strategic Scenario 2: Similarity of Functionality..81
2.7.4. Strategic Scenario 3: Evolving System Functionality.................................82
2.7.5. Summary...85

References ...88

3. Experiences and Expectations Regarding the Introduction of

3.1. Introduction ..91
3.2. Method and Sample of the Study..93

3.2.1. Method of the Study ...93
3.2.2. Sample of the Study..95

3.4. Reuse–Invest Specific Results ..100
3.4.1. Risk Analysis ..101
3.4.2. The Organization’s Attitude to Risk ...106
3.4.3. Economic Analysis of the Investment on Systematic Reuse107
3.4.4. Reuse Potential Analysis ..109

3.5. Reuse–Check Analysis Results...111

3.5.2. Current State of Reuse Practice Analysis ...116

3.5.4. Improvement Actions Reported to the Organizations...............................119

3.6.2. Reuse Analysis as an Investment..122

Part 2: Product Line Requirements Engineering

 4. Capturing Product Line Information from Legacy User Documentation127
4.1. Introduction ..127

4.1.1. Outline ..129

2.8. Conclusions and Future Research ..86

3.6. Conclusions and Future Research ..121

3.3. State of Practice of Systematic Reuse in the Case Study98
3.2.3. Overview of Participating Organizations ..96

3.6.3. Current Situation Characterization ...122

References ...124

3.5.1. Identified Reuse Situations Description..112

3.5.3. Identified Strengths and Major Problems ...118

3.6.1. Current State of Practice of Reuse in the Organizations...........................122

Systematic Reuse in Small- and Medium-Sized Companies91

3.6.4. Future Research ...123

Contents XXI

4.1.2. Research Approach...129
4.2. Problem ..130

4.2.1. Product Line Engineering ...130
4.2.2. Product Line Modeling ...131
4.2.3. User Documentation as Information Source...132

4.3. Related Work..133
4.3.1. Classification ..134
4.3.2. Classified Approaches ..137

4.4. Metamodel ..138
4.4.1. Overview ..138
4.4.2. User Documentation Model..139
4.4.3. Requirements Concept Model ..141
4.4.4. Variability Model..141
4.4.5. Product Line Artifact Model...141
4.4.6. Extraction Patterns..143
4.4.7. Using the Metamodel..147

4.5. Method..147
4.5.1. Method Overview ...148
4.5.2. Preparation..149
4.5.3. Search ...150
4.5.4. Selection ...151

4.6. Validation of the Approach...151
4.6.1. Industrial Case Study..151

4.7. Conclusions and Future Research...156
References ...157

5. Scenario-Based Application Requirements Engineering161
5.1. Introduction ..161

5.1.1. Requirements Engineering within Product Line Engineering...................161
5.1.2. Application Requirements Engineering..163
5.1.3. Challenges During Application Requirements Engineering164
5.1.4. Structure of the Chapter..165

5.2. Related Work..166
5.2.1. Requirements Derivation in Product Line Engineering166
5.2.2. Requirements Reuse in Product Line Engineering168
5.2.3. Summary of the Related Work ...169

5.3.1. Overview of the OVM-A..170
5.3.2. Variability Model for the E-Shop Example ..171
5.3.3. Relations Between the Variability Model and Product Line

Scenarios ..173
5.3.4. Summary of the OVM-A ..174

Requirements Engineering ...174
5.4.1. Requirements Elicitation ..176
5.4.2. Requirements Negotiation ..178

4.6.2. Controlled Experiment..154

5.4. Use of the Orthogonal Variability Modeling Approach During Application

5.3. The Orthogonal Variability Modeling Approach ...169

XXII Contents

5.4.3. Requirements Documentation...181
5.4.4. Requirements Validation ..185

5.5. Discussion of the Proposed Approach ..188
5.5.1. Industrial Experiences with the OVM-A ..188
5.5.2. Experiences in a Laboratory Case Study ..190
5.5.3. Validation of the Approach...191

5.6. Conclusions and Future Research...192
References ...193

6. Consolidated Product Line Variability Modeling ...195
6.1. Introduction ..195
6.2. Variability in Standard Languages Exemplified by UML 2.0197

6.2.1. Introducing the Watch Product Line and its Description in UML 2.0197
6.2.2. Variability by Means of Templates...198
6.2.3. Variability by Plug-Ins (Component-Based Approach)............................199
6.2.4. Variability by Specialization and Redefinition...201

6.3. Variability by Enhancing Languages..202
6.3.1. Earlier Efforts ...203
6.3.2. Consolidated Variability Metamodel..206
6.3.3. Variability Mechanisms Expressed by Annotations to UML211
6.3.4. Management of Variability in UML State Machines................................218
6.3.5. Prototype Model Tool Integration ..221

6.4.1. Similar Efforts: Software Factories ..227
6.4.2. Supporting Variability Directly in the Language......................................228
6.4.3. Supporting Product Derivation Using Generators231
6.4.4. Defining DSM Support...233

6.5. Evaluation...233
6.5.1. Evaluation Criteria Relative to an Evaluation Reference Model233
6.5.2. Approaches ...234
6.5.3. Evaluation Results ..236
6.5.4. Evaluation with Respect to Conventional Systems Engineering237

6.6. Conclusions and Future Research...239
References ...240

Part 3: Product Line Architecture

7. Dealing with Architectural Variation in Product Populations.............................245
7.1. Introduction ..245

7.1.1. The Problem ...245
7.1.2. Overview ..247

7.2. Architectural Variation ...248
7.2.1. The Nature of Architectural Variation..248
7.2.2. Avoiding Architectural Variation ...249

7.3. Textural Variation Points..252
7.3.1. Patterns as Architecture Building Blocks ...253

6.4. Domain-Specific Languages ...227

Contents XXIII

7.3.2. Encoding Textural Variation ..254
7.3.3. Support for Product Architecture Design ...256
7.3.4. Support for Reusable Component Design...257

7.4. Preliminary Validation..257
7.4.1. Philips Equipment Control Platform...258
7.4.2. Composable Image Processor...262
7.4.3. The BRIX Platform...265

7.5. Related Work..269
7.6. Conclusions and Future Research...270

References ..272

8. A Software Product Line Reference Architecture for Security275
8.1. Introduction ..275
8.2. Security Architecture Design..277

8.2.1. Encoding Architectural Knowledge..277
8.2.2. Security Design...278
8.2.3. Security Architecture ..279
8.2.4. Security Architecture for Software Product Lines....................................279

8.3. Conceptual Model of the Reference Architecture...280
8.3.1. Security Submodel..281
8.3.2. Architecture Submodel ...282
8.3.3. Decision Support Submodel ...285

8.4. Quality Model...287
8.5. Decision Model...289

8.5.1. Integrity ..289
8.5.2. Confidentiality ..294
8.5.3. Availability ...295
8.5.4. Accountability ..298

8.6. Security Architecture Language ...300
8.6.1. Tactics...300
8.6.2. Patterns ...302

8.7. Using the Reference Architecture...318
8.7.1. Architecture Derivation ..318
8.7.2. Architecture Evaluation ..319
8.7.3. Evolution of the Reference Architecture ..319

8.8. Validation ...320
8.8.1. The Quality Model..320
8.8.2. The Decision Model ...321
8.8.3. The Security Architecture Language ..322
8.8.4. Summary...322

8.9. Related Work..323

References ...324

9. Architecture Reasoning for Supporting Product Line Evolution:
An Example on Security..327
9.1. Introduction ..327

...3248.10. Conclusions and Future Research

XXIV Contents

9.2. Software Product Line Architecture ...329
9.3. Architecture Recovery ..332

9.3.3. The Process for Architecture Recovery ..336
9.4. Architectural Conformance ..338
9.5. Conformance and Recovery with Respect to Security..341

9.5.1. Countermeasures ..344
9.5.2. Specification of the Security Agent ..345

9.6. The Case Study on Security for Distributed Systems ...347
9.6.1. Conformance Between Oscar and the OSGi Standard..............................349

9.7. Security Model Validation..358
9.7.1. Generic Scenario...360
9.7.2. Criteria ..362
9.7.3. Implementation Technologies...364
9.7.4. System Validation...365

9.8. Conclusions and Future Research...366
References ...368

10. A Method for Predicting Reliability and Availability at the
Architecture Level ...373
10.1. Introduction ..373
10.2. A Literature Survey of Applicable Methods and Techniques

for R&A Prediction ..375
10.2.1. Requirement Engineering ...375
10.2.2. Architecture Design ..376
10.2.3. R&A Analysis ..378

10.3. Overview of the RAP Method ..379
10.4. Introduction of a Case Example..381
10.5. The First Phase: Defining Reliability and Availability Goals...........................384

10.5.1. Description of the Steps of the First Phase ...384
10.5.2. Applying the Steps to the Case Example ...389

10.6. The Second Phase: Representing Reliability
and Availability in Architectural Models..395
10.6.1. Description of the Steps of the Second Phase395
10.6.2. Applying the Steps to the Case Example ..398

10.7. The Third Phase: Evaluating Reliability and Availability404
10.7.1. Description of the Steps of the Third Phase ...405
10.7.2. Applying the Steps to the Case Example ...411

10.8. Discussion...417

References ...420

.
.

10.9. Conclusions and Future Research...419

9.3.1. Architecture Recovery Methods ..334 .
9.3.2. Architecture Recovery Tools ...336 .

9.6.2. Conformance Between the OSGi and the CIM Standard..........................352

Contents XXV

Part 4: Product Line Testing

11. Product Line Use Cases: Scenario-Based Specification and Testing
of Requirements ...425
11.1. Introduction ..425
11.2. PLUC Notation ...427

11.2.1. Specification of a PLUC ..430
11.3. PUC Derivation from PLUC...433
11.4. Using PLUCs for Derivation of Test Scenarios..434

11.4.1. PLUTO: A Methodology to Derive Test Scenarios435
11.4.2. An Example..437
11.4.3. Extending the Methodology ...439

11.5. Related Work..442

References ...444

12. System Testing of Product Lines: From Requirements to Test Cases.................447
12.1. Introduction ..447
12.2. Overview of the Approach..449

12.2.1. From the Product Line Requirements to Product-Specific
Requirements..449

12.2.2. Simulating Product-Specific Requirements ...450
12.2.3. Generation of the Test Objectives ..451
12.2.4. Generation of the Test Scenarios..451
12.2.5. Behavioral Test Patterns and Synthesis of Test Cases451
12.2.6. An Illustrative Example of Product Line..451

12.3. An Enhanced Use Case Model for Product ..453
12.3.1. Enhancing Use Cases with Parameters and Contracts..........................453
12.3.2. Expressing Variability at the Use Case Level454

12.4. Simulating the Use Cases ...456
12.4.1. The Simulation Model..456
12.4.2. Exhaustive Simulation and Building of a Behavioral Graph................457
12.4.3. Simulating Each Product..458

12.5. Test Objectives ...458
12.6. Test Case Generation..462

12.6.1. Generating Test Scenarios..462
12.6.2. Test Scenarios and Test Cases..467
12.6.3. Test Synthesis Tools...468
12.6.4. Using Behavioral Test Patterns ..469

12.7. Results and Discussion ...470
12.7.1. Test Generated for the 3 Products ..471
12.7.2. Study of the Generated Test Efficiency for Demonstration Edition.....471
12.7.3. Discussion on the Benefits and Limitations of the Approach473
12.7.4. Related Work ...474

References ...476

11.6. Conclusions and Future Research.. 443

12.8. Conclusions and Future Research...475

XXVI Contents

13. The ScenTED Method for Testing Software Product Lines.................................479
13.1. Introduction ..479

13.1.1. Strategies for Testing Product Lines ..479
13.1.2. The ScenTED Method..481
13.1.3. Overview..482

13.2. Basics of the ScenTED Method..482
13.2.1. Use Case Based Testing ...482
13.2.2. Information Model of ScenTED...483

13.3. ScenTED in Domain Engineering ..484
13.3.1. Activities for System Testing ...484
13.3.2. Activities for Integration Testing ...491

13.4. ScenTED in Application Engineering ..493
13.4.1. Creating Application Test Artifacts for System Testing494
13.4.2. Creating Application Test Artifacts for Integration Testing.................502
13.4.3. Ensure the Correct Binding ..507
13.4.4. Reuse of Application Artifacts ...510

13.5. ScenTED at Siemens Medical Solutions – A Case Study.................................513
13.5.1. Product Line Development at Siemens Medical Solutions HS513
13.5.2. Objectives of the ScenTED Introduction ...514
13.5.3. Lessons Learned...514
13.5.4. Summary of Results ...516

References ...518

Part 5: Specific Product Line Engineering Issues

14. Incremental Systems Integration within Multidisciplinary Product
Line Engineering Using Configuration Item Evolution Diagrams523
14.1. Introduction ..523
14.2. Configuration Management and Problems with Integration.............................526

14.3. Solving the Problems by Using the Configuration Item Evolution Diagram
(CIED)..528
14.3.1. Requirements of the Proposed Solution ...528
14.3.2. Symbols used in the CIED ...529
14.3.3. How the CIED should be Used in Practice ..535
14.3.4. Simple Examples of a CIED ..536
14.3.5. Linking Test Documentation to Design Documentation538
14.3.6. A Practical Example of Using a CIED...540

14.4.1. Comparing Two Case Studies to Illustrate the Usefulness
of the CIED ..545

14.4.2. Comparing the Two Projects..548
14.4.3. Objective Evidence ..549
14.4.4. Qualitative Evidence from Interviews..550

14.2.1. Extensions Needed for SCM..527

13.6. Conclusions and Future Research...517

14.3.7. Configuration Item Cycle Times ...544
14.4. A Preliminary Validation of the Proposed Solution ...545

Contents XXVII

14.5. Conclusions and Future Research...552
References ...554

15. Software Product Line Engineering with the UML: Deriving Products.............557
15.1. Introduction ..557
15.2. Deriving Static Aspects ..558

15.2.1. The Mercure Product Line ...558
15.2.2. PL Static Architecture as UML Class Diagrams559
15.2.3. Product Line Constraints ..561
15.2.4. From Product Line Models to Product Models563

15.3. Deriving Behavioral Aspects ..567
15.3.1. The Banking Product Line ...567

15.3.3. Deriving Product Behaviors ...574
15.3.4. Implementation and Validation ..582

15.4. Related Work..583
15.5. Conclusions and Future Research...585
References ...586

16. Evaluation Framework for Model-Driven Product Line Engineering Tools......589
16.1. Introduction ..590
16.2. Combining Model-Driven Development and Product Line Engineering591
16.3. Tool Evaluation Framework ...594

16.3.2. Evaluation Characteristics..597
16.4. Examples of Tool Evaluations..600

16.4.1. The Evaluated Tools...600
16.4.2. A Common Example..601
16.4.3. Atlas Transformation Language (ATL)..602
16.4.4. UML Model Transformation Tool (UMT)...604
16.4.5. ArcStyler ..607
16.4.6. XMF-Mosaic ..609

16.5. Evaluation of the Framework ...613
16.5.1. The Tool Evaluation Framework ...613
16.5.2. The Tools Evaluated...614
16.5.3. Applicability of Results..614
16.5.4. Related Work ...615

16.6. Conclusions and Future Research ...616
References ...617

Glossary ..619
Index..625

.........
...

.

16.3.1. Characteristics Elicitation ..594

15.3.2. Product Line Behaviors as UML 2.0 Sequence Diagrams568

List of Contributors

Pierre America
Philips Research
Prof. Holstlaan 4
5656 AA Eindhoven, The Netherlands
pierre.america@philips.com

Jose L. Arciniegas
Departamento de Ingeniería de Sistemas Telemáticos
Universidad Politécnica de Madrid, ETSI Telecomunicación
Ciudad Universitaria s/n
E-28040 Madrid, Spain
jlarci@dit.upm.es

Joachim Bayer
Fraunhofer IESE, Germany
Fraunhofer Platz 1
67663 Kaiserslautern, Germany
bayer@iese.fhg.de

Jesus Bermejo
Telvent
Tamarguillo 29
E-41006 Seville, Spain
jesus.bermejo@telvent.abengoa.com

Antonia Bertolino
Istituto di Scienza e Tecnologie dell'Informazione del C.N.R.
Via G. Moruzzi 1
I-56124 Pisa, Italy
antonia.bertolino@isti.cnr.it

Gert Jan Boot
Philips Medical Systems
Postbus 10.000
5680 DA, Best, The Netherlands
g.j.boot@philips.com

XXX List of Contributors

Stan Bühne
Software Systems Engineering, University of Duisburg-Essen
Schützenbahn 70
45117 Essen, Germany
buehne@sse.uni-due.de

Rodrigo Ceron
Departamento de Ingeniería de Sistemas Telemáticos
Universidad Politécnica de Madrid, ETSI Telecomunicación
Ciudad Universitaria s/n
E-28040 Madrid, Spain
ceron@dit.upm.es

Juan C. Dueñas
Departamento de Ingeniería de Sistemas Telemáticos
Universidad Politécnica de Madrid, ETSI Telecomunicación
Ciudad Universitaria s/n
E-28040 Madrid, Spain
jcduenas@dit.upm.es

Erwin Engelsma
Philips Medical Systems
Postbus 10.000
5680 DA, Best, The Netherlands
erwin.engelsma@philips.com

Alessandro Fantechi
Dip. di Sistemi e Informatica
Università di Firenze
Via S. Marta 3
I-50139 Firenze, Italy
fantechi@dsi.unifi.it

Tor Erlend Fægri
SINTEF ICT
N-7465 Trondheim, Norway
tor.e.fegri@sintef.no

Sebastien Gerard
CEA-List / L-LSP
Saclay
91191 Gif-sur-Yvette Cedex, France
sebastien.gerard@cea.fr

List of Contributors XXXI

Stefania Gnesi
Istituto di Scienza e Tecnologie dell'Informazione del C.N.R.
Via G. Moruzzi 1
 I-56124 Pisa, Italy
gnesi@isti.cnr.it

Günter Halmans
Software Systems Engineering, University of Duisburg-Essen
Schützenbahn 70
45117 Essen, Germany
halmans@sse.uni-due.de

Svein Hallsteinsen
SINTEF ICT
N-7465 Trondheim, Norway
svein.hallsteinsen@sintef.no

Øystein Haugen
Department of Informatics, University of Oslo
P.O. Box 1080 Blindern
N-0316 Oslo, Norway
oysteinh@ifi.uio.no

Anne Immonen
VTT Technical Research Centre of Finland
P.O. Box 1100
FIN-90571 Oulu, Finland
anne.immonen@vtt.fi

Jean-Marc Jézéquel
Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA) &
University of Rennes 1
Campus de Beaulieu
F-35042 Rennes Cedex, France
jezequel@irisa.fr

Isabel John
Fraunhofer IESE
Fraunhofer Platz 1
67663 Kaiserslautern, Germany
john@iese.fraunhofer.de

XXXII List of Contributors

Erik Kamsties
Software Systems Engineering, University of Duisburg-Essen
Schützenbahn 70
45117 Essen, Germany
erik.kamsties@imail.de

Timo Käkölä
Department of Computer Science and Information Systems
University of Jyväskylä
FIN-40014 Jyväskylän Yliopisto, Finland
timokk@cc.jyu.fi

Giuseppe Lami
Istituto di Scienza e Tecnologie dell'Informazione del C.N.R.
Via G. Moruzzi 1
I-56124 Pisa, Italy
giuseppe.lami@isti.cnr.it

Yves Le Traon
France Télécom R&D/MAPS Lannion France
yves.letraon@rd.francetelecom.com

Kim Lauenroth
Software Systems Engineering, University of Duisburg-Essen
Schützenbahn 70
45117 Essen, Germany
lauenroth@sse.uni-due.de

Jason Mansell
European Software Institute (ESI)
Parque Tecnológico de Bizkaia #204
E-48170 Zamudio, Bizkaia, Spain
jason.mansell@esi.es

Birger Møller-Pedersen
Department of Informatics, University of Oslo
P.O. Box 1080 Blindern
N-0316 Oslo, Norway
birger@ifi.uio.no

Clémentine Nebut
LIRMM (Laboratoire d'Informatique, de Robotique et
de Microélectronique de Montpellier)
161 rue Ada
34392 Montpellier Cedex 5, France
clementine.nebut@lirmm.fr

List of Contributors XXXIII

Jon Oldevik
SINTEF ICT
P.O. Box 124
Blindern
N-0314 Oslo, Norway
jon.oldevik@sintef.no

Miguel A. Oltra
Telvent
Tamarguillo 29
E-41006 Seville, Spain
miguel.oltra@telvent.abengoa.com

Klaus Pohl
Software Systems Engineering, University of Duisburg-Essen
Schützenbahn 70
45117 Essen, Germany
pohl@sse.uni-due.de

Sacha Reis
Software Systems Engineering, University of Duisburg-Essen
Schützenbahn 70
45117 Essen, Germany
reis@sse.uni-due.de

Andreas Reuys
Software Systems Engineering, University of Duisburg-Essen
Schützenbahn 70
45117 Essen, Germany

Eelco Rommes
Philips Research
Prof. Holstlaan 4
5656 AA, Eindhoven, The Netherlands
eelco.rommes@philips.com

Jose L. Ruiz
Departamento de Ingeniería de Sistemas Telemáticos
Universidad Politécnica de Madrid

E-28040 Madrid, Spain
jlruiz@dit.upm.es

ETSI Telecomunicación, Ciudad Universitaria s/n

andreas.reuys@sqs.de

XXXIV List of Contributors

Gerard Schouten
Philips Medical Systems

5680 DA, Best, The Netherlands
g.schouten@philips.com

Arnor Solberg
SINTEF ICT
P.O. Box 124 Blindern
N-0314 Oslo, Norway
arnor.solberg@sintef.no

Patrick Tessier
CEA-List / L-LSP
Saclay
91191 Gif-sur-Yvette Cedex, France
patrick.tessier@cea.fr

Jean-Philippe Thibault
IRISA & Institut National de Recherche en Informatique et Automatique (INRIA)
Campus de Beaulieu
F-35042 Rennes Cedex, France

Jacco Wesselius
Philips Medical Systems
Postbus 10.000
5680 DA Best, The Netherlands
jacco.wesselius@philips.com

Tanya Widen
Nokia Research Center
P.O. Box 407
FIN-00045 NOKIA GROUP, Finland
tanya.widen@nokia.com

Tewfik Ziadi

8, rue du Capitaine Scott
F-75015 Paris, France
tewfik.ziadi@lip6.fr

Postbus 10.000

LIP6 & University of Paris 6

Part 1: Product Line Management

Introduction

Part 1 deals with product line management, which covers the fuzzy front end of creating a
product line during which software-intensive product companies need to build product
roadmaps that initially define the intended set of products and targeted markets for the
line, the intended commonalities and variability for the products, a schedule for bringing
the products to the markets, and legacy systems and other artifacts to be considered when
defining software product line requirements. Product line management also covers the
management of the organizational change process where product line engineering and
management culture is institutionalized in organizations.

Part 1 consists of three chapters:
Chapter 1. A Scenario-Based Method for Software Product Line Architecting

Chapter 3. Experiences and Expectations Regarding the Introduction of Systematic

software product line architecture to support the derivation of potentially many
generations of products in the line. Short-term and long-term business considerations
should be well balanced when defining and evolving software product line architectures.
Established methods for architecting lack support for doing this in an efficient manner.

method uses various types of scenarios to ensure that the long-term future is taken into
account and to enable the efficient description, evaluation, and comparison of multiple

seldom seen in academic product line literature. Its perspectives range from considering
market needs and business strategic issues to product line implementation using available
technologies. Only product line testing is strictly outside the scope of the chapter.

expected outcomes ranging from reductions in time-to-market to increased development
efficiency and improved quality outweigh the investments when economical criteria are

accounted for in assessing the economical value. More comprehensive economical models
development cost. But revenues, lifecycle costs, time, and uncertainty must also be

Software product line engineering implies making a long-term investment in a common

Chapter 1 presents a scenario-based architecting method to address this problem. The

The business case for the long-term investments in developing the architecture, setting
up the organization, and developing engineering and managerial skills has to show that the

applied. Models exist for evaluating the impact of product line engineering on

candidate architectures in parallel. Chapter 1 also serves as an excellent introduction to this
book as it takes a holistic view on product line engineering and management to an extent

Chapter 2. Strategic Scenario-Based Valuation of Product Line Roadmaps

Reuse in Small- and Medium-Sized Companies

2 Part 1: Product Line Management

are thus needed to base product line roadmap decisions on valid assessments of the
expected economical outcomes.

model for evaluating the value of investments made in product line engineering to
evaluate the expected economical values of scenarios for product line architecture
development. To address assumptions and expectations about the future, the model uses
strategic scenarios and assigns each of them a probability. Chapter 2 also combines the
general model and previously available models into a single comprehensive framework
covering all factors in the equation of economical value for product line engineering.

knowledge-related problems in the organizational implementation of software reuse
techniques. Organizations thus need effective solutions to face these problems. Chapter 3

confront when implementing systematic reuse initiatives. It addresses organizations that
are considering implementing a systematic software reuse initiative and wish to have an
idea of what other organizations have undergone, how they have resolved problems
encountered, and what is the expected evolution of the initiative.

recognize that, from the technical viewpoint, the maturity of the techniques and
mechanisms for implementing systematic software reuse is considerable but the software
product line initiatives often fail due to managerial, economical, and organizational
challenges. Solutions to these challenges are scarcely available in the literature. Yet, they
are critical to successfully launch software product lines in industrial settings. Therefore,
the managerial and economical perspectives of software product line engineering taken in
Part 1 are especially justified. All chapters rely on empirical experiences from the
industry.

provides insights into what are the reuse opportunities and the problems organizations

Chapter 2 complements the scenario-based architecting method by introducing a general

All software reuse initiatives have encountered similar organizational, managerial, and

The chapters of Part 1 complement each other in many ways. Most importantly, they

1 A Scenario-Based Method for Software Product
Line Architecting

E. Rommes and P. America

Software product line engineering implies making a long-term investment in a common
architecture. This architecture must support the derivation of potentially many generations of
products in the line. Short-term and long-term business considerations should be well bal-
anced when defining and evolving software product line architectures. Established methods
for architecting lack support for doing this in an efficient manner. We present a scenario-
based architecting method that addresses this problem. The method uses various types of
scenario to ensure that the long-term future is taken into account, and to enable the efficient
description, evaluation and comparison of multiple candidate architectures in parallel.

1.1 Introduction

Architecting is at the core of software product line engineering. The architecture of a
product line determines how products are derived efficiently from the core assets. To al-
low the derivation of several different products, a product line architecture has to deal
with variation. The architecture’s support for variation determines the scope of the pro-
duct line. Overly complex variation will make the architecture itself overly complicated,
and therefore expensive to design, implement, and maintain. On the other hand, support
for too little variation will result in a limited scope and may mean losing out on business
opportunities.

To complicate matters further, the optimal scope of a product line is not fixed in time.
Over time, the needs of a business change, and hence the demands made on its products.
New features will be introduced, redundant ones will be removed, neighboring domains
may be entered or new products may be added to well-known domains. In addition, ad-
vances in technology may offer opportunities to enhance the product line. These are just a
few examples of changes that lead to new requirements for the architecture to support.
The architecture must evolve to support the efficient derivation of new or improved products.

Evolving an architecture can be challenging, and implementing a change can be costly,
especially in cases where the change was unforeseen and the architecture is therefore
probably not suited. Changes made to the architecture to meet today’s needs may prove to
be obstacles to the changes that need to be made next week. There is a point at which it
becomes cheaper to throw away the architecture and start a new product line than to adapt
the existing architecture.

Abstract

4 E. Rommes and P. America

1.1.1 Research Questions

Based on the above problems, we define the following research questions:

1. How can the long-term future be taken into account systematically during the design
and evolution of product line architectures?

2. How can multiple candidate architectures for a product line be described, evaluated,
and compared efficiently?

1.1.2 Existing Architecting Methods

Many architecting methods have been proposed. We take a closer look at four of them:

four other architecting methods aimed specifically at product lines is presented by Mat-

PuLSE-DSSA (Product Line Software Engineering – Domain Specific Software Archi-
tecture) is a framework for developing product line reference software architectures. The
design of a reference architecture is driven by a set of scenarios that describe the func-

significance. A subset is used to create an initial architecture, which is then improved by
applying the rest of the scenarios one by one.

ments. This initial architecture is input to an iterative process, where quality scenarios
drive the evaluation and improvement of the architecture.

right from the start. A set of system-specific quality scenarios is used to guide the design
of the architecture. Starting from a single element representing the whole system, the
architecture is recursively decomposed into more specialized design elements.

cation and validation. In the requirements step, a subset of architecturally relevant system
requirements is selected and refined. A study is also made of the business objectives for

To take a product line well into the future, system derivation in the right scope must
remain efficient. The architecture must be flexible in terms of what is likely to be required
in the near future, and must evolve in a direction that will keep it flexible in the long-term.
Architects designing or evolving a product line architecture need to balance the short-term
and long-term business needs.

From what we have seen in practice, architects carry out such balancing exercises
implicitly. For each factor requiring change, there will be numerous possible ways of
adapting the architecture. Each of these will have its own specific short-term and long-
term consequences. An architect will use his experience and intuition to dismiss the majority
of options without hesitation, and will choose just a handful to pursue. However, intuition
and experience are not always correct, nor are they easy to communicate to other stake-
holders. An explicit overview of available options and their implications can help archi-

long-term business goals.
tects to arrive at and document decisions that will suit both the short-term and the

PuLSE-DSSA [12], Bosch [7], ADD [4] and Visual Architecting [8,31]. A comparison of

inlassi [32].

Bosch [7] starts by designing an initial architecture based on functional require-

The ADD (Attribute Driven Design) [4] method takes quality requirements into account

The Visual Architecting Process [8,31] iterates over three steps: requirements, specifi-

tional and nonfunctional requirements. The scenarios are sorted according to architectural

1 A Scenario-Based Method for Software Product Line Architecting 5

the architecture and the future products for which use of the architecture is intended. The
specification step entails creating artifacts that describe the architecture, such as compo-
nent and interface descriptions. During the validation step, the quality properties of the
architecture are evaluated.

None of these methods offers explicit support for long-term requirements or the con-
sideration of a wide range of architecting options in parallel.

1.1.3 The Use of Scenarios in Architecting

Scenarios are widely used in software architecting for describing requirements. SBA in-
troduces two new types of scenarios to the architecting process. We identify three types of
scenarios that are useful in architecting:
– Usage scenarios focus on particular instances of a system’s use to describe system require-

ments. Clements et al. define this type of scenario as: “a short statement describing an

Usage scenarios are a fairly common element of system architecting methods. Such
scenarios are used in SBA and other methods to evaluate the functional and quality
properties of candidate architectures.

– Strategic scenarios are plausible stories regarding the long-term future. Schwartz de-
fines this type of scenario as: “a tool for ordering one’s perceptions about alternative

Strategic scenarios are a tool for making decisions that have a long-lasting effect.
They are most commonly used in the field of business management. In SBA they are
used to add strategic business information to the design and evaluation process.

– Architecture scenarios are a new type of scenarios. An architecture scenario describes a
coherent set of design choices within a single view. Architecture scenarios can be
linked to form candidate architectures.

In SBA, architecture scenarios are used to deal efficiently with many different can-
didate architectures at the same time.

We propose Scenario-Based Architecting (SBA), which builds upon these and other
architecting methods and improves them in two respects:

2. SBA takes future business requirements into account during the design and evaluation of

requirements explicitly in that it takes future products into account, SBA takes a much
broader future into account by means of strategic scenarios that describe not only
products but also the entire business domain. Candidate architectures can thus be
designed with future business requirements in mind, and can be evaluated in terms of
how well they fit certain future scenarios.

1. SBA supports the design and evaluation of multiple candidate architectures in parallel
in an efficient way. Taking a family of candidate architectures into account allows
architects to make better-informed decisions. Most architecting methods entail the
repeated improvement and evaluation of a single candidate architecture. PuLSE-DSSA
allows a number of architectures to be designed and evaluated in parallel, but only as
an exceptional case, and the method offers no further support in this situation.

candidate architectures. While the Visual Architecting Process deals with future

interaction of one of the stakeholders with the system.” [10] (p. 33)

future environments in which one’s decisions might be played out.” [37] (p. 4)

1.1.4 Applicability of Scenario-Based Architecting

Within Philips, we have applied SBA to the evolution of an architecture for a product line
of software-intensive medical imaging systems. The method was designed to be more
generally applicable, however, and our assumption is that it can also be applied in other
domains and other companies.

It is easier to apply SBA using an existing architecture as a basis, because deltas to the

nothing prohibits an architect from using the SBA method to design a completely new ar-
chitecture. Much of the commercial information should be available from the start, unless
a good business model is lacking. Legacy systems could be mined for technical elements
of the new architecture. From there, a top-down approach would be advisable. The main
decomposition should be defined early. Further details relating to individual subsystems
can then be added as needed.

Since SBA incorporates long-term requirements into the architecture design process, it
makes sense to apply it to architectures that are intended to be long living. Product line ar-
chitectures certainly represent a long-term investment, but SBA can be applied equally
well to single-system architectures.

While architecture scenarios are a useful tool in general, in situations where the sup-
port of long-term requirements is not an issue, SBA’s use of strategic scenarios is too
much. It should be noted that the definition of “long-term” very much depends on the appli-
cation domain. In the case of medical imaging, the long-term future is 10 years away. For
mobile phones, the long-term future may start four years from now. In the world of
e-commerce, long-term may mean next month.

1.1.5 Structure of This Chapter

The remainder of this chapter describes the scenario-based architecting method. Section
1.2 outlines our research approach. A high-level overview of the method is given in Sect.
1.3. In Sect. 1.4, we present a detailed description of the method, using a medical imaging
case study as a running example. Our conclusions can be found in Sect. 1.5.

1.2 Research Method

We used two case studies over a two-year period as our primary research strategy for de-
veloping SBA. In these case studies, we iteratively designed a part of the method, applied
it to a real-world problem and evaluated the application and its results. We then moved on
to designing the next part. This incremental and iterative approach is in line with Hevner

tion phase provides essential feedback to the construction phase as to the quality of the

Robson advocates the applicability of the case study method in real world research

mains as well, including information systems research. According to Robson, “the

6 E. Rommes and P. America

current architecture can be considered instead of entirely new candidate architectures. Still,

et al. [20]: “Because design is inherently an iterative and incremental activity, the evalua-

design process and the design product under development.” (p. 85)

[36]. Although he focuses on social sciences, much of his work is applicable in other do-

purpose of an evaluation is to assess the effects and effectiveness of something, typically

Robson defines case study as “a strategy for doing research which involves an empiri-
cal investigation of a particular contemporary phenomenon within its real life context us-

The real-life context of our case studies was the department of Philips Medical Systems
responsible for the product line of medical imaging systems under study. Both case stud-
ies entailed the extension of the architecture of this product line to support new or en-
hanced products. Stakeholders of the product line helped us to define the scope of these
case studies in such a way that they were realistic and useful. Both cases were designed to
include problems that Philips expected to encounter within two years.

Our studies were empirical: We gathered evidence on the method results and its appli-
cation in workshops and from our own studies. The contemporary phenomenon we inves-
tigated was the application of SBA to a product line of medical imaging systems.

We used multiple sources of evidence: documents, interviews, reviews, presentations,
and workshops. We held 20 interviews with 15 different people. Topics included market-
ing, application and the architecture of existing and future products in the product line.
We used multiple types of documents, such as business scenario studies, architecture de-
scriptions, requirements specifications, product manuals and presentations by business,
application and technical experts.

We regularly asked experts from the field to evaluate the method results. Philips archi-
tects reviewed most of the mature results for completeness, soundness and usefulness. The

and found to be realistic and useful. In this way, we could be certain that we were working
on a realistic problem and that the method could be used to produce useful solutions to
real-world problems.

The SBA method itself was also applied and evaluated by practitioners. To this end, we
held six workshops, which were visited by 34 different people. We invited experts in mar-
keting, architecture, application domain and management. Not all those invited were
stakeholders of the product line on which our case studies were based. We also invited
experts from other parts of Philips, to make sure that the method was general enough to be
applied elsewhere too. The average number of participants per workshop was 14.

The general format of the workshops was as follows:

– We presented the current version of the method and the current results of the case
study.

– Experts from Philips Medical Systems presented topics relevant to the case study at
that point, for example architecture issues, domain trends or requirements.

hanced existing artifacts or created new artifacts (scenarios, variation models, etc.).
– The subgroups’ results were presented and evaluated in a plenary session, and the

method was discussed. The feedback from these discussions was used as input for the
further improvement of the method.

end results, i.e., architecture descriptions, were reviewed by the product line’s architects

– Participants worked in subgroups to apply (part of) the method. They extended or en-

1 A Scenario-Based Method for Software Product Line Architecting 7

tion is intended to help in the development of the program, innovation or whatever is the
some innovation, intervention, policy, practice or service.” (p. 201) and “formative evalua-

focus of the evaluation.” (p. 207) We used the case study method as a means of formative
evaluation of SBA.

ing multiple sources of evidence.” (p. 177)

1.3 Method Overview

This section presents an overview of the SBA method. We introduce the CAFCR model
of architecture views in Sect. 1.3.1. An overview of the SBA process is given in Sect.
1.3.2.

1.3.1 The Views

An architecture cannot be developed and described from a single viewpoint. As Clements
et al. argue: “a software architecture is a complex entity that cannot be described in a sim-

CAFCR

The Customer View
The customer view captures information on the customer. We define the customer as the
party that makes the final decision to buy the system. This may be a person, or a group of
persons. The customer may or may not be a user of the system under design.

Customer
View

Application
View

Functional
View

Conceptual
View

Realization
View

What does the system offer?

How is the system used?

What does the customer want?

How does the system work?

How is available
technology used?

technical views

commercial views

Fig. 1.1. Overview of the CAFCR views

8 E. Rommes and P. America

describe the many different aspects of the architecture. We chose to use the CAFCR

Fig. 1.1. We shall first explore each view in detail, and then discuss alternative view sets
and the reasons for choosing CAFCR.

ple one-dimensional fashion.” [9] (p. 13) Instead, a set of views must be chosen in order to

(Customer Application, Functional, Conceptual, Realization) [33] set of views in SBA, see

These are the major questions that are addressed in the customer view:

– Who is the customer? Who are the major stakeholders who influence the customer’s
decision to buy a product? What are their objectives, needs, and wishes?

– What is the customer’s context? What external forces influence the customer?
– What is the essential value that the system offers to the customer?

The Application View
The application view describes how the system can be used to fulfill the customer’s needs.

The major questions addressed in the application view are:

– How do the system’s stakeholders apply the system to achieve their objectives?
– Which stakeholders will use the system? In what ways? How does this usage fit their

way of working?
– In what context must the system operate? What other systems are in use?

The Functional View
This view is used to describe the desired externally perceivable properties of the system
under development, in a concise way. Where such a property indicates the presence of a
certain piece of functionality, we typically call it a feature. Other properties are usually
called qualities.

The description of the functional view aims to be as independent as reasonably possible
from the way the system is used or the way it is implemented. In this respect, the func-
tional view can be seen as an interface between the customer and application views on the
one hand and the conceptual and realization views on the other hand.

These are the major questions that are addressed in the functional view:
– What is the behavior of the system?
– What features and what qualities does it offer?

The Conceptual View
The goal of this view is to describe the essential concepts that govern how the system
works.

Some of the major questions addressed in the conceptual view are:

– What are the components that comprise the architecture? How do these components
collaborate?

– What styles and principles are used to guide the product line design?
An architecture style “[defines] a vocabulary of components and connector types, and a

A principle is “a specific approach to the (architectural) design process that leads to

The Realization View
The realization view describes how the system is realized using available technologies.

The major questions that are addressed in the realization view is:

– What technology is used to implement the system?
– What are the consequences of this use?

In answering these questions, commercial considerations play an important role.

1 A Scenario-Based Method for Software Product Line Architecting 9

good designs.” [45] (p. 9)

set of constraints on how they can be combined.” [38] (p. 20)

Alternative View Sets

tional requirements. It contains a set of key abstractions (classes and objects) taken mainly
from the problem domain. The process view addresses concurrency and distribution: the
way in which processes are distributed across a set of hardware resources. The develop-
ment view focuses on the organization of the actual software modules in the software-
development environment. In the physical view, the various elements identified in the
other views are mapped onto the system’s processing nodes. The scenarios view contains
a small set of important functional scenarios to show that the elements of the four views
work together seamlessly.

the system in terms of its major design elements and the relationships between them. The
module interconnection view encompasses two orthogonal structures: functional decom-
position and layers. The execution view describes the dynamic structure of a system. The
code view describes how the source code, binaries, and libraries are organized in the deve-
lopment environment.

These and most other view sets focus on the technical side of architecture. Business as-
pects are not included in the architecture description. In addition to CAFCR, at least one
other view set explicitly takes business aspects into account:

view and a requirements view. Although views are referred to as “architectures” in VAP,
the general concept is the same. The conceptual architecture describes the structure of a
system in terms of components, their responsibilities and collaborations. The logical ar-
chitecture comprises detailed component and interface specifications. The execution archi-
tecture is a description of the distribution of components on processes and nodes. The
meta-architecture contains rules that guide architecture decisions. Functional and non-
functional requirements are considered in the architectural requirements. Business con-
cerns are also taken into account here: “The business objectives for the system, and the
architecture in particular, are important to ensure that the architecture is aligned with the

The views used to describe an architecture determine the ways in which the architec-
ture can be evaluated: “Different views also expose different quality attributes to different
degrees. Therefore, the quality attributes that are of most concern to you and the other
stakeholders in the system’s development will affect the choice of what views to docu-

In theory, views are orthogonal to the method, and SBA can be applied using any set of
views suitable to describe the architecture under consideration. We have not tested this
hypothesis, but we expect that it will be harder to relate candidate architectures to strate-
gic scenarios and business goals when a purely technical set of views is used. This is a
topic for further research.

10 E. Rommes and P. America

directly. This allows the evaluation of an architecture’s commercial properties, such as
usability and product value, as well as its technical properties, such as performance. This
is the main reason behind our decision to choose this set of views.

are the future customers and users of the systems. CAFCR addresses these stakeholders

The 4+1 model contains five views [29]. The logical view primarily supports the func-

Soni et al. propose the Siemens Four View model [40]. The conceptual view describes

The Visual Architecting Process (VAP) [8,31] uses three technical views, one meta-

business agenda.” [31]

ment.” (Clements et al. [9] p. 14) Some of the most important stakeholders of a product line

1.3.2 The Process

Scenario-based architecting is an iterative process. An iteration consists of three core
steps: explore variation, create architecture scenarios, and evaluate candidate architec-

The details of the process are given in the example in Sect. 1.4. Here is a brief over-
view, to give some insight into the basic steps and their mutual relationships. In our de-
scription of the method, we have kept the steps within an iteration strictly separated for
the sake of clarity. In practice, the boundaries are less clear. Architects may move from
one step to the next without even thinking about it, or go back to do some more work in
the previous step to remove an obstacle that is blocking progress. When iterating is com-
plete and the evaluation shows satisfactory results, the last step is to select a candidate ar-
chitecture and document it appropriately.

Strategic Scenarios
Strategic scenarios are stories about plausible long-term futures in the world at large. They
are typically the result of a multi-disciplinary study into the business domain, taking busi-

The creation and use of strategic scenarios in management and business planning is de-

In SBA, strategic scenarios are used as input to the iterations. They are a source of in-
spiration when seeking out architecture choices, and are used to evaluate candidate archi-
tectures. If strategic scenarios are not available, one option is for the architect to write
them himself. Architects should have a thorough insight into the technical aspects of their
domain. They can gather additional information by consulting experts from other fields,
such as marketing and research. In principle, this information can be applied directly as
input for the method but bundling it into a set of scenarios carries with it the advantage
that the information becomes available to many stakeholders. Using the scenarios they can
provide valuable feedback and highlight flaws or gaps in knowledge that would otherwise
have gone unnoticed. Furthermore, the scenarios provide a set of coherent visions and are

1 A Scenario-Based Method for Software Product Line Architecting 11

more time and effort is spent on the commercial views in early iterations, with the focus
shifting to the technical views in later iterations. In a way, this is analogous to the process
from capturing requirements to doing design. It can be useful to start with coarse-grained
decisions, exploring many options while paying less attention to details. In later iterations,
the number of serious candidate architectures will decrease and the remaining options can
be studied in more depth, if desired.

ness, technical, application and organization trends into account. Strategic scenarios are
tools used to make decisions that have long-lasting implications.

scenarios in architecting with an approach to estimate the market share, sales, and profit of

is closely related to SBA, and is based in part on the results of our case studies. A major
difference between SODA and SBA is the latter’s use of candidate architectures to handle
multiple architectures in parallel. Chapter 2 describes how product line roadmaps can be
evaluated for their economic benefits.

tures, cf. Fig. 1.2. The five architecture views are involved in each of these steps. Typically,

perceiving futures in the present.” (p. 36) Ionita et al., have extended the use of strategic

scribed among others by Schwartz [37] and Van der Heijden [19]. According to
Schwartz [37]: “Scenarios are not about predicting the future, rather they are about

future products [23]. Ionita’s SODA (Strategic Options Design and Assessment) method [22]

easier to use and discuss than a pile of loosely related documents, let alone a pile of the
architect’s personal memories.

Explore Architecture Choices
The first step of an SBA iteration is to explore architectural options. This is done by mod-

sible architecture choices. They guide further decision-making and document the options
that were considered.

Techniques for variation modeling have been well investigated in the software product
line community. Most existing approaches concentrate on the modeling of diversity in the

found in Chap. 6. Chapter 5 describes a scenario-based approached to functional variation
modeling.

Feature models belong to the functional view in CAFCR. However, SBA uses variation
modeling as a tool to describe possible architecture choices, not just features. We have
therefore extended existing feature modeling techniques by adding support for multiple

Create Architecture Scenarios
In the next step, the variation models are used to create a set of architecture scenarios.
Each scenario describes a plausible architecture in a single CAFCR view. There are three
to five scenarios per view. This step results in a family of related candidate architectures.
Individual candidate architectures can be created by selecting one architecture scenario in

Fig. 1.2. The scenario-based architecting process

E. Rommes and P. America12

eling variation in all five CAFCR views [3]. The resulting variation models outline plau-

features of the systems. Examples are Feature-Oriented Domain Analysis (FODA) [28],
and the work by Ferber et al. [14]. A meta-model of such modeling languages can be

architecture views and their relations [2,3].

Evaluate Candidate Architectures

date architecture is assessed for its support of functional requirements. Quality evalua-
tions result in estimations of values for quality attributes of candidate architectures.
Strategic scenarios are used to evaluate how well a candidate architecture fits a certain
business strategy.

Completion of this step results in a set of plausible candidates for the product line ar-
chitecture, plus evaluation results showing their properties in respect of a number of qual-
ity attributes and how well they fit a set of possible futures.

A wide range of architecture evaluation methods exist. Some evaluation methods focus

(see Chap. 10). Others are more general: Bosch describes a framework for architecture as-

Architecture Trade-off Analysis Method (ATAM), the Software Architecture Analysis
Method (SAAM), and Active Reviews for Intermediate Designs (ARID). The Family Ar-
chitecture Assessment Method (FAAM) addresses the interoperability and extensibility

Each of these methods has its strengths and weaknesses. There is no single method that
is most appropriate in all circumstances. What they have in common is that they are de-

tectures, the method must be repeated. In contrast, SBA allows the efficient parallel
evaluation of several candidate architectures. The primary units for evaluation are the ar-
chitecture scenarios. Information on all the candidate architectures that use a particular
scenario is obtained by assessing the properties of that one architecture scenario.

It is the way that candidate architectures are described in SBA that makes this possible,
and not the evaluation method. In fact, any evaluation method can be used in combination
with SBA. We evaluated architecture scenarios for a diverse range of qualities, including

proaches.
If a product line architecture already exists, it can be a good idea to start with the

evaluation step. This helps the stakeholders of the updated architecture to set its scope and
to reach agreement on the most important (quality) requirements.

Select Candidate Architecture
The last step is to select a product line architecture and document it according to our
needs. The candidate architectures and their evaluation provide some input in this context,

architectures.

signed to evaluate one architecture at a time. To compare the results of multiple archi-

between functional, quality, and strategic evaluation. During functional evaluation, a candi-
The final step of an iteration is to evaluate the candidate architecture. We distinguish

matic Quantitative Analysis of Scenarios’ Heuristics), a method that focuses on

1 A Scenario-Based Method for Software Product Line Architecting 13

Now, we add the combination of architecture scenarios to form a family of candidate
each view and linking them together. We first described architecture scenarios in 2004 [2].

on a single or few quality attributes, e.g., performance [39] or reliability and availability

sessment (Chap. 5 in [7]). Clements et al. [10] describe and compare three methods: the

of families of information systems [13]. An overview of scenario-based software architec-
ture evaluation methods is given by Ionita et al. [26]. Ionita also defines SQUASH (Syste-

the evaluation of architecture scenarios [22].

usability, performance, product value, risk, and cost of use [2,24,25], using various ap-

1.4 Scenario-Based Architecting Applied

Below is a detailed explanation of scenario-based architecting. We illustrate the method
with a running example. Although the example is based on our case studies, it is not a
complete description of a single case: elements of the two cases have been mixed, simpli-
fied and adapted for the purposes of this publication. We introduce the resulting example
in Sect. 1.4.1. Section 1.4.2 deals with strategic scenarios. Each of the subsequent sections
deals with a single step in the method: explore architecture options, create architecture
scenarios, evaluate candidate architectures, and select architecture. Finally, Sect. 1.4.7
explains the supporting artifacts used in SBA that were not explained previously.

1.4.1 Running Example: The 3D Cathlab

The catheterization laboratory (cathlab) is a hospital room used for the diagnosis and
treatment of patients with vascular disease (Fig. 1.3). One of the most common forms of
such diseases occurs when an artery is narrowed by plaque.

The plaque limits the blood flow through the artery, causing part of the body to be
deprived of access to fresh blood. This situation may result in a heart attack if the artery
leads to the heart, or a stroke if it supplies the brain. These and related diseases can be
diagnosed and treated in the cathlab. The physician inserts a catheter into an artery near
the patient’s groin, and moves it gently through the arteries to the desired location. The
tip of the catheter can hold various instruments to treat the disease.

The cathlab houses various forms of equipment used to support such catheterization
procedures. A central role in the cathlab is fulfilled by a cardiovascular X-ray system.
This system is used to visualize the patient’s vessel structure and the exact location of the
catheter. High quality images can be used to carry out measurements relating to the vessel
blockages, such as the blood flow through the blockage, its length, and its width.

In other applications, catheters interact directly with the heart itself, rather than with
vessels. Children require special treatment, as they have smaller blood circulation systems
and faster heartbeats. To minimize the amount of contrast fluid and scattered radiation that
a child is exposed to, two detectors may be used simultaneously. Different members of the
product line address these and other variations.

Other devices used in the cathlab include monitoring devices for electrocardiograms
(ECG) and blood flow (hemodynamics), as well as reporting and archiving applications.
Sometimes special imaging systems are used to visualize the inside walls of an artery.

Another way of obtaining extra information is the use of three-dimensional images.
These images can either be created on the spot or taken from diagnostic procedures that
the patient has undergone earlier, for example using magnetic resonance imaging. These
are referred to as multi-modality procedures, because information from different types of
imaging systems is combined in a single procedure. The creation of three-dimensional
models from two-dimensional X-ray images is achieved via an application known as

artifacts used for this purpose in SBA.
but additional documentation is usually needed. Section 1.4.7 gives an overview of the

E. Rommes and P. America14

three-dimensional rotational angiography (3DRA). Several images are created from dif-
ferent angles, and then combined into a single three-dimensional model.

Fig. 1.3. The cathlab

1.4.2 Strategic Scenarios

One of the goals of the scenario-based architecting method is to make architectures more
resilient to future changes. Effecting architecture changes in the implementation is a major
task. These changes must therefore be chosen carefully.

Future changes in requirements are, by nature, very uncertain. A number of different
scenarios are therefore considered, each of which describes possible future global devel-

on the relevant field of business, which in our example is the area of healthcare for cardio-
vascular patients. Such scenarios form a good basis for business decisions and are there-
fore referred to as strategic scenarios.

Strategic scenarios are usually created by a multi-disciplinary team of experts. The
team’s expertise should cover business strategy, the application domain, the technical do-
main, and company management.

A common pitfall to be avoided when reasoning about the future is the choice of a sin-
gle “official future.” This may be the result of wishful thinking, or of the simple
extrapolation of observed trends. Choosing a single scenario is unwise, since it means that
all opportunities and threats that happen to fall outside this official vision are neglected.
To mitigate this risk, multiple strategic scenarios should be used as input. Four seems to
be an effective number: two scenarios are not enough to span a wide range of possibilities,
and creating three scenarios carries the risk of creating a “low,” “middle” and “high”
scenario, with the result that the middle one tends to be thought of, at least implicitly, as
the “official future.”

1 A Scenario-Based Method for Software Product Line Architecting 15

opments, along the lines of the work carried out by Schwartz [37]. These scenarios focus

In SBA, strategic scenarios are used as input to the architecting process. They provide
the knowledge of business context needed to create both variation models and architecture
scenarios, and are used to evaluate candidate architectures for their business value in the
long-term future.

We do not use existing strategic scenarios in this example, since these inevitably con-
tain business-sensitive information. Instead, we have come up with four placeholders that
serve to illustrate the use of strategic scenarios in SBA. These placeholders are much
more simplistic than their real-world counterparts, and each one varies two dimensions
only: economic growth and technological advancement in healthcare. The titles were based

Fig. 1.4. Strategic scenarios

Fig. 1.5. Cover stories

See Treat Cure

Hospitals and clinics offer
efficient care at

reasonable quality

Brave New
Pharma World

Economy spurs biomedical
breakthroughs that enable

personalized treatment
for everyone

McHealth

Fastfood-like clinics
maximize patient

throughput while offering
'good enough' care

Clinique de Luxe

Wealthy, empowered
patients demand state-of-
the-art care and comfort

HIGH

HIGH

LOW

LOW

technological
advancement

technological
advancement

economic
growth

economic
growth

on publicly available commercial presentations (Fig. 1.4).

articles that use natural language to describe the future world depicted in the scenario (Fig. 1.5).
A useful means of communicating these scenarios is via cover stories: fake magazine

E. Rommes and P. America16

1.4.3 Explore Architecture Choices

The goal of this step is to explore the space of possible architectural choices. To do this,
the construction of a model can be of help in several ways:
1. To structurally explore the variation space in and across the various views. By model-

ing the variation space, one soon gets a feel for the complexity of and the main issues
in the domain. It is relatively easy to spot gaps in a model, ensuring that the variation
space will be explored thoroughly. The disadvantage is that models tend to get very
large. It is therefore essential to be practical, and not to try to include everything in the
domain.

2. To guide and document both the choices made and the options that were rejected. The
resulting models can be used to guide decisions. Which core features will the system
architecture support? What kinds of application? In the next step, the models will be
used to incorporate such choices into scenarios. The original models contain the full
range of possibilities that were considered and the options that were not chosen. This
helps to avoid the endless reconsideration of the same options.

3. To enhance communication and raise awareness about these choices among
the architecture’s stakeholders. The actual creation of the models demands an adept-
ness at working with abstract models. In our experience, however, the resulting models
can be understood by people without a background in modeling. This allows stake-
holders other than the architect to contribute to the models by reviewing, or in some
cases even co-creating them. For example, marketers or sales people could be co-
authors of the customer variation model. At least, they will be able to read the model to
verify that their input was interpreted correctly.

Sources of input for this step are the strategic scenarios, roadmaps, design documents, re-
quirements and, of course, the knowledge of (company) experts. The exploration step
results in a variation model covering all views. It allows the architect to explore a wide
range of possible architectures simultaneously without pinning down definite choices.

Notation

The technique we used for variation modeling is based on a publication by Ferber et al.

plicity which can result in more complex models. Some other notations are more expres-
sive, but are also more complex and harder to extend (for example Gomaa and Webber

the use of letters in the upper right hand corner to indicate which view an element belongs
to (C for Customer, A for Application, etc. The difference between Customer and Concep-
tual can usually be seen from the element name and its context. Otherwise, Co and Cu
may be used instead). This is useful, since models can contain elements from multiple
views. The model name indicates the main view, which is also the view of those elements
without letters in their upper right hand corners.

The notation itself is almost exactly the same as the original one (Fig. 1.6). We added

1 A Scenario-Based Method for Software Product Line Architecting 17

[14]. We chose this technique because it is simple, expressive enough for our purposes
and easy to extend. An alternative notation is FODA [28], but it has no support for multi-

[18] and Geyer [17]).

Fig. 1.6. Notation for variation modeling

Ferber et al. describe two types of models:
One [type] shows hierarchical refinement of features similar to common feature
modeling approaches in a feature tree. The second [...] describes what kind of de-

The reason for introducing this second model lies in complexity:
In real life context, relations between features often become very complex without a
clear way to model features with different dimensions or aspects leading to a very

This is certainly true for feature models, which are intended to describe all the features
and their relations in a product line. The purpose of variation models in SBA is different.
The architect is only interested in a small subset of features, namely those that affect the
product line architecture. SBA uses a single directed, acyclic graph per view. Each graph
expresses both the view’s elements and their dependencies. If a model becomes too com-
plex to understand, this can be taken as a clear sign that the architect is trying to do too
much at once and needs to rethink the scope and abstraction level of the design. Although
not all the possible dependencies between features or other elements can be captured in
this way without cluttering up the diagram, the notation does allow the modeler to capture
many of them in a single diagram in a straightforward manner.

For practical reasons, we have opted to present a separate model for each of the
CAFCR views, but in reality these diagrams form a single variation model covering all
views. Elements from one view can relate to elements in adjacent views. Customer view
elements can relate to application view elements, which can relate to functional view ele-
ments, and so on.

Customer Variation Model

At its most basic level, a customer variation model should express the basic market seg-
mentation that underlies the design of the product portfolio. Other differences among the
customers may also be useful, especially if these may have implications for the product
line architecture. Figure 1.7 shows a customer variation model for the cathlab.

B

A

A

B C

A

B C

A

Element
C

Element Element.

Element with
its view.

 Subelement:
If A is chosen, B

must be chosen.

 Alternation:

If A is chosen, exactly one

of {B,C} must be chosen.

 Multiplicity:

If A is chosen, at least one
of {B,C} must be chosen.

B

 Option:
If A is chosen, B

may be chosen.

E. Rommes and P. America18

pendencies and interactions there are between various features. [14]

complex graph of features. [14]

Fig. 1.7. Customer variation model

Cardiology departments are the customers. A cardiology department is part of a larger
organization, which may be either a private clinic, a hospital or an academic hospital.
The latter gives an indication of the complexity of procedures performed by the depart-
ment. Typically, academic hospitals treat the “interesting” cases, whereas specialized sites
focus on the most common treatments. Specificity indicates the range of cardiovascular
procedures performed. Here we distinguish between general-purpose departments and
those specialized in cardiac care. Scale determines the number of cathlabs that the de-
partment has available. The notation does not allow the easy specification of the precise
number. This is not a problem, as an indication of the scale expressed as single, few or
many cathlabs will do.

The element procedures performed refers to elements from the application view. Pro-
cedures are a form of action, and therefore they belong in the application view. Angio-
plasty is the balloon procedure briefly described in Sect. 1.4.1. This procedure is the focus
of the application view’s variation model. Electrophysiology is a family of procedures that
have to do with the electrical pulses that make the heart beat. There are other procedures
that are left unspecified in this example.

The resulting model should describe current customers, but should also cover the typi-
cal customers in the strategic scenarios. The typical McHealth customer will be a private
clinic, constituting a high-volume site with many cathlabs and relatively little variation in
procedures. A Clinique de Luxe would be a specialized cardiac care clinic with a small
number of well-equipped cathlabs. Brave New Pharma World hospitals offer personalized
care to a wide variety of patients. Large and medium-sized general-purpose hospitals offer
the complexity of procedures currently found in academic hospitals. In a See Treat Cure
future, a typical hospital would be general purpose with a large number of cathlabs, per-
forming a wide range of procedures.

Organization
type

Private
clinic

Hospital

Academic
hospital

Complexity

Specialized
site

Specificity

Cardiac
care

General
purpose

Scale

Single
cathlab

Few
cathlabs

Many
cathlabs

Procedures
performed

Angio
plasty

Electro
physiology

…A

A

A

Cardiology
department

1 A Scenario-Based Method for Software Product Line Architecting 19

Application Variation Model

The application variation model captures activities performed by a user in interaction with
the systems in the product line. A moderately complex but well-engineered system can be
applied in many different ways and the variety of procedures performed in a cathlab is
very large. An attempt to model the variation allowed by a number of architectural vari-
ants of a product line may lead to models with thousands of elements. This variation stems
from a number of different sources of variation, for example:

– Properties such as supported features among the candidate architectures and derived
systems

– The (technical) context of the systems
– The business goals and practical purposes of using the systems
– Personal preferences among users
Capturing all these variations in a single model is impossible in anything but the most

trivial cases. In our experience, it is useful to build smaller models around the issues that
are most difficult to decide on, starting from a small number of use cases that describe the
issue, and to then build the variation model around them.

It should be noted that an application variation model is not the same as a workflow
model. Although both types of models capture activities and their relations, a workflow
model focuses on the temporal order and dependencies of these activities, whereas an ap-
plication variation model does not contain timing information. It shows a hierarchy of ac-
tivities, i.e., which activities are (optional) parts of other activities.

The application variation model can be hard to understand without domain knowledge.
We shall therefore give a general description of the angioplasty procedure before explain-
ing the model.

Angioplasty is a catheterization procedure that aims to open up a blocked artery. A
catheter is inserted into a vessel and then navigated towards the blocked artery. The cardio-
logist pushes the catheter manually through the blood flow system towards the correct
spot. X-ray is used to visualize the patient’s vessels and the location of the catheter. To
this end, contrast fluid is inserted through the catheter and into the patient’s blood flow.
The contrast fluid scatters the X-rays and allows the visualization of the arteries.

The tip of the catheter holds a tiny balloon, which is inflated at the correct position to
push the blocked artery open. A wire mesh tube called a stent may be placed inside the ar-
tery to prevent the artery from closing again. The stent is unfolded as the balloon expands
and it stays behind in the vessel once the balloon is deflated again. The length and diameter
of the balloon and stent to be used must be determined beforehand by measuring the
length of the blockage and the diameter of the artery.

Finding the optimal position for the balloon to be inflated can be difficult. It can there-
fore be useful to have a three-dimensional map of the local vessel structure available.
Such a map can be reused from an earlier diagnostic procedure, but it can also be gene-
rated on the spot with a technique called three-dimensional rotational angiography
(3DRA).

After the blockage has been treated, the results of the treatment can be assessed. This
requires the visualization of the arteries to see if the blockage has been removed and the
blood flow restored.

The variation model in Fig. 1.8 captures the main angioplasty activities and their rela-
tionships. At the top of the model is the element procedures performed, which belongs to

E. Rommes and P. America20

the customer view. The angioplasty procedure as a whole is an activity and is therefore an
element of the application view.

A balloon is inflated to open a blocked artery. The balloon must be placed in the cor-
rect position. To find this position, the arteries are visualized. This may be done by per-
forming 3DRA. In any case, the insertion of contrast fluid is required. To this end, the
catheter must be navigated to deliver the contrast fluid to the right spot. For precise navi-
gation, a 3D roadmap can be used. This can be a 3DRA roadmap obtained earlier, or a
non-X-ray roadmap created by a different type of imaging system.

Optionally, a stent can be placed as part of the balloon inflation activity. In that case,
measurements must be done to determine the artery’s diameter and the length of the
blockage. In order to measure an artery, it must be visualized.

Part of the angioplasty procedure is to assess the post-intervention situation. This en-
tails checking to see whether the blockage has been removed, by visualizing the arteries.

Mapping this variation model to the strategic scenarios shows that a McHealth proce-
dure would not require 3DRA and 3D roadmaps unless they greatly enhanced procedure
efficiency. The Clinique de Luxe cardiologists, on the other hand, would need the full
repertoire of actions to satisfy their very demanding patients. In a See Treat Cure world,
technological advancements would have made imaging processing so cheap that 3D
would be standard. A Brave New Pharma World would need far more advanced systems

Functional Variation Model

The functional variation model is what is commonly called a feature model in software
product line engineering. It shows the possible features of the 3D cathlab and their depend-

viewing. To manipulate 3D models, a specialized user interface is required. It can be a
Graphical User Interface (GUI), a Non-Graphical User Interface (NGUI), or both. The im-
ages can be a 3DRA roadmap or a non-X-ray roadmap. In the latter case, the system must
support multi-modality images created via other types of systems.

done as remote 3DRA, meaning that a separate workstation implements this functionality,
or as local 3DRA if it is integrated into the main system. The auto 3DRA-reconstruction
feature (a workflow enhancement) is an optional extra.

With respect to the strategic scenarios, it is clear that customers in the low economic
growth scenarios would consider price very important when selecting a cathlab. This
means that McHealth clinics would only want to pay for basic functionality. In the case of
See Treat Cure, technological advancements would make it possible to realize the more
advanced features in an affordable way. In the cases of the Clinique de Luxe and Brave
New Pharma World scenarios, price is less of an issue. More important is the availability
of a wide range of features. Brave New Pharma World in particular would demand sup-
port for multi-modality procedures, in order to deliver its highly personalized care.

encies (Fig. 1.9). The graph shows activities taken from the application variation model and

The system must support 3DRA for the user to perform or use it. This can either be

1 A Scenario-Based Method for Software Product Line Architecting 21

to be able to deliver highly personalized care, but this model would constitute a step in the
right direction.

the features that support these activities. To use a 3D roadmap, the system must support 3D

Fig. 1.8. Application variation model

Fig. 1.9. Functional variation model

Use 3D roadmap
A

Perform 3DRA
A

3DRA support

Auto 3DRA
reconstruction

Remote
3DRA Local

3DRA

3D viewing
 support

Multimodality
support

NGUI support
for 3D manipulation

GUI support
for 3D manipulation

Use non-X-ray
roadmap

Use 3DRA
roadmap

A

A

Angioplasty

Place stent

Inflate balloon

Find correct
position

Navigate catheter

Use 3D roadmap

Perform 3DRA

Assess post
intervention situationDo artery

measurements

Procedures performed
C

Insert contrast fluid

Use non-X-ray
roadmap

Use 3DRA
roadmap

Electrophysiology

Other
procedures

Visualize arteries

E. Rommes and P. America22

Conceptual Variation Model

ture. Elements from the functional variation model are included, to show which features

viewer or by hosting a 3D viewer. A native viewer is a software component that is
dedicated to the cathlab environment. It needs a 3D renderer to visualize the 3D images,
as well as 3D navigation controls to enable the user to manipulate the models. In turn,
these controls could be implemented as software in a GUI or in hardware as an NGUI.
These controls are actually conceptual implementations of the GUI and NGUI support
features from the functional view. We have omitted these features here to keep the exam-
ple model simple.

An existing 3D viewer can be hosted as an alternative to developing a specialized, na-
tive viewer. Such general viewers are commercially available. They have their own GUI

For remote 3DRA, all that is needed is a separate 3DRA workstation that is connected
to the system. To implement the feature local 3DRA, a 3DRA reconstructor is needed. A
reconstructor combines a vast quantity of two-dimensional image data into a single three-
dimensional model. This can be a real-time reconstructor, specialized for this type of
X-ray equipment, or a slower but portable reconstructor.

In the conceptual and realization views, the focus lies on the technological aspects of
the strategic scenarios. In the high technological advancement scenarios, concepts that are
currently complex and expensive will be easier and cheaper to realize in the future. It can

Fig. 1.10. Conceptual variation model

Local 3DRA

3DRA
reconstructor

Real-Time
reconstructor

Portable
reconstructor

Multimodality
support

Native
3D viewer

Hosted
3D viewer

3D renderer
3D navigation

 controls

GUI controls for
3D navigation

NGUI controls for
3D navigation

F
F

Remote
3DRA

F

3DRA
workstation

Support for multi-modality images can be implemented in two ways: via a native 3D

The conceptual variation model explores possible concepts of the product line architec-

are supported by which concepts (Fig. 1.10).

1 A Scenario-Based Method for Software Product Line Architecting 23

controls, and a non-graphical interface can be provided as an optional extra.

be worthwhile to consider what will happen when the boundaries of Moore’s law are
reached and faster, smaller, cheaper hardware ceases to be available. In such a situation,
best illustrated by the McHealth and Clinique de Luxe scenarios, the system would have
to make do with what is state-of-the-art at the time.

Realization Variation Model

The realization variation model explores different ways of mapping architectural concepts

The 3DRA reconstructor can be either portable or real-time. A portable reconstructor
runs on the default processor of the system, or a multi-processor for improved performance.
A real-time constructor should be implemented on a dedicated processor, for which there is
a choice between an ASIC (Application Specific Integrated Circuit) and a COTS (commer-
cial off-the-shelf) processor. Although we stop detailing at this level to keep the example
model simple, it could include more details, such as the specific types of processors.

The model shows two possible ways of implementing the 3D renderer concept: via a
default graphics card that is already present in the system, or via a specialized 3D graph-
ics card.

Non-graphical controls can take the form of a trackball, a joystick, some form of pro-
prietary hardware, or any combination of these.

1.4.4 Create Architecture Scenarios

Once the options for adapting the product line architecture have been explored, the next
step is to make these options more tangible. The variation models themselves do not pro-
vide sufficient information to make an adequate evaluation of the possible architectural
choices. The implications of a single choice in a variation model cannot be evaluated
because of dependencies on other choices. It is therefore necessary to consider a limited
number of architecture scenarios.

Fig. 1.11. Realization variation model

3DRA
Reconstructor

Portable
Constructor

Default
processor

Dedicated
processor

Multi
processor Dedicated

ASIC
COTS

processor

Default
graphics card

3D graphics
card

NGUI controls
for 3D navigation

Trackball

Joystick

Proprietary
hardware

3D renderer

C

C
C

Real-Time
Constructor

C

C

onto available technology (Fig. 1.11).

E. Rommes and P. America24

While the variation models describe the variation space, the scenarios define individual
points in that space. Each architecture scenario describes an architecture in a single view.
An architecture scenario consists of a single set of choices in that view’s variation model.
For example, an architecture scenario in the customer view will typically describe a mar-
ket segment or a type of customer, whereas scenarios in the conceptual view will docu-
ment possible conceptual designs for the product line architecture.

Fig. 1.12. Functional scenario: “Basic viewing”

As an example, we present the functional scenario Basic viewing (Fig. 1.12). The sys-
tem it describes supports basic 3D viewing and a simple 3DRA implementation. It has a
graphical user interface for handling three-dimensional images, and can show images
from other modalities besides X-ray.

Architecture scenarios must satisfy the following criteria:

– The set of choices that defines the scenario must be consistent with the variation model
semantics.

– A scenario must be reasonable, meaning that the set of choices as a whole must show a
certain balance. It would not be reasonable to omit a basic feature from a high-end sys-
tem, even though this is technically possible.

– A scenario should be interesting. The next step will be to evaluate the scenarios, and it
makes no sense to put effort into scenarios that will be disregarded anyway.

– The total set of scenarios should span a large enough part of the variation space. This
means that they should be sufficiently different from each other. In our experience,
about three to five architecture scenarios per view are sufficient.

Scenario Correspondence

We now look for correspondence between pairs of scenarios in different views, at the points
at which they describe choices that are consistent across the views, according to the cross-
view relationships of the variation models. This rule is used as the basis for selecting pairs of
corresponding scenarios.

3DRA support

Auto 3DRA
reconstruction

Remote
3DRA Local

3DRA

3D viewing
 support

Multimodality
support

NGUI support
for 3D manipulation

GUI support
for 3D manipulation

1 A Scenario-Based Method for Software Product Line Architecting 25

The correspondence between application and customer scenarios, for example, helps
guide our reasoning in respect of the way a given customer would perform the angioplasty
procedure that was modeled in the application view. An academic hospital is likely to use
more advanced functionality, whereas a high-volume production site will favor the more
basic features.

To find conceptual scenarios that correspond to a functional scenario, the features of
the functional scenario must be examined. Corresponding conceptual scenarios provide
concepts within which all of these features can be implemented.

Scenario correspondence plays an important role in the next step of the method, which
entails scenarios being grouped into candidate architectures, which are then evaluated and
compared. Figure 1.13 shows a conceptual scenario that corresponds to the Basic viewing
functional scenario of Fig. 1.12.

Figure 1.14 shows the total set of 3D Cathlab scenarios and the correspondence rela-
tions between those scenarios. It shows that not all scenarios have a corresponding sce-
nario in later views. The Basic angioplasty application scenario and the 3DRA enabled
functional scenarios are not interesting enough to be pursued further in the technical
views, since the current systems already support these scenarios more than adequately.

However, the scenarios are not removed altogether, as they may serve as null points for
the comparison of certain properties in the evaluation step.

Candidate Architectures

The total set of scenarios forms a family of candidate architectures. The correspondence
relations can be used to derive the particular instantiations of this family. A candidate ar-
chitecture consists of a set of five corresponding scenarios that together describe the archi-

complete paths from customer to realization scenarios. Each of these paths represents a
single unique candidate architecture.

Local 3DRA

3DRA
reconstructor

Real-Time
reconstructor

Portable
reconstructor

Multimodality
support

Native
3D viewer

Hosted
3D viewer

3D renderer
3D navigation

 controls

GUI controls for
3D navigation

NGUI controls for
3D navigation

F
F

Remote
3DRA

F

3DRA
workstation

E. Rommes and P. America26

tecture using the CAFCR views. In the graph of scenarios listed in Fig. 1.14, there are 18

Fig. 1.13. Conceptual scenario “Alt-Tab Viewing” corresponds to scenario “Basic Viewing”

Fig. 1.14. Corresponding scenarios for the 3D cathlab

Candidate architectures that differ in their commercial scenarios but share the same
conceptual and realization scenarios actually represent different systems that can be de-
rived from a single product line architecture.

Fig. 1.15. Two candidate architectures

The Multimodality candidate architecture supports both the generation of 3D images in
the cathlab and the use of 3D images created on other types of systems. The Full 3DRA
scenario focuses on the tight integration of 3DRA in the cathlab, but does not support non-
X-ray images.

Customer Application

Academic

Production
Basic

angioplasty

3DRA

Multi-
modality
roadmap

Realization

Very fast
3DRA

Easy

viewing

Simple
viewing

Conceptual

Fast

3DRA

Integrated

 3D viewing

Alt-Tab
Viewing

Functional

Basic
viewing

3DRA
enabled

3DRA
inside

Full multi-

modality
Clinic

Basic
 3DRA

Simple
 3DRA

Fast
3DRA

Customer Application

Academic

Production
Basic

angioplasty

3DRA

Multi-
modality
roadmap

Realization

Very fast
3DRA

Easy

viewing

Simple
viewing

Conceptual

Fast

3DRA

Integrated

 3D viewing

Alt-Tab
Viewing

Functional

Basic
viewing

3DRA
enabled

3DRA
inside

Full multi-

modality
Clinic

Basic
 3DRA

Simple
 3DRA

Fast
3DRA

Multimodality

Full 3DRA

1 A Scenario-Based Method for Software Product Line Architecting 27

in the rest of this chapter.
We identify two candidate architectures (cf. Fig. 1.15) and examine them in more detail

Extended Scenarios

The architecture scenarios represent a wealth of knowledge expressed in an extremely
concise way. This enables architects to travel light: it is easy to create a few scenarios,
examine them and reject them if the results are not up to standard. Sometimes, however,
more tangible information is needed, for example to explain a scenario better to stake-
holders, to document it for future reference or to facilitate its evaluation. It is in such
situations that extended scenarios can be used.

An extended scenario captures an architecture scenario in a different form. The form
chosen will depend on the extra information of interest for the scenario (which informa-
tion is often of a temporal nature) and on the view of the architecture scenario. Below are
the forms we found most useful during our case studies:

Customer View
Customer profiles are natural language descriptions of a particular type of customer. The
customer descriptions shown in Sect. 1.4.3 are a simple form of customer profiles. More
elaborate profiles can be made using a template showing properties such as a nickname, a
brief description, business strategy, and goals. Similar profiles can also be made for other
types of stakeholders, such as patients and clinicians. Such stakeholder profiles can be
used as a tool for relating strategic and customer scenarios, and as background information
for the application view.

Application View
Stories or user scenarios are short stories about the use of a system. They resemble use
cases to some degree, but generally have a less formal structure, include more context and
give insight in the user’s thoughts and objectives. Below is a paragraph taken from a user
scenario in the application view:

Dr. Eter decides that she needs to perform a rotational angiography of the coronary
arteries. She repositions the table. Then she asks the patient to hold his breath, inserts
contrast fluid and starts the rotational angiography process. The C-arm starts to ro-
tate around the patient, meanwhile creating images of his coronaries. When it has

User scenarios can become relatively large and complex. We found it useful to struc-

scenarios to share common paragraphs.

Functional View

The aim here is to identify those use cases that will have the largest impact on the system
architecture. They can then illustrate certain features or sets of features in the functional
scenarios.

Conceptual View
Collaboration diagrams and sequence diagrams describe how components interact to

minutes.
finished, Dr. Eter views the resulting 3D model, which is available after a few

E. Rommes and P. America28

ture them in a family, just like the architecture scenarios [3]. This allows different user

Use cases are a well described means of capturing functional requirements (see, e.g., [11]).

achieve a goal. Both types of diagrams are a part of the UML [6]. They can be coupled to

a use case to describe how the components implement it. The advantage of collaboration
diagrams is that they can show the underlying component structure in the same view.

Realization View
Collaboration estimates are used to find out whether a collaboration that implements a
certain use case is likely to satisfy all the relevant quality requirements. A rough estimate
can be made based on specific technology choices. Such estimates can never be relied on
completely, since there may still be bottlenecks that have not been considered, but they
can help identify certain problems at an early stage.

1.4.5 Evaluate Candidate Architectures

The last step of an iteration is to evaluate the candidate architectures that have been cre-
ated. The goal is to assess several plausible architectures at once in an efficient way. The
evaluation produces information about the expected quality properties of the architectures.
It can also ensure that the architecture is able to handle the desired functionality, and may
bring shortcomings to light. The evaluation results are used either to enhance the architec-
ture scenarios in another iteration or to select a suitable candidate architecture if the re-
sults prove satisfactory.

Functional Evaluation

Functional assessment entails the architect checking whether or not the architectures sup-
port the required functionality. Several types of extended scenarios can be used to carry
out functional evaluations. Use cases can be employed to describe those functional re-
quirements that are of interest. Each use case is coupled to the functional scenarios that
support it. The architect can take the scenarios as a starting point to trace back to the ap-
plication view to identify the applications in which the feature is used, and further back to
the customer view to see what types of customers are likely to be interested in performing
these applications. In the other direction, extended conceptual and realization scenarios
can be used to test the candidate architectures. Each response by the system in a use case
must be supported by its concepts. A collaboration diagram shows how the system con-
cepts collaborate to achieve these steps. This process is similar to the use case realization

As an example, we present the reconstruction of a three-dimensional model from two-
dimensional, rotational data. The 3DRA support feature (Fig. 1.9) is augmented with a use
case that describes the user-system interaction leading to the creation of a 3D model. This
feature is present in the functional scenarios 3DRA inside and 3DRA enabled. As Fig. 1.14
shows, the 3DRA enabled scenario was disregarded as uninteresting and will not be pur-
sued any further. 3DRA inside corresponds to three conceptual scenarios: Integrated 3D
viewing, Fast 3DRA, and Basic 3DRA. A single collaboration diagram will suffice for all
three, since they share all the components involved in this collaboration.

Figure 1.16 shows the reconstruction of a 3D model from rotational angiography data.
The detector generates data, which is stored and sent to an image processor for image en-
hancement. The resulting two-dimensional data is then displayed directly, while the sys-
tem continues to gather new data. Concurrently, the repository sends the acquired data to a
3D reconstructor, which creates a model and sends it to the image enhancer to display.

1 A Scenario-Based Method for Software Product Line Architecting 29

analyses applied in the Unified Process [27] (p. 46).

Fig. 1.16. UML collaboration diagram “3DRA reconstruction”

This single collaboration diagram captures information about three distinct conceptual
scenarios and about 12 of the 18 possible candidate architectures (i.e., all candidate archi-
tectures that contain the functional scenario 3DRA inside).

Multimodality roadmap application scenarios both use this feature. The academic and
clinic types of customers perform these particular applications. The same checking proce-
dure can be applied to each use case.

Finding Qualities of Interest

The qualities of interest must be identified before a system architecture can be evaluated.
A helpful tool is to create a key driver diagram. In this context, a key driver is defined as a
motivating factor for a particular stakeholder. In other words, it is something that the
stakeholder really wants or really does not want.

Muller writes: “The essence of the objectives of the customers can be captured in terms
of customer key drivers. The key drivers provide direction to capture requirements and to

drivers are most important, but these are often related to our customer’s customers (some-
times across several links in a value chain) and other stakeholders.

The diagram in Fig. 1.17 shows key drivers for three types of stakeholders: The heads
of cardiology departments were identified as the customers, cardiologists as the most im-
portant users, and patients as the customers of the customers. Below is an explanation of
the derived and key drivers in this diagram for each of these stakeholders.

Detector Image enhancer Display

3D reconstructor

1: store (data)

s

(data)
3: display
(image)

4: reconstruct
(data)

5: display
(model)

6: display
(image)

Re pository

2: process

E. Rommes and P. America30

a role, and said drivers are often causally related. Ultimately, our own customer’s

These relationships can be expressed using an extended form of influence diagrams.
Weinberg originally described influence diagrams [42] and Beck used them to describe

Reasoning back from the functional view, we see (cf. Fig. 1.14) that the 3DRA and

pose of an influence diagram is to see how the elements of a system affect one another.”
(pp. 207 210) Influence diagrams contain three elements: activities, positive connections,
and negative connections. We have adapted them to suit our purpose of understanding the
relation between stakeholders and their drivers. Our notation for key driver diagrams
includes stakeholders, key drivers, and derived drivers instead of activities. Derived drivers
may be connected to other derived drivers or key drivers to show influence. Key drivers may
be connected to one or more stakeholders to express that these stakeholders have an interest
in the key driver. Stakeholders are connected to derived drivers in cases where they
influence these drivers.

–

focus the development.” [33] (p. 59). In most instances, a large number of drivers will play

small patterns in software development [5] (e.g. p. 124). According to Beck, “the pur-

Fig. 1.17. Key driver diagram

The patient satisfaction rate and the availability of state of the art equipment in a de-
partment both influence its reputation. A solid reputation is important when it comes to
attracting a large number of patients and especially well-insured patients who can afford
more expensive treatment. Both factors influence the department returns. A department’s
returns and costs determine its revenues, which form the major responsibility of the head
of a cardiology department.

Head of
Department

Department
revenues

Department
returns

Key

Patient stakeholder

Safety key driver

Scalability derived driver

positive influence

Driver A Driver B

Driver A Driver B

negative influence

StakeholderKey
driver

minimize driver

Stakeholder
Key

driver
maximize driver

Patient

Intervention
outcome

Waiting
time

Cardiologist

Quality
of care

Image
quality

Patient
comfort

Patient
handling

Ease of use

Doctor’s
Health Privacy

Total cost of
ownership

Procedure
length

Reputation

Patient
satisfaction

State of the art
equipment

Number of
patients

Well insured
patients

Department
costs

Department
efficiency

Length of
patients stay

Cardiologist
efficiency

Cathlab
purchase

costs

Cathlab
price

Cathlab
lifespan

Radiation
dose

Medical
errors

1 A Scenario-Based Method for Software Product Line Architecting 31

The length of patient’s stay negatively influences the department’s patient throughput
and therefore the number of patients. The cardiologist’s efficiency influences the depart-
ment efficiency and the lengths of procedures, both of which can reduce a patient’s stay.
Ease of use is one means of enhancing a cardiologist’s efficiency. Another influencing
factor is the ease with which patients can be handled during a procedure. A patient who is
comfortable will generally be more relaxed and cooperative.

An important cost factor for cardiology departments is the cost of owning cathlab
equipment. Cathlab purchase costs can be considerable. Cathlabs should therefore have
an optimal lifespan, to avoid having to buy a new cathlab too early. A longer lifespan ob-
viously influences the price of the product.

A cardiologist routinely works with X-ray emitting equipment, which can damage his
health if the necessary precautions are not taken. The radiation dose used during a proce-
dure negatively influences the safety of both cardiologist and patient. In other words, it af-
fects both the doctor’s health and the quality of care. On the other hand, higher radiation
doses lead to better image quality, which improves the intervention outcome and reduces the
risk of medical errors. In the end, this leads to improved quality of care. This is an example
of how influence diagrams can help make conflicting requirements explicit. Such conflicts
of interests force the architect to give careful consideration to what really matters. (In this
case, the conflict is resolved by delegating the decision: the system allows adjustment of the
radiation dose by its users.)

The key driver diagram gives starting points for finding the important quality attributes.
Quality attributes can be linked to stakeholders using a second influence diagram. Figure
1.18 shows the six quality attributes used during this example and their relation to stake-

Treatment selection represents how well patients are treated based on the information
created and presented by the cathlab. Frequency of use deals with the number of times that
new features are used. It is directly influenced by the performance of the new features.
Ease of use was already mentioned in the key drivers diagram. Patient accessibility means
how well the doctor can reach and handle the patient: pieces of equipment should not get
in the way. Cost here means the cost price of a complete cathlab system.

Each quality attribute is linked to one or more derived drivers, which are in turn related
to one or more key drivers and stakeholders. The paths from derived drivers to stake-
holders are taken from the key drivers diagram and condensed. The result is a clear over-
view of quality attributes and their relations with stakeholders. A more detailed view can
be obtained by inserting the quality attributes directly into the key drivers diagram.

Quality Attribute Definition

with the greatest feasible precision. As Clements et al. argue: “Quality attributes form the
basis for architectural evaluation, but simply naming the attributes by themselves is not a
sufficient basis on which to judge an architecture for suitability. [...] Without elaboration,

The quality attributes of interest should be defined in the context of the product line

E. Rommes and P. America32

each of these [quality attributes] is subject to interpretation and misunderstanding. What you

holders (a definition for each attribute can be found in Tab. 1.1).

think of as robust, your customer might consider barely adequate – or vice versa.” [10] (p. 32).

Fig. 1.18. From quality attributes to stakeholders

Quality attribute definitions are used to express both the quality requirements for the
system and the estimated quality properties of the architecture. It is beneficial to define
the metrics in a precise, quantitative way whenever possible, even if their values are based
on experience or expert intuition alone. The main advantage is that it forces one to be as
precise as possible in defining quality metrics. This can prevent misunderstanding and
disagreement among stakeholders on what is meant by a certain quality. Another advan-
tage is that the results of the assessment can be compared to experiments on real systems.

An inherent risk lies in the fact that although metrics seldom fully reflect their underlying
quality attributes, they become goals in their own right. This may lead organizations to as-
pire for suboptimal results from the original quality attribute viewpoint. The key driver dia-
gram serves as a reminder of what is really important to the stakeholders.

With their definition, the relevant architectural views for the evaluation of each metric
are determined. Two views can generally be distinguished, which may or may not be the
same:

– The determining view: This is the view where the architectural decisions are made that
determine the quality property of the system.

– The assessment view: This is the view where the quality properties can be assessed in
their context.

Table 1.1 gives metrics and associated views for the quality attributes in this example.

Quality Requirements
Quality requirements can be expressed as values for the quality attribute metrics. Such
requirements are often expressed as the threshold that is required. For example:”a
3D model should be available within three minutes or faster.” It makes sense however to
include a reasonable optimal value too. Evaluations can then show how close the system
property is to its optimum. Table 1.2 shows threshold and optimum values for each met-
ric, with their evaluation results.

Patient stakeholder

Safety key driver

Scalability derived driver

positive influence

B

B

negative influence

StakeholderKey driver

minimize driver

StakeholderKey driver

maximize driver

Performance quality attribute

A

A

Intervention outcome Cardiologist
Quality of

care

Patient

handling

Cardiologist
efficiency

Patient

Treatment

selection

Patient
accessibility

Frequency of use

Ease of use Head of
Department

Department
revenues

Performance

Cost

Key

1 A Scenario-Based Method for Software Product Line Architecting 33

Table 1.1. Metrics, requirements and CAFCR views for quality metrics

quality attribute metric unit determining
view

assessment
view

treatment selection probability of correct
diagnosis

% functional application

patient accessibility space occupied by equipment
around the patient

m3 conceptual application

frequency of use interventions making use of a
new feature

% functional application

ease of use (avg) average procedure time for
angioplasty

min functional application

ease of use (wc) worst case procedure time for
angioplasty

min functional application

performance time to display 3D model s realization functional

cost added cost per system k$ realization
conceptual

functional

Multi-view Quality Evaluation
The candidate architectures can now be evaluated for their properties relating to the quality
attributes of interest. As an example, we describe the performance of the candidate archi-
tectures when creating a 3D model from two-dimensional input:

The time it takes to display a complete 3D model to the user once the 3DRA func-
tion has been activated.

In this example, the determining view is the realization view. However, the assessment
view is the functional view, since we need to establish how much time the execution of a
single feature takes. Somehow, we need to use information from the realization scenarios
to obtain information about the functional scenarios. Figure 1.19 illustrates this ‘view

First, we find the corresponding scenarios for the functional scenarios that we are inter-
ested in. In this case, we consider the 3DRA inside scenario only, as the other scenarios ei-
ther do not include the 3DRA feature or do not have corresponding conceptual scenarios.
Moving to the application and customer views, we can then deduce which procedures use
this feature, and which types of customers perform such procedures.

To find a value for the performance metric, information from the implementation side
is needed: the conceptual and realization views. There will be four such values, as there
are four candidate architectures that offer this feature. These values will not all be different,
since some of the architectures share concepts and implementations for the feature. The
architecture scenarios and variation models hold the necessary information.

The values for the metric can be calculated as follows: First, a use case is created in the
functional view. The use case describes the precise steps taken by the user and the system.
Moving to the right, collaboration diagrams are created for each corresponding conceptual
scenario. The collaboration diagrams show which components are involved in the realiza-
tion of the use case. Architecture scenarios that have common concepts to implement this

hopping.’

E. Rommes and P. America34

Fig. 1.19. View hopping for performance assessment

particular feature will share diagrams. The diagrams can be seen as formulas to calculate
the values for the metric. The input for these formulas comes from the realization view.
We may include such information as the algorithms used, the hardware setup, the size of
the data and the speed of hardware buses. The detail of the information in the realization
view determines the precision of the resulting metric values. The point in time at which
each component is activated and how long it takes to process the data can be calculated by
mapping this information to the conceptual diagrams. We have now moved from the reali-
zation view back to the conceptual view. The next step is to use the information acquired
to calculate the amount of time the use case takes to complete. At this point, we are back
in the functional view where the results of the evaluation can be compared.

As a second example, we look at the frequency of use of 3DRA:

The assessment view is the application view, because it contains information about the in-
terventions that the product line supports. The functional view determines whether 3DRA
is available or not. In this case, getting from the determining to the assessment view is
straightforward: we take the functional scenarios that offer the 3DRA feature and find the
corresponding application views. User scenarios describe procedures with and without
3DRA, and can serve as input to help experts determine the values for the metric.

The frequency of use attribute is more complex than this evaluation suggests. It de-
pends on many other qualities such as ease of use and performance. User scenarios are a

Customer Application

Academic

Production
Basic

angioplasty

3DRA

Multi-
modality

roadmap

Realization

Very fast

3DRA

Easy

viewing

Simple
viewing

Conceptual

Fast

3DRA

Integrated

 3D viewing

Alt-Tab
Viewing

Functional

Basic

viewing

3DRA

enabled

3DRA

inside

Full multi-

modality
Clinic

Basic
 3DRA

Simple
 3DRA

Fast
3DRA

Customers

Requirement:
3DRA model

reconstruction
<10 seconds

Portable
reconstructor

Real-time
reconstructor

Default
processor

Multi
processor

Dedicated
ASIC

Default
processor

Assessment view
Determining

view

good tool for exploring such dependencies and their consequences. For example, the

1 A Scenario-Based Method for Software Product Line Architecting 35

The percentage of interventions that use 3DRA.

before the 3D model is displayed, as long as he can browse through the two-dimensional
rotational data in the meantime. Such information can be important input for the architect,
and may lead to extensions of the variation models and architecture scenarios.

In general, there is not a single way to aggregate metric values in one view into more
abstract values relating to other views. This is a topic for further research.

Evaluation Results

The evaluation will give values for the quality properties of the candidate architectures.
These values can be assembled in tabular form. For some metrics, a lower score is better
while for others a high score is preferable. (For example, a person who is on a diet will
want to score low on the metric “weight,” but high on “amount of daily exercise”). A met-
rics table can be more useful if a background color or gray scales are used. The colors or
gray scales give a quick indication of the scores for each candidate architecture without

ground indicates a more desirable property for the candidate architecture.

Table 1.2. Metrics, and estimated values for some quality atttributes

 value estimations quality requirements
quality attribute unit

modality
threshold optimum

% 81 93 75 95
patient accessibility m3 0.6 0 1 0

% 40 30 20 50
min 55 42 60 30
min 60 71 90 30

performance s 28 120 180 20
40 70 10

Strategic Evaluation

It is unlikely that any one of the candidate architectures will be completely right for every
strategic scenario. Strategic scenarios represent possible distant futures, whereas the archi-
tectures are designed with relatively short-term requirements in mind. However, project-
ing candidate architectures into the future does give feedback about the direction in which
the architecture is evolving, and about the potential of the architecture to adapt to different
futures. Previously obtained evaluation results can be reused, and additional evaluations
may be performed if necessary.

When assessing for the present, current business needs are used to determine what
properties are desirable for the product line and its architecture. When assessing for the
future, something similar can be done. A quality profile is created for each strategic sce-
nario, describing the demands of that specific future. The quality profiles share a single set
of quality attributes. Experts assign weights to each attribute according to its importance
in a strategic scenario. Marketing and architecture expertise can often complement each
other in this step. Table 1.3 shows the quality profiles for the cathlab.

treatment selection

frequency of use
ease of use (avg)
ease of use (wc)

cost k$ 60

experts may judge from the scenarios that a cardiologist is willing to wait for half a minute

multi-Full 3DRA

E. Rommes and P. America36

the user having to study the table in detail. In the example in Tab. 1.2, a lighter back-

Table 1.3. Quality profiles for strategic scenarios

Brave New
Pharma World

McHealth Clinique de
Luxe

See Treat Cure

treatment selection 0.5 0.5 0.2
patient accessibility 0.2
frequency of use 0.2 0.15
ease of use (avg) 0.25 0.3 0.05 0.15
ease of use (wc) 0.25 0.05 0.1
performance 0.1 0.2 0.2
cost 0.4 0.2

The weights can be used to calculate a single score for each candidate architecture in
each strategic scenario. The estimated values of the quality attributes are combined with
their weights in each quality profile and added up to arrive at a single end value, generally
expressed as a percentage. To this end, the quality attribute values must first be normalized
to relative scores, for example percentages of their optimal value. This can be done by a
simple linear function that maps the threshold value to 0% and the optimum to 100%. This
leads to the function:

absolute_score-thresholdrelative_score = 100 ×
optimum-threshold

.

Such a normalization function can be assigned to each of the attribute values, as shown in

 value estimations quality requirements normalized values
quality
attribute

unit full
3DRA

multi-
modality

threshold optimum unit Full
3DRA

multi-
modality

treatment
selection % 81 93 75 95 % 30 90

patient
accessibility m3 0.6 0 1 0 % 40 100

frequency of
use % 40 30 20 50 % 67 33

ease of use
(avg) min 55 42 60 30 % 17 60

ease of use
(wc) min 60 71 90 30 % 50 32

performance s 28 120 180 20 % 95 38

cost k$ 60 40 70 10 % 17 50

Table 1.4. Worst and optimal values can be used to calculate normalized values for quality
attributes

quality attribute

1 A Scenario-Based Method for Software Product Line Architecting 37

Tab. 1.4.

Multiplying these relative scores with their associated weights leads to a single per-
centage for each candidate architecture for each strategic scenario. This percentage indi-
cates how well the candidate architecture fits the strategic scenario, given the quality
profiles.

Table 1.5. Weighted scores for quality attributes of candidate architecture Full 3DRA per strategic
scenario

 Candidate architecure Full 3DRA
quality attribute Brave New

Pharma World
McHealth Clinique de Luxe See Treat Cure

treatment selection 15 0 15 6
patient accessibility 0 0 8 0
frequency of use 0 13 0 10
ease of use (avg) 4 5 1 3
ease of use (wc) 13 0 3 5
performance 0 10 18 19
cost 0 7 0 3
weighted score 32 35 45 46

Tables 1.5 and 1.6 show that the multimodality architecture is a better long-term pros-
pect. It scores especially well in the Brave New Pharma World and Clinique de Luxe stra-
tegic scenarios. The Full 3DRA architecture performs less well, with scores below 50%
for each strategic scenario. Figure 1.20 shows these results in the form of radar charts.

Brave New
Pharma World

McHealth Clinique de Luxe See Treat Cure

treatment selection 45 0 44 18
patient accessibility 0 0 20 0
frequency of use 0 7 0 5
ease of use (avg) 15 17 3 9
ease of use (wc) 8 0 2 3
performance 0 4 8 8
cost 0 20 0 10
weighted score 68 48 77 53

The side-effects of the strategic evaluation process are at least as important as the end
results. The process forces stakeholders to discuss the product line in the light of the future.
Such discussions can raise awareness of long-term issues and reveal hidden assumptions.
They can be especially useful in cases where stakeholders with different backgrounds are

Table 1.6. Weighted scores for quality attributes of candidate architecture Multimodality per
strategic scenario

quality attribute
 Candidate architecure ultimodalitym

E. Rommes and P. America38

involved: not just architects, but also marketers, application experts, and management.

Fig. 1.20. Weighted scores per strategic scenario for two candidate architectures, as radar charts

1.4.6 Select Architecture

If the evaluation shows satisfying results, the most suitable candidate architecture is se-
lected. This will not necessarily be the architecture with the highest evaluation scores.
There are many subtle factors that play a role in this decision that cannot be automated.
However, during the execution of the SBA method the architects and the other stakeholders
will have become familiar with the candidate architectures and the choices they represent.
Their knowledge helps them to make a final choice and to understand the implications of
that choice. The reasoning behind the selection made should be documented concisely, re-
ferring to the most important considerations. The candidate architecture itself must also be
further documented, so that it can be deployed in the product line organization.

The precise way in which the architecture is documented varies from situation to situa-
tion, and depends on the needs and preferences of the architect and other stakeholders of
the architecture: “To choose the appropriate set of views, you must identify the stake-
holders that depend on software architecture documentation. You must also understand
each stakeholder’s information needs. The set of stakeholders will vary, depending on the

Some of the documentation has already been carried out. The variation models, key
drivers diagram, architecture scenarios, extended scenarios and evaluation results that were
created during the process can all be included in the final architecture documentation.
Additional forms of documentation will probably also need to be added to suit the needs
of all the stakeholders. More information on documenting architectures can be found in

32

35

45

46 80

Brave New

Pharma World

McHealth

Clinique

de Luxe

See Treat

Cure

68

48

77

53 80

Brave New

Pharma World

McHealth

Clinique

de Luxe

See Treat

Cure

Full 3DRA Multimodailty

1 A Scenario-Based Method for Software Product Line Architecting 39

organization and the project.” (Clements et al. [9] , p. 290).

various sources, especially Clements et al. [9] and IEEE 1471-2000 [21].

If the evaluation results are not satisfactory, a new iteration can be started by returning
to the explore architecture choices step. The variation models can be extended with new
options so that better architecture scenarios can be created or specific areas of the models
can be worked out in more detail to get more precise assessment results.

1.4.7 Artifacts in the CAFCR Views

An artifact is a piece of information, often in the form of a diagram or table that describes
a specific aspect of the architecture. Artifacts are used to guide design decisions, to docu-
ment the rationale behind those decisions and to document the architecture in general.
Five types of artifact are used in SBA: strategic input, variation models, architecture sce-

the topic of supporting artifacts.

Customer View

Key drivers have been discussed in Sect. 1.4.5. The other supporting artifacts in the cus-
tomer view are described below.

Table 1.7. Artifacts in the CAFCR views

artifact type customer application functional conceptual realization

strategic
input

strategic scenarios
cover stories

quality profiles
architecture
scenarios

architecture
scenarios

architecture
scenarios

architecture
scenarios

architecture
scenariosscenario

candidate architectures
extended
scenario

customer
profiles user scenarios use cases collaborations collaboration

estimates

key drivers system
context

quality
attribute

definitions
principles technology

mapping

value
proposition

workflow
context

quality
requirements styles conventions

PESTLE
domain
model

quality
property
estimates

system
decomposition

supporting
artifact

customer
context

information
models

The first four types have been described in Sects. 1.1.3 and 1.1.4. This section addresses

E. Rommes and P. America40

narios, extended scenarios, and supporting artifacts (cf. Tab. 1.7).

Value Proposition
A value proposition is a management tool used to describe the added value of a business or
business proposal. According to O’Dell and Grayson, a value proposition is “the unique

tions are a useful means of explicitly relating architecture requirements to customer needs.
In the customer view, value propositions are closely related to the customer key drivers

diagram (Fig. 1.17). They describe the benefits that a product line architecture brings to the
major stakeholders. Table 1.8 holds value propositions for the two candidate architectures.

Table 1.8. Value propositions for candidate architectures Full 3DRA and Multimodality

patient 3DRA information leads to
better diagnosis and treatment

3DRA and other multimodality in-
formation leads to better diagnosis
and treatment
enables less invasive diagnostic pro-
cedures (MR, CT): may render cath-
lab appointment unnecessary
use of diagnostic roadmaps leads to
lower X-ray dose

cardiologist 3DRA information leads to

and treatment
use of diagnostic roadmaps leads to
lower X-ray dose

head of department patient satisfaction and state-
of-the-art equipment are good
for department reputation

patient satisfaction and state-of-the-
art equipment are good for depart-
ment reputation
use of non-cathlab diagnostic proce-
dures results in more efficient use of
cathlab

PESTLE Analysis
PESTLE (Politics, Economics, Society, Technology, Legal, Environment) is a categoriza-
tion of driving forces used in, e.g., marketing and business analysis. Schwartz argues that:
“As individuals, or even as companies, we have little control over driving forces. Our lever-
age for dealing with them comes from recognizing them, and understanding their effect.”

In architecting, PESTLE can be used as a tool to gain insight into external influences that
may affect the system’s use, the context in which it is used or the architecture itself.

– Politics. Demographic trends show an increase in the political influence being exerted
by elderly people. Not only is the number of elderly voters increasing, but more and
more elderly people are starting to occupy influential positions in society.

– Economics. The aging population of western countries is leading to pressure to reduce
the costs of healthcare.

– Society. The widespread use and acceptance of the internet and other digital media has
led to patients being very well informed about their disease and the benefits and risks
of possible treatments.

better diagnosis and treatment information leads to better diagnosis
3DRA and other multimodality

multimodality stakeholder Full 3DRA

1 A Scenario-Based Method for Software Product Line Architecting 41

added value an organization offers customers through their operations” [35]. Value proposi-

[37] (p. 107).

– Technology. Technologies that matured in other domains are now entering the health-
care domain. Hospitals are introducing more and more information technology in an
effort to become paperless and filmless.

– Legal. Privacy and quality regulations such as the 1996 Health Insurance Portability

– Environment. The increasing public perception of ecological harm is an influence fac-
tor. The use of throwaways like catheters and contrast agent in hospitals is important
here, as is the energy used by hospital equipment.

Customer Context Diagram
A customer context diagram (Fig. 1.21) shows the relations between the customer and the
customer’s environment. It can be seen as a special form of the system context diagram

Fig. 1.21. Customer context diagram

Patients receive primary care from their family doctor. If necessary, they are referred
to cardiology departments for specialized diagnosis and treatment. In turn, the cardiology

The department sends its billing information to the hospital administration department,
which collects it and sends it to the appropriate health management organization. In return,
the hospital receives reimbursement for the care provided, which is used to help set the
budget for the cardiology department.

Application View

System Context Diagram
A system context diagram gives an overview of the environment in which the system is to
function. The system itself is considered as a single entity in this type of diagram. Wieringa
describes the system context diagram as follows: “A data flow diagram that represents the
entire system by one data transformation is called the context diagram or level zero diagram

report and images can be used for treatment planning and during interventions.
department may refer a patient to a radiology department for diagnosis. The resulting

Cardiology
department

Patient

Radiology
department

Family

Doctor

Health

management
organization

Hospital

administration
report

referral

diagnosis

diagnosis
treatment

referral

primary
care

budget

billing
information

billing
information

reimbursement

images

E. Rommes and P. America42

of the system.” ([43] pp. 208 211). Such context diagrams focus on the exchange of data
between the system and its users.

–

notation.
–used in requirements engineering (e.g. [43] pp. 208 211) and can be created using the same

and Accountability Act (HIPAA) [41] are impacting healthcare.

The cardiologist may interact with the system using hand or foot control. The cathlab’s
user interface includes a foot pedal to start and stop image acquisition. This leaves both
hands free to deal with the patient, and with catheters and other instruments.

Information about the patient, such as echocardiograms (ECG) and other hemodynamic
information (hemo) like blood pressure, is collected by the cathlab and displayed to its users.

A power supply is needed for the system to function at all.
Cathlab systems in the field are actively maintained over many years, either on the spot

or remotely. The former approach entails a service engineer bringing a field service laptop
computer to the cathlab and accessing it using a standard ethernet connection. In the latter
case, a Virtual Private Network (VPN) connection is made from a remote service com-
puter over a modem.

The cathlab is connected to the hospital ethernet network to enable access to archive
servers and access by network computers. Data can also be burned onto DVD and carried
to a non-networked computer.

Fig. 1.22. Context diagram

1 A Scenario-Based Method for Software Product Line Architecting 43

Clements et al. state that “a context diagram shows what is in and what is out of the

refer to UML use case diagrams, UML class diagrams and informal notations as candidate
notations for context diagrams (pp. 198 200). They argue that “because context diagrams –
are often used to explain systems to people who know more about the externals of the appli-
cation than the internals, [informal] diagrams can be quite elaborate and use all sorts of
idiomatic symbols for the entities in the environment.” (p. 198). Fowler calls such diagrams

 “informal car
the cathlab.

system under construction and the external entities with which it interacts.” [9] (p. 196) They

toons” [16] (p. 145). Figure 1.22 shows an example of an informal cartoon for

Computer
Cardiologist

Workflow Context
A workflow context model shows the customer’s business process and where the system
fits in. The use of the system is therefore modeled as a single activity. Workflows can be

Before the procedure, the cardiologist reviews the patient record. Meanwhile, an assis-
tant prepares the cathlab for the procedure, and a nurse prepares the patient and brings
him to the cathlab.

During the procedure, the assistant logs all medical events such as the use of catheters,
the placing of stents and the measurements performed. Afterwards, this information is
used by the cardiologist to create a report on the procedure, and by the assistant to create
a bill. The patient is taken to the recovery area, or to intensive care in case of an emer-
gency.

Domain Model

either refer to a domain layer of software objects or to a description of the domain con-
cepts in a domain of interest. The latter, also called a conceptual model, is what we are
talking about here.

Fig. 1 .23. Workflow context diagram (UML)

NurseAssistantCardiologist

Prepare cathlab
Review patient

record

Prepare
patient

Perform
procedure

Log
procedure

Bring
patient

Create
bill

Report
procedure

Take patient
to intensive

care

Take patient
to recovery

[emergency] [else]g

E. Rommes and P. America44

–
–

show activities and their relations with the actor performing them.

modeled in many ways. An overview is given by Van der Aalst and Van Hee [1] (pp. 293
303). In Fig. 1.23, we have used UML activity diagrams [16] (pp. 129 140) because they

Larman [30] points out that the term “domain model” has two common meanings: It can

A domain model shows the most important concepts in the problem domain, and their
relations. Fowler argues that a domain model is “a mental model that allows one to under-

The cardiologist controls the X-ray system to support the acquisition of images. These
images are shown on the cathlab’s monitors along with hemo signals, like blood pressure
and echocardiograms (ECG). These signals are produced by a hemodynamics monitoring
system. Images can be the result of normal two-dimensional acquisition, or they can be

dimensional rotational angiography (3DRA) type of acquisition. Alternatively, the models
can be produced by diagnostic modalities like magnetic resonance imaging (MR) or com-
puted tomography (CT).

Fig. 1.24. Domain model of clinical information in the cathlab (UML)

Functional view

The supporting artifacts in the functional view (namely quality attribute definitions, qual-
ity requirements and quality property estimates) are discussed in Sect. 1.4.5.

Conceptual view

Principles
Witt et al. describe a principle as “a rule of behavior that leads to good things; by a princi-
ple of [architecture] we mean a specific approach to the [architectural] design process that

Blood pressure ECG

Hemo signal
Hemo monitoring

 system

MonitorCardiologist

Image

Acquisition

X-ray system

3DRA

3D model

Diagnostic
modality

MR

CT

supports
produces

shows

looks
at

shows

produces

produces

produces

rendered
as

controls

1 A Scenario-Based Method for Software Product Line Architecting 45

rendered 3D models. The cathlab can produce such images itself, using the three-

The example in Fig. 1.24 shows the part of the cathlab domain that deals with clinical
information.

–

leads to good designs.” ([45], p. 9)

stand and simplify the problem.” ([15] p. 2)
The UML class diagram ([16] pp. 49 65) is the de facto standard for domain modeling.

The Visual Architecting Process uses principles as part of its meta-architecture: “prin-

Table 1.9. Example of a principle

name use more COTS
description home-grown solutions and components should be replaced by com-

mercial off-the-shelf (COTS) alternatives whenever this is feasible
rationale the use of standard hardware and software often leads to cheaper and

faster development. The cathlab market is small, in terms of the
number of systems sold. Development costs dominate component
costs and it may, therefore, be worthwhile to buy components in-

development of new components should be limited to those cases

off-the-shelf components do not match the architecture requirements

A perhaps surprising element in the template is the counterargument. It is included to
avoid lapsing into simplistic principles: there is no point in defining principles for which
there is no alternative. The counterargument itself can always be expressed as a principle.
For example, the counterargument for this example could be put in terms of a principle la-
beled “Do It Yourself ”.

Styles
According to Shaw and Garlan, an architectural style “defines a vocabulary of compo-

Bredemeyer argues that one benefit of styles is that they “provide proven solution app-

System Decomposition
The system decomposition shows the major subsystems and their components. The styles
used in the architecture should be readily recognizable in the system decomposition dia-
gram. In Fig. 1.25, the layered style has been used to organize the components of the host
subsystem, and the pipes and filters style has been used in the imaging pipeline subsystem.

The cathlab system has two major subsystems – the host and the imaging pipeline–
connected by a system bus.

The imaging pipeline creates, stores and processes X-ray images before sending them
to the live monitor for display. The live monitor shows images as they are being acquired
in real-time.

stead of building them

where commercial alternatives will not be available on time

as closely as home-grown components

implications

counterargument

E. Rommes and P. America46

1 , p. 6). The example in Tab. 1.9 uses the Visual Architecting Process template for principles
(p. 9).

“
”

(p. 20). Well-known examples of such styles are pipes and filters (p. 21) and the layered
style (p. 25). The use of these two styles is illustrated in Fig. 1.25.

ciples can be used both to justify or refute architectural options” ([8], Ch. Structuring

nents and connector types, and a set of constraints on how they can be combined” [38]

roaches to identified architecting problems” [8], Ch. Structuring 1, p. 13).

Fig. 1.25. System decomposition

The host components are structured in three layers: a user interface layer, an application
layer, and an infrastructure layer. Components in a higher layer may use components in the
lower layers. The reference monitor can display information such as previously acquired im-
ages and measurements.

Information Models
An information model defines the structure and meaning of information that is stored in
the system and shared between its components. As Wijnstra argues: “[C]oncepts that are

model . An information model captures relevant concepts from the domain, and is inde-
pendent of the underlying technology.” [44] Such information may be exchanged via
interfaces that are specific to a given particular information model (comparable to static
typing in programming languages) or via generic interfaces. In the latter case in particular,
the information model is an essential part of the architecture description, since it cannot be
derived from the interface definition.

As an example, Fig. 1.26 shows part of the image information model, based on the

concept is important when images are displayed on a screen, stored on a medium such as
DVD or shared with other systems over a network.

Each image is part of a series of images. A presentation state contains information on
how to display images. Each series may contain zero or more images, and is part of an ex-
amination. An example of an examination is the angioplasty procedure described in Sect.
1.4.3. A study contains zero or more examinations. If, for example, a diagnostic procedure

Key

Imaging pipeline

Host

Graphical User Interface Non-Graphical User Interface

Detector

DatabaseLibraries

Image ProcessingImage Storage

Reference
monitor

Live
monitor

Bus

Dedicated
link

Dedicated
link

Viewing Archiving
Patient

administration
Acquisition 3D reconstructor

Subsystem System
component

data connection

data / control connection

relevant at several places in the architecture [...] are captured in a so-called information ,

,

1 A Scenario-Based Method for Software Product Line Architecting 47

Digital Imaging and Communications in Medicine (DICOM) standard [34]. The image

Fig. 1.26. Example of an information model (UML, redrawn from Wijnstra [44])

has been performed on a patient prior to treatment in the cathlab, then both examinations
form part of the same study. The subject of study is a patient.

Realization view
Technology Mapping
The technology mapping (Fig. 1.27) shows the technologies used to implement the con-
ceptual architecture. It can be visualized as an overlay on the system decomposition
diagram.

Fig. 1.27. Technology mapping

Imaging pipeline

Proprietary
Image Link
(PIL)

Proprietary
Image Link
(PIL)

Host
Graphical User Interface Non-Graphical User Interface

Viewing Archiving

Detector

DatabaseLibraries

Image ProcessingImage Storage

PCI 66/64

Dual 64-bit 3.60GHz processor
16GB dual-channel DDR2 400MHz SDRAM

Analog
video

Analog
video

DMADMA

MySQL

Patient
administration

Acquisition 3D reconstructor

Key

Subsystem System
component

data connection

data / control connection

Philips
MSD 301

Philips
MSD 301

Reference
monitor

Live
monitor

1
Study

Presentation
State

Patient Examination Series

is subject of comprises of results in

Image

contains

consists of

0..* 1 0..* 1 0..*

0..*

1

0..*

1..*
1 0..*

is applicable to

E. Rommes and P. America48

Although the technology mapping duplicates the information contained in the system
decomposition, it cannot replace it. In general, an overlay is intended for short-term use

Different members of the product line may share the same conceptual architecture but
have different technology mappings. Different members may have different types of
monitors, or the speed and number of processors may vary. In such cases, the technology
mapping should show the common technology used across the product line. Separate dia-
grams can be used to show the variation for different product line members.

Conventions
Conventions are rules to be followed during the implementation of the system. They serve
to streamline the development process or to achieve certain quality properties. The result
of conventions may or may not be observable in the end product. An example of a per-
formance-related convention is not to use malloc statements in inner loops. Standard cod-
ing conventions can be used to facilitate the reviewing and maintenance of code in a team
of programmers.

A product line architecture represents a significant long-term investment. The ease with
which the architecture can deal with changes such as new features, new products, and bet-
ter quality properties will have a significant impact on the success of the product line. The
design and subsequent evolution of the product line architecture determines its ability to
adapt to new requirements. It is crucial that both long-term and short-term requirements
are taken into account when designing a product line architecture.

Designing an architecture involves many trade-off decisions. Many of these decisions
are taken implicitly, drawing on the experience, talent, and intuition of the architect. One
problem is that this may lead to a tendency to follow well-trodden paths. Also, implicit
decisions are difficult to communicate to other stakeholders of the architecture.

We have presented scenario-based architecting, a method that supports the design and
evolution of product line architectures. SBA takes long-term future requirements into acc-
ount through the use of strategic scenarios during design and evaluation of architectures.
Variation modeling in all architecture views and architecture scenarios are used as means
of exploring and comparing design options and documenting design decisions. The
method was evaluated in two industrial case studies involving a product line of medical
imaging systems. We have used an example based on these case studies to explain the
method.

The evaluation of the method has so far been limited to a single domain (medical imag-
ing systems), a single organization (Philips Medical Systems) and a single product line
(cathlabs). Application of the method in other domains, organizations, and system families
could help to further identify its weaknesses and strengths.

Following SBA can be a laborious process. Tool support is one possible way of reduc-
ing this problem, in that it helps to limit the time spent keeping track of scenarios, quality

1 A Scenario-Based Method for Software Product Line Architecting 49

1.5 Conclusions and Future Research

Component Interconnect (PCI) bus could be replaced by a faster successor (like PCI X
or PCI Express) without affecting the main system decomposition.

to survive many changes in the technology that implements it. For example, the Peripheral
([9] p. 201). The system decomposition is a much more stable part of the architecture, likely

attributes and evaluation results. An automation tool could take the form of a spreadsheet
extension, possibly coupled to a database. The most effective way to limit the effort in-
volved in SBA without loosing its rewards, however, is to work iteratively and incremen-
tally. By modeling and evaluating small parts of the architecture at a time, dead ends can
be spotted quickly and time and effort can be invested in the most crucial parts. Further
research is needed to come up with heuristics and guidelines on how to do this.

Scenario correspondence is a topic that deserves more attention. Here, we have used a
simple one-one relationship to indicate that one scenario supports the requirements of an-
other scenario. In our experience, this simple approach is good enough for the commercial
views of CAFCR. In the technical views however, it soon leads to many scenarios that
have considerable overlap. It could be beneficial to find a way of combining smaller sce-
narios into larger ones and developing candidate architectures from these. An obvious
candidate approach is to extend the multi-view variation modeling technique to support
scenarios and candidate architectures as well.

The use of SBA with view sets other than CAFCR is another topic of future research.
Such research should focus on the new elements of SBA: multi-view variation modeling,
architecture scenarios and the use of strategic scenarios. We expect that it will be harder to
relate candidate architectures to strategic scenarios and business goals when using a
purely technical set of views. The relationship between view sets and quality attribute
evaluation also merits further investigation.

Transferring and combining metric values from one view to another as a general prob-
lem has not been solved. This is another topic for further research.

Acknowledgments
We wish to thank our colleagues in the SBA project: Henk Obbink, Eugene Ivanov, Cris-
tian Huiban, as well as Mugur Ionita and Dieter Hammer of the Technical University
Eindhoven, and the people at Philips Research and Philips Medical Systems that have
contributed to the project in any way, especially Jacco Wesselius. Our Philips Research
colleagues Rik Willems and Erwin Bonsma, and Jason Mansell of the European Software
Institute read draft versions of this chapter and gave valuable feedback. Finally we want to
thank Timo Käkölä, who has spent a lot of time and energy on this text. His comments
and insights were very helpful.

References

E. Rommes and P. America50

America, P., Hammer, D., Ionita, M.T., Obbink, H., Rommes, E.: Scenario-based decision making for
architectural variability in product families. In: SPLC-2004: 3rd Software Product Line Conference,
Boston, MA, USA, ed by Nord, R.L. (Springer, Berlin Heidelberg New York 2004)

 America, P., Obbink, H., Rommes, E.: Multi-view variation modeling for scenario analysis. In: PFE-5:
5th International Workshop on Product Family Engineering, Siena, Italy, ed by van der Linden, F.
(Springer, Berlin Heidelberg New York 2003)

 Bass, L., Klein, M., Bachmann, F.: Quality attribute design primitives and the attribute driven design
method. 4th International Workshop on Product Family Engineering, Bilbao, Spain, 2004

 Beck, K.: Test-Driven Development: By Example (Addison-Wesley, Reading, MA 2003)
 Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide (Addison-Wesley,

Reading, MA 1998)

1.
2.

3.

4.

5.
6.

Aalstvan der W., van Hee, K.: Workflow Management (MIT, Cambridge 2002) ,

1 A Scenario-Based Method for Software Product Line Architecting 51

(Addison-Wesley, Reading, MA 2000)
Bredemeyer, D.: Software architecture workshop. http://www.bredemeyer.com/ (2002)
Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.: Document-
ing Software Architectures – Views and Beyond (Addison-Wesley, Reading, MA 2003)
Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures – Methods and Case Studies
(Addison-Wesley, Reading, MA 2002)
Cockburn, A.: Writing Effective Use Cases (Addison-Wesley, Reading, MA 2001)
DeBaud, J.-M., Flege, O., Knauber, P.: PuLSE-DSSA – a method for the development of software refer-
ence architectures. Proceedings of the 3rd International Workshop on Software Architecture (ISAW3)
(ACM, New York 1998)
Dolan, T.J.: Architecture assessment of information-system families. Ph.D. thesis (Technical University
Eindhoven 2002)
Ferber, S., Haag, J., Savolainen, J.: Feature interaction and dependencies: modeling features for reengi-
neering a legacy product line. In: Software Product Lines: 2nd International Conference (SPLC2), ed by
Chastek, G.J. (Springer, Berlin Heidelberg New York 2002)

Fowler, M., Scott, K.: UML Distilled (Addison-Wesley, Reading, MA 1997)

tern, Germany 2000)
Gomaa, H., Webber, D.: Modeling adaptive and evolvable software product lines using the variation
point model. Proceedings of the 37th Hawaii International Conference on System Sciences (HICSS-
37) (IEEE, Edinburgh 2004)
Heijden, K.V.Q.: Scenarios: The Art of Strategic Conversation (Wiley, New York 1996)

 IEEE Architecture Working Group: IEEE Recommended Practice for Architectural Description of Soft-
ware-Intensive Systems (IEEE, Edinburgh 2000)

 Ionita, M.T.: Scenario-Based System Architecting. Ph.D. thesis (Technical University Eindhoven 2005)
 Ionita, M.T., America, P., Hammer, D.: A method for strategic scenario-based architecting. Proceedings

of the 37th Hawaii International Conference on System Sciences (HICSS-37) (IEEE, Edinburgh
2005)

 Ionita, M.T., America, P., Hammer, D., Obbink, H., Trienekes, J.J.M.: A scenario-driven approach for
value, risk and cost analysis in system architecting for innovation. WICSA 2004: 4th Working
IEEE/IFIP Conference on Software Architecture (IEEE, Edinburgh 2004)

 Ionita, M.T., America, P., Obbink, H., Hammer, D.: Quantitative architecture usability assessment with
Scenarios. In: Closing the Gaps: Software Engineering and Human--Computer Interaction, ed by Harn-
ing, M.B. Workshop at Interact 2003, Zürich, Switzerland (2003)

overview. Software Architecture Review and Assessment Workshop Proceedings (SARA) (ACM, New
York 2002)

 Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process (Addison-Wesley,
Reading, MA 1998)

 Kang, C., Cohen, S., Hess, J., Novak, W., Peterson, A.S.: Feature-Oriented Domain Analysis (FODA)
Feasibility Study (Software Engineering Institute, Pittsburgh 1990)

 Kruchten, P.: The 4+1 view model of architecture. IEEE Softw. 12: 42–50 (1995)
 Larman, C., Wiki Wiki Community: DomainModel. http://www.c2.com/cgi/wiki?DomainModel (2005)
 Malan, R., Bredemeyer, D.: The visual architecting process. http://www.bredemeyer.com/

pdf_files/WhitePapers/VisualArchitectingProcess.PDF (2005)

FORM, KobrA and QADA. Proceedings of the 26th International Conference on Software Engineering
(ICSE’04) (IEEE, Edinburgh 2004)

 7. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach

8.
9.

10.

11.

13.

12.

14.

 15. Fowler, M.: Analysis Patterns – Reusable Object Models (Addison-Wesley, Reading, MA 1997)

 17. Geyer, L.: Feature Modelling Using Design Spaces. 1. Deutscher Produktlinien Workshop (Kaiserslau-

18.

16.

19.

22.

20.

23.

21.

24.

25.

26. Ionita, M.T., Hammer, D., Obbink, H.: Scenario-based software architecture evaluation methods: an

27.

28.

29.

31.

 32. Matinlassi, M.: Comparison of software product line architecture design methods: COPA, FAST,

30.

Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q 28(1),
 75 105 (2004) –

E. Rommes and P. America52

Muller, G.: CAFCR: a multi-view method for embedded systems architecting; balancing genericity and
specificity. Ph.D. thesis (Technical University Delft 2004)

nema.org/ (2005)
O’Dell, C., Grayson, C.J.: If Only We Knew What We Know: The Transfer of Internal Knowledge and
Best Practice (Simon & Schuster, New York 1998)
Robson, C.: Real World Research, 2nd edn (Blackwell, Oxford 2002)
Schwartz, P.: The Art of the Long View. (Doubleday, Broadway 1996)
Shaw, M., Garlan, D.: Software Architecture – Perspectives on an Emerging Discipline (Prentice-Hall,
Englewood Cliffs, NJ 1996)
Smith, C.U.: Performance Engineering of Software Systems (Addison-Wesley, Reading, MA 1990)
Soni, D., Nord, R., Hofmeister, C.: Software architecture in industrial applications. Proceedings of the
17th International Conference on Software Engineering (ICSE’95) (ACM, New York 1995)

http://www.hhs.gov/ocr/hipaa/ (2005)
 42. Weinberg, G.: Systems Thinking (Dorset, New York 1992)
 43. Wieringa, R.: Requirements Engineering -- Frameworks for Understanding (Wiley, New York 1995)
 44. Wijnstra, J.G.: Components, interfaces and information models within a platform architecture. 3rd Inter-

national Conference on Generative and Component-Based Software Engineering (GCSE’01), Erfurt,
Germany (Springer, Berlin Heidelberg New York 2001)

 45. Witt, B., Baker, T., Merritt, E.: Software Architecture and Design: Principles, Models and Methods (Van
Nostrand Reinhold, New York 1994)

33.

 34. National Electric Manufacturers Association (NEMA): DICOM homepage. http://medical.

35.

36.
37.
38.

39.
40.

 41. United States Department of Health and Human Services: Office for Civil Rights – HIPAA.

2 Strategic Scenario-Based
Valuation of Product Line Roadmaps

Abstract
Developing a product line requires investments in developing the core assets, setting up the
organization and developing skills for engineers and managers. These investments are made
because of the expected outcome, which may range from reductions in time-to-market to
increased engineering efficiency and improved quality. The business case for investments in
product line engineering has to show that the expected outcome will outweigh the invest-
ments when economical criteria are applied.

In literature, models for evaluating the impact of product line engineering on develop-
ment cost can be found. Development cost is only one factor in the equation of economical
value however. Other factors are: revenues, life cycle cost, time and uncertainty. Due to
their limited scope, the models found in literature do not result in an estimation of “expected
economical value.” As a result, decision-making relying solely on the existing models dur-
ing product line roadmapping cannot be based on valid assessments of the expected eco-
nomical outcomes of the investments.

In this chapter, a more general model for evaluating the value of investments made in
product line engineering will be introduced to evaluate the expected economical value of
scenarios for product line (architecture) development. To address uncertainty about the future,
this model will use strategic scenarios and assign them a probability to capture assumptions
and expectations about the future. The chapter will also indicate how this model and the
other models can be combined into a single comprehensive framework covering all factors
in the equation of economical value for product line engineering.

2.1 Introduction

Developing a product line is a major undertaking, which requires investments in asset deve-
lopment, setting up the organization and developing skills for engineers and managers.
When all of this is done properly, the assets, organization and skills can be employed to
develop a series of products reusing a set of common assets. A large volume of literature
is available providing guidelines for starting product line engineering (see for instance [8,
19] for a comprehensive overview of product line engineering best practices, guidelines and
theory). An essential element in successful product line engineering is developing the busi-

investments in asset, organization and skill development will be outweighed by the expected
benefits of more efficient product development.

J.H. Wesselius

ness case. The business case has to convince the organization’s business management that

The business case for product line architecture development is based on future benefits:
Investments made today are expected to result in benefits in the future. The business case
should take into account that not all investments have to be made at the very beginning:
An evolutionary or iterative approach can be used. The business case must put the invest-
ments and the expected benefits on a timeline answering questions like:

– What products are expected to be released at what moment?
– What assets are needed for those products?
– What investments in assets are needed at what moment in time?
– What benefits are expected? At what moment?

The answers to these questions constitute the product line roadmap. This roadmap should
be driven by the integral value being created. As Barry Boehm argues in [7], the results
from value-driven evaluation of investments will be different from the results of cost-
driven evaluations. Many of the approaches to product line economics focus on minimiz-
ing cost. They do not address the full scope of maximizing value. In this chapter, our focus
will be on value: A business case should optimize value for money.

Since a positive business case is based on expected costs and benefits, the product line
roadmap is always made in the context of expectations and assumptions relating to future
developments. This is something that should be kept in mind: A roadmap is not made in
hindsight. In hindsight it is relatively simple to assess whether investments have been
optimal because all uncertainty is gone and facts have taken the place of expectations.

When developing the roadmap and business case for product line engineering the
uncertainty should be explicitly addressed. In [22], we introduced an approach for dealing
with uncertainty and time to judge the value of investments in product line engineering.
In this chapter we take this approach to show how it addresses some of the well-known
pitfalls and benefits in product line engineering. Furthermore, a case inspired by reality
will be discussed to show how the value estimation approach deals with various business
aspects. But first of all an overview of the value estimation approach will be given, and
existing product line cost models will be discussed.

2.2 Research Question

This work was done primarily in an industrial context. On the basis of observations in
industrial practice the following question was addressed: How can we deal with the eco-
nomical justification for the investments needed for product line engineering in an indus-
trial/commercial environment?

The relevance of this question stems from the following observations:

– To justify investments in product line engineering, expectations regarding the expected
benefits are often set too high.

– Often the expected benefits are not made explicit: “time-to-market,” “quality improve-
ment,” etc. are used as magic words that do not allow proper debate. Who can argue
against “time-to-market reduction”? Making the true value of “time-to-market reduc-
tion” tangible is essential for a proper business discussion.

– Depending on the type of business and the size of the platform to be developed,
the expected benefits may be achieved only after a relatively long period of making

54 J.H. Wesselius

investments. The business case is often based on assumptions about the future; only
when those assumptions become reality the benefits will be achieved. When assump-
tions are made about the mid/long-term future, the chances are relatively high that
the “actual future” will prove to be different from the “assumed future.” This means
that justifications for making the initial investments are often relatively weak.

2.3 Research Method

We have looked at several cases in our industrial practice, asking the following questions:

– Was there a valid business case for the investments in product line engineering?
– Were assumptions underlying the business case made explicit?
– What factors influenced the economical success or failure of the product line?

We also performed a literature survey to find out what methods for developing product
line engineering business cases were available. In this survey we noticed that the available
methods do not address all economical factors; they focus primarily on development
costs.

On the basis of this observation and the case studies we have proposed a framework for
building a product line business case. This framework was inspired by the scenario-based
architecting approach [2] (see also Chap. 1) and the ATAM method for architecture
evaluation [9].

The framework was validated by applying it on:

– Some trivial cases to determine whether our extensions to existing methods actually
make a difference (some of these trivial cases can be found in this chapter).

– A case inspired by a true project (executed at Philips Medical Systems in the period
1997–2001) to see how the framework would have performed in a practical case. Some
results of this study can be found in Sect. 2.7 of this chapter.

These case studies were executed in a relatively informal manner during an iterative proc-
ess for developing the framework.

ize that we do not claim that our proposal is the ultimate method for building product line
engineering business cases. We claim that our work shows that:

– Existing methods need to be extended for building a proper business case.
– Existing methods can be well combined into a single framework.
– The scenario-based approach we propose in this chapter offers a tool for building busi-

ness case that captures more economical factors than just development cost.

We do not claim that the application of our method results in the ultimate business case
for various reasons:

– The concept of the ultimate business case is undefined.

Considering the results of our work from a scientific point of view, it is important to real-

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 55

choose to avoid risks, whereas others may decide to accept (or even seek) risks on the

The quality of a business case cannot be expressed in a single objective value. It is my
strong conviction that quality can never be judged objectively (see [21]) and cannot be
expressed in a single value as too many factors are involved, and too many conditions
change over time. So seeking a method for arriving at the ultimate business case is fruit-
less. The research method applied in this work does therefore not focus on proving claims
regarding the absolute quality of our approach, or the absolute quality of business cases
derived by applying the approach. The results of our work are intended to provide a step-
ping-stone for future work focusing on the development of more sophisticated methods.
By discussing cases, and showing how our approach extends existing methods, we claim
to have chosen a promising route.

2.4 Overview of Our Value Evaluation Approach

Many approaches for identifying business opportunities are available in marketing litera-
ture (e.g., [12] and many others). A central theme is how to explicitly quantify the expected
profit, investments and risks. By numerically or graphically comparing various scenarios
(e.g., profit-versus-cost and investment-versus-risk grids, etc.) insight is gained into the
characteristics of investment scenarios. In cases in which a financial result will not fully
capture the value of investments, other results of the investments are quantified and val-
ued too (see for instance [3] for business parameters in non-profit organizations).

In this section our approach to estimating the expected economical value of invest-
ments in product line engineering will be presented (we first presented it on the Software
Product Line Conference 2005 [22]). Our approach is also based on a quantitative approach
to evaluating investments: costs and benefits need to be quantified. In judging the eco-
nomical value of investments two aspects are to be taken into account:

– Cash flow generated today is worth more than cash flow generated in the future.
– The future is uncertain.

It is clear that these two aspects are especially critical in businesses with a long product
(platform) life cycle. In businesses with a very short product (platform) life cycle, the
impact of time on value will be far less, and uncertainty about future developments will be
less when development times are short. When building capital equipment (like medical
equipment), these factors should not be ignored.

We propose an approach to judging the value of investments in product line engineer-
ing taking these two aspects into account:

– Net Present Value calculations can be used to compensate for the effect of time on value.
– Uncertainty about the future is made explicit by describing strategic scenarios and by

estimating the likelihood of their occurrence.

– The ultimate business case may not even exist, as what is assumed to be an optimum
business case depends on an organization’s business strategy: Some organizations may

56 J.H. Wesselius

basis of a potentially higher outcome. (see Chap. 3 for a brief discussion of the relation
between an organization s attitude to risk and the return on investment the organization
needs to expect to make a risky investment).

,

Net Present Value (NPV) calculation is a commonly used method for evaluating the value
of future income relative to the value of the investments to be made to generate that

In NPV calculations, the value of a future cash flow is discounted to compensate for the
effect of time: By using a proper discount rate the value of a future income is converted to
the cash flow of equivalent value generated today. A minimum value to be used for the
discount rate is the expected interest rate: If I were to have €1,000 today and the interest
would be 4%, it will be worth €1,480 in 10 years from now. Therefore, if I would expect
to receive €1,480 in ten years from now, its value would be equivalent to the €1,000 I
have today. Making a risky investment of €1,000 today with the promise of getting €1,480
in 10 years from now is therefore not a sensible investment.

higher discount rate for future cash flow with a high-risk profile. This is a relatively implicit
approach, which only addresses the fact that cash flow expected to be generated in the near
future is more certain than cash flow expected to be generated in the distant future. Inspired
by the scenario-based architecting approach (see for instance [2] and Chap. 1) our approach
is based on making assumptions and expectations about the future explicit by drawing up a
set of relevant scenarios for the future and estimating their likelihood.

Two central notions in our approach are:

1. Architectural scenarios. An architectural scenario represents a series of investments in
the product line. In fact, an architectural scenario is a potential product line architec-

2. Strategic scenarios. A strategic scenario represents a series of events in “the market”
that have an influence on the value of the product line. Various types of events are con-
ceivable

– The market demands a certain product (or it no longer does).
– New technology becomes available (or affordable) enabling new products or archi-

tectures.
– The organization is restructured (e.g., from central development to distributed de-

velopment or development work is outsourced).

strategic scenarios:

time
=

cashflow

(1+discount rate)
NPV

2.4.1 Net Present Value Calculations

2.4.2 Scenario-Based Value Evaluation

To compensate for risk and uncertainty, a simple approach would be to use a significantly

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 57

In fact, each of the views in the BAPO/CAFCR framework (see [15,18]) can result in

ture roadmap. For making the value estimation, each investment has two properties: the

income (see Chap. 3 for an example of the application of NPV for analyzing the economi-
cal value of reuse). NPV calculations use the following formula to compensate for the
effect of time on the value of cash flow:

required investment (i.e., cost) and the moment in time at which the investment is made.

– Business scenarios identify changes in the business model
– Process scenarios identify changes in processes for development, manufacturing,

service, etc.
– Organizational scenarios identify changes in the way (development) organization is

organized
– Scenarios in the Customer Value, Application and Functional view identify changes

in functionality that future products will be required to realize
– Realization Scenarios identify changes in the available technology

Scenarios in the conceptual view of the CAFCR-views come closest to the architectural
scenarios whose value is to be estimated.

The value of an architectural scenario will differ for different strategic scenarios:

– If an architectural scenario creates value by enabling easy development of certain fea-
tures, the value of the architectural scenario will be high in strategic scenarios that pre-
dict a high business value for those features.

– If the enabled features prove to have no business value in another strategic scenario, the
value of the architectural scenario will prove low in that strategic scenario.

There is of course a continuum between these two options. Furthermore, an architectural
scenario will support multiple features; some of which may have a declining value and
some may have a rising value. All these factors need to be dealt with when estimating the
value of architectural scenarios.

The value of architectural investment scenarios is never 100% certain, because the fu-
ture is not certain. We therefore speak of the expected NPV. The expected NPV can be
evaluated in the context of a set of strategic scenarios that make assumptions and expecta-
tions about the future explicit. Using these strategic scenarios, the expected value of archi-
tectural scenarios can be estimated in four steps:

1. Draw up the architectural scenarios
2. Draw up the most important strategic scenarios and quantify the probability that the

scenario will become reality
3. Estimate the cash flow for the architectural scenarios in combination with the strate-

gic scenarios (a) estimate the investments needed to realize the architectural
scenarios, (b) estimate the expected income for the architectural scenario if
combined with the strategic scenario

4. Calculate the expected NPV as follows:

This approach makes explicit what factors contribute to the economical justification of
investments in architectural features of the product line:

1. A high probability of actually creating value on the basis of the architectural
investments

2. A short time interval between making the architectural investment and realizing the
benefits of the investment

Expected

1

n

i=

NPV (,Arch Scenario Strat Scenario[1..n]) =

NPV (Arch Scenario, Strat Scenario [i]) * probability(Strat Scenario[i])

58 J.H. Wesselius

Three strategic scenarios were defined:

– SS1: the three products will be developed in the coming three years
– SS2: the first product will be developed immediately, and the second and third product

will be developed later (i.e., not within three years, but in a period of 5 years)
– SS3: the first product will be developed immediately, but the second and third product

will never be built

By varying the probability of the strategic scenarios it becomes clear that the option of
building the entire platform upfront is probably not a wise decision. Although the example
is artificial, it does give an indication of how an architectural reasoning process can
change when assumptions and expectations are made explicit. More examples can be

Since it is not feasible to define and evaluate a complete set of strategic and architec-
tural scenarios, the process will be an explorative process: Starting with a limited set of
scenarios, new scenarios will be added and scenarios which prove to be irrelevant will be
dropped. The four steps will typically be performed iteratively as sketched in Fig. 2.1,
finally resulting in the selection of the architectural scenario which is in view of the
assumptions about the future (made explicit in scenarios) expected to yield the highest
value. From that moment on this scenario will be the architectural roadmap of the product
line.

Several models for dealing with product line cost and value estimation can be found in the
literature. Some of the better-known approaches will be discussed briefly in the sections
below. The main questions in these sections will be:

– How do the models fit in the approach discussed in the previous section?
– What does our approach add to the existing models?

Our conclusion will be that the various models do not compete with one another. The
question “which of these methods is the best” is not a valid question; different models will
prove to address different pieces of the puzzle: from project cost estimation to product line
cost estimation, to expected value estimation for product line investments.

2.5 Existing (Product Line) Cost and Value Models

found in Sects. 2.6 and 2.7.

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 59

The higher the uncertainty, the higher the NPV of the expected benefits should be (see

the return on investment the organization needs to expect to make a risky investment). The
example we discussed in [22] showed that it really does make a difference if the effect of
NPV and strategic scenario probability are taken into account. In our example we
proposed three architectural scenarios. When only the costs or NPV are considered, the
architectural scenario, which proposes first to build the complete platform, would be most
profitable. This was based on the assumption that a product line of three products would
be built in a period of three years. When taking into account that this is not a fact, but only
an assumption, the outcome becomes different.

Chap. 3 for a brief discussion of the relation between an organization’s attitude to risk and

Fig. 2.1. The iterative roadmap optimization process

The following sections should therefore not be seen as an attempt to show that our app-

Two well-known methods for software development cost estimation are COCOMO II [5,

developed in a specific way:

– Function point analysis takes the specification of the software and counts the inputs,
outputs, internal data and interactions with external systems to estimate the size of the
software to be developed. The development effort can be estimated on the basis of the
number of function points and characteristics of the development project.

– COCOMO is based on size estimates (e.g., by using Function Point Analysis) and a set of
cost multipliers ranging from complexity to team capacity, process maturity (CMM score)
and application experience. One factor which is explicitly taken into account is the re-
quired reuse cost driver (RUSE), which is defined in such a way that two well-known

2.5.1 COCOMO II and Function Points

STEP 2

Identify important
strategic scenarios

Estimate strategic
scenario

probability

Identify promising
architectural

scenarios

Estimate cashflow
scenario

for architectural
scenario

Calculate
expected NPV
for architectural

scenario

Select highest
value architectural

scenario

Identify more
strategic scenarios

Identify more
architectural

scenarios

STEP 1

6] and Function Point Analysis [1,13]. Both methods characterize the software to be

60 J.H. Wesselius

a comprehensive framework for product line cost/value evaluation.

roach outperforms the other methods. The questions is: where do they overlap and where

sented in the previous section) will be combined into a single picture, which will form
do they complement one another? The various approaches (including the one we pre-

phenomena are accounted for (i) reuse is never for free, and (ii) making small modifica-
tions in a component to be reused is relatively expensive.

Both methods use large industry-based databases to convert the size estimates into cost.
They have proven to be useful in practice, but the models do not explicitly address
product line cost factors (except for the RUSE factor in COCOMO II).

formula is used to calculate the cost of developing a series of products on the basis of a pro-
duct line architecture. The formula identifies the cost elements for developing a product
line:

– The cost of setting up the organization for product line engineering
– The cost of developing the core asset base of the product line (reusable building blocks

of any nature: requirements, architecture, design)
– The cost of building components which are specific to one member of the product line

(building blocks that are not reusable, and therefore not considered a core asset)
– The cost of reusing the core assets. The formula explicitly expresses that the cost of

reusing components should not be ignored. From both theory and practical experience
it is clear that reusing components can become a major cost factor: finding the compo-
nents to be reused, changing the design of the rest of the software in order to be able to
reuse the component, slightly modifying the reusable components, organizational over-
head needed to coordinate the life cycle of the reused components if changes are made
in it or bugs are fixed, etc.

When these factors are combined, the formula below gives the total cost of developing a
product line consisting of the products P1...Pn.

org cab unique reuse
1

(() ())
n

i i
i

C C C P C P
=

+ + +

Corg Organizational cost to adopt product line engineering
Ccab Development cost of core asset base suited to support the product line

being developed
Cunique(P) The cost of developing unique software for product P (software that is

not based on the product line platform)
Creuse(P) The development cost to reuse core assets for the development of

product P

In [4] this formula is made more specific for a set of implementation scenarios.
This model requires other methods for estimating the basic cost parameters found in

the cost of developing the core asset base and the costs of specific components.

2.5.2 Breakdown of Product Line Cost

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 61

In [11,23] a cost model is presented that explicitly focuses on product line engineering. A

the formula. The cost modeling approaches discussed in Sect. 4.1 could be used to model

for some specific cases. The formula clearly identifies the cost factors to be considered.
The approach is useful as some costs are easily forgotten (preparing the organization and
the cost of reuse), but it is limited in three aspects:

– Only one aspect of the effectiveness of product line engineering is taken into account:
Do investments in setting up a product line effectively reduce the overall development
cost? This is not the only factor that has to be considered when building a business case
for product line engineering: In addition to development costs, all other life cycle costs
should be considered.

Life Cycle Costs are all costs during a product’s entire life cycle. Life cycle costs
are for instance: cost of creating bug fixes, cost of developing product upgrades, cost of
adapting the product when hardware or operating systems have become obsolete, cost
of keeping spare parts in stock, etc. Especially in the case of products with a relatively
long life time (capital goods, for instance medical equipment) life cycle costs may
become very significant. If the architecture has been designed well, selling life cycle
services can be very profitable. When the number of distinct configurations in the field
becomes too large, the life cycle costs can become so high that profitable life cycle ser-
vices can no longer be offered. Product line engineering can help to reduce the number
of different configurations in the field.

– Apart from costs, income effects of developing a product line must also be taken into
account (like enhanced profitability thanks to a reduction in the time-to-market).

– The formula does not take the effect of time into account. Not all costs are made at the
same moment in time. As discussed above, NPV calculations should be used to com-
pensate for this. Especially because in product line engineering many costs are made
up-front (preparing the organization and developing the core asset base) this effect
should not be ignored.

– It is not clear how this model deals with uncertainty. It is not addressed explicitly in the
publications. Knowing that much of the SEI work on architecture evaluation is based
on defining scenarios, this will probably also be their approach to dealing with uncer-
tainty in the case of evaluating the value of investments in product line engineering.

In [10] and on the associated web-site http://simple.sei.cmu.edu, the most recent version
of the model is presented. In these publications, two factors have been added to the model
(i) in addition to the cost-factors, a benefits-factor is introduced; (ii) the factor time is add-
ressed by adding a parameter t to the cost and benefits factors. The model does not pre-
scribe how to deal with the factor time itself. This is considered to be part of the models
for estimating the cost and benefits factors.

The model discussed in the section earlier defines the main types of cost in product line
engineering, but it does not indicate how those values should be determined. A model that
makes an attempt to translate characteristics of a product line into a value for cost reduc-
tion in terms of the effort to be spent on developing a complete product line can be found
in [18]. In this section, a formula is introduced for calculating a cost reduction factor for a
single common component:

2.5.3 Product Line Engineering Cost Reduction Model

In [11,23], the formula is used to evaluate the effectiveness of product line engineering

62 J.H. Wesselius

N The number of products using the common component
δp The relative change (positive or negative) in productivity is expressed as a per-

centage.
If for instance δp = +25%, this indicates that the same group of people can

develop 25% more functionality in the same time. Negative values of δp can be
used to indicate a productivity drop. This can be used to capture the cost of reuse,
which was modelled explicitly in the model presented in Sect. 2.5.2.
The commonality in requirements should be interpreted:

– if the products are built as a common component + extensions for the various
products which contain the product-specific requirements,

– the commonality is reflected in the relative size of the common component and
the total software developed for the N products, i.e.,

=ω

λ The “leverage by the product groups” parameter is used to express that the pro-
duct groups will not use all functionality built into the component by the compo-
nent development group. This means that if the functionality needed by the
component groups would require 1,000 SLOC, the component developed by the
component development group will count 1,500 SLOC if λ = 66%.
The development staff size needed to develop the functionality of the component for
the entire product range consisting of the N products when no reuse is applied.

ΔS The reduction in the staff size required for developing the functionality of the com-
ponent for the entire product range consisting of the N products when reuse is ap-
plied.

For a given set of parameters, Fig. 2.2 (taken from [18]) gives the cost reduction factor for
a varying commonality. To understand the results, assume that:
N = 3
δp = 0

= 70%
λ = 66%

= 3,000 the size of the implementation in the event of no reuse

In that case, the cost reduction would be 41% according to the formula. This can be
explained as follows:

– The functionality requires an investment of 1,000 per product (on average).
– A common component will be developed, which requires an effort of 1,246.
– Of this common component, only 66% will actually be used by the product groups,

lity to the product groups = 822.

size(common component)
size(common component) + size(extension)

which means that the common component represents only 66% of 1,246 of functiona-

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 63

ω

ω

– To ensure the full functionality, each product group would (on average) have to spend
1,000 – 822 = 178.

– The overall result would be:
Common component 1,246
Product 1 Extension 178
Product 2 Extension 178
Product 3 Extension 178
Total 1,780 = 3,000 * (1 – 41%) cost reduction factor

1,780 * 70% = 1,246 commonality

On the basis of the cost reduction factor, the paper presents a formula for determining the
throughput improvement of an organization if product line engineering is deployed. This
formula can easily be expressed as:

cost reduction
throughput improvement

cost reduction

=

cost reduction equals the result of the first formula.

In the example given above, a cost reduction factor of 41% corresponds to a throughput
improvement of 69%, which means that the same group of engineers would be able to
achieve 69% more output if product line engineering were to be deployed (at the given
parameter values).

Since the formula is applicable to a single component, it would have to be applied to
each individual component that is suitable for reuse in the product line. Or, as done in the
case presented in the second part of [17], an average value for the parameters can be used
for a larger group of components.

After presenting this formula an analysis of the economical cost and value of invest-
ments in a transition to software product line based development is presented. The analy-
sis consists of:

Factor
Factor

1−Factor

where Factor

Fig. 2.2. Relative cost avoidance benefits for selected parameters

0%

20%
40%

60%
80%

100%
120%

0%
10

.0%
20

.0%
30

.0%
40

.0%
50

.0%
60

.0%
70

.0%
80

.0%
90

.0%

10
0.0

%

Commonality

R
el

at
iv

e
be

ne
fit

reduce cost increased throughput

64 J.H. Wesselius

In the models discussed in the previous section, product line engineering costs are esti-

line adaptation. With a focus on modularity, an analysis is given of the total cost (and cost
saving) involved in introducing variability mechanisms in the software. The question ana-

points be made?
A series of formulas for calculating the cost of implementing variation points are intro-

duced for this analysis. Without going into detail about all the parameters and formulas,
the results of the analysis (for a specific set of parameters) are given in Fig. 2.3. The chart
should be understood as follows:

lyzed in this paper is: When should investments in implementing/designing variation

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 65

mated independently of the timing of investments. In [20], an analysis is made of product

– The definition of a software product line introduction scenario which provides informa-
tion on the timing of the costs and benefits

– A calculation of NPV, internal rate of return and payback time for the introduction sce-
nario. Furthermore, the results of a sensitivity analysis are presented

The section’s conclusion is that timing of the investments is crucial in building a business
case. The business case should not only provide an answer to the question whether a com-
pany should start product line engineering, but it should also provide insight into the tim-
ing of investments: Should all investments be made upfront? Or should an incremental
approach be chosen? Which elements should be built first? There is no general answer to
these questions; the answer will be very much case-dependent.

– An overview of cost elements, cost drivers and time drivers
– An overview of the relations between cost elements and cost/time drivers

Fig. 2.3. Total expected variability costs (taken from [20])

Dependency of total variability costs on
time of variability introduction

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11

Number of Systems (1 per half-year)

Ex
pe

ct
ed

 c
os

ts

Number of VIPs (vip=1)
Number of VIPs (vip=4)
Number of VIPs (vip=9)

2.5.4 NPV-Based Product Line Adoption Modeling

As a next step, the section addresses uncertainty: Implementing a variation point is
only useful when the likelihood of using the variation point is sufficiently high. The analysis
shows that delayed implementation of a variation point is only useful when the probability
of using the variation point is relatively low. On the basis of the results of the analysis,
decisions can be made regarding the introduction strategy for variation points.

with variation points. The analysis addresses only one specific aspect. The contribution of
the work to the framework presented in this paper is primarily that:

– It shows the value of introducing NPV into models for product line economics
– It introduces the concept of uncertainty and probability into reasoning about product

line economics

tions and expectations and we have proposed a general, holistic approach for dealing with
value, timing and uncertainty, which is not specific to a type of cost/income. Our app-

will discuss in Sect. 2.5.6.

We have generalized this by using strategic scenarios for explicitly specifying assump-

2.5.5 CBAM

– VIP = Variation Impact Point. This denotes a place in the software where a variation
point takes effect.

– The chart indicates the total cost involved in implementing a variation point for a given
number of VIPs (e.g., for the number of VIPs = 9, introduction of the variation point
will have an impact on 9 places in the software) at a given moment in time. This
moment is denoted by the product in which the variation point is first implemented,
assuming that 10 products will be developed over a period of 5 years (with 6 months be-
tween the product releases).

From the chart it can be concluded that if the number of VIPs is high, it is worthwhile to
implement the variation point at the very beginning. The chart also shows that if the num-
ber of VIPs is low, implementing the variation point later may be cheaper. This cost
reduction is caused by the fact that the NPV is taken into account in the formulas. When
looking at the results of this analysis, the conclusion could be that implementing a variation
point at the very beginning is the preferred strategy, but this actually to a large extent
depends on the parameters chosen in the analysis. Regardless of the specific model being
used, this analysis shows the potential effect of considering the effect of time in NPV-
based calculations.

66 J.H. Wesselius

The models discussed in the previous subsections provide ways of evaluating the
cost/value impact of product line engineering. They do not however provide a method
for systematically finding the optimum architectural scenario. In [14] an iterative

The paper presents a rather abstract analysis for modeling the cost (saving) associated

roach needs methods that provide models for modeling specific cost/income types, as we

scenarios that represent potential ways of shaping a product (line) architecture. After the
impact of the architectural scenario on some key features of the product (quality attri-
butes) has been evaluated, the business value of the architectural scenario is expressed in a
single value using a QFD-like approach. For each of the architectural scenarios a cost esti-
mate is made, which can be used to calculate the return on investment1 as the total value
generated by the architectural scenario divided by the total cost of the scenario.

– It provides an interactive sequence of steps that can be executed in a structured way to
optimize the architectural scenario selection process. In this process, the performance
indicator proposed by the CBAM (benefit/cost) can easily be replaced by evaluating
the economical value.

– It addresses the notion of uncertainty in a very specific way: The values assigned to
scenarios may vary when different stakeholders are asked about them. The method
proposes a way of dealing with this in a statistical way. This approach may or may not
be reusable when reasoning about economical value in combination with strategic sce-
narios as we propose in our method, but either way it constitutes clear support for our
choice of making uncertainty a core element in our value estimation approach.

Having studied various models for product line cost estimation, we can make the follow-
ing observations:

– The formula based on the product line cost factors (discussed in Sect. 2.5.2) quantifies
the cost of building a product line without providing any clues how to estimate the cost
of individual development activities.

to compensate for the effect of time, but it does not explicitly address all cost compo-
nents. Furthermore, it introduces the notion of uncertainty by estimating the probability
of actually using variation points.

1 Note: the term Return on Investment is not used in the conventional way in [14]. What is meant is
basically value for money.

The method is (like the ATAM method [9]) based on the definition of architectural

2.5.6 Combining the Models

– The NPV-based approach discussed in Sect. 2.5.3 additionally uses NPV calculations

The method does not really translate value into financial terms like NPV, but it makes
two contributions:

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 67

method for finding the optimum scenario is proposed. This method (called CBAM,
which is short for Cost Benefit Analysis Method) is based on a sequence of steps that
are executed iteratively to optimize the architectural scenario with respect to the gener-
ated value. The method is not specifically designed for product line engineering; it ad-
dresses the more general issue of how to reason about system/software architecture
when economical factors are to be considered.

– COCOMO II and Function Point Analysis offer a method for estimating the cost of de-
velopment efforts on a project-by-project basis, but it does not directly address the cost
of product line engineering, which is a combination of the costs involved in multiple
development projects.

– None of the methods make assumptions about the future explicit as we propose doing
by defining strategic scenarios and their probabilities.

– None of the methods discussed above explicitly address life cycle costs and income
benefits (although in [4] this is mentioned as one of the topics for future extension of
the model).

When looking at the models discussed in this section, we concluded that they do not con-
flict. What’s more, we concluded that each model could be considered an essential step in
building a value estimation framework for product line development. In Fig. 2.4, we
sketched how we would combine the various types of models into a framework.

1. On the basis of estimates of project costs, the development costs of a product line can
be estimated using the formula discussed in Sect. 2.5.2

2. If the model is completed by:

– Putting the costs on a time line (when do we develop which assets architectural
scenario/roadmap)

– Defining strategic scenarios for which expected income and life cycle cost saving
can be estimated

– Estimating the probabilities of the strategic scenarios
– The expected NPV for an architectural scenario can be estimated (NPV and multi-

plication with strategic scenario probability as discussed in Sect. 2.4.2)

Economical Value

Development Cost Factors

Project Cost
Estimation Methods

COCOMO II
Function

Point
Analysis

Cost of
Reuse

NPV
Calculation

Income
on a time line

Cost of
Organization

Cost of
Asset

Development

Cost of
Specific

Components

Strategic
Scenarios

Life Cycle
Cost

Expected
NPV

Cost on
a time line

Fig. 2.4. Framework for evaluating the expected value of investments in product line engineering

68 J.H. Wesselius

Product Line

of Product Line
Investments

To justify the approach we are proposing (as introduced in the previous section and in
Sect. 2.4.2 of this chapter), we will in this section look at some well-known pitfalls and
potential benefits of product line engineering. The questions we will try to answer are:

– Does the approach satisfactorily explain the pitfalls and benefits? Does it provide ways
of optimizing the benefits and avoiding the pitfalls?

– Does the introduction of strategic scenarios and NPV calculations add something to the
existing methods discussed in the previous section?

In the next section we will use a case study inspired by reality to validate the approach in
a more practical way.

tecture” from the beginning will require major initial investments. This will result in a
long development period for the product line platform. The first product will consequently
become available only after a long initial development period. The economical payback of
the investments will start later than might have been possible if another approach would
have been taken. This will significantly limit the return on investment. Quick introduction

Another penalty of implementing the product line architecture completely from the

It is important to realize that a company can’t afford to be prepared for everything.
What’s more, since the future is unknown, it is impossible to be prepared for everything;
by the time a complete and perfect product line architecture has been implemented, mar-
ket values will have changed, rendering the architecture imperfect after all.

One of the defences against perfectionism is to “quantify the economics.” By quantif-
ying the value of investments, economically unjustified investments can be avoided. The

future

The following example may clarify this:

1. Suppose a company is considering the development of two products P1 and P2
2. Suppose that P1 is needed next year and P2 might be needed in 6 years from now
3. Suppose that the development of P1 would cost €300,000 if no investments are made in

the product line
4. Suppose that the development of P2 would cost €500,000 if no investments are made in

the product line

2.6 Product Line Pitfalls and Benefits

2.6.1 Pitfall: Platform Over-Design and Perfectionism
“Perfectionism” is a major pitfall. Building “the perfect and complete product line archi-

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 69

on the market and incremental implementation of the architecture might in many cases be
a more attractive approach.

perfection-pitfall will be addressed by identifying investments that do not realize return on
investment in the following two ways:

beginning is that many architectural features might never be used in products. This is
clearly a waste of time and money.

– The NPV calculations if return on investment is to be expected only in the distant

– The strategic scenario probability if the return on investment will only be achieved in
strategic scenarios with a relatively low probability

5. Suppose that the investment in the product line needed to make it perfectly suitable for
the development of P2 would cost €200,000 in addition to the cost of developing P1 and
that the development of P2 would cost only €100,000 if those investments in product
line engineering would have been made

– AS1: fully prepare the platform for P2
– AS2: ignore P2, just build P1 and develop P2 when the need arises

1 which says P2 will be needed in 6 years from
now has a probability of X% and that the probability of a scenario SS2 in which P2 will
never be developed is 100 – X%.

The expected values of the architectural scenarios based on these parameters are given in
the top chart in Fig. 2.5 (calculated with the formula which can be found in Sect. 2.4.2,
using an NPV discount rate of 7%). The chart only shows the expected NPV of the devel-
opment costs. The conclusion that can be drawn from this chart is that architectural sce-
nario AS1 will be beneficial only when the likelihood of P2 development is more than
75%.

When the NPV and strategic scenarios are ignored, the conclusion might be different:

1. The total cost of AS1 would be €600,000 (for P1 and P2 together)
2. The total cost of AS2 would be €800,000

This would lead to the conclusion that fully preparing the platform would be justified. It
could be argued that no company will make an investment decision based on just cost cal-
culations, but in conjunction with the cost model presented in Sect. 2.5.2, studies have
been performed to look into the economical justification of product line engineering solely

When the NPV is taken into account, but strategic scenarios are ignored, the same conclu-
sion is reached: the NPV for developing P1 and P2

1. Based on AS1 would be -€566,634
2. Based on AS2 would be -€633,171

This example shows how our approach helps to avoid the “perfection pitfall”: While the
other models discussed in Sect. 2.5 would justify full platform preparation, our approach
indicates that this is only justified when the likelihood of developing both products is suf-
ficiently high.

The charts in Fig. 2.5 also indicate the effect of expected timing. If the second assumption
1 is needed next year and P2 might be

The expected NPV will change as indicated in the bottom chart in Fig. 2.5. In that case
preparing the platform for P2 will become justified already when the likelihood of the stra-
tegic scenario is 55%. Since the uncertainty will typically be less when a product is
scheduled for introduction in the near future, preparing the platform for P2 will probably

on the basis of cost comparisons [4,11].

70 J.H. Wesselius

6. Two architectural scenarios are defined:

7. Suppose that the strategic scenario SS

 needed one year later.
Suppose that Pin the case description is changed into:

This pitfall is rather obvious: When the time horizon is set too near, investment decisions

other hand, future costs (life cycle costs) may also be ignored. Since investments in pro-
duct line engineering need sufficient time to be profitable, care should be taken to ensure
that the planning horizon is set to a reasonable minimum.

An organization may be inclined to set a planning horizon too close after bad experiences
with investments in building platforms. When investments can only be justified by income
in the relatively distant future, the risk of not realizing the payback will be high. To avoid
this risk, the organization may choose to set the planning horizon close: “Do not make as-
sumptions about any income from the platform in more than two years from now.”

Fig. 2.5. Expected NPV (cost only) for two architectural scenarios (top: assuming P in 2001, bot-
tom: assuming P2 in 2006)

2.6.2 Pitfall: Short-Term Focus

will not be optimum because opportunities for positive cash flow will be ignored. On the

Expected NPV (cost only for 2 architectural scenarios)

700000

600000

500000

400000

300000

200000

−

−

−

−

−

−

−

100000

0

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Probability of strategic scenario 1 (P2 will be developed)

Ex
pe

ct
ed

 N
PV

 (o
nl

y
co

st
)

Architectural Scenario 1 (fully prepare for P2 2) Architectural Scenario 2 (do not prepare for P)

Expected NPV (cost only for 2 architectural scenarios)

−900000
−800000
−700000
−600000
−500000
−400000
−300000
−200000
−100000

0

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Probability of strategic scenario 1 (P2 will be developed)

Ex
pe

ct
ed

 N
PV

 (o
nl

y
co

st
)

Architectural Scenario 1 (fully prepare for P2) Architectural Scenario 2 (do not prepare for P)2

2

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 71

be justified in this case. This phenomenon will remain unobserved if NPV and strategic
scenario probability are not taken into account.

Does the approach to making value judgments we propose help to avoid this pitfall?

– No, it does not: An organization that is sceptical about platform development and that
has chosen not to consider benefits in the relatively distant future will simply not define
the strategic scenarios that will result in future income.

– But by challenging the organization to make its assumptions explicit, and by challeng-
ing it to define scenarios, and by allowing it to give very low probability estimates, the
process of thinking about the future can be catalyzed.

– Furthermore, a sceptical organization will appreciate the effect of using NPV calcula-
tions instead of plain cost calculations in the business case, since the effect of NPV will
reduce the value of income expected in the distant future. NPV calculations are such a
common tool that sceptical organizations will certainly reject approaches that do not
use them to take the effect of time into account.

Only a few words on this issue: In organizations having a reputation in changing priori-
ties, planning a product line architecture is a hazardous task. A certain level of constancy
is needed. If this is not the case, the justification for decisions made today will prove ir-

choose to be prepared for anything (by building “the perfect platform”). But as discussed
in Sect. 2.6.1, this is not a very good idea!

Our method does not solve this problem, but it does offer an important tool:

– By explicitly defining strategic scenarios, assumptions about the future are made exp-
licit. This helps to avoid changing assumptions and strategy too often.

– If assumptions nevertheless change, the consequences of the changes can be made exp-
licit by re-evaluating the investment choices. This way the architecture roadmap may
be reconsidered to be better aligned with the new insights.

– Estimating the strategic scenario probability makes “uncertainty” part of the game. If
an organization is not entirely certain, this can be made explicit, which all of a sudden
makes uncertainty a “normal thing” that can be dealt with in a structured way.

– Finally, the method allows one to play “what-if scenarios.” This can be very helpful in
performing a sensitivity analysis: What will happen if assumptions change? For which
assumptions are the architectural scenarios most sensitive? This could result in select-
ing not the architectural scenario with the highest expected NPV, but one with a
slightly lower expected NPV that is less sensitive to changing assumptions.

One of the clearest benefits of product line engineering is time-to-market reduction: When
the market demands for a new product, the time between identifying the market need
and releasing the product can be reduced significantly if a platform has been developed con-
taining major building blocks that can be reused. An effect that enhances the value of plat-

relevant tomorrow. As a risk avoidance strategy, the development organization may

2.6.3 Pitfall: Lack of Vision and Clear Decision Making (No Constancy)

2.6.4 Benefit: Time-to-Market Reduction

72 J.H. Wesselius

form reuse is the typical market price development of innovative products: When a product
is introduced, the market is willing to pay a premium price, but after some time (when similar

or improved products have entered the market) the price will drop. This means that the high-
est margins are to be expected in the first years of a product’s lifetime. Having a product in
the market in those early years can therefore be very profitable. If the development of a
product line platform will help to market a product at an early stage, this can be a very posi-
tive business case for investments in product line engineering.

But there may also be a penalty to product line engineering: If a product line platform
must be developed in its entirety before a first product can be launched, some time will be
lost at the beginning. This may mean that the expected high income in the first couple of
years will not be realized (while a company is busy building its platform, competitors may
introduce new products on the market).

To assess the effect, consider the following example:

1. Suppose that the development of a product platform will take 3 years, and will require
an investment of €500,000 per year.

2. Suppose that developing a product without reuse will take 2 years and cost €200,000
per year.

3. Suppose that developing a product on the basis of the platform will take 1 year and cost
€100,000

4. Suppose that a new product is expected to be demanded by the market every 2 years:

– P2005 in 2005
– P2007 in 2007
– P2009 in 2009, etc.

5. Suppose that the products have a commercial life of 4 years and that the income gener-
ated by those products may be:

– 1st year €1,000,000
– 2nd year €750,000
– 3rd year €250,000
– 4th year €100,000

6. Assume two architectural scenarios:

– AS1: do not build the platform, just build the products one by one
– AS2: build the platform first

To enable comparison of the two scenarios, we have made sure that the cumulative invest-
ments in both scenarios will be roughly the same in the period 2005-2014 (€2,000,000 for
AS1 and €1,900,000 for AS2).
Note that in AS2 the platform will not be ready in 2005, and therefore the high income
expected for P2005 will be lost. As from 2007 (P2007), the platform will allow the intro-
duction of a product at the most profitable time (i.e., generating the expected €1,000,000
income).

As is to be expected, the NPV for AS1 would be better than the NPV of AS2 in the first
years. But the NPV of AS2 will become better as new products are launched at lower
costs, and with a shorter time-to-market. But since the future is never certain, consider
two strategic scenarios:

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 73

– SS1: products will be demanded that can be developed on the basis of the platform
until at least 2013

– SS2: products will be demanded that can be developed on the basis of the platform
until 2009. From 2011 onwards, the products will require features that require an
entirely different platform.

It will be clear that AS2 will be most profitable in combination with SS1. The NPVs of the
architectural and strategic scenarios are shown in Fig. 2.6. The effect of taking the prob-
ability of the two strategic scenarios into account is shown in Fig. 2.7: Depending on the
probability of SS1 (and SS2, which is set to 100%-probability(SS1)), either AS1 or AS2
may be the preferred architectural scenario (calculated using the formula introduced in
Sect. 2.4.2)

When the risk of SS2 being realized is ignored, the business case for building the plat-
form would be positive in the example shown in Fig. 2.6. in 2011 the NPV of AS2 would
be higher than the NPV of AS1 (this is rather long in true business cases, but that doesn’t
make any difference for the sake of the discussion of this example). When only cash flow
is taken into account (and the effect of NPV is ignored), this would be the case in 2009
already.

Fig. 2.6. Expected NPV for architectural scenarios AS1 and AS2 and strategic scenarios SS1 and SS2

The outcome of the product line investment decision might be different on the basis of the
results from the simplified scenario analysis: The business case will only be positive when
the probability of SS1 is more than 50%. How sure can an organization be about market
demands in 2011?

74 J.H. Wesselius

Cumulative NPV for Architectural/Strategic Scenario Combinations

-1500000

-1000000

-500000

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Year

C
um

ul
ta

tiv
e

N
PV

AS1 in case of SS1 AS1 in case of SS2 AS2 in case of SS1 AS2 in case of SS2

Expected NPV for AS1 and AS2

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Likelihood of SS1

Ex
pe

ct
ed

 N
PV

Architectural Scenario 1: do not build the platform
Architectural Scenario 2: build the platform

The example shows that time-to-market can be a major selling point for investments in
product line engineering, but the effect of the initial investments should be accounted for
in two ways:

– Money spent early has a greater value than money spent in later years: The investments
in developing the platform upfront have a major impact on the business case in the
given example.

– If an investment is justified only on the basis of the assumption that the market will
demand a complete range of future products, allowance should be made for the risk
of the platform proving to be unsuitable for developing those products. In that case,
the return on investment of the platform development may never be realized.

Without going into too much detail, we will now devote a few words to this potential
benefit of product line engineering. When products with a relatively long lifetime are sold,
selling upgrades of those products may be very lucrative. There are several types of possi-
ble upgrades (i) problem-solving upgrades (Service Packs, Patches, etc.) and (ii) upgrades
with new functionality/improved performance. These two types are typically dealt with in
different ways: Problem-solving upgrades are commonly distributed free of charge, while
upgrades with new functionality will in most cases generate income.

When products are built on a shared platform, one of the potential benefits is that
upgrades need to be built only once. Or even better, as a new product is being developed,

2.6.5 Benefit: Cross-Product Compatibility

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 75

upgrades for the existing installed base may become available at very low development
costs. When products in the installed base do not share the same platform, this spin-off will
not be available, and neither will the associated income of upgrade sales be generated.

Fig. 2.7. The effect of platform development on expected NPV: impact of time-to-market

justification of a product line business case, it can be handled in a straightforward manner:

– By defining strategic scenarios that define the need for upgrades of either type
– By defining the expected reduction of the cost of developing upgrades, and the ex-

pected additional income from upgrade sales.

This section was not intended to provide a comprehensive discussion of cross-product
compatibility related benefits of product development. The main purpose of this brief dis-

nario for them and estimating the expected NPV. Since the concept of “strategic scenarios”
is very broad, any assumption or expectation about the future can be used as a strategic
scenario for the sake of analyzing the value of investments in product line engineering.
Estimating the cash flow consequences and estimating the scenario’s probability are the
key steps in our approach, which are applicable in all cases.

2

In the period 1996–2001, Philips Medical Systems developed a product line of CT scan-
ners. The relevance of considering strategic scenario probability and time will be dis-

description will be given of the nature of the product line. In the remainder of this section,
several strategic scenarios will be discussed. The impact of the probability of each scenario

explicitly taking the strategic scenario and its probability into account.

X-rays. In a CT scanner, the X-ray tube and an X-ray detector are rotated around the
patient at a high speed (in those days 0.7 s per rotation). During the rotation the X-ray de-
tector acquires data representing the X-ray absorption. Typically, 1,440 views are acquired
during each rotation (4 views per degree rotation). From the acquired views a 3D voxel (=
a pixel in 3D) space can be reconstructed. The value of each voxel corresponds to the X-ray
absorption at the position of the voxel in the human body. In a CT scanner, the voxel
value can be directly related to the tissue type.

2 The case described in this section is based on actual events, but for the sake of making the example
concise and to illustrate the effects of considering the consequence of time and strategic scenario
probability in architectural decision-making in the following sections, I took the liberty to simplify
things and to change the facts a little bit. In practice, many more aspects play a role. These have
been ignored in the case description. The case description should not create the impression that things
are completely straightforward in industrial practice.

2.7 A Case “Inspired By Reality”

2.7.1 Description of the Case

A CT scanner is a medical modality for acquiring diagnostic information with the aid of

Our approach does not address this phenomenon explicitly, but if it is important for the

76 J.H. Wesselius

cussion is to indicate how most other business opportunities and threats can be addressed:
By defining the relevant strategic scenarios, defining the impact of the architectural sce-

cussed in this section on the basis of experiences gained in this project. First a brief

on the product line architecture will be discussed in order to show the relevance of

The scanner can be logically split into two main subsystems:

– the Front End (FE), which consists of the scanner gantry (X-ray tube, X-ray
detector, High Voltage, Cooling Units, etc.)

– the Back End (BE), which is the operator console that is used for planning scans,
starting and stopping scans, reviewing the scanned images and integration with the
hospital IT infrastructure

The Front End is placed in a lead-shielded room and the Back End is outside this room to
avoid the risk of the clinical staff being exposed to the X-rays (Fig. 2.8).

Fig. 2.8. The CT-Scanner Product Line (mid-end FE, high-end FE, and Back End)

For various reasons it was decided that the product line of CT scanners would be deve-
loped in close cooperation with two companies:

– A US partner would build a Front End for the mid-range of the market.
– A Japanese partner would build a Front End for the high-end of the market.
– Philips would build the Back End so that it would be usable with both the US and the

Japanese Front Ends. The Back End would be usable for both the high-end and the
mid-end of the market, since features of the Front End made real market segment dif-
ferentiation. The Back End was primarily a differentiator for the product’s attractive-
ness within the market segment targeted by the specification of the Front End.

Without going into detail about the specific functions and features of the CT scanner
product line, we will focus on the design of the interface between the FE and BE. Which
variants were considered, and what would the impact of considering strategic scenario
probability have been?

The first approach in building the product line would be to minimize the interface software;
the highest level of reuse would be achieved if the FE–BE interface would be the same for
both FEs. In that case, a completely reusable BE could be built as shown in Fig. 2.9.

In this architectural scenario, the cost would probably be minimal. Of course, the cost
of defining the common interface should not be ignored, but if it is assumed that this can
be done relatively easily, this will probably be outweighed by the reduced cost of building

2.7.2 Strategic Scenario 1: Level of Alignment of Business Goals

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 77

and maintaining the software for the FE–BE interface on the BE-side.

BE

FE 1 FE 2

Fig. 2.9. Architectural Scenario 1: minimize interface software – one FE–BE interface for both
scanners

But what if it should prove to be not so simple to define the common FE–BE interface?
What if this should prove to be not a task requiring a major effort, but a task with a very
long lead-time? This strategic scenario proved important when building the product line.

In the introduction it was already mentioned that the product line would be developed
by three partners on three different continents. This is not a typical case for fast and easy
communication. If the intention was moreover for the Japanese partner to reuse the FE for
its own systems for the Japanese market (on the basis of its own BE), the situation would
suddenly become a bit more complex (see Fig. 2.10):

– The Japanese partner would not be as flexible as one would hope, because it would also
be building a BE with a specific architecture.

– The Japanese partner would have its own requirements for the interface because it would
have its own commercial strategy for introducing a CT-scanner on its home market.

– The Japanese partner may also have plans to develop a mid-range or low-range scanner
for its home market for which it would want to reuse the BE it had developed for the high-
range scanner. Such plans may not yet be concrete and may not be shared with the
other two partners.

BE

FE 1 FE 2

BE (Japan)

Fig. 2.10. Architectural scenario 1 in combination with the strategic scenario: The Japanese partner
also uses FE 1 for the Japanese market with its own back end

The fact that the three partners did not have a completely aligned strategy due to the
“home market concern” of one of the FE builders has a major impact on the likelihood of the
three partners being able to define a common FE–BE interface. It decreases the likelihood of
this being done in a very short time. This would have serious time-to-market consequences.

78 J.H. Wesselius

In the value estimation of this architectural scenario, the consequences of the strategic sce-
nario based on one partner building an entire system for its home market should be taken
into account: It has consequences for the likelihood of the interface being quickly defined.

Besides the time-to-market consequences, other phenomena should be taken into account,
too:
– Since the FE–BE interface would also be used for the Japanese system, the interface can-

not be easily changed if necessary. The consequences for the Japanese system would al-
ways have to be taken into account, resulting in complex (frustrating) discussions, as it
may be completely unclear to the other two partners why the Japanese partner would re-
ject certain change proposals for the FE–BE interface definition.

– The timing of the development of FE 1 and FE 2 would be coupled to that of the devel-
opment of the Japanese BE, because once the interface has been implemented in the
Japanese BE, that implementation will become a de facto standard for the interface: If
the interface definition is not 100% complete and unambiguous, the Japanese interpre-
tation of the interface definition may become the standard definition (if they were to
use this interpretation for both their BE and their FE, they would have a working sys-
tem that could be marketed).

Therefore, a second architectural scenario may be necessary to completely decouple the
interface discussions between Philips and the two FE partners. Philips would have sepa-
rate discussions with each of them and would define a FE-API in the BE to abstract from
the exact FE–BE protocol. For Philips the challenge would be to make sure that one FE-API
could be designed to cover the characteristics of both FE–BE interfaces. The design would
then be as shown in Fig. 2.11.

BE

FE 1 FE 2

BE (Japan)

FE-API

Two implementations
for the API

Fig. 2.11. Architectural scenario 2: Two different FE–BE interface definitions under one FE-API

The cost of the second scenario would be higher:

– Two FE–BE interface definitions would have to be made
– The FE-API would have to be designed
– Two implementations of the API would have to be built
– At least part of the functionality of the sub-system of the BE would have to be tested twice

If the likelihood of defining one common FE–BE interface with both partners in a short
time would be judged to be rather small, this approach could still be beneficial.

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 79

To study how our approach would address this issue, we considered the following expected
value calculation3:

– Assume that the investment needed to make the common interface definition would

– Assume that implementing the common interface would cost €100k.
– Assume that the income generated by the sale of the product would decrease every year.
– Figure 2.12 shows the cash flow for developing the interface for a range of scenarios: Each

scenario is based on an assumption about the time needed to develop the interface.

The above assumptions would result in the expected NPV calculation given in Fig. 2.12.
The calculation was made using the formula given in Sect. 2.4.2 with an NPV discount
rate of 10%. It indicates that the NPV expected for this architectural scenario for six stra-
tegic scenarios reflecting the uncertainty regarding the time needed to develop the inter-
face, for which the likelihood of occurrence has been estimated, is €382k.

Now take the second architectural scenario: two separate FE–BE interfaces are defined, a
FE-API is developed and two different implementations of this API are made. Assume that:

– Defining the interface takes twice the effort (though it is more realistic to assume that it
will be less): €20k per year.

– Designing the API and building two implementations for the API costs €500k (again a
lower sum would be more realistic, since this is 5 times the effort needed to build the
shared interface).

3 The numbers used in the example are artificial. They have been chosen to clarify the approach.
They are not representative for the real investments made in the projects. The outcome of the
evaluation cannot be used to evaluate decisions made in the project.

NPV likelihood NPV

2005 2006 2007 2008 2009 2010 2011 2012
1 −10 −100 500 400 300 200 100 50
2 −10 −10 −100 400 300 200 100 50
3 −10 −10 −10 − 100 300 200 100 50
4 −10 −10 −10 − 10 −100 200 100 50
5 −10 −10 −10 − 10 −10 −100 100 50
6 −10 −10 −10 − 10 −10 −10 −100 50

1 −10 −91 413 301 205 124 56 26 1024 10% 102
2 −10 − 9 − 83 301 205 124 56 26 610 25% 152
3 −10 − 9 − 8 −75 205 124 56 26 309 30% 93
4 −10 − 9 −8 −8 − 68 124 56 26 103 20% 21
5 −10 − 9 −8 −8 − 7 −62 56 26 − 22 10% − 2
6 −10 − 9 −8 −8 − 7 − 6 −56 26 − 79 5% −4

Total 362

Net Present Value

Years to define
Interface

Fig. 2.12. Expected NPV calculations for architectural scenario 1: Build one common FE–BE

definition
interface for six strategic scenarios reflecting the time needed to develop the shared interface

Cash F low (per year) Total Expected

80 J.H. Wesselius

amount to €10k per year.

architectural scenario 1. It would not be fair to claim that the preferred architectural scenario
can be chosen on the basis of this calculation because many more factors will be involved in
practice. But the example does show how our approach can help to make the assumptions
explicit and to calculate the expected NPV on the basis of these assumptions. It is worthwhile
to note that a straightforward cost calculation (also taking NPV into account) would have
resulted in a preference for architectural scenario 1: The total cost of defining and implement-
ing the interface would in this scenario be less than in the second architectural scenario.

Fig. 2.13. Expected NPV calculations for architectural scenario 2: Define two FE–BE interfaces for
four strategic scenarios reflecting the time needed to develop the two interface definitions

In reality, the project was started on the basis of the first architectural scenario, but when
reaching a common FE–BE interface definition proved cumbersome, it was decided to restart
the interface definition activities separately. This still proved to be cumbersome, but in the
end the two interfaces were defined and the API was implemented, resulting in the release of
two CT scanners. To facilitate the work of our BE software engineers, even a third implemen-
tation of the FE–BE interface was made, which could be run without a FE connected to
the BE. This FE simulator served as the test bench for the application software running on
top of the FE-API.

The architectural scenario shown in Fig. 2.11 is based on the assumption that one FE-API
will be defined, covering the complete functionality of the FEs. If this is the case, one
piece of application software can be built that uses the FE-API to access the full FE func-
tionality. A set of strategic scenarios could be defined to study the effect of diverging
functionality: What if one FE is expected to offer more functionality than the other?

If one FE offers a function that the other FE does not offer, this can of course be handled
with a common API. If a function is made part of the API that returns the availability of a
function, it is not so hard to disable a function and remove its UI from the BE when it is

2.7.3 Strategic Scenario 2: Similarity of Functionality

Total NPV likelihood Expected
NPV

2005 2006 2007 2008 2009 2010 2011 2012
1 −20 −500 500 400 300 200 100 50
2 −20 -20 −500 400 300 200 100 50
3 −20 −20 −20 −500 300 200 100 50
4 −20 −20 −20 − 20 −500 200 100 50

1 −20 −455 413 301 205 124 56 26 650 50% 325
2 −20 −18 −413 301 205 124 56 26 260 35% 91
3 −20 −18 −17 −376 205 124 56 26 −19 10% − 2
4 −20 −18 −17 −15 −342 124 56 26 −205 5% − 10

Total 404

Net Present Value

Years to define
Interface

Cash Flow (per year)

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 81

– Estimate the likelihood of two interface definitions being developed (one for each part-
ner). The likelihood of this being done quickly is much higher than in the previous case.

An example expected NPV calculation based on these assumptions is shown in Fig. 2.13.
This example shows an expected NPV of €404k, which is higher than the expected NPV of

systems? Or what if functions are needed in the BE with a user interface that is very specific
to the FE? Is it still worthwhile to define one common API for that?

In this specific case, everything went just fine, apart from the FE-diagnostic functions;
a separate application was developed for diagnosing and calibrating the system (called the
“service application” in the remainder). At first, our intention was to build one service applica-
tion to be used for both systems. This application would contain the full BE application
discussed in the previous subsection for normal operation of the system during system
calibration and diagnostics. In addition to the functions for normal usage, the service ap-
plication would provide a set of calibration and diagnostics functions. A separate API
(FE-SVC-API) would be defined for the service application that would contain functions
that were only available to the service application and not to the clinical application.

This architectural scenario was chosen on the basis of the assumption that a common
FE-SVC-API could be defined for both FEs. The outcome of the system design activi-
ties was that the two FEs were based on entirely different designs: The entire diagnos-
tics and calibration package for one of the FEs would be built by the FE supplier and in
the other case the FE would offer a set of interfaces for calibrating and diagnosing the
FE and Philips would build the user interface needed to use those functions. Again, it
would technically have been possible to build a common service application, but non-
technical circumstances made it impossible to reach a common service approach for
both FEs. And again our initial focus was primary on reuse and code size/cost reduc-
tion. If we had considered the likelihood of the scenario of the three partners not being
able to arrive at a common approach, we would probably have chosen the approach out-
lined in Fig. 2.14 from the beginning.

Fig. 2.14. Architectural scenario 3: FE specific service extensions to the common service applica-
tion

of the interface? Let’s consider two options:

2.7.4 Strategic Scenario 3: Evolving System Functionality

FE 1 FE 2

SVC FE 2SVC-FE 1

BE
Common

FE-API

SVC
Common

not available at the connected FE. In such cases, the architecture shown in Fig. 2.11 works
just fine. But what if functions that need a very specific interface become available in both

82 J.H. Wesselius

When defining the FE–BE interface, one of the questions was: What is the functional level

– A relatively high level, with the BE sending a request to the FE to perform a complete
function, for example: perform a scout scan, perform a volume scan, move the table to
a certain position, reconstruct images and transfer them, etc.

– A relatively low level, with the BE sending commands to individual components of the
FE; not necessarily at the lowest level of motion controllers, but at least at such a level
that the BE development group can program new scan sequences, e.g., to build a se-
quence such as: Start low-dose X-ray and image reconstruction, keep the table at a cer-
tain position for some time until the contrast agent has passed the scanning position,
then move to high-dose scanning, and start moving the table in the direction of the
blood flow, stop scanning when a certain position is reached, etc.

– In the former design, with high-level interfaces, building new scan sequences is hard,
and involves re-negotiating the FE–BE interface with (both?) FE partners. In the lat-
ter design, Philips would have been able to build new scan sequences on the BE.

But there’s a drawback to the second interface design: It requires far more detailed under-
standing of the internals of the FE to be considered when building the BE. What’s more, as
the two FEs differ substantially in terms of their architecture, it may prove difficult to actually
develop a single common BE. In view of time-to-market considerations for the first scan-
ners, it would probably be wise to take the high-level interface approach.

For a good analysis of the values and costs of the two architectural scenarios, strategic
scenarios would have to be developed indicating:

– The functionality expected to be developed in the coming 5 years (for instance based
on clinical roadmaps) and their business value

– The value of reducing time-to-market for the first systems

One way of doing that this using our approach would be as follows:

1. Architectural scenario 1: building the initial product using a high-level interface:

– Assume that building the initial system(s) would cost €100k
– Assume that the initial system(s) can be built in one year
– Assume that the income from selling these systems will start at €500k per year and

will after that decrease every year
– Assume that building a feature requiring changes to the high-level interface costs

€100k in total, and has a lead time of 2 years (due to interface negotiations with the
FE supplier)

– Assume that a new feature will generate an income of €400k in the first year and
that this will then decrease every year

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 83

Architectural Scenario 1 2005 2006 2007 2008 2009 2010

Initial Product 100 500 250 125 60 0
New Feature in 2006 50 50 300 200 100
New Feature in 2007 50 50 300 200
New Feature in 2008 50 50 300

Total
Initial Product 100 455 207 94 41 0 696
New Feature in 2006 45 41 225 137 62 337
New Feature in 2007 41 38 205 124 250
New Feature in 2008 38 34 186 115

Cash Flow

NPV

−
− −

−
− −

−
−
−

−
−−

−

−

The cash flow and NPV for this scenario can be summarized as follows:

The cash flow and NPV for this scenario can be summarized as follows:

From the cash flow and NPV summary it can be easily inferred that the first scenario is
preferable when it is unlikely that features will be developed in the future that require
changes to the high-level FE interface since the initial costs are much lower. It will how-
ever also be clear that the NPV of additional features involving changes to the high-level
interface will be much higher in the second architectural scenario.
To compare the effect, assume the following:

– N new features will be developed every year
– For each the likelihood of a change to the high-level interface being needed is p
– Then the expected number of features requiring high-level interface changes is n*p
– The expected NPV can now be calculated for given values of N and p, as:

The expected NPV for both architectural scenarios is given for N=3 in Fig. 2.15. This
figure shows that for this value of N, the crossover point is at 20%. So, the question is
how likely is it that changes to the high-level interface will be necessary?

Of course, many factors have been ignored in this example that should be considered
when making a full-scoped analysis of the two architectural scenarios, e.g.,

– Apart from the n*p features per year that would require modifications to the high-level
 interface, n*(1–p) features that will not involve modifications to the interface are expected

Architectural Scenario 2 2005 2006 2007 2008 2009 2010

Initial Product 100 100 250 125 60 0
New Feature in 2006 50 400 300 200 100
New Feature in 2007 50 400 300 200
New Feature in 2008 50 400 300

Total
Initial Product 100 91 207 94 41 0 151
New Feature in 2006 45 331 225 137 62 709
New Feature in 2007 41 301 205 124 588
New Feature in 2008 38 273 186 422

NPV

Cash Flow

NPV (initial product) + n * p * (NPV (feature 2006) + NPV (feature 2007) + NPV (feature 2008))

−
−

−

−
−

−
−

−
−−

84 J.H. Wesselius

2. Architectural scenario 2: build the product(s) using the low-level interface:

– Assume that building the initial system(s) would cost €200k and would involve a
lead time of 2 years.

– Assume that the features that would require changes to the high-level interface
would cost only €50k that can be implemented in one year in the second architec-
tural scenario, since no interface changes would have to be negotiated with the FE
supplier.

to be developed each year. It is reasonable to assume that developing these features
will cost less effort using the high-level interface than using the low-level interface.

– It would make sense to explicitly name the features in order to (i) give an effort esti-
mate per feature and (ii) estimate the expected impact on income for each feature indi-
vidually.

The aim of the example is not to give a detailed analysis of the two architectural scenarios,
but to provide an indication of how this question could be addressed using our approach.
When the full scope of the analysis is considered it however becomes evident that a com-
plete analysis would result in an explosion of scenarios. The number of cash flow estimates
to be made for a full analysis would be overwhelming. Therefore, striving for completeness
should be avoided. It is important to realize that the business case will never be the “formal
proof” of the justification of making investments. The business case should provide the
rational; assumptions and value assessments should be made explicit. The most relevant
scenarios (both architectural and strategic) should be selected on the basis of business and
architectural insights to provide a solid foundation for making business decisions.

Fig. 2.15. Expected NPV for two architectural scenarios (assuming N = 3)

On the basis of the preceding sections, we can draw one conclusion from the strategic
scenarios discussed in this section: The optimum design of the FE–BE interface of this CT
scanner product line cannot be determined by just looking at the expected size or cost of
the (interface) software. Software size (i.e., cost) is a sure concern, but it is not the only
concern. If great amounts of time would be wasted in harmonizing an interface among
several cooperating companies, factors such as time-to-market and straightforward code
size minimization may have to be weighed up against one another. The likelihood of such
harmonization being reached and maintained for the future is a parameter that needs to be
considered in the architecture selection process.

2.7.5 Summary

0

1000

2000

3000

0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0% 45.0% 50.0%

Likelihood of modifications being
needed to implement a new feature

N
PV

High-level interface Low-level interface

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 85

lent starting points for finding factors that will have to be considered in assessing the
value of architectural scenarios:
– Business considerations: will business values change? Are the business goals of all

partners well aligned? etc.
– Architectural considerations: changes in the CAFCR-views: changes of Customer

vaues, changes in Application scenarios, changes in Functionality, changes in techno-
logy (technical Concept and Realization view).

– Process considerations: will development processes, manufacturing processes, service
processes, etc. change?

– Organizational considerations: will the organization change, e.g., will partners be involved?
Will multi-site development be needed? etc.

This chapter describes a structured approach to defining a product line architecture road-
map (which is an architectural roadmap) based on value estimations of the necessary
investments, the expected life cycle costs and the expected income. The main elements of
the approach are:

– Making the value and cost of architectural investments explicit.
– Value generated in the future is worth less than value generated today (NPV calcula-

tions).
– A set of strategic scenarios is used to evaluate the likelihood of the potential value of

investments actually being realized in the product line architecture.

A set of simple formulas shows how the value calculations associated with this approach
could be done.

An important warning is not to be tempted to think that spreadsheets and charts provide
the ultimate answers. Estimating the values and probabilities is difficult. It is not uncom-
mon for estimates to prove to be wrong by an order of magnitude (as experienced in prac-
tice and supported by the literature [12], page 32 The Dark Side to the Financial Approaches
to Project Evaluation). This means that the analyses discussed in this chapter constitute a
starting point for business discussions. In the end, it boils down to business managers
making business decisions. Formulas and charts are means for helping them reason about
profitability, costs and risks. So one should not be surprised or frustrated if their business
choices should prove to differ from the outcome of the analysis. If business managers
have used the analysis to clarify their assumptions and to substantiate their choices, the
analytical effort will have been useful.

This chapter offers a framework identifying the aspects that are to be considered in
product line architecture roadmapping. Complete implementation of this approach will
prove impractical because of the overwhelming number of conceivable scenarios and the
explosive number of scenario combinations to be considered. The “art of roadmapping”
consist of reducing the number of scenarios: only consider those that will have the greatest
business impact. In practice, the execution of the roadmapping process will be neither lin-
ear, nor complete, nor completely rational.

The views in the BAPO/CAFCR framework [15,16] (see also Chap. 1) provide excel-

86 J.H. Wesselius

2.8 Conclusions and Future Research

In this respect, creating an architecture roadmap is no different from designing software
or a system. The recommendations made by Parnas and Clements in [17] for a design process
also apply to the architecture roadmapping process: Having a rational process in mind will
steer the process by identifying the issues to be considered and their dependencies. As
such, it will improve the execution of the roadmapping activities in practice, and define a
framework for structuring the deliverables.

The work presented in this chapter shows the main mechanisms involved in reasoning
about product line roadmaps from an economical point of view. Although the mechanisms
are relatively straightforward from a theoretical point of view, many issues remain for further
academic and industrial work:

– Executing the process is cumbersome, too many scenarios may seem relevant and it is
not clear how to decide when enough scenarios have been considered. How to end the
process?

– Determining the probability of scenarios is difficult. It is difficult to objectively assess
whether probabilities have been reasonably assigned. Can criteria be defined to check the
consistency of the assigned probabilities?

– Similarly, many of the cash flow estimates are relatively arbitrary. It is not necessary to
judge the absolute correctness of estimates, but it is important to assure their consis-
tency. Can this be done in a structured way?

– From the case study it is evident that a thorough analysis of the value of architectural
scenarios is complex. Many factors have to be considered and many scenarios need to
be studied. The process is information-intensive: Many attributes of the scenarios have
to be managed, and since this will be an iterative process, many of the evaluations have
to be repeated several times as new scenarios are added. Although the calculations are tri-
vial, having to repeat them numerously will completely frustrate the process. As long
as simple cases are being considered, a simple spreadsheet will do the job, but when
tackling cases involving more than three or four strategic and architectural scenarios, a
spreadsheet-based approach will be sure to fail.

– This does not mean that the approach itself is too complex; the complexity mirrors the
complexity of the problem we are trying to solve.

– Future work needs to be done to develop tools that support the process by structuring
the information to be supplied in a scenario database and by automating the computa-
tions to be done. Furthermore, the tool should provide means for graphically represent-
ing the results of the evaluations.

– We have chosen a relatively simple approach for dealing with the probability of strate-
gic scenarios. Better results can probably be obtained by using probability distributions.
One reason for using probability distributions is that it is often difficult to assess archi-
tectural scenario probability. Answering a question like “what is the likelihood of some
event occurring two years from now?” is rather difficult. It may be more convenient to
say that the event is expected to occur two years from now with a certain bandwidth of
uncertainty. In fact, the way we handled the duration of the FE–BE interface definition
activities in Sect. 2.7.2 of the CT scanner case description was an initial attempt at us-
ing a probability distribution.

– And finally, the cost models discussed in Sect. 2.5 are of great value for doing the basic
cost estimates. Can these models be extended to cover life cycle costs, too? Or can
similar models be developed which specifically address the life cycle costs? Can models be

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 87

used to quantify the benefits of product line engineering in economical terms to get
away from the relatively arbitrary cash flow estimates?

Although there are a lot of issues that could be subject to future research, the basic mes-
sage of our approach is relevant in industrial practice: Strategic scenarios can be used to
make assumptions and expectations explicit and to serve as foundation for evaluating the
value of architectural scenarios. Especially in businesses with long product line life cycles, and
long development times this will serve as a means to deal with the consequences of uncer-
tainty and time on value.

I wish to thank Klaus Schmid and John McGregor for reviewing this chapter and provi-
ding me with useful comments. I also wish to thank Timo Käkölä for reviewing all the
versions, including the very first ones, of this chapter. His comments (and those of reviewers of
[22]) made me rewrite this chapter completely resulting in very significant improvements.

Acknowledgments

References

1. Albrecht, A.J.: Measuring application development productivity. Proceedings of the Joint SHARE, GUIDE
and IBM Application Development Symposium, October 1979

 2. America, P., Hammer, D., Ionita, M.T., Obbink, H., Rommes, E.: Scenario-based decision making for
architectural variability in product families. In: Software Product Lines, ed by Nord, R.L., Proceedings of
3rd International Conference, SPLC 2004, Boston, MA, USA, 30 August–2 September 2004. Lectures
Notes in Computer Science, vol 3154 (Springer, Berlin Heidelberg New York 2004) pp 283–303

 3. Andreasen, A.R., Kotler, P.: Strategic Marketing for Nonprofit Organizations, 6th edn (Pearson Educa-
tional International 2003)

 4. Böckle, G., Clements, P., McGregor, J.D., Muthig, D., Schmid, K.: Calculating ROI for software product
lines. IEEE Softw. 21(3), 23–31 (2004)

 5. Boehm, B.W.: Software Engineering Economics (Prentice-Hall, Englewood Cliffs, NJ 1981)
 6. Boehm, B.W.: Software Cost Estimation with COCOMO II (Prentice Hall, Englewood Cliffs, NJ 2000)
 7. Boehm, B.W.: Value-based software engineering: overview and agenda. In: Value-Based Software

Engineering, ed by Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P. (Springer, Berlin Heidelberg
New York 2006)

 8. Clements, P.C., Northrop, L.: Software Product Lines – Practices and Patterns. The SEI Series in Software
Engineering (Addison-Wesley, Reading, MA 2002)

 9. Clements, P.C., Kazman, R., Klein, M.: Evaluating Software Architectures – Methods and Case Studies.
The SEI Series in Software Engineering (Addison-Wesley, Reading, MA 2002)

10. Clements, P.C., McGregor, J.D., Cohen, S.G.: The structured intuitive model for product line economics
(SIMPLE). Technical report, CMU/SEI-2005-TR003 (The Software Engineering Institute/Carnegie Mellon
University). http://www.sei.cmu.edu/publications/documents/05.reports/05tr003.html

11. Cohen, S.: Predicting when product line investments pays. Technical note, CMU/SEI-2003-TN-017 (The
Software Engineering Institute/Carnegie Mellon University). http://www.sei.cmu.edu/publications/documents/
03.reports/03tn017.html

12. Cooper, R.G., Edget, S.J., Kleinschmidt, E.J.: Portfolio Management for New Products (Addison-Wesley,
Reading, MA 1998)

13. Jones, C.: Applied Software Measurement – Assuring Productivity and Quality, 2nd edn (McGraw Hill,
New York 1996)

88 J.H. Wesselius

2 Strategic Scenario-Based Valuation of Product Line Roadmaps 89

14. Kazman, R., Asundi, J., Klein, M.: Making architecture design decisions: an economic approach. Technical
report, CMU/SEI-2002-TR-35 (The Software Engineering Institute/Carnegie Mellon University
September2002). http://www.sei.cmu.edu/publications /documents/02.reports/02tr035.html

15. Muller, G., Müller, J.,Wijnstra, J.G.: Multi-view architecting. http://www.extra.research.philips.com/natlab/
sysarch/IntegratingCAFCRPaper.pdf

16. Muller, G.: CAFCR: a multi-view method for embedded systems architecting; balancing genericity and
specificity. Ph.D. thesis (Delft University of Technology 2004). http://www.GaudiSite.nl/ThesisBook.pdf

17. Parnas, D.L., Clements, P.C.: A rational design process: how and why to fake it. IEEE Trans. Softw. Eng.
19(2), 251–257 (February 2003)

18. Peterson, D.: Economics of software product lines. In: PFE-5: 5th International Workshop on Product line
Engineering, Siena, Italy, 4–6 November 2003, ed by van der Linden, F. Lecture Notes in Computer
Science, vol 3014 (Springer, Berlin Heidelberg New York 2003) pp 381–402. http://www.convergys.com/
pdf/whitepapers/ econ_spl.pdf

19. Pohl, K., Böckle G., van der Linden, F.: Software Product Line Engineering – Foundations, Principles, and
Techniques (Springer, Berlin Heidelberg New York 2005)

20. Schmid, K.: A quantitative model of the value of architecture in product line adoption. In: PFE-5: 5th
International Workshop on Product line Engineering, Siena, Italy, 4–6 November 2003, ed by van der
Linden, F. Lecture Notes in Computer Science, vol 3014 (Springer, Berlin Heidelberg New York 2003)
pp 32–43

21. Wesselius, J.H.: Software quality control & software requirements specification. Ph.D. thesis (Delft
University of Technology April 1993). http://home.planet.nl/~jacco.wesselius/phd-thesis.pdf

22. Wesselius, J.H.: Modelling architectural value: cash flow, time and uncertainty. In: SPLC 2005, ed by
Obbink, H., Pohl, K. Lecture Notes in Computer Science, vol 3714 (Springer, Berlin Heidelberg New York

23. Economics of Software Product Lines: http://www.sei.cmu.edu/productlines/economics_spl.html
2005) pp 89–95. DOI: 10.1007/11554844_10

3 Experiences and Expectations Regarding

J. Mansell

Abstract

3.1 Introduction

Though systematic reuse promises several large business benefits, it is not optimally leveraged
in the industry. Small- and medium-sized organizations especially often face big hurdles in
adopting systematic reuse practices. The literature on systematic reuse tends to focus on large
sized organizations and lacks case studies dealing with small- and medium-sized organizations.
It does not help these companies decide whether systematic reuse would be an adequate
approach for them. In order to ease the decision making for adopting systematic reuse by
small- and medium-sized companies, the European Software Institute (ESI) performed a study
of the risks and opportunities of reuse within a group of software development organizations in
the Basque Country. This chapter provides an overview of the most relevant findings in the study,
which will enable small- and medium-sized organizations foresee issues that have to be ade-
quately addressed when adopting systematic reuse.

The development of software has always been concerned with reusing previous develop-
ments in order to provide solutions to new problems emerging from the market. In most
organizations the systematic reuse initiative is initially led by an expert or by a process
improvement team, which is asked by management to provide evidence that the investment
required will have an adequate return on investment. In many cases the initiative leader is

In order to provide an insight into what are the reuse opportunities and the problems an
organization faces when implementing a systematic reuse initiative, the European Soft-
ware Institute (ESI) performed a study of the risks and opportunities of reuse within a
group of software development organizations in the Basque Country (a heavily industrial-

addresses organizations that are considering implementing a systematic software reuse

not capable of providing adequate facts and figures that management is asking for

ized area, with many small- and medium-sized software-related companies). This study

the Introduction of Systematic Reuse in Small-
and Medium-Sized Companies

ness value of the initiative because such quantification has never been done before, or other
reasons. Even though the maturity of the techniques and mechanisms for implementing
systematic reuse is considerable, additional problems are faced when adapting these prac-
tices to a specific organizational context.

because of lack of knowledge of economics, the lack of expertise on quantifying the busi-

J. Mansell

Special focus is given to the analysis of the following aspects:

– Areas within the organizations most likely to adopt reuse as a mechanism to support

92

the development of software applications.

how the organizations that have participated in the case study have addressed problems
encountered in the introduction of systematic reuse practices.

Moreover, the knowledge captured in this research will allow practitioners to identify

initiative and wish to have an idea of what other organizations have undergone, how they
have resolved problems encountered and what is the expected evolution of the initiative. At
the same time this study provides a means to decide on economic grounds whether adopting
systematic reuse is beneficial in an identified organizational business domain.

The study was undertaken by the ESI in eight companies with the purpose of providing
an overview of the market interest on software reuse and identifying the benefits of imple-
menting a systematic reuse initiative in these organizations and the reuse practices already
carried out by the organizations. At the same time, the study was useful in identifying the
practices in small- and medium-sized companies starting out with reuse.

In many small- and medium-sized organizations driven by hectic every day work, reuse is
undertaken on an ad hoc basis depending on individuals’ initiatives and knowledge. There is

practices may provide benefits in the short term, this is only true if the time spent identifying
what to reuse is less than that one would have spent developing from scratch [1].

This study provides an outline of the reuse possibilities identified in this group of organi-
zations, the current reuse practices in these organizations as well as the infrastructure and

by implementing reuse.
– Risks identified in the organizations that can negatively influence the success of im-

and organization.
– The organizations’ attitudes towards risk with respect to the investment required for

achieving the expected benefits of implementing reuse.
– State of the infrastructure (technology, tools, etc.) and support (assigned resources,

training, etc.) within the organizations in order to allow for reuse and the effective use
of reuse techniques and practices in the projects.

solely from the viewpoint of their statistical significance but also as views on the actual
situations in many organizations and as a guideline for practical implementation of sys-
tematic reuse strategies.

The chapter is divided into several sections: Section 3.2 provides an overview of the
methods used to carry out the study, Sect. 3.3 provides the overall results and findings of

sions based on the analysis performed.

For this purpose, two levels of analytic techniques have been used: Reuse–Check and
Reuse–Invest. As shown later, the results of the analysis performed must not be understood

– Benefits that the organizations gain in these specific analyzed areas of the organization

plementing a reuse initiative, analizing factors related to personnel, processes, products

the experiments carried out, Sect. 3.4 provides the Reuse–Invest specific results, Sect. 3.5
provides the Reuse–Check specific results and finally Sect. 3.6 provides a set of conclu-

resources provided to favor reuse in the long term.

usually little organizational and managerial support for these practices. Even though these

3.2 Method and Sample of the Study

3.2.1 Method of the Study

Reuse–Invest guides the analysis of the reuse opportunities within a domain (in terms
of estimated economic benefits that reuse allows to achieve) and the evaluation of the
ability of the organization to exploit these opportunities (in terms of the readiness of the
organization to adopt reuse practices). By combining reuse opportunities and organiza-
tional ability with organizational preferences, Reuse–Invest provides valuable data and
recommendations so that the domain selection is performed systematically. Important to
notice that in this context, “domain” refers to “organizational domain,” considered as an
area in the organization where a specific kind of systems are developed for specific needs
or markets.

Reuse–Invest can be applied to more than one domain to make a comparison among
them and to select the most appropriate one. However, the methodology described here
considers only one domain. To apply Reuse–Invest to several domains some steps of the
methodology need to be performed multiple times.

Reuse–Invest allows the organization to:

– Attain a deeper knowledge of the reuse opportunities in the organization.
– Identify the aspects of the organization that are not ready for adopting reuse practices.
– Identify the domains that are adequate for introducing reuse practices.
– Make an informed selection and prioritization of reuse investments.
– Adequate reuse strategy to the specific characteristics of the organization.
– Establish a baseline to be used as a starting point of a systematic monitoring of pro-

gress achieved.

As a result of the performing Reuse–Invest, the organization is provided with all the esti-
mation data gathered during the analysis, an aggregation of the estimations to facilitate
domain selection and recommendations for the introduction of reuse practices. The infor-
mation provided is the following:

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 93

The diagnosis and evaluations consisted of the execution of two different analysis meth-

These are carried out within the target organizations by means of interviews and joint
meetings with the different stakeholders in the analyzed domains. While Reuse–Invest
allows the identification of whether it is economically beneficial to introduce systematic
reuse within a specific domain, Reuse–Check provides the means to introduce reuse prac-
tices within the organization.

Reuse–Invest allows us to make a quick analysis of the risks versus benefits for deter-
mining the adequacy of introducing reuse practices within a specific domain.

The major objective of Reuse–Invest is to analyze reuse potential for candidate do-
mains in order to make an economically justified selection. The selection of the domain in
which reuse efforts should be devoted is one of the most important decisions to increase
the overall success of a reuse institutionalization program.

ods developed by the European Software Institute: Reuse–Invest [2,21] and Reuse–Check.

– Economic information. This information includes the estimations of investments, sav-
ings and expenses to be made by the organization and the economic indicator that is
determined from these estimations, the benefits that the reuse program would obtain in

– Risk information. This information includes a risk profile that collects the estimations
made by the organization and the risk level that determines from these estimations the
readiness of the domain for starting a reuse program.

both the economic information and risk information to help taking the final decision.
The organization should decide if the expected return is enough to make the transition
feasible in assuming the risks or if, on the contrary, the risk is too high given the ex-
pected return.

– Reuse potential graphic. This graphic summarizes all the information collected during
the analysis in order to help in the selection of an adequate domain for reuse invest-
ment. If more than one domain takes part in the analysis, this graphic helps the organi-

– Recommendations. This information includes actions that could be taken within the
domain in order to prepare it for reuse introduction, issues that require special attten-
tion when performing the transition, etc.

On the other hand, once a domain for reuse is selected, or ad hoc reuse initiatives are in
place, the second method Reuse–Check is used. Reuse–Check’s main objective is to ana-
lyze the software reuse practices already deployed in a specific domain of the organization
as the first step for introducing organization-wide systematic reuse practices. The process

itly addresses reuse based product-lines.
In general terms, this analysis provides the basis for starting an initiative for systematic

reuse in an organization. The analysis is performed through group sessions at the cus-
tomer site where information about the reuse activities and reuse initiatives is captured.
Group sessions involving several individuals are included to collect different perspectives
on the problem and promote discussion. Then, this information is structured, processed
and analyzed with the staff organization to identify improvement actions to support cur-
rent reuse practices and ensure a proper infrastructure for reuse adoption. Improvement
actions derived from this work will keep the organization aligned with principles of
systematic reuse.

Thus Reuse–Check allows the organization to:

 Take the first steps in systematic reuse adoption with a small effort and a short analysis
period.

– Understand the current situation of the organization with respect to software reuse, be
aware of the current initiatives undertaken towards software reuse in the organization
and the expectations that staff have. This way the organization will be able to deter-
mine reuse objectives that satisfy those expectations.

J. Mansell94

the domain. Related information can be found in [18].

– Organizational attitude towards risk [19]. This information includes a way of rellating

zation to prioritize those domains and select the most appropriate one [2].

framework used in this assessment is the R-SPICE model [17], which provides a refine-
ment of the reuse organizational process category, ORG.6, from SPICE [9], which explic-

– Obtain the basis from which to prepare a reuse adoption plan by identifying the main
actions and areas where the organization should focus to enable transitioning to sys-
tematic reuse according to the defined objectives.

As a result of using Reuse–Check the organization is provided with:

– A description of the current situation of the organization in relation to reuse processes.
It contains initiatives detected and their correspondence with reuse infrastructure and
reuse based development, identifying good practices and weaknesses found during the
analysis. It will also describe the expectations and current barriers for reuse that staff
that participated in the analysis has identified.

– A description of a sequence of actions to be undertaken in order to support good cur-
rent reuse practices and to work towards the implementation of systematic reuse within
the organization.

3.2.2 Sample of the Study

The sample of the study involves eight organizations. These companies were selected out
of one hundred organizations which were informed of the possibility of participating in the
study. From this initial list thirty organizations were selected based on organization charac-
teristics, which made these organizations more reliable for implementing reuse practices.

The criteria followed for this filtering and reasoning are the following:

The main idea behind selecting this kind of organizations is that these methods are in-
tended to provide quick and low cost analysis methods. These methods can also be
used in large organizations.

– Organizations in specific domains in which the dedication and experience was high,
implying that they may already have considered reuse as a choice.

From the thirty organizations contacted by phone, twelve showed interest in participating
in the study. From these twelve, eight committed to participate in the study. The other
four, even though they were interested in participating, could not take part due to a lack of
time and resources required for the analysis.

The organizations that showed interest in participating, received a detailed description
of the two types of analysis (R-Invest and R-Check) and the relationship between the two
analyses. Based on this information provided, each organization selected the analysis they
were interested in, five Reuse–Invest analyses were performed and four Reuse–Check

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 95

analyses. Fig. 3.1 provides an overview of the organizations interest in participating in the
study.

– Small and medium-sized organizations from 5 to 500 people in the development area.

Participated in
the study
8 (11%)

Lack of
resources

4 (6%)

Not interested
18 (26%)

Filtered out
70 (57%)

Fig. 3.1. General overview of organizations interested in participating in the study

For a correct understanding and interpretation of this report it has to be considered that
the organizations in which the analyses have been carried out are organizations interested
in systematic reuse, that were interested in identifying and predicting the benefits of intro-
ducing reuse and understanding how to adapt or complete their current reuse practices in
order to implement systematic reuse more effectively. Moreover most of the organiza-
tions analyzed already implemented reuse and a reuse culture was present. “A reuse
culture is one that encourages and encourages developers to reuse code and to assemble

This section provides a brief overview of the type of organizations that have participated
in the study. The organizations have been identified by a letter in order to maintain the
privacy of the organizations participating in the study.

Organization A

Organization A is the application development department of over 400 people that have to
develop internally commercial management tools both for the purchasing department as well
as for the organization’s sales department. Each time a new product is added, a semi-
manual update is required in both departments. Also, each time a new sales centre is built
the required software is also deployed and the adequate tests are performed. Every time a
new sales centre is deployed there is a full time person dedicated to maintenance work for
a period of three months.

The organization is interested in providing a stable deployment architecture which cap-
tures all the known and foreseen variability in order to reduce maintenance effort once the
sales centre is deployed and at the same time reducing the deployment time and effort. In
order to address this change they are interested in identifying the cost introducing reuse
will have and the return on investment of this cost. The analyzed domain is the internal
development department on business software.

J. Mansell96

systems rather than writing everything from scratch” [15].

3.2.3 Overview of Participating Organizations

Organization B

This organization is a public owned organization of over 200 employees which is mainly
focused in providing the solutions the government requires to provide their services to the
citizens. The main problem addressed is the need for an Internet centralized solution to
provide all the services the government needs to offer the citizens online. This organization
has to deal with a huge number of change requests and update requests due to a great
amount of errors encountered when dealing with a high degree of legacy systems which in
many cases are not interoperable.

The main reason for participating in the study was to identify whether the organization
is at a stage in which it can deal with addressing new methods such as reuse-based ones
and at the same time identify whether the economical implications of the reuse approach
will really provide a return on investment. The analyzed domain is the Internet service
deployment department.

Organization C

This organization is a small one just over 20 employees and its main focus is in the devel-
opment of project and software management applications. At the same time they provide
full support for their products once they have been deployed. Currently the most costly
activity they perform is maintenance at customer’s site.

Their main interest is in identifying whether reuse is the right choice in order to reduce
the maintenance costs as well as a considerably reduce their development times. The ana-
lyzed domain is the development of software projects and maintenance department.

Organization D

This organization provides full integrated organization management solutions. This or-
ganization consists of 40 employees. Their main focus is in providing updated version of
their ERP system every year. The current status is that most of the system is unstable and
needs to be retuned for each release. The main purpose of this department is single pro-
duct development.

Their interest in the study is identifying whether reuse could help them in producing
a standard architecture of their system which is stable and therefore reduce the cost of
releasing new versions of their solution.

Organization E

Organization E deals with the provision of internal support tools for application devel-
opment on windows. The department of organization E that is interested in the study pro-
vides internal solutions for helping the applications developers in the development of
windows based applications. The organization consists of 31 employees from whom 5 are
involved in the department studied. The main purpose of this department is the provision of
internal software libraries to the development department. The main problem that cur-
rently needs to be addressed is that being a small organization they need to identify in
economic terms if really spending a single day in a reuse initiative will provide benefits in
the short term.

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 97

In order to describe the state of practice about reuse in the analyzed organizations, we
must take into account that the analysis undertaken in these organizations was of two
types and therefore the information obtained is presented in the following manner:

– Objectives which are to be achieved in the organizations by introducing reuse.
– Barriers detected that hinder an adequate implementation of a systematic reuse approach.
– Type of domains analyzed within the organizations.
– Existing expectations for the development of future work in the field of systematic

reuse within the organization.

Even though Reuse–Invest and Reuse–Check have different objectives and use different
mechanisms, they partially share similar information. This section contains the common
aspects identified from both types of analysis.

Reuse Objectives

Any organization when addressing a reuse initiative has certain objectives. These are un-
derstood as the expectations reuse creates in the organizations. The most relevant objec-
tives identified from both analyses are:

– Reduction in the development cost and time for new developments.
– Increase and ensure the quality and reliability of the developed software products.
– Increase coherence in the way software is coded as well as the user interfaces provided

by the different applications developed within an organization.
– Share specific complex knowledge and solutions to similar problems. In this way the

knowledge and experience of the people involved in software development will be
transformed into business knowledge of the organization.

– Reduce and ease maintenance of final systems deployed in the customer.

Identified Barriers when Considering Reuse

When an organization addresses any change, in this case reuse, there are certain barriers
that must be considered. The barriers identified in the companies which were analyzed are
classified as follows:

Staff related:

– Initial skepticism of the usefulness and success of the reuse initiative. People in the
organization do not understand the need to change the current practices of software de-
velopment and the benefits that can be obtained. This makes it difficult to implement a
reuse initiative which is continuously being criticized if it does not provide the ex-
pected positive results.

J. Mansell98

3.3 State of Practice of Systematic Reuse in the Case Study

Common Aspects for All the Organizations

– Lack of personnel and training culture. Systematic reuse requires a change in the way
of understanding the application development process and at the same time requires a
training effort in order to understand and undertake new reuse concepts.

Organization:

– Lack of communication. For a correct implementation of a reuse initiative there is a
need for fluent communication among the personnel in the organization. This is espe-
cially critical in organizations, which have subcontracted personnel, high staff rotation,
or given their business are distributed in customer offices.

– Lack of time and resources required for the initial investment required for starting im-
plementing reuse and the required steps for identifying and defining reusable assets,
creation of reusable assets and maintenance. Project-based organizations do not have
the time required to face developments which in order to be more generic, require more
effort. In most cases dedicating additional effort for future reuse is not considered use-
ful.

– Lack of discipline in development and configuration management. Software reuse re-
quires a certain level of management maturity at different levels regarding application
development management as well as configuration management of the different pro-
ducts involved in the development life cycle. These practices are not always well im-
plemented in the organizations with an adequate level of rewarding discipline.

– Lack of a well defined and documented process. Often, the knowledge regarding the
development process relies in the personnel. This makes it difficult to study the current
process, for defining what activities to include or modify in the development process in
order to introduce reuse.

Management:

– No management commitment. It is not an easy task to gain management commitment
in any change process, which in the case of implementing reuse is a necessary condi-
tion. In order to undergo a reuse implementation initiative it is necessary to obtain the
support of the management and for doing so it is required to provide arguments and
benefits the initiative will provide to an organization.

Market conditions:

– Existence of software and/or products confidentiality/property rights agreements. In
specific cases the customer may require an exclusive ownership of developed software
for different issues, which does not allow for reuse.

– Technological evolution. The reusable assets developed can become obsolete if tech-
nology evolves. In many cases organizations consider that the technology being used for
the development of applications is in an unstable situation, since in specific development
environments the market is dynamic and the development alternatives increase. Instabi-
lity may lead to situations in which it is not worth to perform technological long-term
investments.

– The set of running projects is too diverse. In the developments foreseen within the or-
ganization, there are not enough similarities which can be shared between them and
therefore the benefits of reuse in the organization can not be obtained.

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 99

Types of Analyzed Domains

The evaluated domains mainly include horizontal domains, where the main objective of
the reusable assets is sharing technological solutions among several projects that work on
the specific development environment. This includes assets developed for communica-
tions, error management, file management, and so on. To a lower degree, additional
initiatives on vertical domains have been identified, focused on providing business or

The main reason for this circumstance is that horizontal domain assets can be di-
rectly reused with no major adaptation effort to make them reusable, while in the case of
the vertical domain assets, these require more effort in making the common part usable by
all stakeholders while at the same time identifying every variable issue and at the same
time identifying how to implement this within a reusable asset.

Plans for Future Work on Systematic Reuse in the Organizations

Several of the analyzed organizations are already undergoing initiatives organizing for
reuse or improving their reuse initiatives. As a result of the different analyses performed,
some organizations have committed to perform specific activities in order to implement
systematic reuse in the organization. The following list is the summary of the most rele-
vant issues:

– Once the reuse opportunities and benefits within a domain are identified, several strate-
gies are to be considered in order to identify the most adequate in order to maximize the
potential of the organization with respect to reuse. Prior to these activities a market
analysis must be undertaken in order to obtain an overview of the future of the do-
main and based on this picture initiate the most adequate reuse plan.

– Once the reuse initiative within an organization has been evaluated with the analyses,
and the validity of the reuse actions has been determined, a decision must be made to
continue with the existing initiative by formalizing the reuse and support group, already
defined by the organization.

– Once the usefulness of reuse has been validated and other areas in the organization in
which reuse is not formally performed have been analyzed, if high expectations regard-
ing reuse initiative are perceived, the reuse initiative will extend to other areas of the
organization.

Even though these initiatives have a common objective they must be defined in more de-
tail (in several cases these were defined after performing the analysis) and the definition,
design and implementation should be managed as any other project, where the group
responsible for reuse within the software development department is responsible for its
management.

3.4 Reuse–Invest Specific Results

The Reuse–Invest analysis was undertaken by five organizations; in four of them one po-
tential domain was identified, while in the other, three potential domains were identified.

J. Mansell100

functional solutions, which provide a complete or partial solution to a customer [17].

The following data are the results of these analyses, where in some cases the information
is related to the organization and in others to the domain.

The analysis in each organization includes:

– Identification of the risks an organization must face during the implementation of a
reuse program. The risk analysis method used is based on previous work on software

– Economic analysis of the investment, costs and savings when implementing a reuse
program. This economic analysis is based on previous work in the reuse field such as in

– Reuse potential analysis of a domain. This analysis is based on the usability theory that

3.4.1 Risk Analysis

Reuse–

Table 3.1. Reuse–Invest factors analyzed in an evaluation

The risks of each organization have been analyzed using the risk model included in the

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 101

Factor Description Attributes Groups and related attributes:
The factor organization
addresses risks associated
with the maturity of lead-
ership, resources allocated
to reuse, organizational
structure and communica-
tions

COM: Management commitment
COM.1 Management considers reuse to be a means of reaching
business objectives
COM.2 All levels of management are committed to developing
and implementing reuse strategies

RES: Resource allocation
RES.1 Management allocates the necessary resources to reuse
RES.2 The group in charge of the reuse transition has enough
knowledge to carry it out
RES.3 The reuse transition group is independent of other devel-
opment units and has the authority to decide on and implement
reuse actions

STR: Organizational structure
STR.1 Organizational structure can be easily adapted to reuse
requirements
STR.2 Good communication mechanisms and authority lines
exist across the domain

The factor Personnel ad-
dresses risks associated
with the ability to develop
applications within the

EXP: Experience in the domain
EXP.1 There are individuals among the staff who are experts in
the business
EXP.2 There are individuals among the staff who have experi-
ence in building applications within the domain

domain and carry out a
reuse transition ATT: Attitude to the improvement

ATT.1 Personnel believes reuse will make them more productive
ATT.2 Personnel is not reluctant to change from current practices

reuse suchand [11,12,13].
– Attitude to risk within the organizations. This work is based on previous work by [19].

[14,19].

studies the measurement and representation of preferences [7].

Invest method [2]. The model is summarized in Tab. 3.1.

The risk analysis is performed by focusing on groups of risks. Figure 3.2 provides a
graphical overview of the identified average risk presence by risk group which is calcu-
lated as the sum of all the attributes of the group divided by the number of attributes
(data obtained from the analysis and the surveys made available to the organizations).

(LEG) and resource allocation (RES) are the most common risks identified in the organi-
zations analyzed when considering introducing systematic reuse. The risks which have
been identified as less common are the experience of the personnel (EXP) and the attitude
towards improvement and change (ATT). The main idea behind Figs. 3.2 and 3.3 is that
for example, in the group COM there is a 35% change that the whole initiative fails due to
this group of risks.

J. Mansell102

The factor process ad-
dresses risks associated
with the lack of certain
processes in the domain
that are important when
transitioning to reuse

DEV: Development process
DEV.1 Development process can be adapted to reuse require-
ments

MAN: Management processes
MAN.1 Project management is performed within the domain
MAN.2 Mechanisms for configuration management of work
products, documents and processes are in place and can be
adapted to reuse requirements
MAN.3 Mechanisms to identify, prevent and mitigate risks are in
place for projects in the domain
MAN.4 Mechanisms for quality management of work-products,
documents and processes are in place and can be adapted to reuse
requirements

The factor products ad-
dresses risks associated
with the lack of legacy
products, low rate of vari-
ability or non-manageable
variability within the do-
main

LEG: Legacy products. By legacy we mean any asset available at
the organization before any reuse initiative.
LEG.1 There are legacy products available covering all the
phases of the development cycle (requirements, design, code, test
data and documentation.)
LEG.2 Existing legacy products can easily be used in the devel-
opment of new products

VAR: Variability and Commonality
VAR.1 Products share a high proportion of similarities
VAR.2 Variable requirements can be managed
VAR.3 Product requirements are known or trends can be pre-
dicted
VAR.4 Variability can be negotiated with the customer

TEC: Technology
TEC.1 Technology used in applications development is stable or
trends can be predicted

In Fig. 3.2 the risks related to management process (MAN), existence of legacy products

Figure 3.3 provides an overview of the Averages of the risks per attributes of each of

35

47

34

19
28 32

48 44

32 35

0
10
20
30
40
50
60
70
80
90

100

COM RES STR EXP ATT DEV MAN LEG VAR TEC

34 36 40 43
30

19 21
13 14 18

28 29 28

42

64

46 47
36

17
29

23 18 21

0
10
20
30
40
50
60
70
80
90

100

COM
1

COM
2

RES
1

RES
2

RES
3

S TR
1

S TR
2

E XP
1

E XP
2

ATT
1

ATT
2

DE V
1

MAN
1

MAN
2

MAN
3

MAN
4

LEG
1

LEG
2

VAR
1

VAR
2

VAR
3

VAR
4

TE C
1

Organizational structure:

– STR1: In most of the organizations the organizational structure required for reuse is
already in place and no major problems are foreseen if any improvement program is
undertaken.

Experience in the domain:

– EXP1: The organizations consider that there is expert personnel within the organization
for the business the organization is involved in.

– EXP2: The organization has proven experience in the development of applications in
the analyzed domain; therefore this is not considered as a major risk.

Attitude to the improvement:

– ATT1: This risk is low since the personnel within the organization consider reuse as a
minimal additional effort necessary for improving the development process.

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 103

the groups presented in Fig. 3.2.

Fig. 3.2. Average of risk factors by group of risks

Fig. 3.3. Percentages of presence of risks per attribute

In Fig. 3.3 the attributes in which a low risk has been identified are:

Variability and commonality:

– VAR1: The results show that the developed products in the analyzed domain have
similarities; therefore the risk is considered low.

– VAR4: The specific requirements for all the customers, have been identified as nego-
tiable with the customers, therefore the risk is considered low.

On the other hand the factors that exhibit higher risks are:

Resource allocation:

– RES1: Personnel consider there is a lack of management commitment, in many im-
provement initiatives management has proven lack of commitment.

– RES2: Personnel consider that there is not enough knowledge on how to implement,
organize and drive a systematic reuse program.

Management Process:

– MAN2: The configuration management of the different products generated among the
software development projects is not addressed adequately and presents a high risk.

– MAN3: The risk management is undertaken informally, not considering or applying a
process for risk management is a risk itself.

– MAN4: The process of quality management is considered important. This process con-
siders the establishment of the quality objectives for products and processes as well as
ensuring the achievement of these objectives.

Legacy products:

– LEG1: This attribute presents a high risk since in most of the cases there are no avail-
able legacy systems available for reuse and if there are, they are not documented.

It is also interesting to identify the relevance and importance among the different identi-
fied risks. This importance allows us to classify which are the risks that the organiza-
tions consider most relevant when implementing a reuse program.

Figure 3.4 presents the relevance that the organizations have assigned to each of the
risks. The relevance is depicted based on the impact a risk factor has in the success of
implementing a systematic reuse program in the organization. The importance values for
each attribute are in a scale of 1 (lower importance) to 3 (higher importance).

2.80

3.00

2.80 2.80
2.70

2.10 2.10

2.80
2.70

2.60 2.60

2.9900

2.60

1.90
1.80

2.60
2.50

2.60

2.9900

2.30

2.50

2.30

2.63

1.00

1.50

2.00

2.50

3.00

COM 1COM 2 RES 1 RERR S 2 RERR S 3 STR 1 STR 2 EXP 1 EXP 2 ATAA TTT 1 ATAA TTT 2 DEV 1 MANAA 1 MANAA 2 MAMMNAA 3 MAMMNAA 4 LEG 1 LELL G 2 VAVVRAA 1 VAVV RAA 2 VAVV RAA 3 VARAA 4 TEC 111

J. Mansell104

Fig. 3.4. Average importance by risk attributes (scale 1–3)

The risk attributes that the analyzed organizations consider have a higher importance in
the success of a reuse initiative are:

– COM2: That the different levels of personnel within an organization with decision
making responsibilities adopt a compromise with reuse, is considered a critical aspect
for any activity performed towards improving the current state of the art in the organi-
zation. Any lack of compromise in any management level can by itself make the reuse
initiative fail.

– DEV1: If the current software development process does not allow for the adaptation
required for a reuse program, this is considered a major risk.

– VAR1: The importance given to this attribute is justified since reuse will only have an
impact when there are commonalities among the products developed in that domain, allow-
ing to obtain benefits from reuse in future developments in different projects.

While the following attributes are less important:

– STR1: This attribute is considered of low importance since the organizational structure
is not considered a major problem and will not interfere in the creation of new roles
and the definition of their interrelationships.

– STR2: Same as previous case applied to the existence of communication channels and
authority.

– MAN2: Configuration management of the development cycle products is not consid-
ered a vital risk attribute.

– MAN3: Risk management is not considered as something that can determine the suc-
cess or failure of a reuse program.

There are risks that are considered important and relevant for ensuring the success of a
reuse implementation program within an organization and present a high risk for the or-
ganizations, since those attributes are not currently present. These risks have to be ana-
lyzed carefully, such as:

– COM2: Not all management levels are committed to develop and implement the reuse
strategies and this itself is a high risk.

– RES1: As a result of the lack of management commitment, in many cases the required
resources for implementing the reuse strategy are not allocated, which represents high
risk.

– RES2: The existence of adequate reuse knowledge within an organization is a must in
order to implement a reuse program, which currently is not the case in many organi-
zations.

– MAN4: The lack of quality management mechanisms for products, documents and
processes and the adaptation of these to the reuse requirements is also a high risk which
must be taken care.

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 105

Additional attributes such as MAN2 and MAN3 related to configuration and risk man-
agement have also been identified, but in these cases even though they present a high risk
in the initial evaluation, the organizations consider these to have low or even no impor-
tance. Therefore in the overall estimation they are not considered relevant and do not have
an impact on the final estimations.

3.4.2 The Organization’s Attitude to Risk

When considering an organization’s attitude to risk we consider there to be three possible

– Risk averse: An organization will not consider investing if the chances of success are
not clear, even though the benefits can be high. The risk taking has a higher importance
than the benefits to be obtained.

– Risk indifferent: This approach gives the same importance to the chance of obtaining a
greater benefit and assuming greater risks in a reuse investment. The minimum benefits
expected from this approach are lower than the risk adverse case. Two organizations
analyzed were of this type.

– Risk taker: This approach is identified when the importance is given to the benefits to
be obtained over the risks being taken. The benefits are more important than the risks,
because an improvement justifies the risk to be taken.

This attribute is used to establish the starting point from which an organization is ready to

J. Mansell106

assume risks related to the return on investment expected. It represents the minimal return

organization is able to assume for a given expectation of its return on investment. In a risk
averse organization, for assuming more risks, the return of investment expected must in-
crease exponentially; and in a risk taker organization, the assumption of greater levels of
risk can be taken without expecting huge increases in the return on investment expected.

Fig. 3.5. Attitude to risk graphical representation

In Fig. 3.5 the exponential line represents basically the relationship among the risk that an

attitudes; described as follows [14]:

on investment (ROI) [4] a company expects for a given risk level.

0% 20% 40% 60% 80%

Risk level

R
O

I (
R

et
ur

n
on

 In
ve

st
m

en
t)

Risk averse Risk indifferent Risk taker

100%

Risk averse Risk indifferent Risk taker

3.4.3 Economic Analysis of the Investment on Systematic Reuse

The economic analyses have been determined based on the investment required to imple-
ment a reuse program, the cost required for the maintenance due to reuse and an estima-
tion of the overall savings expected from the reuse program.

This economic analysis considers that when asking an organization to estimate the ef-
fort required for doing something that they have never done before, there is some kind of
level of uncertainty. Therefore this analysis, as an initial step, identifies what this level of
uncertainty is, based on the current knowledge and situation with respect to reuse of the
organization. This level of uncertainty is used to calculate both the optimistic and the pes-
simistic cases. The optimistic case is calculated by increasing the results of the analysis by
the percentage of level of uncertainty, while the pessimistic is calculated by reducing the
results by applying the level of uncertainty. For example if the level of uncertainty is 10%
and the economic results are of € 100, then the optimistic case would be 100 + (100/10) =
€ 110 while the pessimistic will be 100 + (100/10) = € 90.

– Expenses. Cost of the required activities for maintaining the domain: asset maintenance
as well as activities for providing support for the use and development of assets.

– Savings. Cost savings include the reduction in effort, money and time as a consequence
of developing applications within the domain. These cost savings are calculated as
the difference between the costs of the applications before reuse was introduced and
the costs of the new applications within the domain. The activities considered in calcu-
lating the cost savings are the customer activities, management activities and engineer-
ing activities.

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 107

Based on these estimations several economic indicators for each organization have
been calculated. They are provided in the Fig. 3.6 and expressed in thousands of euros and
absolute values.

– Investment: Investment includes the activities necessary to develop the domain infra-
structure. These activities include transition management activities, domain definition
activities, engineering activities, and application development support activities.

– Benefits. The result of subtracting the costs and investments from the savings consider-
ing the number of applications to be implemented during the economical analysis
period.

sum of the discounted cash flows which are expected from the investment and the
amount which is initially invested. NPV is calculated by estimating the cash flows (of-
ten per year) that result out of the investment, discounting for the cost of capital (an in-
terest rate to adjust for time and risk). If the NPV is greater than zero, the investment in

– Net Present Value (NPV): The NPV of an investment is the difference between the

formed, Cashflowi = Savingsi - expensesi - investmentsi and DiscountRate is greater or
equal to the interest rate of a risk free bank account:

n

i
i

i

teDiscountRa
CashflowNPV

1 1
Equation 1: NPV calculation

the domain is economically justified. The following formula is used to determine the
NPV, where “n” is the number of periods within which the analysis is being per-

J. Mansell108

These economical estimations consider reuse programs of three to five years duration. At
the same time the Internal Rate of Return (i.e., the true interest yield expected from a re-
use investment that equals the discount rate resulting in the NPV of zero for a series of
future cash flows) has varied between 4% and 6%. Based on the collected data from the
organizations participating in the analysis, the average estimate of the ROI in systematic
reuse is 3.07, calculated using the following formula:

sInvestment
BenefitsROI

Equation 2: Return On Investment calculation

The average estimate of the profitability index (PI) is 2.94, which means that the or-
ganizations will recover 2.94 times the investment on average. This is calculated using the
following formula:

n

i
i

i

teDiscountRa
Investment

NPVPI
1

1
Equation 3: Profitability Index calculation

Fig. 3.6. Organizations economical information

200

175

150

125

100

75

50

25

30

20

10

0

Organization C

59320511981

ferent organizations is considerably high in some cases.

16
29 23 30

40

82
68 75

44
60

26

2

3
2

0

0%

100%

A B C D E

Savings
Expenses
Investment

The case of organization D, where the expenses have a greater relevance, is due to these
expenses mainly being derived from the estimation of the maintenance needs of the reus-
able assets and because the cost for support in the creation and use of these reusable assets
is considered high.

In organization E, the investment is more relevant and the cost is considered null since
the organization’s focus will make all the effort required for implementing systematic
reuse in the initial investments stage, the major efforts are centered on creating the reuse
infrastructure, therefore, the support and maintenance costs are considered minimal in the
period established for the economical analysis.

We can conclude that on all the analyzed cases the investment is expected to be-
come a greater benefit for the organization than a risk free interest yielding bank account.

3.4.4 Reuse Potential Analysis

In order to take the decision on investment in systematic reuse in the analyzed domains, the
organizations have to consider the economical aspects (benefits, investment, costs, and
NPV), the risks encountered and the attitude to risk must be taken into account. Based on

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 109

The savings have been estimated based on the number of applications that will be de-
veloped using reusable assets, during the analyzed period. The number of applications
foreseen by the organizations may be too optimistic. Therefore, even though this analysis
provides information estimated by the organizations, it is likely that the overall results at
the level of savings and therefore benefits, return on investment, net present value and
profitability index, require a correction which decreases the figures. In any case the mar-
gin is sufficient so as to conclude that the investments are expected to be beneficial in
economical terms.

this set of analyses, a set of figures is provided, which is used in an initial phase for de-
termining whether or not an organization should implement a reuse program.

As shown in Fig. 3.7 the variation among the investment, costs and savings in the dif-

Fig. 3.7. Organizations economical percentage information

– A dot: The uncertainty is null and that all estimations from all the participants in the
analysis have consensus.

– A dot struck through by a line: There is consensus either in the risk or economic analy-
sis, and the dot represents the average of the other values,

– A dot within a rectangle: There is no consensus and that there is an overall rectangle
representing all answers while the dot represents the average value of the answers
received.
The risk analysis does not search for consensus, but tries to identify the presence of

risks within an organization. It tries to collect the different points of view in the organization
in order to objectively identify the overall risks.

Figure 3.8 provides the results of performing five Reuse–Invest analysis on six differ-
ent domains. These graphics are not to be compared among each other, but only provide
an overview of the adequacy and the percentage of risk the organization is assuming

J. Mansell110

At the same time the domain analyzed is represented within the graphics. The position
of the analyzed domains can be represented by a box both in terms of (minimum and
maximum) risk, and return of investment (minimum and maximum), whose width and
height are determined by the uncertainty level. The average values have been represented
as a dot within the rectangle.

zation. The Y-axis plots the ROI that an organization can obtain from the investment. The
continuous line of exponential character represents the attitude to risk of the organization.
This line divides the graphic into two sections; the upper section represents an area where
the investment is beneficial and the lower section represents an area where there is no
return on investment.

The graphics in Fig. 3.8 represent in the X-axis the risk level identified in the organi-

Fig. 3.8. ROI versus risks for analyzed organizations in the study

when addressing each of these domains [2].

ROI vs. Risks

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0% 20% 40% 60% 80% 100%
Risk Level

ROI vs. Risks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0% 20% 40% 60% 80% 100%

Risk level

ROI vs. Risks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0% 20% 60% 80% 100%

ROI vs. Risks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0% 20% 60% 80% 100%Risk Level

ROI vs. Risks

0

1

2

3

4

5

6

7

8

9

10

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

1

2

3

4

5

6

7

8

9

10

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%

Risk Level
Attitude to risk DomainAttitude to risk DomainAttitude to risk Domain Attitude to risk DomainAttitude to risk DomainAttitude to risk DomainAttitude to risk DomainAttitude to risk DomainAttitude to risk Domain

Attitude to risk DomainAttitude to risk DomainAttitude to risk Domain Attitude to risk DomainAttitude to risk DomainAttitude to risk Domain Attitude to risk DomainAttitude to risk DomainAttitude to risk Domain

Organization A: Domain 1 Organization A: Domain 2 Organization A: Domain 3

Organization DOrganization COrganization B

ROI vs. Risks

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0% 20% 40% 60% 80% 100%
Risk Level

ROI vs. Risks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0% 20% 40% 60% 80% 100%

Risk level

ROI vs. Risks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0% 20% 60% 80% 100%

ROI vs. Risks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0% 20% 40% 60% 80% 100%Risk Level

ROI vs. Risks

0

1

2

3

4

5

6

7

8

9

10

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

1

2

3

4

5

6

7

8

9

10

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%

Risk Level

ROI vs. Risks

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%

Risk Level
Attitude to risk DomainAttitude to risk DomainAttitude to risk Domain Attitude to risk DomainAttitude to risk DomainAttitude to risk DomainAttitude to risk DomainAttitude to risk DomainAttitude to risk Domain

Attitude to risk DomainAttitude to risk DomainAttitude to risk Domain Attitude to risk DomainAttitude to risk DomainAttitude to risk Domain Attitude to risk DomainAttitude to risk DomainAttitude to risk Domain

R
O

I (
R

et
ur

n
on

 In
ve

st
m

en
t)

R
O

I (
R

et
ur

n
on

 In
ve

st
m

en
t)

R
O

I (
R

et
ur

n
on

 In
ve

st
m

en
t)

R
O

I (
R

et
ur

n
on

 In
ve

st
m

en
t)

R
O

I (
R

et
ur

n
on

 In
ve

st
m

en
t)

R
O

I (
R

et
ur

n
on

 In
ve

st
m

en
t)

In Organization B even though the risk is between 25 and 40%, the investment is ex-
pected to be beneficial given the high return on investment.

When analyzing the potential of the Organization C, the economic estimation does not
present major uncertainty, while there is a risk uncertainty of 15–30%. The ROI estimated
is much greater than the expected minimum ROI defined by the organization; therefore,
based on these estimations, the reuse program can be beneficial to the organization.

In Organization D the analyzed domain presents high risk and, in the worst case, the
domain coincides with the line dividing the areas in favor of investing and those against
investing. In this case the organization should review their estimations in more detail and
in the case of deciding on investing in systematic reuse, keep a close control of the risks of
greater presence and importance in order to ensure the success of the reuse initiative.

In all the cases analyzed, the investment on systematic reuse is favored, this is, the do-
mains analyzed are in the upper area of the graphic. In those cases where the domain is
close to the Attitude to risk line (organization D), special focus and attention must be
given to tracking the identified risks when implementing a reuse program.

Based on the estimations related to the number of applications developed using the re-
usable assets, the depreciation of the value of money overtime, the risk that can impact
negatively on the implementation of reuse program and based on the attitude to risk of
these organizations, it can be concluded that the domains analyzed are in an advantaged
position for investment.

3.5 Reuse–Check Analysis Results

In those organizations in which a reuse activity was already taking place the state of reuse,
the infrastructure and practices that favor reuse were analyzed.

The results of these analyses are presented by the following schema:

– A first general description of the state of practice on each organization.
– A second, more detailed description of the different types of reuse approaches identi-

fied as well as a description of the reusable assets.
– A description of the detected faults in the different organizations and the strengths of

the approaches in these organizations.
– Description of the proposed situations to the organizations as objective situations for

reuse.

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 111

resulting from the economical analysis, the investment is considered beneficial based on
the estimations of investment, costs and savings expected. In Domain 2, the situation is
similar to the previous, even though the uncertainty on risks is very high. Once again the
ROI is much more than the minimum expected, therefore the investment is beneficial if
the estimations are met. Finally, Domain 3 is characterized by a high uncertainty at the
risk level. This risk analysis within the organization was performed in two different
groups which provided a more clear view of the overall organizational risks. In order to
obtain a greater compromise on the risks in the domain, joint meetings between both groups
could be necessary and careful attention must be given to the areas that have shown
greater risk in order to ensure the success of the reuse program.

In Organization A, three domains were analyzed. In Domain 1, uncertainties both at
economical estimations and risk aspects are present. Given the high return on investment

offer negotiation time. In this case the reusable assets make reference to the information
collected from previous projects, which includes offers, customer requirements and many
more.

The way to develop applications starts by using a common platform, parameterize and
finally the ad hoc reuse, as a strategy for reducing costs and at the same time providing the
same product quality, and the ability to be competitive.

The identification of reusable potential knowledge assets is driven by people, in this
case: project leaders and responsible areas.

The assets are modeled under predefined structures and the users know of their exis-
tence and location. Since there is a quality culture and management mechanism in place,
the know-how assets are fed in a formal and systematic manner.

The reuse identification opportunities depend on the project participants. The reusable
elements do not have the same mechanisms as the knowledge reuse: only the knowledge
of the existence and the location of assets are shared. Criteria for managing and maintain-
ing the reusable software assets are not in place.

It is worth mentioning that the reuse is not limited to the development phase, but it also
includes other products of the life cycle (offers, documentation and design) and the reuse

J. Mansell112

reuse is identified during the launching phase and development of the projects, were the
opportunities for reusing results from other projects is considered. Among the most reused
components the following can be found: routines, modules, products, configuration scripts,
DB designs.

3.5.1 Identified Reuse Situations Description

As a starting point for presenting the results of the analysis performed in four organiza-
tions, each of the identified situations is detailed next:

Case 1 – Organization A

The analysis performed within this organization made a differentiation between knowl-
edge reuse and software reuse. The knowledge reuse is due to the importance given within
the organization to know-how, both business and technical. This knowledge is shared at

Fig. 3.9. Identified reuse scenario in Case 1

The current state of practice in the organization is depicted in Fig. 3.9. The need for

SW routines

PROJECTSPROJECTS

Project
Reports

Experience
Knowledge
Solutions

Software
Products SW Routines DB Designs

Preparation

Launching

Development

ure

Project
Reports

Experience
Knowledge
Solutions

Software
Products SW Routines DB Designs

aration

ching

velopment

ure

SW routines

Project
Reports

Experience
Knowledge
Solutions

Software
Products SW Routines DB Designs

aration

ching

elopment

ure

Project leaders
Active within project
Re-use

Organization

SW routines

PROJECTSPROJECTS

Project
Reports

Experience
Knowledge
Solutions

Software
Products SW Routines DB Designs

aration

ching

elopm nt

Closure

Project
Reports

Experience
Knowledge
Solutions

Software
Products SW Routines DB Designs

SW routines

Project
Reports

Experience
Knowledge
Solutions

Software
Products SW Routines DB Designs

Project leaders
Active within project
Re-use

Organization

e

approach needs to be applied for different target technologies, therefore the main idea is to
analyze current improvements for the reuse base already in place and analyze the state of
practice in order to have an overall picture of the problem. At the same time the host de-
velopment environment has been analyzed in order to identify the benefit for the whole
organization.

The current state of practice in the organization is depicted in Fig. 3.10. The reuse in
some cases is performed by calls to functions within the base application and in other

elements from other projects and even from the base application.
There is an administration role responsible for the maintenance and improvement of the

base application, but no person has been assigned to that role due to a lack of resources.
This responsibility is shared among the base application development environment group
therefore this role can be easily forgotten. Another issue identified is that even though the
communication is favored by the size of the group, there is a lack of mechanisms to for-
malize this communication. Therefore issues addressed via this communication channel
are never recorded and in some cases are lost.

The reuse potential is identified by the people, not the projects. The development cost
of building a reusable asset is made within the projects. The maintenance effort is made
by the administrator and the criteria for generalizing an asset are dependent on the admi-
nistrator or the project that has developed the asset.

cases by derivation of the base application. At the same time there is also ad hoc reuse of

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 113

Case 2 – Organization B
The domain is defined by applications that are developed in client/server environments
using several technologies. A reuse focus is already undertaken by a technological ap-
proach, in which an application is developed by reusing a common base application,
formed by templates and program skeletons that cover basic functionalities. The same

is supported by the infrastructure in place for the quality system and by the culture of
evolvement and improvement present in the improvement groups created. The reuse is
clearly centralized in the people not in the organization which identifies clearly the organ-
izational dependence on people.

Fig. 3.10. Identified reuse scenario in Case 2

Project A Project B Project C Project D

Evironment A Environment B

Project E

Environment C

V 2.0 Base application
V 1.0

Reusable Component
Component

Project A Project B Project C Project D

Environment A Environment B

Project E

Environment C

V 2.0 Base application
V 1.0

Any location

Re-use

im
pr

ov
e derive

Project A Project B Project C Project D

Evironment A Environment B

Project E

Environment C

V 2.0 Base application
V 1.0

Reusable Component
Component

Project A Project B Project C Project D

Environment A Environment B

Project E

Environment C

V 2.0 Base application
V 1.0

Any location

Re-use

im
pr

ov
e derive

and requires for the creators of the assets to assume the responsibility of its quality and
maintenance. This implies that the contribution to this infrastructure is carefully analyzed
and at the same time it is necessary that the asset undergoes certain level of use within an
established number of projects, prior to sharing them as a means to validate its quality and

In this case reuse is favored by the technological character that is in place. The devel-
opment environment allows reusing assets and managing them as a library. At the same
time there is a configuration management tool that allows organizing the library at differ-
ent levels, allowing the development of a corporative library where only assets that comply
with certain quality criteria are published. There is also a group responsible for managing
the library, which is responsible for notifying the existence of new assets to all partici-
pants in the development group.

There is also an exchange of assets among projects which is not controlled by the
group responsible for the library. It cannot be considered as a systematic reuse approach
because is based on a copy and paste basis, incurring a major maintenance problem. In
specific cases, cooperation among projects in order to share resources and cost for the
development of general purpose assets has also been identified.

The expectations with respect to reuse are positive and benefits are expected from this
way of systematic reuse. The improvement areas are aligned into an improvement in the
correct structuring of responsibilities, avoiding the situation in which the projects take this
role, by creating a technical office responsible for the maintenance of assets and assume
the asset creator role of maintenance, in order to encourage the development of reusable
assets.

J. Mansell114

Case 3 – Organization D

As a result of the analysis, an organizational infrastructure was identified. This infrastruc-
ture collects technological assets that are then used in the application development. The
contribution of assets to this infrastructure is an initiative that emerges from the projects

The identification of reuse opportunities within a project is made by the people within
the project, which is not included within the development methodology used, although
the guides of how to reuse are actually included in the current methodology.

Fig. 3.11. Identified reuse scenario in Case 3

avoid errors. The current state of practice in the organization is depicted in Fig. 3.11.

Reusable Component Corporative reusable Component

Use Populate

Corporative Library

Application libraries

Project A Project B Project X

Corporative Library

Application libraries

Project A Project B Project X

Reusable Component Corporative reusable Component

Use Populate

Corporative Library

Application libraries

Project A Project B Project X

Corporative Library

Application libraries

Project A Project B Project X

Corporative Library

Application libraries

Project A Project B Project X

Corporative Library

Application libraries

Project A Project B Project X

– Increase the number of people involved in the technical office by incorporating person-
nel currently working on projects, with previous reuse experience in projects.

– Allocate the maintenance of the reusable assets to the technical office.
– Allocate the responsibility of developing assets among the technical office and the pro-

jects.
– Identify and define metrics in order to be able to manage the evolution of the reuse

initiative and identify whether the reuse initiative is providing the expected results.
– Define guidelines to ensure the correctness and ease of use of the asset catalogue.
– Define asset quality criteria for introduction of assets in the library.

The proposed actions consolidate the project based reuse in place and at the same time
enhance the systematic development of assets by the technical office.

Case 4 – Organization E

– Maintaining the library functions (migrations to new technological environments)
– Providing support on the use of the library by the projects
– Creating new reusable functions based on the projects results

The communication of the existence of reusable functions is done informally on a project
need basis. The reuse initiative depends on the people involved in the project and there is
no formal way to verify if functionality is already within the library.

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 115

There is no systematic process defined for the inclusion of a function within the library,
nor there is validation or quality criteria established to verify the assets. Then, the identi-
fied improvement actions are:

The analyzed organization is driven by project base reuse, where the projects are res-
ponsible for reuse activities, but it is not performed in a systematic way. This is due to the
lack of processes explaining how to reuse and develop reusable assets; there is no cer-
tainty that all identified potential assets for reuse are really developed as such; and the
major problem detected is that the reusable asset creator is responsible for its mainte-
nance, which discourages the creation of reusable assets.

The proposed improvement actions are aimed at driving the efforts towards domain
engineering, by defining and creating a group which will guide and manage reuse. The
activities proposed for doing so are:

In this case, two reuse potential cases have been analyzed: a generic domain which pro-
vides support to the rest of the domains in the organization, which can be identified in
Fig. 3.12.

The first case, Case 4a is a library which contains specific functionality used to develop
projects related to “material behavior.” It has evolved and migrated to a number of tech-
nologies that form the basis for new development projects. For this domain there is a reuse
group that is responsible for:

– Formalize and define the roles and responsibilities of the reuse group: identifying reuse
opportunities, maintaining the assets and the management of the library.

– Standardize the mechanism and requirements for introducing an asset within the
library.

– Improve the documentation of both the library and the assets: Currently it is not easy to
use the library since the documentation provided is too technical and lacks a general
description on the use of the reusable assets.

The second domain is a specific software development which centers on machine and
vehicle simulators. The development in this environment uses the asset based develop-
ment approach. The organization of reuse is the responsibility of the people involved in
the projects within the domain. The communication and knowledge sharing among per-
sonnel is fluent since the number of people involved in the domain is low. There is no
specific technical office.

The identified reuse strategy within this domain is a project based reuse, but due to the
maturity of the domain it is possible to evolve towards domain driven reuse. Basically the
product family for the simulation environment is composed by a number of predefined
assets for developing any simulation, and some more flexible assets that adjust to specific
project needs. In this case it is recommended that an in - depth investment analysis is
undertaken to identify whether the organization can undergo such a change and whether it
is economically feasible.

3.5.2 Current State of Reuse Practice Analysis

This section includes a description of the reuse practices that the organizations undertake,
the types of reuse being implemented, the kind of assets most often used, the infrastruc-
tures put in place, the current state and the potential improvements.

The following two types of reuse have been identified:

– Ad hoc reuse: This kind of reuse basically consists of extracting a piece of code from a
development base, adapting it to the application requirements and including it within
the development. This kind of reuse requires adaptation of the piece of code for every

J. Mansell116

Fig. 3.12. Identified reuse scenario in Case 4a

implementation it is used in [20].

Reusable Functions

Use Populate

Project A

Base Library

Project A

Reuse
Group

Support

The software elements identified as reused within the analyzed organizations are

Table 3.2. Software elements reused in the context of the analysis

software routines – error control routines
– utilities and access and maintenance routines
– SAP access routines
– security routines (users and access)

software functions – specific menu and control functions
– functions of the organization methodology
– searching, bar code reading functions
– user maintenance functions
– communication functions

C++ classes – basic classes (C++ objects)
– data access classes

application and software
modules

– e-mail server
– base application for the development of applications
– whole product

other (documentation,
templates, designs,
analysis)

– function and procedures base structures
– interfaces
– relational data bases
– data base procedures
– graphical window assets (used as templates)
– screen and reports formats
– documentation models
– variables and code definition rules
– tool configurations

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 117

finding Types of reusable items

– Systematic reuse by reusable asset integration: This kind of reuse is based on the avail-
ability of reusable assets that can be used in the development of new applications with
no major adaptation effort.
In most cases, the reuse applied is the ad hoc reuse. We must take into account that in

most cases this kind of reuse is performed in routines which require little effort in adapta-
tion for the target environment and in which the maintenance effort is low. At the same
time, due to the topology of the organizations analyzed, the applications are installed at
the customer who in most of the cases does not share software assets and, thus, the instal-
lations are performed independently.

shown in Tab. 3.2.

3. People in the organization are in favor of both reusing and developing reusable assets.
Reuse is considered a mechanism to improve the current organizational results.

4. Quality management system is in place, which provides support for reuse. When an
organization has already a methodology, procedures and rules for developing code as
well as documentation procedures, this favors and eases the introduction of systematic
reuse.

5. An improvement group in charge of the continuous process improvement in the organi-
zation is in place. This group is also responsible for the reuse activities, since they are
improvement activities. This group provides a current state of practice of the organiza-
tion as a whole.

6. Organization performs reuse not only of code, but also other life cycle products (docu-
mentation, design, and analysis). The reuse methodology itself can also be reused.

7. Reuse opportunities are considered at initial steps of a project which increases reuse pos-
sibilities and impact. All possible project stakeholders are involved in the project defi-
nition and planning.

At the same time, the organizations have also presented some difficulties which are:

1. In most cases the person responsible for the maintenance and providing support for a
reusable asset is the developer of the reusable asset. The major drawback is that this re-
duces the motivation of the personnel, since if someone develops a reusable asset this
implies assuming new responsibilities which are not really considered as such by the
organization.

2. There are no criteria to decide whether something is common to all applications or spe-
cific to a single application. The project leader has to identify reusability among the
project results, which may result in investing effort in assets not useful for the domain
or some functionality common to all developments, may not be identified.

3. There is no overall view of the benefits of reuse in the organizational results, which
does not allow for the reuse evolving within the organization. An organization will not
provide resources and effort to an area in which the benefits are not proven.

4. The use of the library is not correctly extended throughout the organization; often this
is due to, the interface provided for the use of the library is not easy to use and no
guidelines are provided.

5. There is a dependency between the reusable assets and the developer of the asset.
6. There are no rules or guidelines for the development of reusable assets.

J. Mansell118

3.5.3 Identified Strengths and Major Problems

The major aspects identified within the organizations which favor reuse are the following:

1. Reuse techniques are in place and the new developments are already reusing assets; this
provides a time and effort reduction in the projects.

2. A reuse infrastructure is in place
– An organizational structure (a person/role or group) responsible for repository man-

agement and maintenance is available.
– A repository/library containing the reusable assets as well as the documentation for

its use is in place.

The general reuse infrastructure detected in the organizations follows the following

– Repository: Representing an asset catalogue or library of reusable assets which is es-
tablished within the organization in order to favor reuse.

– No specific identified location: Implies that although the assets are physically located
within the organization there are no mechanism in place which helps in the location
and use of the assets.

group responsible for managing and evolving the reuse infrastructure.

3.5.4 Improvement Actions Reported to the Organizations

pending on the context and current state of reuse in each one, but all the cases fit to the

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 119

7. In many cases there is no centralized effort in which all the reusable assets can be effi-
ciently accessed which reduces the reuse opportunities.

8. Reuse is considered as a mechanism to be used in specific cases but has not been con-
sidered as an institutional issue.

9. The reuse performed is on an ad hoc basis, which results in many different versions of
the same asset, which increases maintenance costs. A defect encountered within an as-
set must be corrected in all the different places were it has been copied and adapted, so
if there is no traceability mechanism in place this process can be too effort consuming.

schema as shown in Fig. 3.13.

Fig. 3.13. Identified common reuse scenario schema

The Management element included above the repository in Fig. 3.13 is related to the

following schema, representing the desirable situation as depicted Fig. 3.14.

Fig. 3.13 provides a view of the allocation of the assets:

engineering plays a relevant role. The basic ideas proposed to achieve this new scenario are:

In this sense the proposed improvements are intended to consolidate the current situa-

The objective scenarios for reuse that have been identified in the organizations vary de-

tion and drive the organization to adopt a systematic reuse approach, in which domain

For further information on these issues refer to [5].

– Improvements in the documentation provided for the use of the reuse infrastructure and
the assets, in order to motivate the application of the assets.

– Establishment and standardization of quality requirements in order to include a new
asset in the catalogue/library.

– The initial proposal is to concentrate the reuse effort on a specific domain in the
organization as an initial state in order to validate the approach, and once results are
obtained, extend the reuse program to additional domains.

These improvement suggestions have been made based on an overall schema of system-
atic reuse which is characterized by the separation of the development lifecycle into two
main processes with clearly distinct objectives: Domain Engineering (DE) and Applica-
tion Engineering (AE).

Domain engineering focuses on the development of a common infrastructure of reus-

infrastructure to meet specific user requirements.

able assets and streamlined processes for a given application domain. Application

J. Mansell120

– Establishment of a management group (Domain Engineering) which is responsible for
identifying reuse opportunities in the domain, the maintenance of the assets and the
management of the reuse infrastructure.

– The development of reusable assets can be a shared responsibility among the projects
and domain engineering, depending on the resource availability of domain engineering.

– Introduction of reuse metrics and mechanisms which will help the organization identify
the evolution and benefits of the reuse initiative. The kind of metrics proposed are related
to the use of assets, quality of assets, effort reduction and other benefits in projects us-
ing assets.

Fig. 3.14. Identified target reuse scenario

the domain knowledge in the organization to incrementally build the infrastructure for

engineering is aimed at deriving a single product or application from the common

the domain. Domain engineering includes the following processes:

Domain engineering is not done once only. Instead, it is an iterative process that uses

REPOSITORY

�Group responsible for Reuse
(DE – Domain Engineering)

PROJECTS
(AI – Application Engineering)

Reuse potential
identification

Reusable assets
creation
Reusable assets
maintenance

REPOSITORY

�Group responsible for Reuse
(DE – Domain Engineering)

PROJECTS
(AI – Application Engineering)

Reuse potential
identification

Reusable assets
creation
Reusable assets
maintenance

Reuse potential
identification

Reusable assets
creation
Reusable assets
maintenance

– Manage the domain. Involves the organization and planning of the domain efforts to
achieve business objectives. It includes the development of domain plans, the definition
of roles, the assignment of resources and the evolution of the domain.

similarities among the potential products of the domain and how they differ from each
other.

– Engineer the domain products. Includes the specification, design, implementation and
maintenance of the domain assets. These assets include all kinds of software develop-
ment work-products: requirement documents, designs, architectures, source code, test
cases, etc.

– Engineer the domain process. Covers the standardization and development of the proc-
esses definitions and process support to produce applications. The results include pro-
cedures, guidelines, templates, examples and tools such as repositories or generators to
support and guide the application developer.

– Provide project support. Ensures that the domain meets the business needs. This is
achieved by supporting the application engineers in using the common infrastructure
and collecting the feedback from its usage as an input for the evolution of the domain.

atic reuse approach, also addressed for in literature as product line engineering. A similar

years within a set of European projects: ESAPS, CAFÉ and FAMILIES.

Based on the analysis performed and the results obtained, the following conclusions pro-
vide an overview of the analyzed situations and their characteristics. It must be pointed

– Analyze the domain. Defines the focus and scope of the domain. It establishes both the

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 121

F3.6 Conclusions and uture Research

Fig. 3.15. Systematic reuse overview

The structure represented in Fig. 3.15 provides the overall organization for any system-

companies in which systematic reuse practices are in early stages.

and tools for undertaking this approach can be found at [3] that collects within a cata-

out that these conclusions are based on the analyses performed in small to medium-sized

framework for software product line engineering is fully dealt for in [6]. The methods

logue all methods, techniques and tools that have been developed in Europe in the last 6

Domain
Knowledge

Domain
Engineering

Feedback

Application
Engineering

Specific
user

needs

Customized Product

In other cases software reuse arises in the organizations bottom-up, as an opportunity,
it is not defined by management and is mainly ad hoc reuse. In those companies in which
reuse receives special relevance and resources are available, reuse strategies are in line
with the idea of systematic reuse that clearly defines domain engineering and application
engineering activities.

Most of the times, reuse is performed by many organizations, not only for code, but
also for templates, requirement and documents; this strategy has a great impact in the
software development life cycle.

It is in the organizations which already have quality and improvement management in
place, were the state of reuse practices is more easily identified and were the current im-
provement actions can be updated to include systematic reuse practices. These organiza-
tions are better fit to address and manage change.

3.6.2 Reuse Analysis as an Investment

Based on the economical results presented in Sect. 3.4, software reuse can be seen as an
investment mechanism by the organizations, in spite of the identified risks. The average
economical analysis results indicate that there is expected profitability index of 2.94.

The benefits of reuse are derived from the savings that are determined based on the
number of applications expected to be developed from the reuse infrastructure. The num-
ber of expected applications as provided by the organizations during the analyses may be
optimistic. Therefore a reduction of the average benefits may be more than expected.

The organizations already involved in reuse practice consider that the current situation can
be improved and that systematic reuse – in the way it has been addressed – provides a
logical organizational approach, which is required to obtain maximum benefits. This idea
is shared when addressing aspects such as:

J. Mansell122

3.6.1 Current State of Practice of Reuse in the Organizations

Many organizations are currently, without realizing the fact, introducing reuse practices
and putting them in place, but they are not gaining all the benefits of a systematic reuse
approach. In many cases reuse arises initially in horizontal domains, as a mechanism to
share solutions to technological problems or generic functionality. This is the first step an
organization takes when confronting reuse since the technical assets, in most cases, are used
as they require little or no adaptation to different solutions.

3.6.3 Current Situation Characterization

– Identifying, centralizing and assigning responsibilities related to the creation and main-
tenance of reusable assets, to a specific working group dedicated to such activities.

– Establishing a mechanism that allows keeping a traceability of the efforts dedicated to
implement and improve reuse in the organization and the results obtained, this could
range from a centralized document where every effort is annotated to complex informa-
tion systems.

– Establishing criteria and mechanisms that allow for the inclusion of new assets in the
common reuse infrastructure.

3 Experiences and Expectations Regarding the Introduction of Systematic Reuse 123

Organizations need to analyze the economical impacts of new technologies such as

One of the main critical issues when introducing systematic reuse is the commitment of
the organization, as well as the commitment at the different levels of management in pro-
viding the required resources and time for getting the initiative running. Another issue
which clearly impacts in the capability for systematic reuse in an organization is the range
of different technologies used. Organizations that have customers which share few com-
mon technological aspects present a handicap for obtaining benefits from systematic re-
use. Even though the technology is very unstable, the organizations consider that once the
reuse culture is in place the migration between technologies is better undertaken and
should be performed using a systematic reuse approach.

If the domain for investment and risks are identified, and the means for mitigating these
risks are put in place, systematic reuse can be a reality for any small and medium-sized
organization. In many cases the selection of a target domain for which systematic reuse is
not an adequate approach results in the failure of the systematic reuse initiative. In those
cases, systematic reuse will probably never be considered in the future by the same man-

plied Reuse-Invest clearly identified the domain where adopting systematic reuse would

allowed them to introduce systematic reuse successfully. Those organizations that applied

systematic reuse and product line engineering before introducing such technologies. Future

have the highest return on investment. This clearly benefited the organizations since it

spent to implement a systematic reuse initiative successfully.

agement body. Those small and medium-sized organizations in the case studies that ap-

The domain in which the reuse initiative will take place must be carefully defined. The
organizations must not apply reuse to everything that could be subject to reuse. Since the
return on investment will not be sufficient in all cases, it is necessary to identify and define
carefully a domain or area in which the reuse efforts provide the most substantial benefits.

Based on the results of the analysis made in these organizations, we can deduce that
within these organizations systematic reuse has been shown to be a beneficial approach
towards improved software development efficiency. In the organizations which already
have reuse practices in place, there are many similarities. For example, they have a similar
schema of reuse organized among projects in which the initial step to consolidate a sys-
tematic reuse is the creation of a group responsible for reuse. This does not in any case
imply that by defining a reuse group systematic reuse is achieved, but it is one of the pil-
lars on which success stands. The organization must commit to provide the time and re-
sources so that this group is created and is made responsible for making a success of the
systematic reuse approach.

The main hurdle for any systematic reuse initiative in small and medium-sized organi-
zations is the lack of resources. The proposed tools, reuse–Invest and Reuse–Check, provide
an adequate starting point for any organization interested in adopting a systematic reuse
approach, by identifying whether it is economically beneficial to do so. At the same time
these tools provide means to identify which are the weakest areas in which specific sys-
tematic reuse practices should be institutionalized as well as what risks can be found and
solved. Similar approaches and studies exist such as [8,22].

R-Check had a clear view of the risks to be addressed and where major effort should be

3.6.4 Future Research

J. Mansell124

Plummer, D.: Unconventional wisdom: staffing an integrative policy group for SOA governance. Business
Integ. J (June 2005)

Böckle, G., Wittmann, M.: Catalogue of methods and processes for system-family engineering. FAMILIES
Catalogue 2005. http://www.esi.es/Families/E1.4b-Method-Catalogue/Start_SFE_Catalogue.htm

IEEE: Product line engineering: the state of the practice. IEEE Softw. 20(6), 52–60 (November 2003)
ISO/IEC 15504: 1998, Information technology – software process assessment. Technical report type 2
(International Standards Organisation 1998) (approved for publication)
Jacobson, I., Griss, M., Johnsson, P.: Software Reuse; Architecture, Process and Organisation for Business
Success (ACM, New York 1997)

Sullivan, K., Chalasani, P., Jha, S., Sazawal, V.: Software design as an investment activity: a real options
perspective. In: Real Options and Business Strategy: Applications to Decision Making (Risk Books 1999)

Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering, Foundations, Principles and

Schmid, K., Verlage, M.: The economic impact of product line adoption and evolution. IEEE Softw. 19(4),
50–57 (July 2002)

Verlage, M., Kiesgen, T.: Five years of product line engineering in a small company. Proceedings of the
27th International Conference on Software Engineering, 15–21 May 2005, St. Louis, MO, USA

Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns (Addison-Wesley, Boston 2001)

Bandinelli, S., Mendieta, G.S.: Domain potential analysis: calling the attention on business issues of prod-
uct-lines, software architectures for product families. International Workshop IW-SAPF-3 (March 2000)

System Family Transition Economy in Public Results Section. http://www.esi.es/Families/ (October 2005)

Pike, R., Neale, B.: Corporate Finance and Investments (Prentice-Hall, Englewood Cliffs, NJ 1996)

Brown, W.J., Malveau, R.C. et al: AntiPatterns: Refactoring Software, Architectures, and Projects in Cri-
sis (Wiley, New York 1998)

(September 2001)

Techniques (Springer, Berlin Heidelberg New York, 2005)

References

Böckle, G. et al: Calculating ROI for software product lines. IEEE Softw. 21(3), 23–31 (May/June 2004)

Acknowledgments

I would like to thank Pablo Ferrer who was directly involved in the development of both
the assessments and the conclusions, for his effort in the successful completion of this
case study. I gratefully acknowledge the extensive reviews of Juan Carlos Dueñas, Timo
Käkölä, Eelco Rommes, Alberto Berreteaga and Jacco Wesselius that significantly im-
proved the quality of this chapter.

McClure, C.: Software Reuse Techniques (Prentice-Hall, Englewood Cliffs, NJ 1997)

Karlsson, E.-A.: Software Reuse: A Holistic Approach (Wiley, New York 1995)

research is needed to analyze the use of the proposed approach in big enterprises which
have to deal with emerging technologies such as Model Driven Development, Service-

industry with an adequate mechanism to decide whether or not adopting such technologies

adopting new technologies.

1. Amar L., Coffey J., Measuring the Benefits of Software Reuse, 9 may 2005, http://www.ddj.com/184406111
2.

3.

4.

6.

5.

7. http://cognet.mit.edu/library/erefs/mitecs/ (MIT Encyclopedia of Cognitive Sciences)

9.

10.

8.

11 .
12. Lim, W.C.: Managing Software Reuse (Prentice-Hall, Englewood Cliffs, NJ 1998)

14.
15.

13 .

16.

17. R-SPICE described in system family process frameworks. http://www.esi.es/esaps/publicResults.html

18.

19. Sprandlin, T.: A Lexicon of Decision Making (March 1997)
20.

21.
22.

product line engineering. The approach also needs to be further developed to provide the
Oriented Architecture, and Aspect-Oriented Software Development in order to leverage

will enable organizations to maintain and possibly improve their market positions while

Part 2: Product Line Requirements Engineering

Introduction

Part 2 deals with product line modeling and requirements engineering. The purpose of
product line requirements engineering is to identify and document common and variable
requirements and features for the product line and draw upon them in developing the
applications of the product line.
Part 2 consists of three chapters:

Capturing Product Line Information from Legacy User Documentation
Scenario-Based Application Requirements Engineering

approaches to variability modeling both from conceptual and language viewpoints and the
viewpoint of methodologies for creating effective variability models. The first two
chapters present complementary approaches to derive product line requirements in domain
requirements engineering and draw upon the requirements in application requirements
engineering.

and are often unavailable, relying primarily on high expert involvement is a risk for the
successful introduction of a product line engineering approach into an organization.

documentation and transforming this information (e.g., commonalities and variabilities
among different existing products) into product line models. It is directly linked with
product line management discussed in Part 1 because product line requirements can only
be created effectively by drawing upon both product roadmapping and existing legacy
systems and other available artifacts. It describes the metamodel that is the basis of the
approach, the extraction patterns that are derived from the metamodel, and the process
that guides the application of the patterns and the derivation of information relevant for
building a product line. The initial validation of the approach shows that, with the help of
this information, a product line model with the product line requirements can be built
much faster and the workload of the domain experts is significantly reduced.

The three chapters are grouped together in Part 2 as they present complementary

The development of a software product line is seldom a green field task. Legacy sys-
tems exist that serve as information sources or that should be integrated into a product line.
The information needed for this task is usually elicited interactively with high involvement
by the domain experts of the application domain. As domain experts have a high workload

Chapter 4 presents an approach for extracting requirements from existing user

A number of partly overlapping methods for describing software product lines have
been defined. They diverge with respect to terminology, representation, and concepts. Soft-
ware product line engineering would benefit from a more unified approach that facilitates

Chapter 4.
Chapter 5.
Chapter 6. Consolidated Product Line Variability Modeling

126 Part 2: Product Line Requirements Engineering

interoperability of tools and increased collaboration. Chapters 5 and 6 present two
complementary modeling approaches for this purpose: orthogonal and consolidated
variability modeling. To avoid misinterpretations concerning the terminologies used in

compares the metamodels of the orthogonal and consolidated variability modeling
approaches.

number of possible variant combinations and the influences of the selection of one variant
to different requirements models present a challenge for the consistent reuse or adaptation
of product line requirements. Only if the engineers are aware of the product line
capabilities, can they decide whether a stakeholder requirement can be satisfied by the
product line or not. Chapter 5 presents an approach for the development of application
requirements specifications that uses the orthogonal variability model and scenarios to
support the engineers during the elicitation, negotiation, documentation and validation of
requirements and tackles the challenges of application requirements engineering by
iteratively employing the orthogonal variability model and the product line scenarios.

variability that aims to be the starting point for the standardization of variability modeling
and the creation of commercial and open source tools better suited to product line
engineering than the ones available in the market (some of which are evaluated in Chapter
16). It describes a prototype tool that uses the metamodel as its foundation to validate the
metamodel, to show how the metamodel can be successfully drawn upon to design
supporting tools, and to encourage the software industry and open source community to
develop such tools. It also presents approaches for capturing variability using standard
languages, exemplified by UML 2.0, annotations to standard languages, and domain-
specific languages.

orthogonal and consolidated variability modeling approaches provide excellent support
for modeling and designing product line reference architectures discussed in Part 3.

In product line engineering the application requirements engineers have to assure both
a high degree of reuse and the satisfaction of the application stakeholders’ needs. The vast

Chapter 6 presents the consolidated metamodel for modeling software product line

It should be noted that variability modeling, being a critically important research area in

Chaps. 5 and 6 and facilitate future research on variability modeling, Chapter 5

product line engineering, is also addressed in Chaps. 1, 7, 11, 12, 13, and 15. Both the

Chapters 4 and 11 are also complementary as the requirements derived using the approach
described in Chap. 4 can be analyzed and tested further using the approach proposed by
Chap. 11.

4 Capturing Product Line Information from Legacy
User Documentation

I. John

Abstract
The development of a software product line is seldom a green field task. Legacy systems ex-
ist that serve as an information source or that should be integrated into a product line. The
information needed is usually elicited interactively with high involvement by the domain
experts of the application domain. As domain experts have a high workload and are often
unavailable, relying primarily on high expert involvement is a risk for the successful intro-
duction of a product line engineering approach into an organization. This chapter presents an
approach for the extraction of requirements from user documentation, which gives guidance

4.1 Introduction

The goal of product line engineering is to achieve planned domain-specific reuse by build-
ing a family of applications. Unlike in single system software development there are two
life cycles, domain engineering and application engineering [47]. In domain engineering,
the reusable asset base is built and in application engineering, this asset base is used to
build the planned products.

In existing product line engineering and domain analysis approaches, the information
needed to build a product line or domain model is elicited interactively from domain ex-
perts. As domain experts have a high workload and are often unavailable, this high expert
load is a risk for the successful introduction of product line engineering into an organiza-
tion. Reducing the expert load and thus reducing the risk of failure can allow product line
introduction in a planned and controlled way. Reducing the expert load by systematically

on how to elicit knowledge from existing user documentation and how to transform infor-
mation from this documentation into product line models. This approach is called the

PuLSE-Framework for product line engineering. We describe the metamodel that is the basis
of the approach, the extraction patterns that are derived from the metamodel, and the process
that guides the application of the patterns and the derivation of information relevant for building
a product line. This information can be features of legacy products, parts of use cases that
can be used for product line analysis, different kinds of requirements and, most important for
product line engineering, commonalities and variabilities among existing products. With the
help of this information, a product line model with the product line requirements can be built
much faster and the workload of the domain experts is significantly reduced. We performed
an initial validation of the approach in industrial case studies and in a controlled experiment.

PuLSE-CaVE-approach (Commonality and Variability Extraction) and is part of the

collecting information from existing documents and thus decreasing the amount of time
that has to be spent by the domain experts on the product line introduction is the main
goal of our work.

amount of information on the domain of the planned product line and on the planned and
existing products of the product line has to be collected. The commonalities and variabili-
ties of products in the domain and subdomains in focus have to be captured, modeled, and
later implemented and stored in an asset base. Constructing such a reusable asset base for
specific products in a domain is an intellectually more sophisticated task than the devel-
opment of assets for a single system because several products with their commonalities
and variabilities have to be considered. This implies that planning and scoping, elicitation,
analysis, modeling and realization are more complex than for single systems. So, all tasks
that are known from single system engineering have to be done, but in a more sophisti-
cated way, by thinking about several products and realizing solutions in a generic way.
Figure 4.1 shows the principal information gathering process during scoping and model-
ing of product lines.

Product Line
Modeling

Product
Line
Model

Domain
Experts

Product Line
Engineers

Elicitation

Legacy
Documen-

tation
Knowledge

Commonality
And Variability

Model
Elements

Product Line
Modeling

Product
Line
Model

Domain
Experts

Product Line
Engineers

Elicitation

Legacy
Documen-

tation
Knowledge

Commonality
And Variability

Model
Elements

Fig. 4.1. The principal elicitation and modeling process

Usually, before starting to develop a product line, one or more systems in the domain
were already built. The information from those systems is a valuable source for building
the reusable assets. For the domain analysis phase, general textual information on the
existing systems is a very valuable source, as textual artifacts that are built using older
textual information are built in these early phases.

The approach we introduce in this chapter focuses on the analysis and integration of
information of user manuals and similar textual documentation, as in practice, natural lan-

document-based approach can decrease the effort the domain experts have to spend on
workshops, interviews, and meetings, and therefore leads to a high expert load reduction.

I. John128

When introducing a product line engineering approach in a new context, a large

guage documents are the most common assets during the requirements phase [2,26,36]. A

Our goal is to extract the information from documents semiautomatically so that the
experts can concentrate on innovative functionality.

Our main research hypothesis is thus that the workload of experts can be reduced by
extracting requirements from user documentation with a structured extraction approach.
The goal of our work is to develop and validate an approach that efficiently supports the
introduction of product line engineering by systematically using existing documentation to
gather information on the products and the product line and thus reduce expert load.

Our secondary research hypothesis is that an approach that extracts partial requirements
elements from user manuals produces results that are more correct and complete than
unguided and ad hoc extraction of requirements in different forms.

In this chapter, we describe the scientific approach we developed and its validation. We
describe the product line related problem that we solve with our approach in Sect. 4.2 and
give a classification of related work in Sect. 4.3. The metamodel and the patterns that are
the basis of our approach are described in Sect. 4.4. In Sect. 4.5, we describe the method
and process of how to apply the patterns and find useful information in user documenta-
tion, and in Sect. 4.6, we show how we validated our approach in a controlled experiment
and in an industrial case study.

The research approach we chose is separated into two phases: First, a phase with action
research [40], a research paradigm that uses an iterative process, which alternates between
action and critical reflection, and second an experimentation phase [5], where we perform
case studies and an experiment to validate the approach.

First, we analyzed the related literature on requirements engineering, information extrac-
tion, domain engineering and product line requirements engineering for useful techniques
in the context of requirements extraction for product lines. Then we followed the action
research paradigm and applied those techniques and some new techniques in two initial
explorative studies, see [24]. We built a first version of our approach and a metamodel
underlying our approach in parallel in short improvement cycles when performing the
studies. After stabilizing this first version, we went over to the experimental phase. We
conducted a controlled experiment and showed external validity in an industrial case
study. In the last phase, the phase that we are currently in, we will finalize the approach,
perform further case studies, and package the results in different kinds of publications.

By combining action research and experimental software engineering, we also comply
with the guidelines given by design research as described in [21]:

and useful artifact. The extraction approach described in Sect. 4.5 is described in such a
way that it can be applied by others and helps to construct product line models.

– Problem relevance. By solving or at least minimizing the problem of expert load, a
technology-based solution to a well known practical problem is given.

4.1.1 Outline

4.1.2 Research Approach

4 Capturing Product Line Information from Legacy User Documentation 129

– Design as an artifact. In our case, the extraction approach serves as the purposeful

– Design evaluation. The evaluation of the approach is done through a controlled ex-
periment and industrial case studies.

– Research contributions. As the main contribution described here is the extraction ap-
proach described in Sect. 4.5 (with the basis in the metamodel and patterns described in
Sect. 4.4), our contribution is mainly in the area of design artifacts. As described in
[21]: “The artifact must enable the solution of heretofore unsolved problems.” The ap-
proach described here partially solves the problem of information gathering for product
lines.

– Research rigor. An explicit survey on related work and the use of the well known and es-
tablished research methods action research and experimentation give a stable basis for the
approach and the research done.

– Design as a search. By taking into account current product line modeling methods, the
outcome of the method is aligned with the problem environment.

By following this combination of action research and experimentation, we can perform
well-founded research that is applicable to different contexts in practice.

When starting a product line in an organization there are normally legacy systems that
have been built in the product line domain. Legacy systems of the organization can be old
systems that have already been completed or systems currently under development and
not integrated into the product line yet. The integration of those existing systems into a
planned product line to be built can happen on different levels, like analysis and integra-
tion of code, analysis and integration of the architecture, reuse and integration of knowl-
edge and expertise, and analysis and integration of documentation. As also discussed in
Chap. 9, approaches or methods exist for the code and architecture analysis and integra-
tion like Architecture Recovery methods or reengineering methods [8]. But for the trans-
fer and integration of less formal or even tacit knowledge like requirements or expertise,
no method exists that supports this integration.

Knowledge or expertise that exists in the organization is owned by the stakeholders
within the development organization. This knowledge can be used for the transition of the
legacy systems and for modeling and development of the product line.

Legacy assets should not only be used for reverse engineering [11], which in the prod-
uct line case can mean for finding a product line architecture from legacy code [8], and
documentation, but also for (Re-)modeling a product line. There is information in legacy
documents which is useful for domain requirements engineering and for increasing com-
pleteness. By analyzing the documents and integrating their information into the product
line, knowledge and requirements can be reused for domain requirements engineering like
code can be reused by transformation through reengineering.

products developed in an organization by identifying the commonalities between the products

4.2 Problem

4.2.1 Product Line Engineering

I. John130

Product line engineering is an approach that aims at exploiting reuse potential between

identified, modeled, stored, resolved, instantiated, and changed.
This requires a comprehensive approach to the management of variability that can be

applied throughout the various life-cycle stages, their artifacts, and their accompanying
notations in a universal manner. Additionally, domain understanding has been identified
as one of the key practices for successful product line engineering [12].

Moreover, in order to enable a smooth transition to product line development for an or-
ganization that so far only performed single system development, it is necessary to keep
as much of the existing notations and approaches in place as possible. For this reason, we
developed a customizable approach to variability management that can be used as a full
lifecycle approach [41] but is also applicable for product line modeling. This allows us to
practically apply the approach in a wide range of industrial settings. This is particularly

needed an approach that enables us to homogeneously manage variability, independent of
the specific notation. Therefore an extraction approach for product lines has to be accom-
panied by explicit variability management in order to integrate and manage the extracted
artifacts at the right stage and at the right place into the product line model.

There are many approaches to product line modeling or product line requirements engi-
neering like PuLSE-CDA7, Foda [28], ODM [43], Commonality analysis within FAST
[50] or Synthesis [29]. Most of them use similar notations. Notations and artifacts that are

ments, glossaries, etc. are in use. Until now, the information needed to build a product line
model has been elicited interactively with high expert involvement. As domain experts
have a high workload and are often unavailable, this high expert involvement is a risk for

– Domain experts have a high workload and are hardly available, so we need to relieve
the experts by eliciting product line related information from documents.

– There is a lack of guidance on how to integrate legacy information found in documents
into product line models.

– There is no extraction approach that is general enough to integrate all kinds of artifacts
into a product line model.

– Single system elicitation methods cannot be taken as they are because multiple
documentations have to be compared, commonalities and variabilities have to be
elicited, and additional concepts (e.g., abstractions, decisions) are needed.

4.2.2 Product Line Modeling

the successful introduction of a product line engineering approach into an organization.
in this chapter, we present an approach for extraction that overcomes the following
problems:

1314 Capturing Product Line Information from Legacy User Documentation

motivated by our industrial projects using the PuLSE approach [19, 30], as there we

and systematizing the variabilities. In Product line engineering, variabilities have to be

state of the practice in product line modeling are features (see, e.g., [10,15,31]). Also quite
often, extensions of Use Cases are used (see, e.g., [15,20,27, 48]). In addition to these specific
artifacts, general textual artifacts like functional requirements, nonfunctional require-

In the case of integrating requirements by reusing and integrating knowledge about legacy
systems, documents play an important role. The understanding of the domain as far as it
was recorded by the development organization in earlier projects can be found in docu-
ments. Thus those documents are a valuable source for domain understanding and domain
analysis.

By documents or documentation assets we mean the written representation of informa-
tion concerning the legacy system. Documents that are developed during system or soft-
ware development are more or less structured.

User manuals are often less structured and normally less formal than the other docu-
mentation assets. They provide an external or user view on the system and can also vary
strongly in size. They can be expected to exist for almost any system that has a certain
amount of user interaction. User Manuals can therefore be a rich source for increasing
domain understanding. They describe domain concepts from a user perspective and can
thus provide valuable input for domain analysis. Sometimes user manuals do not describe
the system as it is but as it should be. But for use as a source for domain analysis, this is
rather an advantage than a disadvantage because the systems in the product line should be
realized in a more ideal way than the legacy systems. So information about the legacy sys-
tem as it should be is a good input for product line modeling.

enterprises [30] that there are almost no requirements specifications or design documents,
and if there are any, they are outdated. As described above, user manuals describe the legacy
systems from a perspective that is relevant for domain requirements engineering. For
document processing it is therefore reasonable to concentrate on the analysis of user
manuals of all systems the development organization has built in the domain of the prod-
uct line.

According to [44] there are different types of user documentation: functional descrip-
tions, installation documents, introductory manuals, reference manuals and administra-
tor’s manuals. All those kinds of user manuals can serve as input for product line

different use case elements that can be used for product line modeling. The relation of use
cases to product lines is further elaborated in Chap. 11.

So the problem that we solve with our approach is: How can product line engineering
be efficiently supported by systematically using user documentation from existing
systems?

4.2.3 User Documentation as Information Source

I. John132

engineering. Figure 4.2 shows how the different parts of a user manual can correspond to

When introducing product lines with PuLSE [8] we found especially in small and medium

12. Games (Menu 8)
The phone offers you the following games to play: Snake II, Space
impact, Bantumi, Pairs II

To access this menu: In standby mode, press Menu, scroll to Games, and
press Select

Playing a game

Select the desired game and then one of the following Options:

New

 the desired game and then one of the following options:

: Starts a new game session

• : Shows the highest score so fa

game : Starts a new game session

•Top score : Shows the highest score so far

•Instructions : Shows a help text on how to play the game. You can scroll
through the text with < or >

•Level: allows you to set the difficulty level for the selected game

•Continue : Resumes a game after it was paused by pressing Menu or C.
Start the game by pressing and key except for Menu, C or |.

•Settings allow you to set the sounds, lights, and vibrator (Shakes)

Use
Case
Name

Primary actor

Use
Case
Goal

Precondition

Scenario
Description

12. Games (Menu 8)
The phone offers you the following games to play: Snake II, Space
impact, Bantumi, Pairs II

To access this menu: In standby mode, press Menu, scroll to Games, and
press Select

r

•Instructions : Shows a help text on how to play the game. You can scroll
through the text with < or >

•Level: allows you to set the difficulty level for the selected game

•Continue : Resumes a game after it was paused by pressing Menu or C.
Start the game by pressing and key except for Menu, C or |.

•Settings allow you to set the sounds, lights, and vibrator (Shakes)

Use
Case
Name

Primary actor

Use
Case
Goal

Precondition

Scenario
Description

Fig. 4.2. Correspondence between user manual parts and use case elements (from [15])

The area of fields and techniques that can contribute to the elicitation of information that

formation retrieval techniques can contribute to our research question of how to find in-
formation that is relevant for domain engineering and thus helps to reduce expert load.
The techniques can range from interview techniques via reading techniques to code based
techniques from reengineering.

To restrict the amount of related work, we built a classification of factors that can help
solve our research question and explicitly searched for literature that contributes to the

this classification and give the classification for related work from the fields that we investi-
gated.

In our classification, we will only focus on textual information since analyzing existing
textual information reduces the expert load most effectively. This can best be realized by

support structured elicitation but they require strong expert involvement and thus do not
help in reducing expert load.

4.3 Related Work

is useful for the early phases of product engineering is rather large. Techniques from
requirements elicitation and requirements analysis as well as knowledge engineering or in-

1334 Capturing Product Line Information from Legacy User Documentation

main dimensions of our classification. In the remainder of this section we will describe

analyzing existing textual information that is available [32,36]. Interview techniques can

In the classification and survey we performed our goal was, compare approaches that can
contribute to solving the problem of how to elicit textual information for the early phases
of product line engineering and domain engineering. As this is a new research problem,
with a new focus, the approaches we consider come from different areas and are only
comparable by looking at different dimensions of the approaches. Therefore a classifica-
tion is needed to enable viewing the relation of the chosen approaches to the research

for the differentiation of approaches by following the Goal Question Metrics approach
(GQM) [4].

According to the GQM approach [4], a study can be refined by setting goals specific to
needs in terms of purpose, perspective and environment, by refining the goals into ques-
tions that are traceable and by deducing metrics and data to be collected in order to answer
the questions. The here introduced classification is the result of a GQM Analysis, that
should support our research question and classify the related work. The Goal of the survey
can be decomposed as follows:

– Object (process or product under study). “All approaches that contribute to the extrac-
tion of common and variable information from existing textual software documentation
that is relevant for product line modeling and requirements engineering.”

– Purpose (motivation behind the measurement goal). Characterization of the approaches
and extraction of useful techniques.

– Focus (quality attribute of the object under study). Usefulness of the approach/techniques
for product line engineering.

– Environment (context in which the analysis shall be performed). Applied research in

When applying GQM, questions are defined that refine the goal, are traceable and can
lead to concrete metrics. These questions can be derived from the object, the environment
and the focus. Several questions were identified and metrics, which in our case are the
classification dimensions for the classification, were derived. We derived the questions
and metrics, respectively, the classification dimensions as follows (the dimensions are
described in detail in [24]):

– Question 1. Is the approach suitable for knowledge recovery for the early phases of

Classification Dimensions: Area, Legacy, Product Line Relation
– Question 2. Is the approach well founded?

ments information?
Classification Dimensions: Focus, Artifacts, Constructiveness

4.3.1 Classification

Classification Derivation

I. John134

question. In this section we will describe the classification dimensions that were selected

product line engineering.

Product line engineering?

– Question 3. Does the approach contain useful techniques for analyzing textual require-
Classification Dimensions: Metamodel, Conceptualization

We identified one of those classification dimensions, namely product line relation, as the
main dimension, since the approach we are looking for has to support product line intro-
duction.

As the goal of the classification is to find information useful for product line modeling,
the product line relation is the main classification dimension. Since the information to be
searched has to be used in a product line engineering environment, the approach has to

Product Line Relation can be described as follows:
This classification dimension describes whether the approach has a direct relation to
product line engineering, which means that the approach addresses commonality and vari-
ability of products or common and variable information entities. Approaches with a strong
product line relation are better suitable for our goal than those with a weak or no product
line relation. Out of those approaches that support product line engineering, those that
support both commonality and variability (in contrast to approaches that only focus on
commonalities such as certain domain engineering approaches like ODM) are optimal for
our goal as common and variable information entities are needed to support domain engi-
neering.

Possible values: not product line related, partially related, commonality only, variabil-
ity only, commonality and variability.

When analyzing the approaches we found, we mainly focus on those approaches that
are at least partially product line related or address commonality or variability. By restrict-
ing the approaches to those with the given classification values, we can identify exactly
those approaches that are applicable for finding information that is useful for product line
engineering.

Secondary Classification Dimensions

We also identified secondary classification dimensions that are subordinate to the primary
dimension product line relation but are also useful for classifying existing approaches.
These dimensions contribute to further classifying existing approaches according to their
usefulness for the overall goal of the survey but they are only secondary in a way that
these dimensions do not give an estimate of the usefulness of the approach for the goal but
just provide a further classification of the approaches into subcategories. The secondary
dimensions are:

– Constructiveness. This classification dimension describes if the approach is construc-
tive, which means something is produced or modeled, or if the approach only describes
how to decompose existing information, elicit knowledge or analyze existing documen-
tation. If the approach is described as a process, an indicator for constructiveness can
be whether there is an explicit output of the process. Approaches that are constructive
are better for our goal than those that are less constructive because for the envisioned
tasks, extraction of information from legacy systems in order to build a product line
model, the construction of a new product line model has to be done.

Primary Classification Dimension

1354 Capturing Product Line Information from Legacy User Documentation

have some relation to finding commonality, variability, or both. The primary dimension

 Possible values: selecting (selecting available information as a model element), con-
structive (constructing model elements from basic information), including producing,

– Area. This classification dimension describes the research area (as part of the research
areas of Computer Science and Software Engineering) that the approach is a part of.
Possible values: requirements engineering RE (being the common super-area of the fol-
lowing three areas), requirements elicitation/RElicit, requirements analysis/RA, re-
quirements reuse/RR, domain modeling/DM (including product line engineering and
domain engineering), reverse engineering/RevEng, information retrieval/IR, knowledge
engineering/KE, documentation doc.

– Metamodel. This classification dimension describes the existence of an explicit under-
lying meta-model that describes basic elements of a documentation or what the models
to be constructed/analyzed look like in general. With a metamodel it is generally possi-
ble to identify a match between the elements of a concrete documentation and the ele-
ments of a metamodel.
Possible values: no, partially, yes.

– Input Artifacts. This classification dimension describes the artifacts that are analyzed or
the basic documentation elements to be addressed by the approach. If the approach is
described as a process, this is normally the input of the process. As the approaches
analyzed are all related to software development, the artifacts addressed by the ap-
proach can be any textual artifact produced during the development lifecycle.
Possible values: requirements (user), documentation, code, code comments, models,
other.

– Output Artifacts. This classification dimension describes the artifacts that are the result
of applying the approach. If the approach is described as a process, this is normally the
output of the process. As the approaches analyzed are all related to software develop-
ment, the artifacts addressed by the approach can be any textual artifact produced dur-
ing the development life-cycle.

– Operationalization. This classification dimension describes whether the approach is
automatable/operationalizable and is described in such a way that support by a tool
seems to be possible. This is of high importance for applying the approach in industrial
applications as there is often a large amount of information available that should be
analyzed.
Possible values: no, partially, yes.

– LifeCycle Orientation. This classification dimension describes the consideration of leg-
acy information. It analyzes whether the information from previously developed sys-
tems is integrated into a new development lifecycle (as is the case when introducing
product line engineering in the presence of a legacy system) or whether the information
analyzed will be integrated into the same lifecycle again (as is the case in a refactoring
situation, when information like code should be improved). For approaches that explic-
itly consider product line engineering, it is also possible to address the instantiation of
generic requirements built in domain engineering.

The secondary dimensions provide a classification of the methods according to context
factors and help decide on the relevance and usefulness of the methods for the research
goal.

Possible values: requirements (user), documentation, code, models, other.

I. John136

Possible values: legacy, same lifecycle, domain engineering, application engineering.

modeling, analyzing (abstracting information into higher level elements).

We identified about 30 approaches that could possibly be related to our research goal and
classified them according to our classification scheme. Only nine of the approaches we
analyzed had a product line relation. Here we only present in detail the classification of

niques for analyzing information.
When following our classification scheme in analyzing our research goal, the ideal ap-

proach would have the following form:

– Product Line Relation: Commonality and Variability
– Constructiveness: Analyzing
– Area: irrelevant
– Meta-model: yes
– Input Artifacts: Documentation
– Output Artifacts: Text and Models
– Operationalization: yes
– Legacy: Legacy

Table 4.1. Classification of related work

product line
relation

construc-
tiveness

area meta-
model

input arti-
facts

output
artifacts

operatio-
nalization

life-cycle
orientation

[14] Cybulski Reed partially C analysis RR no req classified
req

yes legacy

[17] Frakes et al.
DARE-COTS

C+v analysis DA no doc models yes same lc

[22] Hoppen-
brouwers et al.

C constr DA yes doc models yes legacy +same
lc

[35] Mannion
et al. 1999

C+v select RR, DA yes req req yes de ae

[34] Mannion et al.
1998

C+v analysis DA/RR no req req no legacy

[43] ODM C+v constr DA no systems domain
models

no legacy

[52] Roseti, Werner C+v constr DA no docs conc
models

no legacy

[45] Stierna C analysis +
constr

RR no req yes legacy

[49] von Knethen
et al.

Partially C select RR yes req req no legacy

variability that is general and constructive enough to serve as an approach for the elicita-
tion of product line knowledge from documentation. So there is a need for a systematic

sions.

4.3.2 Classified Approaches

1374 Capturing Product Line Information from Legacy User Documentation

can be found in [24]. Further approaches that we analyzed and classified and had no product
line relation (e.g., [1,9,33,36,38,39,46]) nevertheless can be used to find useful tech-

approach to analyzing documentation for product line engineering. In the following sec-
tions, we describe an approach that has the right values in all classification dimen-

As it can be seen from Tab. 4.1, there is no approach addressing commonality and

approaches that have a product line relation here (see Tab. 4.1); a complete classification

metamodel is an information model for the information that can be expressed during mod-
eling [18]. Our metamodel consists of different packages and is accompanied by extrac-

The metamodel we introduce here describes the elements that can be found in documenta-
tion like user documentation, etc. The metamodel describes how to find relevant product
line knowledge as well as typical product line artifacts in this documentation in different
stages, described in four packages. The metamodel gives transformations between the two
stages “documentation” and “product line artifact” by adding two conceptual stages, the
requirements concept level, which describes general requirements concepts (as opposed to
documentation artifacts that are notation-dependant realizations of requirements con-
cepts), and the variability level, which describes the kinds of variabilities and commonal-
ities that can be found in documentation. For each of those four stages, a model exists that
we will describe in the following. We also describe the extraction patterns that provide
transformations between the different packages of the model and thus can give guidance
on how to find meaningful product line artifacts in user documentation.

Requirements Concept

Product Line Artifact
User Documentation

Variability

User Documentation
User Documentation

condensed Pattern

Pattern

single system
elicitation

Fig. 4.3. Overview of the metamodel

The extraction model consists of four packages (see Fig. 4.3):

– A user documentation model describing the elements that are typically found in user
documentations, manuals, and technical specifications (e.g., sections, glossaries, and
lists).

– A requirements concept model describing concepts that are typically used in require-
ments specifications (e.g., roles, activities, functions) independent of the notation used.

tion patterns that describe the transformation from one package to another.

4.4 Metamodel

4.4.1 Overview

I. John138

In this section, we describe the metamodel that is the basis for our approach. In general, a

– A variability concept model describing the principle commonality and variability con-
cepts that can be found by comparing different documents and that are used for model-
ing.

– A product line artifact model describing elements of typical single system requirements
specifications and product line models. These elements form a notation that is used to
capture requirements (like Use Case elements, features or textual requirements). Those
requirements can have, but do not need an explicit representation of variability.

The transition from one stage of the model to another stage is described by extraction patterns
(specific rules-of-thumb or arguments derived from experience). The extraction patterns
(Sect. 4.4.6) describe the transition between document elements and the other three parts
of the metamodel. All arrows in the figure represent sets of extraction patterns. The
extraction patterns from user documentation to product line artifacts (“condensed pattern”
in Fig. 4.3) are of main interest when applying the approach. They give direct guidance on
how to convert documentation elements into elements of a product line model or product
line description. The other patterns give a transformation to or from the conceptual level.
It is also possible to directly transform requirements concepts into requirements artifacts
without searching for variabilities because the pattern sets are described independently.
When we leave out the variabilities, we can also use the approach for requirements elicita-
tion for single systems (see arrow “single system elicitation” in Fig. 4.3). All patterns
have to relate explicitly to the model elements described in Figs. 4.4 and 4.5 so the models
give a framework and basis for the extraction patterns.

documents. The document types that we analyze are user documentations or user manuals
that describe the functions and usage of a system, and product descriptions that describe
the features and technical details of a product. A document normally has a title, it often
has a table of contents and a glossary, and it consists of several sections. A TOC entry
normally corresponds to a heading in a section. A glossary consists of a list of terms that
are described in paragraphs. A paragraph consists of sentences; it can also contain figures,
tables, and formulas. A sentence is composed of phrases (language constructs consisting
of a few words) and/or words. A phrase can also be a link (describing a reference to some-
thing inside or outside the document). Most elements of the user documentation model
have attributes describing characteristics of this element (like highlighted for paragraphs
and words, or numbered for lists); the attributes are not shown in the figure. This model
describes the elements of a document on an adequate level for eliciting requirements con-
cepts and finding product line artifacts.

4.4.2 User Documentation Model

Our user documentation model (see Fig. 4.4) describes the principal constituents of user

1394 Capturing Product Line Information from Legacy User Documentation

User Documentation

Product Description

TOC entry

Document

Table of ContentsTitle

Heading

Section

Paragraph

Glossary

Term

Figure Table

Table Heading

Table Body
Image

Figure Heading
Formula

List

Phrase Word

Link

Number

Sentence

List Element

User Documentation Package

Requirements Element

User Task Data RoleConstraint

Naming Convention
& Definition

I/O DATA Internal DataDesign
Constraints

Usage
Constraints Activity

System FunctionNavigation
(to Systemfct.)

Mapping of Activities
to System Functions

System ReactionUI-Element (Call)

External
relations

Requirements Concept Package

Quality

Fig. 4.4. User documentation model and requirements concept model

I. John140

user documentation and that are normally realized or described by product line artifacts in
requirements or product line specifications. The model describes the elements independ-
ent of a specific notation (like textual or Use Case representation). The most general
requirements concept is a requirements element. A requirements element can be anything
that is of value for a requirements specification. A requirements element can be a user
task, a role, data, a naming convention, a constraint, or a relation to something in the envi-
ronment of the system to be described. Data can either be I/O data or internal data; con-
straints can either be usage or design constraints. A user task that describes the high level
task the user wants to perform with the help of the system can be decomposed into activi-
ties. Activities consist of navigation elements, system functions, and a mapping of the
activities to functions.

A metamodel for modeling product lines has to support commonality and variability [41].
In the variability model, the variation aspects are described. In order to find different vari-
ability elements, the requirements elements (from the requirements concept model) found
in different user documentations are compared. The variability model is a product line
specific model as it describes commonality and variability between different products.
Variabilities can normally be found by comparing different documents. Figure 4.5 shows
the elements of the variability model. The metamodel contains the elements commonality,
alternative, and optional. In general, it cannot be decided from scratch if elements that
were found several times in different documents refer to a multiple selection, single selec-
tion or to a value reference. So, these three variability types are integrated into the one
element range. The concrete variability type has to be determined during modeling and is
not part of elicitation. Approaches on how to handle variability can be found in Chaps. 5–7.

The fourth package of our conceptual extraction model is the product line artifact model
(see Fig. 4.5). In this model, different elements of requirements specifications that can be
used for single system modeling and for product line modeling during domain engineering

conceptual or semantic level, the product line artifact model describes requirements ele-
ments on a syntactic or notational level. In different kinds of requirements specifications,
the same conceptual elements can be described with different notational elements, e.g., a
role from the requirements concept model can be an actor in a Use Case description or a
stakeholder description in a textual requirements specification.

As we also describe the application of our approach for product line modeling, we have
to address variability, so we have integrated into our model a model of notation oriented

4.4.3 Requirements Concept Model

4.4.4 Variability Model

are described. Unlike the requirements concept model, which describes the elements on a

4.4.5 Product Line Artifact Model

The requirements concept model (see Fig. 4.4) describes concepts that can be elicited from

1414 Capturing Product Line Information from Legacy User Documentation

Product Line Artifact

Use Case
Goal

UC Element

Actor

Relationship

Use Case (UC)

Use Case Diagram

Use Case
Step

UC
Precondition

Use Case
Postcondition

Use Case
Exception

Rationale

Data
Requirement

Project Issue

Requirement
Functional

Requirement

Product Line Artifact Package

Product Line Artifact Element

Requirements Specification

All white elements in this diagram can
be Product Line Artifact Elements

Interface
Requirement

Feature

Product
Feature
Matrix

Feature
Model

-type

RelationDomain

Product

Requirement

Variability Element

Commonality

Alternative Optionality

Range

Variabilty Model Package

Decision

I. John142

Fig. 4.5. Variability model and product line artifact model

Nonfunctional

variability here. As opposed to the model described in [41], which gives variability con-
cepts, this model describes how variability can be documented in artifacts. The variability
model we use here is the model described in [37]. This model describes generic product
line assets. It is on the one hand specific enough to allow smooth transition of the artifacts
into the other phases of the PuLSE Framework [6] but on the other hand it is also general
enough to be valid and applicable for other product line engineering approaches like
FAST [50] or the SEI approach [12]. Product line assets can be product line artifacts,
describing the product line itself and decision models describing the constraints on the
product line artifacts. Figure 4.5 shows the general structure of the metamodel for product
line information. The grey boxes show the main artifacts, while the white boxes show
their parts. A ProductLineArtifact is based on the model for general artifacts that consist
of different representation elements (such as text, UML Models elements, Boxes). A Pro-
ductLineArtifact explicitly has to contain the concepts that make an artifact generic, like
variation points or links to a decision model. In our model, product line artifacts can be
use case diagrams, feature models, requirements specifications or product feature matri-
ces. This is of course not a complete listing of all kinds of possible product line artifacts
but only the artifacts that are used in the patterns. If new patterns are developed, the prod-
uct line artifact package has to be extended with other artifacts.

In product line engineering, variability has to be made explicit in the product line arti-
facts. Different extensions (e.g., to UML Use Case diagrams or to textual Use Cases) exist
that make the variability explicit and give support for the instantiation of requirements for
application engineering. Some of these extensions use stereotypes or tags to describe vari-
ability, some extensions use extra elements to make variability explicit.

At the moment, we have specified different kinds of requirements notations: Use
Cases, textual requirements specifications, and the product line specific notations: product
feature matrix [42] and feature model [28]. Further requirements artifacts will be inte-
grated into the product line artifact model. We added different representations here, as our
general approach to product line modeling is customizable and highly depends on the
requirements elements found in the organization that wants to do product line engineer-
ing. For performing product line engineering, we put variability elements on top of the
existing notation and can thus keep the notation similar to the one used before. In our
model, a Use Case diagram for example consists of Use Cases, actors and different rela-
tionships between the Use Cases and the actors. A textual Use Case (according to Cock-
burn [13]) consists of different elements like Use Case goal, precondition/post condition,
Use Case exceptions, and the actual description of the Use Case, consisting of steps.
Requirements specification can for example follow the IEEE Standard 830 [23]. A require-

data requirements, including project issues and rationales for the different requirements.

As described in Sect. 4.3, requirements elements can be found in document elements of
different forms. To allow a structured extraction, we developed a number of extraction
patterns for different document elements and different requirements elements that describe
a transition between document elements and the other three parts of the metamodel. In this

4.4.6 Extraction Patterns

1434 Capturing Product Line Information from Legacy User Documentation

ments specification is a textual document consisting of functional, nonfunctional, and

patterns in this template form and giving a short description of all patterns.

The extraction pattern template is used to store the patterns and describes the applicability
of each pattern. The template consists of the following elements:

– Name. The name of the pattern and a unique number.
– Short Description. A short description of what the pattern should elicit.
– Input. The element that is converted into another element with the help of the extrac-

tion pattern. Input elements can be documentation model elements or requirements
concept model elements (arrows in Fig. 4.3).

– Output. The type of the element that is the result of the extraction pattern. Output ele-
ments can be requirements concept model elements, variability model elements or product
line artifact model elements (arrows in Fig. 4.3).

– Recall. The recall of a pattern describes its completeness. In Information Retrieval, the
recall of a pattern is defined as the number of correct elements found by the extraction
pattern divided by the number of correct output elements that can be found 3. In the
template, the recall is given by a rough estimate of the correctness of the pattern. This
estimate was determined experimentally (the determination is currently ongoing, so re-
call and precision do not yet exist for all patterns) and corrected by the authors. Possi-

– Precision. The precision of a pattern describes its correctness. In Information Retrieval,
the precision of a pattern is defined as the number of correct elements found by the ex-
traction pattern divided by the number of output elements found by the extraction pat-
tern 3. In the template precision is given by a rough estimate, equally to recall. Possible

– Transition. In the transition field the associated model of the input and output are
given. Possible transitions are, e.g., “Documentation → Requirements Concept,”
“Documentation → Variability,” or “Requirements Concept → Product Line.”

– Long Description. In the long description field a longer description of the pattern in-
cluding background information or rationale can be given.

– Example. In this field, an example of elements elicited with the pattern can be given.
– Related Patterns. This field gives the name and number of patterns that are some-

how related to the described pattern (e.g., that generate the same or similar output).

Extraction Pattern Template

ble values are “– –, – , o, +, ++.”

values are “– –, – , o, +, ++.”

I. John144

section, we describe the template for the extraction patterns, showing some example

Table 4.2 shows an example for a filled pattern.

Table 4.2. Template for pattern

name 1 heading-feature
short description headings of sections or subsections typically contain features
input heading
output feature
recall +
precision ++
transition
long description as features describe functionalities that are of importance for the user, they

are found at prominent places in the UD.
example “Send SMS” as a heading of a mobile phone manual is a feature of the

mobile phone
related patterns –

In this section we present the list of patterns. These patterns are the condensed pattern as it
can be seen in Fig. 4.3, as the condensed pattern are normally used in the elicitation proc-
ess. We do not give the complete template but only the short description and/or an expla-
nation for the patterns:

Features
– Headings of sections or subsections typically contain features
– Features can be found in highlighted phrases (bold or italic font) or in extra paragraphs
– Technical descriptions or short descriptions of a system often contain lists of features

Use Cases
– Headings of sections or subsections typically contain names of Use Cases
– Phrases like “only by,” “by using,” “in the case of ” can be markers for Use Case pre-

conditions
– Use case preconditions and goals can typically be found in the beginning of a chapter
– Use case preconditions can be found before or within the description of a Use Case
– Phrases like “normally,” “with the exception,” “except” can mark Use Case extensions
– Numbered lists or bulleted lists are markers for an ordered processing of sequential

steps and describe Use Case descriptions
– Sentences that describe interactions with the system in the form of “to do this…do

that…” are Use Case descriptions
– Passive voice is typically a marker for system activity (e.g., “The volume of the radio is

muted” = the system mutes the volume of the radio). These sentences can be used in
the Use Case description.

Requirements
– Functional Requirements: User Interface and E/A Information and system functions
– Phrases like “press,” “hold,” “hold down,” “press briefly,” “select,” “key in,” “scroll,”

etc. mark a dialogue with the user interface or navigation elements

List of Patterns

1454 Capturing Product Line Information from Legacy User Documentation

documentation → product line artifact

– The following phrases give hints for E/A elements: “type in,” “enter,” “transfer,” etc.
– Activities or system functions are all those elements marked as features that contain a

verb

– Shortcuts are alternative usage scenarios and can therefore be a marker for a non-
functional requirement like “the system shall be used in two alternative ways….”

– Adverbs and adjectives (longer, fast, quickly, etc.) can mark NFRs, especially if a
phrase or sentence appears in the user manual once with the adverb, once without. (e.g.,
“to turn off the radio” and “to quickly turn off the radio”)

the display, battery size, etc.)

was exactly this number chosen?)

Project issues and usage constraints
– Project issues can be found in the beginning of a chapter. Project issues are related to

usage constraints.
– Text passages that do not fit into the textual flow, that describe facts that do not fit to

the rest of the description or that use words from another domain or from another sub-
domain of the system can be hints for project issues.

Commonalities and variabilities
– Arbitrary elements occurring only in one user manual probably are optional elements.
– Headings or subheadings that only occur in one of the documentations can be Use

Cases that are wholly optional.
– Headings or subheadings that have slightly different names or headings or sub-

headings that have different names but are at the same place in the table of contents can
be hints for alternative Use Cases.

– Phrases that differ in only one or a few words can be evidence for alternatives.
– If numerical values in the document differ they can be parametrical variabilities.
– Menu items that are described only in some of the documents can be hints for optional

or alternative functionality (Use Cases or parts of Use Cases).

The patterns for features, use case elements, and requirements are used when analyzing
one document; the commonality and variability patterns are used when comparing differ-
ent documents. The patterns should not be seen as algorithms that always deliver a correct
solution but rather as hints that can give a solution, but that can also be wrong in some cases.

New patterns can be derived from the metamodel by describing transitions from an
element of one package to another (see Sect. 4.4.1). When building new patterns one has
to make sure that the elements in the patterns are equal to existing metamodel elements
(or the metamodel has to be extended).

I. John146

Nonfunctional requirements
– Nonfunctional requirements cannot be found explicitly in user manuals, but hints to

nonfunctional requirements and to qualities can be found

– Technical data can give a clue to nonfunctional attributes of the system (e.g., size of

– Numbers in the Use Case document can be hint for a nonfunctional requirement (why

The metamodel can be used for the controlled transition of documentation elements to
product line artifacts. The transition can either be performed directly (arrow “condensed
extraction patterns” from user documentation to product line artifact in Fig. 4.3) or
through the conceptual stages “requirements concept model” and “variability model.” For
the transition between the packages we have identified different extraction patterns. We will
focus on the condensed patterns here. An example of such a condensed pattern is “an op-
tional activity can be represented as an optional Use Case in a Use Case diagram.”

Between all four parts of the model, extraction patterns can be defined to describe how
elements are typically converted from one part of the model to another. A heading from
the user documentation model can be a user task in the requirements concept model and
can then be physically represented as a feature.

The metamodel serves as a basis and provides elements for the transitions. When ana-
lyzing documentation, we recommend to first use the patterns already defined (see “List
of Patterns”). If an insufficient amount of information is found with the existing patterns,
new patterns can be developed with the help of the metamodel. In order to develop a new
pattern, the following steps should be followed:

– Shallowly analyze the documentation that you want to analyze: Which documentation
elements from the user documentation model can be found in the documentation? Are
there additional elements that are not described yet?

– Identify the requirements concepts that can be found in the new documentation elements or
find additional requirements concepts.

– Identify the representation of variability in the documentation by comparing different
documentations.

– Identify possible product line model elements in the documentation on the basis of exam-
ples.

– For each successful identification: Write a pattern describing the transition from one
stage to the other and validate the pattern by applying it in your documentation.

– For each additional element of one of the four stages that you found: Extend the model
with the new element, identify relations of the new element to the others.

By following these steps, the metamodel will be extended and further validated and new
patterns can be found.

With the help of the new and existing transformations based on the metamodel, ele-
ments from user documentation can be integrated into product line models, describing the
requirements on a product line.

knowledge in existing systems considered for migration to next-generation systems. Con-
verting these existing requirements into domain models can reduce cost and risk while

4.5 Method

4.4.7 Using the Metamodel

1474 Capturing Product Line Information from Legacy User Documentation

reducing time-to-market. In this section, we describe the extraction method that is

The process of analyzing a requirements document using information retrieval ideas [10] in
a semiautomated process opens up the possibility to capitalize on the wealth of domain

based on the metamodel and uses the patterns described in Sect. 4.4. This method guides
product line engineers in finding the right documentation, in performing the analysis, and
in preparing the results for further steps like scoping or model building.

CaVE is an approach enhanced with techniques for structured and controlled integration
of user documentation of existing systems into the product line. With CaVE, common and
variable features, Use Case elements, decisions and requirements can be elicited.

We restrict our description here to the extraction of Use Case elements. As existing
systems are the basis for this approach, it can be seen as a reengineering approach for
transferring user documentation into basic elements for product line Use Cases. The approach
consists of the following phases (see Fig. 4.6):

– Preparation. The product line engineer prepares the user documentation and selects the
appropriate extraction pattern

– Search. The product line engineer analyzes the documents with the selected extraction
patterns and marks the elements found

– Selection and change. The selected elements are put together into partial product line
artifacts and presented to the expert who can change elements and add additional in-
formation.

The first two steps of the approach can be performed by persons who just have a slight
domain understanding, they do not have to be domain experts. The third step requires
involvement of domain experts. We will now describe the three steps in more detail.

Gemeinsame und variable
Anforderungsfragmente

Gemeinsame und variable
Anforderungsfragmente

Partial Product Line
Requirements

Gemeinsame und variable
Anforderungsfragmente

Gemeinsame und variable
Anforderungsfragmente

Partial Product Line
Requirements

Preparation

Extraction
Pattern

Domain
Expert

Domain
Expert

Selected Extraction
Pattern

Product Line
Engineer

Search

Selection

Process
step

In/Output

Legend

Gemeinsame und variable
Anforderungsfragmente

Gemeinsame und variable
Anforderungsfragmente
Common and Variable

Requirements Fragments

Gemeinsame und variable
Anforderungsfragmente

Gemeinsame und variable
Anforderungsfragmente
Common and Variable

Requirements Fragments

Documentation
Entities

Documentation
Entities

User
Documentation

User
Documentation

Fig. 4.6. An outline of the extraction approach

4.5.1 Method Overview

I. John148

Preparation consists of the five sub steps collection, selection, division, browsing, and pat-
tern selection. During the collection step, the product line analyst collects all user docu-
mentations for the systems that should be integrated into the product line and for those
systems that are related in order to have available all information that is needed. For
analysis, all user documentations of existing systems in the domain should be considered.
As parallel reading of more than one document requires divided attention and leads to
lower performance [51], the number of documents to be read in parallel should be reduced
to a minimum. So, if there are more than three systems in the selecting phase, the product
line analyst selects three documents that cover the variety of systems to be compared (e.g.,
a documentation of a low-end system, a documentation of a high end system and a typical

dation. After selecting the three typical documentations, the product line analyst divides
them into manageable and comparable parts. Experience has shown that 3–10 pages (e.g.

for each of those manageable parts (or for a subset of those parts that includes typical sub-
domains), the product line analyst browses through them in order to decide the amount of
variability in them. There are two alternatives:

– If the documents differ in more than one third of the text, the product line analyst shall
process them one after another in the second step and choose the biggest document as
the document to start with the analysis.

– If the difference of the documents is less than one third of the text, the product line ana-
lyst shall compare the documents in parallel in the further steps.

The value of one third is a value we experienced to be suitable in the case studies.
In pattern selection, the patterns to be applied are selected. Generally, not all types of

product line artifacts are needed, so only a subset of the complete pattern list is chosen. In
some cases, e.g., during scoping, only features are needed, so only the patterns related to

can be compared, the variability related patterns are always selected.

Fig. 4.7. Example of marked user documentation

system) for an initial search in the documents. The other documents can be used for vali-

4.5.2 Preparation

1494 Capturing Product Line Information from Legacy User Documentation

comparable sections) are a suitable size for the parts to compare. In the browsing step,

features are selected; sometimes only use case elements are needed. If several manuals

In the search step, the elements that should be identified when applying the approach are
marked in the documents and tagged.

With the help of the subset of extraction patterns that were selected, which are not
complete but help in finding a relevant part of the features, Use Case elements, other re-
quirements, and variabilities, the user documents should be marked (e.g., with different
colors for different Use Case elements and for variabilities).

system; the two enumerations are Use Cases and there is a potential use case exception in
one Use Case. There are two different ways to browse through the documents and mark
the elements:

– Pattern by Pattern. When manually following the approach for the first time, it might
be useful to concentrate on one pattern or a group of patterns (e.g., all pattern eliciting
features or all patterns having similar input elements) browse through the document
with those patterns in mind, and mark all elements that can be extracted with this one
pattern or this group of patterns. Browsing through the documents is a bit time consum-
ing, but doing it this way makes sure that all elements are marked.

– Integrated. When following the process for the second time, or if there are not so many
elements to be marked, it is also possible to browse through the documents with all pat-
terns at hand. This significantly shortens the time to search for elements, but one must
be sure to have all applicable patterns in mind.

Fig. 4.8. Variability in documentation

Both ways have their advantages and disadvantages (like completeness, time), so both
ways of marking elements are possible.

The elements, which should be sized from one word to at most 5–6 lines, that were
identified to be useful can be marked only in the document and presented to the expert,
but can also be extracted from the document and tagged with attributes containing the

common. Some elements (copy, assign tones) appear only in one user manual, they seem
to be optional. For some elements it is unclear which variability type they have because it

4.5.3 Search

Figure 4.7 shows how the elements can be marked. The boxes are potential features of the

information needed for modeling the product line. Figure 4.8 shows how variability bet-
ween documentations can look like. Some elements appear in both user manuals, they are

I. John150

is not clear if they mean the same or not (add entry/add name, send entry/send bcard). The
variability of those elements has to be further clarified in the selection step.

In the last step selection, the extracted and tagged elements have to be validated and
changed by a domain expert. For instance, not all text excerpts marked as possible Use
Case elements really are elements of a Use Case, not all elements marked as optional in
the user documentation will really be optional in the new product line. So a domain expert
has to judge whether the extracted elements should be used for modeling the product line
Use Cases, features, etc. or not. In this step, the expert can change the “Use Case type”
and “var type” in the tagged notation, extend or change the text of the element. The rela-
tions are used to make comparisons between the documents easier, to establish traceability
to the source documents and, with tool-based selection, to support navigation in the ele-
ments and between the documentations.

With the help of the extracted document elements and the tables that contain the con-
densed information and the variability between documents, product line artifacts like
product line Use Cases including variability (as, e.g., described in [27] or [20]) can be
built. We already integrated the information found with our approach into use cases built
in the PLUC notation (Product Line Use Cases) that is described in Chap. 11. Variability
found in the documents when applying the CaVE approach is represented in tags and
other extensions of use case elements. The integration is described in [15].

 As the actual modeling is not part of the approach but only the extraction of candidates
for models, we will not go into details for modeling here. Further details on modeling can
be found in Chap. 11.

In this section we describe the validation of the CaVE-approach in an experiment and in
an industrial case study. The experiment gives evidence of the internal validity of the
approach; the case study shows the external validity in practical application and shows
the expert load reduction. We will give a detailed description of the experiment and the
experimental results and will shortly describe the industrial case study. A detailed descrip-
tion of the case study as well as two additional, more explorative case studies that we per-
formed in the action research phase of our research can be found in [24].

The case study where we applied the CaVE approach was performed together with the
Company SIEDA Gmbh, Kaiserslautern. The company “SIEDA – Systemhaus für intelli-
gente EDV Anwendungen GmbH” was founded in Kaiserslautern in 1993 and has a staff
of 14 employees at the moment.

4.5.4 Selection

4.6 Validation of the Approach

4.6.1 Industrial Case Study

1514 Capturing Product Line Information from Legacy User Documentation

The goal of the project, the case study was performed in was to derive an additional
product from the existing products and, in parallel, to introduce product line concepts to
their software systems. The new product should be a so-called light product to a low-end
market.

The current product line of planning systems for services in different shifts (roster system)
of the Sieda GmbH consists of two large products (one for hospitals, one for fire depart-
ments) that are customized into a larger number of customer-specific products. A new,
so-called “light product” with fewer features than the other products should be derived
from the existing product line. In order to systematize the derivation of the new features,
the CaVE Approach should be applied to derive the common and variable features of the
existing systems, so a product-feature matrix [42] should be built. To build this matrix the
staff from IESE in their roles as product line engineers used the CaVE approach and ana-
lyzed the user documentation of the two existing system. During the case study, we per-
formed the following steps:

Preparation
The documentation of the two main products consisted of 28 pages each. As there were
only two documentations and the amount of 2 * 28 pages is manageable for an analysis,
the documents did not have to be split but could be analyzed in parallel and as a whole.

As the primary goal of the analysis activities was to find features, the patterns that extract
features and the domains and subdomains the features can be found in, were selected from
the set of patterns for the extraction. Also, the patterns that should find variability were se-
lected for the analysis.

Search
The documentation was analyzed in parallel by the product line analyst with the help of
the selected patterns. The analysis with the CaVE patterns produced 118 features, 11 domains
and eight subdomains with their domain descriptions. The elements were marked in the
documentation and after marking, collected in a preliminary product feature matrix. We
also produced domain descriptions that describe what a domain is with the help of the
documentation. For further description and examples for product feature matrix and do-

Selection

the features of two of the systems developed in the company (Orbis and Orbis Rettungsdienst),
was presented to the domain experts (the lead architect and the CEO of the company) in
order to

– Identify features that were extracted wrongly
– Identify additional features that were not found by the patterns
– Identify those features from the existing systems that should become part of the new

light product

As a result of these activities, five of the existing features were identified as wrong or as du-
plicates and 17 additional features were found, so the final list consisted of 130 features.
Later on, it was determined which of these features should be part of the Orbis light system

Performing the Case Study

I. John152

main descriptions see [24,25].

This preliminary product feature matrix (for an excerpt, see Tab. 4.3) which contained

(this step is not part of the CaVE Approach but can be seen as a modeling step). The do-
main descriptions did not have to be corrected at all.

Table 4.3. Excerpt of the product feature matrix in the case study

domains subdomains feature values product 1 product 2 product 3
system admini-
stration

general X X

 support of
different services

early, day,
late, nightshift

X X

 stand-by X X
 configuration X X
 tariff-support X X
 support for

free time
 X X

…. …..

Validating the Case Study

In order to validate the case study we counted the correct and wrong features, domains
and subdomains in the different stages of the case study. Furthermore we tracked the time
needed to complete the different stages of the product feature matrix. With this quantita-
tive data we are able calculate the correctness and completeness of the approach for this
case study. Additionally, we developed a questionnaire to get qualitative data on expert
opinion on the approach and to get qualitative measurement. To compute correctness and
completeness according to the formulas for recall and precision of an information retrieval
approach, we used the following formulas:

– Completeness (Features, Domains) =

– Correctness (Features, Domains) =
Number of correct (Features, Domains) identified by CaVE/

below:
At about 87% , the completeness is not as high as the correctness at 95.5%. With a cor-

rectness value of over 95% the results of the CaVE analysis are quite trustworthy but this
data also shows that it is essential to have a selection step where the domain experts iden-
tify errors and find additional elements. This is fleshed out by the fact that in the analysis
step, the non-experts could not identify wrong features or recognize duplicate features that
had (slightly) different names.

In order to find out the value of the approach for the domain experts, we developed a
questionnaire and let the two experts fill out the questionnaire after the selection step.

As we only have two experts in this case study and thus only two data points the results
are, of course, not significant. But the results can give a trend in estimating if there is expert
load reduction by using CaVE.

We asked the experts at how many hours they would assess the analysis; their estimate
was 16 h. We compared the results with the actual time of the analysis. The total time for

Number of correct (Features, Domains) identified by CaVE/

1534 Capturing Product Line Information from Legacy User Documentation

Number of correct (Features, Domains) in the final product feature matrix

Number of all (Features, Domains) identified by CaVE

With these formulas, we got the correctness and completeness values shown in Tab. 4.4

the analysis was 9.6 h. Of these 9.6 h, 3.3 h were expert hours and 6.3 h were non-expert
(product line analyst) hours.

Table 4.4. Correctness and completeness of the approach

element correctness of CaVE% completeness of CaVE%
features 95.6 85.3
domains 100 100
subdomains 90.9 76.9

The analysis of the questionnaire showed that the value of the analysis to the experts (16 h
for both experts) was even higher than the time for the whole analysis (9.6 h including ex-
pert and non-expert hours). This shows that in this case, there was a even a significant
overall load reduction, not only an expert load reduction. When we compare the 16 h
value of the analysis with the 3.3 h the experts actually spent with validating the results
we have an expert load reduction of 12.6 h, which is a reduction of 78.8% (12.6 h/16 h)
compared to the value estimated by the experts.

Overall, the case study was very successful. The correctness and completeness of the
results could be validated as described and a significant expert load reduction could be shown.
As there is no fixed value of correctness and completeness above which one can say that
the approach produces “good” results, and since the correctness and completeness of an
extraction approach influence each other a completeness of 87% and a correctness of 95%
for such an extraction approach can be seen as highly acceptable values. As expert load
reduction is the main goal of the approach the high correctness of the approach is a very
important issue. The approach produced very few “false positives”. The expert’s time is not
spent so much on deleting wrong results during the selection step but on finding new and
innovative features.

In order to show the internal validity of the approach, we performed a controlled experi-
ment where 45 students who did not know the approach before applied CaVE in con-
trolled settings.

The experiment was applied at the University of Applied Science in Mannheim in the
summer of 2003. The experiment design was a 2 × 2 non-related between subject design

of the experiment was to compare standard elicitation with CaVE. Standard elicitation, as
it is normally done in projects, is done by browsing through documents and searching for
elements. Two of the groups got a description of CaVE and of the patterns they should
apply, and two other groups received a description of what features, use cases, require-
ments, and variabilities are and what they look like. Two groups first had to analyze the
documentation of an information system (parts of the documentation for 3 variants of a

Performing the Experiment

I. John154

average 95.5 87.4

4.6.2 Controlled Experiment

[5], so the students were randomly distributed into four groups (see Tab. 4.5). The goal

word processor), two groups analyzed the documentation of an embedded system (parts of

Table 4.5. Distribution of groups in the experiment

group first run second run
1 standard elicit. cell phone CaVE word proc.
2 CaVE word proc. standard elicit. cell phone
3 standard elicit. word proc. CaVE cell phone
4 CaVE cell phone standard elicit. word proc.

groups in the two experiment runs that were performed. By making two runs with differ-
ent distributions, the learning effect can be measured and the effect of the documentation
can be excluded.

For each run, 1 h of time was allotted. During this time, the students had to understand
the elicitation approach, browse through the documentation, and mark documentation
elements they found when applying the approach in different colors. They also had to fill
in a characterization questionnaire about their development know-how (e.g., in the area of
product lines and information extraction) and, after each run, a questionnaire about their
experiences when applying the approach.

After each run, the documentation and the questionnaires were collected. The results
were compared with a reference solution (this reference was built by an experienced
product line and requirements analyst who had no experience with the CaVE approach).
All in all, about 5,000 different elements were marked in the documentation of the 45 stu-
dents and about 4,000 of them were correct as compared to the reference.

 Validating the Experiment

The goal of the experiment was, to show the completeness and correctness of the approach
under controlled conditions. So, the marked elements and the correct elements were
counted for each student and for each artifact type and accumulated afterwards. By using
formulas for correctness and completeness similar to the ones described in the previous

each case are marked bold. The table shows that average correctness of the results is quite
high, at 82 and 79%, respectively. The average correctness of the CaVE approach is
higher than standard elicitation; the same holds for features options and alternatives. But
for Use Case Elements and Requirements, the correctness of standard elicitation is better.

Table 4.6. Completeness and correctness of the experiment results

correctness features UC elem requirem options alternatives average
CaVE 96.0% 72.1% 51.8% 79.2% 60.7% 82.2%
standard 94.0% 77.5% 62.7% 43.3% 44.9% 79.4%

features UC elem requirem options alternatives
CaVE 13.2% 4.0% 1.1% 3.0% 3.6% 5.3%
standard 6.8% 5.8% 0.8% 0.8% 2.9% 4.1%

the documentation for three variants of a cell phone). Table 4.5 shows the distribution of

completeness average

1554 Capturing Product Line Information from Legacy User Documentation

section, we arrived at the values that are shown in Tab. 4.6. The items that are better in

The average completeness of the CaVE results is also better at 5% compared to 4%, but
the overall completeness is very low. This can follow from the fact that the participants
did not have enough time to mark all documentations completely. More than 95% of the
participants stated in the questionnaire that they did not have enough time for the analysis.

The results for features and variabilities are quite encouraging, more (in the case of options
significantly more) and more correct elements could be found. But for Use Case Elements
standard elicitation was better. For finding Use Case elements, CaVE should be improved,
e.g., by looking for better patterns for use cases or by organizing the pattern list that was
given to the students in a different way.

In this chapter we have described an approach for the extraction of basic requirements
items from legacy user manuals which can be used as information for product line engi-
neering, especially for the early phases of scoping and product line modeling. The bases
of the approach are a metamodel and a set of extraction patterns. The metamodel and the
patterns described in Sect. 4.4 support the extraction process by giving concrete guidelines
on how to identify items on a rather syntactical level, without having a deep domain under-
standing. At the moment, there exist about 30 patterns. This list of patterns will be ex-
tended in the future. We do not expect the list of patterns to be complete; there will always
be new kinds of elements to find and new relations to discover. But it can be expected that
a significant amount of product line model elements can be extracted from user documen-
tation with the help of the process described within the approach and the patterns, although
documents significantly differ with regard to layout, structure, and content.

The approach gives an extraction method that guides the extraction process. With the
approach, different kinds of product line artifacts (like Features, Use Cases elements,

non-expert and can later be approved and used for modeling by domain experts. The main
advantage of this pattern based approach can be seen in the expert load reduction and
therefore in the support of product line introduction in practice by avoiding the bottleneck
of the workload of the domain experts.

In this chapter we have described the elements of the approach and its evaluation in a
controlled experiment and a case study. Our general experiences are that the approach
with its process steps and the patterns support the finding of relevant elements that can be
used for modeling. In the industrial case study, with the help of the approach, more than
90% of a product feature matrix, an artifact that is often used in product line scoping [42],
could be built.

In the future, more case studies are planned. The case studies should further demon-
strate the applicability and usefulness of the approach in different situations.

Additionally, a tool is currently being developed to support the extraction process and
to realize the patterns. Tool support can increase the efficiency of processing and the cor-
rectness of the results significantly for the techniques proposed and can further relieve
domain experts and product line engineers. With a tool, models can be generated semi-
automatically and thus efficiency and better traceability can be easily achieved.

I. John156

4.7 Conclusions and Future Research

functional and nonfunctional requirements) can be identified in user documentations by a

As further work, we are currently about to extend the focus of our approach and inte-
grate the approach into reengineering and architecture recovery methods [16] to broaden
the information base that is used for building a product line architecture.

Acknowledgments

We want to thank Alessandro Fantechi, Stefania Gnesi and Giuseppe Lami for fruitful coop-

but, Timo Käkölä, and Sonnhild Namingha for valuable comments on the chapter and
Klaus Schmid and Jörg Dörr for supporting this work.

This work was partially supported by the Eureka Σ!2023 Programme, ITEA (ip00004,
Project CAFÉ; ip02009, Project FAMILIES).

References

1574 Capturing Product Line Information from Legacy User Documentation

1. Alexander, I., Kiedaisch, F.: Towards recyclable system requirements. Proceedings of the 9th IEEE Inter-
national Conference on Engineering of Computer-Based Systems (ECBS 2002), 2002, pp 9–16

2. Ambriola, V., Gervasi, V.: Processing natural language requirements. In Proceedings of 13th IEEE Confer-
ence on Automated Software Engineering (IEEE, New York 1997) pp 36–45

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval (Addison-Wesley, Reading, MA 1999)
4. Basili, V., Caldiera, G., Rombach, D.: The goal question metric approach. In: Encyclopedia of Software

Engineering, ed by Marciniak, J.J. (Wiley, New York 1994)
5. Basili, V., Selby, R., Hutchens, D.: Experimentation in software engineering. IEEE Trans. Softw. Eng.

12(7), 733–743 (1986)
6. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud, J.-M.: PuLSE: a

methodology to develop software product lines. Proceedings of the 5th ACM SIGSOFT Symposium on
Software Reusability (SSR’99) (ACM, New York 1999) pp 122–131

7. Bayer, J., Muthig, D., Widen, T.: Customizable domain analysis. Proceedings of the 1st International Sym-
posium on Generative and Component-Based Software Engineering (GCSE’99), 1999, pp 178–194

8. Bayer, J., Girard, J.-F., Wuerthner, M., DeBaud, J.-M., Apel, M.: Transitioning legacy assets to a product
line architecture. Proceedings of the 7th European Software Engineering Conference. Lecture Notes in
Computer Science, vol 1687, 1999, pp 446–463

9. Becks, A., Köller, J.: Automatically structuring textual requirements scenarios. Proceedings of 14th IEEE
Conference on Automated Software Engineering (IEEE, New York 1999) pp 271–274

10. Chastek, G., Donohoe, P., Kang, K., Thiel, S.: Product line analysis: a practical introduction. Technical re-
port CMU/SEI-2001-TR-001 (Software Engineering Institute, Carnegie Mellon University 2001)

11.

12. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns (Addison-Wesley, Reading,
MA 2001)

13. Cockburn, A.: Writing Effective Use Cases (Addison-Wesley, Reading, MA 2001)
14. Cybulsky, J., Reed, K.: Requirements classification and reuse. Crossing domain boundaries. Proceedings of

the International Conference on Software Reuse (ICSR-6). Lecture Notes in Computer Science, vol 1844,
2000, pp 190–210

15. Fantechi, A., Gnesi, S., John, I., Lami, G., Dörr, J.: Elicitation of use cases for product lines. International
Workshop on Product Family Engineering (PFE5). Lecture Notes in Computer Science, vol 3014, 2004, pp
152–167

16.
ery and architecture recovery for existing systems. Deliverable of the FAMILIES project and IESE-report,
058.05/E (IESE, Fraunhofer 2005)

17. Frakes, W., Prieto-Diaz, R., Fox, C.: DARE-COTS: a domain analysis support tool. Proceedings of the
17th International Conference of the Chilean Computer Science Society (SCCC’97), 1997

18. Frankel, D.: Model Driven Architecture (OMG, New York 2003)

Chikofsky, E., Cross, J.H.: Reverse engineering and design recovery: a taxonomy. IEEE Softw. 7(1), 13–17
(1990)

Forster, T., Ganesan, D., Girard, J.-F., Grund, M., John, I., Knodel, J.: Combination of requirements recov-

Éeration within the CAF Project. We also thank Jaejoon Lee, Dirk Muthig, Clémentine Ne-

I. John158

19. Gacek, C., Knauber, P., Schmid, K., Clements, P.: Successful software product line development in a small
organization: a case study. IESE-report no. 013.01/E (IESE, Fraunhofer 2001)

20. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to customers. J. Softw.
Syst. Model. 2(1), 15–36 (2003)

21.

22. Hoppenbrouwers, J., van den Heuvel, W., Hoppenbrouwers, S., Weigand, H., Troyer, O.: The Grammal-
izer: a CASE Tool based on textual analysis. Unpublished paper, Submitted to Tools USA’99.
http://infolab.uvt.nl/pub/hoppenbrouwersj-1999-43.pdf (1999)

23. IEEE-Std 830-1998: IEEE Guide to Software Requirements Specifications (IEEE, New York 1998)
24. John, I., Dörr, J., Schmid, K.: Building domain models based on legacy system descriptions. Deliverable of

004_04.pdf
25. John, I., Kohler, K., Schmettow, M.: Use line – process description and case study. IESE report 074/04E

(IESE, Fraunhofer 2004)
26. John, I., Muthig, D., Schmettow, M.: The state of the practice of systematic software development/product

line development in Germany. IESE report 080/04E (IESE, Fraunhofer 2004)
27. John, I., Muthig, D.: Tailoring use cases for product line modeling. Proceedings of the International Work-

shop on Requirements Engineering for Product Lines (REPL’02), 2002, pp 26–32
28. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain analysis (FODA) feasibil-

ity study. Technical report, CMU/SEI-90-TR-21. (Software Engineering Institute, Carnegie Mellon Uni-
versity 1990)

29. Kasunic, M.: Synthesis: a reuse-based software development methodology, process guide, version 1.0.
Technical report (Software Productivity Consortium Services Corporation 1992)

30. Knauber, P. et al: Applying product line concepts in small and medium-sized companies. IEEE Softw.
17(5), 88–95 (2000)

31. Kuusela, J., Savolainen, J.: Requirement engineering for product families. Proceedings of the 22nd Interna-
tional Conference on Software Engineering (ICSE) (ACM, New York 2000) pp 61–69

32.

33. Maarek, Y.S., Berry, D.M.: The use of lexical affinities in requirements extraction. Proceedings of the 5th
International Workshop on Software Specification and Design, Pittsburg, PA, 1989

34. Mannion, M. et al: Using viewpoints to define domain requirements. IEEE Softw. 15(1), 95–102 (1998)
35. Mannion, M., Keepence, B., Kaindl, H., Wheadon, J.: Reusing single system requirements for application

family requirements. Proceedings of the 21st International Conference on Software Engineering (ICSE’99)
(ACM, New York 1999) pp 453–462

36. Melchisedech, R.: Investigation of requirements documents written in natural language. Require. Eng. 3(2),
91–97 (1998)

37. Muthig, D.: A lightweight approach facilitating the incremental transition into software product line. PhD
theses in Experimental Software Engineering (IRB, Fraunhofer 2002)

38. Nattoch Dag, J. et al: A feasibility study of automated support for similarity analysis of natural language
requirements in market-driven development. Require. Eng. J. 7(1), 20–33 (2002)

39. Rayson, P., Emmet, L., Garside, R., Sawyer, P.: The REVERE project. Proceedings of the International
Conference on Applications of Natural Language to Information Systems (NLDB 2000), 2000, pp 288–300

40. Reason, P., Bradbury, H. (eds): Handbook of Action Research (Sage, Beverly Hills, CA 2001)
41. Schmid, K., John, I.: A customizable approach to full-life cycle variability management. Sci. Comput. Pro-

gram. 53(3) (2004)
42. Schmid, K.: Planning software reuse – a disciplined scoping approach for software product lines. PhD the-

ses in Experimental Software Engineering (IRB, Fraunhofer 2003)
43. Software Technology for Adaptable, Reliable Systems (STARS): Organization Domain Modeling (ODM)

Guidebook, Version 2.0 (1996)
44. Sommerville, I.: Software Engineering (Addison-Wesley, Reading, MA 2001)
45. Stierna, E.: Requirements reuse in support of the aviation mission planning system migration to the joint

mission planning system. Masters thesis (Naval Postgraduate School, Monterey, CA 2000)
46. Tschaitschian, B., Wenzel, C., John, I. Tuning the quality of informal software requirements with KARAT.

Proceedings of the 3rd International Workshop on Requirements Engineering: Foundations of Software
Quality (REFSQ’97), 1997

47.
41–49 (2002)

Luisa, M. et al: Market research for requirements analysis using linguistic tools. Require. Eng. J. 9(1),
–40 56 (2004)

the CAF project and IESE report 004/04/E (IESE, Fraunhofer 2004). http://www.iese.fhg.de/pdf_files/ iese-É

van der Linden, F.: Software product families in Europe: the ESAPS and CAF projects. IEEE Softw. 19(4): É

Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1),
 75–105 (2004)

1594 Capturing Product Line Information from Legacy User Documentation

48.
national Workshop on Requirements Engineering for Product Lines (REPL’02), 2002, pp 19–25

49. Von Knethen, A., Paech, B., Kiedaisch, F., Houdek, F. Systematic requirements recycling through abstrac-
tion and traceability. Proceedings of Joint International Requirements Engineering Conference (ACM, New
York 2002) pp 512–519

50. Weiss, D., Lai, C.: Software Product Line Engineering (Addison-Wesley, Reading, MA 1999)
51.

52. Zopelari Roseti, M., Werner, C.: A knowledge acquisition systematic within the domain analysis context.
Proceedings of the 2nd Ibero-American Workshop on Requirements Engineering, Buenos Aires, Argentina,
1999

Wickens, C.-D.: Processing resources in attention. In: Varieties of Attention, ed by Parasuraman, R.,
Davies, R. (Academic, New York 1984) pp 63–101

Von der Maßen, T., Lichter, H.: Modeling variability by UML use case diagrams. Proceedings of the Inter-

5 Scenario-Based Application Requirements
Engineering

S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

5.1 Introduction

5.1.1 Requirements Engineering within Product Line Engineering

In domain requirements engineering, common and variable requirements are defined for
reuse in application requirements engineering. The identification and definition of
requirements for reuse has been introduced in Chap. 4. This chapter focuses on appli-
cation requirements engineering, where a multitude of application requirements specifica-
tions can be developed by reusing the requirements artifacts that were defined in domain
engineering. If the application stakeholders have specific requirements that cannot be ful-
filled by the product line (further called application specific requirements), either the

Abstract
In product line engineering, the application requirements engineers have to ensure both a
high degree of reuse and the satisfaction of stakeholder needs. The vast number of possible
variant combinations and the influences of the selection of one variant on different require-
ments models is a challenge for the consistent reuse of product line requirements. Only if the
requirements engineers are aware of all product line capabilities (variabilities and common-
alities), they are able to decide whether a stakeholder requirement can be satisfied by the
product line or not. In this chapter we present a novel approach for the development of ap-
plication requirements specifications. For this approach, we use an orthogonal variability
model with associated requirements scenarios to support requirements engineers during the
elicitation, negotiation, documentation, and validation of product line requirements. The
presented approach tackles the existing challenges during application requirements engi-

quirements scenarios (concrete view) of the product line.

The goal of product line engineering is to develop applications based on predefined com-
mon and variable assets [11,34]. The development process in product line engineering is
subdivided into the development of product line artifacts for reuse (domain engineering)

ure 5.1 shows the product line engineering framework of the FAMILIES project [5] with
the respective activities in domain and application engineering.

and the development of individual applications with reuse (application engineering). Fig-

neering by the iterative use of the orthogonal variability model (abstract view) and the re-

S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

1

cation.

Fig. 5.1. Product line engineering framework (figure adapted from [5])

We differentiate among three major types of requirements: product line requirements,
application requirements, and stakeholder requirements.

– Product line requirements are developed in domain engineering for being reused in ap-
plication engineering.

– Application requirements are requirements that are defined for the application in the
application’s requirements specification. Application requirements can either be require-
ments that have been derived from product line requirements by reuse or can be re-
quirements that are specific to the application under consideration (application specific

1

162

The term requirements artifact is used to describe different types of requirements, e.g., goals,
scenarios, functional requirements, quality requirements, etc. as well as parts of one artifact, such as
steps or actors of a scenario.

existing product line requirements must be adapted, or new application requirements artifacts
’ have to be developed to satisfy the application stakeholder s needs. In this chapter, we use

the term application stakeholder to refer to a role that represents customers, users, domain
experts, IT experts, and other people who have an interest in the development of the appli-

requirements). Application-specific requirements result from differences that exist

ferences requirements deltas.
– Stakeholder requirements are requirements that are elicited from the application stake-

holders.

between stakeholder requirements and product line requirements. We call such dif-

5.1.2 Application Requirements Engineering

In single systems engineering, the requirements engineering process is traditionally
described by the elicitation, negotiation, documentation, validation, and the management

During elicitation the stakeholders, requirements, constraints, existing standards, and
laws that have influence on the intended system have to be identified to establish a com-
mon understanding of the problem domain and the intended application. The negotiation
task has to establish a common agreement about elicited requirements among all stake-

be built. The documentation of requirements is the task of writing down elicited require-

other tasks (e.g., negotiation) and finally to develop a requirements specification, which

interact during requirements engineering. The management task is an administrative task in
requirements engineering and has the goal to coordinate, schedule, and document the re-
quirements engineering activities and changes [13].

Application requirements engineering (in software product line engineering) has the
same intention as requirements engineering for single systems – the development of a
requirements specification for an application. Additionally, application requirements
engineering has to satisfy the goal of product line engineering, which is to develop appli-
cations by reusing predefined artifacts. Consequently, in application requirements engi-
neering each requirements engineering task has to consider the goal of reusing product
line requirements. Sommerville and Sawyer indicate that the reuse of requirements

Figure 5.2 presents the five tasks of application requirements engineering based on the

domain engineering, and application design. The application stakeholders provide their
requirements, constraints, decisions, etc. Domain requirements engineering provides the
basic inputs for the efficient reuse, i.e., the product line variability model and the product
line requirements. The application design process provides the estimated change effort to

domain engineering, or to the stakeholders. The output of the application requirements

5 Scenario-Based Application Requirements Engineering 163

of requirements [13,30].

ments are analyzed and checked by the stakeholders to ensure that the right system will

ments as well as negotiation and validation results. Requirements are documented using
different (specification) languages to provide individual requirements views for the

fulfills the quality attributes defined in the IEEE 830 standard [21]. Even if these tasks
have a preferred order, they are not performed in a procedural order. Rather, they closely

necessitates awareness of the reusable requirements, i.e., what is reusable (see [33], p. 63).
Consequently, the requirements engineers in application engineering must be aware of the
product line capabilities, i.e., they need to know all common and variable requirements
that the product line offers.

previously identified tasks in requirements engineering. It furthermore illustrates the major
inputs of application requirements engineering that originate from application stakeholders,

develop application specific requirements. The input from application design is optional
and only provided, if a change effort estimation is requested from application require-
ments engineering. Figure 5.2 only shows the main information flows, thus there no infor-
mation flows are shown from application requirements engineering to application design,

holders (cf. [15]). During requirements validation, the elicited and documented require-

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

engineering process is the application requirements specification. This specification com-
prises all requirements that have been reused from the product line and all application

quested stakeholder requirements and provided product line requirements.

Fig. 5.2. Application requirements engineering process with its major inputs

5.1.3 Challenges During Application Requirements Engineering

application requirements engineers have to deal with during application requirements

Specific activities during elicitation are the elicitation of stakeholder requirements under
consideration of product line requirements and the communication of product line capa-
bilities (i.e., common and variable product line requirements) to the application stake-
holders.

A specific activity during the negotiation of application requirements is establishing
agreement with all stakeholders about application-specific requirements. That means

164

specific requirements, which have been developed by considering the delta between re-

In the following paragraphs, we briefly describe specific activities and challenges that the

engineering, to achieve the goal of a high degree of reuse.

’

ments have to be developed from scratch. Furthermore, the change effort for the develop-
needs best; which derived product line requirements have to be adapted; and which require-
agreement about: which product line requirements satisfy the application stakeholder s

Specific activities during the validation of requirements are the validation whether
application requirements satisfy the application stakeholder’s intentions and the validation
whether the composition and adaptation of application requirements is correct. Therefore,
the validation has to check whether all defined dependencies between product line
requirements have been considered, and whether these requirements are not in conflict

application requirements specification leads to a valid application.
Specifics of the documentation task are the reuse of product line requirements and the

consistent integration of application specific requirements into the application require-
ments specification. Moreover, all reused product line requirements and all application
specific requirements have to be made explicit for the subsequent development phases.
During the documentation task, requirements engineers have to ensure that all selected
requirements variants are documented for the application.

Specific activities during requirements management are the propagation and manage-
ment of new or changed product line requirements. Propagation means the communica-

maintenance of different versions of one variant resp. variation point to make sure which
variant is provided by the “current release” of the product line.

The explicit representation of variability is a pre-requisite for tackling the specific chal-
lenges of product line requirements engineering. To increase the awareness of the pro-
vided product line capabilities, the requirements engineers and the involved stakeholders
need to know:

– What is common and what is variable for an application?
– What can be or has to be selected for an application?
– What are the influences of the selection of one variant on other variants?
– What are the rationales for adapting product line requirements for the application?
– Which other application requirements are influenced by the adaptation?

5.1.4 Structure of the Chapter

The remainder of this chapter is structured as follows. In Sect. 5.2 we analyze the related

introduce the orthogonal variability modeling approach and provide a small example. In
Sect. 5.4 we describe the use and benefits of the orthogonal variability modeling approach in
application requirements engineering. Illustrated by examples, we further show how the
product line specific challenges in application requirements engineering can be tackled.
Section 5.5 discusses the proposed approach and briefly reports on practical experiences.

field.

engineering processes and to all applications that are in use. Management means the
tion of changed requirements and variants to all ongoing application requirements

In Sect. 5.6 we summarize our work, list open issues, and sketch our future work in this

5 Scenario-Based Application Requirements Engineering 165

during the negotiation task to support trade-off decisions.
ment of application specific requirements (considering the deltas) has to be estimated

work on application requirements engineering for product lines. In Sect. 5.3 we briefly

with the stakeholder requirements. Finally, the validation has to check whether the developed

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

5.2 Related Work

Here we provide an overview of existing research, which focuses on application require-
ments engineering for product lines. In Sect. 5.2.1, we reflect on current research on the
topic of requirements derivation, i.e., the development of an application requirements
specification. In Sect. 5.2.2, we provide a brief overview of the research in the area of
requirements reuse in product line engineering. Additional proposals focusing on the
reuse of requirements in product line engineering can be found in [14]. In Sect. 5.2.3, we
present our conclusions that can be drawn from the state of the art.

5.2.1 Requirements Derivation in Product Line Engineering

Weiss and Lai present a process for developing software families in [35]. The FAST proc-
ess (Family-Oriented Abstraction, Specification and Translation) encompasses strategies
for domain engineering and application engineering. FAST aims, for instance, at support-
ing rapid software production through application engineering and in systematizing the
process of producing applications of the product line.

Weiss and Lai argue that “a key part of the application engineering environment is the

basis for the product derivation process.
Weiss and Lai introduce the FAST PASTA (Process and Artifact State Transition Ab-

straction) model for defining product line development processes. Thus, the FAST
PASTA model includes the application derivation process. It does not address the applica-
tion requirements engineering facets in detail. Moreover, the model does not support
trade-off decisions with regard to stakeholder-specific requirements. These trade-off deci-
sions have to be performed if stakeholder requirements exist that cannot be satisfied by
product line requirements alone. Therefore, these requirements lead to additional realiza-
tion effort, and the stakeholders have to decide whether they insist on their specific
requirements or not.

The key idea of the KobrA method lies in the incremental and recursive development
of a component structure with generic components [1]. Atkinson et al. represent variabil-
ity in a decision model. Each component description at each level of the component struc-
ture involves decision models that represent the variability of the particular generic
component. The decision model of the root component is communicated to the customer.
During the derivation of a product, the decision model of the root component is resolved
by the decisions of the customer. The resolution of the decision model is then propagated
to the next levels of the component structure. KobrA provides an approach to realize
customer specific requirements that cannot be fulfilled by the product line. Although At-
kinson et al. define a change management process they do not address the support for
trade-off decisions.

Hotz, Krebs, and Wolter use, in their knowledge-based product derivation process, a
configuration model that includes three different kinds of knowledge. The authors repre-
sent conceptual knowledge in domain objects, relations between domain objects, and con-
straints. In addition, they use procedural knowledge about the configuration process (e.g.,

p. 52). The AML of a product family is defined during domain engineering and serves as a
application modeling language (AML) that is used to specify family members” ([35],

166

backtracking strategies), and finally they introduce a so-called task specification that

The main benefit of the proposed derivation process is the automatic selection of the
platform artifacts that are related to the selected application features. This automatic
selection makes it possible to handle the complexity of product line variability, which can
be caused by a huge amount of variations.

In contrast to the approach that we propose in this chapter, the work of Hotz et al. does
not focus on the special requirements engineering aspects (e.g., elicitation [20]). The
description of their derivation process does not encompass the systematic detection and
documentation of deltas between product line requirements artifacts and application
requirements artifacts. Especially, their work does not address deltas that consider the
product line variability. Application-specific requirements are always realized by integrat-
ing them into the platform and reusing them for the application under consideration.

Deelstra et al. describe different problems of product derivation that have been experi-
enced in case studies [12]. The two main problems are the complexity of product line
variability caused by a huge amount of variants and variation points as well as implicit
properties, e.g., constraint dependencies between variants. Deelstra et al. describe a prod-
uct derivation process that consists of two phases: During the first phase, an initial con-
figuration is generated from the platform. In the second phase, the initial configuration is

Deelstra et al. do not focus on requirements engineering in the application engineering
process. They argue that it is necessary to address application-specific requirements, but
they do not describe a solution for integrating application specific requirements.

Beuche describes the CONfiguration Support Library (CONSUL) in [4]. In this
approach, the application domain (or product line) is represented by a feature model. Fur-
ther, a component model is defined and the components are related to the features of the
feature model using specific rules. The application is derived by selecting the appropriate
features. Constraints of the feature selection are defined using OCL-constraints or Prolog.

The CONSUL approach provides support for product line engineering. Requirements
and product line variability are represented by features. The approach does not focus on
the application requirements engineering process. It is not described how application spe-
cific requirements can be integrated into the specification.

Lee et al. describe in their work on the Feature Oriented Reuse Method (FORM) for

feature model that has been defined during domain engineering is used to derive the appli-
cation. The process encompasses the selection of appropriate features and components,
the check of the model, the selection of the required architecture, and code generation. In
their work, Lee et al. do not focus on application requirements engineering and they do
not address application specific requirements. Adaptations of requirements are propagated
to the platform; application-specific adaptations are not part of the described application
engineering process.

In his book on software reuse, Karlsson defines a generic reuse development process
[25]. The process encompasses the development for reuse and the development with reuse.
Karlsson has identified several “with-reuse” specific activities that should be integrated
into the classical software development life cycle. Such activities are, for instance, the
retrieval, evaluation, and adaptation of pre-existing components. The process of reusing

5 Scenario-Based Application Requirements Engineering 167

describes the application under consideration [19,20,37].

Elevator Control Systems, an application engineering process [23,27]. In this process, the

iteratively refined until the application fulfills the stakeholder requirements.

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

existing components is the same in all development phases (from the analysis phase to the
test phase).

With regard to the analysis phase, Karlsson describes the “with-reuse” specific aspects
to include the reuse of requirements; the reuse impact on the acquisition of domain
knowledge; and the reuse impact on the object, dynamic, and functional modeling of the
system.

Karlsson does not address the relation between variability and product line require-
ments. Moreover, in his work he focuses on the reuse and adaptation of components. The
communication of variability to stakeholders or the use of scenarios for a detailed descrip-
tion of a variant is not addressed.

The work of John and Muthig shows how application use cases and application use
case diagrams can be generated from the domain use case diagram. However, how appli-
cation specific requirements are treated is not presented and, moreover, the specific tasks
of an application requirements engineering process are not addressed.

5.2.2 Requirements Reuse in Product Line Engineering

The approach of Faulk aims at the development of a product line requirements specifica-
tion [16]. This specification includes the variable requirements as well as the common re-
quirements. In his contribution, Faulk describes the process that allows the development
of an overall product line requirements specification.

Faulk argues that the product line requirements specification can be used to derive the
specific application specification. In his paper, the derivation process itself is not des-
cribed. Moreover, Faulk does not address the documentation of application specific require-
ments.

Mannion et al. present an approach for reusing requirements from a family of products

how a product line requirements model can be built and how an application model can be
derived from the product line requirements model. During the derivation of the applica-
tion model, the product line variability is bound and variants or variations points are
eliminated.

Mannion et al. focus on the product line requirements model and the derivation of
application models. They describe how adaptations can be integrated into the product line
requirements model, but do not address application specific requirements (that will not be
integrated into the product line requirements model). Although Mannion et al. focus on
product line requirements, they do not discuss the specific challenges of application require-
ments engineering.

168

[28]. The method MRAM (Method for Requirements Authoring and Management) defines

John and Muthig extend use case diagrams and textual use case descriptions to repre-
sent variability in requirements [22]. In [32], Schmidt and John extend different product
line base models by the aspect of variability. They use a decision model and use cases
with an integrated variability representation to derive an application. During application
engineering, for each variant use case, whether the use case is part of the application
or not is decided. The resulting use case diagram is the diagram of the application and
serves as a basis for the application development. In the textual use case descriptions, the
decisions of the decision model are integrated. In the instantiation of the use case descrip-
tion all variant text fragments are removed (depending on the decisions that are taken).

Lam presents in his paper the FORE (Family Of REquirements) approach [26]. FORE
aims at the definition of a generic product concept and the formalization of its require-
ments. One step of the FORE approach is the generation of the system (application gen-
eration) where the generic product requirements are used to produce the requirements for
a specific system or product.

Lam discusses specific activities during system generation and focuses on the reuse of
requirements. He also addresses changes to product line requirements caused by new cus-
tomer requirements. In his approach, these new requirements will be integrated into the
generic product concept. However, product (application)-specific requirements are not
considered in his approach.

Cerón et al. [10] describe a metamodel for requirements engineering in product lines.
With the metamodel they focus on the process improvement of requirements engineering
using CMMI. In their paper they describe the necessity to support requirements engineer-
ing tasks for product lines. They argue that their model covers the evolution of require-

describes the different types of requirements artifacts during system development and fur-
thermore stresses the need of traceability between requirements artifacts. Cerón et al. give
a short introduction to their tool ENAVER, which is based on the described metamodel.

The paper of Cerón et al. primarily focuses on the definition and explanation of the
metamodel. It does not go into detail on the traditional requirements engineering activities
during application requirements engineering. Moreover, the paper does not address appli-
cation requirements that cannot be fulfilled by reusing system family requirements.

5.2.3 Summary of the Related Work

The discussions of the approaches described above point out that they do not address all the
specific challenges and activities that are required for a comprehensive application require-
ments engineering process. Especially, the above approaches do not address the communi-
cation of product line variability in connection with product line requirements. Moreover,
they do not offer a solution for handling application specific requirements (considering
requirements deltas).

To provide comprehensive support for application requirements engineering and to
tackle the identified product line specific challenges identified in Sect. 5.1.3, we introduce
a derivation approach (Sect. 5.4) that is based on the concept of orthogonal variability
modeling (Sect. 5.3).

5.3 The Orthogonal Variability Modeling Approach

The current state of the art reflects different ways of documenting and representing vari-
ability in requirements models. Chapter 6 describes different approaches that enhance
modeling languages for the representation of variability in different product models. In
our work we follow the idea of Bachmann et al. [2] of a uniform representation of vari-
ability across various activities in the product line engineering process.

captures a taxonomy for product line requirements. This requirements model or package
ments development activities from CMMI level 1–3. The metamodel furthermore

5 Scenario-Based Application Requirements Engineering 169

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

to document and manage the variability in different requirements artifacts. An orthogonal
variability model (OVM) documents the variable aspects of a product line by specifying
variation points and variants and possible interdependencies between these variation
elements. Variants that are specified in an orthogonal variability model are related to the
respective variable elements in the product line artifacts (e.g., use cases, parts of a state
chart, or features of a feature model). The central idea of this approach is to consolidate
the variability information from different requirements models to get an independent and
consistent variability view of the product line.

The orthogonal variability modeling approach and the consolidated variability model-
ing approach (cf. Chap. 6) were developed in parallel and from different perspectives. The
consolidated variability modeling approach was driven from architecture design whereas
the orthogonal variability modeling approach was driven from (application) requirements en-
gineering. Nevertheless, the resulting concepts of both research groups are quite similar,
as we indicate below.

modeling approach (OVM-A) and introduce the notation of the variability model through
an example. The orthogonal variability modeling approach serves as a basis for the appli-

model that defines the concepts of the OVM language and an in-depth introduction to the
OVM approach are provided.

5.3.1 Overview of the OVM-A

As mentioned above, a product line variant is often reflected in elements of more than one
requirements model. Therefore, a consolidated and consistent view of variability cannot
be provided by the sole extension of single requirements models. The basic idea of or-
thogonal variability modeling is the explicit documentation of variability in one central
model. This model represents the variability of the product line independent of the actual
requirements models and can therefore be considered as being “orthogonal” to these mod-
els. The variability models of the OVM approach therefore provide an abstract and consis-
tent view of the product line variability.

To avoid misinterpretations concerning the terminology that is proposed in Chap. 6, we
briefly relate this terminology to ours. In comparison with the consolidated variability
model, we distinguish between two types of variation elements, variation points and vari-
ants. We consider variation points as places in the model, where the application stake-
holder can or has to select one of the provided variants. Variants themselves represent the
abstract elements of the associated requirements artifacts that allow for the variation bet-
ween different products. In the variability model one variation point can be associated
with a set of variants. These variants are related by variability dependencies to the varia-
tion point. This dependency can be mandatory, optional, or an alternative choice with a
defined range. Furthermore, constraint dependencies are used to express interdependen-
cies between different variants, variation points, or even between variants and variation
points. These constraint dependencies can be of the type requires or excludes (see nota-
tion elements in Fig. 5.3). The authors of the consolidated variability model use the

170

cation requirements engineering process. In Pohl et al. ([29], pp. 72–88), a detailed meta-

In this section we briefly introduce the basic intention of our orthogonal variability

In our work in the FAMILIES project [7] and in various other projects together with the
automotive industry [6,8], we have developed an orthogonal variability modeling approach

term variability constraint when they talk about constraint dependencies. Variability de-
pendencies are covered by transformers in the consolidated model. Finally, they use the
term variation model instead of variability model as the document in which the variability
information of the product line is documented.

[V Name]

V

[V Name]

V

[VP Name]

VP

[VP Name]

VP

1..3

Variation Point

Variant

(with range 1 3)

Variability Dependencies

Variation Elements Constraint Dependencies

Fig. 5.3. Notation for orthogonal variability models

The variability models of the OVM-A allow the communication of what is variable
(variation points), how it varies (variants), and how these variants are available for the
application (variability and constraint dependencies). To express the variability in all cor-
responding requirements artifacts, each variant of the variability model can be associated
to one or many requirements artifacts. For instance, the variant “payment by credit card”
can be related to narrative scenario descriptions, sequence diagrams, entities of a data

113).

5.3.2 Variability Model for the E-Shop Example

To illustrate the OVM-A, we present a simple example of the variability for an e-shop
product line. The e-shop product line provides the variability as represented by the vari-
ability model in Fig. 5.4.

The e-shop product line offers different variants for the search item functionality,
which can be selected by the application stakeholder. The variant search by name is part
of each application, because this variant is related through a mandatory relationship to the
variation point. The three variants: search by article number, search by article category,
and search by article price, are provided as a selection of which between one and three

search variants are available at this variation point for an alternative selection: search
similar items, and provide search tips, where at most one of the variants can be selected

5 Scenario-Based Application Requirements Engineering 171

model, textual requirements, etc. to document variability in requirements ([29], pp. 89–

Requires

Excludes

Optional

MandatoryArtifact Dependency

Alternative choice
.. . Trace

variants have to be selected (illustrated by the range 1..3). Furthermore, two advanced

(represented by the range 0..1).

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

For the payment of items, different payment methods are selectable from the e-shop
product line. Therefore, the variation point payment by offers the variants: credit card,
cash, e-cash, and transaction. From these payment variants, at least one variant has to be

SSL (secure socket layer) variant at the variation point secure payment. At the variation
point secure payment exactly one of the provided secure payment mechanisms: https, SSL,

From this it follows that if the variant e-cash is selected no other secure payment variant
can be selected for this variation point.

In this example, the e-shop product line furthermore provides a variation point shop-
ping cart view, where the application stakeholders are able to select the variant member
view of the cart, public view of the cart, or even both variants for the e-shop application.
The variant member view provides an additional selection of variants for e-shop members.
At the variation point member rewards the stakeholder is able to select the variants:
exchange rewards, collect rewards, and personal discounts. For this variation point, both
variants exchange rewards and collect rewards are mandatory and the variant personal
discounts can be selected as an optional variant.

Paymyy ent
by

VP

Crerr dit
cardrr

V

Cash

V

Variability model

e-Cash

V

TrTT arr nsactitt on

V

1..n
Secure
payment

VP

httptt s

V

SSL

V

SET

V

1..1

<<rerr quirii err s>>

Shopping
cart view

VP

Member vivv ew

V

Publill c vivv ew

V

1..2

Member
rewards

VP

ExEE change
rerr waww rdrr s

V
Collll ect
rerr waww rdrr s

V

0..1

Persrr onal
didd scounts

V

<<rerr quirii err s>>

It h

VP

ByB catett goryrr

V

ByB prirr ce

V

Searcrr h titt pii s

V

Simii ilii all rirr tii yt searcrr h

V

Searcrr h name

V

Searcrr h number

V
0..1

172

Fig. 5.4. Example: e-shop variability model

selected (range 1..n). In addition to that, the payment method variant e-cash requires the

SET (secure electronic transaction), has to be selected for an application (range 1..1).

5.3.3 Relations Between the Variability Model and Product Line
Scenarios

Each variant of the variability model (Fig. 5.4) is associated (through an artifact depend-

all affected requirements models.

Fig. 5.5. Excerpt of the e-shop variability model with associated requirements

Figure 5.5 illustrates this association for an excerpt of two variants from the e-shop example
(the artifact dependencies are identified by <<trace>>). In Fig. 5.5, the variant search tips
is associated to the corresponding scenario (dark grey part of the sequence chart) and
to the corresponding textual requirements description that belongs to the variant (R234).
The variant similarity search is associated to the corresponding product line scenario
(light grey part of the sequence chart) and to four textual requirements (R236–R239). Due to
the association between requirements artifacts and variants, the variability in each require-
ments model can be represented and discussed in detail. In the example, the variants are
associated to a bundle of messages in a sequence chart. The visualized variability in the
sequence chart represents the difference between both variants in more detail. The variant
search tips only provides the ordinary search for items and the request for help and guidance

Requirements Models

R236: The system shall provide
sale offers...

Item
Search

VP

Similarity
Search

V

Search Tips

V

1..2

<<trace>>

<<trace>>

<<trace>>

<<trace>>

Variability Model

E-shop
Customer

search items

provide tips / help

search similar products

bought by others

R234: The system shall provide search tips
to the customer by providing how-to sides
that enable the customer to clearly
define his query

<<trace>>
product packages

...

tips / help

R238: The system shall provide product
packages...

R239: The system shall provide the most
bought products...

R237: The system shall provide similar
products bought by other customers...

<<trace>>

<<trace>>

5 Scenario-Based Application Requirements Engineering 173

ency [29], p. 82) to the corresponding requirements artifacts to express the variability in

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

on how to search more effectively (dark grey part of the sequence chart). The variant
similarity search also provides the ordinary search, but in addition to that, similar prod-
ucts can be offered by the system, such as packages with the product, most bought prod-
ucts, sale offers, etc. (light grey part of the sequence chart). Compared to the terminology

The documentation of variability in requirements artifacts and the definition of vari-

pp. 89–113) (Variability in Requirements Artifacts), and pp. 193–216 (Domain Require-
ments Engineering).

5.3.4 Summary of the OVM-A

The orthogonal variability modeling approach provides a technique to document the exis-
ting product line variability of all requirements artifacts in one model, which represents a
view on the variability. The variability model documents all variation points, variants, and
dependencies that have to be considered for the resolution of variability in application
engineering or for changes in domain engineering. The variability model provides a con-
solidated but abstract view to the variability of the product line. The fact that one variant
can be reflected in many requirements models, as shown in the above example, can be
handled by the association between variants and requirements artifacts.

The orthogonal variability modeling approach has already been applied in industrial
projects with the automotive industry (see Sect. 5.5.1) to support the documentation of require-

demonstrated that the approach is capable of handling the documentation of product line
variants that are shared among different product lines, resp. vehicle lines [8].

The key advantages of the orthogonal variability modeling approach are improved

p. 74). The advantages result from both the views that can be provided by the orthogonal
variability modeling approach. Where the variability model provides a view solely focus-
ing on product line variability, the related product line artifacts, e.g., requirements provide
a detailed description of the corresponding requirements. The use of the orthogonal vari-

5.4 Use of the Orthogonal Variability Modeling Approach
During Application Requirements Engineering

that is based on the orthogonal variability modeling approach from above. Our approach
focuses on the product line specific aspects introduced in Sect. 5.1.2 that have to be consid-
ered during application requirements engineering. For the proposed application requirements
engineering approach, we decided to use scenarios as requirements artifacts, which are

instead of base models, because we only focus on requirements engineering in this chapter.
of the consolidated variability model (Chap. 6), we use the term requirements models

considered as a well-established technique for communicating requirements in single

174

ability for reuse in domain requirements engineering are described in more detail in ([29],

decision making, improved communication of variability, and improved traceability ([29],

ability modeling approach in application engineering is described in the following section.

In this section, we introduce our application requirements engineering approach [7]

ments variability of embedded systems [6]. In the automotive domain we furthermore

contribution, scenarios are structured descriptions that document the usage of a system by
means of textual templates or sequence diagrams. The proposed approach in Chap. 11
uses scenarios (resp. use case scenarios) to document and analyse product line require-
ments, and furthermore to develop test cases for a product line and their products. In our
approach, we use scenarios to communicate the common and variable product line require-
ments to the application stakeholders.

Scenarios are combined with the variability model for specifying variability in scenar-
ios. This combination enables requirements engineers to benefit from two different views
that support the communication of product line variability on two levels of abstraction.
Scenarios provide a detailed view of requirements in context of real-world settings [36].
Scenarios allow the communication of additional information about the system context,
such as the environment, involved actors, goals, needed resources, etc. The variability
model provides an abstract view of requirements variability and thus allows for a high-

use of these two views is illustrated in Fig. 5.6).

Fig. 5.6. Iterative use of abstract and detailed variability information

In the following sections we describe how the variability model and the associated sce-
narios support the development of an application requirements specification. For our pro-
posed application requirements engineering approach, we only focus on the elicitation,
negotiation, validation, and documentation of variable requirements for an application.
The management of variable product line requirements is one major issue of a current

5 Scenario-Based Application Requirements Engineering 175

research project [31].

systems engineering [3,9] and in product line engineering [18,22]. For the purpose of this

level communication of the product line capabilities (resp. variability) [2,5]. The iterative

Requirements Models

tt

Item
Search

VP

Similarity
Search

V

Search Tips

V

1..2

<<trace>>

<<trace>>

<<trace>>

<<trace>>

Variability Model

E-shop
Customer

search items

provide tips / help

search similar products

bought by others

The system shall provide a secure... The system
shall provide search tips... The system shall
provide search tips... The system shall provide
search tips... The system shall provide tips...

The system shall provide sale offers... The system
shall provide similar products bought by other
customers... The system shall provide product
packages... The system shall provide the most
bought products... The system shall products of
the month... The system shall provide... The
system shall provide product packages... The
system shall provide new similar products...

The system shall provide a search functionality
where...

<<trace>>
product packages

...

tips / help

Use
associations
to identify

alternatives

Use scenarios to
communicate product

line requirements

Use variability model
to communicate

product line variability

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

5.4.1 Requirements Elicitation

The product line engineering specific part in elicitation is the consideration and identifica-
tion of adequate product line requirements for reuse that fulfill one or more stakeholder
requirements. The requirements engineers therefore have to be aware of the existing prod-
uct line capabilities, and the valid combinations of variants for an application, i.e., which
requirements can be selected and combined in one application. During elicitation, they
have to map elicited application stakeholder requirements to existing product line require-
ments to ensure a high degree of reuse. During requirements elicitation, the requirements
engineers therefore have to be aware of the provided product line capabilities to

– guide the elicitation process in the right direction to achieve a high degree of reuse;
– inspire the application stakeholders from a marketing perspective by stimulating their

The outputs of this task are the elicited stakeholder requirements with the identified
variants for reuse, as well as the identified requirements deltas between stakeholder require-
ments and product line scenarios.

Use of the OVM-A for the Elicitation of Requirements

The orthogonal variability modeling approach assists the communication of variability
and the mapping of stakeholder scenarios to product line scenarios. During elicitation, the
variability model is used to communicate the variability of the product line on a high level
of abstraction to identify variants that are of interest to the application stakeholders (iden-
tify variants for the application in Fig. 5.7).

Fig. 5.7. Use of the OVM-A for the elicitation of requirements

176

excitement needs or exciters, to provide some unexpected capabilities [24]; and to
– find adequate requirements variants that satisfy the application stakeholder s needs. ’

Requirements Models

tt

Item
Search

VP

Similarity
Search

V

Search Tips

V

1..2

<<trace>>

<<trace>>

<<trace>>

<<trace>>

Variability Model

E-shop
Customer

search items

provide tips / help

search similar products

bought by others

The system shall provide a secure... The system
shall provide search tips... The system shall
provide search tips... The system shall provide
search tips... The system shall provide tips...

The system shall provide sale offers... The system
shall provide similar products bought by other
customers... The system shall provide product
packages... The system shall provide the most
bought products... The system shall products of
the month... The system shall provide... The
system shall provide product packages... The
system shall provide new similar products...

The system shall provide a search functionality
where...

<<trace>>
product packages

...

tips / help

Search
alternative and
optional variants

Discuss product line
scenarios Identify variants

for the application

Variants that are of interest to the stakeholders are discussed in detail by employing the

needs and satisfy the requirements of the stakeholders are selected during application
requirements engineering. Thereby, the variability model supports searching adequate
variants that are of interest to application stakeholders. It furthermore helps in inspiring
the stakeholders during requirements elicitation.

Starting from scenarios, additional variants (alternatives or options) can be identified in
the variability model by using the association between scenarios and variants (search
alternative and optional variants). The identified variants can be communicated in detail
by the associated product line scenarios, thus helping to identify the right variants for reuse
(see iterative flow in Fig. 5.7). The iterative process during requirements elicitation sup-
ports the requirements engineers in identifying stakeholder requirements on different lev-
els of abstraction and – as a result – helps developing a complete application requirements
specification.

Example for the Elicitation Task

Figure 5.8 illustrates a small example for an elicitation task. The inputs and outputs for the
elicitation task are represented by arrows. The arrow product line capabilities summarizes
the documented information that is provided by domain engineering, i.e., the variability
model and the scenarios.

Fig. 5.8. Using the OVM-A to communicate product line variability

cenario models

VP

Customer
tyt pyy e

VP

V

ember vivv ew

V V

Public view

V

1..2

<<trtt arr ce

<<trtt arr ce>>

<<trtt arr ce>>

<<trtt arr ce>>

Variability model

<<trtt arr ce

TeTT xee tual UsUU e Case Scenarirr o

Name: search items
Primaryrr Actor: Costumer
Other Actors:
Trigger: customer comes to the shop

Scenario Steps:
1. Search items
2. Select items
3. ...

2a. log on the customer

4. vieew pproodduucctt ddeettaailss...

ElicitationProduct line capabilitiesProduct line capabilities

Application
stakeholder

ca
pa

bi
lit

ie
s

re
qu

ire
m

en
ts

2 1

de
lta

s

va
ria

nt
s

5 Scenario-Based Application Requirements Engineering 177

associated scenarios (discuss product line scenarios). Furthermore, scenarios that fulfill the

S
el

ec
te

d

Id
en

tif
ie

d

Pr
od

uc
t l

in
e

St
ak

eh
ol

de
r

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

Arrow (1) represents the stakeholder requirements, constraints, etc. that are elicited
from the application stakeholders. Arrow (2) represents the variability information of the
product line that is communicated to the stakeholders during elicitation, i.e., the variation
points, variants, dependencies, and the associated scenarios.

During elicitation, the requirements engineers use the variability model to communi-
cate the variability of the product line. As illustrated in Fig. 5.8, two different variants can
be selected at the variation point shopping cart view, namely variant member view and
variant public view. This means that the application stakeholders are able to select either
one or both variants at this variation point.

With the aid of the variability model, the requirements engineers furthermore are able
to communicate the advantages of having the variant member view in comparison to only
having the variant public view. As illustrated by the variability model in Fig. 5.4, the vari-
ant member view allows the additional selection of variants at the variation point member
rewards: variants exchange rewards, collect rewards, and personal discounts.

The differences between both variants are communicated in detail by employing the as-
sociated product line scenarios. This communication enables the application stakeholder
to select the best possible variants from the product line for the intended application. The
selected variants during requirements elicitation are the basic input for the documentation
task.

If some stakeholder requirements cannot be satisfied by the reuse of product line require-
ments, then these have to be documented to be analyzed and negotiated during require-
ments negotiation. If the stakeholder for instance requires the additional payment method
‘pay by debit card,’ then either an existing product line scenario has to be adapted or a new
scenario has to be developed from scratch. In this case, the original stakeholder require-
ments as well as the most promising product line requirements have to be documented as
identified requirements delta. The documentation of the identified requirements delta pro-
vides the input for the negotiation task, (Fig. 5.10).

5.4.2 Requirements Negotiation

In the specific context of product line engineering, the negotiation task has the challenge
to establish an agreement about application-specific requirements, resp. identified require-
ments deltas. This implies that requirements that cannot be satisfied by the reuse of product
line requirements have to be negotiated to establish an agreement about how these require-
ments have to be satisfied in the application. This might be the adaptation of stake-
holder requirements (i.e., the adjustment of requirements) or the adaptation of product line
requirements (i.e., the change of product line requirements for the application).

Inputs of the negotiation task are identified requirements deltas between product line
requirements and stakeholder requirements from the elicitation task (Sect. 5.4.1) or the
validation task (Sect. 5.4.4). Outputs of the negotiation task are agreed requirements for
the intended application.

Use of the OVM-A for the Negotiation of Requirements

During requirements negotiation, the requirements engineers are able to use the variability
model and the scenarios as illustrated in Fig. 5.9. Product line scenarios are used to analyse

178

the delta between a proposed product line scenario and a stakeholder scenario in detail
(establish agreement and analyse delta). Moreover, product line scenarios can be used as
mediator between different stakeholder views. For instance, the different stakeholder re-
quirements concerning the search functionality for an application might be arbitrated by
the discussion of reusable product line variants.

Starting from product line scenarios, the association between variants and scenarios can
be used to seek for suitable alternatives (of the negotiated scenario) in the variability
model (search for alternatives). To identify alternatives for the discussion, first the corre-
sponding variation point of the variant is identified and then all variants of the variation
point are discovered. By the association between scenarios and product line variants, each
identified variant in the variability model can be analyzed in detail by employing the
corresponding scenarios. This helps to evaluate if one variant satisfies the stakeholder
requirements better than others.

Fig. 5.9. Use of the OVM-A for the negotiation of requirements

Moreover, the variability model can be used to identify variants that will be affected by
the adaptation of product line scenarios to satisfy stakeholder requirements (identify alter-
natives and affected variants). The identification of corresponding product line variants is
essential for the adaptation of derived product line requirements in the application to as-
sure that all affected requirements will be changed. Consequently, the iterative process
during requirements negotiation enables the requirements engineers to establish agree-
ment about application specific requirements, and furthermore, to identify deltas and
change affects in detail (see circular flow in Fig. 5.9).

Example for the Negotiation Task

Figure 5.10 shows a small example of a possible negotiation task with its inputs and out-
puts. Arrow (1) represents the identified delta during requirements elicitation between the

5 Scenario-Based Application Requirements Engineering 179

Requirements models

tt

Item
Search

VP

Similarity
Search

V

Search Tips

V

1..2

<<trace>>

<<trace>>

<<trace>>

<<trace>>

Variability model

E-shop
Customer

search items

provide tips / help

search similar products

bought by others

The system shall provide a secure... The system
shall provide search tips... The system shall
provide search tips... The system shall provide
search tips... The system shall provide tips...

The system shall provide sale offers... The system
shall provide similar products bought by other
customers... The system shall provide product
packages... The system shall provide the most
bought products... The system shall products of
the month... The system shall provide... The
system shall provide product packages... The
system shall provide new similar products...

The system shall provide a search functionality
where...

<<trace>>
product packages

...

tips / help

Search for
alternatives

Establish
agreement and
analyse delta

Identify alternatives
and affected variants

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

required stakeholder scenario (Sz) and the proposed product line scenario (S7). Arrow (2)
represents the input from domain requirements engineering and includes the documenta-
tion of the capabilities of the product line. Arrow (3) represents the original stakeholder
requirements (scenarios) and the trade-off decision. Arrow (4) represents the evaluation
result for the adaptation of the product line scenario.

The requirements engineers use the stakeholder scenarios, the proposed product line
scenarios, and the identified delta to analyse and negotiate possible solutions with the
application stakeholders, Fig. 5.10. They use the variability model to search alternative
variants and scenarios that satisfy the requirements of the application stakeholders.

In our example, the scenarios of variant V1 and variant V2 are discussed with the appli-
cation stakeholders. Variant V1 represents a scenario to pay the selected goods by
transaction, and variant V2 a scenario to pay the selected goods before delivery (pre-
payment). As depicted in Fig. 5.10, the application stakeholders request a payment by
debit card (scenario Sz) for the application. Because no adequate product line scenario can
be provided to satisfy the stakeholder requirements, either an existing product line sce-
nario has to be adapted for the application or a new scenario has to be developed from
scratch.

For the development of the application-specific requirements, the requirements engineers
analyse the estimated effort for the adaptation of existing product line scenarios for the de-
velopment of the new scenarios that satisfy the requirements of application stakeholders.

Fig. 5.10. Using the OVM-A to negotiate identified requirements deltas

...pay by debit
card (Sz)

Product line scenarios

P
ro

du
ct

lin
e

va
ria

bi
lit

y
m

od
el

Vaariaant V1

Vaariaant V2

Negotiation

Infoff rmation about
product line capabilities

Stakeholder intention,
trade-offff decisions

2
3

2

3

Application
stakeholder

Requirements delta

Sz

1

Identified delta between stakeholder
and product line scenarios

1

4

4 Evaluation results

delta

S7

Stakekk holder
scenarirr oii (s(()s

Prorr posed PL
scenarirr oii (s(()s

E-shop

Customer

sseeaarccrr h itteemss

…

loggginii member arerr a

selell ct items

pay by trtt arr nsactitt oii n

Sequence Diaii grarr m S7

E-shop

Custooomer

ssseeeaaarrcccrrr hh iittteeemmsss

…

selell ct items

prerr paymyy ent

Sequence Diaii grarr m S33

goods

180

(I((nput from elicitation)

To identify all affected product line scenarios, they use the existing trace information
from the variability model. In fact the change of product line requirements for an applica-
tion also influences the subsequent development phases. As a consequence, the estimated
change effort for the realization is calculated in cooperation with application design. The
requirements engineers finally provide the analyzed delta between product line and stake-
holder requirements with the estimated adaptation effort to the application stakeholder
(arrow (4)).

Based on the evaluation results, a trade-off decision on whether the stakeholder re-
quirement has to be fulfilled by 100% or less is encompassed in cooperation with the in-
volved stakeholders (arrow (3)). Hence, for the negotiation of requirements, it is essential

cific requirement and each trade-off decision (also see [17]).

5.4.3 Requirements Documentation

The goal of requirements documentation in product line engineering is to develop an ap-
plication requirements specification with a high number of reused product line require-
ments. Therefore, during this task the requirements engineers develop a consistent and
traceable application requirements specification of selected product line requirements and
application specific requirements. Consistent documentation means that all dependencies
between variants and variation points have been considered for reuse, and that all applica-
tion specific requirements do not conflict with reused product line requirements. Trace-
able documentation means that all documented application requirements can be traced
back to their origin, e.g., to stakeholder requirements or to product line requirements.

The initial inputs for this task come from requirements elicitation and negotiation. The
elicitation task provides the original stakeholder requirements and the selected product
line variants that have to be documented. The negotiation task provides application-
specific requirements that have to be documented for the application. The intermediate re-
quirements documents of the documentation task provide input for the negotiation, and
validation of application requirements with the stakeholders. The final result of require-
ments documentation is the application requirements specification, which is composed of:

– Reused requirements artifacts, i.e., an application requirement is a 1:1 reuse of a prod-
uct line requirement (common or variable requirement);

– Adapted requirements artifacts, i.e., an application requirement is a product line re-
quirement that has been partially changed for the application;

– New requirements artifacts, i.e., an application requirement is developed from scratch
and has no change influence to existing requirements;

– Traceability information between documented application requirements and their ori-
gin, i.e., to reused product line requirements and to stakeholder requirements.

Use of the OVM-A for the Documentation of Requirements

During requirements documentation, the requirements engineers are able to use the vari-
ability model and the scenario models for the reuse of product line requirements as illus-
trated in Fig. 5.11. The reuse of product line scenarios for the application requirements

that an agreement among all stakeholders be established for each application specific

5 Scenario-Based Application Requirements Engineering 181

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

specification can be differentiated into the complete reuse of a scenario or the adaptation
of a scenario (reuse scenarios for the application).

For each reused or adapted product line scenario, the existing dependencies to the
variation point (variability dependencies) and to other variants and variation points (con-
straint dependencies) have to be checked for the development of a complete requirements
specification, e.g., to identify mandatory or required variants. Only if all dependencies are

oped. Therefore, the association between reused scenarios and corresponding variants is
employed to identify the corresponding variants in the variability model (identify all affected
variants for the specification).

The variability model is used to identify the variation points and dependencies of the
corresponding variant to ensure that all necessary scenarios (especially requirements) are
documented in the application requirements specification (ensure completeness of reused
variants). This means that the scenarios of all variants that were selected explicitly (e.g.,
by the selection of optional and alternative variants) and were selected due to existing de-
pendencies (e.g., mandatory variability dependency, or requires dependency) have to be
documented in the application requirements specification. The requirements engineers use
the defined dependencies between variants and scenarios to develop a complete applica-
tion requirements specification. If, for instance, an optional variant at a variation point is
selected that additionally provides a mandatory variant, then the scenarios of the manda-
tory variant have to be documented for the application requirements specification as well
(e.g., the selection of the variant personal discount at the variation point member rewards
demands the selection of the variants exchange rewards and collect rewards, see Fig. 5.4).

Fig. 5.11. Use of the OVM-A for the documentation of requirements

The iterative process during the documentation of requirements enables the requirements
engineers to develop a complete and consistent requirements specification. Thereby, the

182

considered during reuse, can a complete application requirements specification be devel-

Requirements models

tt

Item
Search

VP

Similarity
Search

V

Search Tips

V

1..2

<<trace>>

<<trace>>

<<trace>>

<<trace>>

Variability model

E-shop
Customer

search items

provide tips / help

search similar products

bought by others

The system shall provide a secure... The system
shall provide search tips... The system shall
provide search tips... The system shall provide
search tips... The system shall provide tips...

The system shall provide sale offers... The system
shall provide similar products bought by other
customers... The system shall provide product
packages... The system shall provide the most
bought products... The system shall products of
the month... The system shall provide... The
system shall provide product packages... The
system shall provide new similar products...

The system shall provide a search functionality
where...

<<trace>>
product packages

...

tips / help

Identify all
affected variants

for the specification

Reuse scenarios
for the application

Ensure completeness
of reused variants

variability model helps to ensure completeness of reused product line requirements and
the associated requirements models help to ensure the correctness of reused requirements
in the application requirements specification.

Example for the Documentation Task

In the following we continue our example and illustrate the general structure for the trace-
ability between scenarios of the application and reused scenarios of the product line. We
therefore differentiate three types of application scenarios:

– An application scenario is a reused product line scenario, reuse = 100%
– An application scenario is an adapted product line scenario, i.e., 1%< reuse <100%
– An application scenario is developed from scratch, i.e., reuse = 0%

During the documentation of requirements for the application, the requirements engi-
neers have to document the origin of the application scenarios. Therefore, they differenti-
ate between reused, adapted, and new scenarios for the application. Scenarios that have
been reused by 100% from the product line are traced to the reused scenarios of the prod-

the application scenario and the original stakeholder scenario shows that the reuse of the

and vice versa.

Fig. 5.12. Example: traces of application scenarios to their origin

S7‘

S6

A
pp

lic
at

io
n

sc
en

ar
io

sS3

S9

Original stakeholder
scenarios

Sx

Sz

Sc

Sa

…

Sb

Reused scenario
Changed scenario

New scenario

Trace links to the origin

S2

S8

S3

Payment

VP

credit card
V

transaction
V

e-cash
V

1..n

S7

S5

...

P
ro

du
ct

 li
ne

sc
en

ar
io

s
Va

ria
bi

lit
y

m
od

el
<<rerr quirii err s>

>
...

5 Scenario-Based Application Requirements Engineering 183

uct line, e.g., scenarios S3 and S5 in Fig. 5.12. Further, a trace link (fulfills link) between

product line scenario fulfills the stakeholder scenario. As illustrated in Fig. 5.12, one prod-
uct line scenario can fulfill one or many stakeholder scenarios, e.g., S3 fulfills Sc AND Sa,

fulfills

fulfills

fulfills

Fulfills link

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

Application scenarios that are adapted for an application have a trace link to the origi-
nal stakeholder scenario and to the original product line scenario, e.g., scenario S7 has a
trace link to the product line scenario S7 and to the stakeholder scenario Sz. Application
scenarios that are developed from scratch and do not influence any existing product line
scenarios and are therefore only traced to the original stakeholder scenario, e.g., the appli-

With the following example we focus on the adaptation of product line scenarios for an
application and continue the example from requirements negotiation, Sect. 5.4.2 and Fig.
5.10. The input for application specific requirements is usually provided by the negotia-

additional scenario steps for the application. To follow the naming convention, this sce-
nario is called application specific scenario, because the derived product line scenario has
been changed because of an identified delta for the application.

The explicit visualization of the adaptation is a pre-requisite for the validation task in
requirements engineering and for the subsequent development phases. Therefore, the require-
ments engineers represent the changes of the reused product line scenario S7 payment by
transaction credit in the application requirements model, Fig. 5.13. The changed or in-

the scenario. Further, the scenario is related to both origins of the adaptation result. Trace
link (1) represents the trace to the original product line scenario S7 payment by credit
card. Trace link (2) represents the trace to the original stakeholder scenario Sz payment by
debit card (see also Fig. 5.10) (negotiation of identified deltas).

S7’S7

Product line
requirements models

E-shop

Customer

sseeaarccrr h itteemss

…

TeTT xee tual UsUU e Case Scenarirr o

loggginii member arerr a

selell ct items

E-shop

Customer

searcrr h items

…

loggginii member arrrerr a

selell ct items

pay by trtt arr nsactitt oii n pppayyy……byyy debit
cardrr

New scenarirr o stepe
“p“ ay by dedd bit cardrr ”dd

Application requirements model

P
ro

du
ct

 li
ne

 v
ar

ia
bi

lit
y

m
od

el

Original stakeholder scenarios

S1 SzS4 S2

Trace links to the origin

1

2
Name: search items
Primaryrr Actor: Costumer
Other Actors:
Trigger: customer comes to the shop

Scenario Steps:
1. Search items
2. Select items
3. ...

2a. log on the customer

4. vieew pproodduucctt ddeettaailss...

Sequence Diaii grarr ms
Sequence Diaii grarr ms

Changed scenario

184

cation scenarios S6 and S9 have a trace link to the stakeholder scenario Sx (Fig. 5.12).

tion task. Figure 5.13 represents the adapted scenario (S7 payment by debit card) with its

tegrated steps, in the application specific scenario S7 pay by debit card, are highlighted in

Fig. 5.13. Example: visualizing integrated requirements deltas

The explicit documentation of application specific requirements is essential for the sub-
sequent development phases (e.g., testing) in order to identify which product line artifacts
(e.g., test cases) have to be adapted and which ones can be reused as they are. Moreover,
the documentation of both traces within the requirements specification is fundamental for

5.4.4 Requirements Validation

The specific focus of the validation task in product line engineering is the validation of
reused product line requirements and application specific requirements. On the one hand
whether the reused product line requirements – as documented in the requirements speci-
fication – fulfill the stakeholder requirements has to be analyzed. This holds for both the

datory dependencies. On the other hand, whether the application specific requirements

pletely and correctly in the application requirements specification.
The initial input for the validation task is the application requirements specification

with all documented application requirements together with all the trace links to the origi-
nal requirements, i.e., product line requirements and stakeholder requirements. The defined
outputs of this task are either validated application requirements for the final requirements
specification or identified requirements deltas that have to be further analyzed and dis-
cussed during requirements negotiation (Sect. 5.4.2).

Use of the OVM-A for the Validation of Requirements

During requirements validation, the requirements engineers benefit from the use of the
variability model and the scenario models as illustrated in Fig. 5.14. With the variability
model, the requirements engineer is able to validate if all constraint and variability dependen-
cies – as defined in the variability model – are correctly observed by the reused requirements
in the application requirements specification. For the validation of constraint dependencies
whether the defined constraints for the corresponding variants – in the variability model –
have been observed has to be checked. Therefore, for each reused variant it is made sure
that all scenarios of required variants have been documented and that the scenarios of excluded
variants have not been documented in the requirements specification. For the validation of
variability dependencies it has to be checked if the resolution at one variation point is cor-
rect. That means that the selection of variants must not conflict with the defined variabil-

To create an agreement on the documented application requirements, the requirements
engineers use the traceability dependency between application and stakeholder require-
ments to validate if all reused product line scenarios and all application specific scenarios

To validate the completeness and correctness of the documented scenarios in the application
requirements specification, the association between requirements models (e.g., scenarios)

the validation of the adaptation result together with the application stakeholders (Sect. 5.4.4).

5 Scenario-Based Application Requirements Engineering 185

directly selected variants and the indirectly selected variants, e.g., due to requires or man-

satisfy the application stakeholder s needs has to be analyzed and if they are integrated com-’

ity dependencies and their ranges, e.g., the constraint imposed by the alternative choice of
variants at a variation point with the range 1..1 is only satisfied, if exactly one variant of
this variation point has been chosen (validate dependencies of reused variants).

satisfy the application stakeholder s needs and if these are documented completely and cor-
rectly within the specification (validate the satisfaction of application stakeholders) (Fig. 5.15).

’

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

and the variability model (e.g., variants) is used to check if the existing dependencies in
the variability model where observed (validate completeness and correctness).

Fig. 5.14. Use of the OVM-A for requirements validation

Consequently, the iterative process during requirements validation enables the require-
ments engineers to develop complete and correct application requirements specifications
that firstly satisfy all stakeholder requirements and secondly provide the foundation for
the subsequent application engineering processes.

Example for the Validation Task

In the following we use the exemplary requirements specification of Fig. 5.12 as an input for
the validation task. The validation of application requirements is assisted by the existing
trace links between application scenarios and stakeholder scenarios, which are represented

engineers are able to validate each application scenario in cooperation with the application
stakeholders. For example, they validate if scenarios S3 and S5 that are a 100% reuse of
product line scenarios satisfy the original requirements of the application stakeholders.
Moreover, they have to validate if the application specific scenarios, such as scenario S7
(adapted product line scenario) or scenario S9 (new scenario), are correctly adapted for the
application and if these fully satisfy the requirements of the application stakeholders.
Besides the validation whether one variant satisfies the application stakeholders, the
requirements engineers have to validate if the reused and adapted scenarios are complete

186

If the application stakeholder s needs are satisfied with the documented application sce-
narios and if all dependencies of the variant have been complied with during the docu-
mentation task, then the application requirement is validated for the final requirements
specification. Otherwise, the identified requirements deltas have to be documented and
negotiated with the application stakeholders.

by the ‘fulfills trace’ in Fig. 5.15. Based on the traceability information, the requirements

’

Requirements models

tt

Item
Search

VP

Similarity
Search

V

Search Tips

V

1..2

<<trace>>

<<trace>>

<<trace>>

<<trace>>

Variability model

E-shop
Customer

search items

provide tips / help

search similar products

bought by others

The system shall provide a secure... The system
shall provide search tips... The system shall
provide search tips... The system shall provide
search tips... The system shall provide tips...

The system shall provide sale offers... The system
shall provide similar products bought by other
customers... The system shall provide product
packages... The system shall provide the most
bought products... The system shall products of
the month... The system shall provide... The
system shall provide product packages... The
system shall provide new similar products...

The system shall provide a search functionality
where...

<<trace>>
product packages

...

tips / help

Validate
completeness

and correctness

Validate
satisfaction of

application
stakeholders

Validate dependencies
of reused variants

and if these do not conflict with each other. In the example, the reused application scenarios
can be traced to the corresponding product line scenarios and in turn to the corresponding
variants in the variability model. The requirements engineers use the variability model to
analyse the valid requirements combinations for an application requirements specification.

The example illustrates the variation point payment with its alternative variants credit
card, transaction, and . Moreover, the requires
ant requires the selection of the variant (SSL) at the variation point secure payment,

ments engineers validate if all variability and all constraint dependencies were correctly
observed in the application requirements specification, and moreover, if the application
stakeholders are aware of these dependencies. In the example, requirements engineers use
the variability model to check if the requires dependency between the variant and
the variant SSL is complied with, i.e., if the requirements that belong to the variant SSL
have also been documented in the specifica
ency between the variants at variation point payment by is correctly observed is validated
by checking if at least the requirements of one variant are documented in the application

holder is aware of the existing constraint dependencies and if the requested and excluded
variants do not conflict with the stakeholder requirements.

Validation

Application
stakeholder

ag
re

em
en

t/
di

sa
gr

ee
m

en
t

Original stakeholder
scenarios

S5S7‘

S6Reused scenario
Changed scenario

New scenario

x

Sz

Sc

Sa

…

Trace links to the origin

Sb

Original scenario

VPVP

VV VV VV

Pr
od

uc
tL

in
e

sc
e n

ar
io

s
V

ar
ia

bi
lit

y
od

e

od
el

Ap
pl

ic
at

io
n

sc
en

ar
io

s

S3

<<rerr quirii err s>
>

...

S9

equireme ification
(from do on)

quiremen fication
(f((rff orr m dodd on)n

ag
re

ed
re

qu
ire

m
en

ts

Negotiation

id
en

tif
ie

d
de

lta
s

Application
Requirements
Specification

ap
pl

ic
at

io
n

sc
en

ar
io

s

m

Fig. 5.15. Example: validation of scenarios with the application stakeholders

5 Scenario Based Application Requirements Engineering 187

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

If, during validation, the requirements engineers realise that an application scenario
does not satisfy the original stakeholder requirement, then the detected differences are
documented as requirements deltas, to be additionally negotiated (Sect. 5.4.2). Otherwise,
the agreed application requirement is documented as a final or validated requirement in
the application requirements specification (ARS) (Fig. 5.15).

5.5 Discussion of the Proposed Approach

The proposed approach has been partially validated in industry. The orthogonal variability
modeling approach (Sect. 5.3), or more precisely the orthogonal documentation of vari-
ability and the creation of dedicated views for different stakeholders, was applied in pro-
jects with the automotive industry, see Sect.5.5.1. The proposed combination of product
line scenarios and the variability model for the development of an application require-
ments specification (Sect. 5.4) together with the proposed use of both models in each
requirements engineering task has been validated by an existing example in the labora-
tory, see Sect. 5.5.2.

5.5.1 Industrial Experiences with the OVM-A

The orthogonal variability modeling approach has been applied in a project in the automo-

Goal of the project was the development of a sophisticated way to reuse requirements for
electronic control units (ECUs) among different vehicle lines. The initial situation of reuse
was to copy, paste, and modify old ECU specifications for the development of a new ve-
hicle line. Consequently, the reuse of requirements was not only restricted to the previous
vehicle line, but also to those vehicle lines that were technologically leading.

between the different vehicle lines with the orthogonal variability modeling approach. The
resulting variability model described around 40 variation points with approximately 150
variants for the climate control.

During the development of the variability model we were faced with the following dif-
ficulties:

– The identification of variants was often complicated due to the fact that requirements
that appeared to be documented (named) differently were often in fact the very same
variants; only the formulation of the requirement had changed over time.

– The variability modeling language allows people to choose between different ways of
modeling specific aspects of their problem domain. In industry, this sometimes leads to
different opinions on how aspects should be modeled correctly, and consequently, dif-
ferent variability models that represented the same aspects were created. As a solution,
modeling guidelines have been defined for assisting the modelers in this respect.

availability was often dependent on different vehicle properties, such as country type,

188

In the project, we have analysed existing requirements specifications of the ‘‘climate
control system ECU’’ of different vehicle lines. We documented the identified variability

tive industry [6,8]. The project was associated with the research department of the company.

– Identified requirements were not optional, mandatory, or alternative per se; rather their

body type, engine type, etc. We therefore had to extend the orthogonal variability modeling
approach (by extending the OVM’s metamodel) to allow for a structured documenta-
tion of variability across vehicle lines (see [8]).

With the extended orthogonal variability modeling approach, we were able to docu-
ment the commonalities and variability of the electronic control unit for the climate sys-
tem in two different subclasses: First, the requirements that were common or variable for
all vehicle lines, and second the requirements that were common or variable for a specific
vehicle line only.

To support the reuse of requirements variants, we have developed a set of different reuse
scenarios that fit to the different development strategies and projects in the company. In
the project, we have defined specific scenarios that support the requirements engineers in
finding reusable requirements by providing a name, the vehicle line, or the ECU. With the
explicit definition of common and variable requirements for ECUs and their availability
with respect to the vehicle line, we were able to provide support for the development of
the requirements specification for an ECU of a new vehicle line.

With the use of the orthogonal variability modeling approach and the defined reuse
scenarios, we have achieved the following:

the reuse of requirements for new product lines.
– The requirements engineers were able to identify in which vehicle lines a specific vari-

ant has been reused (important for call backs or other bug fixes).
– The requirements engineers were able to tell what is currently common to all ECUs

(common requirements) and what is currently available for a specific ECU (variable
requirements).

– The discussion between requirements engineers and product management about what
shall be available for all vehicle lines or what shall be specific for one vehicle line was
improved due to the explicit representation.

ments. With the variability model, they were able to discuss variants without being dis-
tracted by insignificant details.

– The evolution of requirements artifacts (and variants) could be propagated much faster,
because the knowledge about which vehicle lines use which variants was provided by
the OVM.

With the OVM-A, we have been able to make the “hidden” knowledge of the experts
(about which variants have to be or can be reused for a specific vehicle line) explicitly
visible for all engineers in all development projects. For the documentation of variability
and requirements, we have implemented the extended orthogonal variability metamodel in
Telelogic DOORS. We have used the concept of modules to separate variability informa-

modules to document the variability information of the variability model with all variation

5 Scenario-Based Application Requirements Engineering 189

– The reuse of requirements was much better supported than in the previous copy-paste-
and-modify approach, and furthermore, the current situation (what is state of the prac-
tice, i.e., what is currently available in the context of climate control) was visible
during any time of the project.

– Discussions were more focused, because people did not stick to specific realization require-

tion from the requirements artifacts. For the realization, we differentiated between formal

– The variability of the ECU was explicitly defined for the strategic evolution as well as for

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

elements and dependencies, and the formal modules to document the requirements for the
ECUs. Finally, the assignment dependency between variants and the corresponding require-
ments artifacts was realized by trace links [8]. However, during the project we experienced
that more sophisticated tool support is required to assist in (1) the definition of variability,
(2) the maintenance of variability information, (3) consistency checking for all variability
definitions across the product line sets, (4) the definition of advanced selective retrievals,
and – last but not least – (5) the appropriate representation of variability for the different
stakeholders that are involved in product line requirements engineering such as customers,
users, domain experts, product managers, architects, or developers.

5.5.2 Experiences in a Laboratory Case Study

The proposed reuse approach is based on the results and experiences gained during the
project with the automotive industry as has been depicted in the previous section. Based
on the organization-specific reuse scenarios in the automotive context, we have developed
a generic approach for the strategic reuse of requirements in application requirements
engineering. We have evaluated this application requirements engineering process in a
laboratory case study with an exemplary e-shop product line. The case study showed that
the iterative use of the variability model and the scenario models enable requirements
engineers to solve the product line specific challenges in application requirements engi-

By using the orthogonal variability modeling approach during elicitation, the require-
ments engineer is supported in the following ways:

– Product line requirements for the application can be selected by the communication of
product line variability to the application stakeholders on different levels of abstraction.
The variability model helps to identify appropriate variants on a high level of abstrac-
tion. The product line scenarios help to communicate and identify reusable product line
requirements on a detailed level.

– The elicitation process can be guided to ensure a high degree of reuse by using the
variability model for the explicit documentation of product line variability, and the asso-
ciation between variants and scenarios to identify all scenarios of one variant.

– Stakeholders can be triggered to ensure the completeness of the specification by the
communication of what has to be selected (commonalities) and which decisions have to
be made concerning the provided variability to develop a complete application require-
ments specification.

By using the orthogonal variability modeling approach during negotiation, the require-
ments engineer is supported in the following ways:

– Agreement about the reused product line scenarios can be established for the applica-
tion requirements specification among all stakeholders by the communication of sce-
narios.

– Deltas can be evaluated as a basis to estimate change efforts. That means that the iden-
tification of changes in the scenario(s), and identification of transitive changes based on
dependencies to other variants can be analyzed by the help of the variability model.

190

neering (Sect. 5.1.3).

By using the orthogonal variability modeling approach during documentation, the re-
quirements engineer is supported in the following ways:

– Reusing and adapting product line requirements for the application, under considera-
tion of all existing dependencies, is supported by using the variability model to identify
these dependencies.

– Developing a complete and consistent application requirements specification for reused
product line scenarios is supported by the explicitly documented dependencies in the
variability model and the association between variants and scenarios.

By using the orthogonal variability modeling approach during validation, the require-
ments engineer is supported in the following ways:

– Validating the completeness and correctness of the reused product line requirements
and application-specific requirements is supported by the variability model.

– Validating if all application requirements (reused and application-specific require-

The proposed orthogonal variability modeling approach enables requirements engi-
neers – together with the involved stakeholders – to identify what is common and what is
variable in the product line, what can and what has to be selected at a certain variation
point, what are the influences of the selection to other requirements variants, and finally
what are the influences for the adaptation of a product line requirement for an application.
The major benefits of this approach result from the orthogonal modeling of variability.
The use of scenarios for the elicitation and discussion of requirements with the stake-
holders is state of the practice nowadays. Consequently, the combination of both model
views provides the expressed benefits of its application in application requirements engi-
neering.

Although we have focused on scenarios in our approach, the approach can be extended
to other requirements artifacts by employing the artifact dependency between a variant
and its corresponding requirements artifacts (see Fig. 5.5). That means, similar to scenar-
ios, all requirements artifacts, e.g., data, performance, usability, or security requirements,
can be communicated to stakeholders.

5.5.3 Validation of the Approach

For the further validation of the proposed approach we have planned the following three
steps: the development of tool support, a laboratory validation with an industrial example,
and an industrial validation of the approach.

In a first step, a more sophisticated variability modeling tool (VARMOD) will be devel-

ments. This tool is aimed at resolving the shortcomings of traditional requirements
management tools, as identified in [8]. With the focus on application requirements engineer-
ing, the tool shall furthermore assist the development of application specifications. Based
on the experience with the tool development, we will achieve an additional proof of con-
cept for the proposed approach. In the second step, the laboratory validation shall validate

5 Scenario-Based Application Requirements Engineering 191

oped [31] to support the consistent definition and documentation of variability among require-

ments) satisfy the application stakeholder s needs is supported by the scenarios. ’

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl

the scalability and applicability of the approach and the tool for real projects by applying
the approach to data that has been provided by industrial partners. The results of the vali-
dation then will be presented and discussed with the industrial partners to improve the ap-
proach. Based on feedback and the experience gained with the case study, the approach –
as well as the VARMOD tool – will be improved and extended. Based on these improved
results, the third step is the validation in an industrial context to validate the applicability
of our proposed orthogonal variability modeling approach as well as the VARMOD tool in
real world projects.

In this chapter, we have pointed out that requirements engineering for applications in
product line engineering has to consider some specific aspects due to the fact that product
line requirements should be reused in each application.

We have presented an approach for application requirements engineering that uses the
input from domain requirements engineering (orthogonal variability model with associ-
ated requirements models) to develop an application requirements specification. The pro-
posed approach enables the requirements engineer to solve a multitude of identified chal-

In our future research, we have planned to focus on two major topics. One topic is the
validation of our approach and the development of suitable tool support. The other topic is
to establish a joint cooperation for harmonizing, extending, and standardizing the variability
modeling approaches that have been suggested in this book (the consolidated variability

approaches.

Numerous people have contributed to this work and putting it into practice. We therefore
would like to thank our cooperation and project partners for the important and fruitful dis-
cussions during the project. We are also grateful to the reviewers of this chapter Øystein
Haugen, Jason Mansell, Tor Erlend Fægri, Andreas Metzger, and Ernst Sikora as well as
the editors of this book Timo Käkölä and Juan Carlos Dueñas for the helpful and sustain-
able comments and suggestions that substantially improved the quality of this work.

192

Acknowledgments

5.6 Conclusions and Future Research

lenges during application requirements engineering (cf. Sect. 5.1.3), by iteratively employing

consistent selection and documentation of variable requirements artifacts (e.g., scenarios).
The introduced application engineering approach can be extended to facilitate the reuse of

ability modeling approach. Therefore, the approach also allows considering variability in
performance, security, and other quality aspects of a product line.

modeling approach and our OVM approach), to benefit from the joint advantages of both

the variability model and the product line scenarios. Moreover, the approach facilitates the

different requirements artifacts because of the flexibility of the underlying orthogonal vari-

References

5 Scenario-Based Application Requirements Engineering 193

1. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D., Paech, B., Wüst, J.,
Zettel, J.: Component-Based Product-Line Engineering with UML (Addison-Wesley, Reading, MA 2002)

2. Bachmann, F., Goedicke, M., Leite, J., Nord, R., Pohl, K., Ramesh, B., Vilbig, A.: An International.
WoMeta-Model for Representing Variability in Product Family Development, In: 5th International Work-
shop on Product Family Engineering (PFE-5), Siena, Italy, 2003, pp 66–80

3. Ben Achour, C. et al: Bridging the gap between users and requirements engineering: the scenario-based ap-
proach. Int. J. Comput. Syst. Sci. Eng. 14(6), 379–405 (1999)

4. Beuche, D.: Composition and construction of embedded software families. PhD thesis (University of
Marburg, Magdeburg, Germany 2003)

5. Böckle, G., Wittmann, M.: Catalogue of methods and processes for system-family engineering, Offi-
cial Web site of the FAMILIES project. http://www.esi.es/Families/E1.4b-Method-Catalogue/
Start_SFE_Catalogue.htm. Cited 8 Aug 2005

6. Bühne, S., Lauenroth, K., Pohl, K.: Why is it not sufficient to model requirements variability with feature
models? In: Proceedings of Workshop: Automotive Requirements Engineering (AURE04), co-located at
RE04, Nanzan University, Nagoya, Japan, 2004, pp 5–12

7. Bühne, S., Halmans, G., Lauenroth, K., Pohl, K.: An extended and partially validated method to identify cus-

E2.2.2 (June 2004)
8. Bühne, S., Lauenroth, K., Pohl, K.: Modeling requirements variability across product lines. In: Proceedings

of the 13th IEEE International Requirements Engineering Conference, Paris, France, ed by Atlee, J.M.
(IEEE, New York 2005) pp 41–50

9. Carroll, J.: Making Use: Scenario-Based Design of Human–Computer Interactions (MIT, Cambridge, MA
2000)

10. Cerón, R., Dueñas, J.C., Serrano, E., Capilla, R.: A meta-model for requirements engineering in system fam-
ily context for software process improvement using CMMI. In: 6th International Conference on Product
Focused Software Process Improvement, Oulu, Finland, 13–18 June 2005, ed by Frank, B., Seija, K.S. Lecture
Notes in Computer Science, vol 3547 (Springer, Berlin Heidelberg New York 2005)

11. Clements, P., Northrop, L.: Software Product Lines – Practices and Patterns. Series in Software Engi-
neering (Addison-Wesley, Reading, MA 2001)

12. Deelstra, S., Sinnemaand, M., Bosch, J.: Experiences in software product families: problems and issues dur-
ing product derivation. In: Software Product Lines, ed by Nord, R.L., Proceedings of the 3rd International
Conference (SPLC 2004), Boston, USA. Lecture Notes in Computer Science, vol 3154 (Springer, Berlin Hei-
delberg New York 2004) pp 165–182

13. Dorfman, M., Thayer, R.H.: Software Requirements Engineering (IEEE Computer Society, Silver Spring,
MD 1977)

14. International Workshop on Requirements Engineering for System Families: Position papers, ed by Dueñas,
J.C., Schmid, K., allocated with ICSR8, July 2004, Madrid. Technical report (Universidad Politécnica de
Madrid 2004)

15. Easterbrook, S., Chechik, M.: A framework for multi-valued reasoning over inconsistent viewpoints. In:
Proceedings of International Conference on Software Engineering 2001 (ICSE 2001), 2001, pp 411–420

16. Faulk, S.R.: Product-line requirements specification (PRS): an approach and case study. In: Proceedings of
the 5th IEEE International Symposium on Requirements Engineering, Toronto, Canada (IEEE, New York
2001) pp 48–55

17. Halmans, G., Pohl, K.: Considering product line assets when defining customer requirements. In: Proceed-
ings of the International Workshop on Product line Engineering: The Early Steps: Planning, Modeling, and
Managing (PLEES’01), Erfurt, Germany, 2001, pp 37–42

18. Halmans, G., Pohl, K.: Communicating the variability of a software-product line to customers. J. Softw. Syst.
Model. (SoSyM) 2: 15–36 (2003)

19. Hotz, L., Krebs, T.: Supporting the product derivation process with a knowledge-based approach. In: Pro-
ceedings of the International Workshop on Software Variability Management (SVM), co-located at ICSE 03,
Portland, USA, 2003, pp 24–29

20. Hotz, L., Günter, A., Krebs, T.: A knowledge-based product derivation process and some ideas how to in-
tegrate product development. In: Proceedings of the Software Variability Management Workshop, Gronin-
gen, Netherlands, 2003, ed by Vangurp, J., Bosch, J., pp 136–140

tomer specific requirements for product family based applications, FAMILIES project, deliverable for task

 S. Bühne, G. Halmans, K. Lauenroth, and K. Pohl 194

21. IEEE: IEEE recommended practice for software requirements specifications, IEEE Standard 830-1998 (The
Institute of Electrical and Electronics Engineers, New York 1998)

22. John, I., Muthig, D.: Tailoring use cases for product line modelling. In Proceedings of the International
Workshop on Requirements Engineering for Product Lines 2002 (REPL’02), 2002, pp 26–32

23. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-oriented reuse method with domain-
specific reference architectures. Ann. Softw. Eng. 5: 143–168 (1998)

24. Kano, N., Seraku, N., Takahashi, F., Tsuji, S.: Attractive quality and must be quality. In: The Best on Quality,
ed by Hromi, J.D., vol 7(ASQ Quality, Milwaukee, WI 1996)

25. Karlsson, E.A.: Software Reuse – A Holistic Approach (Wiley, New York 1995)
26. Lam, W.: A case-study of requirements reuse through product families. Ann. Softw. Eng. 5: 253–277 (1998)
27. Lee, K., Kang, K.C., Koh, E., Chae, W., Kim, B., Choi, B.W.: Domain-oriented engineering of elevator

control software. In: Software Product Lines, Experience and Research Directions, ed by Donohoe, P., Pro-
ceedings of the First Software Product Line Conference (SPLC1), Denver, Colorado, vol 576 (Kluwer,
Dordrecht 2000) pp 3–22

28. Mannion, M., Kaindl, H., Wheadon, J., Keepence, B.: Reusing single system requirements from applica-
tion family requirements. In Proceedings of 21st International Conference on Software Engineering, Los
Angeles, CA, USA, 16–22 May 1999, ICSE (IEEE Computer Society, Silver Spring, MD) pp 453–462

29. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations, Principles, and
Techniques (Springer, Berlin Heidelberg New York 2005)

30. Pohl, K.: Process-Centered Requirements Engineering (Research Studies Press, Wiley, New York 1996)
31. Project Website of the DFG project VarMod-PRIME: variability modeling in process integrated modeling

environments. http://www.sse.uni-essen.de/wms/en/index.php?go=139
32. Schmid, K., John, I.: Generic variability management and its application to product line modeling. In: Proceed-

ings of the Software Variability Management Workshop, Groningen, Netherlands, ed by Van Gurp, J. Bosch,
J., pp 13–18

33. Sommerville, I., Sawyer, P.: Requirements Engineering – A Good Practice Guide (Wiley, New York 2000)

(July/August 2002)
35. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering, A Family-Based Software Development Proc-

ess (Addison Wesley, Reading, MA 1999)
36. Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenario usage in system development: a report on current

practice. IEEE Softw. 15(2), 34–45 (1998)

gress, TC12 1st International Conference on Artificial Intelligence Applications and Innovations (AIAI-
2004) (Kluwer, Dordrecht 2004) pp 323–332

37. Wolter, K., Krebs, T., Hotz, L., Meijler, T.D.: Knowledge-based product derivation process. In: Artificial
Intelligence Applications and Innovations, ed by Bramer, M., Devedzic, V., IFIP 18th World Computer Con-

34. van der Linden, F.: Software product lines in Europe: the ESAPS & CAF projects. IEEE Softw. 19(4),
41–49

É

6 Consolidated Product Line Variability Modeling

J. Bayer, S. Gerard, Ø. Haugen, J. Mansell, B. Møller-Pedersen, J. Oldevik, P. Tessier,
J.-P. Thibault, and T. Widen

Abstract
In this chapter we present an improved and simplified metamodel for product line variabi-
lity. This model has been consolidated from diverse approaches in the earlier research pro-
jects ESAPS, CAF and other existing work, supplied with recent research in FAMILIES.
The consolidated metamodel aims to be the starting point for standardization. A standard
will lay the grounds for commercial and open-source tool support. We present here a proto-
type tool based on the metamodel. To put the work in context, we present three different
approaches for capturing variability: using standard languages (exemplified by UML 2.0),
using annotations to standard languages, and using domain-specific languages. We use
the same Watch example to present how variability is handled in all three approaches.

6.1 Introduction

During the past decade a number of methods and techniques for describing software prod-

new ones defined. The results were different overlapping approaches with diverse termi-
nology, representation, etc. This diversity of concepts and approaches has dominated the
product line engineering community which would benefit from a more unified approach
that facilitates interoperability of tools and increased collaboration.

The work described in this chapter presents consolidated product line modeling. The
consolidation is based on assessment of existing product line modeling concepts and tech-
niques, attempting to converge towards a standard set of concepts for representing soft-
ware product lines and product line variability. Our aim is to create a metamodel for
variability that can be used for all different artifacts (both textual and graphical) across all
product line engineering phases. A metamodel is a description of the abstract syntax of
the proposed language constructs. A metamodel can also be understood as the model of
the repository of a tool for the language. We associate semantics with the elements of the
metamodel. We focus on conceptual and language issues of modeling variability rather
than the process that would lead to the optimal variability description. We refer to Chap. 5
on the issues relating to the methodology for the variability modeling process.

É

uct lines have been defined, e.g., FODA, FORM, Fusion and KobrA. In the ESAPS [11],
CAFÉ [12] and FAMILIES projects, existing concepts and techniques were refined and

The three approaches to variability are distinguished mainly by how much new lan-
guage is defined. But that is not the only property that differs between the approaches.
Traditionally, product line researchers have concentrated on defining annotations to exist-
ing languages. This can be seen clearly by the review of existing research found in this
chapter. These annotations are then input to a model transformation process that produces
a system model in the standard language that was annotated. Variability in standard lan-
guages, on the other hand, needs no such preprocessing. The selection of the final system
model is either done through modeling where the product line is defined as a framework
or at runtime where the system itself creates the configuration based on online input. In

copy constructs from standard languages, and may also apply model preprocessing.
The bulk of our work lies in defining a consolidated metamodel for annotations of vari-

ability. The need for a standard is apparent when we consider the huge diversity of
concepts and techniques defined in methods and previous projects. The benefits of a stan-
dardized approach are many:

− A standard vocabulary that provides a common platform for discussing product line
variability, thus facilitating communication and collaboration between people.

− A consolidated metamodel that can be the basis for a standard way of storing and ex-
changing models which describe product line variability, i.e., facilitating interoperabil-
ity between product line engineering tools.

− A common foundation for defining (modeling) notations that support the modeling
concepts.

− A basis for commercial or open source tool support for product line engineering.

The resulting harmonization we call the Consolidated Variability Metamodel. It is a
metamodel that defines the nature of the concepts needed for variability modeling and
how they are interrelated. As such, the concepts defined in the consolidated variability
metamodel can also shed light on how variability is handled in standard languages and in
domain-specific languages.

Agreeing on a single concrete notation supporting this metamodel has proved to be dif-
ficult, due to already established use of different tools and languages. We also want to be
flexible with respect to specific notation. In order to support several notations for our con-
solidated model, we propose some different specific notation examples, which can be
mapped to the metamodel.

The structure of this chapter is as follows:

− Section 6.2 shows how variability can be expressed in a number of ways also in stan-

− Section 6.3 is the central core of our work, where we describe approaches to variability
modeling based on annotations enhancing standard language descriptions. This section

J. Bayer et al.

In order to present variability modeling at large, we first present how variability is han-
dled in standard languages. At the same time, we introduce our recurring example: a
Watch. Then, we discuss at length variability modeling through annotations to standard
languages and present a consolidated metamodel for that approach. Finally, we present

196

how a (domain-) specific language can be applied to define variability modeling.

the third approach, the (domain-) specific languages are in principle free to apply whatever
techniques and mechanisms they want. In practice, we find that domain-specific languages

dard modeling languages exemplified by UML 2.0 [24].

− Section 6.4 elaborates on how domain-specific languages can be used for modeling
variability.

− Section 6.5 gives an evaluation of our consolidation efforts.
− Section 6.6 contains our conclusion and indicates a path forward.

6.2 Variability in Standard Languages Exemplified by UML 2.0

Throughout this chapter, we use a single example: a Watch. This section introduces the
example and shows how variability can be expressed in a standard language. We use
UML 2.0 as our example language, but in principle we could have applied the same
concepts to other graphical or textual languages provided they give support to the core
concepts that support the expression of variability: templates, plug-ins and specialization-

This section illustrates how mechanisms of UML 2.0 support variability. The product line
itself is represented by a class (Watch) and the features are represented by use cases, use-
ful types, properties (attributes) and constraints. Furthermore, the product line may specify
a composite structure.

Watch

Alarm

Time

Timer

StopWatch

WorldTime

User

User

«include» «include»

«include»

«include»

color: Color
precis: Precision

Watch

buttons

visual

audio

buttons:Button[1..*]
:Display

speaker:Speaker

Fig. 6.1. Watch product line – functional and structural features

bility. The composite structure shows that we want watches to have buttons, a display and
a speaker, and that a watch always will have a color and some precision.

Figure 6.1 shows how the Watch product line has a set of functional features compri-
sing timer, stopwatch, world time, and alarm capabilities in addition to the pure time capa-

6.2.1 Introducing the Watch Product Line and its Description in UML 2.0

presents the consolidated variability metamodel and shows how it can be used in anno-
tated modeling examples and by tools.

 6 Consolidated Product Line Variability Modeling 197

redefinition such as Java or SDL [17].

Buttons, a number of Displays, and a number of Speakers. The watch interacts with the
users through corresponding ports. Ports and parts are connected by means of connectors,
and these specify potential communication.

0 m
5 m
20 m
100 m
300 m

«enumeration»
Waterproof

black
metallic
green
yellow
red

«enumeration»
Color

0.001 s
0.01 s
0.1 s
1 s
10 s

«enumeration»
Precision

Speaker

PolyphonicSpeaker PlainSpeaker

features. All watches have color and precision, but we foresee also that watches may have
waterproof capabilities. The small class hierarchy shows that speakers will come in differ-
ent forms.

The composite class in Fig. 6.1. defines a framework in the sense that:

− It defines the architecture of a class of systems. This architecture defines the parts of
the systems and how these parts may interact.

− The parts may have behavior that will be common to all systems made on the basis of
this class.

part may be any object that is either an object of class Speaker, an object of a class that
is a subclass of Speaker, or an object that has an interface (here in terms of ports) that is
compatible with the one of Speaker.

obvious variations (on types of parts).

6.2.2 Variability by Means of Templates

J. Bayer et al.198

Modeling the architecture, including possible variations, is considered essential for
product line development.

As we have seen above, UML 2.0 permits the notion of composite structure of classes

− The parts are implicit elements of variation: in UML 2.0 the rule is that, e.g., a Speaker

Simply by using the composite class mechanism of UML 2.0 we have seen above that

that covers the modeling of architectures. The class Watch (see Fig. 6.1) defines the gene-
ral architecture of all watches. Each watch contains a number of parts: a number of

we have defined both the general architecture of a line of products/systems and some

Template parameters used for variation modeling are illustrated in Fig. 6.3. The type of the
Speaker part is a type parameter.

Fig. 6.2. Nonfunctional features and type hierarchy of one property

In Fig. 6.2 we define a set of enumeration types to describe potential nonfunctional

 6 Consolidated Product Line Variability Modeling

color: Color
precis: Precision
wp: Waterproof

Watch

buttons

visual

audio

:Button[1..*]
:Display

speaker:SpeakerType

SpeakerType < Speaker

Fig. 6.3. Watch with template parameter for the type of Speaker

A watch with a plain speaker can be derived by binding SpeakerType to PlainSpeaker,
see Fig. 6.4.

Watch with plain speaker:
Watch <SpeakerType -> PlainSpeaker>

Fig. 6.4. Binding the template parameter SpeakerType

ters: it is possible to constrain a type parameter, either in terms of a type of which all
actual types must be subtypes, or in terms of a signature (in terms of interfaces or ports)
that all actual types must be compatible with. For the parameter SpeakerType in our
example, we will be able to express that actual classes can only be Speaker and subclasses
of Speaker or classes that have compatible sets of ports with the compatible provided and
required interfaces.

As a curiosity, UML packages can also have template parameters. Other languages
with template parameters only have these for classes, types and functions. The intended
use of this is the following: suppose that all classes used in a specific domain have the
same type of variation, then instead of giving all these classes the same kind of template
parameter, the package defining these classes may have the parameter.

The plug-in approach is based upon the idea of isolating the variations in components
which are external to the stable parts of the system, with well-defined interfaces that apply
to all variant components. We use the term “plug-in” merely to mean that a component is
fitted into a framework through an interface. The binding of such plug-ins may occur at
design time as well as at runtime. Thus our term is somewhat broader than can be found in
literature where plug-in is only used to mean a mechanism of post-delivery adaptation.

6.2.3 Variability by Plug-Ins (Component-Based Approach)

199

This approach will benefit from the following UML 2.0 features of template parame-

This approach applied to the watch system may at first seem inappropriate (Fig. 6.5).
However, the model expresses that all watches have a number of buttons, a display and a
speaker plug, where the appropriate speaker may be plugged in. The variation is what kind
of speaker they have, and this is modeled by a port to which any of these different kinds
of speakers may be connected.

color: Color
precis: Precision
wp: Waterproof

WatchKernel /* remade for plug-in */

buttons

visual

audio

:Button[1..n]
:Display

:SpeakerPlug

SpeakerInf

Fig. 6.5. Plug-ins by means of ports and connectors

Figure 6.6 specifies a watch with a plain speaker, simply by connecting a PlainSpeaker

Fig. 6.6. Watch with plain speaker plugged in

are modeled by parts (of a composite class or collaboration representing the complete sys-
tem), connection points for plug-ins are modeled by ports, and plug-ins are connected by
connectors. With the plug-in approach, it is straight forward to model the variant of either
a plain or polyphonic speaker. The plug-in approach also covers the case where a brand

J. Bayer et al.200

The plug-in approach is directly supported by composite classes in UML 2.0. Plug-ins

:WatchKernel:PlainSpeaker
SpeakerInf

Watch /* with plain speaker plugged in */

to the port of the watch kernel.

 6 Consolidated Product Line Variability Modeling

new kind of speaker is introduced, as long as it adheres to the well-defined interfaces of
the port. This means that all variants do not have to be foreseen when developing the
product line.

As we have seen above, specialization in itself may be used as a variation mechanism, in
that each specialization of Watch represents a variation.

In order for this approach to cover variation on parts of the structure of a product line,
it must be possible to override the types of the parts that may vary. This calls for virtual
types (in line with virtual methods), i.e., types that may be redefined in subclasses. Differ-

redefinable, while other languages mark these as virtual classes.
In Fig. 6.7 the class SpeakerType is defined locally to the class “Watch” (and thereby

redefinable), while the classes Button and Display are defined outside (but used to type
parts of the Watch).

color: Color
precis: Precision
wp: Waterproof

Watch

buttons

visual

audio

:Button[1..n] :Display

speaker:SpeakerType

SpeakerType

It is therefore possible to redefine this local class in subclasses of Watch, as seen in
Fig. 6.8.

6.2.4 Variability by Specialization and Redefinition

Fig. 6.7. Watch with redefinable class SpeakerType

201

Specialization and overriding have been used in various approaches in order to express
a particular system as a subclass of a class representing the whole product line, or in order

backs are represented by virtual methods that are overridden in subclasses as part of the
specific use of the framework.

to express variations. This is especially the case when making frameworks, where call-

ent languages do this differently. In UML 2.0 all locally defined classes are by default

Watch

Watch with plain speaker

PlainSpeaker
redefines

SpeakerType

Watch with polyphonic speaker

PolyphonicSpeaker
redefines

SpeakerType

Fig. 6.8. Redefinitions of SpeakerType

Redefining the class SpeakerType in each of the two subclasses is enough. The whole
composite structure of Watch is inherited. The only difference is that the type of one of
the parts of this structure is redefined to be a part of a more specific type.

By its very nature, this mechanism covers the case with a new kind of speaker type that
was not anticipated when the product line was defined: virtual classes can be redefined to
any class that is a subclass of the virtual class itself.

In Sect. 6.2 we presented how variability can be expressed in system models in standard
languages. Standard languages, however, have not been developed to capture all types of
variability consistently and explicitly. Also, different binding times of variability have not
been considered. Typical binding times are for example, compile-time, deployment-time,
startup-time, runtime. All but runtime variability are usually considered as product line
variability. There is no technical evidence that variability must also be expressed through
a pre-runtime phase, but it is undoubtedly the tradition that the derivation of the executing
system from the product line is a two-stage approach – one phase of system description
derivation and then one phase of executing the derived system. It may be argued that if the
product line itself has a large number of possibilities, but each individual system is rather
small, deriving the description of the system before runtime should lead to a smaller foot-
print and therefore improved efficiency.

Traditionally, product line models have been expressed by extensions, or annotations,
to standard languages. These annotations can then be used in a model transformation to
produce system models with less variability. In this section, we shall review some of the
results of earlier projects and contributions in research, and propose a consolidated meta-
model to describe how languages can be enhanced to accommodate variability. As men-
tioned in the introduction, our aim is to create a metamodel for variability that can be used
for all different artifacts (both textual and graphical) across all product line engineering
phases and therefore be a starting point for standardization and better commercial and
open-source tool support.

6.3 Variability by Enhancing Languages

J. Bayer et al.202

 6 Consolidated Product Line Variability Modeling

We show how the Watch example may be expressed in two different variants of using
the consolidated metamodel, and we show in detail the repositories, i.e., the object models
corresponding to the metamodel. Finally, this section concludes with a presentation of a
prototype tool based on the consolidated metamodel. This prototype tool has emerged

FODA, FORM and FAST. Much of the work on variation models stems from domain
analysis methods. Feature-Oriented Domain Analysis (FODA) and the Family-Oriented
Abstraction, Specification, and Translation (FAST) Commonality Analysis (CA) are two
such methods that have provided input for the conceptual model of variability.

Feature-Oriented Domain Analysis (FODA) focuses on feature level commonality and

tional support for software design and implementation. However there is no consistent and
coherent variability support throughout the lifecycle. Additionally, the model of variability
is not explicitly stated or thoroughly described, but can be derived from the descriptions.
Basically, the model for variability is that features can be variable. Features are marked as
mandatory, optional or alternative (and then related to the alternatives). Also, composition
rules can be declared for how features constrain other features. Additionally, text may be
added to diagrams to capture additional variability. This is, however, neither systematic
nor sufficient. FODA does have a particular notation for feature variability, which marks
the features with either an open or a closed circle along the sub-feature or containment
line to indicate optional or mandatory. Also alternatives are connected with arcs on their
lines.

The Family-Oriented Abstraction, Specification, and Translation (FAST) Commonality

document is structured lists capturing the commonalities and variabilities separately. Each
variability specification has a range of values. The range of values for all variabilities is

PuLSE and KobrA. Product line software engineering aims at creating generic software

ware Engineering) is a method for enabling the conception and deployment of product

The life cycle of a software product line in PuLSE is split into the following phases:
initialization, product line infrastructure construction, usage, and evolution. In the initiali-
zation phase of PuLSE, the other phases and the technical components are tailored.
Through this tailoring of the technical components, a customized version of the construc-
tion, usage, and evolution phases of PuLSE is created.

203

through the FAMILIES project in parallel with the development of the metamodel to vali-
date the concepts.

Analysis (CA) is a text and table based domain analysis document [1]. The main part of the

captured in a table form list as the parameters of variation elements. This is what the Deci-
sion Model is based on. Variabilities are captured along with the range of possible choices
and a default value. However, dependencies and constraints among variabilities are not

language.
explicitly captured. The CA output is used in the FAST process to create a domain-specific

assets that are reusable across a line of target products. PuLSE(tm) (Product Line Soft-

lines in a large variety of enterprise contexts [4].

6.3.1 Earlier efforts

variability [18,19]. Feature Oriented Reuse Method (FORM) extends this with some addi-

The principle dimensions of customization are the nature of the application domain, the
organizational context, reuse aims and practices, as well as the project structure and avail-
able resources.

PuLSE provides technical components for the different deployment phases that contain
the technical know-how needed to operationalize the product line development. The tech-
nical components are customizable to the respective context. Customization of PuLSE to
the context where it will be applied ensures that the process and products are appropriate.

To introduce software product line engineering in software developing organizations,
the products need to be extended to enable modeling of commonalities and variabilities. A
systematic approach for extending single system models with the means to model com-

given asset to be generic, i.e., to enable the explicit modeling of variability in that asset.
The variability modeling is accompanied by decision models. This approach is also the
basis for variability and decision modeling in the PuLSE approach and has been used as
the basis for developing the conceptual model described in this section.

infrastructure construction phase of PuLSE corresponds to KobrA’s framework engineering
activity, the infrastructure usage phase of PuLSE corresponds to KobrA’s application en-
gineering activity, and the product line evolution phase of PuLSE corresponds to the

UPM (Polytechnic University of Madrid) Notation. The UPM variation point identifies
one or more locations at which variability will occur. Each variation point will be related
to a decision. Once the decision is made, a set of variant elements will remain and others
will be left apart. As a result, the variation point will have changed its state.

Tightly linked to the concept of variability, the decisions are part of the software prod-
uct line. Therefore they are related to the models in the product line. In order to obtain
specific products, decisions have to deal with variability, either in the requirement, or
architectural or testing phases.

Variability is explicitly represented in the architecture through variation points. For
UPM, each variation point is composed of one or more variants and it is formally defined
by an algebraic expression. The expression denotes the relationships among elements,
using as syntax operators those available in Boolean algebra. Expressions are composable,
meaning that an expression can be created as a combination of others. The reference ar-
chitecture obtained for a product line is a series of models in different views; each element
in a model is labeled as a variable of the set of products in the product line.

The UPM notation belongs to the category of using UML extension mechanisms
(stereotypes and tagged values) for representing variability. It does not represent variation

cally, he defines UML extensions in order to express commonalities and variations in

J. Bayer et al.204

monalities and variabilities is described in [23]. The approach enables the extension of any

KobrA represents an object-oriented customization of the PuLSE method [2]. The

maintenance of the frameworks and applications [3].

Matthias Clauß work. Clauß [8] proposes a UML profile to model product line. Specifi-

elements explicitly as model elements, but marks all variable model elements [7, 25].

 6 Consolidated Product Line Variability Modeling

the structural aspects of a product line (i.e., mainly on class diagrams). The concept of
variation proposed by this approach relies on the three following parts:

− The variation point is the location of the variability in a model. The UML element is
also marked by the stereotype «variationPoint».

− A variation point has a set of variants. A variant is a possible derivation for a variation
point. This kind of element is marked by the stereotype «variant».

− Relationships can exist between variants of different variation points. It is then possible
to express dependencies between variable model elements. For instance if a variant
needs to use another variant, a relationship stereotyped by «requires» may be modeled.

The «variationPoint» stereotype may be applied on model elements that are Generaliz-
ableElement as defined in the UML metamodel. Consequently, classes, components,
methods, collaborations and associations, can be stereotyped by either «variationPoint» or
«variant».

Moreover, it is also possible to model optional variation. A model element marked by
the «optional» stereotype, signifies that it may be absent in a specific system model.

In the example depicted in Fig. 6.9, PaymentInfo is a local variation point with three
possible variants: Building_Data; Delivery_Data; and CreditCard_Data. Contract is an
optional element. That means that systems instantiated from this product line may or may
not have Contract. Moreover, this class has a dependency with one of the attributes of
PriceMethod. Consequently, a «requires» link is added between both optional elements.

Becker’s variability model. Becker and others have also been working on defining a uni-

the mainstream, although the terminology is sometimes different and the model in the end
looks different. In their model, they capture the various types of variability, dependencies
and constraints between variabilities, and make a distinction between the variability (at
the “specification level” in their terms) vs. capturing the variability points in the assets
(at the “implementation level”).

VTT and POLITEHNICA University of Bucharest. Another approach based on stereotypes

approach to handle all models and levels as we are striving to achieve. Also, variation is
linked directly to a product instead of smaller decisions based on features or functio-
nalities.

This work was done to extend the Quality-driven Architecture Design and quality
Analysis (QADA) method with support for variability. It is similar to other work with

variation mechanisms are used for different models/views instead of a uniform
stereotypes, tagged values and OCL constraints, except that in their approach different

205

models when describing product lines. The work is focused on variability modeling of

is that of Dobrica and Niemelä of VTT and POLITEHNICA University of Bucharest [10].

formly applicable model of variability [5,6]. Many of the ideas they discuss are similar to

Fig. 6.9. Example of model using Matthias Clauß extensions for product line

et al. have suggested a profile of UML 2.0 for software product lines where they introduce
a small set of stereotypes to define variability for classes as well as behavior (Interactions)

which describes that a given element may or may not be present in a product derived from
the product line. The pair of stereotypes «variation» and «variant» work together. The
«variation» stereotype defines the context for the «variant»s. For each «variation» one and
only one of the «variant»s may be present in the product.

The paper refers to the distinction between runtime variability and development-time
variability, and places itself in the latter group. This distinction is similar to the distinction
in this chapter between applying standard language and enhanced, annotated descriptions.

The UML profile suggested is similar to the traditional “compiler directives” annota-
tions in programming languages, also known as “pragmas.” The UML profile is, however,
well defined and gives adequate restrictions for the use of the constructs. This makes their
approach better than simple “model pragmas.”

From a semantic point of view, product lines defined through their UML profile do not
lend themselves to analysis of the dynamic semantics before the variability has been
bound. At that point, all the special stereotypes have vanished, and we are left with a
derived product model in UML.

In this section we describe the metamodel of variability. The metamodel describes the
elements that define a product line model and its resolution, i.e., instantiating a system

6.3.2 Consolidated Variability Metamodel

J. Bayer et al.

Ziadi, Hélouët, Jézéquel: Towards a UML Profile for Software Product Lines. Ziadi

206

[29]. They try to give this profile a precise semantics. One of the stereotypes is «optional»

 6 Consolidated Product Line Variability Modeling

model from the product line model. Conceptually, the product line model is constructed
from a base modeling language with variabilities added. That is, any base model, such as
UML models or feature models or Java descriptions or even structured text documents,
can be extended to capture variability through the variability metamodel. A product line
model is then given by a base model and a variation model.

Among modelers there is no complete agreement on what constitutes “one model” as
opposed to “several interrelated models.” Some modelers use the term “model” for what is
described in a specific kind of diagram – such as the sequence diagram model, or the fea-
ture model. In this chapter, we generally use the term “model” to mean the full description
of a given piece of reality regardless of which diagrams are used to describe it. Still we
find that sometimes it is fruitful to distinguish between different models such as between
the base model, the variation model and the resolution model even though they may ap-
parently describe the same overall part of the world.

Our notion of a model and model elements also comprises structured textual descrip-
tions. It is irrelevant for our approach whether the concrete syntax is graphical or textual.
Furthermore, model elements may also consist of informal text, but then there is little we
can do with them unless we provide further categorization.

Once a product line model exists, a resolution model can be made that defines the binding
of variabilities to resolutions. This resolution model applied to the product line model
yields a system model if all variabilities are bound. There can be multiple resolution mod-
els for a product line, each resulting in one system model or a partial instantiation of the
product line.

The metamodel in Fig. 6.10 defines the concepts and their interrelationships more pre-
cisely. The watch example is used to illustrate some of the concepts.

The metamodel is captured in UML with classes representing concepts, and associa-
tions capturing the relations among concepts. Within the diagram descriptions, each
element introduced in a diagram is defined.

The model is split into multiple diagrams, each diagram covering certain issues. The
top-level diagram (Fig. 6.10) defines the core concepts. Central to this model is Model
Element.

− Base Model is a model in any language (textual or graphical). For our purposes, we
only consider the base model to consist of model elements.

− Model Element represents any kind of model asset in a model in a given modeling lan-
guage. If UML is the modeling language, then Model Element is the element in the
metamodel of UML with the same name. For example, a Model Element can be a fea-
ture from a feature diagram, or a class or a use case from UML, or a requirement name
in a structured text document. Model Element will probably support composition
(along with other kinds of relationships, e.g., associations and specialization between
model elements), but this will be composition in a (base) model without any variation.
Note also that Model Element is not defined by our metamodel, but considered already
defined in the given modeling or programming language, while the other classes are
defined here.

207

(From Base
Model)

Model Element
Variation Element

0.11 Variability
Specification

Resolution
Element

Variation Model Resolution
Model1

*resolves

Variability
Constraint Transformer

0.11

*
involved

affected*

Value
Resolution Type Resolution

Fig. 6.10. Metamodel Core

this variation model, the referred model element is affected. This relationship has a zero-
to-one cardinality, as not all model elements are affected by variability; common ones are
not. However, variation elements only make sense as additions to base model elements.
Variation elements only contain the information that the referenced model elements may
be affected by variations.

− Variation Model is a collection of variation elements. The variation model keeps track
of all the variation elements of the product line model.

− Variation Element represents something with variable nature. All model elements that
are affected by the variability of this variation model are referred to by variation ele-
ments.

The information about how something can vary is captured by the variability specifica-
tions associated with a variation element.

− Variability Specification represents the actual variability of a variation element, such as
optionality, required dependencies, etc. It has a range of further specializations
(Fig. 6.11).

Variation Element owns a number of variability specifications. The variability specifica-
tion is associated with the affected variation elements that may change based on the

J. Bayer et al.

A variation element refers to a model element, depicting the fact that for the purpose of

208

 6 Consolidated Product Line Variability Modeling

resolution and the involved model elements. At the top level, Variability Specification is
specialized into two types of elements: Variability Constraint and Transformer.

− Variability Constraint represents constraints on valid resolutions and distinguishes be-
tween valid resolution models and invalid ones.

− Transformers have concrete transformations associated with them. When values are
bound to transformers (from the Resolution Element), this defines the transformation of
the variation model and the base model. Typically when a transformer is completely
bound, the transformed total model (pair of base model and variation model) will not
have any trace of this bound transformer. Instead the base model will have changed ac-
cordingly.

The other central part of the core model supports the resolution of variability that exists in
a model. A set of resolution elements defines how a model with variability is bound.

− Resolution Model defines resolutions of variability for a product line model. It is a
named collection of resolutions that reference variability specifications in a product
line model. A resolution model represents a binding of variability specifications, which
can be used to derive a new, more specific model. A resolution model that contains
resolutions for all variability specifications of a model represents a derivation of a sys-
tem model.

− Resolution Element is a model element that represents a binding of a variability speci-
fication, i.e., it represents a binding of variability. This is either a complete binding in
which all variability is resolved, or a partial one in which some variability is still pre-
sent. A resolution has a number of effects which represent the effects a resolution has
on the model, such as narrowing a constraint or removing parts of the model. Resolu-
tion Element has two subtypes: Value Resolution and Type Resolution.

− Value Resolution represents resolutions that define a value for the variability. Most
transformers are mapped to value resolutions. Examples for these will be presented
later.

− Type Resolution represents resolutions for variabilities that are resolved with model
elements. Type Alternative Transformer is the only transformer associated with this
resolution. An example for this will be presented with the definition of Type Alterna-
tive Transformer.

There may be several resolution models pointing to the same variation model. For one
resolution model, each transformer may be linked to zero or one resolution element. Not
all transformers must be associated to resolution elements. Even in a completed product
specification, some variability may be beyond the scope due to higher-level resolutions.

Variability Specification represents the variability present in a product line model. Cer-
tain kinds of variability commonly recur in product lines. These are captured in term of
specializations of Variability Specification (Fig. 6.11).

209

Variability
Specification

Variability
Constraint Transformer

Requires
Constraint

General
Constraint

Iteration
Transformer

Property
Transformer

Range
Transformer

Alternative
Transformer

Type
Alternative

Transformer

Value
Alternative

Transformer

Optional
Transformer

Excludes
Constraint

− Property Transformer represents variability bound by the type of a property, i.e., it
requires a decision to be made regarding its value. The effect of a property transformer
is to set the value for the model element in the base model that is affected by this trans-
former. The value is set to the value of the value resolution.

− Range Transformer is a special kind of property transformer, where the value of the
property in question must be within a specific range of values. It can for example be an
integer range defined for an integer attribute, or a string range defined for a string-type
attribute. The effect of a range transformer is the same as that of a property trans-
former. That is to set the value for the model element in the variation model that is
affected by this transformer. The value is set to the value of the value resolution.

− Alternative Transformer represents variability in terms of choices of values or elements
(items). A set of possible items is referenced and the constraint defines minimum and
maximum that can and must be selected (range_min and range_max). A resolution
requires selection of at least range_min and at most range_max items.

− Value Alternative Transformer is a special kind of Alternative Transformer, where the
selection of choices is a set of values. An example is a selection of values from an
enumeration type, e.g., select two of the values {red, green, blue, yellow, black}. The
effect is to set the value for the appropriate model element to the value of the value
resolution.

− Type Alternative Transformer is a special kind of Alternative Transformer, where the
selection of choices is other model elements, e.g., types, classes, features. The effect of
a type alternative transformer is in some way to “keep” the model elements in the
variation model that are referred to by the type resolution and remove the affected
variation elements of the transformer that are not referenced. Alternatively, the model
element that owns the type alternative transformer (through its variation element) may
originally have no type. Then the effect is to bind the underlying model element to the
selected elements represented by the type resolution.

Fig. 6.11. Variability specification hierarchy

J. Bayer et al.210

 6 Consolidated Product Line Variability Modeling

− Optional Transformer is an Alternative Transformer where the possible choices of
values are {range_min= 0, range_max= 1} regarding the inclusion of an item.

− Iteration Transformer represents a variability that repeats a variation element and its
associated model element and all of its sub-elements in the base model hierarchy. The
effect of the transformation is to duplicate the affected model element the number of
times specified by the resolution value.

− Requires Constraint represents a constraint that indicates dependency between model
elements, i.e., that the presence of one model element requires the presence of a set of
other model elements.

− Excludes Constraint represents a constraint that indicates the reverse dependency
between model elements; the fact that one model element is present may exclude the
presence of another.

− General Constraint represents any constraints that are not possible to express through
the specific constraints. It has a language and a specification property to allow con-
straint specification using different kinds of languages, e.g., OCL.

In Sect. 6.2, we showed how UML 2.0 can be applied to describe variability. In this sec-
tion, we show how we can apply annotations to UML descriptions following the meta-
model in Figs. 6.10 and 6.11.

A resolution model can be applied to a product line model yielding a system model.
Thus the generality of an annotated product line model is somewhat different from the
models applying only pure UML since a separate resolution (binding) process must be
applied to the product line model before an executable model can be derived.

Our metamodel describes a repository for a UML-like language for product line model-
ing. We shall present two quite different syntactic approaches to the description of our
product line specific concepts. One approach uses new symbols and resembles what is

of some UML diagram, but rather a novel type of diagram that fits well together with
other UML diagrams. The leaf nodes of the feature diagram are typically concepts from
the UML model. The other approach is based on the more traditional UML stereotype
approach. Neither of the two syntaxes gives detailed information about the procedure that
leads to the resolution model. In general we shall assume that achieving the desired reso-
lution model is the product of a separate strategy or decision process.

In Fig. 6.12 we see a feature model of the Watch product line. Here, we use a syntax
which does not use special symbols, but rather applies text labels to the branches to indi-
cate which of the meta-classes apply on that branch. Thus Fig. 6.12 may also very directly
be seen as depicting the repository. The labels correspond to different subclasses of Vari-
ability Specification. The bold-faced nodes such as “Watch,” “StopW” and “Buttons”
represent variation elements. In a UML context the variation elements will typically be
classes or behaviors of UML.

Each variability specification represents some kind of decision to make, but we do not
imply any specific order in which to make those decisions. Since the variability specifica-
tions may be interdependent, e.g., described through a variability constraint, the feature
model will transform itself incrementally as decisions are being made. In our model, there

6.3.3 Variability Mechanisms Expressed by Annotations to UML

211

known in literature as a “Feature model” [9,18,19] This notation is not really annotation

is interdependency between inclusion of Alarm and what kind of Buzzer can be chosen. If
you have already chosen not to have a Buzzer, the option to choose Alarm is in fact pro-
hibited. Conversely if you have chosen to include an Alarm, then the originally optional
Buzzer choice must be transformed to being mandatory.

Watch

Functionality Qualities Appearance User
Interface

Buttons Buzzer

Plain Poly

Time StopW Alarm Waterproof

required={if Functionality.Alarm then UserInterface.Buzzer}

opt opt opt

Laptime

it[1..3]

Precision

{0,5,20,100,300}

Depthresistance

ValueAlt

{1/10 s, 1/100s,
1/1000 s}

PrecisionValue

ValueAlt

it[1..6] opt

ValueAlt

Material Position

ValueAltValueAlt

TypeAlt

Bits

ValueAlt

Strap

Leather Metal

TypeAlt

Animal

ValueAlt

Width

ValueAlt

Fig. 6.12. Watch product line feature diagram

The feature diagram in Fig. 6.12 is too comprehensive to allow a closer look at how the
metamodel relates to the feature diagram. We will therefore concentrate on showing the
repository model relative to our variability concepts for a fragment of the total Watch
model.

First, we assume that the feature diagram is described in a language of its own and that
the model elements represent concepts of that Feature Language. Consequently, we have
objects that are model elements of types such as Property, Feature and Feature Group.

We will consider a fragment of the User Interface shown in Fig. 6.13. The feature dia-
gram in Fig. 6.13 is represented in a repository which may be depicted as an object model
as in Fig. 6.14. We see that there is a very close correspondence between the feature dia-
gram and the repository built on the metamodel.

Alternatively, we could describe this (fragment of the) Watch product line by annota-
tions to UML. The idea is to start from something which is an incomplete (or over-
specified) UML model of the Watch, and annotate it with stereotypes to describe the
variabilities.

J. Bayer et al.212

 6 Consolidated Product Line Variability Modeling

User
Interface

Buttons Buzzer

Basic Poly

it[1..6] opt

Material Position

ValueAltValueAlt

TypeAlt

Bits

ValueAlt

Fig. 6.13. Fragment of the Watch feature diagram

-min: 1
-max: 1

AltType

AltValue

AltValue

User Interface: FeatureGroup

Button: Feature

Buzzer: Feature

Material: Property

Plain Speaker: Feature Poly Speaker: Feature

NoBits: Property

:Opt

AltValue Position: Property

Button:
VariationElement

Buzzer:
VariationElement

Plain Speaker:
VariationElement

Poly Speaker:
VariationElement

NoBits:
VariationElement

Position:
VariationElement

Material:
VariationElement

-min: 1
-max: 6

Iterate

Fig. 6.14. Repository of a feature model based on a Feature Language

213

Let us again focus on the variabilities of the User Interface shown in the feature dia-
gram. In Fig. 6.15, this is shown by the stereotype «it[1..6]» on the “buttons” Part and the
«TypeAlt» in the “Buzzer” rectangle. The latter is obviously something that goes beyond
pure UML, but described in a different way than previously in Sect. 6.3.3.

precis: PrecisionValue
«optional» waterproof:Depthresistance
«interaction» Time
«optional» «interaction» StopWatch
«optional» «interaction» Alarm
strap: «rangeVal[1..1]»

 {«variant»leather:Animal;
«variant»metal:Width}

Watch {if Alarm then Speaker}

buttons visual

audio

buttons:Button«it[1..6]» :Display

«variant»
speaker:PlainSpeaker

«variant»
speaker:PolyphonicSpeaker

«optional» «TypeAlt» Buzzer

Fig. 6.15. Variability based on a UML model

In Fig. 6.16, we show the repository of the User Interface fragment based on the UML-
annotated approach where the model elements are of kinds known from the UML (meta-
model) such as Part (Property), Class and Attribute (Property).

If we compare the repositories of Figs. 6.14 and 6.16 we see that there are clear simi-
larities, but that the base model of the Feature language contains the feature structure,
while for the UML annotation version, the variabilities form the internal structure and the
base model of UML model elements are not completely connected to each other, but
rather attached to the variabilities. A proper UML model will only appear after all vari-
abilities have been resolved. Notice that the repository in Fig. 6.16 only shows a fraction
of what is described by stereotypes in Fig. 6.15.

Showing resolution is our next step in Fig. 6.17. We have not elaborated any concrete
syntax for resolutions here, but only shown the resolutions in a table in order to illustrate
how it could have been done. Again, the Feature language approach will look slightly dif-
ferent from the UML annotation one.

J. Bayer et al.214

 6 Consolidated Product Line Variability Modeling

Notice that we have not resolved all variabilities. The detailed properties of each button
have not been resolved, so we are still left with what should be called a product line
model.

After having applied the resolutions, the repository in Fig. 6.18 emerges.

UserInterface:
VariationElement

min: 1
max:6

buttons:
IterationTransformer speaker:

OptionalTransformer

variation variation

Buttons:
VariationElement

affected

Buzzer:
VariationElement

affected

Material:
VariationElement

Position:
VariationElement

value: Value
Alternative

Transformer

variation

value: Value
Alternative

Transformer

variation

speakertype:
Type Alternative

Transformer

variation

involved

involved

Bits:
VariationElement

value: Value
Alternative

Transformer

variation

No correspondent
in Base model

speaker: Partbuttons:Part

Plain: Class

Material:Attribute Position:Attribute

Bits:Attribute

affected affected

Speaker: Class

Poly: Class

Button:Class

type

affected

type

affected

Fig. 6.16. Repository for UML-annotated model

215

value = 2

IterateRes

value = exists

OptRes

choose Poly

AltTypeRes

value = 16

AltValueRes

-min: 1
-max: 1

AltType

AltValue

AltValue

User Interface: FeatureGroup

Button: Feature

Buzzer: Feature

Material: Property

Plain Speaker: Feature Poly Speaker: Feature

NoBits: Property

:Opt

AltValue Position: Property

Button:
VariationElement

Buzzer:
VariationElement

Plain Speaker:
VariationElement

Poly Speaker:
VariationElement

NoBits:
VariationElement

Position:
VariationElement

Material:
VariationElement

-min: 1
-max: 6

Iterate

Fig. 6.17. The feature model repository with resolutions

AltValue

User Interface: FeatureGroup

Button2: Feature

Buzzer: Feature

Material: Property Poly Speaker: Feature

NoBits: Property = 16
AltValue Position: Property

Position:
VariationElement

Material:
VariationElement

AltValue

Button1: Feature

Material: Property

AltValue Position: Property

Position:
VariationElement

Material:
VariationElement

Fig. 6.18. Resolved feature model

We see that the resolution of the iteration has had an effect on iterating the unresolved
variabilities, one for each button. On the other hand, the buzzer/speaker feature is com-
pletely resolved, and it is also possible to shortcut that part of the feature model by
removing the Buzzer feature which now has outplayed its role.

J. Bayer et al.216

 6 Consolidated Product Line Variability Modeling

Approaching this from the UML annotation side, we get the following resolution
repository and resolved model for the buzzer/speaker side of the variabilities (Fig. 6.19).

UserInterface:
VariationElement

speaker:
OptionalTransformer

variation

Buzzer:
VariationElement

affected

speakertype:
Type Alternative

Transformer

variation

involved

involved

Bits:
VariationElement

value: Value
Alternative

Transformer

variation

No correspondent
in Base model

speaker: Part

Plain: Class Bits:Attribute

Speaker: Class

Poly: Class

affected

type

choose the option

:ResolutionElement

choose Poly

:ResolutionElement

#bits = 16

:ResolutionElement

encloses the user
interface variability

speaker: Part

Plain: Class
value: 16

Bits:Attribute

Speaker: Class

Poly: Class

type

Watch: Class

affected

Fig. 6.19. Repository of UML-annotated model with resolutions, and the resolved model

The resolved UML model will eventually look like Fig. 6.20. We represent the resolu-

Table 6.1. Resolution Table representation for repository of Fig. 6.19

1 speaker:
OptionalTransformer

option chosen The optionality is removed,
and the speaker part remains
in the base model

2 speakertype:
TypeAlternativeTrans-
former

choose Poly type
for speaker

The dangling type-reference
of the part “speaker” is set to
reference the class Poly

3 value:
ValueAlternativeTrans-
former

set to 16 The “bits” attribute of the
“speaker” part is set to 16

217

transformer resolution values effect

tion model of the UML annotated version in Tab. 6.1.

precis: PrecisionValue
waterproof:Depthresistance
«interaction» Time
«interaction» StopWatch
«interaction» Alarm
strap: leather:Animal;

Watch

buttons visual

audio

buttons1:Button1 :Display

number of bits = 16

speaker:PolyphonicSpeaker

buttons2:Button2

Fig. 6.20. Resolved UML model

In this section we have used the metamodel as the basis for two approaches to describe
a Watch product line. One approach had a Feature language as its base while the other
described annotations to a UML-like language base. We found that our conceptual model
could be applied in both cases and that resolutions of variabilities eventually led to base
models with less variability.

Until now, most efforts related to product line research have concentrated on the man-
agement of variability modeling of structural aspects. In the context of real time systems
development, the behavior aspect is very important and so describing state-based models

The tool Accord|UML
for product line design of real-time engineering applications. This section focuses on the
improvement of variation modeling in behavior models, here state machines, and provides
mechanisms to derive a state-machine based framework into various well-formed model
instances of the product line.

The main issue that lies behind the derivation of a state-machine based framework is
the ability to ensure that the derived specific state machine is well-formed. Consequently,
it requires that the variation derivation process is structured in a way that eliminates mod-
els that are not well-formed. To reach this goal, we designed a specific theory which
enables the determination of all possible well-formed framework derivations from a
product line model containing state-machine based behavioral specification.

During the design of a framework state machine, variation points can be specified in the

6.3.4 Management of Variability in UML State Machines

is crucial for efficient use of product line principles in the real-time engineering domain.

J. Bayer et al.218

-SyF [13,14] is an attempt to provide behavioral modeling features

The research work proposed here is based on earlier proposals such as [8,18, 28].

 6 Consolidated Product Line Variability Modeling

same way as is usual in structural models. A variation point is a variation element refer-
encing a simple model element that varies among specific products of a product line.

Behavior is specified by state machines that consist of nodes and transitions linking
these. Behavioral variation points may then be either nodes or transitions. These variation
points are constrained by using variability constraint or transformers as described in the
metamodel (see Sect. 6.3.2). In Accord|UML-SyF, a profile for product line modeling sup-
port was developed before the consolidated metamodel reached a stable version. Conse-
quently, some concepts used in our approach are slightly different. Mainly, we introduced
the concept of variation group that contains a set of variations, which is similar to the
Transformer class.

Figure 6.21 depicts the product line model of a watch product line designed with
Accord|UML-SyF. The watch product line may be derived into either a simple watch, or a
watch with alarm. The alarm of our system can be a beeper, a display or a display with a
beeper. Note that the design of the system does not precisely define specific product
specifications. Only possible functionalities are considered when designing the product
line framework.

Watch

+start () : void
+stop () : void
+ displayTime () : void
<< VariationPoint >> + startAlarm () : void
<< VariationPoint >> + stopAlarm () : void
<< VariationPoint >> + beeperTrigger () : void
<< VariationPoint >> + displayTrigger () : void

Clock

Running

StandBy

Alarm

startstop

startAlarm

stopAlarm

displayTrigger

beeperTrigger

displayTime destroy

destroy

Fig. 6.21. Extract of the class and state machine diagrams of the watch product line

This system has several variation elements: startAlarm(), stopAlarm(), beeperTrigger()
and displayTrigger() operations. Variations are dispatched into the following decisions
definitions (Fig. 6.22):

− AlarmVariationGroup is an example of an optional transformer that has constraints
startAlarm and stopAlarm services. When AlarmVariationGroup is set to true then both
startAlarm and stopAlarm are likewise set to true, and when Alarm is set to False then
both are set to False. This variation group is chosen when the developer wants the
alarm functionality. A variation group corresponds to a variation element that does not
reference a model element, but represents a group of variation elements.

− TriggerVariationGroup is a type alternative transformer with two possible resolutions:
beeperTrigger and displayTrigger. When this option is chosen, the alarm of the result-
ing watch will contain exclusively a display and a beeper.

219

<< VariationGroupPackage >>
VariationGroupPackage

<< VariationGroup >>
AlarmVariationGroup

<< VariationGroup >>
TriggerVariationGroup

<< VariationGroup >>
kind = Alternative
variationPointRef= WatchModel. Watch. beeperTrigger,

 WatchModel. Watch. displayTrigger

motivation = Do you want to have Alarm Functionality?

<< VariationGroup >>
kind= And
variationPointRef= WatchModel. Watch. startAlarm,

 WatchModel. Watch. stopAlarm

motivation = Do you want to have Alarm Functionality?

Fig. 6.22. Decision diagram for the watch product line model

In a model-based approach using the UML formalism, structural elements and behav-
ioral elements are interdependent. In order to analyze and resolve possible conflicts in
variation modeling, we propose an automatic propagation of variability constraints across
the whole model. Thanks to this propagation mechanism, it is possible to evaluate the
impact of structural variations on the state-machine specification and to calculate all pos-
sible derivations of the product line framework. It is then possible to detect derivations
that construct an ill-formed state machine and finally to detect errors in the model or con-
straints on variations. Figure 6.23 shows an example of automatic derivation from the
model specified in Fig. 6.21. In this case, four derivations of the state machine specified in
the product line framework are possible.

Clock

Running

StandBy

startstop

displayTime

destroy

Clock

Running

StandBy

Alarm

startstop

startAlarm

stopAlarm
destroy

destroy

Clock

Running

StandBy

Alarm

startstop

startAlarm

stopAlarm

beeperTrigger

destroy

destroy

Clock

Running

StandBy

Alarm

startstop

startAlarm

stopAlarm

displayTrigger

destroy

destroy

“ ”

“ ”

displayTime displayTime

displayTime

Fig. 6.23. Four possible derivations

J. Bayer et al.220

 6 Consolidated Product Line Variability Modeling

The different approaches to variability modeling have diversified its implementation in a
few tools that support specific product lines, or general variability management concepts.

Nowadays end-users trying to develop their own product lines deal with variability
modeling in different ways in order to achieve their own solutions. They do not mind the
metamodels, notations or techniques within the tool (or tools) they are using to reach their
objectives, but the way those topics are implemented in the tool will shape their approach
to variability handling and its representation.

A consolidated metamodel for product line variability modeling will unify the tool so-
lutions for its implementation in a common and comprehensive way, allowing the users to
choose the tool that satisfies their needs, ensuring compatibility. If this is not possible for
the actual results (file formats, graphical representations, notations, etc.), at least it should
be possible on the level of conceptual representation of the variation model.

The impact of this metamodel will affect not only the modeling tools but also the vari-
ability resolution tools.

A tool supporting the decision model resolution must integrate, and interact with, those
model elements at runtime to generate the appropriated transformation effect related to the

lution of each variation element.
This behavior is clearly described by the consolidated metamodel and must be inte-

grated into the tools. Any solution not developed under the definition of the resolution
model will probably be incompatible with the consolidated model philosophy.

With V-Manage, the user specifies a variation model and a resolution model, and pro-
vides the mechanism to specify product line models and produce concrete system models.

This section will describe:

− V-Manage suite
−
− Implementation and resolution of the example Watch product line following the defini-

The V-Manage suite consists of three applications:

6.3.5 Prototype Model Tool Integration

selected value resolution (from the existing resolution elements) associated with the reso-

221

support for product line activities. Many of the issues addressed within the consolidated
metamodel have been covered by the metamodel for variation models implemented within
V-Manage. Moreover, the mechanism for resolving associations of model elements and
variation elements based on the variation model (“Decision Model” in V-Manage termi-
nology) is well defined in the tool.

Metamodel implementation, V-Manage tool. V-Manage is a tool suite that provides full

Not every concept of the metamodel is implemented in the tool; and the naming con-
ventions and notations are different from the consolidated metamodel. V-Manage pro-
vides a good example of a particular solution for modeling variability that may evolve to
adopt the consolidated metamodel and, at the same time, a good view of how a tool could
integrate the variation model in a useful way for an end user.

How the consolidated metamodel is supported by the tool

tion and the UML 2.0 model described in this section

− V-Define to support the definition of variation models (“Decision Models” in V-Manage
terminology) as well as the definition of the relationships (affected associations) between

variation elements. It covers some of the variability specifications and extends it by a
few proprietary ones.

− V-Resolve, to support the resolution of the model using the variation model and some
specific components that contain the transformers, resolution elements and transforma-
tion effects for a specific product line.

− V-Implement to support the implementation of reusable components used on the reso-
lution of the variation model for the production of a specific product.

The V-Define application is used to specify the variation model for a product line as a
set of decisions representing the whole dimension of the variation of the product line. De-
cisions (representing variation elements and model elements) should be defined in such a
way that they characterize univocally one system within the product line. V-Define is also
used to establish some variability constraints and transformers between variation ele-
ments.

Fig. 6.24 .

J. Bayer et al.222

These applications are interrelated, and this division in three different applications is
related to the different sub-processes that conform to the software product line engineer-
ing process (domain engineering and application engineering) [40] and the different user
roles that will use each application.

Domain engineering will use V-Define and V-Implement while application engineering
will use V-Resolve.

vides a tree view representation of the variation model, and in the right side the informa-
tion of each variation element being defined is shown for domain engineering to be able to
define variation models. The tool provides a graphical interface to help relevant stake-
holders understand the product line holistically.

 An overview of the user interface of V-Define

Figure 6.24 provides an overview of the V-Define front-end. At the left side the tool pro-

The V-Resolve application is used to define a resolution model. This application is cap-
able of dynamically adapting the resolution elements values and structure by processing

 6 Consolidated Product Line Variability Modeling

− lock the variation elements values
− set predefined values to a variation element
− show or hide part of the variation model (as a type alternative transformer does)
− pre-assign the default value to some variation elements

Fig. 6.25.

The V-Implement application allows the implementation of these FCs or architectures
of FCs containing all the variation elements’ variability specifications (variation points on
V-Manage) that have to be solved in order to produce a product of the domain.

223

 An overview of the user interface of V-Resolve

V-Implement provides:

the dependency rules. The dependency rules are the way V-manage defines variability
constraints. The variability specifications affecting other variation elements (Decisions)
are specified by using the V-Define. The resulting model from this tool is an Application
Model (V-Manage concept), basically a variation model where every variation element
has been resolved. It is a resolution model for a specific product.

For example, the processing of the dependency rules can:

By processing the dependency rules of the variation elements (Decisions), V-Resolve
guides the user during the assignment of values from resolution elements for each varia-
tion element that is defined.

cation engineering to specify the system requirements.

The V-Manage suite groups the transformers, resolutions of transformation effects and
Value Resolution actions within components named “Flexible Components” (FC). The
FCs are executable components that produce a specific system model from a resolution
model.

Figure 6.25. provides an overview of the V-Resolve front-end. At the left side the tool
provides a tree view representation which aids in the resolution of the variation model and
in the right side the information of each variation element being resolved is shown for appli-

Fig. 6.26. V-Implement sample

J. Bayer et al.224

Most entities and relations from the metamodel can be identified within V-Manage.

Watch product line implementation with V-Manage tool suite. In Section 6.3 we provide
a complete definition of the watch product line; this includes representing its UML 2.0
base models and variation models using the consolidated model for product line variability
modeling.

This section uses the V-Manage suite to implement the diagrams and to generate de-
sired Watch products.

 Following some of the guidelines for the product line-oriented software production
process [40] the domain engineer uses V-Define to specify the Watch variation model. In

sions (variation elements and model elements). The “dependency” area of V-Define
will allow the domain engineer to describe how the variation elements are affected by
transformers’ effects and any other relations between the decisions and their effects.

Figure 6.26. provides a screenshot of V-implement. On the left side all the variation ele-
ments that a FC will handle are presented and can be dragged and dropped into the FC
implementation code. This enables the creation of different FCs conforming to a product
line architecture which handles all the variation elements within a variation model.

V-Define, the variation model described in section 6.3 is treated as a tree-view of deci-

− the implementation of independent FCs
−

−

the specification of the binding, refinement, and final solving of the variability specifi-
cations and resolution elements
the creation of FCs’ architectures to establish the product line architecture.

 6 Consolidated Product Line Variability Modeling 225

When the variation model has been defined, the next step is to construct the reusable
assets that will be used to build the final systems. These reusable assets are called Flexible
Components (FC) because they vary their execution according to the decisions made in
the resolution model (Application Model on V-Manage terminology). Composed of a set
of variability specifications, a FC is no more than an executable piece of code that pro-
duces parts or the entire final system. V-Implement is the tool for building the FCs.

while binding the variation elements, executing all the dependencies (due to value resolu-
tions, type resolutions, iteration transformers, optional transformers, property transformers
and alternative transformers), and checking the data types defined in the variation model.
As a result, a resolution model is obtained.

The next step is to execute the pre-defined FCs with the resolution model to obtain the
final assets.

 A FC can be used to produce a graphical representation of the Watch features. Using
a variation model generated with V-Define, we can launch V-Resolve to produce a reso-
lution model with the resolutions WorldTime and StopWatch set as “true”. We exe-

With a simple drag-and-drop mechanism, variation elements (Decisions) from the
variation model (Decision Model) are used as input to the FC creating variability specifi-
cations and sets of variation parameters that define exactly the behavior of each variability
specification.

The domain engineer is the person using this tool. For the Watch product line, the do-
main engineer will create the FCs needed to generate the Watch products. These will
manage the decisions specified by the Watch variation model such as “Alarm” and “Preci-
sion” and control, for example, when the Watch is waterproof, that the waterproof depth
maximum is specified by the application engineer.

Finally, the application engineer will use V-Resolve to exploit the variability of the
product line and produce the final applications. V-Resolve guides the application engineer

V-Define will generate a complete variation model for the Watch product line that will
be used as input for V-Implement (to generate the variability resolution mechanisms) and
for V-Resolve (to generate the resolution model).

Figure 6.27 provides an overview on how the V-Manage tool implements the UML
models introduced in section 6.2 that represent the variation model for the Watch product
line by means of a tree structure that captures the variation model and produces any pro-
duct of the line by executing the underlying FC architecture and resolving variation elements.

“false” in the resolution the same FC, but we set those variation elements to model and
model (built using V-Resolve), the FC will produce the resolved model 2 (see Fig. 6.28).

cute the FC to obtain the resolved model 1 (see Fig. 6.28). If we take the same variation

J. Bayer et al.226

Fig. 6.28. Resolved model 1 and resolved model 2

 6 Consolidated Product Line Variability Modeling

In this section we apply domain-specific modeling (DSM) languages to demonstrate how
the consolidated model of variability can be supported. We describe modeling support for

The book does not intend to present new methods, but rather brings together many
existing ones. Their aim is to bring the factory constituents together as a productive
whole. The approach is driven effectively by the associated Microsoft tool that supports

ing but must define a path all the way to realization.
The book itself uses a large number of domain-specific languages. Most of the lan-

guages are intuitive, small, graphic languages similar to UML class diagrams. The book
argues against UML as the solution to modeling, but it is probably the case that intuition
has been well-prepared by the presence of UML in education.

6.4.1 Similar Efforts: Software Factories

the methodology. This does ensure that the created languages are not only used for sketch-

227

highlighted at the start of this section: every tool has its own notations and manages the
variation models and variability in its own way, even when the “concepts” are equivalent
or similar to those specified in the consolidated metamodel.

Future of the tool with a consolidated metamodel. V-Manage confirms all the problems

A standardized metamodel for product line variability modeling that unifies the repre-
sentation of the variability (entities, relations, etc) will not only allow its standard repre-
sentation using a language such as UML 2.0, but will harmonize the various approaches
for tool development too.

variation elements and resolution models complying with the metamodel rules and restric-
tions (in UML 2.0 for example). The tools may then read or import those models, resolve
them, and produce the desired results, facilitating model development (and the compatibil-
ity between different tools) and relieving tool developers from the hard work of imple-
menting their own variability representations.

6.4 Domain-Specific Languages

the Watch product line and its variability space. We also demonstrate automatic product
derivation – one of the main benefits the domain-specific languages approach offers for

Software Factories became a layman’s term in the IT-business at the end of 2004 when

the methodology behind Microsoft’s approach to DSL (domain-specific languages). The
book defines a software factory as a configuration of languages, patterns, frameworks and
tools that can be used to rapidly and cheaply produce an open-ended set of unique variants
of an archetypical product.

product lines (Kieburtz at al. 1996 [22], Tolvanen 2004 [26], Czarnecki 2004 [9]).

Microsoft helped launch a book by Jack Greenfield and Keith Short [15]. The book gives

This common modeling view will aid tool development and increase usability and inter-
operability. With the existence of a standard, it will be possible to graphically draw the

Modeling occurs always at two levels: type and instance levels. The type level denotes the
language concepts, constructs and constraints that we use during modeling. The instance
level refers to the actual design data. The same applies for expressing variability as we can
express it both in instance data (i.e., in model) and directly in modeling constructs of the
language itself (i.e., in metamodel).

Describing static variability. The nature of variation (static or behavioral) and level of
variation detail favors selecting computational models that can be represented with certain
basic modeling languages. Pure static variability can be expressed in data models, while
variation in sequencing requires some sort of flow model; state machines advocate state
models, etc.

According to the variation model, each watch has one display consisting of a set of Icons,
Time units, and Buttons. In the figure, the icons are in the process of being specified. De-
pending on the Decision Model, these selections could be implemented as an alternative
decision (developer chooses among existing icons) or as a property decision (developer
can create her own icons). Currently, the Icon selection is implemented as an alternative
decision as illustrated by the selection list of Icons. Current Icon definition language could
also be extended by an alternative representation decision. The language would allow
choosing the way Icon is represented in the display, e.g., by letter A, by text Alarm, by
certain bitmap, etc. Button definition is implemented as a property decision, since the de-
veloper can create new buttons and specify button labels.

6.4.2 Supporting Variability Directly in the Language

J. Bayer et al.228

A domain-specific modeling (DSM) language for a given product line allows us to ad-

gests that the variation within the product line should be managed with a well-focused
modeling language specifically tailored to the product domain – in contrast to the tradi-

and decisions are not illustrated in models using naming conventions, stereotypes or addi-
tional constraint languages, but by using directly the product concept and its variation

variation directly using product variation terms, than in general-purpose feature concepts
or in programming terms. For instance, if one variability point deals with the number of
icons a single watch model can have, the modeling language directly has the concept of
“Icon” and allows the number of icons applied to be described in an unambiguous way.

Timer or Stopwatch icon, are instances. Similarly other concepts for describing watch
product line variability would be Displays, Buttons, Alarms, Time units and so on.

Domain-specific modeling requires that product variation can be represented formally
into a metamodel of a modeling language. Metamodel-based tools can then read these

the DSM language sets the variation space for application engineers and ensures that the
variation model is followed de facto. Setting variation space already at language level
makes automatic variant generation, optimization, early error detection and correct reuse
easier to achieve.

Figure 6.29 shows the example of specifying display structure for a given watch model.

dress variation directly on the level of modeling language [26]. The DSM approach sug-

tional modeling languages that try to be as general as possible [15]. Accordingly, variation

decisions [9] as model elements. The basic assumption is that it is more natural to specify

The Icon is thus a concept of the language and the values chosen by the developer, e.g.,

language (i.e., product line) specifications to implement the tool support [21]. Once defined,

 6 Consolidated Product Line Variability Modeling

In a similar manner, other static variation can be described using static modeling lan-
guages. These could be waterproof, precision and color definitions. This DSM language
takes care of configuration of the product line as it guides the application engineer to
choose among possible variations. It differs from the traditional configuration approaches
by providing the means for generating complete code instead of plain configuration data.
It also provides the design data to be referred to when describing behavioral variability
and creating new functionality as described in the next section.

Describing behavioral variability. In most cases it is not possible to cover all variation
within just one type of model and modeling language. Also in the watch product line, sev-

a modeling language for specifying a watch application. The model presents a simple ap-
plication that displays and changes the current time.

In this case, state machines, typical computational models used with embedded soft-
ware, are suitable for expressing behavioral variability. We can then enrich and narrow
the semantics of the state machine to focus on the concepts and constraints of the watch

229

Fig. 6.29. Specifying the display structure for a given variant

eral variation points deal with behavioral functionality. Figure 6.30 shows the example of

Fig. 6.30. State machine with watch domain extensions

product line. Basically, there are only two watch-specific extensions in our state machine.
First, the transitions can be triggered only by user interaction when a certain button is
pressed. Buttons are represented by a button symbol with the label in the middle. These

can trigger transitions, but these are not specified as they are not suitable for the Time
application. Other types of button usage are now defined to be outside the legal variation
space, so it is not possible to press two buttons, or to double press, or to keep a button
pressed longer. If such needs arise in the future, we can simply extend the set of possible
button operations.

Second, actions taking place during the transition may only operate on time unit enti-
ties. Also the set of possible operations is limited: one can only roll the time units up to
modify the time. With these basic operations we can cover all current needs of our watch

the time units and also to adjust the seconds.

It must be emphasized that DSM languages allow the building of new functionality
rather than just choosing and configuring existing functionality. For example, the variants

further alternatives can be developed. For instance, the Time application that uses a spe-
cial icon to emphasize editing mode could be another variant and a watch model for kids
where time editing does not cover seconds yet another, and so on. If we make the Time

J. Bayer et al.230

buttons were already specified as part of the display structure (see Fig. 6.29). Also alarms

presented in Fig. 6.31). This application is extended to include the possibility to subtract
product line (an example of a more advanced variant of application shown in Fig. 6.30 is

Fig. 6.31. A more complex variant of current time application

specified in Figs. 6.30 and 6.31 are just two out of many possible variants and still

 6 Consolidated Product Line Variability Modeling

application mandatory for every watch model, the possible variability could be handled

Resolutions and influence of design choices are specified via the metamodel. For in-
stance, one watch application could be pure Stopwatch without Time or other applica-
tions. This would be a typical product targeted at coaches. As pure application selection
among applications is not enough according to the watch variability space, modeling

two different alternatives: one for specifying watch model with world time application for
travelers and another with stopwatch for coaches. The latter one, illustrated on the right
side, has one application only and the time units it shows on the Time display include mil-
liseconds, seconds and minutes. Display functionality and usage of time units is illustrated
at the top with the key and time unit value. Both models reuse applications, so individual
applications like Time refer to the actual Time application specification, like the one illus-

reuse possibilities.

In the previous section we described how variation could be handled from within the
DSM language. We now move on to product derivation from the models described above,
as some variation can be also incorporated into the generators.

The generator is a proper place for two kinds of variation. As each target platform or
programming language requires, at least partially, a unique generator implementation, it is
widely acceptable to handle the target variation within the generator. Another suitable
way to use the generator for managing variability is to build higher-level primitives by
combining low-level primitives during generation.

6.4.3 Supporting Product Derivation Using Generators

231

(e.g., precision) purely in a static manner similar to what is shown in Fig. 6.29.

should also support behavioral configuration of watch applications. Figure 6.32 illustrates

Fig. 6.32. Two alternative watch application configurations

trated in Fig. 6.31. The DSM language can also have rules for the model integration and

Listing 1 shows an example of Java code generated for the current time application.
The product derivation is complete in as much as full code is generated from the model
and manual rewriting of the code is not needed. This completeness is crucial for model-
based product development – it has been the cornerstone of other successful shifts made
with programming languages. Moreover, domain-specific models describing the applica-
tion functionality in a code-independent manner enable use of the same models to generate
code for multiple platforms. If the variability deals with implementation issues only, then
only the generator is different, not the application designs. Therefore, for example, C code
could be generated from the same design model, or different programming models could
be used by the generator if this were part of the required variability.

public class SimpleTime extends AbstractWatchApplication {
 //define unique numbers for each Action (a...) and DisplayFn (d...)
 static final int a22_1405 = +1; //+1+1
 static final int a22_2926 = +1+1; //+1
 static final int d22_977 = +1+1+1; //

 public SimpleTime(Master master) {
 super(master);
 // Transitions and their triggering buttons and actions
 // Arguments: From State, Button, Action, To State
 addTransition ("Start [Watch]", "", 0, "Show");
 addTransition ("Show", "Mode", 0, "EditHours");
 addTransition ("EditHours", "Set", a22_2926, "EditHours");
 addTransition ("EditHours", "Mode", 0, "EditMinutes");
 addTransition ("EditMinutes", "Set", a22_1405, "EditMinutes");
 addTransition ("EditMinutes", "Mode", 0, "Show");
 // What to display in each state
 // Arguments: State, blinking unit, central unit, DisplayFn
 addStateDisplay("Show", -1, METime.MINUTE, d22_977);

d22_977);
 addStateDisplay("EditMinutes", METime.MINUTE, METime.MINUTE, d22_977);
 };
 // Actions (return null) and DisplayFns (return time)
 public Object perform(int methodId)
 {
 switch (methodId) {
 case a22_2926:
 getclockOffset().roll(METime.HOUR_OF_DAY,true,displayTime());
 return null;
 case a22_1405:
 getclockOffset().roll(METime.MINUTE, true, displayTime());
 return null;
 case d22_977:
 return getclockTime();
 }
 return null;
 }
}

Listing 1. Java code generated for the current time application

J. Bayer et al.232

 addStateDisplay("EditHours", METime.HOUR_OF_DAY, METime.MINUTE,

 6 Consolidated Product Line Variability Modeling

The benefits of high-level modeling and automated product derivation are not possible to
achieve without creating the language and generators that fit with the product line. This is

effective if there are more than three variants. This is the normal situation in most product
lines.

Building a DSM for product lines is also proven to save development resources (see,

map them to the implementation manually. There are big differences between developers.
If experienced developers, who also perform domain engineering, define the modeling
concepts and mapping to variation points, then others do not need to do it again. Similarly
product derivation would be of better quality since we can expect that a code generator
specified by an expert produces applications of higher quality than could be achieved by
normal developers by hand.

There are no established criteria for evaluating approaches to product line modeling.
Evaluation which emphasizes variation modeling would ignore how well the approach
models commonalities between systems in a product line. Similarly, an emphasis on pro-
duct line modeling would focus less on elementary issues from conventional single systems
modeling, such as maintaining models or handling new and unforeseen features. A pro-
duct line modeling approach that does not measure up favorably against the requirements
of conventional system development approaches will not succeed.

In the following, we will evaluate our approach based upon a set of criteria that tries to
cover both product line modeling and conventional system modeling issues.

In order to evaluate product line modeling approaches, we present an evaluation reference

between the generic sphere and the specific sphere. In the generic sphere we have feature
models and product line models, and within the specific sphere we have system models

to the product line model. The relation – often described as a model transformation from
the product line – is affected by feature selection. The process of transforming a generic
product line model to a specific system model is called application engineering.

6.4.4 Defining DSM Support

6.5 Evaluation

6.5.1 Evaluation Criteria Relative to an Evaluation Reference Model

233

done during domain engineering. According to Weiss [27], the creation of DSM is cost-

e.g., Kieburtz et al. 1996 for USAF [22], Weiss & Lai 1999 for Lucent [27], Kelly & Tol-
vanen 2000 for Nokia [20]): Traditionally all developers work with the variation rules and

model [16]. On a very general level, most product line approaches will have a distinction

(Fig. 6.33). In addition to these models, we need to explain how the system model relates

Transformation

Feature selection

System / Product
Model

Product Line
Model

Feature Model

Generic Specific

Given this general reference model, we may evaluate specific approaches by compar-
ing this general model with the approaches and by answering the following questions on
product line:

1. Does the approach enable proper documentation of the variations between the differ-
ent product line members:

– Is it possible to document variation, that is, is it possible to have models covering
more than one system of the product line? Does the approach support the explicit
documentation of points of variation?

– Does the approach distinguish between different binding times for variabilities,
that is does it distinguish between runtime variability and non-runtime variabil-
ity?

– Is it possible to see the variants in a product line model; the question here is
whether the documentation enables people to understand the different variants in
a product line model.

From requirements to modeling as part of (conventional) system development, we will
get at least the following evaluation points:

2. Roundtrip engineering/model synchronization: what is the relation between product
line model and system model? Is it a one-way transformation, or is it possible to add
elements to the system model and have them reflected in the product line model?

3. Does the approach support iterative and incremental development, that is, are partially
instantiated systems supported and can product line models be analyzed? How does the
approach deal with unforeseen features?

4. Is it possible to track features: are features represented in the product line model, or are
they represented in a separate feature model? Features are like requirements, and in
ordinary system development it is important to track requirements.

In this chapter, we have presented three main categories of variation modeling: through
standard language, with annotations, and through specific language. We use this
categorization as the starting point for our evaluation.

6.5.2 Approaches

J. Bayer et al.234

Fig. 6.33. Product Line and Application Engineering Reference Model

 6 Consolidated Product Line Variability Modeling

Variability in standard languages. This approach combines available mechanisms in a
given language. Using frameworks and plug-ins, the domain concepts are represented by
predefined classes/components in a standard language, and product lines are modeled ei-
ther by frameworks or by composing predefined components with well-defined interfaces.
System models are obtained by specializing or configuring a framework, or by composing
specialized components.

Framework

Model,
Framework or
Component

including new model
elements

Modeling,
including

specialization/
composition

Component

Component

Component
. . .

Specific
features

Domain
requirements

− Generic type parameters
− Redefinition of virtual methods and types
− Templates

Variability through annotations. Figure 6.36 illustrates the Base-Variation-Resolution
(BVR) approach. Besides the approach described in this chapter, the approaches proposed

Variation-Resolution approaches.
The evaluation will be supplemented with a comparison with the Product-line-as-the-

union-of-all-possible-systems (Fig. 6.37). This approach is characterized by having a
product line model with variation-point model elements for all possible variations
included. A product line-model is a model that is the union of all potential system models
in which some elements are marked as variation points, and the specific system models
are generated, i.e., there is no modeling involved in producing the system models. Exam-

235

Fig. 6.34. Frameworks and plug-ins

mechanisms:

ples for product-line-as-the-union-of-all-systems approaches are PuLSE [4] and KobrA
[2], as well as the approaches proposed by UPM [7], Becker [5], and VTT [10].

The mechanism shown in Fig. 6.34 is typically augmented with the use of the following

by Clauss [8], Ziadi et al. [28, 29], as well as FODA and FORM [18,19] are Base-

Variation Model
with variability
specifications

Resolution Model

Base Model
with model
elements

affects
Generation

Model
with some variations resolved,

no new variability specifications ,
and no new model elements

resolves

Feature Model

Product Line Model
with model elements and
variation model elements

Model
with some variations resolved,

no new model elements,
and no new variation model elements

Generation

Resolution

Variability through a specific language. While general modeling languages represent
domain concepts by means of classes/components, domain-specific languages express

6.5.3 Evaluation Results

ModelFeature Model

J. Bayer et al.236

Fig. 6.35. Illustrating our BVR approach to variability

Fig. 6.36. Product-line-as-the-union-of-all-systems

that includes the potential to make models that are guaranteed to adhere to the restrictions
it is wise to have in a domain. In contrast to the approach above, there is no product line
model, but rather a language specification (i.e., a metamodel). A product line is thereby
the set of all systems that may be modeled with this language. Examples of the domain-

6.4).

these as language constructs. There is thus really no product line model, but simply a (DSL)

Evaluation with respect to product line engineering. A product line model, realized as
a framework, covers a number of system models. The variants are, however, expressed

specific language approach are FAST (compare Section 6.3) and MetaCase (see Section

 6 Consolidated Product Line Variability Modeling

Language ModelModeling

Domain
Knowledge/

Feature Model

Specific
Features

but not in an explicit way. Consequently, the distinction between different binding times
is not possible. The identification of the different variants in a product line model is also
not possible in the framework/plug-in approach.

In the Base-Variation-Resolution approach, the possible variations and the resolutions
are parts of different models of the model triplet (BVR). Therefore, variation can be
documented explicitly. The distinction between runtime and non-runtime variability is
supported as well. Since the variations and the resolutions are modeled separately, this
approach also supports the identification of the different variants in a product line model.

The Product-line-as-the-union-of-all-possible-systems approach will have variation
elements as part of the model, but typically the feature selection models are separate mod-
els. This approach does support the explicit modeling of variability and also the distinc-
tion between different binding times. The separation of information on the decisions and
on the resolutions does not support the identification of the different variants directly. The
benefit over the Base-Variation-Resolution approach is, however, that the product line
model is not overloaded with resolution information. It is therefore also closer to the mod-
els used in single-system development.

In a domain-specific language, the possible variations are located in the language. The
product line models (i.e., the models expressed in the domain-specific language) do not
contain the points of variation in an explicit way.

Roundtrip engineering/model synchronization. In the Framework/plug-in approach, the
system model is a separate model, but based upon specialization of a framework model
and/or composition of components. It is thus no problem to add special elements in the
specific system model.

In the Base-Variation-Resolution approach, the specific systems are not modeled
explicitly, but rather generated. The resolutions are part of the system models, in the same
way as the variability constraints are. There is no modeling involved, so round trip is an
issue. It is a problem to add model elements to the specific system models since elements
cannot be added to the resolution model, but have to be added to the resulting model.

For the Product-line-as-the-union-of-all-systems approach this is also an issue, as the
system model is generated; this approach is a one-way transformation approach, from

237

6.5.4 Evaluation with Respect to Conventional Systems Engineering

Fig. 6.37. DSLs

using traditional framework means. This means especially that variations can be modeled,

system models. However, this has to be done with great care so as not to confuse model
elements from the generic and the specific sphere.

For the Domain-Specific Language approach, this is not an issue, as there is really no
product line, that is, each system is modeled separately.

Is the approach iterative and incremental? In order for an approach to support iterative
and incremental development, it should be possible to analyze (formally, testing, review-
ing, etc) product line models, it should be possible to have partial system (product) mod-
els, and it should be possible to handle unforeseen requirements/features.

The Framework/plug-in approach relies on the possibility of analyzing components and
frameworks. Frameworks may form the basis for new frameworks, and components may
be composed into new components, so both partial models and unforeseen features are
supported.

In the Base-Variation-Resolution approach, a base model is not necessarily a model
that may be analyzed; however, by applying a kind of default resolution model, one may
generate a model that may be analyzed. Partial models may be generated; a model with
some of the variability constraints resolved is a partial system model. Unforeseen features
have to be handled by adding model elements for them to the generated system model.

In the Product-line-as-the-union-of-all-systems approach, the total set of products with
all possible variations is modeled in one product line model. The resulting model contains
information covering more than one system. The product line model can, therefore, not be
analyzed using the same means of analysis as used in single-system development. Rather,
additional analyses are necessary to analyze product line models that take into account the
generic nature of the models. Another option is to first do application engineering and
then use single-system analyses on the resulting system model. The generation nature of
this approach does not support partial models, and unforeseen features either have to be
put into (an updated version of) the product line or added as system-specific model ele-
ments.

For the Domain-Specific Language approach, as there are no product line models, they
cannot be analyzed. However, properties of the domain-specific language can be ana-
lyzed. There is no notion of partial models. Unforeseen requirements are easily handled,
unless they require new language constructs.

Unforeseen features come in two variants: features that belong to the product line and
features that are required for a specific system. The Product-line-as-the-union-of-all-
systems approach and the Base-Variation-Resolution treat these in the same way: as prod-
uct line features, while the Framework/plug-in approach allows the addition of properties
for specific systems. As indicated above, even with the Product-line-as-the-union-of-all-
system approach, it is possible to add properties after the system model has been gener-
ated, but as mentioned above, this has to be done with great care. The Framework/plug-in
approach may choose to let the unforeseen properties become properties of a new (spe-
cialized) product line model, instead of just of a specific system model.

The need for making a new domain-specific language for the purpose of supporting
new features reveals the following challenges: can new constructs be added without
corrupting existing constructs (are they orthogonal or are there any dependencies), can a
domain-specific language be defined as a specialization of another (inheriting the
semantics of the super language and adding what is needed for the new features)?

J. Bayer et al.

product line to system. It is possible to add system-specific model elements to generated

238

 6 Consolidated Product Line Variability Modeling

Feature Representation and Tracking. This aspect deals with the representation of fea-
tures, which can be done either in the product line model or in a separate feature model.

The Framework/plug-in approach will have to have separate decision and resolution
models, as the models are just specializations and compositions of existing frameworks
and components.

The Base-Variation-Resolution approach is made so that the variation-model elements,
the possible decisions (in terms of the variability constraints) and the resolutions are all
part of the model triplets, and as such are easily tracked.

The Product-line-as-the-union-of-all-systems approach will have variation-point ele-
ments as part of the model, but typically the decision models and the feature selection
models are separate models.

The Domain-Specific Language approach does not have any means for tracking fea-
tures, except for tracking which languages constructs are being used.

Summary of Evaluation Results. The approach proposed in this chapter harmonizes and
consolidates existing approaches to product line modeling. The proposed approach pro-
vides a standard vocabulary for discussing product line variability. The presented meta-
model is a step towards a standard metamodel as a way for model exchange and storage.
This metamodel can also be the basis for commercial tool support.

As shown above, the nature of the proposed approach satisfies most of the evaluation
criteria covering product line engineering.

From a product line engineering perspective, a Base-Variation-Resolution approach
makes explicit the variability in the product line models along with the possible variants
that can be resolved from this model. It supports the distinction between runtime and non-
runtime variability.

From a conventional system engineering perspective, a Base-Variation-Resolution
approach also satisfies the criteria, which are roundtrip engineering and model synchroniza-
tion, iteration and increment support, as well as the possibility to track features.

In contrast to other approaches that provide variation-constraints-resolution (the ap-

is more general and flexible, since it is not restricted to specific modeling constructs for
modeling the relation between variability and variation, but uses the complete UML to
express product line engineering concepts in the product line models.

This chapter has described variability modeling in the broadest sense. We have presented
a consolidated model for product line variability modeling and shown how it can be used
and supported by tools. The consolidated metamodel is based on assessment and evalua-
tion of existing approaches and techniques for product line variability modeling. Motiva-
tion for this work stemmed from the plethora of different approaches, uses and definitions
of concepts within the product line community. The main drive was the clear benefits of
standardizing a baseline for variability modeling, such as a common vocabulary, lever-
aged collaboration between people, and interoperability of tools.

The resulting metamodel defines the basis for variability modeling through a set of
different kinds of variability that can be associated with model elements of a modeling

6.6 Conclusions and Future Research

proaches published by Clauß as well as Ziadi et al.), the approach proposed in this chapter

239

language. It also relates these variabilities to resolutions through a resolution model,
which defines the specific choices made from a variation model.

The consolidated model does not target the process used for resolving variabilities to
create configurations or specific products. Rather, it opens for different kinds of processes
to be integrated and to use the concepts defined. The model covers the most used variabil-
ity concepts and also defines highly flexible and general mechanisms to define con-
straints. It also opens for future extensions in case specific domain requirements should
appear. We have demonstrated the applicability of the conceptual model by using differ-
ent notational techniques, and by presenting a prototype tool.

The results achieved here will be subject to further research and practical application in
forthcoming research projects. Specifically, we will address the practical aspects of apply-
ing the conceptual model, both in terms of tool support and integration with product
development and decision processes. We have shown the applicability of the consolidated
metamodel on a rather small example. It would be advantageous also to perform an
experiment on a much larger case with more intertwined and complex dependencies. The
recursive structure of the metamodel indicates that it is reasonably scalable, but a case
study would certainly produce valuable experience.

In the near future, we will look further into standardization of the conceptual model.
We have initiated this topic within the Object Management Group (OMG) and will pursue
this activity, hopefully towards a standardization process. We may also pursue a similar
standardization activity within the ISO JTC1/SC7 (Software and System Engineering).

We gratefully acknowledge the extensive reviews of Stan Bühne, Günter Böckle, Juan
Carlos Dueñas, Timo Käkölä, Janne Luoma, Mark Maier, Juha-Pekka Tolvanen, and Tew-
fik Ziadi that significantly improved the quality of this chapter.

References

J. Bayer et al.240

Acknowledgments

1.
2. Atkinson C. Bayer J., Muthig D.: Component-Based Product Line Engineering: The KobrA Approach.

In Proceedings of the First International Product Line Conference (SPLC1). Denver, Colorado, USA,

3. Atkinson, C. Bayer, J. Bunse, C. Kamsties, E. Laitenberger, O. Laqua, R. Muthig, D. Paech, B. Wüst,
J., Zettel J.: Component-based Product Line Engineering with UML. Addison-Wesley (2001).

4. Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., DeBaud, J.-M.:
PuLSE: A methodology to develop software product lines. Proceedings of the Symposium on Software

5. Becker M, Geyer L, Gilbert A, Becker K.: Comprehensive Variability Modelling to Facilitate Efficient

6. Becker M.: Towards a General Model of Variability in Product Families. In Software Variability

Ardis M, Weiss D.: Defining Families: The Commonality Analysis. ICSE 97 Tutorial 4D (1997).

Reusability (SSR'99) (1999) 122-131.

Variability Treatment, PFE 2001, (2001) 294-303.

Management Workshop (2003) 19-27.

(2000) 289-310.

 6 Consolidated Product Line Variability Modeling 241

7. Cerón, R., J.L. Arciniegas, J.L. Ruiz, J.C. Dueñas, J. Bermejo, and R. Capilla. Architectural Modelling
in Product Family Context. in Software Architecture, First European Workshop, EWSA 2004. St An-

8. Clauss, M.: Generic Modelling using UML extensions for variability. Presented at OOPSLA workshop
2001, Tampa Bay, Florida, USA (2001).

9. Czarnecki, K., Eisenecker, U.: Generative Programming, Methods, Tools, and Applications, Addison-

10. Dobrica L, Niemelä E.: UML Notation Extension for Product Line Architectures Modelling. In Pro-

11. Engineering Software Architectures, Processes and Platforms for System-Families (ESAPS), Eureka
2034, ITEA project 99005, http://www.esi.es/esaps/.

12. From Concepts to Application in System-Family Engineering (CAFÉ), Eureka 2023, ITEA project
ip00004, http://www.esi.es/Cafe/.

13. Gérard, S., Terrier, F., Tanguy Y.: Using the Model Paradigm for Real-Time Systems Development:

15. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns, Frameworks,

16. Haugen, O., Møller-Pedersen, B., Oldevik J.: Comparison of System Family Modeling Approaches.

17. ITU, Recommendation Z.100, ITU Specification and Description Language. Reed, R. Editor., ITU-T:
Geneva. (1999) 300p.

18. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson: Feature-Oriented Domain Analysis (FODA) ASEI
technical report: CMU/SEI-90-TR-21. (1990).

19. Kang, Lee, Lee, Kim.: Feature Oriented Product Line Software Engineering: Principles and Guidelines
Book Chapter: Domain Oriented Systems Development – Practices and Perspectives, UK, Gordon

20. Kelly, S., Tolvanen, J.-P., Visual domain-specific modelling: Benefits and experiences of using meta-
CASE tools, International workshop on Model Engineering, ECOOP 2000, (ed. Bezivin, J., Ernst, J.)

22. Kieburtz, R. et al.: A Software Engineering Experiment in Software Component Generation, Proceed-
ings of 18th International Conference on Software Engineering, Berlin, IEEE Computer Society Press.

23. Muthig D.: A Light-weight Approach Facilitating an Evolutionary Transition Towards Software Prod-

25. Rioux, L., et al.: Style, structures and views for handling commonalities and variabilities. Eureka !
2023 Programme, ITEA project 99005 (2001).

26. Tolvanen, J-.P.: Keeping it in the family, Application Development Advisor, July-August, 2002, 101
Communications (2002).

28. Ziadi, T., Jézéquel, J.-M., Fondement, F.: Product line derivation with UML. Software Variability
Management Workshop.. University of Groningen Department of Mathematics and Computing Sci-

29. Ziadi, T., Helouet, L., Jezequel, J.-M.: Towards a UML Profile for Software Product Lines. Fifth Inter-

drews, UK, Springer LNCS 3047 (2004) 25-42.

Wesley. (2000).

ceedings of International Workshop on Software Variability Management (SVM), ICSE'03 (2003)
8-13.

’
14. Gérard, S., The ACCORD/UML methodology. Internal report CEA-List, Paris. (2003).

Models & Tools, John Wiley & Sons (2004).

SPLC 2005. Rennes, France. Springer LNCS 3714 (2005) 102-112.

Breach Science Publishers, (2002).

(2000).
21. Kelly, S., Tools for Domain-Specific Modeling. Dr. Dobb’s journal, September, (2004).

(1996) 542-553.

uct Lines, Ph.D. Thesis, Fraunhofer IRB Verlag, (2002).
24. OMG Unified Modelling Language: Superstructure, Version 2.0, formal/05-07-04, OMG (2005).

27. Weiss, D., Lai, C. T. R.: Software Product-line Engineering, Addison Wesley (1999).

ence (2003).

ACCORD/UML. OOIS 02-MDSD. Montpellier: Springer LNCS 2426 (2002) 260-269.

national Workshop on Product Family Engineering (PFE-05). Siena, Italy. LNCS 3014 (2003) 129-139.

Part 3: Product Line Architecture

Introduction

Part 3 deals with designing and leveraging product line reference architectures that
incorporate product line commonality and variability. As requirements and architecture
present, respectively, the problem view and the solution view and the variability addressed
in the requirements needs to be designed in the variability in the architecture, Part 3 is
closely related to product line modeling and requirements engineering discussed in Part 2.

It consists of four chapters:
Chapter 7. Dealing with Architectural Variation in Product Populations
Chapter 8. A Software Product Line Reference Architecture for Security

Chapter 10. A Method for Predicting Reliability and Availability at the Architecture
Level

flexibility, evolvability, maintainability, security, availability, and reliability as the central
drivers for designing product line reference architectures. Variability is considered as an
especially important characteristic of software product line architectures that supports the
description of common and variable elements pertaining both to solving functional

significant requirements between product line members often make it difficult to
standardize architectural solutions across the product line, for example, when the scope of
a product line expands due to repeated integration of new and/or legacy products or the
product line is merged with other product lines.

allow for some degree of architectural variation. Chapter 7 proposes an approach to
modeling architectural variation in product population reference architectures that to a
large extent preserves the support for product derivation normally associated with more
focused product lines, thus improving flexibility, evolvability, and maintainability of the
reference architectures. The approach is validated by studying how it can be applied to
improve the modeling of several real-life population architectures. It is aligned with the
consolidated variability modeling approach (Chap. 6) but other modeling approaches such
as those discussed in Chaps. 1 and 5 could be used as well.

concern in software-intensive systems and should be subjected to careful architectural

The chapters of Part 3 identify numerous quality requirements such as variability,

The common architecture is a central asset of a product line. Variations in architecturally

In such product lines, often referred to as populations, the common architecture must

Among the quality requirements for software product lines, security is a cross-cutting

requirements and to meeting the nonfunctional quality requirements.

Chapter 9. Architecture Reasoning for Supporting Product Line Evolution: An Example
on Security

244 Part 3: Product Line Architecture

addresses two research questions:

1. Is it viable to represent architectural security knowledge in a reference
architecture?

2. If so, is the reference architecture useful for designing product line architectures
that effectively deal with security requirements?

upon state-of-the-art techniques and practices from software product line architecture and
information security and serves as a decision support framework for designing software
product line architectures that effectively deal with security requirements. To validate the
reference architecture, Chap. 8 presents experiences from using it at three distinct
companies.

increasing number of complex systems are tightly embedded into our surroundings. These
systems have to work as intended and when needed. Ideally, the problems in reliability
and availability should be able to be analyzed prior to system implementation, when the
fault corrections and modifications are relatively easy and cheap to perform and the right
design decisions can still be taken. Chapter 10 presents a method for predicting reliability
and availability at the architectural level. The Reliability and Availability Prediction
(RAP) method defines how the reliability and availability requirements should be elicited,
negotiated, and mapped to the reference architecture, how they should be represented in
the architectural models, and how the architecture should be analyzed in order to validate
whether or not the requirements are met. The method has been validated by simulating it
in the reliability and availability prediction of a case example in a laboratory.

analysis and decision making. The requirements for cost-effective product line develop-
ment complicate this task. Chapters 8 and 9 thus deal with security issues. Chapter 8

Both questions are affirmed. The main contribution is a reference architecture that draws

The demand of high reliability and availability of today’s systems is considerable as an

One of the most frequent problems in software product line engineering is supporting
evolution. Guiding the evolution effectively requires the development and maintenance of
architectural models. But the industry is increasingly relying on third party
implementations of software platforms and components which may not be accompanied

developed and adopted to support evolution holistically. Chapter 9 introduces a new

requirements. It is based on architectural conformance and recovery methods, techniques,
and tools. It demonstrates and validates the process in the context of security requirements
for distributed environments by analyzing the most important standards dealing with
architectural security requirements, creating a security reference architecture for
distributed environments (by drawing upon the results of Chap. 8), and utilizing the
reference architecture to perform a complete conformance and recovery process for a
specific system.

by architectural models. Adequate processes, methods, and techniques should thus be

process to support product line evolution with respect to nonfunctional security

7 Dealing with Architectural Variation in Product
 Populations

S. Hallsteinsen, G. Schouten, G.J. Boot, and T.E. Fægri

The common architecture is a central asset of a product line. In many cases, however, varia-
tions in requirements between product line members make it difficult to standardize architec-
tural solutions across the product line. This typically occurs when the scope of a product line
expands due to repeated integration of new and/or legacy products or when the product line

common reference architecture. Therefore the common architecture must allow for some
degree of architectural variation. In this chapter we propose an approach to modeling archi-
tectural variation in product population reference architectures that to a large extent pre-
serves the support for product derivation normally associated with more focused product
lines. We validate the proposed approach by studying how it can be applied to improve the
modeling of several real-life population architectures.

7.1 Introduction

The common reference architecture is a central asset of any software product line. The
benefits of and, indeed, the need for such an architecture have been proven many times
[3,14,16]. It is particularly important in product lines that have not reached the level of
maturity where variant derivation is only a matter of resolving explicit variation points,
but also involve a significant amount of variant specific development. In such product
lines the reference architecture plays a dominant role in guiding and constraining the variant
specific development.

The design of the architecture is dictated by the architecturally significant require-
ments, which tend to be dominated by requirements relating to quality issues and con-

functional requirements.

7.1.1 The Problem

In product lines with a fairly narrow scope there tends to be little variation in architectur-

Abstract

the variation in architecturally significant requirements may be difficult to accommodate in one
is merged with other product lines. In such product lines, often referred to as populations,

ally significant requirements, and the idea of a common architecture is unproblematic.

straints set by the anticipated execution environment [6], but also often include central

Often the product line consists of one application that is delivered in a number of variants
and targets a focused domain. Even though functionality may vary considerably between
variants, common architectural solutions are viable and very high degrees of reuse can be
achieved. However, there are also product lines with much wider scope, typically contain-
ing several interoperating applications and also often spanning wider domains. In such
product lines the architecturally significant requirements tend to exhibit considerable
variation, and it may be necessary to allow for different architectural choices in different
applications and application variants. In this chapter we refer to such wide scope product
lines as product populations. This term was coined by van Ommering [27] when describ-
ing efforts to develop a product line that incorporates software for a wide range of con-
sumer electronics products (TV sets, DVD players, etc.) that had earlier been produced on
separate product lines.

Populations typically emerge as a result of evolution. A product line has to exist for
long enough for the investment in the product line assets to be recovered, and therefore
typically has to accommodate many changes and extensions during its lifetime that con-
tribute to widening the scope and diversifying requirements. For example:

– Evolution of user needs in the domain or of underpinning technologies typically tends
to widen the scope rather than just change it, since there are always users lagging be-

– The integration of additional products into a successful product line extends the scope
of reuse of the product line assets and thereby increases the return on investment.

– The merging of existing product lines into a larger population might be fuelled by irrever-
sible trends in the market or, for instance, simply by the acquisition of other companies.

The forces driving the emergence of product populations are, therefore, not straight-
forward and are of a rather diverse nature. However, these are forces that tend to influence
any successful product line and therefore we believe that, in general, product lines have a
tendency to evolve towards populations and have to face variation in architecturally sig-
nificant requirements. 1

1 Of course there are also numerous counter forces: For instance, the long term vision may not be
clear, or the payback time may be too long to justify the investment; the existing organization
may not be geared to a product-line approach because domain engineering activities and appli-
cation engineering activities are not separated clearly. Another possible counterforce is a “not-
invented-here” culture. Many software developers have a natural tendency to prefer to create
the ultimate code from scratch themselves rather than to use someone else’s not-so-perfect
component.

– There might also be considerable benefit (e.g., lower development costs, a more common
behavior or look and feel for end users) in introducing a new population architecture
that over time substitutes the current set of products (which may incorporate outdated
and hard-to-maintain technologies).

246 S. Hallsteinsen et al.

hind in the adoption of new patterns of use or the acceptance of new technologies.

Fig. 7.1. Narrow scope product lines vs. populations

The concept of product population is illustrated in Fig. 7.1. The figure shows two alterna-
tive evolution paths for a product line with respect to maturity (expressed as the relative
amount of product specific development typically needed to derive a new product) and
scope. In path P–P the scope has been kept narrow and the product line has evolved to-
wards a high level of maturity where product engineering is solely a matter of selecting
and configuring reusable product line assets. In the path P–P the scope has been gradu-
ally extended by the effect of the forces mentioned above, but this has been at the expense
of maturity and there is still significant development effort required for product deriva-
tion. The dashed curve indicates that there is a limit to the level of maturity that is feasible
because as the scope grows it becomes more and more difficult to achieve high levels of
maturity

As mentioned above, populations often include several applications. These may be
thought of as product lines within the population, in the sense that they are delivered in
several variants that share similar quality requirements and therefore need the same archi-
tectural solutions. The maturity of such product lines within a population may be at a
higher level than the maturity for the whole population. When we talk about product deri-
vation in this chapter, we are primarily concerned with the derivation of new applications,
and not the derivation of variants within such sub product lines.

In this chapter we investigate ways to deal with design conflicts in reference architectures
for product populations caused by variation in architecturally significant requirements.
We are particularly concerned with how well the approaches preserve the benefits of a
common architecture and maintain adequate support for efficient variant derivation.

 We propose an approach based on variation points that describes alternative speciali-
zations of the reference architecture, and compare this with other approaches described in

7.1.2 Overview

7 Dealing with Architectural Variation in Product Populations 247

Product
population

Product line scope

Narrow scope
product line

P
ro

du
ct

 li
ne

 m
at

ur
ity

P

P�

P��

the literature. We first discuss the merits of the various approaches analytically, and then
seek to validate our claims by analyzing some real-life population architectures.

This chapter is organized as follows: Firstly, in Sect. 7.2, we explain more precisely
what we mean by architectural variation and discuss existing approaches to dealing with
it. Section 7.3 presents our approach to allow for architectural variation in product-line
reference architectures. In Sect. 7.4 we seek to validate the proposed approach by analyzing
experience with architectural variation in real-life product line architectures and how our
approach could have been applied. Sect. 7.5 gives a brief overview of related work before
we summarize the outcome of the analysis of the cases and draw some conclusions in
Sect. 7.6.

7.2 Architectural Variation

Below we discuss in greater detail what we mean by architectural variation and what dis-
tinguishes this from other forms of variation that are typically captured as variation points
in product lines. Furthermore, we discuss some approaches to dealing with architectural
variation that are proposed in the literature.

According to the IEEE 1471 standard [13] the architecture of a software system is “the
fundamental organization of a system embodied in its components, their relationships to
each other, and to the environment, and the principles guiding its design and evolution.”

 We will follow Pohl et al. [21] and use structure to denote the first aspect (the compo-
nents and the relations between them), and texture to denote the second aspect (the princi-
ples guiding its design and evolution). The texture represents architectural design decisions
that shape the structure and govern the design of components. They typically take the
form of architectural styles, patterns and tactics as well as collaboration models for central
functions of the systems. They tend to have a cross-cutting influence on the imple-
mentation and therefore are very difficult to change once the system has been imple-
mented. Furthermore they tend to constrain the quality properties of systems built in
accordance with the architecture.2

In product-line reference architectures a third important aspect is variability, i.e., rules
governing the derivation of product variants with different properties from a common as-
set base.

2 The term texture is also used by Jazayeri et al. [15] but they focus on the influence of common de-
sign principles in the form of recurring microstructure of components and does not mention the
influence on the component structure itself.

7.2.1 The Nature of Architectural Variation

248 S. Hallsteinsen et al.

Fig. 7.2. Product-line reference architecture

Such rules typically take the form of variation points that specify points in the architec-
ture where system properties are related to optional or alternative system elements of
various sorts, for instance component implementations or configuration parameters of
component implementations. This understanding of architecture is illustrated in Fig. 7.2.

In the model depicted in Fig. 7.2 variation only affects the implementation of the prod-
ucts. The architecture is common. The variation points allow for variation in the features
of the products, but do not affect the architecture. This is often the case in narrow scope
product lines. In populations one normally also has to accept variation in the architecture
itself, both in the structure and in the texture.

As should be clear from the discussion above, the allowance of architectural variation in a
product line definitely complicates matters and it is therefore advisable to avoid it if pos-
sible. Fortunately, there are approaches that can make the architecture generic in one way
or another with respect to an anticipated conflict without having to allow architectural
variation.

Design for “Worst Case”

One may think that if the toughest requirements are allowed to shape the architecture, it
will be satisfactory for all product variants. Indeed, in some cases this is true. For instance, if
one product variant needs a short response time while a longer response time is acceptable
for another, it is possible to accommodate this by designing for a short response time.

proach may fail because it is impossible to design an architecture that satisfies all worst-
case requirements at once. For instance, a short response time often comes at the expense

ilityVariabre iStructuTexture

-defines

oration -collaboration-collaboo -collab-collab

nthesis-synn ses -implement

-vary

Implementation

Reference
architecture

Pattern

Component
role

Component
spec

Variation
point

Component
impl

*

**

*

*

1 1 1

solutions favor one at the expense of the other. In that case the design for worst-case ap-
However, there tend to be inherent conflicts between certain properties such that most

7.2.2 Avoiding Architectural Variation

7 Dealing with Architectural Variation in Product Populations 249

Architecture

of flexibility, which for some variants may be a more important requirement. Even if it is
possible to satisfy all worst-case requirements in one common reference architecture, this
architecture may be prohibitively expensive to implement in all products.

Design Around

There are architectural mechanisms that are able to absorb conflicting requirements, such
that architectural variation is reduced to non-architectural variation. For instance, the issue
of thin or thick clients in a client-server type of architecture is normally considered an ar-
chitectural issue. However, it is often possible to design components that are deployable
on either side of the client-server border. Together with a suitable decomposition of the
system, this may reduce the issue of thin or thick clients to a deployment time configura-
tion issue. This can be a good solution for certain cases. However, such architectural
mechanisms tend to be complex and difficult to implement. And, again, there is the prob-
lem of inherent conflicts between qualities, meaning that although such a solution may ab-
sorb some conflicts it often introduces others, for instance with performance.

Modeling Architectural Variation

If variation in requirements is such that it cannot be accommodated within a variation-free
architecture, variation has to be allowed for in the description of the reference architec-
ture, which means we have an under-specified or under-constrained architecture [20]. In
its simplest form a description of an under-specified architecture just leaves unspecified
the points where the variation in requirements makes it impossible to standardize architec-
tural decisions.

 This approach has the drawback, however, that it compromises many of the benefits of
a common reference architecture. Firstly, it postpones potentially difficult design deci-
sions to application engineering and thus shifts the responsibility and the work onto the
application engineers. Although much work may have been carried out during the design
of the population reference architecture in identifying the conflict and analyzing possible
solutions, this work will have been wasted if no common solution can be found. Secondly,
there is the danger that the architecture may end up so underspecified that it offers few
opportunities for supporting it with common reusable implemented components.

Several approaches to modeling under-specified product-line reference architectures
have been proposed in the literature, with varying degrees of support for deriving product
architectures.

Freely Composable Components

Attention has already been drawn to the strength of reusable components available off the
shelf by Jacobson in [14]. New applications are simply created by selecting from a set of
existing components and gluing them together “as they are.” A familiar success in this area

250 S. Hallsteinsen et al.

is the wealth of ActiveX controls (components) and Visual Basic (glue) to quickly generate
graphical user interfaces, which have now completely taken over in Microsoft’s .NET
framework.

This idea has been elaborated by Van Ommering and Bosch [28]. They see composi-
tion as something that is complementary to variation: A composition means that two or
more pieces of software that have been developed without direct knowledge of each other
can be combined easily to create a working product. In their view, the way to create pro-
duct populations is by using freely-composable components. The ideal software develop-
ment process is agile. It is largely component-driven (bottom-up) and partly supported by
a light-weight (top-down) architecture.

Although with this approach component specifications and interfaces are standardized,
the ways components can be combined in products are only implicitly constrained by the
restriction that interfaces must match. With cleverly designed component interfaces, this
approach potentially gives a lot of freedom. However, it means that it may be a quite chal-
lenging task to find a composition of components that matches the given product require-
ments, and the architecture model contains no support for this task.

Van Ommering and Bosch are primarily concerned with the structural aspect of archi-
tecture and the flexibility with respect to structure that is achieved by such freely-
composable components as those described above, which seem to assume a stable texture.
If there is variation in the texture, it is more complex to achieve such composability. This
is discussed in greater detail in the following sections.

Structural Variation Points

Thiel and Hein [24] have proposed a reference model for architectural variation as an exten-
sion to the reference model defined by the IEEE P1471 recommended practice for archi-
tectural description [13]. Their extension introduces architectural variation points as a
means to explicitly model variation in product-line reference architectures. The essence of
their proposal is illustrated in Fig. 7.3. An architectural variation point, according to their
definition, allows the variation of structural elements, such as component and connection
specifications, and the effect of the various options on product features to be expressed.
Since this form of architectural variation point is restricted to structural elements of the
architecture, we refer to them as structural variation points from now on.

Making variation explicit in the architecture in the form of structural variation points
definitely improves the support for product derivation compared with just leaving the
structure partly unspecified. However, if we have to deal with architectural decisions that
cross-cut the structure backbone, the variability model may turn out to be very complex
and difficult both to express and to use. This is because such an architectural decision will
affect many structural elements in various ways, and there is no particular support in the
model to express this, other than one variation point for each affected element.

7 Dealing with Architectural Variation in Product Populations 251

Fig. 7.3. Reference architecture with structural variation points

7.3 Textural Variation Points

Our approach to modeling architectural variation is a natural extension of the approaches

terns between product architectures.

ing a pattern in an architecture (i.e., the effect on quality properties of applications built
according to this architecture).

above is shown in Fig. 7.4. In the following we explain our approach in more detail. The

Reference architecture

Architectural
variability model

Architectural
variation point

Component
type

Connection
type

Design
Element type

Design
Element

Structure

-conforms to

1
1

1

*

*
*
*

-affects

252 S. Hallsteinsen et al.

discussed in the previous section. It also builds on the idea that components are major

– View of the texture as a pattern language with patterns as architectural building blocks.
– Use of variation points to make explicit the variation allowed in the composition of pat-

– Guidelines for the resolution of variation points based on knowledge of the effect of us-

A conceptual model for an architecture with encoded textural variability as described

building blocks of products, and that architectural variation points can be used as a means
to encode explicitly foreseen variations in the architecture and to provide decision support
for specializing the architecture for a given set of product specific requirements. However,
rather than focusing on the structure and the variation in structural elements, we focus on
the texture and the variation in textural elements. The approach is based on the following
three main elements:

ideas behind this approach were developed in the CAFÉ project [2,10,11] and further elabo-
rated in the FAMILIES project.

Fig. 7.4. Reference architecture with textural variation points

Patterns define solutions to recurring problems, which make them natural building blocks
3

We use the term “pattern” in a rather broad sense, meaning any problem solution pair

and “local” patterns that are specific to the product population. In the latter case, some
may argue that this is not a proper use of the term “pattern,” since we are talking about a
local invention.

3 In this chapter we do not distinguish between patterns and styles. We understand styles to be high-

level patterns that have a strong overall organizing effect on a system.

Pattern

Component
role

Component
spec

eReference architecture

-conncerns

* *

1

*

*

*
-defines

*

*

*

*

-

use

*

**

specialize

*

*

-

-connform

*

*

*

*

collaborate

*

*

-connection
*

*

TextureVariation

Quality
attribute

Scenario

Quality
requirement

Variation
point

Decision
model

*

7.3.1 Patterns as Architecture Building Blocks

7 Dealing with Architectural Variation in Product Populations 253

for architectures [5]. Moreover, established patterns often have known effects on quality
attributes [1], making it possible to reason about the effect of choosing one pattern over
another. A pattern language [23] is a collection of patterns that support the development of

established patterns that are widely known and used throughout the software community,

a class of systems, with relationships between the patterns that bind them together to
form a whole. These relationships cover use (one pattern uses another pattern in its

them.

solution), specialization (one pattern is a specialization of another) and conflict (two

recommended by the architecture. This means that the pattern language may contain both

patterns cannot be used together). In our approach the backbone of the architecture model
is a pattern language encompassing recommended patterns and relevant relations between

Fig. 7.5. Partial UML model for the MVC pattern showing roles and collaboration between roles

However, we prefer to use the term “pattern” when we talk about (1) a recurring problem
within the product line and (2) a solution prescribed by the architecture, and the architect
has an idea about how it influences the quality properties of the derived products.

Patterns define roles and collaboration between roles and are conveniently modeled us-
ing a sort of collaboration diagram. An example is given in Fig. 7.5. This shows a partial
UML model for the MVC (Model View Controller) pattern. In a system designed and im-
plemented using a set of patterns, these roles are fulfilled by component implementations.
Normally, a component plays a role in more than one pattern.

Component specifications, which represent the components in the architecture, are de-
fined by the synthesis of a set of roles from different patterns and possibly also collabora-
tion models relating to the functionality of the system. In the example shown in Fig. 7.6,
the patterns involved are the MVC pattern and the client-server pattern. The C1 compo-
nent has the client role in the client-server pattern and the view role in the MVC pattern,
and implements the presentation part of the user interface in one or more use-case-related
scenarios that define the functionality provided by the system. Components C2 and C3 are
synthesized from different role sets, as indicated in the figure.

The patterns that make up the architecture are either mandatory, i.e., they must be used in
every product belonging to the population, or their use is governed by one or more tex-
tural variation points. A textural variation point describes a variation in architecturally
significant requirements and establishes relationships between variant requirements and
patterns. Such a relationship means that the pattern helps to fulfill the requirement. A pat-
tern may help to satisfy multiple requirements, and the ability to fulfill a requirement may
be affected by multiple patterns.

Roles Collaboration

thandleEven

serviceservice

update

eupdate

updateupdate

displaydisplay

getData

ggetData

servicehandleEventhandleEvent

create

Model

Model
manipulate

display

View

View

Controller

C
al

l S
er

vi
ce

at
ta

ch

attach

getData

Controller

7.3.2 Encoding Textural Variation

254 S. Hallsteinsen et al.

BOBO

Client-
server
pattern

MVC
pattern

C3C1

ClientClient Server

ModelControlViewView

Usage
scenario BOBOBPBPPresPres

C2

Fig. 7.6. Component specifications synthesized from roles defined by patterns

In this way the textural variation points make up a decision model that governs the deriva-
tion of product architectures that satisfy particular requirements.

There are two kinds of textural variation points: optional pattern variation points and
alternative patterns variation points. An optional pattern is one that may or may not be
adopted by a product architecture. An alternative patterns variation point encodes a choice
between several patterns. The alternatives are typically patterns that in effect solve the
same problem (often they are alternative specializations of a more abstract pattern), but in
different ways and with different effects on the achievable quality attributes.

defines quality attributes and metrics for measuring them. The quality attributes defined in
the standard are often too coarse-grained for our purpose and it is therefore permissible to
break them down into more detailed ones. In addition, we recommend the use of scenarios,
such as those used in scenario-based architecture assessment [6], to describe quality re-
quirements. These scenarios are constructed as stimulus-response pairs, where the stimu-
lus describes an event that may occur during the lifetime of a product, and the response
describes how the product should respond to that event. In scenario based architecture
assessment such scenarios has proven effective for reasoning about the properties of archi-
tectures.

Figure 7.7 shows an example decision model with both kinds of textural variation
points. To the left it shows an example of an optional pattern variation point, which rec-
ommends using the model view controller patterns if there is a need to support variation in
the user interface. To the right it shows an alternative patterns variation point that guides the
choice between alternative specializations of the client-server pattern based on the require-
ments regarding how the system should react to communication failures in the client-server
connection. If continued service is required in the event of a communication failure of the
client server connection, the architecture should be based upon the self-reliant client pat-
tern. If only partial service is required, the rich client pattern is recommended. If denial

7 Dealing with Architectural Variation in Product Populations 255

The ISO 9126 standard [9] serves as the basis for modeling requirements. This standard

Fig. 7.7. Example of decision model with textural variation points

of service during the absence of communication is acceptable, the thin client pattern is
preferred.

The representation of the decision model is based on the metamodel for variability
modeling proposed in Chap. 6. The optional patterns variation points are represented by
the Optional Transformer kind of Variability specification, while the alternative patterns
variation points are represented by the Type Alternative kind of Variability Specification.
The relationship between requirement variants and patterns are represented as Variability
Constraints. This is indicated in Fig. 7.7 by text labels on the branches indicating the kind
of metamodel concept represented by the branch.

An architecture modeled with textural variation points is also an under-specified architec-
ture and further architectural design is needed to derive product architectures. However,
the textural variation points serve as design guidelines that guide and simplify this task.

Adaptability of
the user
interface

Adapting the
user interface

should be
easy

Tolerance to
communication
failure between

client and server

Comm failure
causes denial

of service

Comm failure
causes reduced

service

Comm failure
should be

transparent to the
user

MVC Thin
client

Rich
client

Self-reliant
client

Client-
server

opt typeAlt

Architecturally
significant

requirements

Adaptability Fault tolerance

req req req req

D
ec

is
io

n
m

od
el

Pa
tte

rn
la

ng
ua

ge

typeAlt

7.3.3 Support for Product Architecture Design

256 S. Hallsteinsen et al.

Use of the textural variation points to support the derivation of product architectures
involves the following steps:

– Firstly, resolve the variation points according to the particular quality requirements of
the application. For each optional pattern variation point, decide whether its require-
ment is relevant or not. For each alternative patterns variation point, select the alterna-
tive that best fits the needs of the product to be built.

– Then compose the texture of the product architecture from the mandatory patterns of
the reference architecture and the patterns selected by the resolved variation points.

– Finally, select component specifications that match the product texture and connect
them as dictated by the selected patterns. The roles a component is able to play are de-
fined as part of its specification.

Since patterns normally affect more than one quality attribute, trade-off and/or conflict
situations may occur. Prioritization of requirements may help to resolve such situations
but in the worst case it may be necessary to renegotiate requirements. Use of the decision
model during product specification will help to avoid conflicts.

As already explained above, in an architecture based on a pattern language the patterns
define roles that the components have to play and the component structure is derived by
the synthesis of a set of roles from different patterns and, in some cases, collaboration
models relating to the functionality of the system.

The presence of textural variation points makes this more difficult because role sets
that form natural components will typically include roles that are not always required.
However, this difficulty may be overcome by using classic techniques for designing reus-
able components, such as generalization over the expected variation in responsibilities or
introduction of configurability such that the component can be configured for different
specializations of the architecture, or by providing alternative variants of the component.

Compared with just leaving the varying part of the pattern language out of the architec-
ture, we believe that our approach has clear benefits for the identification and design of
components that are reusable across the population, since it makes explicit the variation in
responsibilities caused by architectural variation that the population components have to
face.

7.4 Preliminary Validation

As a preliminary validation of our approach to dealing with architectural variability we
have analysed experience with architectural variation in real-life product populations and
the applicability of our approach. We have selected three architectures that have been de-
veloped to serve a population-like strategy for software development. One case is from
Philips Applied Technologies, another from Philips Medical Systems and the third one is
from DNV Software. For each architecture we briefly present key requirements and
the chosen solutions. Then we discuss to what extent the population architecture does

7.3.4 Support for Reusable Component Design

7 Dealing with Architectural Variation in Product Populations 257

The Mechatronics department of Philips Applied Technologies develops a wide variety of
positioning subsystems for professional equipment like wafer steppers, machines for placing
components on PCBs, etc. A common factor in most of this equipment is the control of
very accurate movements, often with nanometer accuracy. The equipment control platform
is developed to capture domain knowledge and to speed up future development of control

of previously executed projects. The platform consists of meta-architectures and re-usable
components, it provides a common infrastructure and tooling to aid development, and it
defines a common way of working.

The Equipment Control Architecture

One of the basic principles of the equipment control platform is that all components have
a generic interface that allows the development of EqCP services and facilities based on
this generic interface. Once a (new) component has this generic interface, all the EqCP
services and facilities automatically operate on/with this component. CORBA has been
chosen as the middleware to provide the interoperability services and facilities. ACE [12]
is used as the operating system abstraction layer and TAO [19] as the real-time implemen-
tation of CORBA.

A component built on top of ACE that provides the generic interface automatically op-
erates within the platform infrastructure to give full freedom in composition of component
structures. In this way the platform components can operate in every topology.

EqCP deals with variation points at two levels. The highest level is the meta-architecture,
which is a template for families of architectures that can be instantiated by using it. The
next level deals with variations within the meta-architecture, by configuring architectural
variation points using strategies in a generic way. The strategies represent alternative solu-
tions to the problem solved by the meta-architecture leading to different properties of the
built product.

Fig. 7.8. Meta-architecture for motion control

XAxisControlComponent YAxisControlComponent
FeedBackProperty FeedBackProperty

MotionControlComponent

Control Application

MultiaxialProperty

258 S. Hallsteinsen et al.

7.4.1 Philips Equipment Control Platform

used to model this variation and what benefits this could provide compared with the current
approach.

accommodate architectural variation, and finally how textural variation points could be

applications for mechatronic equipment. As such, it is based on the experiences and results

A meta-architecture is described as a composition of EqCP components with a descrip-
tion of consistent interaction between the components. Meta-architectures are based on
experiences and, as such, are a place to consolidate domain-specific knowledge and exper-
tise. To illustrate the meta-architecture and strategy concepts, we provide two examples of
their use for specializing the EqCP reference architecture for different products.

tion points within the architecture.
 The UML template notation was used to denote a property that is part of the set of

properties managed by a generic component. All components shown are in fact generic

movement of the axes is synchronized. The axes have strategies that determine how the posi-
tion information is sent back to the motion controller. A possible instantiation of the meta-
architecture is shown in Fig. 7.9.

chronize the movements of the X- and Y-axes. The feedback property selects a strategy
that will return the data by means of callbacks. Changing the architecture to use different
mechanisms involves instantiating the architecture with different values for the properties.

This implementation with the actual properties and strategies is shown in Fig. 7.10.
The same meta-architecture is used. Two versions of the MotionControl strategy are

available: IndependentMultiAxial and SynchronizedMultiAxial. When a MoveTo com-
mand is given, the coordinates and trajectories of the individual movements are calcu-
lated. The first strategy sends these to the axis components and waits for their completion.
The second strategy, however, also directs the axes components to send position data at
regular intervals or to sample these (this is again a strategy). It will then continuously ad-
just and coordinate movements until the motion has finished. The meta-architecture for
these two situations is the same. The only difference is the value of the property that se-
lects the strategy.

XAxisControlComponent YAxisControlComponent

FeedBackProperty = CALLBACK FeedBackProperty = CALLBACK

MotionControlComponent

ControlApplication

MultiaxialProperty = SYNCHRONIZED

7 Dealing with Architectural Variation in Product Populations 259

Example 1. The first example considers motion-control systems. Figure 7.8 shows a meta-
architecture for a motion-control situation. The meta-architecture also encapsulates varia-

components. The motion-control component has strategies that determine how and if the

The values of the properties determine that the motion-control component will syn-

Fig. 7.9. Instantiated meta-architecture for motion-control

Fig. 7.10. Strategies and properties of the motion control meta-architecture

Example 2. The second example considers safety issues in a product line of medical
devices. A product line of medical devices is being developed where motion control plays
an important role. These devices are being developed by a number of companies that all
have different architectures. A meta-architecture has been designed at both the hardware
and software level to increase exchangeability, while respecting architectural differences.
At the software level this must be configurable in order to adapt to the use in a particular
device. Two important aspects of architectural variation are safety and motion control.
The previous example dealt with motion control, so here we describe the safety issues.

The medical device is part of what is called a Modality, which has a Modality Controller to
control all medical devices connected to it. Some producers of this device handle safety
locally, and notify the Modality Controller of this situation so that it can take appropriate
action, following a fully distributed approach. Other producers require a strictly hierarchi-

fore gets its own notification back via the root of the hierarchy. A hierarchic approach and
a distributed approach are clearly two different architectural approaches.

As in the case sketched above, the notification is a property in the meta-architecture as
shown in Fig. 7.11.

If the value of the NotificationProperty is set to HIERARCHIC, a notification is sent to
its immediate parent in the hierarchy. The safety strategy of the root component deter-
mines further actions. If the property is set to DISTRIBUTED, a notification is sent to all
of those components that have registered to receive one. This could be both the local
safety handler and the modality controller. If the property is set to LOCAL, the safety
handler deals with the situation locally.

GenericCommand

GenericStrategy

SynchronizedMultiAxial IndependentMultiAxial

GenericComponent

GenericProperty

ConcreteComponent

updates

1

*

MultiAxialProperty:StrategyProperty

Client configures

determines

executes

hierarchy, which then directs the medical device to take appropriate action. The device there-
cal approach where the notification of an unsafe situation travels up to the root of the

260 S. Hallsteinsen et al.

Discussion

architecture to be defined by the product architect. Based on the specific requirements in
question, the designer can select the appropriate meta-architecture for the system and spe-
cialize it with suitable strategies.

Although the two examples describe only parts of architectures, it is clear that they are
architecturally different, yet solve a particular kind of problem for a large number of app-
lications with a similar architecture. Experience with reusable mechatronic architectures at
Philips Applied Technologies proves this point. The architecture proposed for a common
patient table for the wide range of medical devices based on a meta-architecture has also
been received with enthusiasm.

A meta-architecture bears many similarities to a textural variation point such as that
presented in Sect. 7.3. It defines an abstract pattern in terms of a partial structure of roles
and connections that can be specialized in different ways to satisfy different quality
requirements by choosing a suitable set of strategies. More specifically, it corresponds to
the alternative patterns class of textual variation points.

The aim is to develop reusable components that can be configured to work with the al-
ternative specializations of the meta-architectures, in much the same way as discussed in
Sect. 7.3.4. Up to this point, however, the reuse has relied on manual adaptation of com-
ponents to a particular application. If meta-architectures and the configuration mechanism
are used, architectures and components should remain intact, and variation points should
be exposed only in separate strategies.

Fig. 7.11. Instantiated meta-architecture for safety control

MedicalDeviceComponent SafetyHandlerComponent

ModalityControllerComponent

NotificationProperty = HIERARCHIC

handles safetycontrols

The examples show two (parts of) meta-architectures that can be used as templates for the

7 Dealing with Architectural Variation in Product Populations 261

multiaxial motion
trajectory control

Only destination
counts, any

trajectory is ok

Must accurately
control motion

trajectory

Independent
multiaxial

Synchronised
multiaxial

Motion
control

typeAlt

Architecturally
significant

requirements

D
ec

is
io

n
m

od
el

Pa
tte

rn

la
ng

ua
ge

typeAlt

req req

 Fig. 7.12. Textural variation points applied to the EqCP architecture

In the current EqCP reference architecture there is no direct representation of the effect
of a particular specialization of the pattern represented by a meta-architecture (in the form
of a set of strategy choices) on quality attributes. In other words, there is no element that

ticipated that formalized support for the specialization of the architecture, as provided by
the decision model of the textural variation point approach, would be useful. Figure 7.12

tion control example could look like.

Philips Medical Systems is a leading company that sells a wide range of medical scanning
devices on the global market. These scanning devices rely on completely different image
acquisition techniques (X-ray, ultrasound, magnetic resonance). In the past, each medical
modality (i.e., type of body scanner) developed its own image processor product line,
which was heavily based on dedicated hardware (ASICs). Nowadays, software is fast
enough to replace the hardware solutions and, more importantly, many algorithms (like
noise reduction) can be shared between applications.

ner specializing the architecture to decide on a suitable set of strategies. However, it is an-
corresponds to the decision model in our approach, and it is the responsibility of the desig-

7.4.2 Composable Image Processor

262 S. Hallsteinsen et al.

gives an example of how a decision model based on textural variation points for the mo-

Moreover, from a clinical point of view there is also a need, especially in today’s inter-
ventional X-ray procedures, to combine information from different modalities in the exami-
nation room. Monitors in the examination room are no longer seen as modality-specific
viewing devices. Instead, they are increasingly considered as a general display area to be
used for all clinically relevant information that is available. The image processors of the
near future are conceived as a population that must be able to cope with these require-
ments.

At Philips Medical Systems a highly flexible, open and composable image processing
(IP) platform is currently being developed. It is capable of storing, processing and display-
ing all kinds of medical images almost in real time for the various modalities.4

IP Architecture

The system’s basic architecture is sketched in Fig. 7.13. Depending on the type of body
scanner (MRI, CT, Ultrasound or X-ray device) in which the IP platform is applied, spe-
cific graphs (coarse-grained composition) and nodes (fine-grained composition) are offered.
A graph corresponds to a running video stream (see also [18]). Graphs are defined at design
time and selected at runtime. They are triggered by user actions, e.g., “acquisition” means get
images from the detector (i.e., a source), store them and send them through various en-
hancement nodes to the display(s), “replay” implicitly sets up a flow that streams images
from disk to a given output device (i.e., a destination). Nodes live in graphs and may contain:

– Image enhancement software to improve image quality (e.g., reduce noise, increase
contrast resolution).

– Reconstruction software that creates 3D volumes (made up of voxels) from a coherent
set of 2D images (containing pixels).

Fig. 7.13. Composable image processor connected to a body scanner. Instantiated connections and
the image stream that corresponds to the selected graph are shown with bold lines

4 Another related development project with a population scope has been launched at Philips Medical
Systems. This focuses on providing components for building viewing applications (for each prod-
uct line, i.e. type of body scanner) on top of this IP platform. From an architectural point of view
this case is very similar. More extensive information on this case can be found in [26].

7 Dealing with Architectural Variation in Product Populations 263

– Measurement software that retrieves numerical information from images, e.g., thick-
ness of vessels.

The exact behavior of the nodes (in the selected graph) depends on its processing set-
tings. They can be changed at runtime.

The concept of graphs and IP-nodes in this video streaming device allows for a wide
variety in functionality. Since communication and administrative software for setting up
and maintaining the flow is completely separate from the IP processing taking place inside
a node, the system is very open for including new (as yet unknown) IP algorithms. It is
just a matter of capturing the algorithm in a new node and embedding this node in the ap-
propriate graphs.

In this project we are gradually moving towards a service-oriented architecture, in
which “tasks” (not only IP, but also requests like “give me the current patient”) are avail-
able on a network. The elements that make up the systems are conceived as services that
can be discovered and assembled at runtime. They can be assessed using technology-
agnostic protocols.

Another key element in the architecture consists of well-agreed and managed inter-
faces. They are the starting point for component decomposition. Implementations of the
components (services) use the familiar object-oriented and component-based techniques.

Discussion

With this IP platform it is also possible to accommodate considerable variation in quality
attributes. Computation-intensive nodes can be mapped to multiple CPUs by employing
parallel processing techniques. This means that, in terms of pipeline latency and the num-
ber of images that can be handled per second, performance requirements have become
scalable to a large degree.

We conceive the architecture of this IP platform as a composable distributed open ar-
chitecture that is underspecified. The architecture is seen as a composition because both
existing and forthcoming IP algorithms are treated as components that are in principle
freely composable [28]. Distributed processing is seen as the key technology for dealing
with hard real-time requirements that are even scalable for future use. Finally, the archi-
tecture is open to evolutions because it anticipates a rapid succession of new and better IP
algorithms (see Chap. 1) but also because it relies on standard protocols (like UDP on Gi-
gabit Ethernet) instead of proprietary solutions. It is, therefore, relatively easy to connect
the IP platform to other devices as well.

We classify this architecture as underspecified because a lot of (implicit) expert knowl-
edge is still required to determine the graphs that are needed in a specific end product
from the set of requirements. At present, the architecture does not support this derivation
process. More explicit coding rules are required in order to capture knowledge about order
effects in processing and specific constraints that go with each application and modality.
Textural variation points, as presented in this chapter, represent a viable solution for this.

We do not provide an illustrative example with textural variation points because the
rules or patterns that lead to specific graphs constitute very sensitive information which
has a major competitive impact. The main reason for this is that a graph “recipe” is
strongly correlated with the overall image quality. What we can say about this in fairly
general terms is the following:

264 S. Hallsteinsen et al.

– Types of graphs are associated with viewing protocols (defining what should be dis-
played and how the information is laid out over one or more display areas).5

– Obviously, graph construction depends heavily on and is strongly constrained by the
available hardware. But other requirements, e.g., legal requirements, also affect the
graph. For instance, exposure-like image acquisition should always end with both a dis-
play and a disk node because these images are required by law to be stored and archived
for at least 10 years. For fluoroscopy imaging a display end-node is sufficient because it
is not necessary to store these images. At present we do not have explicit patterns that
capture all this knowledge; in practice we use “common sense” design rules to satisfy
all the requirements.

DNV Software is a company that delivers software aimed primarily at the marine, off-
shore and process industries. BRIX was originally developed as a common platform for a
product line that targets the ship classification business. Now the DNV strategy is to es-

Presentation
Layer

Architecture

Business
Layer

Architecture

Modeling &
Data AccessSecurity

Workflow

BRIX

Business
Logic

Data access

Database &
Doc.storage

Presentation

Architectural Layers Application

Fig. 7.14. The BRIX frameworks

5

scribed in Sect. 4.1 case.
This is more or less comparable to the meta-architecture of the motion control strategy as d e -

7.4.3 The BRIX Platform

7 Dealing with Architectural Variation in Product Populations 265

tablish BRIX as a common software platform for all DNV Software products, and sec-
ond generation BRIX has been developed with this in mind (Fig. 7.14).

This means that the scope of BRIX is very wide and that both avoidance and allowance
of architectural variation has been necessary to accommodate the variation in require-
ments in a common architecture model.

BRIX Architecture

BRIX consists of a number of frameworks that can be combined in different ways in an
application depending on the particular requirements. A framework is the solution to a
particular architectural concern and may contain various elements like architecture pat-
terns, reusable components, templates, guidelines and tools. The frameworks that make up
BRIX can briefly be summarized as follows:

– The Basis framework contains prescribed, standardized design guidelines, services and
patterns (examples: exception handling, transaction handling, application lock manager,
façades, etc.).

– The BRIX MDA (Modeling and Data Access) framework provides data persistence and
data sharing based on information models expressed in a variant of UML. The MDA
framework also supports views on the data model that exposes only data relevant to an
application, and supports caching of views.

– The BLA (Business Layer Architecture) framework supports flexibility with respect to
deployment and client technology.

– The PLA (Presentation Layer Architecture) framework supports integration of different
applications (tools) at the presentation layer. By adhering to these recommendations,
the user interface components (controllers) of multiple tools may co-exist in a single
solution. The PLA framework contains the BRIX explorer, which is a template for
building applications that adhere to the PLA.

– The Workflow framework supports the development of workflow-oriented applications.
It defines an architecture pattern that separates the workflow-oriented aspects of the ap-
plication from the rest and thus makes it easy to modify the workflow. This pattern is
supported by notation and tools for defining and storing workflows and a workflow en-
gine to execute workflows.

– The Security framework gives support for access control. Included in the framework
are services for authentication (i.e., obtaining reasonable certainty as to the identity of
the actor) and specification of authorizations (i.e., the set of operations an actor is allowed
to perform).

– The Offline framework supports applications that are capable of being used offline for
shorter or longer periods and, in effect, provides mechanisms for replicating shared
data on the client and for synchronizing with the central database. It is typically used
together with the BLA to build applications that are capable of being used both online
and offline.

– The Rule framework encapsulates engineering rules for use by applications. The as-
sumption is that the rules, as a concept, might become useful across multiple systems.
It does this by separating the logical rules from the front-end used to interact with them.
In many respects, the rule framework is based on the same principal ideas as the work-
flow framework.

266 S. Hallsteinsen et al.

Fig. 7.15. The BRIX pattern language

The decision to include a particular framework in a product contributes to the definition of
the application architecture by enforcing one or more patterns. It usually offers some reus-
able components or component templates, and in some cases tools as well. The documen-
tation associated with the frameworks also provides guidelines about when to use the
framework and its effect on the properties of the product to be built.

Discussion

The frameworks of BRIX propose patterns that may or may not be included in a product
architecture. Thus, at the outset the BRIX architecture is specified primarily at the texture
level. Structure is only indirectly specified through the patterns proposed by the BRIX
frameworks and to a large extent it is left up to the product developers to determine this.

It is, therefore, quite natural to model the BRIX architecture as a pattern language as
proposed by the textural variation point approach. An overview of a pattern language that
describes the main patterns proposed by the BRIX frameworks is shown in Fig. 7.15.

Since use of the BRIX frameworks is not enforced, one may see each of them as a tex-
tural variation point of the optional pattern kind. A partial decision model is shown in Fig.
7.16. It was constructed partly on the basis of guidelines relating to the use of the frame-
works found in the available documentation and partly on the basis of interviews with the
developers and users of BRIX.

This model of BRIX represents the level of support for product architecture derivation
that corresponds to what the BRIX platform offers. Each framework typically represents a
fairly sophisticated architectural solution that is not needed by all products. A product de-
velopment project that chooses not to include a framework is more or less on its own. It
would improve the support for product derivation if the frameworks contributed more to
providing alternative solutions.

Security

Rule frame workMDABLAPLA

Workflow Offline

«uses»

is conform to
«uses» «uses»

«uses»«

«uses»s«uses»s

«uses»

7 Dealing with Architectural Variation in Product Populations 267

Fig. 7.16. Partial decision model for the BRIX reference architecture

Consider, for instance, the BLA framework that prescribes an architectural pattern that
offers flexible deployment such that applications can be deployed with varying client
richness and with varying client technology (Web or WIN). This means that an applica-
tion developed in accordance with this pattern can be deployed with a wide range of cli-
ent-server splits, ranging from a very thin Web client to a very rich Win client with data
replication that will also work offline. A collaboration diagram for the central BLA pat-
tern is shown in Fig. 7.17. The presentation layer accesses the business layer through a
client facade component that may be connected to the business layer through different
business façade components, depending on where the business layer is deployed. Together
with business components that are deployable both on client and server machines, this
gives the required flexibility.

One may see this pattern as an example of an architectural solution that “designs
around” the variability in requirements that are normally architecturally significant. How-
ever, some products of DNVS do not need this flexibility and prefer to avoid the addi-
tional complexity and overhead associated with it. The alternatives are more traditional
client-server patterns. Better support for the derivation of these products could be
achieved by modeling the BLA and the alternatives as an alternative patterns variation

Architecturally
significant

requirements

Adaptability

Need to
support

variation in
workflows

Workflow BLA Offline MDA PLA

Must
support

both Win
and Web

clients

Must
support
variation
in client-
server
split

Must
support
offline
use

Must
represent
complex

structured
data

Must
support

data
persist-

ence

Must
support

shared
data

Must
support

application
integration
at the GUI

level

opt

opt

req

req

req

req req
req

req

opt opt opt opt opt opt

Availability Suitability Interoperability

access to

268 S. Hallsteinsen et al.

point in a similar way as illustrated in Fig. 7.7.

Fig. 7.17. Central pattern of the BRIX BLA Framework

One of the main products of DNVS is NAUTICUS, which supports the classification of
ships. Another product is a system for ship owners that support the maintenance of ships
throughout their lifecycle. There are also plans to launch variants of the latter system that
support maintenance of other types for complex technical systems, such as offshore oil
drilling and production platforms or industrial process plants. It is clear that these systems
will have a lot in common and it is being considered to develop a domain-specific product
line platform on top of BRIX for this class of systems, referred to as AIMS (Asset Inte-
grated Management Systems). This platform will take the form of a set of components at
the business layer.

This is an example of a product line within the population. It will share some BRIX
frameworks with the rest of the population, and thus its reference architecture will be a
specialization of the BRIX architecture with some variation points resolved. The domain
specific business layer components will be developed according to the specialized archi-
tecture and will therefore not be reusable across the whole population.

7.5 Related Work

In addition to the work that we have built on and that have already been presented, there
are several other works that are related to our research on architectural variability.

Research at SEI on ABASs [16] and later on the ADD method [1] is based on similar
assumptions to ours, for example that certain quality properties can be associated with ar-
chitectural patterns and that pattern like constructs (which they call mechanisms) are
suited as building blocks for architectures. These ideas also underpin their work on archi-
tecture assessment techniques, such as ATAM and ARID [6].

models and derivation of object specifications by role synthesis. This was the inspiration
for our ideas on component roles and the derivation of component specifications based on
role synthesis.

The issue of variability modeling has received much attention in product line engineering
research, and several general approaches have been proposed capable of describing varia-

The OOram method developed by T. Reenskaug et al. [22] advocates the use of role

Presentation Layer

BL Client Facade

BL Facade

BL Office Client Facade

Client machine

Application server

Only permitted if BL Client Facade is
running on the same machine as the
BL Facade (e.g. a 2-tier Windows
system or a Web client).

BL Web Service Facade

7 Dealing with Architectural Variation in Product Populations 269

tion in any kind of development artifact. This issue is discussed extensively in several
other chapters of this book. Chapters 5 and 6 propose generally applicable metamodels

proposed by Chap. 6, but the other approaches mentioned above are also applicable in
connection with textural variation points.

Although it does not use the term “architectural variation point” explicitly, a work that
comes close to ours is the ADLARS architecture description language [4], which is being
developed at the Queen’s University of Belfast. ADLARS aims to be able to describe
variation in a product-line reference architecture caused by variation in cross-cutting con-
cerns. To this end, they introduce the concept of interaction theme. An interaction theme
describes a collaboration between roles focused on a particular purpose, often a particular
feature to be supported by the product line. The roles of themes are assigned to compo-
nents, and components may be configured to support different role sets, depending on the
features present in a given product. Complementary work by the same group [17] also de-
scribes tool support based on weaving techniques to automatically configure components
to comply with a given set of interaction themes. The use of interaction themes in
ADLARS is very similar to the way we use patterns in our approach.

Scenario-based architecting described in Chap. 1 focuses on creating a product line ar-
chitecture that not only fits now, but is also future-proof (to some extent of course). Since
the future cannot be predicted precisely, a number of reasonable scenarios that describe
possible changes for the domain or business (in a wide sense) in question is developed. Each
scenario represents a point in the variation space. These scenarios are related to the varia-
tion in models of the architecture in order to come up with an architecture that is “open in
time.” Variation modeling is carried out in different views that typically cover the range
from customer wishes at one end to technological realizations at the other end. In this way
the entire variation space is covered.

This approach to architecting recognizes the need to foresee architectural variation and
to model it in order to support future evolution of the architecture. Textural variation
points could serve as a complementary technique to this end.

We have argued that in product populations there is often significant variation in architec-
turally-significant requirements, and that therefore significant variation in architecture
between products must be allowed. This sets challenges for the design of the common ref-
erence architecture that has to balance the need for openness to variation against the need
to provide platform and product developers with a firm architectural basis. We have pro-
posed a solution based on architectural variation points where the unit of variation is the
patterns that make up the texture of the architecture. We claim that this approach is more
powerful than existing approaches to architectural variation, like just leaving architectural
decisions open or associating variation points with structural elements of the architecture.

et al. [8] to model variability in different kinds of models. We chose to use the approach
and notations for variability modeling and Chap. 1 uses a notation proposed by Ferber

270 S. Hallsteinsen et al.

7.6 Conclusions and Future Research

The reason for this is twofold. Firstly, textural elements are associated more directly
with the architectural decisions that have to vary between products and therefore simplify
the specialization of the architecture. Secondly, the texture model is a good basis both for
platform developers to develop components that are configurable for different specializa-
tions of the architecture, and for product developers to structure the product-specific parts
of products.

To justify this claim we have analyzed three existing population reference architectures
and tried to investigate the applicability of our approach. We found that all three architec-
tures required a degree of architectural variation in which our approach could be expected
to be beneficial. In one case we found that the representation of the architecture actually
included a concept very similar to a textural variation point. In another case we found that
the representation of the architecture was indeed texture centric and contained textural
variation points, although these variation points were not modeled explicitly in the way
we propose, but instead were embedded in the documentation. In the third case the archi-
tecture was clearly under-specified, but without any particular support for specialization.
However, it was recognized that some form of guidelines for specializing the architecture
during product derivation would be useful.

This analysis has convinced us that textural variation points is a useful technique to
model architectures that need to be open to variation in architectural choices but still pro-
vide comprehensive support for product derivation and relieve the product developers as
much as possible from architecting. However, further research is required to provide bet-
ter evidence for this claim. In particular we need experience from real life application of
the approach.

Acknowledgments

6 7

8

cially grateful to Frank van der Linden, Anne Immonen, Isabel John, Timo Käkölä and
Juan Carlos Dueñas whose comments to earlier drafts of this chapter have been of great
help, and to Bjørn Egil Hansen, who was the primary contact with the BRIX team in
DNV.

6

7

8 DAIM and Familier are Norwegian projects led by ICT-Norway and partially funded by the Nor-

7 Dealing with Architectural Variation in Product Populations 271

 ITEA project ip02009, FAMILIES.

wegian research council [7].

, FAMILIES,
DAIM and Familier projects. The collaboration with both academic and industrial partners
in these projects has provided valuable inspiration and feedback to our work. We are espe-

CAFÉ The work reported here has been carried out in the context of the

CAFÉ ITEA project ip00004, [25].

References

272 S. Hallsteinsen et al.

1. Bass, L., Klein, M., Bachmann, F.: Quality attribute design primitives and the attribute driven design method.
In: Software Product-Family Engineering, ed by van der Linden, F., 4th International Workshop, PFE 2001,
Bibao, Spain. Lecture Notes in Computer Science, vol 2290 (Springer, Berlin Heidelberg New York 2001)
pp 169–188

2. Bayer, J.: Design for quality. In: Software Product-Family Engineering, ed by van der Linden, F., 5th
International Workshop, PFE 2003, Siena, Italy. Lecture Notes in Computer Science, vol 3014 (Springer,
Berlin Heidelberg New York 2003) pp 370–380

3. Bosch, J.: Design and Use of Software Architectures – Adopting and Evolving a Product-Line Approach
(Addison-Wesley, Reading, MA 2000)

4. Brown, T.J., Spence, I.T.A., Kilpatrick, P.: A relational architecture description language for software fami-
lies. In: Software Product-Family Engineering, ed by van der Linden, F., 5th International Workshop, PFE
2003, Siena, Italy. Lecture Notes in Computer Science, vol 3014 (Springer, Berlin Heidelberg New York
2003) pp 282–295

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Software Architecture –
A system of Patterns (Wiley, New York 1996)

6. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case Studies
(Addison-Wesley, Reading, MA 2002)

7. DAIM: Software Engineering Handbook. http://www.ikt-norge.no (ICT, Norway, Oslo 2003)
8. Ferber, S., Haag, J., Savolainen, J.: Feature interaction and dependencies: modeling features for

reengineering a legacy product line. In: Software Product Lines, ed by Chastek, G.J., 2nd International
Conference, SPLC2, San Diego, CA, 19–22 August 2002. Lecture Notes in Computer Science, vol 2379
(Springer, Berlin Heidelberg New York 2002) pp 235–256

9. ISO: International Standard ISO/IEC 9126. Information technology – software product evaluation – quality
characteristics and guidelines for their use (International Organization for Standardization, International
Electrotechnical Commission, Geneva 1991)

10. Hallsteinsen, S., Swane, E.: Handling the diversity of networked devices by means of a product family
approach. In: Software Product-Family Engineering, ed by van der Linden, F., 4th International Workshop,
PFE 2001, Bilbao, Spain. Lecture Notes in Computer Science, vol 2290 (Springer, Berlin Heidelberg New
York 2001) pp 264–281

11. Hallsteinsen, S., Fægri, T.E., Syrstad, M.: Patterns in product family architecture design. In: Software
Product-Family Engineering, ed by van der Linden, F., 5th International Workshop, PFE 2003, Siena, Italy.
Lecture Notes in Computer Science, vol 3014 (Springer, Berlin Heidelberg New York 2003) pp 261–268

12. Huston, S.D., Johnson, J.C.E., Syy, U.: The ACE Programmer’s Guide: Practical Design Patterns for
Network and Systems Programming (2003)

13. IEEE: IEEE Recommended practice for architectural description of software-intensive systems, IEEE
Standard P1471 (IEEE Architecture Working Group 2000)

14. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse (Addison-Wesley, Reading, MA 2000)
15. Jazayeri, M., Ran, A., van der Linden, F.: Software Architecture for Product Families: Principles and

Practice (Addison-Wesley, Reading, MA 2000)
16. Klein, M., Kazman, R.: Attribute-based architectural styles. SEI technical report, CMU/SEI-99-TR-022 (SEI,

Pittsburg 1999)
17. McRitchie, I., Brown, T.J., Spence, I.T.A.: Managing component variability within embedded software

product lines. In: Software Product-Family Engineering, ed by van der Linden, F., 5th International
Workshop, PFE 2003, Siena, Italy. Lecture Notes in Computer Science, vol 3014 (Springer, Berlin
Heidelberg New York 2003) pp 98–110

18. Microsoft Directs how, part of DirectX. http://www.gdcl.co.uk/dshow.htm
19. OCI TAO Developers Guide version 1.3a (Part number 530-01)
20. Perry, D.E.: Generic architecture description for product lines. In: Development an Evolution of Software

Architectures for Product Families, ed by van der Linden, F., 2nd International ESPRIT ARES Workshop,
Las Palmas de Gran Canaria, Spain. Lecture Notes in Computer Science, vol 1429 (Springer, Berlin
Heidelberg New York 1998) pp 51–56

21. Pohl, K., B ckle, G., van der Linden, F.: Software Product Line Engineering – Foundations, Principles, and
Techniques (Springer, Berlin Heidelberg New York 2005)

22. Reenskaug, T., Wold, P., Lehne, O.A.: Working with Objects – The Ooram Software Engineering Method
(Manning, Greenwich 1996)

7 Dealing with Architectural Variation in Product Populations 273

23. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architecture Volume 2 – Pat-
terns for Concurrent and Networked Objects (Wiley, New York 2001)

24. Thiel, S., Hein, A.: Systematic integration of variability into product line architecture design. In: Software
Product Lines, ed by Chastek, G.J., 2nd International Conference, SPLC 2, San Diego, CA, USA, 19–22

41–49 (2002)

27. Van Ommering, R.: Building product populations with software components. Proceedings – International
Conference on Software Engineering (IEEE Computer Society, Silver Spring, MD 2002) pp 255–265

28. Van Ommering, R., Bosch, J.: Widening the scope of software product lines – from variation to
composition. In: Software Product Lines, ed by Chastek, G.J., 2nd International Conference, SPLC 2, San
Diego, CA, USA, 19–22 August 2002. Lecture Notes in Computer Science, vol 2379 (Springer, Berlin
Heidelberg New York 2002) pp 328–351

August 2002. Lecture Notes in Computer Science, vol 2379 (Springer, Berlin Heidelberg New York 2002)
–

Product Line Engineering. Springer 2007 (forthcoming)
26. van der Linden, F., Schmid K., Rommes, E.: Software Product Lines in Action: The Best Industrial Practice in

pp 130 153
25. van der Linden, F.: Software product families in Europe: the ESAPS and CAFÉ projects. IEEE Softw. 19(4),

8 A Software Product Line Reference Architecture
for Security

T.E. Fægri and S. Hallsteinsen

Security is a cross-cutting concern in software intensive systems and should consequently be
subject to careful architectural analysis and decision making. The requirements for cost-
effective product line development complicate this task. Two central research questions are

reference architecture? (2) If so, is such a reference architecture useful for security architec-
ture design in software product lines? Initial evidence suggests that both questions can be af-
firmed. The main contribution of this chapter is a reference architecture that draws upon
state-of-the-art techniques and practices from software product line engineering and informa-
tion security and constitutes a decision support framework for security architecture design in
software product lines. To validate the reference architecture, the chapter also presents our ex-
periences from using it at three distinct companies.

8.1 Introduction

Increasingly, security related requirements constitute a significant portion of the total set
of requirements for many software systems. Arguably, the most important aspect contrib-
uting to this trend is the seemingly continually growing demand for more open and flexi-
ble IT systems. Terms such as “the real-time enterprise,” “software infrastructures,”
“service oriented architectures” and “composite software applications” proliferate in the
corporate IT arena and denote information systems that support cross-application integra-
tion, cross-company transactions and end-user access through a range of channels, includ-
ing the Internet. For product oriented companies these trends are important too, because
most applications will in some form interact with other applications. Although this is a
natural consequence of the desire to improve the operational efficiency and reduce the
need for manual work, application integration and Internet access make critical assets vul-
nerable to many threats. For most product oriented companies, requirements for security
are likely to be as varied as for any other quality. Thus it can be expected that companies
will want to supply variants of the same product to satisfy the variability in product
requirements.

The architecture of a software system is important for the system’s ability to satisfy its

resulting system has a better chance of meeting its expectations. Constructing software
systems of any significant size or complexity requires considerations to the architecture.

addressed in this chapter (1) Is it viable to represent architectural security knowledge in a

Abstract.

requirements [2–4, 8, 14, 25, 39]. In other words, if the architecture is carefully designed the

By architecture we mean its conceptual organization in components, connectors and the
relations between them. This is an abstract view of the software system that allows us to
reason about high level aspects such as security, performance, maintainability, deploy-
ment, and functionality without having to consider all the details.

The art of creating architectures is normally performed by people with lots of experi-
ence in the particular domain of the application. Experience creates valuable knowledge.
In an effort to manage this knowledge, the software architecture community has created
the architectural pattern concept. Architectural patterns are working principles that have
proven useful in architectural design and have been documented so that others can reuse
the knowledge. We argue that through careful management of this knowledge, for example
in terms of architectural patterns, software architectures can be created more effectively
and with a higher probability of achieving the desired qualities. However, the existence of
architectural patterns is not enough to facilitate the construction of good architectures. No
set of patterns will create an architecture that is optimal for all stated requirements. We
must also capture and reason upon the various effects of these patterns. After all, architec-
tural design is all about making sound tradeoffs. Architectural patterns, accompanied with
knowledge of their effects, help us in making good design decisions.

Making these tradeoffs effectively becomes even more important in a context where a
company wants to deliver multiple product variants to the market. While seeking to mini-
mize the global cost of producing those products, the variability in quality requirements
will favor a systematic approach to architectural design where variation among member
products can be precisely managed. We build upon the large volume of research and experi-
ence within the area of Software Product Lines (SPL). SPL is an approach to software
development that seeks to optimize productivity by assisting strategic reuse of software

among a group of products.
Security is a quality aspect of software systems that must be addressed by the architec-

ture. It is a cross-cutting concern that is affected by a wide range of architectural deci-

needs to have an architecture that is able to contain potentially malicious components
within security boundaries. Simultaneously, the software architect is normally forced to
balance this concern against a number of other, potentially conflicting concerns. The ref-
erence architecture presented here supports the software architect in the SPL approach.
We treat security requirements as a natural source of variability among the product mem-
bers. In order to capture and manage knowledge related to security architectural design we
propose a reference architecture for software product line engineering. It is in essence a
knowledge repository with a structure to support architectural design. It consists of

1. a quality model representing and organizing our vocabulary for security require-
ments,

2. a decision model constituted by the scenarios that represent the security requirements
for the application to be designed

3. a security architecture language prescribing architectural solutions to the security
requirements.

The structure of the remaining part of this contribution is as follows: Section 8.2 dis-
cusses the construction of software architectures facing security requirements. Section 8.3

T.E. Fægri and S. Hallsteinsen 276

sions. For example, a software system that is constructed using third party components

assets [34]. SPL incorporates methodologies for capturing and planning for variations

describes the main theoretical framework for the reference architecture through concep-
tual models. Sections 8.4–8.6 constitute the reference architecture documenting the
quality model, the decision model and the security architecture language, respectively.
Section 8.7 elaborates upon how to use the reference architecture and Sect. 8.8 describes
our experiences with using the reference architecture in practice. Section 8.9 presents

8.2 Security Architecture Design

Software architecture is concerned with the overall structure of software systems. We
generally adhere to the IEEE 1471 definition: “The fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment, and

system. As most successful systems can be expected to have a long lifespan, the efforts
required to maintain the system are a key concern.

The architecture of a software system has a great impact on its ability to satisfy its re-
quirements. Conversely, making changes to the architecture of an already existing system
can be very expensive. Furthermore, ensuring that the software system is able to remain

comes a critical asset for the organization. Therefore the architecture should undergo a
thorough design and evaluation process.

Most software products have many stakeholders with different roles who want to influ-
ence the business drivers and the quality requirements set for the final system. One chal-
lenge in this work is to specify quality requirements in a way that makes them clear and
testable. The software architect must carefully search for architectural constructions that
promise to address the requirements in the best possible way. While designing the archi-
tecture, tradeoffs should be made explicitly to support an open design process involving
the relevant stakeholders. Architecture design is not a simple task, neither is it a task that
lends itself easily to automation.

As mentioned in the introduction, architectural design is a knowledge intensive art that
depends heavily upon experience. In order to encode and reuse this knowledge, the soft-
ware architecture community has created the concepts architectural tactics and architec-
tural patterns. They are all documented, reusable architectural solutions that promise to
address specific concerns in software architectures. They are, essentially, representations

As the number of solutions increases, so does the need to see relationships between
them. Therefore, it is useful to put these architectural solutions into a system. Architecture

8.2.1 Encoding Architectural Knowledge

277

work that is related to ours. Section 8.10 presents concluding comments.

with making high level decisions regarding the overall organization of the software

8 A Software Product Line

the principles guiding its design and evolution.” p.3 in [27]. Thus, architectural design deals

of knowledge of how particular problems can be solved [51].

compliant with its quality requirements is just as important [6]. Thus, the architecture be-

 T.E. Fægri and S. Hallsteinsen

solutions occur in widely different contexts, but they may nevertheless have a lot of simi-
lar characteristics. Also, architectural solutions occur at different levels of abstraction.
Some are merely tactics in the solution space; others are very specific – prescribing com-
ponents, interactions and roles. Generally we can say that architectural tactics are less
specific than architecture patterns, but it is not possible to draw distinct borders between
them. Architecture solutions form a continuum, where the level of abstraction is a viable
dimension for considering them.

A reference architecture is a guideline for the design of architectures within a given
domain, i.e., it is a recommendation for how to build a particular kind of system. One can
say that a reference architecture is the architecture of a set of architectures. Typically, the
main rationale for constructing reference architectures is the desire to capture, represent
and share knowledge about what the requirements for certain types of systems are and
how to build the systems, thus helping to standardize types of architectures. In the de-
scribed reference architecture, we have systematized architectural solutions for security

Security design draws upon a large body of knowledge. Security has been a concern for
computer system designers almost from the outset; the early systems were often used in
sensitive military applications. Security then became a mainstream requirement with the
advent of multi-user computers in the late 1960s when commercial use triggered concerns

popularity. In the last years, as the attention to Internet based computing has exploded, se-
curity has again been a top priority in many fora.

Security deals with protecting assets and making sure that they remain valuable to their
owner. In order to accomplish that, we must determine the relevant threats towards the
assets, i.e., construct a risk assessment profile. Only after having gathered a good understand-
ing of the threats facing the system can we make good decisions for what countermeasures
we should introduce. The security submodel of the reference architecture (see Sect. 8.3)
describes the conceptual model for how to create the risk assessment profile.

Security design introduces costs in terms of security technology, implementation and
maintenance of security policies and effects on other quality attributes of the final soft-
ware system (the latter aspect will be discussed in the next section). A key benefit of the
risk assessment profile is that it provides support for deciding which investments in secu-

termining how the assets should be protected must also be done.
It should be noted that this reference architecture only deals with the aspects of security

that can be addressed through software. This might be called “logical security.” Other as-
pects of security, such as the design of physical countermeasures or barriers (this could be
called “physical security”), are not covered by this reference architecture.

8.2.2 Security Design

278

requirements. We call this system the security architecture language (see Sect. 8.6).

of malicious behavior from other users [17]. Since then, security has seen an increasing

rity should be made and which assets should be protected [24]. However, the task of de-

As previously mentioned, architectural design involves making sound tradeoffs between

upon using architectural solutions (in the form of architectural tactics and patterns) as

of effects on the quality attributes. By having an understanding of the effects from each
architectural solution we can more easily reason about the total effects of all the architec-
tural solutions used in the actual architecture under consideration. It should be noted that
we do not aim at building a formally precise machine for determining the sum of effects
from a set of architectural solutions. This is a hard problem due to the lack of precise met-
rics, the large amount of tacit knowledge going into architectural design and the complex-
ity of dependencies between different decisions in the many layers of abstractions in a final

The security architecture language (Sect. 8.6) defines our solution space. These solu-
tions are countermeasures that we can use in order to protect against damage to assets.
These countermeasures represent knowledge about how to deal with various security

Security architectural design is confronted with the same challenges as architectural de-
sign in general; certain tradeoffs must be made between important quality attributes. Us-

In situations like that, it is important to have a clear understanding of the tradeoffs which

here, we hope to make these tradeoffs more explicit. Subsequently, it will become easier
to design architectures that maintain the interests of all stakeholders.

For various reasons, it may be beneficial for an organization to deliver multiple products
with overlapping capabilities to its markets. If overlapping capabilities are implemented in
a controlled way, using the same assets, we call such a set of products a product line.
Product lines bring the additional challenge of managing variability among similar prod-
ucts in a cost-efficient manner. The field of Software Product Lines (SPL) addresses these

To reduce cost, an organization will typically strive to introduce a certain level of stan-

ferent levels, for example in terms of technical platforms, prescribed frameworks, general
quality requirements or recommended architectural solutions. In order to accommodate
standardization, the product architect must first consider the implications of the already
prescribed requirements and architectural solutions.

Already prescribed quality requirements must be reconciled with the product require-
ments. Architectural solutions identified as contributors towards the quality requirements
of the product must be reviewed and aligned with already standardized solutions.

8.2.3 Security Architecture

8.2.4 Security Architecture for Software Product Lines

279

building blocks for software architectures, as previously described in [26], but also advo-

8 A Software Product Line

design alternatives in order to achieve sufficient product quality [3, 4]. We base this work

system [13].

threats, described by many previous efforts [5, 45, 48, 52, 54, 59].

ability, performance, etc. are frequently in conflict with security [23, 44, 53, 55, 57, 58, 61].

have been made [3, 14]. Through the systematic approach to architectural design presented

concerns, and has produced a large body of knowledge [7, 15, 34]. The presented reference
architecture builds upon these ideas while applying them in a security-focused setting.

dardization of the architecture between the product line members [26]. This can be at dif-

cated by others, e.g., [2, 3, 39]. A principal idea is that each solution is associated with a set

 T.E. Fægri and S. Hallsteinsen

8.3 Conceptual Model of the Reference Architecture

This section presents a conceptual model (or view) of the reference architecture. The con-
ceptual model illustrates the reference architecture at a high level of abstraction by show-
ing how the central concepts relate to each other. Also, the concepts and their relationships
are explained.

The term reference architecture was introduced in Sect. 8.2. For organizations building
software product lines, reference architectures play an even more important role because
they are an appropriate tool for the capture of standardized requirements and guidelines
within the product line. The reference architecture is the product line architecture.

Inspired by the same rationale, we have built a reference architecture for security. It
consists of three submodels:

1. A security submodel that supports the development of a risk assessment profile for
the assets covered by the system. The risk assessment profile assists the software ar-
chitect in deciding what requirements should be set for the system and their internal
priorities. The risk assessment profile is also helpful in the process of determining
the most appropriate countermeasures

2. An architecture submodel that incorporates architectural solutions which promise to
address security related requirements

3. A decision support submodel that supports capturing, specifying and reasoning a-
bout requirements for the product line members. Requirements are formulated as
scenarios representing variation points. One scenario represents one variation point.
A variation point will normally represent multiple variants. Now, in the presented
reference architecture, not all of the scenarios contain multiple variants. In the de-
velopment of the guidelines, we decided it was useful to capture this security archi-
tecture design knowledge despite the lack of direct variability aspects.

Together, these three submodels give the software architect an integrated environment
for architectural security design.

Figure 8.1 illustrates a conceptual model of the reference architecture. It shows the three
submodels with their core concepts and their inter-relationships. The decomposition into
three submodels supports its extensibility. Also, our architectural solutions are organized
in a taxonomy of tactics and patterns. New tactics and patterns may be added to the exist-
ing ones in order to represent other architectural solutions. In practice, many organizations
develop or refine their own architectural solutions. However, the adopting company must
be able to associate impacts on quality attributes with the architectural solution.

The following sections discuss the conceptual model in more detail.

280

Fig. 8.1. Conceptual model of reference architecture

vulnerability, unwanted incident and risk. Supplementary concepts include probability and
consequence.

Arguably, the main objective for any efforts related to security is managing and miti-
gating risk. This might have significant economical impacts. Return of investment in secu-

is even more important. To achieve strategic reuse one depends more heavily on careful

The proposed reference architecture is not, however, intended to be a tool for risk as-
sessment. Although it does cover the central topics for a risk assessment and provides core
support for these activities, the application software architect should carefully consider the

8.3.1 Security Submodel

281

The security submodel deals with risk assessment. Core concepts include threat, asset,

8 A Software Product Line

rity efforts must therefore be carefully evaluated [1, 11, 24]. In a product line context, this

planning and design [10].

 T.E. Fægri and S. Hallsteinsen

threats, the assets, and their vulnerabilities. Subsequently, a prioritized list of risks can be
created, based upon knowledge of the unwanted incidents with their probabilities and con-
sequences. Preferably, a validated methodology should be used to support this process, for

Threats are the raison d’être for all security related requirements. By threat we mean a
potential cause of an unwanted incident, which may result in harm to assets (i.e., reduce
the asset’s value). In the conceptual model above, threats are modeled as a kind of stimuli
to a scenario. Thus, the scenarios we consider in terms of security are triggered by threats.

Assets are entities in the software system, such as information, services and compo-
nents, to which stakeholders assign a value. Different stakeholders are likely to assign dif-
ferent values to the same asset. Assets are exposed to threats.

Vulnerability is a weakness of an asset (or group of assets) that can be exploited by one
or more threats. It can also be viewed as weakness in the controls that should protect the
asset. Vulnerabilities can be reduced by countermeasures (Sect. 8.3.2).

Unwanted incident is one kind of event that reduces the value of assets. Unwanted incidents
occur as a result of a threat exploiting a vulnerability of an asset. Unwanted incidents
have a probability, i.e., there is a certain probability that a particular unwanted incident will
occur within a given timeframe. The probability is a value between 0 and 1. The value 0
means that the incident will never occur. The value 1 means that the incident will certainly
occur. Similarly, each unwanted incident has a consequence. The consequence should be
scaled to a value between 0 and 1. This scaling will naturally lead to imprecise numbers,
but the benefit of being able to evaluate the consequences for a set of assets will for this
kind of context bring significant benefits. Additionally, consequence and probability is
used for the assignment of risk – thus bringing benefits in terms of simplified risk assess-
ment and subsequent planning of countermeasures.

We model risk as the product of probability and consequence of an unwanted incident.
Thus, if either can be reduced to zero, the risk is zero. More likely, the value zero cannot
realistically be achieved for either probability or consequence. Rather, the software archi-
tect should consider both aspects concurrently in order to obtain a good basis for deciding
upon countermeasures. In terms of security architectural design, a prime objective is to
construct systems that carefully balance the risk with the economical impact of imple-
menting the countermeasures.

chitectural design of the application. These concepts include countermeasure, solution, de-
tection, prevention and recovery.

A countermeasure is some kind of action, normally associated with some form of secu-
rity control (an artifact), which seeks to reduce the vulnerability of an asset (or group of
assets). A variant, as discussed in Sect. 8.3.3, is supported by one or more countermea-
sures. The meaning of this is that a variant is distinct within the variation point if the set of
countermeasures is unique among the variants. An asset might be protected by multiple
countermeasures, and the mapping of the countermeasure(s) to the architecture model is
done to give the best possible effect for the asset in question.

A solution is an architectural decision that is used to achieve a quality attribute response.
Beneath this definition we include both architectural tactics and patterns. An architectural
tactic is a means of satisfying a quality-attribute-response measure by manipulating some

8.3.2 Architecture Submodel

282

Within the submodel architecture we have located the concepts that are related to the ar-

example CORAS [62], SAEM [9] or the approach of Cavusoglu et al. [11].

means, principles, techniques, or mechanisms that facilitate the achievement of certain
qualities in architecture. Similar to patterns, tactics capture a way to achieve a certain
quality requirement, but are not concrete enough to be used directly and hence have to be
instantiated as patterns. Examples of tactics for the quality attribute “reliability” are re-
dundancy and exceptions. Tactics may be specializations of another tactic. At some level
of specialization, the tactic becomes a pattern – i.e., a concrete solution to a problem.

a consequence. We use this interpretation of unwanted incidents to identify three generic
security tactics: detection, prevention and recovery (the latter two directly addressing
probability and consequence).

These high level tactics are useful for the application designer in order to facilitate rea-
soning about general approaches to solving the security requirements. However, similar to
high level qualities, they have very weak prescriptive power. We need specialized solu-
tions. Figure 8.2 illustrates the high level part of our solutions taxonomy (the security ar-
chitecture language is illustrated in Fig. 8.6).

Fig. 8.2. High level solutions hierarchy

Prevention. Prevention tactics are used to reduce the probability of unwanted incidents.
Figure 8.2 shows eight different specializations of this tactic that can be used in order to
accomplish this, possibly in combination. Access control is the implementation of authori-
zation, i.e., the process of ensuring that only designated actors are permitted to perform
certain actions on the asset. Service provider includes approaches that delegate the im-
plementation of preventive measures to external entities. Obfuscation means to re-arrange
information in order to make it less intelligible. Cryptography is an example of obfusca-
tion. Compartmentalization involves creating multiple security barriers and thereby reduc-
ing the probability that an attack endangers the whole system. Single access point is
exactly the opposite of compartmentalization; it involves centralizing access to the sys-
tem. The rationale is that it is easier to implement one access point correctly. End-to-end
security means to ensure security over the whole information chain. For many complex IT
systems, this tactic is of key importance as the number of part systems increases. Fairness
denotes tactics that seek to prevent a single threat agent from taking over the system. Finally,
controlled exposure is similar to obfuscation but includes mechanisms that actively parti-
tion information into a visible and an invisible part. Common for all prevention tactics is

2838 A Software Product Line

aspect of a quality attribute model through architectural design decisions [3]. Tactics are

Referring to Fig. 8.1 above, architectural tactics are a kind of solution that promises to con-
tribute to the wanted response from the scenario (i.e., maintain some of the security qualities
discussed in Sect. 8.4). Unwanted incidents have two important properties: a probability and

 T.E. Fægri and S. Hallsteinsen

that they do not eliminate the probability of unwanted incidents. Rather, they reduce this
probability to a certain level.

Detection. Detection means to determine that something is happening or has happened.
It does not affect the system’s direct resistance towards an attack. However, the detection
tactic can have a great value in many system environments. For example, it may enable
continuous improvement of system security. By examining unwanted incidents that have
happened, the system can be tuned to counter these kinds of incidents in the future. Moni-
toring and logging are two kinds of detection tactics. Monitoring has some kind of active
aspect, for example a process that continuously checks for changes or unwanted patterns
in the usage of a system. Logging, on the other hand, is primarily a passive arrangement.
An example might be the logging of certain events to a file. At some undefined point in
time, the log might be inspected. Embedded data integrity implies that extra information
is added to the original data which can be used to verify tampering.

Recovery. Recovery is the last main group of tactics. It seeks to address security con-

recovery tactics are illustrated. Fail-secure is the tactic of designing the system so that in
the case of unplanned events it will fail to a secure state, a state in which the system can-
not be further jeopardized. Redundancy is the tactic of employing multiple, somewhat in-
dependently working components with similar functional capabilities in order to withstand
certain failures in the component group. Finally, the tactic liability transfer involves re-
ducing the consequences for a system by transferring responsibility to another party. Like
prevention tactics, recovery tactics are not perfect. They cannot fully eliminate the conse-
quences of unwanted incidents.

As tactics are specialized, they become more prescriptive with respect to architectural
design. Further specialized, they become architectural patterns, prescribing components,

Fail-secure

Residual information protection

RecoveryPrevention

Access Control

Limited view

Fig. 8.3. Example specialization

component specifications, component collaborations and component roles. Figure 8.3
illustrates how two patterns (limited view and residual information protection) implement
two specialized tactics (access control and fail-secure, respectively). These two are exam-
ples from the security architecture language depicted in Fig. 8.6.

Patterns are filled with a gray background in order to illustrate that they are more pre-
scriptive than tactics.

Limited view implies that the user can only see information, menus or options for
which he is authorized. That is, access control is performed before information is pre-
sented. The opposite approach, called full view with error, implies that access control is
performed at a later stage, for example upon trying to execute a menu choice or view de-
tailed information for an item.

284

cerns by reducing the consequence (or negative impact) of incidents. Three subgroups of

Residual information protection involves making sure that no information is left avail-
able after a system crash or unexpected application termination. In this way the tactic of
secure failure is maintained.

Within the decision support submodel we group concepts that deal with representing, or-
ganizing and reasoning about requirements. It is generic in the sense that it can equally
well support other software qualities (e.g., generic ISO 9126 qualities).

The quality model represents and organizes our vocabulary for security requirements in
a common, easy to use structure. Within a product line, there will be variations in the
quality requirements between the different products. The ISO model says the following
about security: “Attributes of software that bear on its ability to prevent unauthorized ac-
cess, whether accidental or deliberate, to programs or data.” This definition is clearly too
generic to support requirement specifications for software architectures, a view that is also

model is presented in Sect. 8.4.
The quality model is broken down into quality attributes, each of which is a character-

istic of a software product. Quality attributes can be refined, meaning that they have one
or more subcharacteristics. Further, quality attributes may influence each other, through
the impact of architectural solutions.

We use scenarios to represent (views of) quality attributes. They consist of the three
main elements: environment, stimulus and response.

All scenarios have an environment, i.e., a context that may include aspects such as sys-
tem elements (i.e., assets), actors and processes.

Secondly, the scenario has a stimulus. The stimulus is used to model the activation of
the scenario, i.e., what triggers the architecture’s reaction to a security related concern.
Generically, the stimulus may take different forms. In relation to security, a stimulus is
something that may compromise the security of the system under evaluation. Thus, we
model threat as a kind of stimulus.

Lastly, the scenario has a (set) of response(s) that are the variants. The response is used
to model the architecture’s reaction to the stimulus. Openness in the architecture is repre-
sented as multiple responses within the same scenario, i.e., some quality aspect that can
vary and that has to be resolved by the software architect. The variation point includes a
description of the achieved effect on the quality attribute represented by the scenario and a
(set of) architectural solution(s) that promise to address that quality attribute. Each re-
sponse details the architectural solution used to achieve it and other known effects of this

tize these.

8.3.3 Decision Support Submodel

285

architectural decision. Typically, an architectural decision will have impacts on other
nonsecurity related quality attributes. The application architect must determine how to priori-

8 A Software Product Line

supported by Jung et al. [30]. The quality model we have developed for security is a spe-
cialization of the general ISO 9126 model for software qualities [29]. The detailed quality

 T.E. Fægri and S. Hallsteinsen

implement the architectural solutions indicated in the scenario.
Typically, an architectural decision affects more than one quality attribute. For exam-

ple, the same architectural pattern can improve performance but cause an increase in com-
plexity and a reduction of maintainability. We denote this phenomenon impact. Impacts
are summarized for each architectural solution.

Lastly, the decision model is the collection of scenarios. The software architect must
first determine the quality requirements that apply to the application to be designed. Then,
the scenarios representing these quality requirements must be identified. These scenarios
will then constitute the decision model for that application. Subsequently, for each appli-
cable scenario, the variation point is resolved in light of the particular requirements of the
application. The decision model is presented in detail in Sect. 8.5.

An example scenario, representing a certain aspect of confidentiality (maintaining con-
fidentiality in an application integration setting) is given above. In this example, the sce-
nario has two distinct responses – representing two alternative ways to affect the quality
attribute. One is to prevent the incident from occurring, i.e., reduce its probability through
access control. The other is to reduce the consequence of the incident by transferring li-
ability. Each of the two variants is subsequently described in more detail in the scenario
resolution part. The tactics and patterns that will help the architect in reaching the desired

Quality attribute: Confidentiality Withstand attacks in a group of cooperating applica-
tions

Environment: Application ac provides a set of services that makes sensitive information
available to other collaborating applications over the Internet.

Stimuli Response Resolution

The architecture prevents am from access-
ing nonauthorized services from ac.

V. 1 An application am at-
tempts to invoke services
from application ac with-
out the required authori-
zations.

The architecture allows am access to the
services, but all accesses are logged. This
facilitates recovery.

V. 2

Scenario resolution:
Ref. Approach Architectural solution

V. 1 The architecture requires that am is both
authenticated and authorized before being
allowed access to the services.

Prevention.
Access control.
(Component) authentication.
Authorization.

V. 2 The architecture acknowledges that avail-
ability of information may be more criti-
cal than preventing access to it. However,
by logging all accesses to the informa-
tion, liability is put on the application am .

Recovery.
Liability transfer.
Digital certificates.
Auditing.

286

effect by resolving the variation point are documented in the column “Architectural
solution.”

Each alternative solution included in the variation point is denoted a variant. Variants

The scenario is presented in two main parts. The main part, on the top, contains the en-
vironment, stimuli and response. The second part describes how the response can be ac-
complished. This scenario encompasses two different architectural decisions; (V.1) is to
reduce the probability of a security breach or (V.2) is to reduce the consequences.

The scenarios included in this reference architecture have been developed by extracting
security requirements from a number of companies, refining them to conform to our sce-
nario structure and then collectively reviewed in order to extract generic architectural
knowledge. Additionally, security literature has been utilized to support and extend this

8.4 Quality Model

This section describes our quality model. It is used to represent and organize our vocabu-
lary for security requirements The quality model assumed in the reference architecture is a

Fig. 8.4. The ISO9126 quality model for software systems

Although useful at an overall level, the quality “security” from ISO 9126 is too vague
to be useful in requirements engineering. Furthermore, Jung et al. show that security as a

concrete terms, this problem can be reduced. To precisely capture and support reasoning
about security requirements, security is broken down into the four intermediate level secu-
rity quality attributes integrity, confidentiality, availability and accountability. Figure 8.5
illustrates the specialization relationship.

2878 A Software Product Line

knowledge [21, 22, 28, 47, 54].

specialization of the general ISO 9126 model for software qualities [29] (Fig. 8.4).

subcharacteristic of “functionality” is problematic [30]. By defining security using more

quality

functionality

reliability

usability

efficiency

maintainability

portability

testability

stability

changeability
analyzability

operability

learnability

understandability

security
compliance

interoperability

accurateness

maturity
fault tolerance

recoverability

time behaviour

resource behaviour

adaptability
installability

conformance

replaceability

suitability

 T.E. Fægri and S. Hallsteinsen

Fig. 8.5. Security quality breakdown

We understand with these four attributes the following:

1. Integrity: The property that assets have not been altered or destroyed in an unauthor-
ized manner

2. Confidentiality: The property that assets are not made available or disclosed to unau-
thorized actors

3. Availability: The property of an asset being accessible and usable upon demand by
an authorized actor

4. Accountability: The property that ensures that the actions of an actor may be traced
uniquely to that actor

Our experience is that this breakdown is very useful as it assists in the determination of
security requirements. For example, during risk assessment, it helps improving common
understanding among the participants. By considering each of the four generic security
quality attributes in turn, one can more easily determine what quality properties are rele-
vant or not for the particular application. As a trivial example, in the context of an applica-
tion that serves public information via the Internet, confidentiality might be a low priority
quality, but integrity is likely to be of high importance.

As the complexity of the security domain is fairly high, we have used these four quality
attributes as a starting point for generating and organizing more specific business require-

Table 8.1. Examples of business requirements

quality business requirement

integrity
protection against unauthorized manipulation in user’s application
withstand attacks in a group of collaborating applications confidentiality
maintaining security on shared computers

availability protection against service disruptions

accountability prevent false impersonation

For each business requirement there are multiple scenarios exemplifying the require-
ment. The scenarios are documented in the decision model (presented in Sect. 8.5).

288

secure use of third party components

ments related to those aspects of security. Some examples are given in the Tb. 8.1.

Security

Integrity Confidentiality Availability Accountability

Although we do not discuss the requirement specification process in more detail here,
we assume that the application designer is supported by a risk assessment of the system.
In security engineering, precise requirements can only be made after assessing the risks
pertaining to the assets encompassed by the system. Broadly speaking, risks are events
that can jeopardize the security qualities. It is important that the risk assessment is done at
a suitable level of detail so as to give a good understanding of which assets are worth pro-
tecting and the level of risk that each of these assets is exposed to. This creates the basic
decision framework for the application designer when determining the security qualities
that shall apply for the application.

8.5 Decision Model

The process of building software architectures involves making well-considered design
decisions that are highly sensitive to problem domain knowledge. This section contains a
decision model for software architectures where security requirements must be addressed.
The model has been developed in cooperation with four industrial partners. 1–2 represen-
tatives from each company participated in 2–5 one-day meetings discussing and capturing
current practices. Roughly 150 man-hours were used on this activity. Additionally, mate-
rial from security literature was used to aid the model’s development. In order to reduce
redundancy, literature is primarily cited in the security architecture language (Sect. 8.6),
where the architectural solutions providing support to the scenarios have been described.

The structure of the decision model follows the conceptual reference architecture illus-
trated in Fig. 8.1; for each scenario, an environment describes the overall context, e.g. the
considered assets and the kind of applications that might be applicable for the scenario.
Subsequently, the stimulus illustrates the threat towards the assets.

Now, there might be different approaches to resolving a scenario. These are essentially
variants within the product line architecture. Different architectural solutions illustrate
design approaches that address the threat. Many variants thus refer to multiple architec-
tural solutions (the numbers refer to the solutions presented in the security architecture
language, the topic of Sect. 8.6). However, each response brings its own effects in terms
of how the risks are affected and effects on other quality attributes.

In the context of security, integrity is the property of information that it has not been ma-
nipulated by unauthorized actors. Integrity may be threatened wherever information is
stored, transmitted or used. We have identified three relevant classes of environments

boundaries, and (c) unauthorized manipulation in user’s application.

Using Externally Developed Components Securely

roach to reduce cost of developing software. However, the approach brings significant

8.5.1 Integrity

289

within the scope of this quality model (a) third party components, (b) dynamic security

The use of third party components (COTS or open source components) is an attractive app-

8 A Software Product Line

 T.E. Fægri and S. Hallsteinsen

additional efforts, be trusted to the same degree as internally developed components. For

Environment: A software system includes components developed outside the company.
Such components cannot always be trusted to the same degree as components developed

The architecture prevents the attempt by

thus reducing the consequence of the attack.

V.1

The architecture prevents the attempt by
enforcing traditional access control policies

V.2

component attempts
to modify
information it is not
authorized to
modify.

The architecture reduces the consequence of

party component’s supplier.

V.3

Scenario resolution:

Arch. Solution

V.1 The architecture reduces the freedom of

components are not allowed to execute
potentially dangerous actions.

Pattern 27: Sandbox.
Pattern 21: Multi
Barrier Security.
Pattern 17: Layering.

protected by access control and unauthorized
manipulation of information is prevented.

Authentication.
Pattern 6:
Authorization.

V.3
supplier, the supplier can be more easily held
responsible for the components’ behavior.

Pattern 12: Code
Signing.

Maintaining Integrity in Mobile Systems with Dynamic Security Boundaries

Occasionally, the security boundary of information changes over time. This introduces
additional requirements with respect to the security architecture.

Ref. Approach

Stimuli Response Resolution

290

challenges with respect to security. For example, it is difficult to determine whether a third
party component contains dangerous code or not. Third party components cannot, without

the distrustful, a third party component has the same security characteristics as a virus. In
real life however, most third party components will include some kind of insurance.

Scenario I.1 – Third Party Components

A third party
restricting third party components’ freedom,

for third party components.

the attack by imposing liability onto the third

execution of third party components. Third party

V.2 Third party components’ information access is Pattern 3:

As the third party components are verified by the

within the company. Incurred threats include Trojan horse attacks and espionage [35].

Scenario I.2 – Tampered Information During Mobile/Offline Usage
Environment: Support for disconnected clients complicates security. One must ensure that
the extended system boundary is accounted for by the security architecture. There is a po-
tential for loading the client or server with information that is not valid, e.g., it might have
been tampered with.

Stimuli Response Resolution

The architecture detects
maliciously manipulated in-
formation.

V.1 A threat agent may compromise a
mobile device and may
subsequently cause manipulated
information to be transferred to
the server system.

The architecture prevents
information from being
maliciously compromised.

V.2

Scenario resolution:

Ref. Approach Arch. Solution

V.1 Integrity check in the information enables
the detection of the maliciously manipulated
information and may be used to prevent it
from being accepted.

Pattern 12: Code
Signing.
Pattern 19: Message
Authentication Codes.

V.2 The mobile device prevents successful at-
tacks from threat agents.

Pattern 3: Authentication.
Pattern 8: Biometric
Authentication.

Scenario I.3 – Tampered Code Mobile/Offline Usage
Environment: Mobile clients get their code installed from the central server. In case the
server is compromised, there is a potential for loading the client with code that is not
valid, e.g., it might have been tampered with.

Stimuli Response Resolution

A threat agent has compromised
the application server and thereby
threatens to provide the client
device with potentially dangerous
code.

The architecture prevents
maliciously manipulated code
from being accepted by the client
device.

V.1

Scenario resolution:

Ref. Approach Arch. Solution

V.1 Code on the server is protected by authenticity
measures. Any integrity violations are detected by

Pattern 12: Code
Signing.

the client.

2918 A Software Product Line

 T.E. Fægri and S. Hallsteinsen

Maintaining a Defense Against Unauthorized Manipulation in User’s
Application

Information is, and should be, easily available in the user’s application. However, ease of
access constitutes a security risk in its own right.

Scenario I.4 – User Leaves Computer for some Time
Environment: A computer is left unattended for some time leaving it exposed to unwanted
incidents.

Stimuli Response Resolution

A threat agent attempts to
exploit a computer that
has been left unattended
by its user.

The architecture prevents any incidents by
locking the application after a certain
elapsed time, requiring the user to log in
afterwards.

V.1

Scenario resolution:

Ref. Approach Arch Solution

V.1 The architecture enables the locking of the ap-
plication after a certain period of inactivity.

Pattern 31: Timeout.
Pattern 3:
Authentication.

Scenario I.5 – Application Used on Exposed Device
Environment: An organization may gain significant benefits by enabling mobile workers
to use corporate applications while being on the move. However, the use of mobile com-
puters in noncontrolled physical environments may give rise to additional risks towards
integrity of information.

Stimuli Response Resolution

The architecture helps in detecting the attack and
providing timely alarms to the user.

V.1

The architecture helps prevent unwanted incidents
by strengthening user authentication procedures
when the application is used in a hostile
environment.

V.2

A threat agent
has gained
physical
access to the
mobile
computer.

The architecture reduces the consequence of un-
wanted incidents by reducing the amount of infor-
mation stored on the mobile computer.

V.3

The architecture reduces the consequence of un-
wanted incidents by limiting the information access
rights when the application is used in a hostile
environment.

V.4

292

Scenario resolution:

Ref. Approach Arch. Solution

V.1 The architecture contains surveillance
functionality that detects hostile
behavior.

Pattern 16: IDS (Intrusion
Detection System).
Pattern 1: Anomaly Detection.

V.2 The architecture supports the
implementation of contextual security
policies by which requirements on
authentication can be adjusted.

Pattern 4: Authentication
Levels.

V.3 The architecture minimizes the amount
of information stored on the mobile
computer.

Pattern 30: Thin Client.

Pattern 25: Residual Informa-

V.4 The architecture supports the implemen-
tation of contextual security policies by
which authorization levels are adjusted
depending on the physical environment.

Pattern 14: Contextual
Authorization.

Scenario I.6 – Information Access Rights not reflected in Application
Environment: During the development of applications, there is a continuous danger that
the correct authorizations are not reflected in the application.

Stimuli Response Resolution

Accidental errors, causing breaches in the
integrity of the information, are prevented in
the application code.

V.1 Security sensitive
application code is be-
ing written or
maintained. The developer is provided with instruments

to reduce the likelihood of not reflecting the
correct authorizations.

V.2

Scenario resolution:

Ref. Approach Arch. Solution

V.1 Access rights are encapsulated with the information
thus reducing the risk of writing erroneous
application code.

Pattern 18: Limited
View.

V.2
The architecture assists the application developer in
maintaining the integrity of information. The

Pattern 24:
Reference Monitor.

 architecture prescribes a common security resolving
functional component.

Pattern 28: Sentry.

293

tion Protection.

8 A Software Product Line

 T.E. Fægri and S. Hallsteinsen

Confidentiality is the ability of a system to restrict access to information to authorized us-
ers only.

Withstanding Attacks in a Group of Cooperating Applications

In systems composed of multiple cooperating applications, a certain level of trust must be
present. However, it is important to determine the implications and possible actions that
should be the result of potential breaches of this trust [48].

Scenario C.1 – Application Integration
Environment: Application ac provides a set of services that makes sensitive information
available to other applications over the Internet.

Stimuli Response Resolution

The architecture prevents am from access-
ing nonauthorized services from ac.

V.1 An application am
attempts to invoke
services from applica-
tion ac without proper
authorizations.

The architecture allows am access to the
services, but all accesses are logged. The
consequences for ac are therefore reduced.

V.2

Scenario resolution:

Ref. Approach Arch. solution

V.1 The architecture requires that am is both authenti-
cated and authorized before being allowed access
to the services.

Pattern 3: Authentica-
tion.
Pattern 6: Authoriza-
tion.

V.2 The architecture acknowledges that availability
of information may be more critical than prevent-
ing access to it. However, by logging all accesses
to the information, liability is put on the applica-
tion am

Pattern 3: Authentica-
tion.
Pattern 2: Auditing.
Pattern 15: Digital
Signatures.

Maintaining Security on Shared Computers

The benefit of being able to use your applications despite being without a private com-
puter might be justified in certain circumstances. However, the requirement to maintain
the confidentiality of information is severely stressed when the computer used to access
the application is shared with other people who may constitute potential threat agents.

8.5.2 Confidentiality

294

Environment: After a service has been used from public Internet access computers, there
may be traces of information left on the machines that can cause confidentiality violations.
This is a serious threat to confidentiality, as systems and applications may crash, which
could prevent full application control of the data/code loaded onto the computer. Further,
the administrative routines for the computer could prevent the user from manually ensur-
ing that traces of service usage have been cleaned up.

Stimuli Response Resolution

The architecture eliminates the storage of
potentially vulnerable information on the
untrusted computer.

V.1

The architecture protects all information
stored on the untrusted computer.

V.2

A user accesses a cor-
porate application from
an untrusted computer.
A threat agent subse-
quently gains control
of the computer. The architecture forbids access to particu-

larly sensitive information while using pub-
lic computers.

V.3

Scenario resolution:

Ref. Approach Arch. Solution

V.1 Information is not persistently stored on
the client computer, it is only viewed. The
central server maintains all information.

Pattern 13: Cookie.
Pattern 30: Thin Client.

V.2 All information that is stored, either tem-
porarily or permanently is protected and
only readable by authorized actors.

Pattern 11: Cryptography (of
all sensitive data in memory
and persistent storage).

Pattern 25: Residual Informa-

V.3 When an application is used on untrusted
computers, only certain, nonsensitive in-
formation is available.

Pattern 14: Contextual
Authorization

Availability is a system’s ability to provide service for a given percentage of the time.
Understandably, a system that is unable to provide service may cause great disadvantages
for its stakeholders. Reducing the availability of a service may of course be in the interest
of a threat agent. Thus, it is critical that availability is included as part of a security qual-
ity. We choose to discuss availability in terms of the timeliness of services.

At a high level, there are two principal causes for reduced service timeliness (a) the
service proper or (b) the service access path (i.e., networks and associated infrastructure).

8.5.3 Availability

295

tion Protection.

8 A Software Product Line

Scenario C.2 – Secure Use on Non-private Computers

 T.E. Fægri and S. Hallsteinsen

For a client however, it is impossible to distinguish between the two. We also address the
problems of hardware sabotage, i.e., attacks that cause physical damage to hardware.

Avoiding Service Disruptions

A threat agent may gain significant benefits from disrupting a service. Depending on the
potential negative business impact, the software architecture should support instruments to
reduce the likelihood or reduce the consequence of such attempts.

component may attempt to cause service disruption.

Stimuli Response Resolution

The architecture prevents the component
from disrupting the service.

V.1
component at-
tempts to cause
service disruption.

The architecture reduces the consequence
of unwanted incidents caused by the
component.

V.2

Scenario resolution:

Ref. Approach Arch. solution

V.1
doing certain operations that may cause
disruptions of the service.

Pattern 27: Sandbox.
Pattern 21: Multi
Barrier Security.

V.2 The component causes disruption at one
server, but redundancy ensures that the ser-
vice is quickly restored (note: measures need
to be taken to ensure that the same incident
does not occur at the redundant server).

Pattern 10: Clustering.
Pattern 20: Mirror Sites.

Scenario Av.2 – Denial of Service Attacks
Environment: A threat agent may establish Denial of Service Attacks towards a service
provider. Many sophisticated attacks, such as Distributed Denial of Service Attacks, may
be difficult to distinguish from the load caused by high popularity among a high number
of clients.

Stimuli Response Resolution

The architecture reduces the consequence
of the unwanted incident.

V.1 A DoS attack is estab-
lished against the sys-
tem. The unwanted incident is detected and

causes system administrators, etc. to be
warned.

V.2

296

A third party

The third party component is prevented from

Environment: When using a third party component in a solution, there is a threat that the
Scenario Av.1 – Malicious Third Party Components

Scenario resolution:

Ref. Approach Arch. solution

V.1 The architecture reduces the impact of
DoS attacks by invoking load balancing
techniques that prevent the system from
halting completely.

Pattern 26: Resource Throt-
tling, Pattern 7: Bandwidth
Throttling.

V.2 The architecture enables the detection of
the attack.

Pattern 16: IDS (Intrusion
Detection System).
Pattern 1: Anomaly Detec-
tion.

Scenario Av.3 – Denial of Service Attacks Towards a User
Environment: As a security measure, an actor’s account may be protected by a maximum
number of failed authentication attempts. After this, the account is disabled for some time
to prevent misuse. A threat agent may exploit this fact, and establish Denial of Service At-
tacks towards a single (or group of) user(s).

Stimuli Response Resolution

The exposure of the login ID is
reduced.

V.1 A threat agent establishes a
DoS attack against a user of the
system by attempting to login
several times, thus exceeding
the user’s allowed number of
failed login attempts.

Login IDs are not explicitly
open for attack.

V.2

Scenario resolution:

Ref. Approach Arch. solution

V.1 The attack is not prevented, but the archi-
tecture should reduce the exposure of us-
ers’ login IDs to minimize the chance of
such attacks.

Pattern 18: Limited View.

V.2 The architecture supports the use of smart-
cards for authentication, optionally com-
bined with biometric authentication, which
do not expose login IDs to attackers. Al-
ternatively, password authentication may
be the last mechanism in a combination.

Pattern 3: Authentication.
Pattern 8: Biometric Au-
thentication.

2978 A Software Product Line

 T.E. Fægri and S. Hallsteinsen

Accountability is the obligation or willingness to accept responsibility for one's actions.
That is, accountability enables us to place trust in actors and have reasonable expectations
about actors behaving according to their responsibilities. 1

There are two key objectives related to accountability (a) making sure that the actor is
identified correctly and (b) making sure that the identified actor cannot deny having per-
formed certain actions. The text below contains scenarios that address the first of these
two objectives. Scenarios representing the second objective have been omitted due to
space limitations, but are typically resolved using some form of digital signature (see Pat-
tern 15: Digital Signatures).

Preventing False Impersonation

An actor (e.g., a person or a component) should not be able to use the identity of another
actor in a false manner.2 If the attack is successful, the actor may subsequently endanger
the confidentiality, integrity and availability of a target system’s assets.

Scenario Ac.1 – User Authentication
Environment: Internally, most software systems need the ability to represent actors with
their identity. In order to ensure a suitable level of trust in the identity the actor must be
authenticated.

Stimuli Response Resolution

The architecture prevents unwanted in-
cidents by enforcing better policies for
usernames and passwords, making it
much more difficult to guess them.

V.1

The architecture detects the attack and
activates an alarm to administrative per-
sonnel.

V.2

A threat agent attempts
to impersonate an appli-
cation by guessing valid
username and password
combinations.

The architecture prevents that simply
guessing a valid user ID and password
combination is enough to breach the au-
thentication procedure.

V.3

1 Accountability includes a range of other issues also, of course. In order to enforce this quality,
involved actors must have a common framework to deal with representations, negotiations, legal
principles and resolution mechanisms. The framework should be maintained by an independent
governing authority.
2 Note that impersonation is a commonly used phenomenon in distributed systems because it allows
a component to act on behalf of a user or another component.

8.5.4 Accountability

298

Scenario resolution:

Ref. Approach Arch. Solution

V.1 The architecture reduces the likelihood of suc-
cessfully guessing valid usernames and pass-
words.

Pattern 5: Authentica-
tion Policy.
Pattern 22: Password.

V.2 The architecture detects the attack through
monitoring functionality and reports the attack
to a security team.

Pattern 16: IDS (In-

System).
V.3 The architecture enables the use of a combina-

tion of different authentication mechanisms, for
example biometric authentication.

Pattern 8: Biometric
Authentication.

Scenario Ac.2 – Integration of Authentication Systems
Environment: Useful software systems are long lived. Such systems are thus more likely
to face a requirement to be integrated with other systems. Application integration is a
complex problem area which also raises concerns about security. Each application may
have a separate security architecture dealing with authentication. Integration of these au-
thentication mechanisms, for example by using single sign-on technologies (see Pattern
29: Single Sign-On), is a benefit for efficiency and operability, but might cause potentials
for unwanted incidents in the form of more extensive attacks. Once inside, all systems
comprising the solution may be compromised.

Stimuli Response Resolution

The architecture reduces the consequence of
the false impersonation attack.

V.1

The architecture supports detection of the
false impersonation attack.

V.2

A threat agent has es-
tablished an attack to
impersonate an inte-
grated authentication
infrastructure. The architecture prevents the false imper-

sonation attack.
V.3

Scenario resolution:

Ref. Approach Arch. solutions

V.1 The architecture enables the implementation of
flexible security policies, for example including mul-
tiple authentication levels. There might be good rea-
sons to implement policies that include extra authen-
tication procedures for specific, highly critical tasks,
even if the actor has already signed in successfully in
the integrated authentication infrastructure.

Pattern 4: Authenti-
cation Levels.
Pattern 14: Contex-
tual Authorization.

trusion Detection

2998 A Software Product Line

 T.E. Fægri and S. Hallsteinsen

V.2 The architecture detects that an actor has imperson-
ated the system by observing unusual behavior by
the actor.

Pattern 16: IDS
(Intrusion Detection
System).
Pattern 1: Anomaly
Detection.

V.3 The architecture enforces the use of stronger au-
thentication mechanisms that are judged to be
strong enough for all systems participating in the
solution.

Pattern 8: Biometric
Authentication.

8.6 Security Architecture Language

One way to structure architectural solutions is according to the kind of tactics they spe-
cialize or implement. In the context of security, we have identified and structured a num-
ber of architectural solutions. We have structured them according to the three high-level
tactics detection, prevention and recovery. We cannot claim that this structure is the only
one which is useful because architectural solutions will also address requirements other
than security. However, the security architecture language presented here enables applica-
tion architects dealing with those kinds of requirements to effectively identify tactics and
patterns that address particular requirements related to security. The term “language” is

Architectural solutions are not described to a great level of detail. That would be out-
side the scope of this work. However, we provide references to further documentation. We
also document significant impacts on nonsecurity related quality attributes, such as com-
plexity and performance, for each pattern.

This section discusses architectural tactics, general solutions adhered to in software archi-
tecture. Although this chapter only focuses upon the solutions used to ensure security
qualities, such solutions apply to most architectural elements. Architectural solutions are
essentially structured knowledge, helping software architects to think in terms of solutions
for recurring problems.

We introduced architectural solutions in Sect. 8.3. Tactics can be structured in hierar-
chies where high-level tactics form the basis for more specialized tactics. At some level of
specialization, the tactic is so refined that it takes the form of a pattern.

In this section, we describe three high-level security tactics; prevention, detection and
recovery. Below these three, we identify subcategories of tactics. Figure 8.2 illustrates the
conceptual hierarchy of security tactics that we discuss in this section. The intention of the
figure is to show how we consider the relations between the tactics.

8.6.1 Tactics

300

discussed in the Chap. 7.

Prevention

Prevention is the tactic of creating barriers that potential enemies cannot circumvent.
There will never be fully secure systems, so prevention tactics aim at reducing the prob-
ability of successful attacks.

Access control. Access control is the tactic of controlling which actors are allowed to
operate upon assets.

Service provider. The tactic of using autonomous, possibly external entities to perform
some predefined function on behalf of other actors. Examples might be validators that in-
spect certain data according to given rules.

Obfuscation. Obfuscation is the tactic of making data difficult to understand, thus in-
creasing the cost of an adversary to interpret the data. This can for example be accom-
plished by applying cryptographic techniques.

Compartmentalization. The compartmentalization tactic means dividing a system into
sections, so that breaking into one section does not enable direct access to the others. This
tactic is useful to prevent attacks from damaging the whole system.

Single access point. This tactic is the opposite of the compartmentalization tactic. The
single access point tactic is based upon the assumption that it is easier to build one good
security barrier than multiple ones.

Fairness. The tactic of maintaining fairness involves balancing the consumption of re-
sources fairly according to the current availability. The fairness tactic is a key to reduce
the effects of Denial-of-Service attacks for example.

Controlled exposure. Complexity found in many software systems motivates the use of
architectural tactics that reduce the risk of revealing information to nonauthorized actors.
This tactic states that information is not exposed unnecessarily.

End-to-end security. End-to-end security is the tactic of ensuring that the whole chan-
nel between any two actors involved in service exchange is secured. The main rationale is
that it simplifies security management. The tactic makes it more difficult to establish man-
in-the-middle attacks, and it reduces the likelihood of weak points in the communication
chain between two partners.

Detection

Detection is a key tactic in security for determining that the system is under attack. If en-
emy attacks are detected, they can be countered or knowledge about the attack may be
used in the process of improving a system’s security. The sophistication of attacks will in-
crease. Therefore, it is crucial to be able to learn from attacks and adapt to an evolving
threat landscape. Worth noting is that detecting anomalies is inherently difficult – even the
best detection methods will always have false positives or false negatives, or both.

Monitoring. By monitoring, we mean inspecting certain parameters periodically. The
monitoring tactic is useful for detecting security attacks as it enables rapid detection of at-
tacks.

Logging. The tactic of logging implies that data are collected for inspection later.
Embedded data integrity. This tactic involves associating extra information with the

data in order to facilitate the detection of security breaches. Examples are message authen-
tication codes, extra data added to verify the message’s integrity and watermarking.

3018 A Software Product Line

 T.E. Fægri and S. Hallsteinsen

Recovery

As a high-level security tactic, recovery involves reducing the negative consequences of
attacks. In some situations, it makes sense to accept that attacks are successful and rather
spend efforts in reducing the consequence of those attacks.

Fail-secure. This tactic implies that in the event of a failure, the system should be left
in a secure mode, e.g., without leaving assets unprotected. A main element of the fail-secure

example of this tactic might be the following: If an application or component fails, sensitive
data should be left in a protected state. Another example: Avoiding too much detail in error
messages; detailed error messages could help attackers to exploit vulnerabilities in the
application/component. Detailed error information could instead be written to the audit log.

Redundancy. Redundancy is the tactic of using multiple components with similar func-
tional capabilities in order to withstand certain failures in the component group.

Liability transfer. Liability transfer is the tactic of making someone else responsible for
the potential damage.

The following sections briefly present the architectural patterns for security that are
referenced by the scenarios in the decision model (marked using italics in Fig. 8.6).
Most of the included patterns are nevertheless well documented in the literature

there is a continuum of specialization among architectural solutions. No line can be drawn
that unambiguously distinguishes tactics from patterns. The classification presented here
is therefore suggestive. Patterns are presented in alphabetical order.

Pattern 1: Anomaly Detection

Architectural solution: Detection Monitoring Intrusion Detection System (IDS)
Problem. Attacks via the network, e.g., the Internet, constitute a continuous threat to

networked computers (similar to the problem addressed by IDS in general, see Pattern 16:
IDS). A key challenge concerning guarding against these attacks is the difficulty in deter-
mining what constitutes an attack. It must be expected that threat agents will frequently
change the way attacks are established.

Solution. Anomaly-based intrusion detection is a kind of intrusion detection pattern. In
this pattern, behavior in the system is analyzed, and unusual behavior is regarded as an at-
tack [37]. The claimed benefit is an increased ability to prevent newly created attacks.

8.6.2 Patterns

302

tactic is that it is automatic, i.e., the system itself is designed to implement this tactic. One

Solutions become more and more specialized towards the leaves of the tree. Thus, tactics
are located at the top of the tree, while patterns occur further down. With consideration to
the volume of this chapter, only the architectural patterns that are referred to by scenarios
of the decision model in subchapter 5 are described. These are indicated with italics in the
figure.

In the figure below (Fig. 8.6), we illustrate the full taxonomy of architectural solutions.

[16, 21, 37, 38, 42, 47, 50, 54, 59]. Patterns are more prescriptive than tactics and are there-
fore described at a more technical level than the tactics. Patterns implement tactics. However,

Fig. 8.6. Security architecture language

3038 A Software Product Line

 T.E. Fægri and S. Hallsteinsen

1. Similar to signature based misuse detection IDS; anomaly detection incurs perform-
ance overheads, normally even heavier overheads than signature based misuse de-
tection IDS. Their flexibility is also somewhat lower because it takes more effort to
reconfigure the rules of the IDS.

2. Operability is negatively affected as these kinds of IDS have a tendency to generate

3. However, anomaly detection has a higher probability of detecting new kinds of at-
tacks, because IDS of this kind are based on a more abstract set of trigger rules [37].

Impact.

Pattern 2: Auditing

Architectural solution: Recovery Liability transfer
Problem. Not all actors in a system can be expected to accept responsibility for the ac-

tions they have initiated. A mechanism to establish this responsibility is thus required.
Solution. Auditing builds evidence in the correlation of what subject was responsible

for a particular event or set thereof. Normally, auditing depends on some kind of logging.
These logs contain records of which actor performed certain actions in the system. Addi-
tionally, information related to the time of the event, certain communication parameters
etc., are recorded. The auditing pattern means managing and using these logs in a con-
trolled manner in order to support placement of responsibility in situations where this is
necessary. See also [47].

Impact.
1. Auditing may involve sophisticated log analysis which in turn may have significant

resource requirements causing delays for other current processing on the system.
These delays may be somewhat alleviated by performing the analysis in low-priority
processes.

2. Auditing may have a preventive effect in terms of security. If users of the system
know that auditing mechanisms are in place, they might be discouraged from estab-
lishing attacks or trying to violate security in the system.

Pattern 3: Authentication

Architectural solution: Prevention Access control
Problem. In order to implement access control, i.e., ensuring that only authorized actors

are allowed to do certain operations, it is crucial that we know the identity of the actor we
are dealing with.

Solution. Authentication helps to increase the probability that we allocate the correct
identity to the actor. It achieves this by comparing some kind of extra evidence with the
supplied identity from the actor.

There are many kinds of authentication solutions available, but there are three main
categories (a) Knowledge-based, (b) object-based, or (c) ID-based (i.e., based upon some-
thing you know, something you have or some feature of yourself, respectively). Smart-
cards are able to support efficient and strong authentication [47], but require that the
terminal or computer is equipped with a smartcard reader.

304

large numbers of false alarms [11].

Impact.
1. Multiple aspects of security benefit from (and depend upon) authentication. Primar-

ily, accountability cannot be attained without sufficiently strong authentication of
the actor. Secondly, as access control depends upon authentication as a basic ele-
ment, confidentiality and integrity will indirectly benefit.

2. Usability. Authentication must be done in a manner that is suitable for the environ-
ment in which the actor operates. Otherwise, usability will suffer. Usability is highly

Authentication can be tailored to suit the security requirements of the application in
various ways. That is, the probability of correct authentication is given by how authentica-
tion is implemented, for example using the length and alphabet of passwords as parameter
(longer, more complex passwords are harder to guess). Please refer to [42] for a thorough
discussion of the topic.

dependent on the choice of authentication solution (see above). Also, different user
contexts will favor different authentication solutions. A range of usability design
tactics that can assist in accommodating different authentication solutions can be

Pattern 4: Authentication Levels
Architectural solution: Prevention Access control Authentication

Problem. For some applications, a single strength of authentication is inadequate.
There might be different usage scenarios, caused by different user situations, which man-
date differentiation.

Solution. Depending on the criticality of the asset to be secured, different strengths of

Impact.
1. In general, the same security benefits as for Pattern 3: Authentication apply. How-

ever, by differentiating the authentication levels, the security qualities will be im-
proved as it simplifies authentication tasks for the user and thus may stimulate the
use of better password routines, for example.

2. Operability will be negatively affected. Administration of different authentication
levels requires good configuration practices and tools.

3. Usability will generally be positively affected. Users are able to do more with less
hassle. Usability may also be negatively affected if the need for additional authenti-
cation procedures is not clearly motivated and communicated.

Pattern 5: Authentication Policy
Architectural solution: Prevention Access control Authentication

Problem. Many technologies, authentication technologies being no exception, do not
give the promised benefits unless they are part of an overall policy for their use. The
planned use of different authentication technologies should be coordinated and executed
in order to achieve goals set by the organization.

Solution. An authentication policy can include multiple aspects, depending on the
authentication technologies being used. Examples are (a) limited number of login at-
tempts, (b) increasing delays between allowed login attempts, (c) password strength poli-

3058 A Software Product Line

found in [58].

authentication may be applied [16].

cies, and (d) invocation of different authentication levels (described above). See also [12].

 T.E. Fægri and S. Hallsteinsen

Impact.
1. Given good tools for configuration and maintenance, operability is affected posi-

tively.
2. Accountability is highly dependent upon proper authentication of actors. Authentica-

tion policies can thus improve accountability.

Pattern 6: Authorization

Architectural solution: Prevention Access control
Problem. Security implies that a certain level of control can be exercised with respect

to which actors are allowed to perform operations in the system. In other words, we want
to control which subjects are allowed to perform which operations on which objects.
Implementing this kind of control function is nontrivial.

Solution. Managing relationships of the type (subject, operation, object) is called

dependent upon many characteristics. Example characteristics that influence the solution
are (a) the number of subjects compared to the number of objects, (b) the usage of the as-
sets (i.e., the objects), and (c) the frequency of changes to the authorizations. Pattern 14:
Contextual Authorization discusses a specialized alternative authorization regime. See

Impact.
1. The security qualities integrity and confidentiality can only be satisfied by a proper

implementation of authorization.
2. Performance will be affected differently, according to the usage pattern.
3. Usability can be heavily affected through the choice of authorization regime.
4. Operability is significantly affected. Most important is to determine what changes

most frequently: subjects, objects or the authorization operations themselves.

Pattern 7: Bandwidth Throttling

Architectural solution: Prevention Fairness
Problem. Facing Denial of Service attacks, a system might easily be overloaded with

traffic, causing the system to stop responding to any new requests, both from the network
or local input sources. This might even make it difficult to perform necessary corrective
adjustments to the configuration of the system.

Solution. By imposing limits to the bandwidth certain services on a server can con-

Microsoft’s Windows Server System 2003, allow the configuration of such throttles for
individual services. This way, for example the web server on a server machine can be
throttled (see http://www.microsoft.com/windowsserver2003).

Impact.

width throttling will be a suboptimal solution to the problem. Some of the available
bandwidth will remain unused. Overall performance during periods of normal opera-
tion will be lower.

1. It is very hard to distinguish legitimate traffic from malicious traffic. Thus, band-

306

authorization management [50]. This is a complex problem area as its solution is heavily

[41, 44, 50, 55] for other variations of authorization schemes.

sume, remaining services are left operative and responsive [18]. Certain systems, such as

2. Operability is positively affected. Once established, the throttle requires little, if
any, attention.

Pattern 8: Biometric Authentication

Architectural solution: Prevention Access control Authentication Context holder
Problem. It may be critical to use features of the subject to determine the subject’s

identity.
Solution. Biometric authentication is based upon using human features to distinguish

between different users. It is ID-based, meaning that it bears upon the uniqueness of the
person’s features to assist in safe authentication. See also [42].

Impact.
1. Biometry is recognized to give very high levels of confidence in authentication. Cer-

tain biometric features, such as the human iris, are very difficult to counterfeit. Thus,
in situations where high correct authentication is critical, biometrics might be a good
choice. Biometrics give good support against repudiation.

2. Biometry can be expensive to deploy; it normally requires additional equipment to
what is supplied as standard.

3. Biometric authentication can be resource intensive due to inherent tradeoffs between
precision and processing resources required [36].

4. Biometry has a strong influence on usability aspects; although they might be both
positive and negative, depending on the equipment used and the operative support
for the equipment [55].

Pattern 9: Certificate

Architectural solution: Prevention Access control Authentication Context holder
Problem. In asymmetric cryptography, there is a need to manage public keys. Not only

must they be stored and transmitted, but also their validity must be ensured.
Solution. A certificate is a digitally signed data structure that contains information

about an actor (a subject, person or application) and the actor’s public key [47]. Certifi-
cates are issued by trusted organizations called certification authorities (CAs) after the CA
has verified the identity of the subject. The CA is a kind of trusted third party (see Pattern
32: Trusted Third Party).

Impact.
1. There are only minimal effects on quality attributes from the use of certificates per

se. They are merely relatively simple data structures. However, most organizations
want a certain degree of trust in the management of them. Thus, e.g., certificate

etc. is more involved and is likely to affect quality attributes more. See Pattern 32:
Trusted Third Party).

307

management issuing, expiration management and trust management through CAs,

8 A Software Product Line

 T.E. Fægri and S. Hallsteinsen

Pattern 10: Clustering

Architectural solution: Recovery Redundancy
Problem. Single points of failure within a given system architecture must occasionally

be eliminated in order to obtain the wanted availability.
Solution. Clustering is an established pattern to avoid single points of failure. Essen-

tially, it means implementing a virtual server farm, so that two or more servers appear as a
unified server resource. Clustering may be implemented at different levels in the system
architecture, for example by replicating the communication links, the servers, the disks,
etc. However, care must be taken to ensure that the redundancy is not broken unintention-
ally. Clustering may be used for multiple purposes, such as load-balancing or failover
[39]. Failover means that a surviving server may completely take over the tasks of a failed
server. Some clusters can support both kinds of functionality.

Impact.
1. Clustering solutions for certain server systems may allow for load balancing between

the servers during normal operation (i.e., no failures). This will improve performance.
2. Operability is affected negatively. Clustering systems can be hard to maintain, and

they do require a good overview of the working of the system. For example, certain
applications may not work correctly in a clustered environment due to the risk of
losing consistency.

3. Maintainability may be positively affected. Certain clustering technologies allow
single machines in the cluster to be “taken out” of the cluster for maintenance, such
as operating system upgrades and hardware component replacement. The remaining
machine(s) respond to service requests in the meantime.

Pattern 11: Cryptography

Architectural solution: Prevention Obfuscation
Problem. Often, information must be transmitted over media that is open to other, po-

tentially malicious actors. Confidentiality should still be maintained.
Solution. Cryptography address the problem of maintaining confidentiality of informa-

are two main categories of cryptography (a) symmetric and (b) asymmetric. The former
requires that both originator and recipient know the key. The latter is based upon two
keys, a private and a public key. The private key should remain known only to the owner
while the public key can be shared with anybody. However, it is important that the asso-
ciation between the private and the public key remains protected (see discussion on cer-
tificates in Pattern 9: Certificate).

Impact.
1. Performance is affected strongly by the choice of cryptographic solution. Generally,

there are two rules (1) Asymmetric cryptography is more computationally intensive
than the symmetric counterpart. (2) Accessing encrypted information by guessing
the key is more difficult as the length of the key increases. However, longer keys
also increase the computational resources required to encrypt and decrypt the infor-
mation.

2. Operability is highly affected, mostly negatively, by the use of cryptographic tech-
niques. The challenge of managing keys, i.e., distributing them, is complex. See also
the discussion of trusted third party in Pattern 32: Trusted Third Party.

308

tion by scrambling the information into unintelligible data using secret keys [17]. There

Pattern 12: Code Signing

Architectural solution: Detection Embedded data integrity
Problem. In many systems, there is a need to install additional code after activation.

Additional code, sometimes originating via the network, must be trustworthy.
Solution. A digital checksum, computed from a code unit such as a component, is

appended to the code unit. The digital checksum is computed by the owner of the code
unit using some predefined scheme known also by the recipient of the code unit. With
a certain probability, modifications to the code unit will result in a mismatch between
the code unit and the checksum. The recipient, upon detecting this mismatch may decide
how to proceed (e.g., reject running the code, run the code with reduced privileges,
etc.) If no mismatch is detected, the checksum provides evidence that the code unit
was developed by a given organization and that it has not been modified after leaving
the developing organization.

Impact.
1. Code signing increases the complexity of communication. There must be a regime

for agreeing on the code in the checksum.
2. Performance. If the granularity of the code unit becomes very small, or the fre-

quency of importing new code units is very high, the signing and verification of the
code may consume significant computing resources on both machines.

3. Code signing, given appropriate schemes for generating the code, gives very good
protection against integrity violations. They also support nonrepudiation.

Pattern 13: Cookie

Architectural solution: Prevention Access control Authentication Context holder
Problem. A server may need to manage stateless client sessions. The client should only

maintain a minimum amount of state.
Solution. The cookie is a data item that stores certain information about a client’s ses-

sion (typically with a web server). The cookie enables the server to associate a series of
client requests with the same client without adding significant overheads to the data

Impact.
1. Installability (i.e., ease of deployment) is improved. Cookies support the notion of

thin clients (see also thin clients discussed in Pattern 30: Thin Client).
2. Resource behavior, in particular scalability, is improved. The cookie is small and

only adds a small amount to the volume of information that needs to be communi-
cated between client and server.

3. Security, and confidentiality in particular, can be damaged by the use of cookies as
they are normally transmitted in clear text as part of the HTTP protocol. Although

functionality to encrypt or otherwise protect the cookie. Alternative mechanisms for

3098 A Software Product Line

transmissions [32].

the protocol does provide a suggestive security mechanism [32], it does not include

this purpose have been proposed in [44].

 T.E. Fægri and S. Hallsteinsen

Pattern 14: Contextual Authorization

Architectural solution: Prevention Access control Authorization
Problem. Certain application domains benefit from dynamic authorization policies in

which changing parameters about the actor should be used to control authorizations.
Solution. Contextual authorization is a sophisticated form of authorization scheme.

Contextual authorization implies that it is knowledge about the actor’s current context (or

context can be relevant for determining the appropriate authorizations; examples include

Impact.
1. Suitability is improved. The authorizations can more precisely reflect the real needs

of the application.
2. Operability for the end-user is improved, as the authorizations better reflect the ac-

tual need. However, from an administrative point of view, operability becomes more
elaborate and difficult, as there are more parameters and configurations to manage.

3. Performance is negatively affected because a more complex set of rules related to
the actor’s context must be processed before access is granted or denied to a parti-

and managed by the system.

Pattern 15: Digital Signatures

Architectural solution: Recovery Liability transfer
Problem. The recipient of a document may want to establish trust in that the claimed

originator sent it, and that the document has not been modified after leaving the claimed
originator.

Solution. A digital signature is a kind of watermark on a piece of information. An actor
can sign an electronic document to increase the trust of the recipient in believing that the
document originated from the claimed actor and that it is not tampered with. Digital signa-
tures require asymmetric cryptography and use public and private keys. The signer uses
his private key to encrypt a hash value generated from the document. The recipient will,
by decrypting the hash value with the signer’s public key, verify that the same hash value
is generated from the received document. It is worth noting that digital signatures per se
do not provide absolute guarantees, but rather function as evidence of the authenticity of
the signed document [43].

Impact.
1. Digital signature is primarily an instrument to avoid repudiation and will therefore

assist accountability.
2. The use of digital signatures will improve integrity. Forgery can be detected using

digital signatures.
3. Operability may be negatively affected. In large user communities the management

of public keys requires a good infrastructure (PKI).

cular (set of) object(s). Additionally, context information must somehow be gathered

efforts manageable.

310

situation) that defines the appropriate authorizations [50, 56]. Many aspects of the user’s

the current role, the environment of the user or other attributes [16, 41].

The rule-based approach described in [16] might be a viable approach to keep the

4. Performance is negatively affected. The use of asymmetric cryptography is resource
intensive. Similarly, the public key of the originator must be obtained before the
signature can be verified. This will add extra time to the verification process.

Pattern 16: IDS (Intrusion Detection System)

Architectural solution: Detection Monitoring
Problem. Attacks via the network, e.g., the Internet, constitute a continuous threat to

networked computers. Implementing protection against spurious attacks via the network
should not be the concern of applications – it should be dealt with at the systems (or
framework) layer. Another part of the concern is to how to determine the difference
between normal activity and attack.

Solution. An IDS addresses the problem by implementing functionality for monitoring
activity [47]. A good IDS provides a high accuracy of detecting attacks while maintaining
low false alarm rates.

There are two principal types of IDS, categorized by the strategy they use for detecting
attacks (a) anomaly detection and (b) signature detection. Orthogonal to these strategies,
they can be implemented as network-based or host-based IDS. A network-based IDS is
mainly concerned with scanning the network traffic, while a host-based IDS targets traces

Impact.
1. Security in general will benefit from IDS because if attacks are detected, they may

be prevented.
2. Operability is negatively affected. IDS, in particular by anomaly detection types

which may require frequent updating of configuration settings.
3. Performance. Depending on the level of sophistication of detection, the IDS will

consume a certain amount of computing resources on the host while scanning logs
(in case of host based IDS) or network resources (in the case of network based IDS)
for the monitoring of network traffic.

Pattern 17: Layering

Architectural solution: Prevention Compartmentalization
Problem. Assuming that some attacks are successful, we want to limit the consequence

of the attack.
Solution. Each security barrier an attacker must conquer adds to the resources the

ware architecture consist of a set of layers (or parts) which communicate through a well-
defined set of interfaces. Although the interfaces are well-defined, this does not mean that
an attacker has easy access to them. Note: Tiering is a more specific kind of layering, in
which the layers are deployed with separate machines. Layering is not concerned with the
physical deployment of the parts.

example [37].
on the different host machines (inspecting, e.g., log files on the host machine). See for

3118 A Software Product Line

attacker must posses before being successful [47, 54]. Layering prescribes that the soft-

 T.E. Fægri and S. Hallsteinsen

Impact.
1. Layering may benefit integrity and confidentiality. An attacker who is able to mod-

ify or read data used in one layer need not obtain the same capabilities over data in
another layer of the architecture.

2. Layering is an implementation of the tactic separation of concerns (not part of this
reference architecture) and is a benefit for maintainability.

3. Layering may benefit deployment. Although layering is not directly concerned with
deployment, layers normally form natural process boundaries. Process boundaries
can again be used to select deployment configurations.

Pattern 18: Limited View
Architectural solution: Prevention Access control

Problem. The user should not be allowed to perform operations that from a security
perspective are known to cause access violations (or “access denied” responses). This will
only create a less operable system.

Solution. Reducing the exposure of information to a minimum is beneficial for oper-
ability. It is also good for security in general and confidentiality in particular. Limited
view implements a solution to this challenge by not exposing any information that is not

programming interfaces (APIs. Thus, by not being visible, the actor is not presented with
functions that are not allowed while the risk of breaches to confidentiality is reduced. The
pattern can be implemented by for example views in an SQL database or by GUI code.

Impact.
1. Operability is normally very positively affected. By implementing the limited view

pattern, there is no need to implement custom data hiding functionality. Addition-
ally, a positive effect of limited view is that the probability of error messages due to
security violations is reduced.

2. Complexity of implementation and maintenance can be high.

Pattern 19: Message Authentication Codes
Architectural solution: Detection Embedded data integrity

Problem. During data communication, data might become corrupted. There are many
reasons for this; one is a malicious threat agent that establishes attacks to hinder commu-
nication between two actors by attempting to influence the data stream.

Solution. The solution is similar to code signing. Data integrity verification checksums
are added to the source data. They are computed by the sender from the original data us-
ing some predefined scheme known to both sender and recipient [47]. With a certain
probability, modifications to the original data will result in a mismatch between the re-
ceived data and the checksums. The recipient, upon detecting this mismatch, can request a
retransmission or trigger an incident response.

Impact.
1. For security, error detection codes increase the likelihood of detecting integrity

breaches.
2. Performance. Computing checksums and adding these checksums to the data stream

requires resources and consumes a certain amount of the available bandwidth on the
channel. Further, depending on the frequency of retransmissions, predictability of
communication latency is reduced.

312

explicitly authorized to the actor [59]. Information in this context also includes application

Pattern 20: Mirror Sites

Architectural solution: Recovery Redundancy
Problem. A threat agent, such as natural disasters like fires and floods, may set a whole

set of machines out of service.
Solution. Redundant processing facilities can withstand this kind of threat. The mirror

sites pattern defines a backup site that can take over normal operation if the master site
becomes nonoperational. The correct operation of such disaster recovery sites depends not
only on technical measures, but also on good and well executed manual procedures per-

Impact.
1. The cost of establishing mirror sites is high. To reduce the impact of the extra cost,

applications may be run on both sites during normal operation thus making better
use of the available resources. Further, failover procedures must be tested frequently
to guarantee correctness.

2. A high degree of availability can be achieved. For certain kinds of environment this
justifies the extra cost.

3. Operability becomes more complex. Procedures for failover, i.e., the actual proce-
dure for switching from one failed server to another functioning server, must be
properly and frequently tested.

Pattern 21: Multi Barrier Security

Architectural solution: Prevention Compartmentalization
Problem. Complex systems should not be completely jeopardized due to single inci-

dents.
Solution. By constructing multiple barriers for potential threat agents, the probability

that the whole system is damaged will be reduced. The solution can be implemented using
for example operating system processes as barriers. Multi barrier security is also known as
defense in depth [45].

Impact.
1. Multiple barriers imply more administration and thus decreased operability. The sys-

tem can also become more cumbersome to use for end users.
2. Multiple barriers may help to separate concerns, thus improving maintainability.
3. Multiple barriers may reduce performance.

Pattern 22: Password

Architectural solution: Prevention Access control Authentication Context holder
Problem. Representing evidence for proving identity.
Solution. The password is a bit string (normally in the form of a character string) given

to the actor by which the actor is later authenticated. Upon request, the actor supplies the
password to the system which subsequently compares it with the password stored in the
password database for that particular actor. Supplying the correct password is evidence
that the actor is the one claimed.

3138 A Software Product Line

formed by on-site personnel [1].

 T.E. Fægri and S. Hallsteinsen

In addition to this simple scheme, security policies directing the use of passwords, may
involve rules for how to construct legal passwords, how often they should be changed and
so on.

Impact.
1. A good high-entropy password that is kept secret gives very high confidence authen-

tication. However, passwords do not give any support against repudiation because
they can be shared or stolen [42]. That is, passwords can only partly support
accountability.

2. Operability is likely to be challenged. Remembering passwords requires a certain
mental effort. Long passwords are required to give appropriate protection against
password cracking threats. Some environments make entering passwords difficult,
for example small computers without proper keyboards. Further more, users can
only remember a finite number of different passwords. As security policies enforce
changing passwords frequently, user’s mental capabilities are stressed.

3. Complexity is low, thus bringing benefits to maintainability.

Pattern 23: Principle of Least Privilege

Architectural solution: Prevention Compartmentalization
Problem. In large scale software systems the number of actors and assets can be very

high. This complicates the task of ensuring the security of assets. A key challenge is to
keep the cost of maintaining security at a low level.

Solution. The pattern (consistently referred to as a principle in literature, but prescrip-
tive enough to be called a pattern) states that anything that is not expressively permitted is
denied. Essentially, it creates compartments of information accessible by certain actors
only [53]. In practice, it means that unless there is an authorization for an actor to access a
subject, the authorization request is denied.

Impact.
1. Usability (in particular operability) is likely to be negatively affected by this pattern.

It is inherently difficult to predict in advance the assets needed by an actor to com-

2. Confidentiality and integrity benefit greatly. The risk of gaining unauthorized access
to an asset is reduced.

Pattern 24: Reference Monitor

Architectural solution: Prevention Single access point
Problem. Having to administrate multiple security related mechanisms decreases oper-

ability. It may also be a threat to security itself, as the risk of making errors increases.
Solution. The reference monitor is a single access point for a range of security related

requests. There is no other way to get to the resource. It is comparable to an interpreter
with added security checking functionality [53]. Thus, if the reference monitor is imple-
mented correctly, the risk of error is reduced. It simplifies the design of the architecture.

314

plete a set of tasks [61].

Today, the reference monitor pattern is often implemented by operating systems [28].

Impact.
1. The reference monitor may become a performance bottleneck as all security related

requests must be processed by the monitor. The problem could be alleviated some-
what by inline reference monitors, but only at the expense of increased complexity

2. Maintainability is improved through separation of concerns. The reference monitor
is a single functional module that handles all security related requests.

3. The enforcement of integrity and confidentiality is easier to verify, and is thus pro-
bably improved, because the reference monitor is the only functional module dealing
with security requests.

Pattern 25: Residual Information Protection
Architectural solution: Recovery Fail-secure

Problem. Upon unexpected termination of programs, data from that program may remain
in storage and be available through malevolent allocation of that storage by a threat agent.

Solution. The pattern residual information protection seeks to prevent leakage of in-
formation from one instantiation of a type of object to another instantiation of that type of

tection.
At the basic level, residual information protection requires encryption of stored data

(see the discussion on Pattern 11: Cryptography). To further increase the security, mecha-
nisms for automatically deleting information upon failed login attempts or after a timeout
can be applied.

Impact.
1. On small devices, for which this pattern might be especially useful, there are limited

computing resources. Encryption functionality might incur significant performance
overheads.

Pattern 26: Resource Throttling
Architectural solution: Prevention Fairness

Problem. Certain types of unwanted incidents are caused by threat agents generating
excessive load on critical system resources, thus rendering the system unresponsive to
operative or administrative requests (also known as Denial of Service attacks).

Solution. One solution to the problem is to limit the amount of resources that can be
allocated by certain services, for example web servers. Although a negative consequence
of this is that the maximum workload that the system can sustain will now be lower than
necessary. An implementation of the pattern has been described in [40].

Impact.
1. Performance, during normal operation is lower. Some resources are reserved.

Pattern 27: Sandbox
Architectural solution: Prevention Compartmentalization

Problem. It might be beneficial to incorporate code in an application that has been
developed by organizations for which a suitable level of trust cannot be established.

3158 A Software Product Line

[33].

object [28]. For example, the approach taken in MULTICS, by only clearing residues
when the storage area was explicitly re-assigned [49], does not give the appropriate pro-

 T.E. Fægri and S. Hallsteinsen

Solution. This pattern involves building a contained execution environment for poten-
tially hostile code (and thus resembles a “sandbox”). Attempts to perform actions that are
not permitted by the security policy for the execution environment are prevented. Within
this execution environment, any code can run without the risk of endangering the system
[47]. Examples of this pattern are, e.g., the Java Virtual Machine, the Common Language
Runtime from Microsoft, and efforts at Hewlett Packard that extend the operating system

Pattern 28: Sentry

Architectural solution: Prevention Controlled exposure
Problem. It is desirable to simplify the programming model for application program-

mers. Rather than having to understand all sorts of authorization mechanisms they should
be provided with a simple mechanism that would allow them to operate upon data that
was already authorized for the subject.

Solution. The sentry pattern was observed during an architecture evaluation session and
has not been published in other literature. However, the sentry is similar to the proxy de-
scribed in [47], but it is different in the sense that it essentially encapsulates the imple-
mentation of authorization rules. The sentry is a kind of proxy for designated classes. It
provides a security-amended interface that is identical to the underlying class. Use of the
sentry is not enforced however, the programmers also have access to the underlying class,
without the authorization checks built in.

Impact.
1. The sentry is a kind of proxy pattern, thus it does introduce extra overhead in proc-

essing by adding another level of indirection and most likely extra processing
required for the authorization procedures. Having said that, the sentry also gives a
very good potential for optimizing the determination of authorizations. Because the
sentry instance is associated to only one object in the program, security parameters
related to that object can be cached in the sentry, thus giving gains in terms of per-
formance.

2. The sentry simplifies the programming model for the application programmer. Thus
maintainability is improved.

Impact.
1. The sandbox introduces another level of indirection (i.e., the interpreter or reference

monitor that governs requests for system resources). This adds a certain performance
overhead.

2. In terms of security, both confidentiality and integrity are greatly improved by the
sandbox pattern.

3. To provide a flexible platform for component execution, the sandbox must include
flexible security policy management features. There are significant differences in the
approaches prescribed by Sun’s Java Virtual Machine and the Common Language
Runtime from Microsoft [46]. These must be considered when determining the tech-
nical platform for the application.

316

[60].

Pattern 29: Single Sign On
Architectural solution: Prevention Access control Authentication

Problem. A very common problem in distributed systems is the burden felt by the users
to remember a distinct password for any single system they want to use. Therefore, many
users choose shorter passwords than recommended or even decide to write down pass-
words on paper notes.

Solution. The solution offered by this pattern is to integrate the authentication subsys-
tems of multiple systems into a single, coherent whole [47]. Thus, by completing authen-
tication via the single sign on solution, the actor is authenticated on all subsystems.

Pattern 30: Thin Client
Architectural solution: Prevention Compartmentalization

Problem. Certain environments are particularly vulnerable to attacks. Computers used
in such environments should operate upon the least possible amount of assets, and seek to
reduce the storage of assets locally.

of this pattern is that there is a physical boundary between the server and the client. In addition,
the thin client pattern prescribes that only the minimal amount of processing and storage is
done at the client (in contrast to thick- or self-reliant clients). Although there is a contin-
uum between thin and thick clients, an example of a thin client would be a web-browser.

Impact.
1. Less information and code is stored on the client. This reduces the consequences if a

threat agent is able to compromise the machine. Thus, integrity and confidentiality
will be improved.

2. Time behavior is likely to be somewhat impaired. It may be difficult to achieve good
responsiveness in a GUI which is heavily bound by the latency of the underlying
network.

3. Installability is greatly improved by the thin client pattern. Clients are small, and
require very little technical infrastructure on the client machine.

Pattern 31: Timeout
Architectural solution: Recovery Fail-secure

Problem. In case a session is left open for an extended period of time, there is a chance
that the actor forgot to close it. This creates a potential for unwanted incidents.

Impact.
1. The same security benefits as for Pattern 3: Authentication.
2. Reliability: The single sign on module constitutes a single point of failure. It there-

fore constitutes an attractive target for attacks such as Denial of Service attacks.
3. Performance: The single sign on module is responsible for all authentication requests

for the subsystems. If not scaled appropriately, it may become a bottleneck.
4. Operability is increased: All administration can be performed through the same sys-

tem.
5. Usability: Users will observe increased usability as they now need only a single

authentication procedure.
6. Replaceability is hampered: Single sign on solutions typically require a certain

amount of adaptation to the applications taking part.

3178 A Software Product Line

Solution. The thin client pattern is a variant of the client server pattern [19]. One aspect

 T.E. Fægri and S. Hallsteinsen

Solution. The timeout pattern automatically locks the session after a certain period of

implementations of the pattern. The actor will have to re-establish the session if the lock
has been triggered.

In practice, multiple variants of the timeout can be implemented. At the GUI level, a
common approach is to lock the keyboard/screen after a period of inactivity. The user will
then have to unlock the GUI in order to continue working. Typically, this is unlocked us-
ing a certain password. Another variant of the system lock is found at the communication
session level. Upon establishing communication sessions, a timeout starts running. If the
session is unused for the specified timeout period, the session will close and it will have to
be re-established again.

Impact.
1. Operability is somewhat reduced. Depending on the timeout value of the timeout

pattern, the actor can be forced to perform a number of unnecessary attempts to re-
establish a session.

2. Complexity is negatively affected. Any actor interacting with a system that imple-
ments timeouts will have to consider the situation that a session expires and requires
renewal.

Pattern 32: Trusted Third Party
Architectural solution: Prevention Service provider

Problem. For transactions between two or more actors, a certain level of trust must be
present in order to facilitate efficiency.

Solution. A solution to providing trust is a trusted third party (TTP). The TTP is a secu-
rity authority or an associated agent that is trusted by the participating actors [47]. A TTP
can support multiple services in a security architecture, for example authentication re-
quests, authorization requests or issuing/revocation of certificates with public keys for
digital signatures or code signing.

The TTP is a network entity which responds to requests from the trusting actors.

Impact.
1. The availability of the TTP is critically important for the actors. Thus, the reliability

of both the network connectivity and the machine upon which it runs will have di-
rect effects for the working of the cooperating actors.

8.7 Using the Reference Architecture

The reference architecture provides decision support for architecture derivation and
evaluation in a product line context. It is intended to function as a tool for this purpose.
Below we provide some guidance for its use.

Each application will have specific quality requirements, these requirements must be ac-
commodated in an application dependent quality model. The application dependent qual-
ity model is obtained by determining which quality attributes of the generic quality model

8.7.1 Architecture Derivation

318

inactivity on a session [20]. The exact duration is determined by a timeout value, used in

are relevant, and then resolving the appropriate variation points in the scenarios using the
application’s specific quality requirements.

Using the variants suggested by the scenario, one should consider the architectural
solutions referred to. Multiple solutions may help to satisfy the requirement; in that case
one should select the solution (or solutions) that have the best total effect on the quality at-
tributes. Priorities of the scenarios, determined for each product, may help to resolve such
trade-off situations.

The architectural solutions selected here, together with any prescribed architectural
solutions for the product line architecture, will constitute the architectural solutions pre-
ferred for the application architecture.

The requirements that an architecture should fulfill will vary over time. Thus, it makes
sense to evaluate the architecture for potential gaps between the expectations and the qual-
ity attributes supported by the architecture.

The reference architecture is a tool that can support this process. Similar to the process
for architecture derivation, the quality requirements that the architecture should fulfill
must be determined first. By examining the quality model and the decision model embod-
ied by this reference architecture, the scenarios that best represent the requirements can be
selected and their variation points resolved. Then, the architectural solutions used in the
actual architecture can be compared with the ones suggested by the scenarios. Diver-
gences can then be used as a foundation for subsequent analyses of potential architectural
changes.

Capturing valuable architectural design knowledge is an overall goal of the reference ar-
chitecture. This is not a static activity. As new knowledge is collected in the organization
it should be reflected in the reference architecture. The reference model accommodates
this in several ways.

As previously noted, the decision model is based upon quality requirements formulated
as scenarios, extracted, refined and generalized from business requirements relevant for
the four companies contributing to the decision model (see Sect. 8.5). This approach has
given us a useful starting point for the decision model, but the model should be main-
tained in order to provide maximum value to the organization using it. A significant
advantage of the proposed decision model is its extensibility. New scenarios can be added,
existing ones can be improved. Thus, the adopting company may tailor the model to inter-
nal knowledge and experience. An example of this is the adding of new responses to exist-
ing scenarios in order to increase variability in the application architecture.

The security architecture language has been developed by reviewing a large amount of
security related sources. No claims can be made about its completeness or correctness
however. Instead, it is a proposal that we have found useful in our work together with
companies. As adopting companies gain knowledge of their own language, the proposed
language can be extended, modified and maintained. For example, it is likely that compa-

8.7.2 Architecture Evaluation

8.7.3 Evolution of the Reference Architecture

3198 A Software Product Line

nies use specializations of the described security architectural solutions. In that case, it
will make sense to include also these in a revised language.

Hopefully, these efforts will help to ensure that the reference architecture remains an
effective tool for the organization in its efforts to build better architectures. Similarly, it
supports the management of this architectural knowledge within the organization.

8.8 Validation

There were two main questions we wanted to investigate through the development of this
reference architecture: Firstly, is it viable to represent architectural security knowledge in
a reference architecture? Secondly, and most important: Does the approach give value to a
software company that wants to develop software architectures concerned with security?

By constructing such a reference architecture and subsequently describing it, we be-
lieve we have affirmed the first question. It has also been presented and discussed several
times at various project meetings and the comments that were received have been used to
revise and improve it.

To answer the second question we have used the reference architecture to guide archi-
tectural design and support architecture evaluation in three different software product
companies. These three were also contributing to the construction of the reference archi-
tecture. The fourth company that contributed to the reference architecture did not partici-
pate in its validation. For reasons of confidentiality we denote them as A, B and C.
Company A is a large international telecommunications solutions provider, companies B
and C are medium sized software houses in the information systems domains. We did not
have the resources available to do complete security architectural designs or reviews in
any of the companies. Accepting this, we chose to focus on certain aspects of the various
application architectures and selected a few particularly important capabilities in each.
Here we cannot reveal all details of the security reviews but we’ll provide examples from
each of them.

Generally, for all the companies we observed a very positive attitude towards a system-
atic review of security architecture. During validation in company A we did not have the
time to consider underlying threat and risk assessments, but for certain key assets we
could do this in companies B and C. Although this should be done thoroughly, we learned
from both B and C that this produced very valuable incitements for future development
plans. Particularly the phase of determining what value an asset actually represented to the
range of stakeholders generated intense discussions among the participants. Our belief is
that even such rudimentary reasoning on this topic is forgotten in many companies.

Our quality model, organizing security qualities into gradually more specialized quality
attributes, proved to be a significant help in reviewing and specifying requirements. The
main problem that the quality model addressed was confusion in terminology. As the hype
around security has flourished it appears that the precision in what is really meant has
been lost on the way. Many of the people we talked with confused qualities with technical

 T.E. Fægri and S. Hallsteinsen

8.8.1 The Quality Model

320

solutions. As an example, authentication was often denoted as a quality attribute for a sys-
tem. This is wrong. As we have explained, authentication is simply a means to achieve se-
curity qualities – primarily accountability. We believe that the quality model improves the
communication among the stakeholders and increases the awareness of the wide range of
security qualities that may be important for a software system. We also believe that it
stimulates companies to perform more thorough threat assessments in order to further im-
prove the security requirements engineering process.

While working with A we had to cope with a certain disagreement in terminology. It
took some time before our model was accepted. However, we think it is crucial to take
this seriously as a common vocabulary is critical for the work.

B worked with us over a longer period of time and we had a deeper cooperation with
them. In fact, B provided significant input to our work in constructing the quality model.
The input came through a range of inherent security concerns related to the release of a
software platform for a new generation of web-based products. The quality model was re-
viewed and improved while working with them.

For C we considered security aspects related to a capability in their product to use
e-mail as a communications channel to distribute highly sensitive business information to
selected partner companies. Referring to the risk assessment we had done and going
through the various elements of the quality model it was easy to conclude that confidenti-
ality and accountability were the prime concerns. Integrity and availability was less
important as the information exchange was one-way and there were minimal impacts
stemming from moderate delays in the distribution.

As expected, the decision model proved to benefit from contributions of business re-
quirements originating in companies within different application domains. The existing
scenarios were generic enough to cover the requirements in the companies, but one com-
pany felt that increased value would be obtained with more scenarios directly targeting
technological infrastructure. To accommodate such needs, from this company and others,
the decision model was designed to support evolution in the scenarios. New scenarios may
be added in order to better capture the needs of particular organizations. It should be noted
here that we had to concentrate our efforts at each of the companies. Thus, only the most
highly prioritized scenario in each company was reviewed due to time and resource con-
straints.

party components in large-scale distributed systems. Scenario I.1 was the primary reason-
ing framework for evaluating different architectural design alternatives. The different
variants helped the company to determine the most appropriate architectural design, and
through discussions of the impacts of the relevant architectural solutions the favored alter-
native was variant 3.

In B we also worked primarily with integrity. An important concern was to provide
effective, yet easy to use abstractions for programmers that would assist in maintaining
protection against unwanted modification of data. Scenario I.3 provided the reasoning
framework for the architectural decisions. Further, B had concerns related to the potential
exposure of corporate data while users were in a mobile context. We found that scenario

8.8.2 The Decision Model

321

Company A was particularly concerned about integrity aspects related to the use of third

8 A Software Product Line

I.5 gave good architectural guidance in this case. Variants 3 and 4 were both relevant for
further improvements of the architecture.

For C, the reference architecture did not provide applicable scenarios dealing with the
particular problem of distributing information via e-mail. However, from the review of the
architecture language, we had already selected a candidate architectural solution that we
used to create a more detailed technical design.

The security architecture language was a good help for participating software architects
that were searching for appropriate solutions in the security architectural design space. Of
particular benefit was the clear structure and classification of solutions into detection, pre-
vention and recovery. This triggered an exploratory review of the different solutions,
which again were used to increase the accuracy in the resolved variation points in the sce-
narios.

In the case of A we concluded that the need to provide high performance and a mini-
mum of added complexity in the administration of the solution motivated the use of tactics
similar to the recommendation of variant 3 of scenario I.1, which is Pattern 12: Code
Signing. In addition A wanted to explore open source components. In the platform, which
is currently being implemented, open source components are investigated. It is not unrea-
sonable however to compare the open source community with a code signing party.

Company B found, in accordance with the scenarios mentioned above, that a combina-
tion of thin clients and contextual authorization provided the most significant benefits in
terms of integrity. A role-based security authorization scheme is currently under develop-
ment for the new platform.

For C we determined that prevention was the most beneficial tactic. Since we were
dealing with sensitive information, and the fact that even knowing that an actor is sending
information to another named actor could be misused, the recovery tactic was abandoned.
The detection tactic was also abandoned because we did not consider malicious attacks as
the threat. Prevention tactics were investigated and the service provider solution was se-
lected as the most promising candidate. We decided to examine the directory pattern in
our further design (only illustrated in the reference architecture, see [47] for more infor-
mation on the pattern). The idea behind using the service provider pattern was to make the
selection process of e-mail addresses more secure, yet user friendly.

In summary, the reference architecture proved to be a good starting point for security
architecture design. Naturally, as the reference architecture is a representation of knowl-

specialist domain knowledge must be used in the later design phases of actual architec-
tures.

 T.E. Fægri and S. Hallsteinsen

8.8.3 The Security Architecture Language

8.8.4 Summary

322

edge at an abstract level it only provides general architectural design guidance and

8.9 Related Work

Security has seen a formidable growth in interest during the last few years. A number of
journals, conferences and other publications have been established to foster research in the
field. Similarly in industry, security has been established as a key concern for those re-
sponsible for managing, buying or developing ICT systems. It appears reasonable to infer
that with society’s increasing dependence on ICT systems, the very same systems have
become lucrative targets for persons with intentions to gain benefits through malevolent
actions.

A key pillar of this work is the established relationship between quality attributes and

patterns.
Risk assessments to the appropriate level of detail should be the foundation for any

work related to the design of evaluation systems having to cope with security require-

order to determine risks and also support the selection of appropriate security controls
(artifacts related to countermeasures). They also bring up the need for architectural
decision support in order to build architectures that provide the required level of security.
The proposed reference architecture goes further into the architectural design aspects, by
providing a more elaborate decision support framework – both in the area of security
architecture language and in terms of a richer quality model. SAEM is a more pragmatic
approach to the proposed reference architecture, focusing more on concrete risks and

All professional activities related to security must be considered in terms of economical
viability. The reference architecture presented here does not address this issue, but the

should precede the architectural design phase.
High level security tactics have been discussed by, e.g., Romanosky [48] although

without any structured approach to their use or applicability. Such efforts are nevertheless
useful as documentation of architectural solutions and effects. Further, a large amount of
security design knowledge has been collected and made available through work in the se-

these efforts, but uses findings from that community in order to build increased credibility
in the association of effects and architectural solutions. The language presented here
makes numerous references to work from the pattern community. Further, by reviewing
many of these efforts we have been able to determine important relationships between the
architectural solutions.

Chapter 9 presents a framework for architectural evolution based on architectural re-
covery as a means to ensure alignment with nonfunctional requirements. The assumption
is that these requirements are not properly addressed in currently available tools. While
the reference architecture presented here is a conceptual model for quality driven architec-
tural design, it does not go into the same level of detail with respect to the technologies.
Neither does it address the problem of distributed service management.

3238 A Software Product Line

architectural solutions. Work done at SEI on ABASs [31] and later within the ADD
method [3] shows that quality properties can be associated with architectural tactics and

ments. In [11], Cavusoglu et al. describe an evaluation framework that can be used in

technologies than quality modeling and architectural design [9].

reader should consult sources such as [24]. Consideration to economical justifications

curity pattern community [5, 45, 48, 52, 54, 59]. This contribution does not attempt to repeat

This chapter presented a reference architecture for security in product lines. It has enabled
us to show that it is feasible to provide useful decision support, based upon architectural
design knowledge, for companies developing product lines in which security is a quality
requirement.

Software architectural design does still have similarities with an art form. And there is
a significant amount of manual labor involved in making the appropriate tradeoffs of the
design alternatives and subsequently determining the final detailed design. However, we
believe that the proposed reference architecture can support those who need to embark on
such tasks.

Reference architectures play two roles. One is to generalize and provide abstractions
useful to a wide range of systems. The second role is to be a platform from which specific
architectures can be instantiated. The presented reference architecture has been developed
with generality as its primary objective. Our intention is that companies wanting to use it
should adapt it to the specific needs of the product line in development. As part of our fu-
ture research we will investigate the potential of specialization of the reference architec-
ture for a specific product line.

Acknowledgments

The work presented here is the result of collaboration with – and kind assistance from – a
number of people in the ITEA project FAMILIES and its Norwegian co-project
FAMILIER (the latter sponsored by the Norwegian Research Council and led by ICT-
Norway). Some deserve particular mention; Ivar Sandstad, Jens Glattetre from SuperOf-
fice ASA, Frank Mikalsen from Finale, Miguel Ángel Oltra Rodríguez from Telvent,
Frode Nergård from EDB Telesciences, Juha Savolainen from Nokia, Timo Käkölä from
University of Jyväskylä, Eila Niemel from VTT, and last, but not least, Juan Carlos
Dueñas from The Technical University of Madrid provided valuable comments that
helped shape this work. We would also like to thank our colleague Odd Nordland in
SINTEF ICT for improving the language of the chapter.

References

 T.E. Fægri and S. Hallsteinsen 324

1. Allen J, Gabbard D, and May C (2003) Outsourcing Managed Security Services In: Security improvement
module, CMU/SEI-SIM-012. 2003, Carnegie Mellon, Software Engineering Institute: Pittsburg, PA.

2. Bachmann F, Bass L, and Klein M (2003) Deriving Architectural Tactics: A Step toward Methodical
Architectural Design Technical report, CMU/SEI-2003-TR-004. 2003

3. Bass L, Clement P, and Klein M (2003) Software Architecture in Practice. 2 ed. Addison Wesley.
4. Bayer J (2003) Design for Quality. In: Linden FVd (ed) 5th Int'l Workshop on Product Family Engineering.

Springer, Berlin Heidelberg New York
5. Blakley B and Heath C (2004) Security Design Patterns. The Open Group.
6. Bollinger T, Voas J, and Boasson M, Persistent Software Attributes. IEEE Software, 2004. 21(6): p. 16-18.

8.10 Conclusions and Future Research

ä

3258 A Software Product Line

7. Bosch J (2000) Design and Use of Software Architectures - Adopting and Evolving a Product-Line
Approach. Addison-Wesley.

8. Bosch J and Molin P (1999) Software Architecture Design: Evaluation and Transformation. In: IEEE

9. Butler SA (2002) Security Attribute Evaluation Method: A Cost-Benefit Approach. In: International

10. Bühne S, Chastek G, Käkölä T, Knauber P, Northrop L, and Thiel S (2003) Exploring the Context of
Product Line Adoption. In: Linden FVd (ed) 5th International workshop on Product Family Engineering.

11. Cavusoglu H, Mishra B, and Raghunathan S, A Model for Evaluating It Security Investments.
Communications of the ACM, 2004. 47(7): p. 87-92.

12. Chang S, Chen Q, and Hsu M (2003) Managing Security Policy in a Large Distributed Web Services
Environment. In: 27th Annual International Computer Software and Applications Conference

13. Chung L, Nixon BA, Yu E, and Mylopoulos J, eds. Non-Functional Requirements in Software Engineering
(2000). The Kluwer International Series in Software Engineering, Basili V (ed). Kluwer Academic
Publishers. 439pp.

14. Clements P, Kazman R, and Klein M (2002) Evaluating Software Architectures: Methods and Case Studies.
Addison Wesley.

15. Clements P and Northrop L (2002) Software Product Lines: Practices and Patterns. The Sei Series in
Software Engineering Addison Wesley.

16. Covingtony MJ, Fogla P, Zhan Z, and Ahamad M (2002) A Context-Aware Security Architecture for
Emerging Applications. In: 18th Annual Computer Security Applications Conference (ACSAC 02). IEEE

18. Douligeris C and Mitrokotsa A, Ddos Attacks and Defense Mechanisms: Classification and State-of-the-Art.
Computer Networks, 2004. 44(5): p. 643-666.

19. Duchessi P and Chengalur-Smith I, Client/Server Benefits, Problems, Best Practices. Communications of
the ACM, 1998. 41(5): p. 87-94.

20. Eguiluz HR and Barbacci MR (2003) Interactions among Techniques Addressing Quality Attributes In:

21. Fernandez EB and Pan R (2001) A Pattern Language for Security Models. In: PLoP 2001.
22. Firesmith DG (2003) Common Concepts Underlying Safety, Security, and Survivability Engineering

Technical note, CMU/SEI-2003-TN-033. 2003, Software Engineering Institute, Carnegie Mellon University
23. Gates C and Slonim J (2003) Owner-Controlled Information. In: New security paradigms workshop. ACM

24. Gordon LA and Loeb MP, The Economics of Information Security Investment. ACM Transactions on
information and system security, 2002. 5(4): p. 438-457.

25. Hallsteinsen S, Fægri TE, and Syrstad M (2003) Patterns in Product Family Architecture Design. In: Linden

26. Hallsteinsen S, Fægri TE, and Syrstad M (2003) Patterns in Product Family Architecture Design. In: Linden
FVd (ed) 5th International workshop on Product Family Engineering. Springer, Berlin Heidelberg New

27. IEEE (2000) Ieee Standard No. 1471-2000: Recommended Practice for Architectural Description of
Software-Intensive Systems. IEEE: http://shop.ieee.org/store/.

28. ISO/IEC (1999) 15408 Common Criteria for Information Technology Security Evaluation. v2.0 ed. Nat l
Inst. Standards and Technology Washington, DC.

29. ISO/IEC (1991) Fcd 9126-1.2: Information Technology - Software Product Quality. Part 1: Quality Model.
30. Jung H-W, Kim S-G, and Chung C-S, Measuring Software Product Quality: A Survey of Iso/Iec 9126. IEEE

Software, 2004. 21(5): p. 88-92.
31. Klein M and Kazman R (1999) Attribute-Based Architectural Styles. In: SEI Technical Report, CMU/SEI-

conference on software engineering. ACM Press. p. 232-240.

Springer, Berlin Heidelberg New York. p. 19-31.

Conference and Workshop on Engineering of Computer-Based Systems. IEEE Computer Society Press. p. 4-10.

(COMPSAC’03). IEEE Computer Society Press. p. 610-621.

Press. p. 103-111.

York. p. 261-268.

’
Computer Society. p. 249-258.

17. Denning DE and Denning PJ, Data Security. ACM Computing Surveys, 1979. 11(3). p. 227-249.

Technical report, CMU/SEI-2003-TR-003. 2003.

FVd (ed) PFE-5. Springer Verlag. p. 261-268.

’

32. Kristol D and Montulli L (2000) Http State Management Mechanism (Rfc2965). http://www.
watersprings.org/pub/rfc/rfc2965.txt.

99-TR-022. 1999.

 T.E. Fægri and S. Hallsteinsen 326

33. Landwehr CE, Computer Security. International Journal of Information Security, 2001. 1(1): p. 3-13.
34. Linden Fvd, Software Product Families in Europe: The Esaps and Café Projects. IEEE Software, 2002.

19(4): p. 41-49.
35. Lindqvist U and Jonsson E, A Map of Security Risks Associated with Using Cots, in IEEE Computer. 1998.

p. 60-66.
36. Matyás V and Ríha Z, Towards Reliable User Authentication through Biometrics. IEEE Security & Privacy,

2003. 1(3): p. 45-49.

38. Microsoft (2002) Building Secure Asp.Net Applications. Microsoft: www.microsoft.com.

40. Min BJ, Kim SK, and Choi J-S (2003) Secure System Architecture Based on Dynamic Resource
Reallocation. In: Chae K and Yung M (eds) Information Security Applications, 4th International Workshop,

41. Motta GHMB and Furuie SS, A Contextual Role-Based Access Control Authorization Model for Electronic
Patient Record. IEEE Transactions on information technology in biomedicine, 2003. 7(3): p. 202-207.

42. O'Gorman L, Comparing Passwords, Tokens, and Biometrics for User Authentication. Proceedings of the
IEEE, 2003. 91(12).

43. Oppliger R and Rytz R, Digtal Evidence: Dream and Reality. IEEE Security & Privacy, 2003: p. 44-48.
44. Park JS, Sandhu R, and Ahn G-J, Role-Based Access Control on the Web. ACM Transactions on

information and system security, 2001. 4(1): p. 37-71.
45. Peteanu R (2001) Best Practices for Secure Development. http://www.mkaz.com/ref/secure_webdev-

3.0.pdf.
46. Probst S, Essmayr W, and Weippl E (2002) Reusable Components for Developing Security-Aware

47. Ramachandran J (2002) Designing Security Architecture Solutions. Wiley.
48. Romanosky S (2002) Enterprise Security Patterns. In: 7th European conference on pattern languages of

49. Saltzer JH, Protection and the Control of Information Sharing in Multics. Communications of the ACM,
1974. 17(7): p. 388-402.

50. Sandhu RS and Samarati P, Access Control: Principle and Practice. IEEE Communications Magazine,
1994. 32(9): p. 40-48.

51. Schmidt DC and Buschmann F (2003) Patterns, Frameworks, and Middleware: Their Synergistic

52. Schneider EA (1999) Security Architecture-Based System Design. In: New security paradigms workshop.

53. Schneider FB, Least Privilege and More. IEEE Security & privacy, 2003: p. 55-59.
54. Shumacher M, ed. Security Engineering with Patterns: Origins, Theoretical Model, and New Applications

55. Smith SW, Humans in the Loop: Human-Computer Interaction and Security. IEEE Security & privacy,
2003. 1(3): p. 75-79.

56. Ting TC (1993) Modeling Security Requirements for Applications. In: Conference on Object Oriented Pro-

57. Viega J and Messier M, Security Is Harder Than You Think, in ACM Queue. 2004. p. 60-65.
58. Yee K-P (2002) User Interaction Design for Secure Systems. In: Fourth International Conference on Infor-

59. Yoder J and Barcalow J (1998) Architectural Patterns for Enabling Application Security. In: In Proceedings

60. Zhong Q and Edwards N, Security Control for Cots Components. IEEE computer, 1998. 31(6): p. 67-73.
61. Zurko ME and Simon RT (1996) User-Centered Security. In: New Security Paradigms Workshop. ACM

62. Aagedal JØ, Braber Fd, Dimitrakos T, Gran BA, Raptis D, and Stølen K (2002) Model-Based Risk Assess-
ment to Improve Enterprise Security. In: Sixth International Enterprise Distributed Object Computing Con-

p. 14-35.

WISA 2003. Springer. p. 174-187.

Applications. In: 18th Annual computer security applications conference (ACSAC 02). IEEE. p. 239-248.

programs (EuroPLoP). http://hillside.net/patterns/EuroPLoP2002/

Relationships. In: International conference on software engineering. IEEE Computer Society. p. 694-704.

ACM Press. p. 25-31.

gramming Systems Languages and Applications. ACM Press. p. 305.

mation and Communications Security. Springer Verlag. p. 278-290.

of the 4th Conference on Patterns Language of Programming (PLoP 97). p. 1-31.

Press. p. 27-33.

ference (EDOC 02). p. 51-62.

39. Microsoft (2003) Enterprise Solution Patterns Using Microsoft .Net. Microsoft Corp.: http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/Esp.asp.

’

(2003). Lecture Notes in Computer Science. Vol. 2754. Springer Verlag pp.

’

’

37. McHugh J, Intrusion and Intrusion Detection. International Journal of Information Security, 2001. 1(1).

9 Architecture Reasoning for Supporting Product Line
1

Abstract
One of the most frequent problems in software engineering is supporting evolution. Guiding
the evolution effectively requires the development and maintenance of architectural models.

variation points. But adequate processes, methods, and techniques should be developed and
adopted to holistically support evolution. In this chapter, we propose a new process to sup-

most important standards dealing with architectural security requirements to create a ref-
erence architecture, performs a complete recovery and conformance process for an imple-
mentation of the OSGi standard (Oscar), and proposes ways to enhance the coverage of
architectural security requirements of the OSGi standard and its implementations for distrib-
uted environments.

9.1 Introduction

One of the main results provided by the software product line (PL) engineering community
is the recognition of software architecture as one of the foundations for the sofware engi-
neering activities, including specific activities for domain and for application engineering.

1 The work presented here has been developed in the projects FAMILIES and OSMOSE (Eureka 2023, ITEA

ip00004 and ip02009), partially supported by the Spanish company Telvent and by the Spanish Ministry of Sci-
ence and Technology, under reference TIC2002-10373-E. José L. Arciniegas and Rodrigo Cerón are visiting
professors from Universidad del Cauca, Popayán, Cauca, Colombia. Rodrigo Cerón is sponsored by

dealing with nonfunctional security requirements in distributed environments, analyzes the

port product line evolution based on mature methods, techniques, and tools. The process

,

try of Science and Technology, under reference TIC2002-04123-C03-01.
COLCIENCIAS – Colombia and AECI – Spain, and José L. Arciniegas work is partially supported by the Minis-

J.L. Arciniegas, J.C. Dueñas, J.L. Ruiz, R. Cerón, J. Bermejo, and M.A. Oltra

Evolution: An Example on Security

forms and components, which may not be accompanied by architectural models. Product line
engineering partially solves this problem using common concepts and artifacts and locating

However the industry is increasingly relying on third-party implementations of software plat-

involves architecture recovery and conformance methods and a set of techniques, and tools
to support them. To demonstrate and validate the process, this chapter presents a case study

Since the seminal IST-ARES project [5], several improvements have taken place in the
area of software architecture: the use of architectural modeling to manage variability and
commonality [13]; the appearance of the Model Driven Architecture (MDA) [91] and the
concepts of Computational Independent, Platform Independent, and Platform Specific
Models; and the widespread use of architectural and design patterns [40] in the context of
PL engineering [58], software reuse [57], and software components [116]. The main advantage
of architecture-based software development is the capability for communication and
analysis by using the architecture as a guide or roadmap for product(s) development
(Chaps. 1 and 2) and for organizing concurrent development (Chap. 14).

Security has become one of the main drivers of the evolution of software systems, par-

plex security-related problems is that there are no fixed, prepackaged solutions, because
not all of the problems are known in advance. There is a need for evolution and, to keep it

ported by after-deployment evolution, is provided by component-based systems where
one of the component implementations is found unsafe (usually after a security attack). To
solve such a problem, the evolution of the components of the system is performed in isola-
tion so, in time, each of the system deployments can draw upon a different configuration
based on the evolution of its components.

Managing architectural evolution effectively requires adequate knowledge of imple-
mented systems. While the documentation of the systems and their architectures has
improved as a result of the use of new technologies and standards such as MDA, organiza-
tions can seldom retain adequate knowledge without systematically leveraging architec-
ture recovery and conformance activities and techniques to create up-to-date information
about their rapidly evolving systems. This is especially the case with Open Source initia-
tives where the systems are seldom documented in adequate detail.

However, architecture recovery and conformance is an area where research has ad-
vanced at a relatively slow pace. This chapter addresses this area and describes a new kind
of use of architectural models that reflects the current state of practice in some Open
Source communities. The models enable:

1. An actual reflection of the system evolution and its current state by using archi-

2. An improvement of the system, supporting preventive maintenance.

models such as ISO-9126 [54] and the transformation of these requirements into
design requirements.

4. The use of architectural conformance checking to compare the system architecture
against reference architectures published by standardization bodies (understanding
them in a broad sense).

5. A means to acquire from vendors or the open source community the detailed design,
implementation, and testing of the components that best meet the reference architec-
tures for the intended architecturally significant requirements [58].

6. A way to adapt the evolution of the system architecture to the evolution of reference

some specific components provided by third parties.
7. A vehicle to support the dynamic evolution of running systems after deployment and

to keep their architectures updated.

3. The identification of nonfunctional quality requirements described by quality

328 J.L. Arciniegas et al.

ticularly of systems connected to networks such as Internet. What can be learnt from com-

under control, the architecture must evolve. A practical view of architectural evolution, sup-

tecture recovery techniques and patterns identification.

architectures with respect to security requirements and to track the evolution of

identification of quality requirements, the conceptualization of architecturally significant

architecture-based reasoning process. The process will be applied in a case study about
security. The case study deals with the adoption of a distributed services-based architecture
composed of service platforms over which service implementations are deployed. The service
platform implementation, that follows the OSGi (formerly Open Services Gateway initia-
tive) standard [95], is an Open Source implementation that must offer security services as
required by the standard. But several problems appear:

− The platform implementation is not fully conformant to the standard and the elements
missing must be identified and implemented or adopted from third parties.

− The security services mandated by the standard may need to be extended if they are
inadequate for some specific services or usage scenarios.

As a potential solution, the security requirements of these usage scenarios could be cov-
ered by any of the several security reference architectures proposed by standardization
groups such as the Distributed Management Task Force (DMTF) [21] in the Common In-
formation Model (CIM). But then

− The elements in the chosen security reference architecture must be checked against the
security services in the OSGi standard

− The new security elements must be delegated in the system architecture to a well-defined
space

− Implementations must be provided for the security reference architecture elements that
are not present in the OSGi standard, and for the elements that are in the standard but
not in the available implementation

− Required technologies for guaranteeing system security must be identified and adapted
to the constraints of the target platform (OSGi)

− These new elements could be eventually chosen from Open Source communities

9.2 Software Product Line Architecture

The evolution of systems can thus be better managed by adopting techniques such as the

architecture topics on which the subsequent sections will build upon. Section 9.3 presents
a process for architecture recovery. Section 9.4 describes the architecture conformance
checking process. Section 9.5 instantiates the processes to the architecture recovery and
conformance checking of security aspects in distributed systems. Section 9.6 presents a
case study to apply and validate the instantiated process in the context of a distributed
software platform. Conclusions and future research issues are identified in Sect. 9.7.

3299 Architecture Reasoning for Product Line Evolution: An Example on Security

In this chapter, these techniques are described, analyzed, and integrated into an

The rest of this chapter is composed of six sections. Section 9.2 recalls the product line

evaluation of architectural conformance.
requirements, the architecture recovery, the comparison of architectural models, and the

For many years, the software industry has been trying to achieve the development of
software-intensive systems with a higher degree of reuse, cost reduction, and shortened

Software product lines are built on top of existing related software systems where the
common artifacts among these systems are integrated in a common asset base. These as-
sets are architectural artifacts used to design the reference architectures of resulting prod-
uct lines [58].

bulary for the staff within an organization [2]. As a result, the assets for a PL include not

A conceptual model of product line environment is presented in [14]. The product line
engineering framework of the FAMILIES project (Fig. 9.1) represents the major activities

specific methods and supporting tools against a common reference. The place of the proc-
esses for architecture recovery and conformance is shown in the figure: horizontal arrows
from application implementation to application design and from domain implementation to
domain design correspond to architecture recovery activities (both in the domain and in
the application engineering tracks). Architecture conformance (represented with a vertical
arrow in Fig. 9.1) applies to application and domain architecture models. It can also be
applied between any of the models and externally available reference architecture (in the
example included in this chapter, the reference architecture provides the solution to spe-
cific security-related quality requirements). Architecture recovery and conformance are
the processes described in this chapter.

Architectural artifacts (including both their common and variable parts) need to be identi-
fied. “Variability is what can be different among members of a collection (of problems,

330 J.L. Arciniegas et al.

64,67,76,122,123]. The models provide a way of communication and a common voca-

Fig. 9.1. FAMILIES Software product line engineering framework (adapted from [35])

and methods operating on the core assets of a product line and allows the mapping of

The conceptual modeling of product lines has been studied extensively [8,19,32,45,

only the software itself but also its models. For example, the Unified Modeling Language
(UML) provides guidelines to modeling [73,93].

time-to-market. Product line engineering is considered as one of the most successful
approaches to achieve these objectives.

solutions, or products)” [31]. Variability can be managed at different stages: requirements
description, architectural description, design documentation, source code, compiled code,
linked code, and running code [6]. “Commonality is an assumption held uniformly across
a given set of objects (S). Frequently, such assumptions are attributes with the same val-
ues for all elements of S” [19]. Commonality is relevant to identify a shared common
problem (requirements and architecture commonality) and to select reusable components

of software platforms, which include component frameworks (the reader is referred to the
definitions in the glossary of this book and [129]). The frameworks encapsulate parts of
the domain design and their implementations offer parts of the domain implementations
available for the creation of applications.

The variation point concept [8, 19] can be used to express variability in an explicit man-
ner. A variation point identifies one or more locations at which variability will occur.
Each variation point will be related to a decision. Once the decision is made, the chosen
variants will remain and others will be eliminated; as a result, the variation point will have
changed its state. This concept is known as “resolution.”

Variability management is the main challenge an organization has to cope with in PLE.
It gives a chance to gain flexibility in the products involved in the PL. As a consequence,
variability modeling is an essential concern to build flexible PL Architectures (Part 2 in
this book).

The decisions are part of the product line. Therefore they are related to the models in the
PL. In order to obtain specific products, decisions need be taken to deal with variability and
commonality in the requirements engineering, architectural design, implementation, testing,
and deployment phases. The later the variability is resolved, the more flexible the PL is.
Conflicts are a consequence of the variability in a PL; they have to be fixed to obtain coher-
ent products. Different alternatives may lead to different conflicts, but there should be at
least one solution for each conflict. The identified commonalities facilitate systematic reuse.

In this chapter, we explain how decisions about security impact the common domain
design and implementation and how variation points can be identified and dealt with by
finding applicable external reference architectures and comparing them with the common
domain design and implementation.

Product lines are built from architectural artifacts taking into account the software
product line architecture, also called reference architecture. There are several definitions

− A structure composed of components and rules characterizing the interaction of these
components [41]

− The structure of components, their relationships, and the principles and guidelines gov-
erning their design and evolution over time [52]

The software architecture specifies the structure of the system under consideration.
This structure can be complex, especially because several viewpoints are considered at the
same time. The concept of architectural view tries to organize this large set of information
about the system by partitioning it.

3319 Architecture Reasoning for Product Line Evolution: An Example on Security

[8,16,19,31]. A particular way to handle the common parts in a product line is the usage

in the literature about software architecture [41,52,88,98,108]. The best known are:

Fig. 9.2. “4+1” views of software architecture

The architectural description is applicable to a variety of uses. For example, in [49] it is
presented how the architecture description is used in a conformance process for a PL. The
first four views (logical, development, process, and physical) are relevant in a confor-
mance process. For each view, the set of used elements is defined (components, contain-
ers, and connectors), the relevant forms and patterns are captured, and the rationale and
constraints are established, connecting the architecture to requirements. However, the key
of evaluation is in the scenarios. Usually the conformance checking process is focused on
one issue, for example, a quality requirement such as performance or security defined in
ISO 9126 [54]. The scenarios define the issue taken into account in the architectural con-
formance process. This process is described in Sect. 9.4. Before proceeding to the actual

the key pieces of the conformance process.

9.3 Architecture Recovery

ery providing high-level views of the system or product line architecture by extracting and

area of reverse engineering, which is defined in [15] as the process of analyzing a subject
system to identify the system’s components and their relationships, to create representa-
tions of the system in another form or at a higher level of abstraction, or to understand the

neering activities are classified into three kinds of tasks:

a description of a software architecture using views. Figure 9.2 shows 4+1 views of archi-

End-user
Functionality

Programmers
Software management

Logical View

Process View Physical View

Development
View

System engineers
Topology

Communications

Integrators
Performance
Scalability

Scenarios

332 J.L. Arciniegas et al.

program execution and the sequence in which it occurred [100,101]. In [72], reverse engi-

Some of the most widely used models are reviewed in [73,93]. These models organize

tecture. Each view addresses a specific set of concerns of different stakeholders. Archi-
tects capture their design decisions in four views and use the fifth view to illustrate and
validate the decisions.

conformance process, we review the current research into architecture recovery, one of

abstracting a subset of the software entities. Thus, architecture recovery pertains to the

An important part of checking architectural conformance relies on architectural recov-

− Extracting relevant information from system software, system experts, and system his-
tory

− Abstracting extracted information to a higher (design) level
− Presenting abstracted information in a developer-friendly way, taking into account the

topic of interest

veloping methods for recovering the software architecture from an implemented system [66,

bottom-up) manner. Bottom-up approaches start with low-level knowledge (program
sources, documentation, etc.) and provide abstraction techniques to recover a system’s archi-

− Reconstructing architecture descriptions for systems that are poorly documented or for
which documentation is not available. Many systems have no documented architecture
at all.

− Understanding architectural dependencies.
− Analyzing and understanding the architecture of existing systems to enable modifica-

− Identifying components (usable pieces) for reuse or for establishing an architecture-
based software product line.

− Evaluating the conformance of the built architecture to the documented architecture.
Architectures are often represented in such a way that the relationship between the rep-
resentation and the actual system, particularly its source code, is unclear.

Reverse engineering has primarily focused on identifying and modeling the structure of

mation. A complete description of the useful metrics, patterns, and methods supported by

engineering is that, in general, measurements are good indicators for important external
behavioral attributes and could eventually be used for the assessment of quality require-

a program by means of code examination in order to obtain both static and dynamic infor-

among system components. Dynamic views are based on information from the analysis of

− Re-engineering the system to a new desired architecture (system evolution).

3339 Architecture Reasoning for Product Line Evolution: An Example on Security

tools can be found in [65,114]. The advantage of using measurement in support of reverse

ments such as maintainability, reliability, reusability, usability, and performance [82,85].

and dynamic [20,107,115] views. Static views describe associations and relationships

Architecture recovery is a discipline within the reverse engineering domain aimed at de-

89,112]. Architecture recovery may proceed in a bottom-up or a combined (top-down +

tecture [1,61,65,121]. Combined approaches start with high-level domain knowledge, pro-
duce a model of the domain knowledge and try to find instances of the model concepts in
the system’s implementation [9]. For instance, in complex systems, significant architec-
tural information should be extracted first. As a result, another architectural model is
obtained containing only the important software artifacts [27]. This is possible using archi-
tectural rules for model understanding and consistency checking [28]. Architecture recovery
[30,38,65,66,89,112] has been used for:

− Recovering the legacy of the system. Legacy systems are typically complex, with
different levels of components based on different programming languages and develop-
ment methods, and thus difficult to change. They have evolved over decades and passed
through many developers.

tions of the architecture to satisfy new requirements and eliminate software deficiencies.

An important part of architecture recovery is understanding the architecture thro-
ugh software visualization [111], which provides a holistic overview of static [120]

sufficient for understanding a software system.

Numerous recovery methods exist in the literature. This section focuses on those methods
that have extensively guided our research. For example, Boucetta [9] presents a method
composed of three main phases:

− Gathering the domain knowledge of the information system with the help of domain
experts.

− Using software tools to automatically generate a preliminary system architecture from
the source code.

− Refining the architecture by constructing a matrix linking the results of the first and the
second step to establish the mappings between the domain knowledge and the initial
architecture components.

− Extraction of static and dynamic domain knowledge using lexical analysis, parsing, and
semantic analyzers.

− Database construction.
− Fusion of static and dynamic views.
− Architectural view composition to let users visualize, interact with, and interpret the

system.

Krikhaar [72] describes a software architecture recovery method based on the Relation

provides a sound formal foundation for the activity composed of four phases:

− Extracting the domain knowledge from source code, experts, and system history.
− Abstracting the extracted information to a higher design level.
− Presenting the abstracted information in a developer-friendly way, taking into account

his or her current topic of interest.
− Improving the architecture of the existing system incrementally.

The approach proposed by Guo [46] relies on the definition of structures to be searched
for (patterns). These structures are supposed to contain both domain and solution knowl-
edge. The phases are:

− Developing a pattern recognition plan serving as a reference architecture.
− Extracting a model from source code.
− Detecting and evaluating pattern instances.

Albeit similar, Kazman [66] divides the recovery process for large systems (such as
product lines) into four phases:

− Reconstructing and analyzing the architecture.

334 J.L. Arciniegas et al.

100,114]. In Fig. 9.2 four architectural views were identified, since a single view is rarely
recorded or monitored program execution, thus focusing on run-time analysis [48,81,

9.3.1 Architecture Recovery Methods

Partition Algebra that consists of sets, binary relations, “ ”part-of relations , and operations. It

− Experts define architectural concepts based on which the source code model is ex-
tracted.

− An architectural model is abstracted.
− Improvement plans for architecture documents are created.
− Architecture is analyzed.
− Source code is reorganized to reflect the improved architecture.

− The software system is parsed into source code entities.
− The system architecture is extracted and analyzed by formulating an abstract pattern of

the architecture in the form of an Architectural Query Language (AQL) query based on
experts’ domain knowledge, system document inspection, and/or source model analy-
sis. AQL is used to describe the high-level abstraction of the system in terms of mod-
ules and interconnections.

− Unresolved source model entities can be distributed among the blocks of the architec-
ture and the entities in the blocks can be selectively moved between the blocks based
on overall closeness between the entities or user inspection.

The CELLEST project [115] presented a method for recovering user interfaces of leg-

the reverse-engineering phase is a recorded trace of the user interaction with the legacy inter-
face and the output is a state transition model specifying the unique legacy interface
screens (states) and the possible commands (transitions) leading from one screen to an-
other. CELLEST used a tool to support reverse engineering in terms of state-transition
models. It consisted of the following phases:

− System–user interaction traces are un-intrusively collected by a middleware.
− The dynamic behavior of the system interface is reverse engineered in terms of the

screens and the navigation it allows through them.
− Task–specific navigation paths are analyzed to extract a model of the task in terms of

the interface navigation and the information exchange and an appropriate web-based
interface is constructed by wrapping this navigation and enabling its execution through
a standard web browser.

The method we describe here can be classified as an architecture recovery technique

architecture recovery tasks:
Riva [103] includes reorganization (also called refactoring) activities as part of the

architecture recovery activities:
Sartipi [105] relies on an architectural description language for the execution of the

–acy systems based on the code analysis of the system user interaction [33]. The input of

3359 Architecture Reasoning for Product Line Evolution: An Example on Security

that considers the dynamic behavior in the recovery process.

Most of the aforementioned methods are performed manually [74]. For large systems and
product lines, the manual application of these methods is tedious and error-prone and
leads to poor results because of the amount and complexity of the information handled.

tion, manipulation, and interpretation of architectural information. Several categories of
tools are listed below:

− Tools supporting query languages such as Dali [65], ARMIN [89], Architectural Re-

(ARM) [46], Riva [103], and Mitre [47] for writing patterns to automatically build aggr-
egations.

− Tools supporting clustering and data mining, such as the tools proposed in the Software

grams and, in some cases, activity diagrams automatically, such as the PBS toolkit [38,

Fujaba [84], Imagix4D, Visual Paradigm, and Eclipse/Omondo.
− Tools providing mechanisms for fine-grained inspection and verification of software by

exposing the results of sophisticated whole-program analysis (see, for example, Jin-

The input data are composed by:

– Patterns. Usually the systems have been created using well-known architectural patterns

tecture.

9.3.3 The Process for Architecture Recovery

Data mining [105], Oblique lifting [12], and X-ray [80].

336 J.L. Arciniegas et al.

[40]. The recovery process thus needs to discover which patterns (if any) were used.

− Manual-driven tools such as Portable Book Shelf (PBS) [38,119], Rigi [120], SHriMP

covery Tool (ART) [121], Rose/Architect [27,28], Architecture reconstruction method

119], Argo/UML, Poseidon for UML, Bauhaus [71], DIVOOR/CodeCrawler [23,77],

sight [20,107], CodeSurfer [3], Columbus/CAN [37,124], CONCEPT [101,102], GSEE

These patterns behave as model templates that can be searched for in the preliminary archi-

[109,113], KLOCwork inSight Tool [70], and Bowman and Associated [11].

9.3.2 Architecture Recovery Tools

Usually tools are needed to support the architecture recovery process to aid in the extrac-

Architecture Reconstruction method (SAR) [72], Architecture recovery method [9],

− Tools allowing architecture recovery from source code, in order to create class dia-

[36], Red Hat Source-Navigator, SniFF++ [68], and Scientific Toolworks).

We present in Fig. 9.3 an architecture recovery method based on the previously cited

– Available documentation. This category includes a set of available specifications, design
documents, implementation details, features, system architecture models, user manuals, etc.

– Source code.When source code is fully available (e.g., the open source software), rele-
vant architectural information can be extracted from it. In some domains this is the key
source of information.

– Run-time information. There are tools and techniques for recording the traces of the
system in runtime. These data hold behavioral information.

methods [9,33,46,66,72,103,105,115]. The process is composed of five kinds of inputs,
four activities, and three types of results.

Fig. 9.3. Recovery process

The following activities must be performed:

9 Architecture Reasoning for Product Line Evolution: An Example on Security

code, and tries to produce a Conceptual model. The activity can be aided with experts
[103] or capturing information from user documentation (Chap. 4 and [62]) by using
techniques such as gathering knowledge [9], development of specific pattern recogni-

rithms to discover the contributions of specific code fragments to the architecture, or

available information can be done with specific graphical models, such as the treemap
or the hyperbolic tree [75].

– Static-view extraction. It is the most common process in re-engineering. The architec-
tural static view (i.e., classes and relationships) is obtained from source code as de-
scribed in Sect. 9.3.1. This model is complemented with information from the already
available Conceptual model [103]. Usually the static-view is composed of logical and
physical views [73]. The most common technique is based on the relational and compo-
sitional abstraction: taking detailed relationships or detailed components and grouping
them into higher-level relationships and classes [29].

− Information extraction. It takes as inputs the Available documentation and the Source

337

tion plans [46], lexical analysis [65,66], parsing [105], program slicing using algo-

finding clusters of elements with a strong relationship [47,65]. The visualization of the

– Experts’ information: Expert knowledge is needed in analyzing software architectures.
Experts can associate patterns with some structures, recognize architectural assets and
often provide domain level knowledge. For open source initiatives this information can
be found in recorded email discussions.

Available
documentationSource code

System in
run-time

Patterns

Information Extraction

Conceptual
model

Static-view extraction Dynamic-view extraction

Preliminary
architecture

Analysis and abstraction

Improved
Architecture

model

Expert
information

Especially in product line engineering it is of central importance to have an explicit and
good reference architecture. Additionally, the process for architecture recovery is the first
step to be taken when the architectural conformance process is enacted. Thus, starting
from the available information – often the source code – it is possible to produce a highly
abstract view of the system structure with respect to the topic of interest. This process will
be illustrated by applying it to the analysis of architectural conformance of distributed sys-
tems with respect to security. Before we describe this case study, the architectural confor-

9.4 Architectural Conformance

Conformance checking (or simply conformance, from now on) is the process to determine
whether an asset developed for a specific domain meets a recognized standard for the domain.
Traditionally, conformance has been associated with testing: conformance testing of an
application includes the testing activities to demonstrate that the application complies with
a certain standard. So, the standard behaves as the reference element to compare with.
Several software architecture standards have appeared in the last years. For example,

models. MDA proposes a process to map a PIM (Platform Independent Model) to a PSM
(Platform Specific Model) and vice versa in different levels of abstraction. Two imple-
mentations of a PIM will share a common conceptual design, although they may utilize
incompatible technologies or incompatible mappings to the same technology. However,

mance process is introduced in Sect. 9.4.

338 J.L. Arciniegas et al.

– Dynamic-view extraction. The architectural dynamic view is obtained by capturing the

– Analysis and abstraction. Experts refine the preliminary architecture model into an im-

patterns are directly related to specific quality characteristics, so they can be used to
produce the architectural view with respect to specific quality requirements.

– Conceptual model. It is the system meta-architecture composed of domain concepts and
relationships among them. For example, MDA [92] calls this model Conceptual Infor-
mation Model.

– Improved architecture. The preliminary architecture rarely is the definitive architecture.

proved model by using reference patterns [46,72,103,105]. Some of these reference

MDA [39,69,91,97] was created to solve integration and portability problems between

ponds with the process view [73], and can be represented with activity, sequence, use
traces from system-user, system-environment or intra-system interactions [115]. It corres-

case, state chart, finite state machine, time-sequence, and other interaction diagrams. The
most common techniques to produce them include logging function calls, collecting sys-
tem traces (optimally in an un-intrusive way [115]), and analyzing trace dependencies by
observing the lines of code on the running software system [26].

The process generates several products:

– Preliminary architecture. It is composed by the “raw” static and dynamic views of the
system.

With the help of experts and application of patterns it is possible to obtain a better struc-
tured architectural model of the system.

there is neither a process for assessing conformance between the implemented code and

This section presents an architectural conformance process for detecting the differences
and similarities between software product line implementations and standards. The proc-
ess is clearly motivated by industrial needs: there is a large amount of software from third
parties (including Open Source implementations) for which the source code is available
but the architecture is not. Therefore, it is difficult with the current mechanisms to verify
whether this software conforms to a given specification or standard before its integration
into a full system. In other words, there is no means for assessing architectural confor-
mance, only for testing conformance. The process thus applies the proposed architecture
recovery process in the context of architectural conformance.

The process could be applied in a product line scenario to check if a given application
design conforms to the domain design (Fig. 9.1). It could also be applied between the ref-
erence architecture of the product line and (parts of) an external reference architecture.
The case study we present in this chapter performs this conformance process between the
domain design (containing most of the common parts of the product line) and an external
reference architecture for security. This chapter regards the external reference architecture
as a standard when it is public and has been agreed upon by third parties.

The results of the architecture conformance activities are used, for example, in the

compare consistency between models. Conformance evaluation can be enacted at several
development phases. In [83] a technique is proposed for comparing artifacts by summari-
zing where one artifact (such as a design) is consistent with and where it is inconsistent
with another artifact. Despite the practical relevance of the architecture conformance
process, there are few scientific works in this area.

evaluating the Information Technology Security [17] that will be taken as the basis of the
case study of this chapter. However, the CC does not propose a conformance checking
process, but only the security elements that must be present in a secure system. The
SARA project [88] developed a guide and a reference model for software architecture
review and assessment processes against domain experts knowledge, but as the processes
did not formalize this knowledge, they did not address conformance.

Figure 9.4 presents the process for conformance assessment extracting ideas from [17,
49, 88]. The process is preceded by a phase where the objectives and focus for it are de-
fined based on the needs of the relevant stakeholders and the desired requirements (in the

Quality of Service). Then, two parallel activities should be performed. From the Open
Source implementation (or the available implementation), the set of Significant Imple-
mented Assets (SIA) should be identified using the architecture recovery process. A Sig-
nificant Standard Asset (SSA) should be abstracted from appropriate standards such as
reference architectures. We have defined SIA and SSA as sets of assets that are important,
respectively, for the implemented and the standard architectures with respect to the de-
fined focus.

The key of the conformance process is the specification of qualities. A system’s soft-
ware architecture strongly influences the system’s ability to support quality attributes such
as modifiability, performance, and security [65]. Focusing on only one relevant point

For example, the Common Criteria (CC) (ISO/IEC 15408) present a methodology for

9 Architecture Reasoning for Product Line Evolution: An Example on Security 339

maintenance phase for analyzing the system evolution. In [25,106] rules are presented to

the PSM model nor for checking if a mapping can be found between a PSM and a PIM.

figure, the set of requirements, including the nonfunctional ones, have been labeled “QoS,”

(quality) allows better analysis and reasoning about the architecture. Thus, the confor-
mance process needs SIA and SSA to identify and compare differences and similarities.

While there are several tools supporting the architecture recovery process, there are
only few for architecture conformance. It is expected that in the near future, tools support-
ing automatic management of architectural models can be used to support the confor-
mance activities. A review of the state of the art in modeling tools, especially those close
to the MDA initiative, can be found in Chap. 16. But until the tools reach industrial
strength, architectural conformance must be performed manually.

There have been some proposals of methods for architectural reasoning that could
eventually be used for architectural conformance such as: ontology-based algorithms that
allow the search of common artifacts within the architecture [92], or measurements of
similarities in quality requirements by using internal or external metrics [55].

Fig. 9.4. Architectural conformance process

The conformance process yields three relevant results:

– The proposal for enhancement of SIA (SSA-SIA). As a product of the comparison be-
tween SSA and SIA, new requirements are identified for improving the implemented
architecture.

– The proposal for enhancement of the standard (SIA-SSA). As a product of the com-
parison between SIA and SSA, some areas of improvement may be found in the stan-
dard; it is a frequent case when implemented technology goes beyond the scope of the
standard.

– Identified common artifacts and variation points (SIA SSA). The common artifacts
are identified and variation points are located. Variation points are the elements that

ess because it reveals how good the implementation is with respect to the standard.

340 J.L. Arciniegas et al.

present a certain degree of similarity, and also significant differences with respect to
certain criteria used for comparison. This is the main result of the conformance proc-

QoS Stakeholder request

Open Source Implementations

Objectives

Focus

Standard references

Significant Implemented Assets (SIA)

Conformance methods and techniques

(SIA-SSA)
Proposal for standard

Significant Standard Assets (SSA)

(SIAn SSA)
Common artifacts and variation points identification

(SSA-SIA)
Proposal for enhancement of SIA

Several situations may arise when the process has been performed based on the identified
common artifacts and variation points:

− The system fulfils completely the standard. This is the most unusual situation.
− The system fulfils parts of the standard. This is the most common situation.
− The system takes the standard as a reference but the implementation includes several

adaptations. Such variations of the standard may result in working solutions but they
will be difficult to reuse or integrate.

− The system implementation goes beyond the standard when the standard is found in-
adequate.

− The system implementation is totally different from the standard.

These results may help to take strategic decisions about the intended evolution of the sys-
tem or the product line.

9.5 Conformance and Recovery with Respect to Security

This section studies the domain of distributed systems developed in Open Source initia-
tives to provide services through the Internet. This domain is subjected to numerous secu-
rity-related threats and vulnerabilities such as attacks. Security solutions are thus needed.

necessitates an opposite direction from application engineering to domain engineering
(Fig. 9.1) and thus does not enable us to fully leverage the reference architecture. This

recovery and compares it with an external reference architecture for security.
This section instantiates the architectural conformance model (Fig. 9.4), considering

in and setting the objectives for the conformance and recovery process include the sys-
tem’s clients, end users, maintainers, component distributors, developers, evaluators, archi-
tects, accreditors, sponsors, auditors, administrators, owners, consumers, and operators.

In this chapter, several security-related standards and specifications have been consid-
ered to define a complete reference architecture for security in distributed systems. These
are:

− DMTF [21] has defined a Common Information Model (CIM) for security protection
and detection technologies, which may include devices and services to classify security
information, attacks, and responses. This emerging standard addresses firewalls, intrusion

3419 Architecture Reasoning for Product Line Evolution: An Example on Security

Chapter 8 focuses on security-driven product line architecture design and product architec-
ture derivation. However, the perspective of architecture recovery taken in this chapter

section therefore develops another reference model from the perspective of architecture

security as the quality attribute of interest. The stakeholders directly or indirectly interested

This section and the following one study the security-related standards and specifi-
cations for the conformance process. The security-related quality criteria and the objec-
tives of stakeholders establish the requirements that the evaluated systems need to fulfill.
The objective of the conformance process is to measure to what extent the evaluated
systems satisfy the security requirements. The focus of the conformance process is a set
of countermeasures that can be deployed in the evaluated systems to prevent, detect, and
recover from activities that may compromise the security of the systems.

detection, vulnerability assessment, and antivirus functionalities. The goal is to ease the
manageability of heterogeneous security systems within an enterprise or service pro-
vider environment.

− CC [88] states that “security is concerned with the protection of assets from threats,
where threats are categorized as the potential for abuse of protected assets. All catego-
ries of threats should be considered; but in the domain of security greater attention is
given to those threats that are related to malicious or other human activities.”

− The Object Management Group (OMG) [90] states that “security protects an information
system from unauthorized attempts to access information or interfere with its operation. It
is concerned with: Confidentiality, Integrity, Accountability and Availability.”

− The World Wide Web Consortium (W3C) [125] concentrates on Web security defined
as “a complex topic, encompassing computer system security, network security, authenti-
cation services, message validation, personal privacy issues, and cryptography.”

− The Internet Engineering Task Force (IETF) [51] has defined security protocols and infra-
structure to help solving some Internet problems: limit data disclosure to the intended
set, monitor communications to catch terrorists, keep data from being corrupted, de-
stroy computers with pirated content, track down bad guys, and communicate anony-
mously.

mapped to UML diagrams. The security requirements support accessing services, compo-
nents, and resources. The CIM Security model is not complete, but it does provide com-
monly needed classes from which vendor products may derive their specific information
models.

The objective of the CIM User/Security Model is to provide a set of relationships
among the various representations of users, their credentials, the managed elements that
represent the resources, and the resource managers involved in system user administra-
tion. The model adds to the pre-existing set of requirements fulfilled by the CIM Core
Model by introducing a “top” object class called ManagedElement. The introduction of
ManagedElement and the associations that reference it provide a foundation for the link-
ages between the User/Security Model and the ManagedSystemElement derived classes
that represent system components and resources.

OMG has proposed a security specification [90] detailing how secure services should
be dealt with in distributed systems. It defines several concepts and proposes some tactics
for solving classical security problems. OMG has introduced the Credentials, a key con-
cept visible to the application after authentication, for setting or obtaining privileges and
capabilities for access control. It is available to service implementers.

342 J.L. Arciniegas et al.

Figure 9.5 is a UML profile proposal for CIM [21,22], where concepts are defined and

The model (Fig. 9.6) is an excerpt of CC [53] that sets up concepts such as Owner (who
imposes a Countermeasure) and Asset (information, components, service, or application),
Entity (user or organization), and their relationships. The CC includes more concepts re-
lated with security, such as Identity (a representation uniquely identifying an authorized
user), Policy (a set of rules that regulate how assets are managed, protected, and distrib-
uted within a system), Role (a predefined set of rules establishing the allowed interactions
between a user and the system), and Domain (security). In addition, the CC model identi-

Fig. 9.5. CIM User/Security model

3439 Architecture Reasoning for Product Line Evolution: An Example on Security

fies the Authorization, Authentication, and Accounting countermeasures [50,99,110].

Fig. 9.6. Security conceptual model

The objective of the conformance and recovery process is to verify the adherence to the
following security qualities as stated in Chap. 8 (see Fig. 9.7):

Fig. 9.7. Security requirements for distributed systems

− Integrity. Information is modified only by users who have the right to do so and only in
authorized ways. It is transferred only between intended users and in intended ways.

− Confidentiality. The information is disclosed only to users authorized to access it.
− Availability. The usage of the system and the information cannot be maliciously denied

from authorized users.
− Accountability. The users are accountable for their security-relevant actions. A particu-

curity information. For example, defining and setting a specific security policy is needed
to guarantee the quality requirements of the system.

Countermeasures need to be deployed to prevent, detect, and recover from activities that
may compromise security. For distributed systems, the main countermeasures are those
related with identity and communication (Fig. 9.8). Identity countermeasures deal with the

lar case of this is nonrepudiation, where responsibility for an action cannot be denied.

9.5.1 Countermeasures

344 J.L. Arciniegas et al.

Security

Integrity Confidentiality Availability Accountability

Java Security [118], and other sources [18,43,78,117] include the administration of se-
Complementary security requirements posed by initiatives such as Web Services [126],

access control to the system resources. The most relevant requirements dealing with

− Authorization. Deciding whether a principal (human users and objects) can access an
object (resource) normally using the identity (defined in terms of credentials) and/or

− Authentication. Verification that principals operating under their own rights are who
they claim to be. Credentials can be used for verification purposes.

Distributed systems are characterized by the usage of a network providing communica-
tion channels. The channels must guarantee certain quality requirements (e.g., message
confidentiality and integrity) that, if breached, can compromise the security of the system
in a distributed environment. The most relevant requirements dealing with communica-
tions can be met by the following countermeasures:

− Security of communication between objects. This requires trust to be established bet-
ween the client and the target of the interaction, which may require authentication of
clients to targets and targets to clients. It also requires integrity protection and (option-
ally) confidentiality protection of messages in transit between objects.

− Encryption. An algorithm is used to scramble data, thus making it unreadable to every-

lutely incompatible. After a detailed study (which could also be considered a conformance

scope and coverage of this model in its security part was far wider than those of the other
models. However, the CIM model is insufficient for applying the architectural confor-
mance process to meet the security requirements for distributed systems. We have thus

− Accounting. The Open Systems Interconnection (OSI) Management Framework defines
accounting as a process of collecting, interpreting, and reporting costing and charging-
oriented information on service usage. This process is divided into the following sub-
processes: metering, pricing, charging, and billing. However, the term accounting will
be used here as a synonym of only metering, which is the process of measuring and
collecting resource usage information related to a single customer’s service utilization.
A part of accounting is security auditing to make users accountable for their security-
related actions. It is normally the human user who should be accountable. Auditing
mechanisms should identify the users correctly even after chains of calls through many
objects.

9.5.2 Specification of the Security Agent

The available security reference models are neither complete on their own nor abso-

3459 Architecture Reasoning for Product Line Evolution: An Example on Security

access control can be met by the following countermeasures [50,53,56,99,110,128]:

other privilege attributes (such as role, groups, security clearance), and the control
attributes of the target object (stating which principal or principals with which attri-
butes which attributes can access it).

one except the recipient. Encryption is often used by e-commerce sites to secure finan-
cial data.

process) we conclude that the most complete model was CIM, proposed by DMTF; the

Fig. 9.8. Countermeasures in distributed systems

merged the concepts appearing in the aforementioned models and, in some cases (such as
the concept of “firewall”), we have added others. The result of the merging and enhance-
ment process is the “security agent” reference model. For further details, we refer the
reader to the case study implemented in the OSMOSE project [96].

The security agent contains the architectural elements dealing with Access Control and
Communication Countermeasures grouped in two main subsystems based on the concepts
identified in the Common Criteria model. Each of the elements pertaining to these two
subsystems will be called “services.”

1. Authentication Services
– Credential Management Service manages activities related to the credentials

assigned to clients (users or applications) within the system. The activities
include: validate a credential to a client, renew a credential by means of
managing the relationships with the certification authority, and evaluate a
certificate.

– Authentication Rule Check Service verifies the identity of a client trying to
access or use a resource within the system.

– StorageHardwareIDManagement Service manages the identity of hardware
devices. This identity must be authenticated in order to guarantee the safety
of the platform.

2. Authorization Services
– Identity Access Service manages identities (e.g., User, Component) that are

allowed to access the resources.
–

resources on the system.

346 J.L. Arciniegas et al.

The Access Control Countermeasures come from the CIM model and provide several
kinds of services, examples of which are given below.

Privilege Management Service deals with setting the policy for authorization
purposes. The policies can be defined for identities in terms of privileges in
order to grant restricted or unrestricted permissions for accessing available

The Communication Countermeasures are divided into the following services:

1. Firewall is composed of a set of related programs located at a network gateway
server that protect the resources of a private network from users from other net-
works. How this firewall functionality is provided, will depend on the imple-
mented solution within the target platform. For instance, a firewall provided over
the operating system of the platform could implement the solution. Firewalls are
frequently used to prevent unauthorized Internet users from accessing intranets
and other private networks connected to the Internet. All messages entering or
leaving the intranet pass through the firewall examining the messages and block-
ing those that do not meet the specified security criteria [127].

2.
slower data transfer speeds [127]).

3. Communication encryption deals with the confidentiality of remote communica-

4. Communication signing proofs the message origin. Communications can be
signed with the credentials of the sender.

5.

9.6 The Case Study on Security for Distributed Systems

This section details the conformance process using a case study about an implementation
of the OSGi standard [94]. OSGi has defined a set of open-standard software application
interfaces (APIs) for building open-services gateways, including residential gateways.
This standard has been implemented for connecting the next generation of smart consumer

Remote access lets users access the platform resources remotely (at the cost of

tions. This service encrypts data to ensure confidentiality among extremes and

3. Account Management Services
– Nonrepudiation Credentials provide evidence of application actions in a

requirements. Nonrepudiation is a property achieved through cryptographic
methods, which prevents an individual or entity from denying having per-
formed a particular action related to data (such as mechanisms for nonrejec-

for proof of ownership) [79].
– Auditing Decision assists in the detection of actual or attempted security vio-

lations. This is achieved by recording details of security relevant events on

and/or changes in an event [127].
– Auditing Channel is used to write audit records on a certain location, where

the evidence of security-related events can be checked.
– Account functionality provides a log service and a service tracker in order to

record relevant events on the system.

3479 Architecture Reasoning for Product Line Evolution: An Example on Security

ties to enable the reconstruction and examination of the sequence of events
the system. The term audit refers to a chronological record of system activi-

form that cannot be repudiated later; they support the accountability quality

client. Integrity message criteria must be defined.

decrypts them for presentation to the client.

Message Integrity ensures the integrity of a message received from a remote

tion of authority -origin- for proof of obligation, intent, or commitment; or

and business appliances with Internet-based services [42]. Being the core of the residential
gateways (and increasingly being adopted by embedded systems providers and network

these service components. Implementations of this standard have been used as the basic

in the component framework itself. As will be shown later, the variation points inside the
component framework are not really significant. On the other hand, one of the goals of the

functional requirements, the better reuse levels can be obtained. This is one of the main
objectives for the product line strategy.

Figure 9.9 presents the conformance process for the case study. Two conformance
levels will be considered:

– The conformance between the OSGi standard and the open source implementation
Oscar [94] in order to detect inadequacies in the implementation with respect to the
standard.

– The conformance between the OSGi standard and the security-related specifications
(CIM, OMG, and CC) in order to develop recommendations to improve the level of
support of these security specifications by the OSGi standard.

Fig. 9.9. Architectural conformance process with respect to security

component framework is to provide support for nonfunctional requirements such as secu-

348 J.L. Arciniegas et al.

operators), it is essential to ensure or to enhance the security characteristics of the avail-
able implementations of the OSGi standard.

Using product line terms, the OSGi standard defines a specific type of component
framework in which the plugged-in components offer one or several services registering
them into the framework. The framework enables the run-time management and control of

component framework for several product lines in different domains requiring communi-
cation capabilities. The variability in these product lines is produced at three levels: the
set of services running on the framework and their configuration (coarse-grain variability),
the variation points in each of these services (fine-grain variability), and the (few) variations

rity. The higher support the component framework is able to provide to these non-

QoS Stakeholder request

Objectives

Focus

Conformance methods and techniques

(SIA-SSA)
Proposal for standard

Significant Standard Assets (SSA)

(SIAnSSA)
Common artifacts and variation points identification

(SSA -SIA)
Proposal for enhancement of SIA

SecurityAvailability
Non-repudiation
Accountability
Integrity
Confidentiality

Authorization
Authentication
Accounting

CIM/DMTF
OMG
OSGi
Others

Oscar
Source code
Others

Significant Implemented Assets (SIA)

Standard referencesOpen Source Implementations

Another important result is the identification of the missing elements in the OSGi stan-
dard that, once implemented, may leverage the OSGi system to comply with the security
levels described by the main standards in the field. The OSGi-based product lines will
probably evolve into the direction of the standard. By identifying these elements, the evo-
lutions can thus be supported.

services. At the time of the execution of the experiments we are describing, Oscar was

namic deployment [59].

plementation as follows.

Input data for the recovery process:

− Available documentation and source code. Oscar’s source code and documentation

structions for installing, running, and using Oscar; the history of changes made to the
source code; a simple OSGi tutorial; a description of the security requirements of
Oscar; several descriptions of the included bundles; a description of the Oscar shell
service bundle; a brief document discussing Oscar’s design issues, by its author; and a
description of Oscar’s implementation.

ing an Intel Pentium 4 CPU 2.8-Ghz processor and 1.0 GB of RAM with Linux Debian
version 2.4.22.

− Patterns. In the OSGi standard, a tentative reference architecture is presented. It will be
considered as the reference architecture. The main patterns we found to be used are: a

tectures”), the observer and the state pattern.

covery process should thus be performed to make the product line architecture explicit,

OSGi standard. The recovery process shown in Fig. 9.3 was applied to the Oscar imple-

− System in run time. The Oscar framework was installed, run, and tested over a PC hav-

address further evolution, and check Oscar’s architectural conformance with respect to the

3499 Architecture Reasoning for Product Line Evolution: An Example on Security

9.6.1 Conformance Between Oscar and the OSGi Standard

were available in [94,95]. The input documentation included the OSGi standard; in-

Oscar [94] implements most of the functionality in the OSGi standard [95], although it is
not completely compliant with the standard yet. The eventual goal is to provide all standard

found stable for deployment on controlled experiments and was being used by open source
projects. Different open source products have been derived from the common platform such
as Gravity, a dynamic component-oriented application framework for service-oriented
applications [44]; Beanome, a component layer on top of the OSGi framework [7]; Exymen,
an universal cross platform multimedia editor [34]; and JBones, an automatic tool for dy-

Unfortunately, Oscar’s architecture is not completely documented. An architecture re-

service registry (using it is a characteristic of the now-called “Services Oriented Archi-

Fig. 9.10. Recovered Oscar framework core

The recovery process included the following activities:

– Information extraction. Although Oscar is not 100% compliant with the OSGi standard,

standard.

9.3.1 were used to group the most relevant classes.
– Dynamic-view extraction. A metamodel about the roles and interactions among the

350 J.L. Arciniegas et al.

the reference architecture was directly obtained from the standard. The structure of the
source code was checked, proving that Oscar implementation is in agreement with the

Omondo tools [24]. The core of the Oscar framework is shown in Fig. 9.10. The dia-
grams are not yet related to the security requirements. Techniques defined in Sect.

entities is directly defined in the OSGi standard that could be understood as an external
schema for the dynamic view. A specific business model should be defined taking into
account the security requirements, where the Oscar implementation supports the service

– Static-view extraction. The full class diagrams were recovered using the Eclipse/

– Analysis and abstraction. The architecture (Fig. 9.11) was obtained by taking into ac-
count the OSGi standard as well as the security requirements.

The results of the recovery process were:

– The conceptual model is detailed in the OSGi standard [95] and no new elements were
defined.

– The preliminary architecture. Figure 9.10 shows the OSGi core. Figure 9.11 presents a

ments (authorization, user, roles, and groups).
– The improved architecture model. OSGi can be seen as a set of services and utilities.

– Proposal for enhancement of Oscar (SSA-SIA). The basic framework is fully imple-

– Proposal for OSGi standard (SIA-SSA). No inadequacies were found.

Oscar thus partially fulfills the standard. In the future, Oscar should become closer to
the standard by including the missing services.

the Oscar implementation and the OSGi standard. The Significant Implemented Assets
(SIA) are depicted following a color schema: the Oscar implementation appears in dark-
gray color, the third party implementations included in the Oscar distribution in white-
gray color, and packages unimplemented by Oscar (version 1.0.0) in white. The results of

packageadmin, and tracker. No variation points were detected.

– Commonality and variation point identification (SIA SSA). A common artifact, the

Figure 9.12 shows the results of the application of the conformance process between

3519 Architecture Reasoning for Product Line Evolution: An Example on Security

platform component and the rest of the components can be implemented using other

work execution.

runtime information from the inner part of the Oscar framework were unsuccessful due to
the amount of instrumentation required to get this internal information about the frame-

class diagram with the most relevant classes and interfaces related to security require-

mented. The following services need to be implemented to obtain a holistic security
architecture (by adapting or reusing components from other OSGi implementations or

visioning were missed.
source code services): device, wireadmin, useradmin, and log; permissionadmin and pro-

basic framework, and the following services and utilities were found: startlevel, url,

technologies [4,10,51,60,86,104,125]. The experiments for the extraction of dynamic

OSGi is supported by a basic core (Framework) extended with Java components [118].
Figure 9.12 shows the static architecture organized by services and utilities considering
only the packages related to the security requirements.

the conformance process were:

Fig. 9.11. Preliminary security Oscar architecture

352 J.L. Arciniegas et al.

1. Proposal for enhancement of the OSGi standard (SSA-SIA). Based on the analysis of

an OrgUnit (a part of an organization) with a defined structure.

mance process are:

CIM is the most general available standard for security. Consequently, the conformance

the difference between CIM and OSGi, requirements for enhancing the conceptual model

the following additional elements are required:

− OrganizationalEntity is a type of ManagedElement that represents an Organization or

− UserAccess is a special type of UserEntity that relates the user account to its credential.

9.6.2 Conformance Between the OSGi and the CIM Standard

process will be done taking into account the security part of CIM. The dynamic conform-
ance is not included in this analysis because we are comparing standards, not imple-
mentations, and the behavior is thus not available (it could be created using a specific
scenario). The conformance process is conducted at a high level of abstraction and the
results are generic, independent of implementations. The results of the conformance

and the static architecture of OSGi are identified (Tab. 9.1). In the conceptual model

Fig. 9.12. Security architecture analyzed and abstracted from Oscar

− Notary is a service for credential management used in the authentication service.
− AdminDomain describes the system domain (context).
− AccountManagementService is a security service managing accounting on the system.

org.osgi.util

org.osgi.service

device log

provisioningpackageadminpermissionadmin

startlevel

useradmin

wireadmin

tracker

org.osgi.frameworkjava.security.Permission

url

OSCAR implementation

Third party implementation

Not implemented

3539 Architecture Reasoning for Product Line Evolution: An Example on Security

In the static architecture the following additional components are required:

Certificate authority is a service for credential management used in authentication ser-
vice. It can operate by accessing a trusted third-party organization that issues digital
certificates used to create digital signatures and public–private key pairs (unsigned
public key and public key certificate). The Certificate Authority guarantees that the in-
dividual granted the unique certificate is who he or she claims to be.

tion.

ciates these devices with an appropriate Driver service.

implement the architectural elements described in previous sections.

Table 9.1. Extracted elements from conformance process between the OSGi and CIM standards

SSA-SIA OrganizationalEntity
UserAccess
Notary
AdminDomain
AccountManagementService

Certificate
Credential

SIA-SSA Framework
Device Manager
Security Agent

Provisioning service
StartLevel service
WireAdmin service

− Credential is a type of ManagedElement. In cryptography, a credential is a subset of
access permissions (developed with the use of media-independent data) attesting to, or
establishing, the identity of an entity (e.g., a birth certificate, driver’s license, mother’s
maiden name, fingerprint, or voice print).

354 J.L. Arciniegas et al.

− Framework is a reusable, “semi-complete” application that can be specialized to pro-
duce custom applications [63]. This concept does not appear in the CIM standard and
may help in the definition of standard security elements in component-based software
systems (such as OSGi). The framework can be understood as a domain implementa-

− The Device Manager service in OSGi detects registration of Device services and asso-

− Security Agent is a type of Management Agent from OSGi dealing with the security
requirements of a platform, i.e., authorization, authentication, and accounting. This will

additional elemen in tconceptual model
static architecture

2. Proposal for CIM standard (SIA-SSA). The elements identified by our analysis are
summarized in Tab. 9.1. In the conceptual model the following elements are required:

Table 9.2. Commonalities and variation points between the OSGi and CIM standards

SIA SSA
9.3

Privilege
Identity
Organization
Resource
Policy
SettingData
UserAdmin

PackageAdmin
Device
PermissionAdmin
Log
Tracker
URL

Device
Collection
AuthenticationService
AuthenticationRule
Account

see Table

In the static architecture the following components are required:

− Provisioning service is registered with the Framework and provides information about
the initial provisioning of services.

− StartLevel service allows the Management Agent to manage the start level assigned to
each bundle and the active start level of the Framework.

− WireAdmin service is used by user interfaces or management programs to control the
connections between available services in the OSGi Services Platform.

definitions have little differences.

would eventually become common artifacts.

3559 Architecture Reasoning for Product Line Evolution: An Example on Security

3. Commonality and variation points identification (SIA SSA). Common concepts,

concept. The differences in the definitions of the concepts suggest that they are elabo-
rated in different ways and at least two interpretations appear for each concept. If the
evolution of the OSGi framework followed the CIM standard, the variation points

Figures 9.13–9.15 sum up the main results of the conformance process. The extra-
functionalities of the security CIM are shown in dark-gray color. They are not supported
by the OSGi standard. In a real scenario, they could be required and they could be sup-
ported by a third party, for example using Web Service Security [126]. The extra-
functionalities of the OSGi standard are shown in white-gray color. They are specific for

can be considered equivalent because each of them has been defined [21,95] and the

defined differently. The criteria for comparison are based on the semantics of each

common common artifacts variation points
concepts

common artifacts, and variation points are summarized in Tab. 9.2.
− Common concepts are listed in Tab. 9.3. They are not exact matches, but the concepts

− Variation points in Tab. 9.2 include the concepts that appear in both standards but are
− Common artifacts are listed in Tab. 9.2. There are slight differences in their definitions.

Table 9.3. Commonalities between (the security part of) CIM and OSGi

ManagedElement Bundle
ManagedSystemElement Resource
System Package
Service Service
Network Protocol : IPSec Network Protocol : IPSec
PhysicalElement
LocalDevice

Device

Location Bundle location
Collection Collection : Identity or Role
Group Group
UserEntity User
Settingdata ServiceRegistration
Identity Identity
Policy Policy
Role Role
CertificateAuthority
Notary

CertificateAuthority: Kerberos v5 Server

AuthenticationService UserAdminService
PermissionAdminService
ConfigurationAdminService

AuthenticationRule − AdminPermission
− ServicePermission
− PackagePermission
(Supported on java.security.Permission)

Credential Credential : KerberosTicket
AuthorizationService UserAdminService
PrivilegeManagementService PermissionAdmin
Privilege Permission
SecuritySensitivity Properties
Account LogService

State
ServiceTracker

356 J.L. Arciniegas et al.

CIM – DMTF OSGi

Managed by Access Control Countermeasure

org.osgi.framework

startlevelprovisioningpermissionadmindevicepackageadminuseradmin

java.security.Permission

Managed by Access Control Countermeasure
Authentication Management Authorization Management

CredentialCertification Authority Privileges

Security Admin

Identity ResourceOrganisation Policy SettingData

DMTF core

DMTF - OSGi

OSGi - DMTF

DMTF OSGi

U

*

*

*

*

Accounting Management

Account

Security Admin

Identity ResourceOrganisation Policy SettingData

DMTF core

log tracker

Managed by Accounting Management

java.security.Permission org.osgi.framework

DMTF - OSGi

OSGi - DMTF

DMTF OSGi

U

3579 Architecture Reasoning for Product Line Evolution: An Example on Security

Fig. 9.13. Conformance OSGi-CIM with respect to Access Control Countermeasures

Fig. 9.14. Conformance OSGi-CIM with respect to accountability

the OSGi domain (e.g., registry and management of the OSGi bundles). Common compo-

found clear commonalities.

Two examples of the application of the conformance analysis process have been con-
ducted and described:

− The conformance analysis of the OSGi standard with respect to the DMTF standard
identified proposals for enhancement of both the OSGi standard (SSA-SIA) and the
DMTF standard (SIA-SSA).

− The conformance analysis of the Oscar implementation with respect to the OSGi stan-
dard identified proposals for enhancement of Oscar (SSA-SIA) and commonalities and
variation points (SIA SSA).

These two examples of the conformance analysis process act as case studies for the
validation of the approach to architecture conformance. There is, however, one step fur-
ther in the validation: conducting a case study in which the proposals for enhancement
could be applied for the evolution of the product lines using OSGi-based implementations
as component frameworks and validated in a practical manner.

wireadmin

Managed by Network security

java.security.Permission org.osgi.framework

url

DMTF - OSGi

OSGi - DMTF

DMTF OSGi

U

Security Admin

Identity ResourceOrganisation Policy SettingData

DMTF core

9.7 Security Model Validation

358 J.L. Arciniegas et al.

nents are represented in white. They do not have an exact equivalence but we have

Fig. 9.15. Conformance OSGi-CIM with respect to communication security

Thus, this second validation technique relies on the development of a prototype or a
proof-of-concept operative system. To simulate the evolution of one of these product

compliant platforms without any security enhancements and is thus exposed to security
vulnerabilities. The second is the same distributed system, but now the OSGi platforms
(and other supporting elements in this scenario) have been enhanced with components that
implement the security agent described in Sect. 9.5.2. This second system should be able
to resist the security attacks.

Taking into account the manpower effort required to validate holistically the results of

tives:

− The identification of the required supporting components for Oscar in order to guaran-
tee a set of security requirements for the system in the scenario (e.g. permissionadmin,
useradmin, etc.) and the development of the components when an implementation is
not available.

− The validation of a set of functionalities identified by the Security Agent. The proposed
Security Agent covers a wide scope of security requirements of a distributed system.
The Security Agent model can be seen as a set of variation points representing each of
the required functionalities. The most important variation points will be validated by
using the scenario.

Figure 9.16 presents an overview of the validation process having the following steps:

1. Determination of the generic scenario providing its description, the required infrastruc-
ture, the (security) threats that can appear, and countermeasures to deal with the threats.

2. In order to focus the scope of the scenario for the validation, a set of criteria must be
established. The proposed criteria are focused on the security requirements and coun-
termeasures that must be validated within the scenario.

3. The inputs from previous steps indicate the variation points of the Security Agent de-
termining the support components of Oscar needed in the system validation.

4. The implementation technologies represent again variation points: elements that may
vary in the PL and for each of which a decision must be taken. Examples of these are
the type of credentials: certificates, name, etc.; or the encryption protocol: RSA, DES,
PGP, etc.).

5. Then the experiments for checking the system behavior in front of security attack are
performed.

3599 Architecture Reasoning for Product Line Evolution: An Example on Security

lines, we built two prototypes. The first one regards a distributed system that uses OSGi

the analysis, we focused our validation by defining a scenario to have the following objec-

Fig. 9.16. Process followed for the validation

Recalling the definition that appears in the glossary of the book, a variation point is “a
representation of a variability subject within a development artifact enriched by contextual

of the distributed system security requirements and system architecture: security require-
ments such as identification, authentication, authorization, accounting, and cryptography;

rity; domain-specific and application-specific functional variation points; and hardware
variations. The elements in the architecture that deal with security requirements are cov-
ered by the Oscar platform and the security agent. The security-related variation points are
associated with the services of the security agent.

The generic scenario for validation pertains to the domain of distributed systems. There
are several services platforms connected to Internet for the deployment of services in the
home environment and a system manager that controls the services and platforms. The
services gateways are composed of PC-like computers over which the Oscar implementa-
tion runs. Obviously, these elements are prone to be attacked. The scenario also specifies
a typical operation:

− A System Manager deploys a new service component (bundle) on a remote platform
(Service Gateway).

Generic Scenario
- Description
- Required Infrastructure
- Threats
- Countermeasures

Quality Aspects
(Criteria)

- Integrity
- Confidentiality

Countermeasures
(Criteria)

Security Agent
(Variation Points)

- Authentication
- Authorisation
- Communication

Oscar Support
(Variation Points)

Implementation
Technologies

(Variation Points)

System Validation

Generic Scenario
- Description
- Required Infrastructure
- Threats
- Countermeasures

Quality Aspects
(Criteria)

- Integrity
- Confidentiality

Countermeasures
(Criteria)

Security Agent
(Variation Points)

- Authentication
- Authorisation
- Communication

Oscar Support
(Variation Points)

Implementation
Technologies

(Variation Points)

System Validation

information.” In this validation process, several variation points appear in different points

9.7.1 Generic Scenario

360 J.L. Arciniegas et al.

alternative solutions such as standards, technologies, and ad hoc solutions; levels of secu-

− Deployment is made through Internet meaning that there are several security critical
requirements such as user authentication and authorization and channel authentication
that must be taken into account.

Data encryption at application level is required to ensure confidential communication
through Internet and message signing is required to provide authentication and message
integrity. There are many security threats the scenario must face:

− Message spoofing or identity supersede: Spoofing is defined as “getting one computer
on a network to pretend to have the identity of another computer, usually one with spe-

this scenario, spoofing happens when someone tries to send a request message to the
Service Gateway with the credentials of the System Manager to achieve the authentica-
tion as System Manager on the Service Gateway.

− Message sniffing: The System Manager credentials can be obtained from message
request sent through Internet. A malicious attack can be performed against the Service
Gateway by using these credentials to supersede the System Manager identity.

− Platform damage: A deployment request message is sent to the Service Gateway, con-
taining information for deploying a malicious component over it. The malicious com-
ponent can be considered a Trojan Horse.

− Exploit information from platform: A malicious component deployed on the platform
can retrieve, damage, or change information stored on the Service Gateway.

Based on the analysis of these security threats, the following countermeasures have
been deemed necessary:

quest message, including the credentials of the System Manager. The credentials are

ing the identity of the System Manager, thus validating its authentication on the Service
Gateway. The “Remote Access” service must obtain the credentials of the System

for authorization purposes. They are provided to the “Identity Access” in order to vali-
date the assigned privileges of the System Manager within the Service Gateway. If the
System Manager has the appropriate privileges, the Service Gateway will do the re-
quested operation.

− Validation of the integrity of the message: The integrity of the message must be guar-
anteed by means of the inclusion of the System Manager’s signature and the time
stamp information in the request message sent to the Service Gateway. The “Message
Integrity” must check that both signature and time stamp are valid together.

− Administration privileges on the system to allow installation: The “Identity Access”
must check that the System Manager has the required privileges for achieving the re-
quested deployment service of the Service Gateway. The System Manager privileges

cial access privileges, so as to obtain access to the other computers on the network.” In

− System Manager authentication: A proof of the data origin must be provided in the re-

Manager and provide them to the “Authentication Rule Checker Service.”

are set in the “User Admin Service.” The System Manager requires Admin Permission

3619 Architecture Reasoning for Product Line Evolution: An Example on Security

− System Manager authorization: The credentials of the System Manager are also used

in order to deploy a component on the Gateway.

verified by means of the “Authentication Rule Checker Service”, which will allow proof-

− Confidentiality of the message: The System Manager encrypts the request message
with a encryption algorithm. The “Communication Encryption” service must decrypt
the message. In order to achieve this, the Service Gateway must have the required in-
formation to decrypt the request message.

Chapter 8 defines a holistic set of tactics to support countermeasures dealing with secu-
rity requirements. Figure 9.17 shows the subset of the tactics the security agent should
provide in the validation scenario (as gray boxes).

Fig. 9.17. Tactics from Chap. 8 required in the validation scenario

The criteria for validation are based on the security requirements and countermeasures
that, in conjunction with the information provided in the scenario, indicate the guidelines
for designing the Security Agent and determine the support components to be deployed
over Oscar.

However, not all security requirements (see Fig. 9.7) are covered. The scenario only
takes into account Integrity and Confidentiality requirements. In consequence, only Au-

Other countermeasures will be validated in future work.
The Security Agent functionality is decomposed in the following services that support

the countermeasures (see Fig. 9.18):

9.7.2 Criteria

thentication, Authorization, and Communication countermeasures have been validated.

362 J.L. Arciniegas et al.

Tactic
Logging

Context holder

Authentication

Access control

Recovery

Prevention
Detection

Password

Contextual Resource based

Certificate Role
Authentication policy

Role based
Obfuscation

End-to-end security
Transport tunnel

Cryptography
Symmetric cryptography

Service provider
Trusted third party

Liability transfer
Auditing Digital signatures

Authorization

− Communication Encryption (from Communication Countermeasures) encrypts data for
ensuring the confidentiality among communication ends and decrypts data for present-

− Remote Access (from Communication Countermeasures) represents the functionality
for accessing the platform resources remotely.

− Message Integrity (from Communication Countermeasures) deals with the integrity of
a received message from a remote client. The criteria for checking the integrity of mes-
sages must be defined and implemented by this service.

− Identity Access (from Access Control Countermeasures: Authorization Services) is
related to the management of the identities that are granted to access the platform (e.g.,
User, Component) and permission validation. This functionality is the part of the sys-
tem that can use the interfaces provided by UserAdmin Service of the OSGi.

− Permission Bundle Management (from Access Control Countermeasures: Authoriza-
tion Services) deals with the relationships of the OSGi specified service “Permission
Admin Service” in terms of accessing its capabilities.

− Policy Rule Checker Service (from Access Control Countermeasures: Authorization
Services) deals with activities related to the validation of the established policy in con-
cordance with the defined policy rules.

− Authentication Rule Checker (from Access Control Countermeasures: Authentication
Services) deals with the verification of the identity of a client that tries to access or use
a resource within the system.

Authentication
(from Access Control)

Communication

Permission Bundle
Management

Identity Access

Policy Rule
Checker Service

Message
Integrity

Remote Access

Communication
Encryption

Authentication
Rule Checker

(from Access Control)

the most general classification of countermeasures, whereas Fig. 9.17 shows the counter-
measures that must be implemented into the security agent functionality to be covered in
the validation scenario. Figure 9.18 describes the set of services the Security Agent should
offer to support these countermeasures.

Authorization

Fig. 9.18. Security agent services

Several similarities have been found in Figs. 9.8, 9.17, and 9.18. Figure 9.8 represents

3639 Architecture Reasoning for Product Line Evolution: An Example on Security

ing them to the client.

Fig. 9.19. Basic Scenario. Component deployment view

The scenario was implemented with Oscar support. Figure 9.19 shows the initial proto-
type, including the System Manager (also called Control Center) in the upper side and the
Service Gateway (also called Residential Gateway) in the lower part. Both parts are con-
nected through Internet by leveraging the application-level protocol SOAP over HTTP,
characteristic of the Web Services.

The control center follows the typical architecture with components such as CRM
(Customer Relationships Management), Billing Service, and Management Service running
over an Application Server (typically conformant to J2EE specifications). The key part for
the validation, however, is the residential gateway that runs the OSGi Framework, over
which there are services such as the User Admin Service and Permission Admin Service
(these two are basic Oscar components). There are also services that offer a Web Service
front-end of the gateway to the control center: the Axis bundle; a deployment agent
(JBones is an open source implementation of it); and a “dummy” bundle to be installed
(only to demonstrate scenario validation, so no special functionality must be provided).
The residential gateway running the OSGi framework represents the common part of the
domain implementation under study. As different services are put running on top, differ-
ent application architectures are obtained.

9.7.3 Implementation Technologies

364 J.L. Arciniegas et al.

1. Checking the control center and service middleware (ports 9080 and 80) with
Nessus resulted in two warnings and 15 notes.

2. Checking the navigation service and file remote access with NeWT security
scanner resulted in a warning.

3. Checking the whole system with Retina network security scanner detected no
additional security risks.

Since vulnerabilities were detected, countermeasures were needed to deal with them.
Then, the scenario was improved adding the security elements described in the previous
sections. Once the countermeasures were implemented and the additional components
added to the initial distributed system, the system described in Fig. 9.20 was obtained. The
main differences correspond to the added elements: XML security and Web Services
security [87] for the communication countermeasures and the XML Firewall and the Se-
curity Agent as parts of the OSGi Management Agent.

Bundle permissions can be managed remotely through a Web Services support bundle
(Axis + WS-Security). With Axis support, a communication channel can be established
between the Control Center and the Service Gateway (using SOAP over HTTP). To guar-
antee integrity and confidentiality of the communications over Internet, WS-Security is

9.7.4 System Validation

3659 Architecture Reasoning for Product Line Evolution: An Example on Security

The first part of the validation implemented the scenario without security elements (see Fig.
9.19) and used tool support trying to detect threats to which it could be exposed. The
implemented system was analyzed with three available security-testing tools: Nessus,
NeWT Security Scanner, and Retina network security scanner. The analysis had the
following results:

Fig. 9.20. Improved scenario. Component deployment view

required. Technologies required for encryption and signing of SOAP messages include
XML Encryption and XML Signature.

The Permission Bundle Management interacts with the OSGi specified Permission
Admin Service to manage bundle permissions. Permissions are used for authorizing new
bundles deployed on the Service Platform at run time. Permissions are stored in a Secu-
rity Policy File containing information in a format that can be interpreted by the Secrity
Manager included with the Java Virtual Machine and responsible for checking the policy
defined for the system. Figure 9.21 presents a detailed view of relationships among com-
ponents of the Service Platform.

Fig. 9.21. Scenario. Detailed view of interaction of components. Permission Bundle Management

The security tests were executed again on the improved scenario without errors. The
security enhancements are thus an effective way to improve the service gateway with re-
spect to security requirements.

This chapter has presented a holistic conformance process for supporting the evolution of
product lines. This process is based on mature methods and techniques involving architec-

techniques and tools. Architecture conformance is a mechanism to evaluate and to check
implementations and architectural models against a given standard. The main contribu-
tions of the proposed conformance process are:

− The identification of inadequacies, new requirements, and improvements to current im-
plementations.

− The identification of recommendations to improve standards.

9.8 Conclusions and Future Research

366 J.L. Arciniegas et al.

tural conformance and recovery processes, architecture recovery methods, and supporting

− The identification of commonalities and variation points for elements in product line

The recovery process described in this chapter is a key part of the architectural confor-
mance process when implemented solutions are poorly documented. It is a complex abstrac-
tion process making the product line architecture easier to understand and supporting the
evolution and derivation of future products. Evolution in software engineering, as recog-
nized by experts, is still an exceptionally hard problem; the processes described here may
help in the exploration of paths of evolution of product lines. In particular, these processes
may contribute to improve the support that product line reference architectures offer to
specific architecturally significant requirements defined by standardization bodies.

The proposed architecture recovery process leverages existing methods by integrating
their best practices into a common process that takes into account both static and dynamic

abstraction levels (implementation level and standards level). The study defined strategies
and possible solutions for security-related requirements using standards, and applied them
to a component framework that constitutes the basis of the domain design and implemen-

− A complete conformance process was performed between the Oscar implementation
and the OSGi standard with respect to security requirements.

− New security requirements were identified for the Oscar implementation in order to
provide a full compliance implementation with respect to the OSGi standard.

− A complete conformance process was performed between the OSGi standard and the
security part of CIM with respect to security requirements.

− New security requirements were identified for the OSGi standard in order to provide a
full and trusted standard for security requirements with respect to the CIM standard.

− New security requirements were identified and integrated into the CIM standard in or-
der to provide a full and trusted standard for security requirements. A security model
called “Security Agent” was proposed to improve the CIM model based on other stan-
dards such as OMG and CC. It was particularly adapted to the domain of distributed
systems.

− The Security Agent was validated with a real scenario covering security requirements.
The scenario presented is a full system meeting the security requirements and imple-
mented using distributed systems technologies such as Oscar, WS-Security, and XML
Security.

The architecture recovery and conformance processes and their validation have been
applied to the OSGi standard and its implementation that have then been used in the vali-
dation scenario. Services gateways – also called services platforms – are typical results of
domain engineering. By exemplifying how to apply architectural reasoning to such domain
assets, we propose and validate a method for guiding the evolutions of the product lines
built using these platforms with respect to security requirements. Future research is needed
to validate the generalizability of the method in the context of other types of product lines
and with respect to other nonfunctional quality attributes.

3679 Architecture Reasoning for Product Line Evolution: An Example on Security

system information and domain knowledge and crystallizes the architecture in the desired
degree of detail through three increasingly detailed levels.

A complete conformance process case study has been presented in this chapter with two

tation in several product lines of distributed systems. The following results were obtained:

architectures dealing with specific nonfunctional requirements (such as security).

Acknowledgments

We are grateful to Timo Käkölä, whose extensive reviews and feedback led us to rewrite

References

368 J.L. Arciniegas et al.

1. Abowd, G., Goel, A., Jerding, D., McCracken, M., Moore, M., Murdock, W., Potts, C., Rugaber, S., Wills,
L.: MORALE: mission oriented architectural legacy evolution. Proceedings of the International Conference
on Software Maintenance’97, Bari, Italy, 29 September–3 October 1997

2. Alonso, A., León, G., Dueñas, J.C., de la Puente, J.A.: Framework for documenting design decisions in
product families development. Proceedings of the 3rd IEEE International Conference on Engineering of
Complex Computer Systems (IEEE Computer Society, Silver Spring, MD 1997)

3. Anderson, P. et al: Design and implementation of a fine-grained software inspection tool. IEEE Trans.
Softw. Eng. 29(8) (August 2003)

4. Apache community: http://www.apache.org
5. ARES Project: Architectural reasoning for embedded systems. ESPRIT 20477, 1995–1998. http://www.

infosys.tuwien.ac.at/staff/hg/projects/ARES/
6. Bachmann, F., Bass, L.: Managing Variability in Software Architectures (2003)
7. Beanome: http://www-adele.imag.fr/~cervante/projects.html
8. Bosch, J.: Design and Use of Software Architectures -- Adapting and Evolving a Product Line Approach

(ACM/Addison-Wesley, New York/Reading, MA 2000)
9. Boucetta, S., Hadjami Ben Ghezala, H., Kamoun, F.: Architectural recovery and evolution of large leg-

acy systems. Proceedings of IWPSE99 International Workshop on the Principles of Software Evolution,
Japan, 16–17 July 1999

10. Bouncy Castle: http://www.bouncycastle.org/
11. Bowman, T., Holt, R.C., Brewster, N.V.: Linux as a case study: its extracted software architecture. Proceed-

ings of the 21st International Conference on Software Engineering, Los Angeles, CA, 16–22 May, 1999
(ACM, New York 1999) pp 555–563

12. Bril, R.J., Feijs, L., Glas, A., Krikhaar, R.L., Winter, T.: Hiding expressed using relation algebra with mul-
tirelations-oblique lifting and lowering for unbalanced systems. Proceedings of the 4th European Workshop
on Software Maintenance and Reengineering, 29 February–3 March 2000 (2000)

13. CAFÉ ITEA Project: From concepts to application in system family engineering (CAFÉ) is a project under
Eureka 2023 programme, ip00004, 2001–2003. http://www.esi.es/Cafe/

14. Cerón, R., Arciniegas, J., Ruiz, J., Dueñas, J., Bermejo, J., Capilla, R.: Architectural modelling in product
family context. 1st European Workshop on Software Architecture, EWSA 2004, St. Andrews, UK, 21–22
May 2004. Lecture Notes in Computer Science, vol 3047 (Springer, Berlin Heidelberg New York 2004)

15. Chikofsky, E., Cross, J.: Reverse engineering and design recovery: A taxonomy. IEEE Software pp. 13–17,
January 1990

16. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns (Addison-Wesley, Reading,
MA, 2001)

17. Common criteria for information technology security evaluation, Part 1: Introduction and general model,
version 2.2. http://www.commoncriteriaportal.org/ (2004)

18. Controlled access protection profile, version 1.d, Information Systems Security Organisation (National Se-
curity Agency (NSA), 9800 Savage Road, Fort George G. Meade, MD 20755-6000 October 1999)

19. Coplien, J., Hoffman, D., Weiss, D.: Commonality and variability in software engineering. IEEE Softw.
(November 1998)

20. De Pauw, W., Mitchell, N., Robillard, M., Sevitsky, G., Srinivasan, H.: Driveby analysis of running pro-
grams. Proceedings for Workshop on Software Visualization, International Conference on Software Engi-
neering, Toronto, 12–13 May 2001

this chapter resulting in very significant improvements in the scientific quality of the
chapter, and also to the reviewers Tor Erlend Faegri, Svein Hallsteinsen, F lix Cuadradoé
and Isabel John, and to the members of the FAMILIES project who helped us in dealing
with security issues.

3699 Architecture Reasoning for Product Line Evolution: An Example on Security

21. DMTF: CIM Core Specification 2.9, CIM User schema 2.9 and CIM Network specification 2.9 (UML dia-
grams). http://www.dmtf.org (2004)

22. DMTF: CIM User and Security Model White Paper (2003)
23. Ducasse, S., Lanza, M., Bertuli, R.: High-level polymetrics views of condensed run-time information. Pro-

ceedings of the 8th European Conference on Software Maintenance and Reengineering (IEEE Computer
Society, Silver Spring, MD 2004) pp 309–318

24. Eclipse/Omondo: http://www.omondo.com/
25. Egyed, A.: Consistent adaptation and evolution of class diagrams during refinement. Proceedings of the 7th

International Conference on Fundamental Approaches to Software Engineering (FASE), Barcelona, Spain,
March 2004

26. Egyed, A.: A scenario-driven approach to trace dependency analysis. IEEE Trans. Softw. Eng. 29(2) (Feb-
ruary 2003)

27. Egyed, A., Kruchten, P.: Rose/architecture: a tool to visualize architecture. HICSS 1999. 32nd Annual
Hawaii International Conference on System Sciences (HICSS-32), 5–8 January 1999

28. Egyed, A.: Automated abstraction of class diagrams. ACM Trans. Softw. Eng. Meth. 11(4), 449–491 (2002)
29. Egyed, A.: Compositional and relational reasoning during class abstraction. Proceedings of the 6th Interna-

tional Conference on the Unified Modeling Language (UML), San Francisco, USA, October 2003
30. Eixelsberger, W., Ogris, M., Gall, H., Bellay, B.: Software architecture recovery of a program family. Pro-

ceedings of the International Conference on Software Engineering, Kyoto, Japan, April 1998, pp 508–511
31. El Kaim, W.: System family software architecture glossary, ESAPS, definition and description of system

families. http://www.esi.es/esaps (December 2000)
32. El Kaim, W.: Managing variability in the LCAT SPLIT/Daisy model. 1st Software Product Line Confer-

ence, Colorado, 2000
33. El-Ramly, M., Iglinski, P., Stroulia, E., Sorenson, P., Matichuk, B.: Modeling the system–user dialog using

interaction traces. Proceedings of the 8th Working Conference on Reverse Engineering, 2–5 October 2001
34. Exymen: http://www.exymen.org
35. FAMILIES ITEA project: FAct-based maturity through institutionalisation lessons-learned and involved

exploration of system-family engineering. Eureka 2023 programme, ip02009. 2003–2005. Catalogue of
Methods and Processes for System-Family Engineering, ed by by Böckle, G., Wittmann, M. Official Web
Site of the FAMILIES Project: http://www.esi.es/Families/E1.4b-Method-Catalogue/Start_SFE_Catalogue.
htm

36. Favre, J.: A new approach to software exploration: backpacking with GSEE. European Conference on
Software Maintenance and Reengineering (CSMR’2002) (2002)

37. Ferenc, R., Beszedes, A., Tarkiainen, M., Gyimothy, T.: Columbus – reverse engineering tool and schema
for C++. Proceedings of the International Conference Software Maintenance, 3–6 October 2002

38. Finnigan, P. et al: The portable bookshelf. IBM Syst. J. 36(4) 564–593 (November 1997)
39. Flater, D.: Impact of Model-Driven Standards (National Institute of Standards and Technology 2001)
40. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable Object-Oriented

Software (Addison-Wesley, Reading, MA 1994)
41. Garlan, D., Shaw, M.: An introduction to software architecture. In: Advances in Software Engineering and

Knowledge Engineering, ed by Ambriola, V., Tortora, G. (World Scientific, Singapore 1993) pp 1–39
42. Gong, L.: A software architecture for open service gateways. Embedded systems. IEEE Internet Comput.

(January–February 2001)
43. Graff, M., van Wyk, K.: Secure Coding, Principles and practices (O’Reilly, USA 2003)
44. Gravity: http://gravity.sourceforge.net/
45. Griss, M.: Implementing product-line features by composing component aspects. Proceedings of 1st Inter-

national Software Product Line Conference, August 2000
46. Guo, G., Atlee, J., Kazman, R.: A software architecture reconstruction method. Proceedings of the 1st

Working IFIP Conference on Software Architecture (WICSA1), San Antonio, Texas, 22–24 February 1999,
pp 225–243

47. Harris, D.R., Reubenstein, H.B., Yeh, A.S.: Recognizers for extracting architectural features from source
code. Proceedings of the 2nd Working Conference on Reverse Engineering (1995)

48. Harrold, M.J. Testing: a roadmap. In: The Future of Software Engineering, ed by Finkelstein, A. Proceed-
ings of ACM ICSE 2000 Conference, 2000, pp 61–72

49. IEEE: Recommended practice for architectural description of software-intensive systems (September 2000)

51. IETF: Internet engineering task force. http://www.ietf.org

50. IETF Working Group: AAA, authentication, authorization and accounting. http://www.ietf.org/html.
charters/aaa-charter.html

370 J.L. Arciniegas et al.

52. Institute of Electrical and Electronics Engineers: IEEE Std 1471-2000 (IEEE Computer Society, Silver
Spring, MD)

53. ISO 7498-4: Information processing systems – open systems interconnection – basic reference model – Part
4: management framework, Geneva, 1989

54. ISO 9126: Software product evaluation: quality characteristics and guidelines for their use. ISO/IEC 9126.
(ISO, Geneva, Switzerland 1991)

55. ISO/IEC JTC1/SC7/WG6 N461: Information technology – software product quality – Part 1: quality model,
Part 2: external metrics, Part 3: internal metrics, Part 4: quality in use metrics. ISO/IEC 9126 (November
1999)

56. ISO/IEC: Information technology – security techniques – entity authentication mechanisms; Part 1: general
model. Technical report ISO/IEC 9798-1, 2nd edn (International Organization for Standardization, Genève,
Switzerland 1991)

57. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse, Architecture, Process and Organization for Business
Success (Addison-Wesley, Reading, MA 1997)

58. Jazayeri, M., Ran, A., van der Linden, F.: Software Architecture for Product Families (Addison-Wesley,
Reading, MA 2000)

59. JBones: Java-Based OSGi Native dEployment System. http://jbones.forge.os4os.org/
60. JCP: Java Community Process. http://www.jcp.org
61. Jerding, D., Rugaber, S.: Using visualization for architectural localization and extraction. Proceedings of the

4th Working Conference on Reverse Engineering, Amsterdam, the Netherlands, 6–8 October 1997 (IEEE
Computer Society, Silver Spring, MD) pp 56–65

62. John, I., Dörr, J.: Elicitation of requirements from user documentation. 9th International Workshop on Re-
quirements Engineering: Foundation for Software Quality, Refsq’03, Klagenfurt/Velden, Austria, 16–17
June 2003

63. Johnson, R., Foote, B.: Designing reusable classes. J. Object Oriented Program. SIGS 1(5) (June/July 1988)
64. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis (FODA) feasibil-

ity study. Technical report, CMU/SEI-90-TR21 (November 1990)
65. Kazman, R., Jeromy, S.: Playing detective: reconstructing software architecture from available evidence.

Technical report, CMU/SEI-97-TR-010 (Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh October 1997)

66. Kazman, R., O’Brien, L., Verhoef, C.: Architecture reconstruction guidelines, 2nd edn, CMU/SEI-2002-
TR-034

67. Keepence, B., Mannion, M.: Using patterns to model variability in product families. IEEE Softw. (July
1999)

68. Klaus, M.: Simplifying code comprehension for legacy code reuse. Wind River Systems. Embedded Dev. J.
(April 2002)

69. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture™: Practice and Prom-
ise (Addison-Wesley, Reading, MA 2003)

70. KLOCwork insight: http://www.klocwork.com/Accelerator.htm
71. Koschke, R., Simon, D.: Hierarchical reflexion models. In: Proceedings of the Working Conference on

Reverse Engineering (IEEE Computer Society , Silver Spring, MD 2003)
72. Krikhaar, R.: Software architecture reconstruction, Ph.D. thesis (University of Amsterdam 1999)
73. Krutchen, P.: The Rational Development Process: An Introduction (Addison-Wesley, Reading, MA 1999)
74. Laine, P.: The role of software architecture in solving fundamental problems in object-oriented develop-

ment of large embedded systems. Proceedings of the Working IEEE/IFIP Conference on Software Architec-
ture, Amsterdam, The Netherlands, 28–31 August 2001, pp 14--23

75. Lamping, J., Rao, R., Pirolli, P.: A Focus+Context technique based on hyperbolic geometry for visualizing
large hierarchies. In: Proceedings of the ACM Conference on Human Factor in Computing Systems, Den-
ver, 1995

76. Lane, T.G.: Studying software architecture through design spaces and rules. Technical report, CMU/ SEI-
90-TR-18 (Software Engineering Institute 1990)

77. Lanza, M.: CodeCrawler-lessons learned in building a software visualization tool. Proceedings of the 7th
European Conference on Software Maintenance and Reengineering, 26--28 March 2003 (2003)

78. Linux Security Administrator’s Guide, v0.98, 22 August 1998. http://www.nic.com/~dave/Security
AdminGuide/SecurityAdminGuide.html

79. McCullagh, A., Caelli, W.: Non-repudiation in the digital environment. First Monday 5(8). Available at
http://www.firstmonday.org/issues/issue5_8/mccullagh/index.html (2000)

80. Mendonça, N., Kramer, J.: Architecture recovery for distributed systems. SWARM Forum at the Eight
Working Conference on Reverse Engineering, Stuttgart, Germany, October 2001

3719 Architecture Reasoning for Product Line Evolution: An Example on Security

81. Muccini, H. et al: Using software architecture for code testing. IEEE Trans. Softw. Eng. 30(3) (March
2004)

82. Munson, J., Khoshgoftaar, T.: Measuring dynamic program complexity. IEEE Softw. 48–55 (November
1992)

83. Murphy, G. et al: Software reflexion models: bridging the gap between design and implementation.
IEEE TSE 27(4), 364–380 (April 2001)

84. Niere, J.: Recovering design elements in large software systems. Proceedings of the 6th Workshop Software
Reengineering (WSR), Bad Honnef, Germany, May 2004

85. Nikora, A.P., Munson, J.C.: Understanding the nature of software evolution. Software maintenance, 2003,
ICSM 2003. Proceedings of the International Conference, 22–26 September 2003

86. OASIS consortium: http://www.oasis-open.org
87. OASIS Web Services Security TC: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
88. Obbink, J.H., Kruchten, K.W., Postma, H., Ran, A., Dominick, L., Kazman, R., Hilliard, R., Tracz, W.,

Kahane, E.: Software architecture review and assessment (SARA) report, version 1.0 (February 2002)
89. O’Brien, L., Stoermer, C., Verhoef, C.: Software architecture reconstruction: practice needs and current

approaches, CMU/SEI-2002-TR-024 ADA407795 (2002)
90. OMG: Security Service Specification Version 1.8 (March 2002)
91. OMG: Model driven architecture (MDA) Architecture board ORMSC (9 July 2001)
92. OMG: Ontology definition Metamodel. Request for proposal (18 August 2003)
93. OMG: Unified modeling language specification. Object Management Group. Version 1.5 (March 2003)
94. Oscar: An OSGi framework implementation. http://oscar-osgi.sourceforge.net/
95. OSGi Service Platform, Release 3. http://www.osgi.org/ (March 2003)
96. OSMOSE: Open source middleware for open systems in Europe. http://www.itea-osmose.org (2003–2005)
97. Oya, M.: MDA and system design. Presentation at “MDA Information Day” during the OMG technical

meeting (April 2002)
98. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM SIGSOFT Softw. Eng.

Notes 17: 40–52 (October 1992)
99. Pras, A. et al: Internet accounting. IEEE Commun. Mag. (May 2001)
100. Rilling, J., Lizotte, M.: Position paper: challenges in visualizing and reconstructing architectural views. 2nd

IEEE International Workshop on Visualizing Software for Understanding and Analysis, Amsterdam, the
Netherlands, 22 September 2003 (IEEE Computer Society, Silver Spring, MD 2003)

101. Rilling, J., Li, H.F., Goswami, D.: Predicate-based dynamic slicing of message passing programs source
code analysis and manipulation, 2002. Proceedings of 2nd IEEE International Workshop, 1 October 2002

102. Rilling, J., Seffah, A., Bouthlier, C.: The CONCEPT project – applying source code analysis to reduce
information complexity of static and dynamic visualization techniques. Visualizing Software for Under-
standing and Analysis, 2002. Proceedings of 1st International Workshop, 26 June 2002

103. Riva, C.: Reverse architecting: an industrial experience report. Proceedings of the 7th Working Conference
on Reverse Engineering, Brisbane, Australia, 23–25 November 2000, pp 42–50

104. Shin, S.: Secure Web services. JavaWorld (2003)
105. Sartipi, K., Kontogiannis, K.: A graph pattern matching approach to software architecture recovery. Pro-

ceedings of the IEEE International Conference on Software Maintenance (ICSM 2001), Florence, Italy, 7–9
November 2001, pp 408–419

106. Selonen, P., Xu, J.: Validation UML models against architectural profiles. ESEC/FSE’03, Helsinki, Finland,
1–5 September 2003

107. Sevitsky, G., de Pauw, W., Konuru, R.: An information exploration tool for performance analysis of Java
programs. Technology of Object-Oriented Languages and Systems, 2001. TOOLS 38. Proceedings, 12–14
March 2001

108. Shaw, M., Garlan D.: Software Architecture: Perspectives on an Emerging Discipline (Prentice-Hall,
Englewood Cliffs, NJ 1996)

109. SHriMP Views: http://www.thechiselgroup.org/
110. Sovio, S., Asokan, N., Nyberg, K.: Defining Authorization Domains Using Virtual Devices (2003)
111. Stasko, J., Domingue, J., Brown, M.H., Price, B.A. (eds) Software Visualization – Programming as a

Multimedia Experience (MIT 1998)
112. Stoermer, C., O’Brien, L., Verhoef, C.: Practice patterns for architecture reconstruction. Working Confer-

ence on Reverse Engineering, Richmond, VA, USA, 29 October–1 November 2002
113. Storey, M.-A., Best, C., Michaud, J.: SHriMP views: an interactive and customizable environment for soft-

ware exploration. Proceedings of International Workshop on Program Comprehension (IWPC’2001), May
2001

372 J.L. Arciniegas et al.

114. Stroulia, E., Systä, T.: Dynamic analysis for reverse engineering and program understanding. Applied
Computing Reviews Spring 2002 (ACM, New York 2002)

115. Stroulia, E., El-Ramly, M., Inglinski, P., Sorenson, P.: User interface reverse engineering in support of
interface migration to the Web. Automat. Softw. Eng. 3(1), 271–301 (2003)

116. Szyperski, C.: Component Software -- Beyond Object-Oriented Programming (Addison-Wesley, Reading,
MA, 1998)

117. Technology Roadmap on Software Intensive Systems: The Vision of ITEA (SOFTEC Project); ITEA
Office (March 2001)

118. The Java Security Architecture for JDK 1.2. Version 1.0, Sun Microsystems, October 1998. http://java.sun.
com/products/jdk/1.4/docs/guide/security/spec/securityspec.doc.html

119. The Portable Bookshelf: http://swag.uwaterloo.ca/pbs/
120. The Rigi Tool: http://www.rigi.csc.uvic.ca/
121. Tonella, P., Fiutem, R., Antoniol, G.: Augmenting pattern-based architectural recovery with flow analy-

sis: Mosaic – a case study. Proceedings of the Working Conference on Reverse Engineering (IEEE, New
York 1996)

122. van der Linden, F. (ed) Development and Evolution of Software Architectures for Product Families. Pro-
ceedings of the 2nd International ESPRIT ARES workshop, Las Palmas de Gran Canaria, Spain, 1998.
Lecture Notes in Computer Science, vol 1429 (Springer, Berlin Heidelberg New York 1998)

123. van der Linden, F.: Software product families in Europe: the ESAPS & CAFÉ projects. IEEE Softw. (July
2002)

124. Vidacs, L., Beszedes, A., Ferenc, R.: Columbus schema for C/C++ preprocessing software maintenance and
reengineering, 2004, CSMR 2004. Proceedings of the 8th European Conference, 24–26 March 2004

125. W3C: World Wide Web Consortium. http://www.w3.org/Security/
126. Web Services and SOA; D.K. Barry Mk (2004)
127. WebOpedia: Online dictionary available in http://www.webopedia.com/
128. Whittaker, J.: Why secure applications are difficult to write. IEEE Security Privacy (2003)
129. Wijnstra, J.G.: Component frameworks for a medical imaging product family. In: Software Architectures

for Product Families, International Workshop IW-SAPF-3. Lecture Notes in Computer Science, vol 1951
(Springer, Berlin Heidelberg New York 2000)

10 A Method for Predicting Reliability and Availability
at the Architecture Level

A. Immonen

Abstract
The demand of high reliability and availability of today’s systems is considerable as an
increasing amount of complicated systems are tightly embedded into our surroundings.
These systems have to work as intended and must provide services when needed. The prob-
lems in reliability and availability should be able to be analyzed prior to system implementa-
tion, when the fault corrections and modifications are easier and cheaper to perform and the
design decisions can still be affected. The contribution of this chapter is a method for pre-
dicting reliability and availability at the architectural level. The Reliability and Availability
Prediction (RAP) method defines how the reliability and availability requirements should be
negotiated and mapped to the architecture, how they should be represented in the architec-
tural models, and how the architecture should be analyzed in order to validate whether or not
the requirements are met. The method has been validated by simulating it in the reliability
and availability prediction of a case example in a laboratory.

10.1 Introduction

In the near future, systems will be more complicated and more tightly embedded into our
surroundings. We use these systems in our everyday life, for example, when playing
games, shopping from home, handling money transactions or relying on alarm systems.
Problems or faults in these systems can cause extensive damage, including, for example,
financial losses and even threaten lives. Therefore, it is extremely important that these
systems are of high quality, i.e., they work as they are intended to work and provide
services whenever we would like to use them.

Many systems today are developed based on the product line engineering paradigm.
A software product line is a set of products sharing common features and architecture, but

engineering (PLE) is about increasing productivity and shortening time-to-market in soft-
ware system development using existing artifacts and knowledge. Within product lines,
quality issues are extremely important because weakness in quality can cause problems
throughout the life cycle of a line. Faults and “poor” design decisions can cause extensive
and long-term problems affecting all of the members of a line. Due to the required fault-
less and ready-to-use qualities of today’s systems, the demand of high reliability and
availability (R&A) is considerable.

lent to a product line, signifying a family of software-specific systems [58]. Product line
which also have product-specific features [1,6,30]. The system family concept is equiva-

There are several definitions for reliability and availability. ISO/IEC 9126-1 [28]
defines reliability as the capability of the software system to maintain a specified level of
performance when used under specified conditions. According to that, reliability is mixed
with performance, and availability is one of the sub-characteristics of reliability.
According to [3], reliability is the ability of the system to continue operating over time,
and availability measures the proportion of time that the system is up and running. In
this study, reliability is understood to be related to the probability of failure. Therefore,
reliability is the probability of failure-free operation of a software system for a specified

being the probability of a software system or a service to be available when needed. For
example, high reliability is required to guarantee the correctness of sensitive information
in data transmission, and the high availability of a service is a necessity when calling for
help in an emergency situation.

Problems in reliability and availability of systems are typically detected after system
implementation, when corrections are difficult and modifications are time intensive. The
traditional R&A analysis is based on measuring existing systems, and it expresses R&A
using measures such as mean time to failure (MTTF), mean time to repair (MTTR), mean
time between failures (MTBF), and the failure rate. Traditional analysis has been an
independent task performed after system implementation, and it is usually performed by
an independent analyst. Thus, it is time consuming and expensive. To achieve the benefits
of PLE, such as faster time-to-market, high quality of products and large-scale
productivity gains, the reliability and availability of the systems should be able to be
analyzed prior to system implementation. In that way, the R&A problems can be solved
easier at the architecture level. Also, the effects of the design decisions can be detected
beforehand, in which they can still be affected.

Software architecture is the first asset that describes the product line as a whole. Several
proposals have been made to predict reliability and availability already at the architecture

none of them are applicable or sufficient for today’s complex systems. The earlier propos-
als do not take account of several possible requirement sources and how these affect de-
sign decisions. Furthermore, they do not define how to move systematically from R&A
requirements to architecture, and how to trace requirements to architectural decisions and
vice versa. The product line concept is not included in the existing approaches; the pro-
posals do not consider the variability of systems at any level. Also, the proposed predic-
tion methods typically require additional design work, such as supplemental analysis
models.

The R&A prediction of today’s systems is challenging, resulting from their complexity,
large-scale requirements and often the distribution. Due to the complicated nature of to-
day’s systems and the shortcomings of the existing prediction methods, a new method is
required to predict R&A of the systems from architectural models. The R&A prediction is
not just about analyzing, it also requires that the entire system development approach must
be refined, starting from the gathering of the requirements. All of the R&A requirement
sources should be identified and the requirements should be negotiated in a way that the
best possible requirement set can be identified. For each requirements set, several candi-
date architectural solutions, i.e., styles, can be identified, each of which support the R&A
requirements differently. An architectural style is determined by a set of component
types, a topological layout of the components, semantic constraints and connectors, and

 A. Immonen374

period of time in a specified environment [52]. Availability is closely related to reliability,

level from UML (Unified Modeling Language) models, such as [12,37,52]. However,

order to meet the R&A requirements. The predictive analysis method should help to vali-
date, prior to the implementation, whether or not the R&A requirements are met in the
architecture. This predictive analysis should be able to be performed for each candidate
architectural solution and the candidate that meets the requirements best can subsequently
be selected. However, the analysis from the architecture is only possible if the architecture
is represented in a way that enables analysis [30]. Therefore, the architectural modeling
and analysis are closely related.

The PLE approach requires not only investments and organizational commitment, but
also the use of special development methods and techniques. This chapter introduces the
RAP (Reliability and Availability Prediction) method that assists in requirement
engineering, architecture modeling and R&A analysis from the architectural models,
providing the capability to ensure, prior to system implementation, that the requirements
are met. The RAP method was designed in a manner that took into account the major
shortcomings of the existing prediction methods, therefore, filling the gap from
requirements engineering to analysis and providing the required tool and notation
extensions, techniques and guidelines for R&A prediction at the architecture level. For the
PLE approach, the RAP method provides a systematic way to predict and thus ensure the
reliability and availability of the line and its members.

prediction. Section 10.3 provides an overview of the RAP method, briefly introducing its
main phases. Section 10.4 introduces the case example, a distribution platform for a pro-
duct line including three members, which is used to validate the RAP method. The RAP
method consists of three separate phases. Sections 10.5–10.7 describe these phases and
the validation of the method based on an experimental evaluation using a case example.
Section 10.8 consists of a discussion and the identified requirements for future
development. Finally, Sect. 10.9 concludes this work.

10.2 A Literature Survey of Applicable Methods and
Techniques for R&A Prediction

A predictive R&A analysis method requires considerations for requirement engineering,
architecture design and architecture analysis. There are several methods and techniques

from the R&A prediction viewpoint. The most suitable approaches are further applied in
the RAP method.

10.2.1 Requirement Engineering

Several requirements engineering methods have been suggested in order to acquire the re-
quirements for the software and to lead them to most suitable architectural solutions, such

10 A Method for Predicting Reliability and Availability at the Architecture Level 375

18,33]. The careful consideration and selection of an architectural style is a requisite in

as Procurement-Oriented Requirements Engineering (PORE) [44]. None of them consider

a description of the pattern of data and control interaction among the components [3,11,

In the next section, a short literature survey is given as a background for R&A

for all of these phases. This section briefly discusses the most promising approaches

the different requirement sources, the influences of the sources on the final requirements
or the product line related aspects.

The i* framework [8] helps to detect where the quality requirements originate and what
kind of negotiations should take place, and thereby can be used to depict the relationships
among different types of stakeholders. The reasoning regarding the different quality
concern leads to the most appropriate architectural design decision to be used in a

extends the i* framework. The NFR framework aims to refine the quality requirements,
consider different design alternatives, perform tradeoff analyses and evaluate the degree to

requirements to drive the overall design process. It assists in acquiring and accessing the
required knowledge of the domain and system. The framework identifies the particular
NFRs for the domain and the possible design alternatives (“operationalizations”) for

The CBSP (Component-Bus-System-Property) method [22] aims to reconcile the
requirements and architectures using intermediate models. The intermediate model is used
as a bridge while refining and transforming the requirements to architectural elements.
The method defines five steps from the requirement selection to making trade-off choices
of architectural elements and styles. Each requirement is assessed for its relevance to the
system architecture’s components, connectors and topology of the system.

Different sets of quality concerns can be transformed by architecture design into
different architectural decisions. Together the NFR framework and CBSP method can be
used to define, among other things, how the R&A requirements lead to different
architectural decisions. This is valuable for R&A prediction. These two approaches are
primarily aimed at a one-of-a-kind system development, but they can also be easily
applied to PLE.

10.2.2 Architecture Design

One of the main pitfalls of the traditional software design methods has been that they do
not integrate quality considerations into design. Therefore, the fact is that the architecture
is not usually described in a way that assists in R&A prediction. Some design approaches
have been proposed that emphasize quality attributes. QADA®1 (Quality-driven Architec-
ture Design and quality Analysis methodology) uses quality requirements as a driving

abstraction levels: conceptual and concrete. The conceptual level means delayed design
decisions concerning, for example, functionality. Concrete level refines the conceptual de-
signs in more detailed descriptions. The conceptual and concrete levels consist of four
viewpoints: structural, behavioral, deployment and development. The structural viewpoint
describes the compositional structure of the system, whereas the behavioral viewpoint
concerns the behavioral aspects of the architecture. The deployment viewpoint allocates
the components to various computing environments. Finally, the development viewpoint

1 ® Registered trademark of VTT Technical Research Centre of Finland, http://virtual.vtt.fi/qada.

meeting requirements. It also detects the interdependencies among NFRs and opera-
tionalizations, and assists in the selection of the architectural style among operationali-
zation alternatives.

 A. Immonen376

force when selecting software structures [40,51]. It describes the architecture on two

particular context. The NFR (nonfunctional requirements) framework [9] refines and

which the requirements are satisfied. The NFR framework utilizes nonfunctional

presents the components, their relationships to each other and the actors responsible for
their development. The architectural views are also the basis of several design methods,

system independently of the platform that supports it, specify alternative platforms for the
system, choose a particular platform for the system and transform the system specification

of platform independent and platform specific models. The conceptual abstraction level of
QADA is entirely platform independent. The concrete level, however, can also be de-
scribed platform independently, if needed, until the development view finally maps the
views to the technologies provided as the assets in repository. The mapping of the abstrac-

tended for a product line context and its different abstraction levels and viewpoints enable
strict and extensive descriptions of the architecture. Therefore, QADA seems to be the
most suitable design method to be used in R&A prediction.

The mapping from the quality requirements to architecture design can be performed
through architectural styles and patterns. Architectural styles employ qualitative reasoning
in order to motivate when, and under what conditions they should be used. An
architectural pattern provides a solution for a particular problem and is thus a realization
of a style or styles. A design pattern commonly describes a recurring structure of
communicating components that solves a general design problem within a particular
context [7]. There is still a considerable lack of architectural styles and patterns that
emphasize reliability and availability. The effect of architectural patterns on quality

the Simplex ABAS (Attribute Based Architectural Style) [33], seems to focus on software
reliability. The Simplex ABAS uses redundancy to increase reliability and tolerate faults,
which is inadequate and expensive. The master-slave design pattern is one of the rare
patterns that supports fault tolerance, parallel computation and computational accuracy
[7]. In this pattern, the tasks are divided and delegated to several independent, but
semantically identical, slave components and the final result is computed from these
slaves return. Therefore, this kind of pattern is only useful for computational systems.
Several styles and patterns, however, provide minor benefits for achieving R&A, for
example, by providing monitoring and timer mechanisms. Still, the lack of R&A related
architectural styles and patterns seems to be one of the major problem areas in modeling
reliable and available systems.

To represent R&A in architectural models, an extension to the design notations is re-

standard can be extended by specific profiles to support certain quality aspects. A profile

customized for a specific domain or purpose by extending the meta model using stereo-
types, tagged definitions, and constraints.” Some profiles for modeling quality attributes
in architecture have been suggested, such as a UML profile for Schedulability, Perform-

tion and to indicate the locations for which change is allowed [13]. Although there is no

10 A Method for Predicting Reliability and Availability at the Architecture Level 377

such as in [24,29,36]. However, none of them are suitable as such for product lines and
for systems where requirements come from various stakeholders of the domain [51].

into one for a particular platform [43]. QADA supports MDA by enabling the separation

tion levels of QADA to MDA is described in more detail in [39]. QADA is especially in-

attributes is discussed in several studies, such as [6,7,14,54]. However, only one style,

quired. UML is a standard and widely accepted modeling language [46,49]. The UML

according to [46] is: “a stereotyped package that contains model elements that have been

ance and Time [47] and a UML profile for modeling the Quality-of-Service and Fault
Tolerance [48]. In addition, a UML profile is defined in order to explicitly represent varia-

and platform-specific concepts [17,43]. MDA enables one to specify an architecture for a
The Model-Driven Architecture (MDA) approach separates the platform-independent

profile that could be used as such or applied for R&A modeling, a means exists to support

standard UML and the profiles that have already been created, such as the profile for
Schedulability, Performance and Time and the UML Profile for EJB [21], and tends to
achieve reliability in such a way that it can be specified in the early stages of software ar-
chitecture design in a platform-independent way. The concept of profiles is suitable for
the context of reliability and availability. The R&A properties could be represented in ar-
chitecture with the help of a profile tailored especially for these two quality attributes. The

10.2.3 R&A Analysis

R&A analysis can be quantitative and qualitative. Quantitative analysis methods tend to
combine the architecture behavior with the failure behavior. These methods apply compu-
tational methods and calculate, for example, the probability of failure. Qualitative analysis
methods rely on the developer’s experience and documented design rationale, and they
analyze architectural decisions. The analysis methods can also be roughly divided into
measurement-based and model-based methods. The measurement-based methods are used
for the assessment of the fielded system, and also for the prognostication of systems tested
in the laboratory. Model-based methods analyze the reliability of composite software
based on the architecture. The model-based quantitative and qualitative analysis methods
are the most interesting from the R&A prediction viewpoint because of the architecture
centricity.

Methods that use quantitative techniques have been adopted over a longer period of
time than qualitative ones. There are several model-based quantitative analysis approaches
that address architecture as a composition of logically independent components. These
approaches can be classified into analysis methods of three different approaches: state-
based, path-based and additive models [20]. The state-based models calculate the compo-
nent reliabilities and composition reliabilities with the help of the architecture and its
behavior and failure behavior. The architectural behavior is modeled as probabilities of
the transfer of control between components. The representation techniques of state-based
methods are typically the Markov chains. The path-based models compute the reliability
of composite software based on the possible execution paths of the system. The represen-
tation and modeling technique are the execution graphs, and the combinations of architec-
tural behavior with failure behavior are carried out experimentally. The additive models
address the failure intensity of composite software, and therefore are not architecture
based. They model the failure intensities with mathematical algorithms, and the system
failure intensity can be calculated as the sum of component failure intensities. Examples

path-based models especially appear to be the most suitable for R&A prediction; however,
none of them can be used as such. The diverse analysis methods do not have much in
common; they even have different definitions for the basic concepts, such as reliability

would be the most beneficial, because they analyze the reliability of both components and

 A. Immonen378

reliability in design following the principles of MDA [53]. The approach exploits the

guidelines in [53] provide a good starting point for this.

of model-based quantitative analysis methods are [16,35,52,60]. The state-based and

and architecture. From the R&A prediction viewpoint, the methods described in [52,60]

architecture, also comprising the reliabilities of the connections between components. The

assumptions of these methods are that the dynamic behavior of the composite system, as
well as the failure behavior of individual components and component interactions are all
known.

The qualitative analysis methods can be failure-oriented, analyzing how a software can
fail, or they can be based on heuristics, such as the Scenario-Based Architecture Analysis
Method (SAAM) [31] and the Architecture Trade-off Analysis Method (ATAM) [32].
ATAM has been especially used for reliability analysis. The purpose of ATAM is to
facilitate the selection of an architecture that best supports the quality requirements for all
of the stakeholders, with minimal risk and minimal cost. It uses concepts from the
decision-making theory, such as the identification of value functions, prioritization and
ranking (i.e., weighting) of goals and risks.

10.3 Overview of the RAP Method

activities in R&A related aspects. QADA bases on the following principles:

− Software product line engineering
− Quality-driven architecture design
− Quality evaluation based on architectural models
− Reuse of existing artifacts and knowledge

In the RAP method, PLE means capturing and mapping the R&A requirements to the
product line and system architecture. Quality-driven architecture design is about mapping
R&A requirements to architectural views and representing the R&A properties in the ar-
chitectural models. Quality evaluation consists of the R&A analysis of the product line
and system architecture. The RAP method also exploits the existing design knowledge,
such as documentation patterns and architectural styles and patterns.

The abstraction levels of QADA enable the separation of the concepts of the required
and provided R&A. Required R&A corresponds with the R&A requirements, i.e., what
the system has to support. The required R&A is described in the conceptual abstraction
level, as mapping the R&A requirements to the conceptual architecture. Provided R&A,
however, stands for the R&A that the system implements or offers. This, in turn, is
described in the concrete abstraction level when describing the R&A that the concrete
architectural elements provide.

The RAP method consists of three main phases (Fig. 10.1). The phases can be applied
separately to a product line and its members, as well as to individual systems. Within the
lines, the R&A prediction is typically first performed line-specific, after which the
prediction concentrates on a line member. Each phase includes several steps, which in
turn consists of a set of activities. The phases are:

379

The RAP method is an integral part of QADA methodology [40,45,51], specializing its

10 A Method for Predicting Reliability and Availability at the Architecture Level

Fig. 10.1. Phases of the RAP method

1. Phase; defining reliability and availability goals, includes five steps
− Identify stakeholders and their concerns
− Refine R&A requirements
− Map R&A requirements to functionality

(a) Map common requirements to common, line-specific functionality
(b) Map system-specific requirements to system-specific functionality

− Select architectural styles and patterns and perform a trade-off analysis
− Define criteria for a R&A evaluation

2. Phase; representing the reliability and availability in architectural models, includes
three steps

− Represent required R&A in architectural models (separating the line- and system-
specific R&A)

− Map the conceptual architecture to concrete architecture
− Represent provided R&A in architectural models

3. Phase; R&A evaluation, includes three main steps with different activities. The steps
are first used to evaluate line-specific architecture, and subsequently the system-
specific architecture

− Quantitative analysis
(a) Estimate the reliabilities of the components
(b) Estimate the R&A of the software system
(c) Estimate the R&A of the system in its deployment environment

− Qualitative analysis
(a) Implement the (bi-directional) requirements tracking and analyze how the

R&A requirements are met in the architecture
(b) Identify potential problems caused by the unfulfilled requirements

− Decision making based on the analysis

 A. Immonen380

The three phases of the RAP method are described in more detail in Sects. 10.5–10.7.

10.4 Introduction of a Case Example

The validation of the RAP method corresponds to the experimental design evaluation
method introduced in [23]. The RAP method is validated by using it to predict the R&A
of the case example; a product line that consists of three members. The purpose of this

DiSep is a distribution platform for a software product line that is formed by executing

ever since has been used as a case study in a number of studies. The platform embodies a

vices of the platform are mobile, enabling spontaneous networking. The DiSep platform is
used for two or more subsystems that run applications on top of the platform. The hard-
ware of the system, the portable computational devices, are described by means of distrib-
uted computing units. Each computing unit, i.e., deployment node, is a platform for
various services. The combination of services in different deployment nodes may vary.
The platform services can be mandatory, alternative or optional. The platform consists of
services of four different domains: service user interface, system services, basic services
and communication services. Computing units, i.e., nodes, join the network spontane-
ously. They listen to the multicast signals of the network and register themselves to the
network using the system services of the node where these services are active. After regis-
tration, the services of the network are available through this node, and the services of this
node are also available for other users of the network.

The platform services are accessible for user applications through the system service

Table 10.1. The user interface services of the DiSep distribution platform

service responsibility
application service user enables the use of application services through a directory service

interface; enables the application to search for suitable services and to
fetch a service proxy

application service
provider

enables one to provide application services through a directory service
interface; enables applications to create an appropriate service proxy,
to register the service proxy to a directory service and to unregister
the service proxy from the directory service

lease user enables users to (re)negotiate for a lease with the provider of the
desired service

lease grantor enables users to grant lease(s) of provided service(s)
transaction manager enables users to make a request to execute a transaction
transaction participant enables users to participate in a transaction

381

units in a networked environment. The DiSep platform was first introduced in [40], and

Each section also includes the validation of the phase and the steps with the help of a

section is to briefly introduce the case example.

case example described in the following section.

service architecture [2,4]; thereby providing a variety of services for its users. The ser-

user interfaces. The user interface services are described in Tab. 10.1.

10 A Method for Predicting Reliability and Availability at the Architecture Level

System services provide services that are not autonomous, but are activated by the
autonomous parts of the platform. System services are mandatory for each node, but they
are active only in one node at a time. The services of the other nodes in the network use
the system services of the node where they are active. The system services are described

Basic services provide services that operate autonomously. This domain consists of
three sub-domains: controlling services (Activator and Service Allocator service), data
management services (Data storage) and location services (Data distribution, Location

Table 10.2. The system services of the DiSep platform

service responsibility
lease service utilizes the lease management between two independent units or other logical

elements; accepts and hosts leases of lease grantors. Grants leases for users.
Takes care of lease renewals for any leased system resource. Keeps track of
lease renewals for any shared and leased resource

directory service provides a directory service interface to the distributed data storage (active
directory service, common to all of the nodes). Registers and unregisters service
proxies, keeps track of registered services, searches for requested services and
sends a requested proxy for the user. Provides a directory service interface to
enable local services (i.e., services in the node) to register and unregister
(passive directory service, i.e., local, inside node)

transaction
service

performs and tracks transactions in order to reach synchronized operations
between elements; prepares, starts, aborts and implements transactions

Table 10.3. The basic services of the DiSep platform

service responsibility
activator service monitors the state of the network and controls the system services

Activates/deactivates system services of the node when needed
service allocator
service

observes the execution, state and allocation of system services and notifies the
Activator service about any problems

data storage permanent data storage. Contains information about the available user services,
registered users and allowed leases

data distribution contributes to the operation of distributed data storage. Creates, maintains and
tracks connections to other units in order to share data. Allows data to be stored
in local resources. Negotiates about the copying, transferring or deleting data if
necessary

location service sends a notification signal regarding the existence of the node in the network
after the given timeframe. Maintains the location map of the network. Sends a
signal to the user services of its own node to start the registration when it is
connected to the network for the first time. Announce the availability of the
system services

advertising
service

informs the active system service provider about the availability of the user
services of its own node

observing service routes messages from the network to listeners and forwards asynchronous
messages. Routes outgoing messages to the network

Communication services provide messaging services that handle the communication

 A. Immonen382

in Tab. 10.2.

service, Advertiser and Observer). These are described in Tab. 10.3.

between different units. The communication services are described in Tab. 10.4.

Table 10.4. Communication services of the DiSep platform

service responsibility
synchronous
mediator outgoing data
interpreter encodes/decodes XML (eXtensive Markup Language) messages
asynchronous
messaging

creates a mailbox through which the system services may communicate with
each other in an asynchronous manner

Most of today’s embedded software is based on a three-layer approach that consists of
the application, middleware and infrastructure layers. Each of these layers has different
stakeholders with different needs, and therefore different R&A requirements as well. The
application layer is the closest to the end users of the system, whereas the infrastructure
layer is closest to the hardware and is the most dependent of domain technology. The
middleware layer is in-between, providing services to the application layer, based on the
services provided to it by the infrastructure layer.

The members of the DiSep line can be included in the generic platform services

user applications; a game, health care application and emergency intervention system. The
game application is included in the entertainment category of end user services, and it is
used by players across the network that would like to play that game. In order for the
game developers to make the game beneficial, it should be readily available for the users
and no communication breaks should occur. Reliability requirements are low in this case,
because no significant damage can occur in error situations. The health care application is
an information-centric application, which handles confidential medical information about
patients. Information is read and updated by the medical workers. Because of the sensitive
nature and significance of the information, the correctness and accuracy of the
information is important. The third application, emergency intervention, is a critical end
user service for emergency situations to be used by firemen, police and doctors.
Reliability and availability are extremely important attributes of emergency intervention
software, because human lives may depend on it.

To assist in the examination of the criticality of reliability and availability for a product
line/system, the R&A levels will be defined. The three reliability and availability levels

Table 10.5. R&A levels

R&A level level description
level 1 high R&A: Includes systems in which R&A are critical. R&A problems may cause

serious damage and danger, both financially and in relation to the safety of human
lives. These types of systems are, for example, patient monitoring and fire alarms

level 2 medium R&A: Includes systems to which R&A are important, but not critical. R&A
problems may cause small-scale damage. These systems include, for example,
mobile shopping and banking

level 3 low R&A: Includes systems to which R&A are valuable, but not urgent. R&A
problems do not cause serious damage, but mainly affect human satisfaction
regarding the system or service. These types of systems include, for example, games
and news

creates and maintains connections with the other units, routes incoming and

383

domain [45]. The line includes variants, in this case “middleware systems,” for three end

(R&A levels) are described in Tab. 10.5.

10 A Method for Predicting Reliability and Availability at the Architecture Level

10.5 The First Phase: Defining Reliability

The purpose of the first phase of the RAP method is to define the R&A goals. This means
identifying and negotiating the requirements to find a satisfactory set of requirements that
is subsequently brought further into the architecture design. All of the line members share
a common product line architecture that provides the basis for the common functionality
and quality properties. In addition, each line member embodies its own, system-specific,
functionality and quality. Therefore, the product line architecture has to enable
architectural variation to some extent. The UML extension approach introduced in [13]
provides a profile that describes the variability modeling technique for architectural
elements. Also, the approaches presented in Chapters 5–7 can be used to deal with
architectural variation.

There may be different kinds of variations in quality among line members. First, there
can be variability among different quality attributes. For example, for one member the re-
liability is important, but unimportant for other members. Second, there may be different
priority levels in quality attributes. For example, for one member the reliability require-
ments are extremely high, whereas for another those requirements are at the lower level

In QADA, the requirements engineering is a generic activity common to all quality
attributes. The first phase of the RAP method (see Fig. 10.1) extends this requirements
engineering activity of QADA to support R&A concerns specifically. The following
guidelines help to identify and refine common and system-specific R&A requirements,
perform trade-off analysis, map the R&A requirements to the functional requirements,
select an architectural style and define criteria for R&A evaluation.

10.5.1 Description of the Steps of the First Phase

Identifying Stakeholders and Their Concerns. Every new system has several stakeholders
i.e., persons involved in system development. Each stakeholder has his/her own interests
regarding the system. Stakeholders can also be responsible for a set of activities, such as
requirements specification, architecture design, coding or testing. The goals of the system
stakeholders’ must be in accordance with all of the interest groups of the product line.

According to [25], stakeholders related to the creation and use of architectural
descriptions include the clients, users, architect, developers and evaluators. Bass et al. [3]
define the players in a product line organization, that include marketers, customers, and
managers that have a direct vision of the core assets group and the product production
group of the product line. The interest groups of the line can be refined from these to
include:

− Markets: the scope of the product line/system
− Business: economical goals and constraints
− Product line: common assets
− System: system-specific properties

The stakeholders in requirements engineering within a product line can be defined to
include the following (Fig. 10.2):

–

and Availability Goals

 A. Immonen384

(see the R&A levels in Tab. 10.5).

− Markets: customers, end-users
− Business: marketing managers, product line owners
− Product line: product line architects, manager of reusable assets, domain experts
− System: system architects, developers, maintainers and other system development staff
− Other: developers of services/systems/applications that use the system/the part of the

system

According to this classification, the stakeholders can be led to different business

Fig. 10.2. Stakeholders in product line requirements engineering

The requirements of all the stakeholders must be identified and negotiated in order to
achieve the final requirements for the system (i.e., the quality goals). In the RAP method,
this is implemented applying the i* framework [8]. The i* framework traces the
requirements to stakeholders and their dependency relationships, and therefore it is used

satisfied at least to a degree. The i* framework also helps to represent the variability in
R&A between different product line members.

Refining Quality Requirements. After the R&A requirements are identified and negotiated,
they must be refined to the final requirements of the product line (or the system) that are
considered further in the architecture design. The R&A requirements should be expressed
in a way that they can be measured. Unfortunately this is not always possible, because
R&A requirements can result in certain structures or functionality (e.g., controlling or
monitoring services). In that case, the requirements should at least be expressed in a way
that they can later be verified in the architecture analysis.

The specification of the final R&A requirements is first performed line-specifically.
After the specification of the product line requirements, the specification of requirements
is then performed system-specifically. All of the requirements must be provided with the

Business:
marketing managers

Product line concept

Product line:
architects, managers of
reusable assets, domain

experts

System:
system architects,

developers, maintainers
etc.

Other stakeholders:
developers of

application, services,
etc.

Markets:
customers,
end-users

Customer
needs

Requirements

Requirements

Common assets

uirements, and to negotiate these requirements ensuring that all of the stakeholders are
to identify the stakeholders that have concerns regarding the system and their req-

385

domains, such as performed in the context of the base station module development in [41].

10 A Method for Predicting Reliability and Availability at the Architecture Level

identification numbers. The id numbers of the product line requirements must be distin-
guished from the system-specific requirements. It is not always possible to implement all
of the requirements, for example, due to time or money. Therefore, the importance of each
requirement for the system must be defined. The importance is expressed using three
classes: high, medium and low.

Mapping R&A Requirements to Functionality. According to QADA, the architecture of
the system is first described at the conceptual level. The main functionality (i.e., “what the
system does”) can be considered as a main force of the conceptual design. The main func-
tionality of the systems is divided into functional blocks. The entire product line is first
decomposed into domains which then are decomposed into subsystems and leaf compo-
nents, which are the smallest blocks that are used in conceptual architecture.

Selecting an Architectural Style and Performing Trade-Off Analysis. Systems can be built
from one or several architectural styles. Such systems are heterogeneous. For example,
even if the main style is layered the blackboard style can still appear in one of the archi-
tectural layers. In the beginning of architecture modeling, the dominant architectural style
must at least be selected. When the dominant style is decided upon, the other architectural
styles and patterns can be selected for the smaller parts of the architecture where they may
be beneficial. According to QADA, the architectural modeling is begun from conceptual
architecture. In the conceptual structural view, the functionality (i.e., services or utilities)
are organized according to the selected architectural style. The style should be selected
carefully by examining how each candidate style can assist in achieving the requirements.
The selection of the architectural style is first performed based on product line require-
ments. The system-specific requirements may sometimes result in different architectural
styles. Typically at least the line members on the same R&A level have the same architec-
tural style.

The R&A requirements that are common to all of the line members are mapped to the
common product line functionality. The mapping of the system-specific requirements is
performed case-specifically. One requirement may be mapped to several functional
blocks. Additionally, the R&A requirements themselves may result in certain functionality.
The requirements mapping is the specific work of software architects, and requires
extensive knowledge of the system. In this phase, the architect only has to decide
which services are responsible for the implementation of each of the requirements; the
means for achieving the requirements (i.e., the detailed design) do not need to be
defined as of yet.

of the R&A requirements are to that specific system. For example, in the high R&A level,
the reliability and availability of the system must be guaranteed using the best possible

The different R&A requirements set should be transformed to the design decisions/
architectural styles and patterns in a pre-defined way. The different design alternatives can

to see what kind of design alternatives there are. It is the responsibility of an architect to
choose the best suitable styles and patterns. The choice of these styles and patterns is not
necessarily final, but rather iterative, as more exact designs are made later. Furthermore,
the style base can provide detailed design patterns. These are not, however, used until the
concrete architecture level.

 A. Immonen386

the quality attributes and design decisions. The style base provides guidance for architects
be searched for, for example, from a style base [45], that represents the mapping between

The R&A levels (see Tab. 10.5) of the systems define how important the achievement

R&A level systems, whereas in the case of normal and low R&A level systems the sim-

vides an example of the use of styles and patterns to support reliability and availability.
Although none of the styles, except Simplex ABAS, specially focus on software reliabil-
ity, they still can provide some minor qualities that support R&A in a smaller context.

There is always a risk that the R&A requirements will conflict with other quality
requirements. This might even result in all of the important requirements not being met in
the architecture. For example, redundancy is a means for achieving high reliability, but
redundancy takes a lot of physical resources in which case reliability conflicts with
performance. The purpose of the trade-off analysis is to guarantee the best requirements
set considering all of the quality requirements. The NFR framework is one method for the
negotiation of various conflicting quality attributes and evaluating the criticality of quality
requirements [9]. The NFR framework is a process-oriented approach that treats quality
requirements as soft-goals (i.e., the quality goals) to be achieved. Using the NFR
framework, the requirements with the affected stakeholders can be renegotiated and a
solution can be found that makes acceptable trade-offs for all of the stakeholders. One of
the shortcomings of the NRF framework is, however, that the R&A support of the styles is
defined based on the architect’s knowledge and the literature. Thus, the style base is
required to support the work of the architects.

design techniques. The cost and effort of the design is normally higher in the case of high

Table 10.6. Guidelines for making architectural decisions

R&A
level

architectural style or pattern

level 1 Simplex ABAS style: redundancy in
general
master-slave pattern: fault tolerance,
parallel computation, computational
accuracy

fault tolerance: static redundancy (N-modular
redundancy (NMR), error correcting codes)
dynamic redundancy (reconfigurable NMR,
backup sparing, recovery block)

level 2
manager element
object oriented styles: independent
(protected) entities
implicit invocation style: system
level fault handling

fault tolerance: passive redundancy (backup copy)
fault treatment: error detection (e.g., duplication,
error detecting codes, checksums), error handling,
recovery block (back-up plan in error situations)
facade design pattern: reduced complexity of
interaction between subsystems
observer design pattern: observing component
proxy design pattern: data reliability

level 3 layered style: handling of lower
level’s errors by higher level
black-board style: independent
processing components, control
component, good data availability

fault avoidance: use of reliable components and
allocation requirements to several components
fault treatment: error detection (e.g., error
detecting codes, watch-doc timers), recovery of
the failed component
proxy design pattern: data reliability
broker architectural pattern: disconnection of
logical services from physical locations

design pattern/technique/means

event based styles: message

387

pler and inexpensive design techniques are used. Based on the literature, Tab. 10.6 pro-

10 A Method for Predicting Reliability and Availability at the Architecture Level

Table 10.7. R&A evaluation levels

evaluation level evaluation criteria
level 1 product line R&A requirements
level 2 system-specific R&A requirements of high importance
level 3 system-specific R&A requirements of medium importance
level 4 system-specific R&A requirements of low importance

In the RAP method, the NFR framework is used to detect which of the styles supports
the product line requirements best. Also the system-specific requirements can be
examined using the framework. A different architecture style can be selected for a
member in case the style selected for the line does not support the system-specific
requirements. The conflicting requirements can be handled using a domain specific

following types: make, help, hurt and break. Make represents the situation where the
requirement is met in the architecture. Help provides partial positive support for meeting
the requirement. Break means that the requirement is not met in the architecture, whereas
hurt means that the architecture can in fact be considered to be used even if it does not
satisfy the requirements. It is the duty of software architect to specialize the correlation
rules using domain information. As a consequence of the trade-off analysis, the resulting
problems of the analysis must be identified and solved.

Defining Criteria for R&A Evaluation. In PLE, the product line requirements are on the
highest priority level. These requirements must be met in the architecture in any case.
Thus, the R&A evaluation of the product line architecture is first performed at the high
level product line requirements, after which at the medium level and finally the low level
requirements. If the requirements common to all of members are met, the system-specific
requirements can be evaluated starting from the requirements of high importance.
Therefore, in the RAP method, the R&A evaluation criteria are categorized into four

 A. Immonen388

correlation catalogue [9] introduced in Tab. 10.13. The conflicts are illustrated using the

evaluation levels, see Tab. 10.7.

Step 1: Identifying Stakeholders and R&A Requirements. The stakeholders in the case of
the DiSep product line are the following:

− Product line architect: common functional and quality requirements
− System architect: system-specific functional and quality requirements
− End users of the application that use the middleware: end user requirements
− End user application developer: application specific requirements, application interfaces

The i* framework [8] represents a graph called the Strategic Dependency model that

middleware for a game application (system 1), health care application (system 2) and
emergency intervention application (system 3). Circles in the i* framework correspond to
stakeholders, rectangles to the required functionality and ellipses to the R&A
requirements. The arrows describe the dependencies. The line-specificity is highlighted in
grey.

End users of the application that use the final middleware system are described on the
left of Fig. 10.3. End users require an application, for which they also have R&A
requirements. Application developers (in the middle of the figure) are responsible to
ensure that the application fulfills the end user’s requirements. The end user’s
requirements for the application may reflect indirect requirements for the middleware.
Thus, the application developer requires a middleware system for the application and
he/she also defines the R&A requirements for the middleware from the application point
of view. Product line architect (in the middle of the figure) defines the functional and
quality requirements (in this case; the R&A requirements) for the middleware that are
common to all of the members. The system architects (on the right of the figure) take all
of these requirements as inputs when designing the system architecture. He/she refines the
stakeholders’ requirements to the final R&A requirements.

The variation in R&A requirements of three members can be discovered in Fig. 10.3.
From now on, this example concentrates on the description of the line-specific parts and,
for simplicity, only one member. This still enables the identification of line-specific R&A,
as well as variable, system-specific R&A.

10.5.2 Applying the Steps to the Case Example

389

enables the description of actors and their dependencies in organizational settings. Fig-
ure 10.3 describes the requirements definition using the framework for the three members;

10 A Method for Predicting Reliability and Availability at the Architecture Level

Fig. 10.3. Variability in R&A requirements between product line members

Step 2: Refining the Quality Requirements. Table 10.8 represents the refined requirements
from the product line architects viewpoint. Reliability related requirements are identified
with an “R” and identification number as well as the availability requirements with an “A”

Game
application

No breaks in
communication

Reliability is at
low level

Service recovery
in medium time

End user
(game
player)

End user
(medical
worker)

End user
(doctor,
police)

Game
application
developer

Product
line

architect
Health care
application

Data is always
correct

Reliability is at
high level

Recovery time
is fast

Emergency
intervention
application

Service availability
is very high

Response time
is short

Fault occurence is
prevented

Health care
application
developer

Emergency
application
developer

Middleware

Message loss is
medium low

Service recovery
at medium rate

User notification of
failures/shutdowns

Middleware

Middleware service
capability to recover

Data replication

Data consistency
is verified

Messages are
not lost

Service recovery
at medium rate

Data correctness
is ensured

Middleware

Messages are
not lost and integrity

is ensured

Very fast
service recovery

Service execution
back-up

System 3
architect

System 2
architect

System 1
architect

and identification number. For each requirement the stakeholder is specified. The impor-
tance of the requirement is expressed using the “high, medium, and low” scale.

 A. Immonen390

Table 10.8. The R&A requirements from the product line architect’s point of view

R2.1 middleware services are able to recover product line architect high
R5 data consistency is verified in every 5 seconds product line architect low
R6 data is replicated at least in 2 data storage product line architect medium
R7 data may not be lost in failure/error situations product line architect medium

The system-specific requirements for the middleware system for emergency

(i.e., system 3) is attached to the requirements’ identification number to separate the
different line members.

Table 10.9. The R&A requirements from the system architect’s point of view

A1-S3 the system service availability is 99% end user of application high
A2-S3 connections between nodes is ensured end user of application high
R1-S3 the probability of failure is not over 0.01 end user of application high
R2.2-S3 recovery time of the middleware services

is 3 seconds
end user of application medium

R3-S3 number of lost messages must be 0 application developer high
R4-S3 data must always be correct application developer high
R8-S3 back-up plan for fault situations application developer high
R9-S3 monitoring of service failing or booked up application developer high
A3-S3 the negotiation of service user and service

provider should not take more than 0.1 seconds
application developer medium

A4-S3 the great amount of users may not slow down
the use of the service

application developer medium

Step 3: Mapping R&A Requirements to Functionality. Figure 10.3 describes the variation
in R&A requirements of the three members. The variation in functionality between the

conceptual components (i.e., services) of the product line architecture. The mapping of
the system-specific requirements of the middleware system for emergency intervention

for game application, is a system with light functionality, whereas system 3, the middle-
ware for emergency intervention application, has full functionality.

req. ID requirement description stakeholder importance

req. ID requirement description stakeholder importance

391

ments implementation are specified. In this phase, the architect does not have to decide
how the requirements are implemented.

intervention application are described in Tab. 10.9. The system identification symbol, S3

members is described in Tab. 10.10. According to Tab. 10.10, system 1, the middleware

Table 10.11 describes the mapping of the line-specific R&A requirements to the

application is described in Tab. 10.12. Thus, the responsible services for the require-

10 A Method for Predicting Reliability and Availability at the Architecture Level

Table 10.10. Variability in functionality between line members

service category variable services ystem 1 system 2
synchronous mediator mandatory mandatory mandatory
asynchronous messaging optional optional mandatory

communication
services

interpreter mandatory mandatory mandatory
activator mandatory mandatory mandatory
service allocator service – optional mandatory
observer mandatory mandatory mandatory
advertiser – optional mandatory

local – alternative data storage
remote –

mandatory
mandatory

data distribution mandatory mandatory mandatory

basic services

location service mandatory mandatory mandatory
directory service mandatory mandatory mandatory
lease service – mandatory mandatory

system services

transaction service – optional mandatory
lease user mandatory mandatory mandatory
lease grantor mandatory mandatory mandatory
transaction manager optional optional mandatory
transaction participant
application service user

service user
interface

application service provider

Table 10.11. Mapping product line R&A requirements to functionality

R&A req. corresponding service
R2.1 all of the involved basic, system and communication services
R5 data distribution
R6 data distribution, Location service
R7 data distribution

Step 4: Trade-Off Analysis and Selecting the Architectural Style. The NFR framework
represents a graph called the soft-goal interdependency graph (SIG) that represents “soft-

among them. Figure 10.4 describes the graph including two attributes of the DiSep
product line, reliability and performance, that are represented at the top of the graph. Two
reliability requirements, service capability to recover and data replication are refined on a
more accurate level. Service recovery can be backward, when the service rolls back its
operations to an error-free state prior to the error occurrence, or forward when a new
correct state is constructed from the state at the failure. Data replication can be replication
for a local unit or remote unit. Performance is divided into space performance and time
performance. The former means applying resources, such as secondary storage, and the
latter means, for example, response time or throughput. The importance of the required
property is described with + and – signs (three signs at maximum).

s system 3

– optional mandatory
– mandatory mandatory
optional mandatory mandatory

 A. Immonen392

goals” (i.e., the nonfunctional requirement to be achieved) and the interdependencies

Table 10.12. Mapping system-specific R&A requirements to functionality

corresponding service
A1-S3 lease service, directory service, transaction service, service allocator service, location

service, activator
A2-S3 synchronous mediator service, asynchronous messaging service
R1-S3 all basic, system and communication services
R2.2-S3 all basic, system and communication services
R3-S3 synchronous mediator service, asynchronous messaging service
R4-S3 synchronous mediator service, asynchronous messaging service, observer, interpreter,

data distribution
R8-S3 data distribution, location service
R9-S3 service allocator service
A3-S3 service allocator service, location service
A4-S3 lease grantor, service allocator service

Layered
architecture

Simplex
ABAS

Implicit
invocation

Black
board

Reliability Performance

Recovery
+++

Data replication
+++ Space

performance
+

Time
performance

+++

Backward
recovery

++ +++
Local

+
Remote unit

+++

Fig. 10.4. Use of the NFR framework in style selection for the DiSep product line

As can be seen in Fig. 10.4, the data replication in the remote unit and forward
recovery are very important reliability requirements for the DiSep product line. At the
bottom of the graph the candidate architectural styles are identified and a line is drawn
between a requirement and a style if the style supports the requirement. In the layered
style, software is divided into horizontal layers where each layer provides a set of services
to its higher levels [10]. The Simplex ABAS addresses the problem of how to take
advantage of redundancy to increase reliability, and introduces the concepts of redundant
components, acceptance tests and a decision and switch unit [33]. In the implicit
invocation style, software is organized into components that generate events and a
message manager that manages communication [3]. The blackboard style assumes a
central data repository and a set of active components that use this repository. In this case,
based merely on the reliability requirements, the Simplex ABAS would be the best
architectural alternative. Time performance is an important requirement that is not met if
Simplex ABAS is selected; therefore it can be said that performance conflicts with
reliability.

recovery
Forward

R&A req.

39310 A Method for Predicting Reliability and Availability at the Architecture Level

Table 10.13 describes the trade-off resolving activity of the conflicting attributes. The
estimation of the conflict types, i.e., make, help, hurt and break, is done based on the
architect’s knowledge about the different styles (in this case; based on the literature).
Based on this trade-off analysis, the layered style is the best architectural choice and it is
therefore selected.

Table 10.13. Resolving trade-offs using a correlation catalogue

goal style reliability
(backward
recovery) ++

reliability
(forward
 recovery)
+++

reliability
(data
replication,
local) +

reliability (data
replication,
remote) +++

perfor-
mance
(space)
+

perfor-
mance
(time)
+++

layered helps helps helps helps helps hurts
Simplex ABAS breaks makes makes helps hurts hurts
implicit
invocation

helps hurts hurts helps helps helps

black board helps breaks breaks helps breaks helps

Step 5: Defining Criteria for R&A Evaluation. Table 10.14 describes the mapping of the
R&A requirements for the middleware system of the emergency intervention applications
to the evaluation levels.

Table 10.14. Classification of reliability and availability requirements

evaluation level evaluation criteria corresponding requirement
level 1 product line-specific requirements R2.1, R5, R6, R7
level 2 high level system-specific requirements A1-S3, A2-S3, R1-S3, R3-S3, R4-

S3, R8-S3, R9-S3
level 3 medium level system-specific requirements R2.2-S3, A3-S3, A4-S3
level 4 low level system-specific requirements –

Table 10.15 describes the evaluation criteria for the DiSep product line. These criteria

Table 10.15. Criteria for evaluation of the DiSep product line

evaluation criteria Req. ID Importance impacted architectural elements
service capability to recover R2.1 medium all basic, system and communication

services
data consistency verification R5 medium data distribution
data loss prevented in error
situations

R7 medium data distribution

data replication R6 low data storage, data distribution, location
service

 A. Immonen394

are derived from the first evaluation level of Tab. 10.14; from the product line requirements.

10.6 The Second Phase: Representing Reliability
and Availability in Architectural Models

The second phase of the RAP method (see Fig. 10.1) provides guidelines for how to
model R&A in software architecture in a way that the R&A analysis can be performed
directly from the architecture. The abstraction levels of QADA are used in R&A modeling
in two ways. First, the required R&A of the system is described at the conceptual level,
and second, the provided R&A of the system is described at the concrete level. Because
reliability and availability are closely related, they are no longer separated at the
architecture level. R&A appears in architectural models in two ways:

− R&A aspects, i.e., dimensions with values, are attached to architectural elements
− R&A requirements result in certain design decisions and functionality

To formally quantify different aspects of R&A, dimensions are needed to represent the
metrics for the R&A aspects in architecture. These dimensions and their values respond to
the tagged values of UML. Tagged values are pseudo attributes that can be assigned to

profiles for representing R&A aspects in architectural models using the tagged values, i.e.,
R&A dimensions and values. The required profile corresponds to the R&A requirements,

When the R&A requirements result in certain design decisions, such as structures or
particular components, the design decision should be documented. Especially the
qualitative analysis relies on documented design rationale. If the design rationale is
documented and there is a mapping between each design decision and reliability and
availability requirements, it can be verified that the requirements are met in the
architecture level.

10.6.1 Description of the Steps of the Second Phase

Mapping Required R&A to Conceptual Architectural Elements. After the architectural
style is selected at the conceptual architectural level, the R&A requirements are brought to
the architectural models with the help of the required R&A profile that consists of dimen-

395

UML model elements in the form of a pair “tag = value” [5,37]. The RAP method defines

10.16) are applied partly from [34,48]; the rest of them are defined to support the needed
R&A concepts identified in this study. The dimensions are mainly aimed at software
and software components, but some of them are also applicable for hardware. One require-
ment can be distributed to several dimensions, and correspondingly, one dimension
may include several requirements.

and the provided profile is the R&A that the system offers. The dimensions here (Tab.

sions that are defined in Tab. 10.16.

10 A Method for Predicting Reliability and Availability at the Architecture Level

Table 10.16. Reliability and availability dimensions

dimension value description
MTTF time mean time to failure
fault treatment:
error detection
recovery
repair

time, type,
technique/
means

prevents faults from being activated again. Error
detection helps avoiding catastrophic consequences
caused by errors. Recovery describes how the failed
component is brought from the erroneous state to an
error-free state

availability:
service availability
operation availability
control

time, percentage,
means

the capability of being available when needed

Probability of failure numeric value estimated/known reliability
Control means control defines how to ensure avoidance of errors,

faults and possible problems
Data:
Availability
Consistency
Correctness
Transfer reliability
Integrity

percentage,
means

data reliability: the capability of data being available
when needed, being consistency, correct and integrate.
The reliability of data transfer

Fault tolerance:
Max-number of faults
Redundancy

number, time fault tolerance is the capability of the system to
continue providing correct service even if a fault has
occurred

The requirements are first mapped to the dimensions, after which they are attached to
architectural elements in the structural and deployment views. This means that the re-
quirements are transformed to the required responsibilities of the architectural elements
(i.e., the components and connectors). In architecture, the required R&A guides the design
of concrete architecture and helps to make the design decisions. By mapping the R&A re-
quirements to the system behavior in behavioral view, the requirements have an influence
on the dynamic aspects of the system. The fourth view of QADA, i.e., the development
view, is used in the RAP method only to organize the design work.

Structural view. The static relationships of the components are represented in the con-
ceptual structural (and deployment) views. The structural view is used for the encapsula-
tion of quality requirements as the responsibilities of components or restricted parts of
architecture. The mapping of each R&A requirement to functionality was performed when
defining the quality goals. This enabled the tracing of requirements to architecture. Now,
vice versa, all of the related R&A requirements are defined for each architectural element.
This enables bi-directional requirements tracing; from architecture to requirements. Using

The conceptual architectural level defines the “required” properties, and therefore, the
R&A requirements are attached to components and connectors with the help of a re-
quired R&A profile. Typically, in the required profile the exact means and techniques to

repair defines how a failed component can be
repaired

 A. Immonen396

UML 2.0, the static structure of the system can be represented, for example, using a com-
ponent diagram or composite structure diagram.

implement the requirements are not yet defined, but the profile helps to define what is
required from the system and its elements. The R&A requirements and design rationale
are written inside the architectural elements (i.e., components/services and connectors).

Behavioral view. The behavioral view helps one to understand the dynamic aspects of
the system. The view represents the dynamic relationships of components. According to
QADA, the behavior of the system is described at the conceptual level as abstract descrip-
tions of a collaboration that describe the interactions between components. The collabora-
tion scenarios are derived from the functional responsibilities, but the quality requirements
can also raise the functionality and collaboration between components. For example, fault
tolerance can create a complicated collaboration scenario. The R&A requirements are
mapped to these scenarios, or they can cause new scenarios. From the viewpoint of R&A
prediction, the scenario modeling must begin from the scenarios that involve product line

When modeling the product line scenarios, the different usage profiles must be taken
into account. Different tasks of the systems, i.e., use cases, can be employed in different
ways in the case of different usage profiles. The idea behind the usage profiles is that
different users (e.g., human or other services) can have different frequencies in
implementing different use cases which will affect the overall frequency for each use case.
In addition, the different users can have different ways to execute a use case. The different
usage profiles have a great concern within the frequency of executing each component
and each interaction between the components, and therefore they form a complex point of
view when estimating system failure behavior. The different usage profiles must be
identified and the system behavior must be described according to each of these profiles.

Deployment view. The conceptual deployment view allocates units of deployment to
physical computing units. In the deployment diagram, components are described as
deployment nodes or units of deployment with types, and relationships as is-allocated-to
relationships. The required R&A is denoted by attaching requirements to nodes and rela-
tionships.

Development view. The conceptual development view does not itself assist in the R&A
representation. The view helps to detect which component and services have to be
developed, which can be found in the asset repository and the ones that have to be bought.

Mapping from Conceptual to the Concrete Architecture. When mapping the R&A
requirements to the conceptual architecture, the results of the requirements are reflected in
the concrete architecture. The traceability of the requirements to the conceptual
architecture and the concrete architecture must be ensured. Conceptual components, i.e.,
services, are more logical modeling elements than concrete implementation components.
Thus, one conceptual service may result in several concrete components, or one concrete
component may contribute to the implementation of one or more conceptual services. The
mapping between conceptual and concrete architecture must be documented to trace the

considering design decisions and design patterns.

Mapping Provided R&A to Concrete Architectural Elements. The provided R&A means
the R&A that the system offers, and can therefore signify the means and techniques for
implementing the R&A requirements or, commonly, the numerical R&A values that the
system elements provide. The concrete view is used in the R&A analysis and is therefore

397

R&A requirements to the concrete architectural level. Table 10.6 can be used again when

R&A requirements, continuing then according to the evaluation levels defined in Tab. 10.14.

10 A Method for Predicting Reliability and Availability at the Architecture Level

especially tailored to the needs of the analysis. The provided R&A are mapped to the

ture using the concrete structural and deployment views. In the architecture, the provided
R&A guides the design of concrete components or represents the properties of the existing
components (i.e., components in the asset repository or COTS components) that can be
used. The behavioral view assists in the modeling of the behavior of the components and
the systems. The development view refines the allocation that is defined in the conceptual
development view to concrete components.

Structural view. The concrete structural view is used to describe the concrete
components and interfaces needed for corresponding conceptual architecture. Therefore,
the view decomposes the conceptual architecture into lower aggregation levels. The
component diagram or composite structure diagram is used in order to describe the
structure of the system. The provided R&A is attached to the architectural elements using
the same dimensions as in conceptual levels. Due to the R&A analysis, it is important that
at least the value for the probability of failure is attached for each component and
connector. The probability of failure is a calculated value that provides a measure of
reliability for a component or system. The value for the failure probability is between 0
and 1, because the value 0 stands for failure free operation. The provided means for
achieving certain requirements are defined on the concrete level.

The concrete structural view also reveals the interfaces of the components. Interfaces
must be described in a way that enables the estimation of the interoperability of
components. Interoperability is the capability of the service to use the information
exchanged with other services, and provide something new that has originated from it, and
therefore the R&A of the interfaces can be estimated by examining the component
interoperability. An example of an architectural level interface description is given in [27].

Behavioral view. In a concrete behavioral view, the state diagrams or message
sequence diagrams can be used to describe the interactions between components. In RAP,
the state diagrams are used to derive a model for calculating the probability of failure of a
component. Therefore, for each new component, a state diagram must be defined to
describe the internal states and state transition. The message sequence diagram is used to
derive input messages for simulation-based R&A analysis. Also, the activity diagram is
required to derive a model for the simulation. An activity diagram typically represents the
operational workflows of a system. These models are described in more detail in Sect.
10.7.2 in the context of quantitative R&A analysis.

Deployment view. The concrete deployment view describes the concrete hardware and
software components, the relationships between the hardware components, and the
relationships between the software and hardware components. However, the RAP method
concentrates only on software systems; therefore this portion is limited.

Development view. The concrete development view links the architectural views to the
repository of common assets. Thus, the components that already exist can be linked to the
concrete components that they realize.

10.6.2 Applying the Steps to the Case Example

sents the related R&A requirements of each architectural element. The R&A requirements

 A. Immonen398

Step 1: Mapping Required R&A to Conceptual Architectural Elements. Table 10.17 pre-

R&A dimensions (described in Tab. 10.16) and are represented in the concrete architec-

are mapped to the R&A dimensions and thereafter represented in the structural view of the

Table 10.17. The related R&A requirements for architectural elements

service product line
requirement

system-specific requirements

lease service R2.1 A1-S3, R1-S3, R2.2-S3
directory service R2.1 A1-S3, R1-S3, R2.2-S3
transaction service R2.1 A1-S3, R1-S3, R2.2-S3
activator R2.1 A1-S3, R1-S3, R2.2-S3
service allocator service R2.1 R1-S3, A1-S3, A3-S3, A4-S3, R9-S3, R2.2-S3
data storage R2.1 R1-S3, R2.2-S3
data distribution R2.1, R5, R6, R7 R1-S3, R2.2-S3, R4-S3, R8-S3
location service R2.1, R6 R1-S3, A1-S3, R2.2-S3, A3-S3, R8-S3
advertiser R2.1 R1-S3, R2.2-S3
observer R2.1 R1-S3, R2.2-S3, R4-S3
synchronous mediator R2.1 R1-S3, A2-S3, R2.2-S3, R3-S3, R4-S3
asynchronous messaging R2.1 R1-S3, A2-S3, R2.2-S3, R3-S3, R4-S3
interpreter R2.1 R1-S3, R2.2-S3, R4-S3
lease grantor – A4-S3

Figure 10.5 describes the conceptual structure of the middleware of the emergency
intervention applications. The model (Fig. 10.5) illustrates the separation of product line
R&A and variable, system-specific R&A. The middleware system embodies the layered
architectural style, as it is divided into horizontal layers. The R&A requirements are
written inside architectural elements. For visibility, they are shown in the model as notes.
The grey colored highlights the product line requirements. When a note is attached to a
domain, the requirements involve all of the services of the domain. The design rationale
are written in the documentation fields of the elements and are readable when the element
is double-clicked.

The end user applications; the game, health care and emergency intervention
applications, have different requirements for the middleware and this has led to three
variant middleware systems. In a connection of a certain middleware system, the different
user profiles are not shown because the middleware services operate the same way no
matter who the user is. When defining the product line scenarios, however, the different

399

Table 10.18. Mapping R&A requirements to dimensions

related service dimension & value
R9-S3 monitoring of service failing

or booked up
service allocator
service

availability: control (system
services)

R5 data consistency is verified
in every 5 seconds

data distribution data: consistency = 5 seconds

data distribution fault tolerance: redundancy (data) R8-S3 back-up plan for fault
situations

location service fault tolerance: redundancy (data)

req. ID requirement description

architecture. An example of the mapping is given in Tab. 10.18.

10 A Method for Predicting Reliability and Availability at the Architecture Level

 A. Immonen400

Fig. 10.5. Conceptual structural view with common and variable R&A requirements

401

Table 10.19. Example of R&A related product line collaboration scenarios

R&A req. services participating the scenario
R2.1 service allocator service, lease service,

activator service, location service, observing
service

wherefrom data is replicated every 5

R6, R7 directory service, data distribution, data
storage, location service, observing service,
synchronous mediator service

R5, R6 data distribution, data storage, location
service, observing service, synchronous
mediator service

The deployment view is represented in Fig. 10.7. The basic and communication
services are always active in each node, but the system services are active only in one
node at a time. The user interface services are optional. The DiSep system consists of
equal units that are networked spontaneously. This prevents the use of a centralized fault
tolerance mechanism, such as a separate controlling and monitoring unit. The R&A
requirements are especially directed to the communication between the nodes, and
therefore, the requirements involve the network properties, or they result in design
decisions in the end points of the connector. The requirements are the same for each
connector because the nodes are equal. In the deployment view, nodes represent the
hardware components.

All of the components of the system are to be developed from scratch, because no
similar components exist in the repository.

Step 2: Mapping from the Conceptual to the Concrete Architecture. In the case of DiSep,
the mapping from the conceptual architecture to the concrete architecture is straight-
forward; one concrete component responds one conceptual component. As an example,

scenarios

the local database every 5 seconds

1. Lease service is jammed, and
continued in other unit

2. Directory service saves the data to

seconds
3. Data consistency and correctness is
verified

scenarios are defined when the user is a game application or an emergency intervention
application. Table 10.19 describes the R&A related scenarios for the product line.

Figure 10.6 describes a collaboration scenario of the middleware (Scenario 1 from

notifies the Activator service to deactivate the Lease service when the Lease service is
jammed. The activator service informs the Location service to mark the system services of
this particular node passive. After this, the Location service sends a normal beacon signal
regarding the availability of this node. As the Location services of other nodes receive this
signal, they notice that the active system service tag is missing from the signal. The node
that is the first on the system service provider list activates the system services of its own.

Tab. 10.19). The Service Allocator service monitors the state of the Lease service and

the design rationale of the basic system service components are described in Tab. 10.20.

10 A Method for Predicting Reliability and Availability at the Architecture Level

Fig. 10.6. Conceptual behavioral view: a description of a collaboration scenario

Fig. 10.7. Conceptual deployment view

Step 3: Mapping Provided R&A to Concrete Architectural Elements. Figure 10. 8 describes
the concrete structure of the Basic Services domain. The system services and com-

ure is mandatory for the R&A analysis. If this value does not exist, e.g., in the case of a
new component, it is estimated using the Markov chains model. The use of the Markov
chains model is the first activity of the quantitative analysis when estimating the reliability

erviceAllocatorService

Lease Service

ActivatorService

ObservinggService LocationService

1: Reques
for state

t 2: Response

Cd DiSeP_communication_2

3: Notifies problems in
Lease Service

4: Deactivate Lease Service

5: Mark system services of
this node as passive

domains are described in separate diagrams. The value for component’s probability of fail-
munication services domains are represented as packages. For simplicity, each of the

 A. Immonen402

of a component as an independent unit. The Markov chains model is further described in
the next section.

Table 10.20. The design rationale of concrete components of basic system services

concrete element
(component)

design rationale R&A requirement

activator
component

activates and deactivates system services.
Enables the recovery of service execution in
other unit

R2.1, A1-S3, R1-S3, R2-S3

component
monitors the system services. If the services
fail or the response is too slow, informs the
activator to switch the unit

R2.1, R1-S3, A1-S3, A3-S3,
A4-S3, R2.2-S3, R9-S3

data storage permanent data base (local) R2.1, R1-S3, R2.2-S3
data distributor
component

assists data storage. Keeps redundant data
storages consistent and up-to-date

R2.1, R5, R6, R7, R1-S3,
R2.2-S3, R4-S3, R8-S3

location service
component

informs when the node is connected to the
network and sends notification message about
availability of node. Maintains the network
map. Keeps a list of available system services
in order of superiority (the active services are
tagged). Announces the active system services.
Notifies the Activator to activate system
services when needed

R2.1, R6, R1-S3, A1-S3,
R2.2-S3, A3-S3, R8-S3

advertising
component

informs the active system services about the
availability of user services of the node

R2.1, R1-S3, R2.2-S3

observing
component

route incoming and outgoing messages R2.1, R1-S3, R2.2-S3, R4-S3

The models of the behavioral view, i.e., the state diagram, the message sequence
diagram and the simulation model derived from the activity diagram, are described in
more detail in Sect. 10.7.2, because these are needed in the quantitative R&A analysis.
The reliability analysis of hardware is a large research field and therefore out of the scope
of this study. This study concentrates purely on the analysis of software product lines and
therefore the provided R&A in the deployment view is not modeled. Moreover, because
all of the components of the system are developed from scratch, no link to the repository
of the common assets is needed.

service allocator

40310 A Method for Predicting Reliability and Availability at the Architecture Level

Fig. 10.8. Concrete structural view of basic services with provided R&A

10.7 The Third Phase: Evaluating Reliability and Availability

The third phase of the RAP method (see Fig. 10.1) is about analyzing the architecture to
validate whether or not the R&A requirements are met. The R&A evaluation is performed
using the quantitative and qualitative analyses. The quantitative R&A analysis compute
the failure behavior of a system based on its structure in terms of composition (i.e.,

 A. Immonen404

components and their interactions), the failure behavior of the components and the failure
behavior of their interaction. This analysis requires that the structure of the system is
known, both the static aspects represented by its components and the dynamic aspects rep-
resented by the frequency of executing each component and each interaction between
components. The quantitative approach also assumes that the failure behavior of the com-
ponents and component interactions are known. The possible fault tolerance mechanisms
must also be taken into account when computing composed R&A values. From a compu-
tational point of view, the fault tolerance mechanisms will reduce the probability of the
failure of the system. Qualitative analysis is complementary to the quantitative one and
can be applied without knowing the failure behavior of components. The analysis consists
of reasoning the design decisions (e.g., styles, fault tolerance and recovery mechanisms)
and their support for the R&A requirements.

10.7.1 Description of the Steps of the Third Phase

Quantitative Analysis. Reliability and availability are execution qualities, and therefore
they can be analyzed from the behavior of the system at run-time. Because the systems are
not fielded yet, the simulation is needed to represent the execution of the system. The
quantitative analysis consists of the state-based and the path-based analysis. Both of them

The RAP method uses the state-based models to analyze component reliabilities. State-
based models are usually represented by Markov chains that consist of the states, i.e.,
externally visible modes of operation that must be maintained, and the state transitions
labeled with system inputs and transition probabilities. These kinds of models can be used

the software architecture and its behavior and its failure behavior. The failure behavior
comprises the probabilities of the failure of components and transitions.

Path based models are used to analyze the reliability of the system with the help of the
execution paths. In addition, the path-based analysis enables one to specify, with the help
of the simulation, the reliability estimations of component. The path-based models
consider all of the possible system execution paths with frequencies, and their computed
reliabilities, as the basis of a reliability model. Paths are either extracted from component
execution traces (i.e., real simulation), or identified during the system design phase (i.e.,
scenario-based simulation). The system level reliability is obtained from a weighted sum
(based on usage frequencies) of path reliabilities.

The quantitative analysis of the RAP method consists of three activities (Fig. 10.9):
The first activity is to estimate the component reliability, the second activity is to estimate
software reliability based on the reliabilities of components, and the third is to estimate
the reliability of the system reliability including the hardware components.

40510 A Method for Predicting Reliability and Availability at the Architecture Level

result in the probability of the failure of the composite software, and they use architecture
and failure behavior as inputs for the analysis.

even if the source code for the component is not available. The input of the methods is

Fig. 10.9. The activities of quantitative analysis

The First Activity: Estimate Component and Connector Reliability. Independent
component: A component is first considered as an independent unit, when separated from
the architecture. We assume that components already exist or they need to be developed.
Reliability values or failure rates of components are not likely known in the design phase.
When using existing components (e.g., from the repository or third parties), the value of
the failure behavior of components may already be known, based on previous execution of
the components. Components should therefore be documented in a way that assists their

failure behavior, so the value for the failure behavior may be something else in a new
environment. In the case of newly developed components, the values of failure and
interaction behavior must be estimated prior to implementing these components.
There are several techniques that have been proposed to estimate the reliability of

1. Estimate the probability of failure of the independent component. If the component
is new, create a Markov chain model that represents both component failures and the

failure of a component. The Markov chain model is derived from the state diagram
of a component by adding the failure state and probabilities of the state transitions

of states are calculated for each state of the components. The probability of failure of
the component is defined as a probability of being in the failure state. For an existing
component (in-house, COTS, OS), the value for the estimated probability of failure
should be found from the component documentation.

2. Refine the achieved value with other factors that have an affect on R&A. There are

gives a share in the overall estimation of probability of failure. The estimation of
these factors requires a comprehensive knowledge about the component (cf.
qualitative analysis).

3. Estimate the probability of failure of the connectors. Estimate the reliability of con-
nectors based on the type of connection (i.e., local/remote, wired/wireless, etc.).

Independent
component

Dependent
component

1. activity 2. activity 3. activity

Architecture reliabilityComponent reliability System reliability

 A. Immonen406

quality estimation, such as [56]. The execution environment of a component affects its

components, such as [16,59]. These, however, base on existing components and the data
attained through testing. The first activity includes the following tasks:

usage of components between failures [57] and calculate the estimated probability of

several factors that have an influence on the reliability and availability of a
component. The most common are described in Tab. 10.21. Each of these factors

[57]. By applying the Chapman-Kolmogorov equation [50], the static probabilities

Estimate the probability of the correct operation of components, i.e., interoperability
of components through the connector. The concrete structural diagram and interface
descriptions assist in interface evaluation.

4. Add the estimated reliability values to the concrete structural diagram. The
estimated values must be added to the architectural models for R&A calculations.

Table 10.21. R&A related properties of a component

component property description
the lines of code or the estimated lines of code can be used to

(planned) implementation
technology

compliers, machine instructions, the need of wrappers, the use of
“safe languages,” etc.

required processing time how much the component requires physical resources and
processing time. A resource and time consuming component is
prone to hardware faults, and hardware availability affects on the
service availability

third-party involvement is the component third-party, open source or in-house. This
determines if the documentation and code are available, the
modifications allowed, test cases available, etc.

interfaces (provided,
required)

the more interfaces the component has, the more possibilities there
are for the component to fail to interact with other components

coverage of testing how well the component has been tested; the coverage of testing and
availability of test documentation
does the component embody some fault tolerance technique to
detect, mask and recovery from failures

Results: The estimated probability of failure (i.e., reliability) of independent
components.

The R&A estimation of components is performed by way of the system simulation that
helps to detect how components are used in a system and how they communicate with
each other. Simulation also helps to detect the critical components and the components
with low R&A values. The simulation requires as inputs the message diagram and the
simulation model. It also needs the values of the estimated probability of failure of the
components for the calculations. This includes the following tasks:

1. Simulate the system. It is not always possible or rational to simulate the entire
system. Therefore, the simulated part of the system must be defined
− Define the input messages for simulation. The input messages are defined in the

The First Activity: Estimate Component and Connector Reliability. Dependent compo-
nent: Considering a component as a dependent unit, its reliability is affected by the sur-
rounding components. In addition, the usage stresses components, and therefore, the usage
of a component affects its reliability [16]. The more the component is used, the more likely
its probability of failure increases. By predicting the R&A for each component separately,
components with low R&A can easily be detected from the architecture and changed to
more reliable ones.

size/estimate size

(planned) fault tolerance

estimate fault occurrence in a component

40710 A Method for Predicting Reliability and Availability at the Architecture Level

message sequence diagram, starting from the product line-specific messages. An
input message represents an information container for simulation comprising data

objects involved in transactions between components. It is up to the architect to
define the messages in a way that the simulation covers the system execution
described in collaboration scenarios. Therefore, the messages are defined based
on the collaboration scenarios. The order and density of messages must be
tracked from the functional and R&A requirements. The architect also has to de-
fine the occurrence probability for each message and take that account in a mes-
sage sequence diagram. The timeframe for the simulation must be comprehensive
enough to cover the normal execution of the system and to reveal the most used
execution paths and their frequencies. In the input message definition, the evalua-
tion levels must be taken into account. The first round of the evaluation consists
of product line requirements. An example of the product line scenarios was illus-

− Build the simulation model. The simulation model of the system is constructed
based on the concrete structural diagram and the collaboration diagrams. The
simulation model (see Fig. 10.12) is derived from the activity diagram, consisting
of the object nodes, decision nodes and message flows between them. The
decision nodes include the message handling and decision making unit. This
enables the simulation of the actual system behavior. Simulation starts when a
component receives an input message. For each input message, the simulation
reveals a component sequence path.

− Run the simulation. The messages are given as inputs for the simulation. The
simulation model is run through according to each message.

2. Based on the simulation, define and calculate
− Execution paths of the system
− Probability of each path execution
− Frequency of each component execution in each path execution, and
− Frequency of each connector execution in each path execution.

3. Calculate the probability of the failure of components in an execution path. The
estimated probability of failure of a (independent) component is combined with the
amount of the use of the component in a path execution. The result is the path-
specific probability of failure of a component. The formula for the probability of the
failure of component in the execution path is applied from [12].

The result is the path-specific probability of failure of a connector.
5. Calculate the probability of failure of components and connectors in all of the

execution paths that they are involved in. Each path-specific probability of the
failure of a component is multiplied with the probability of a path execution (i.e.,
weighted path-specific probability of failure). Finally these values are summarized.
The probability of failure of connectors is calculated in the same way. The result is a
refined reliability of each component and connector (in the entire system execution,
i.e., in all of the execution paths).

6. Add the specified reliability values to concrete structural diagram for further
calculations.

4. Calculate the probability of failure of connectors in an execution path. The pro-
bability of failure of connectors is calculated in the same way as the components.

 A. Immonen408

trated in Tab. 10.19. The messages that relate these requirements are used as first
input for the simulation.

Results: The refined probability of failure of components, i.e., the probability of
the failure of components in the surrounding environment. Probability of failure of
connectors.

The Second Activity: Estimate Software System Reliability. After the component and
connector reliabilities are defined, they are used to calculate the software system level
reliability. The second activity includes the following tasks:

1. Compute the reliability of individual paths. The path reliability is the specified

the probability of failure of an execution path.
2. Calculate the software reliability. The reliability of the software is a weighted

execution is multiplied with the probability of failure of a path. Finally, the
probability of failure of each path is summarized.

Results: Probability of the failure (i.e., reliability) of the software.

The Third Activity: Estimate System Reliability (in Deployment Environment). The system
consists of hardware and software. When deploying the software on deployment nodes,
the entire system reliability can be estimated. The third activity includes the following
tasks:

1. Determine the reliability of the hardware. Hardware components are represented as
nodes. Define the reliability, availability and adequacy of hardware components,
such as physical devices (i.e., computational resource having memory and
processing capability). The reliability of the hardware components in the
deployment environment can be determined from previous use (experiences) or
testing.

2. Define the reliability of hardware/software component combination. Allocate the
software components into nodes/devices and define the reliability for the combined
hardware and software components.

3. Define the reliability of the network (between nodes). The reliability of the network
is affected by network protocols, security, etc.

Results: The reliability of the entire system.

This study concentrates purely on the analysis of software product lines; therefore the
third step is out of the scope of the analysis.

Qualitative Analysis. The qualitative analysis relies on documented design rationale that
must be included or accompanied in the architectural models. If this is not the case, then
the analysis relies heavily on the architects’ tacit knowledge. By analyzing and reasoning
about one architectural solution, the qualitative analysis provides assurance to the
architect that the requirements have been addressed in the design. By analyzing different
architectural solutions for the same requirements, the analysis provides an evaluation of
the degree to which they address the requirements and it also allows to compare different
architecture candidates and recommend one for the solution.

409

reliabilities of components and connectors involved in a path [19,35]. The result is

average of reliabilities of all the paths [55]. For each path, the probability of a path

10 A Method for Predicting Reliability and Availability at the Architecture Level

The process of qualitative analysis can be partly automated, for example, by
automating the report generation. The main parts of the analysis still require a human
analyzer. The qualitative analysis is about tracking the R&A requirements. The bi-
directional requirements tracking means tracking the requirements to the architecture and
the properties of the architecture to the requirements. The tracking is performed based on
the requirement numbers that are associated to architectural elements using the required
R&A and provided R&A profiles. The required R&A profile maps the requirements to the
architecture at the conceptual level and the provided R&A profile describes how these
requirements are taken into account at the concrete level. Therefore, the qualitative
analysis verifies that each requirement has been taken into account in the architecture
design. When analyzing the architecture and its components, the tracking is performed
vice versa; from concrete architecture to the conceptual and furthermore to requirements.

Design rationale can be associated with individual components, with individual
connections, and a set of components and their connections. The analyzer compares the
design decisions with the R&A requirements and analyses how those requirements are
met in the architecture. The analyzer also has to decide if the requirements are met
sufficient enough, and to examine how to meet requirements better and how well all of
these decisions work together. For comparing two different architectures, the qualitative
analysis must be performed for each of the designs, and thereafter a numerical indicator
for the coverage of requirements is used, but also human judgment regarding the proposed
solutions has to be applied.

Fault tree analysis (FTA) is usually used in qualitative analysis to determine what are
the points of the system that may cause system failure [15]. In the RAP method, the FTA
is used to identify problems that may occur when certain R&A requirements are not met
in the architecture. Thus, the FTA helps the architect to pay attention to the parts of the
architecture that require an enhancement to meet the R&A requirements in this particular
architecture, without changing the architectural style.

FTA introduces a fault tree that is a deductive, top-down method for analyzing and
documenting the potential causes of system errors. The use of the fault tree involves
specifying a top event to analyze, followed by identifying all of the associated elements in
the system that could cause that top event to occur. Fault trees are generally performed
graphically using a logical structure of AND/OR gates. The problem areas identified need
to be analyzed separately in order to identify corrective actions to reduce or solve the
problems.

Decision Making Based on the Analysis. If the result of the qualitative and/or quantitative
R&A analysis reveals that the particular architecture is not sufficient enough for the
reliability and availability requirements, the architect has two choices:

1. Keep the architecture and decrease the probability of the failure of components and
their interactions. This can be performed by
− Choosing components with higher reliability (if available)
− Implementing higher reliable components by eliminating software defects in their

implementation (by defect detection techniques, e.g., inspections and testing)
− Deploying software on more reliable hardware

2. Change the architecture by
− Using different architectural styles and patterns, and
− Introducing new mechanisms, for example, for fault tolerance and fault treatment.

 A. Immonen410

The RAP method enables that the reliability and availability analysis can be performed
quickly and repeatedly for each architectural choice. The results of the analyses of
different architectural choices must be evaluated against R&A evaluation criteria and
against each other. Human analysis is required to decide which architectural alternative
meets the requirements best.

10.7.2 Applying the Steps to the Case Example

Step 1: Quantitative Analysis. The values for probability of failure of components are
estimated by the Markov chains model after which the simulation is executed to refine
these values and to calculate the software reliability.

component. The model is constructed from the state transition diagram by adding the
failure state and probabilities of state transitions. These probabilities base on the
architect’s estimations and knowledge. The rounded rectangles describe the states where
the component can be and the arrows describe the transitions between the states. The
failure state describes a failure of a component and the occurrences of failure states are
identified with failure events (transitions to the failure state).

Fig. 10.10. Markov chain model of the location service

FailureState

[0.999]/return the
location information

[0.998]/
save the list

Idle

[0.4]/announce the no

[0.2]/get service
pprovider list

de
to the network

State 2

State 4

State 6

State 5

State 3

State 7

][0.003]
02][0.00

[1.0]

[0.002]

][0.001

[0.997]/
mark system

services active
[0.4]/update

the list

[0.2]/announce the Activator to
activate system services

/[1.0]/notify user services to

he[0.998]/announce th
location data of
active system

services

[0.2]/register node to the
y pactive system provider

[0.999]/return the
nlocation information

The First Activity: Estimate Component and Connector Reliability. Independent Com-
ponent: The probability of failure of each component is calculated from the Markov

start registration

411

chain model. Figure 10.10 describes the Markov chain model of the Location service

10 A Method for Predicting Reliability and Availability at the Architecture Level

By applying the Chapman-Kolmogorov equation, the estimated probability of being in
a state can be calculated for each state. The Location service consists of seven normal
states and one failure state. Table 10.22 describes the probabilities of each states. Thus,
the probability of failure for the Location service is 0.0005.

Table 10.22. Probabilities of states of Location service component

state 1 state 2 state 3 state 4 state 5 state 6 state 7 failure state
0.4543 0.1817 0.0909 0.0727 0.0727 0.0363 0.0909 0.0005

The achieved probability of failure of the component is evaluated together with the
other properties of the component to achieve the total estimation for the reliability of the
component. Table 10.23 shows the evaluation of the Location service component. Values
for each property are examined component-specifically, after which it is estimated how
these values affect the component R&A. The used extents are: affects positively (+),
neutral (0) and affects negatively (–).

Table 10.23. R&A evaluation table of the Location service component

component property value effect on R&A
size/estimated size small, about 400 LOC +
implementation technology/planned
implementation technology

Java +

required (estimated) processing time 1 ns 0
third-party involvement in-house component +
interfaces one standard interface +
coverage of testing new component, no information

about previous use, not tested
–

fault tolerance/planned fault tolerance error detection, recovery +

The final estimation is always up to the architect. He/she has to decide how much these
properties affect on the value achieved from the Markov chains model. Because all of the
components are located in the same deployment node, the probability of failure of the
connectors is estimated based on the interface description of the components.

The First Activity: Estimate Component and Connector Reliability. Dependent Compo-
nent: In the case example, the simulation of the system is restricted to the basic and system
services. The input messages are retrieved from the message sequence diagram. A fragment
of these input messages are shown in Fig. 10.11, and the description of the simulation
concentrates on these messages. These input messages are the messages that the observing
service receives (in this case; from the interpreter service). The context of the messages is
defined inside the arrows, and notes illustrate the examples.

The simulation model is constructed with the help of the concrete structural and
collaboration diagrams of basic and system services. A fragment of the simulation model
is shown in Fig. 10.12. The rectangles describe the object nodes (in this case;
components), the diamond shapes describe the decision nodes and the arrows describe the
message flows. The rounded rectangle describes the activity element, where the system
can change the message (described in figure as a note).

 A. Immonen412

Fig. 10.11. Input messages for the system simulation

Fig. 10.12. A fragment of the simulation model

After the simulation has been run, the execution paths and their probabilities are de-
fined. In addition, the density of a component and a connector execution is defined. For
each component, the estimated reliability value (independent component) is specified with
the value achieved from the simulation. The same is performed for the connector values.
For example, the estimated probability of failure of the Observing service (as an independent

41310 A Method for Predicting Reliability and Availability at the Architecture Level

component) is 0.0005 and the component is involved two times in path P1. By applying
the formula from [12], the specified probability of failure of Observing service in an exe-
cution path (P1) is:

Probability of failure (Observing service, P1) = 1 – (1 0,0005)2 = 0,001. (1)

In the same way, the probability of failure for each component in each execution path

Table 10.24. Probability of failure of components in three execution paths

component

Path

C1:
application
service
provider

C2:
activator
service

C3:
data
storage

C4:

service

C5:

distribution

C6:

service

Path

P1 – 0.005 0.001 – 0.0016 0.001 0.5
P2 0.0011 0.005 – 0.0008 – 0.0005 0.25
P3 – 0.005 0.001 – 0.0008 0.0005 0.25

Basing on the probability of the path and the probability of failure of components and
connectors in a path, the probability of failure of each component and connectors in all of
the paths (i.e., in system execution) is calculated. For example, the probability of failure
of C6, the Observing service, is calculated as follows:

Probability of failure (C6): C6P1*0.5 + C6P2*0.25 + C6P3*0.25 = 0.00075. (2)

Table 10.25 describes the calculated probability of failures of components involved in
the simulation and the number of times the components were accessed. As can be

critical components of the system. Also, the Activator service has the lowest probability
of the failure value.

The Second Activity: Estimate Software System Reliability. Path reliability for the P1 is
calculated as a sequence of components and connectors involved in a path. The sequence
is identified to be C6-C2-C5-C3-C5-C6 and the formula is:

Probability of failure (P1) = 1 – ((1 – C6)*(1 – ConC6C2)*(1 – C2)*
(1 – ConC2C5)*(1 – C5)*(1 – ConC5C3)*(1 – C3) *(1 – ConC3C5)*

(1 – C5) *(1 – ConC5C6)*(1 – C6)) = 0.0096.

(3)

directory data observing probability

–

 A. Immonen414

is calculated. An example of the results is given in Tab. 10.24.

observed from Tab. 10.25, the Observing service and the Activator service are the most

Table 10.25. Predicted probability of failure of components of the system

accessed probability of failure
C1 application service provider 1 0.000275
C2 activator service 5 0.005
C3 data storage 3 0.00075
C4 directory service 1 0.000125
C5 data distribution 5 0.001
C6 observing service 8 0.00075

The sequence of the path P2 is C6-C2-C4-C1 and probability of failure is accordingly
0.0065. The sequence of the path P3 is C6-C2-C5-C3 and the probability is failure is
0.00347. Therefore, the probability of failure of the software system is calculated as:

Probability of failure(system) = Probability of failure(P1)*Path
probability(P1) + Probability of failure(P2)*Path probability(P2) +

Probability of failure(P3)*Path probability(P3) = 0.0073.

(4)

analysis of the system including hardware has not been applied to the case example,
because it has to be applied to the hardware selected to each product.

Step 2: Qualitative Analysis. The qualitative analysis is about bi-directional requirements
tracking. Tables 10.26 and 10.27 illustrate the requirements tracking.

Table 10.26. Tracking the requirements to conceptual and concrete architecture

R&A requirement conceptual level concrete level
R5: data consistency
is verified in every 5
seconds

data distribution service
negotiates about data copies,
transfers and deletions with

data distribution component includes a
timer that starts data copying procedure
every 5 seconds in the node of active
system services

at least in 2 data
storages

data storage is mandatory for
each node. Location service of
each node maintains location
data independently

each node includes a data storage that is
continuously updated by the data
distribution component. Location
service of each node maintains the list of
system services independently

comp. ID component

other units

The Third Activity: Estimate System Reliability (in Deployment Environment). The R&A

R6: data is replicated

41510 A Method for Predicting Reliability and Availability at the Architecture Level

Table 10.27. Tracking from the architecture to requirements

concrete level conceptual level R&A requirement
data distribution component:
Assists data storage. Control
of redundant data.

data distribution service: Contributes
to the operation of distributed data storage.
Creates, maintains and tracks connections to
other units in order to share data. Enables
data to be stored in local resources.
Negotiates about the copying, transferring or
deleting the data if necessary

R2.1, R5, R6, R7,
R1-S3, R2.2-S3,
R4-S3, R8-S3

location component: Multicast
signal sending and receiving.
list of available system
services.

location service: Informs about the existence
of the node and services. Maintains network
map. Keeps track of the available system
services

R2.1, R6, R1-S3,
A1-S3, R2.2-S3,
A3-S3, R8-S3

The architect decides how well the requirements are met in the architecture. If the
analysis reveals that certain requirements are not met in the architecture, the fault tree

the fault tree analysis when it is detected that the requirement R5 is not met. The top event
(the root) is the resulting problem of the unfulfilled requirement. The root is the fault in
data replication, and the lower levels describe the problems that may result in the top fault
event. The architect can use the tree to see the problem areas, pay attention to avoid the
potential problems and fulfill the requirement in this architecture, without changing the
architectural style.

Fig. 10.13. Identification of a problem caused by an unfulfilled R&A requirement

Step 3: Decision Making. The quantitative analysis resulted to a numerical value for the
probability of failure of the software system. This value was 0.0073. As the required
probability of failure was 0.01 at the most, it can be concluded that the requirement R1-S3
is met in the architecture. The qualitative analysis revealed that all of the requirements
have been taken into account in the architecture in a satisfactory manner. The architect
can now decide to keep the architecture, but he/she must pay more attention to
components with low probability of failure values, for example, by introducing new fault
treatment mechanisms.

Data storage of passive system
service node not up-to-date

Data distribution
service failure

Node location not in
service provider list

Database error Timing error Beacon signal about active
system services not received

Location signal
sending fails

OR

OR

OR

 A. Immonen416

analysis is used to identify problems that may arise. Figure 10.13 describes an example of

10.8 Discussion

The main idea of the RAP method is to compare different architectural solutions by
predicting their reliability and availability. Several candidate architectural solutions can be
identified for the defined requirements that implement these requirements in different
ways. The RAP method can be used to validate which candidate supports the R&A
requirements best. The phases and steps of the RAP method can be applied to the R&A
prediction of a product line and individual systems.

The RAP method was developed especially for product lines, and therefore it supports

separately from the system architecture. Thus, the product line requirements need to be
evaluated only once, as long as the architectural style remains the same. The first phase of
the RAP method enables the separation of product line and system-specific requirements
and describing variability between members. It also assists in mapping the product line
requirements to the product line architecture and the system-specific requirements to the
system architecture. The different evaluation levels help to define the criteria for R&A
evaluation. The second phase helps to represent the required and provided R&A in
architectural models with the help of the R&A profiles. The phase helps to transform the
R&A requirements to the required responsibilities of the architectural elements, which are
then transformed to the provided R&A properties that the system expresses. Finally, the
third phase helps to evaluate R&A from the architectural models. The evaluation is
performed according to evaluation levels, the first evaluation level especially concentrates

The RAP method was validated by an experiment that simulated the use of the RAP
method in the case of the DiSep product line. The phases of the RAP method were applied
simultaneously to a product line and a product line member. However, the used
frameworks, design and evaluation methods and techniques enabled the separation of
product line and system-specific aspects. Because reliability and availability are execution
qualities, the variable requirements involved the structural and behavioral aspects of the
architecture. The R&A requirements typically led to some structures or functionalities.
Therefore, variations in the R&A requirements between members may result in the
different design decisions considering the architectural style, components and component
collaborations. For example, for emergency services the high service availability and
recovery were required and could be achieved by using an architectural solution that
enabled the back-up service execution. For entertainment services (i.e., the game) the
service availability needed only to be medium rate and thus could be ensured, for
example, by modifying components to implement a recovery mechanism. Thus, the
variable R&A requirements affected the entire architecture design of different members.

The validation of the RAP method revealed that the method supported each of the
phases, i.e., requirements engineering, architecture modeling and R&A analysis, well and
did not require much extra work from the architect. More so, it helped to organize the
work of the architect and also helped him/her to concentrate on essential activities when
engineering reliable and available systems. After the requirements engineering, the archi-
tect only had to map the R&A requirements to the architectural views and represent them
in the architectural models using the R&A profiles, then he/she could make the design de-
cisions and select means and techniques as usual. Therefore, the RAP method ensures that
the requirements are actually taken into account when making the design decisions. In the

41710 A Method for Predicting Reliability and Availability at the Architecture Level

on product line-specific parts.

PLE enabling the prediction of the reliability and availability of product line-specific parts

evaluation phase, the required models for the analysis could be easily derived from the ar-
chitectural models that the architect was required to define anyway. The RAP method
guided specifically how to do the analysis.

The results achieved in R&A evaluation using the RAP method assisted and supported
the software architect in making the decisions based on the evaluation. The results from
the quantitative analysis helped to identify the critical components of the system execution
that require special attention. Also, the results enabled one to see which components are
low reliability and availability and should therefore be changed or improved. Furthermore,
the architect was able to see the behavior of the system with the help of the execution
paths and thus identify the possible bottlenecks of the system. The achieved probability of
failure of the system can be used as numerical indicator when comparing the candidate
architectures. The qualitative analysis can change the predicted values of the quantitative
analysis. For example, the use of fault tolerance and fault treatment techniques positively
effects the R&A values. Also, it is the responsibility of the architect to make a judgment
on the appropriateness of each design decision. Thus, the architect has to provide
estimations how much the capabilities of the system affect on the achieved R&A values.

To provide benefits in the system development, the R&A prediction should be able to
be performed quickly, easily and cost-effectively for each candidate architecture. There-
fore, tool support is required for the RAP method to automate and quicken the activities of
the architect. A tool for the R&A prediction to support the RAP method has been defined
in [26]. The tool – RAP tool – assists in representing R&A in architectural models and in
R&A analysis. For R&A representation, a commercial architecture modeling tool was se-

that provides enhanced architectural descriptions, supporting the required structural de-
scriptions of the systems. Also, the tool had to support the views of QADA to enable the
adequate architecture representation. In addition, the modeling tool had to be easily exten-
sible and include open interfaces to enable the profile creation and interoperation with a
separate R&A analysis tool. The developed R&A analysis tool supports the quantitative
R&A analysis automating the simulation and R&A calculations. The tool support helps to

 A. Immonen418

lected and extended with the needed R&A profiles. This tool had to support UML 2.0 [49]

achieve the numerical indicators. However, the evaluation of these results still requires a
human analyzer.

To compare different architectural solutions, the modeled architecture should be able to
be transformed from one style to another. Model transformation is about converting one

identifying the quality attributes that are not fulfilled, identifying the locations where the
attribute is inhibited, selecting the most appropriate transformation and performing the
transformation [6]. The MDA support of the RAP method enables the platform
independent architecture description, i.e., the conceptual architecture that is needed when
transforming from a style to another. A technique has been defined for quality-driven

within the RAP method when modeling candidate architectures. To allow for a fast model

model to another model of the same system [43]. The transformation process consists of

architecture model transformation for software product lines [38] that can be applied

transformation, a tool support, such as introduced in [42], is required.

The contribution of this chapter is the RAP method a method for predicting reliability
and availability from the architectural models. The RAP method is directed especially to
product lines, but it can be applied to the individual systems as well. The R&A prediction
requires changes to all of the system development phases from requirement engineering to

and availability goals, (2) Representing reliability and availability in architectural models,
and (3) R&A evaluation. Each phase includes a set of steps that further consist of activi-
ties.

The first phase of the RAP method describes how to identify the requirement sources,
how to refine stakeholders’ concerns to R&A requirements and how to negotiate the
requirements to find the best possible set of requirements that is further brought to the
architecture design. In addition, the phase guides how to map the R&A requirements to
functionality and select the architectural styles and patterns. Finally, the phase helps to
define criteria for R&A evaluation. The second phase guides how to map R&A
requirements to architectural views and represent the R&A properties in the architectural
models. The R&A properties are represented in the architecture with the required and
provided R&A profiles. The required R&A guides the architecture design and helps to
make the design decisions. The provided R&A represents the decided design decisions
and thus provides the guidelines for the system implementation. Both profiles enable the
tracking of requirements to architectural decisions and, vice versa. The third phase regards
evaluating the R&A of the product line or systems from the architectural models. The
evaluation consists of quantitative and qualitative analysis. The quantitative analysis

architecture. The result of the RAP method is a predicted reliability and availability of the
software system or product line.

produces the probability of failure at the component and architecture levels. The quali-
tative analysis is about tracking the requirements to examine how these are met in the

–

419

architectural analysis. The RAP method consists of three phases: (1) Defining reliability

The validation of the RAP method revealed that the RAP method is suitable in the
context of PLE, enabling to predict the R&A of the product line and its members. The
RAP method provides the techniques, methods and guidelines for R&A prediction at the
architectural level. At this moment, the validation of the RAP method bases only on an
experiment. More validation is required to refine the RAP method to be used
systematically in PLE. The next phase is to use and apply the RAP method in industrial
settings to see how suitable it is for the use of industrial software architects who have a
strong experience with the architecture modeling and quality analysis. The use of the
method in the context of real system engineering in industrial environments also helps to
identify the future development needs and required improvements.

Some targets for future development and the required supporting concepts have already
been identified during the development of the RAP method. It is still needed to have a
controlled selection of architectural styles and patterns that promote reliability and
availability in the architecture. At this moment the selection of architectural style is
performed pretty much based on the architect’s opinion and knowledge that typically base
on the literature and experience. The RAP method provides a slight guideline for making

10.9 Conclusions and Future Research

10 A Method for Predicting Reliability and Availability at the Architecture Level

design decisions (Table 10.6). A style base, such as introduced in [45], can formalize the

Acknowledgments
This work was carried out at VTT, the Technical Research Centre of Finland, within the
ITEA project ip02009, FAMILIES, as part of the Eureka Σ! 2023 Programme. This work
was guided and commented on by Eila Niemelä from VTT. Timo Käkölä from the
University of Jyväskylä and Juan Carlos Dueñas from the Technical University of Madrid
provided valuable comments.

References

 A. Immonen420

1. America, P., Obbink, H., van Ommering, R., van der Linden, F.: CoPAM: a component-oriented platform ar-
chitecting method family for product family engineering. In: Software Product Lines, Experience and Re-
search Directions, ed by Donohoe, P., Proceedings of the 1st Software Product Lines Conference (Kluwer,
Dordrecht 2000) pp 167–180

2. Barry, D.K.: Web Services and Service-Oriented Architectures: The Savvy Manager’s Guide (Morgan Kaufmann,
Los Altos, CA 2003)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice (Addison-Wesley, Reading, MA 1998)
4. Bennett, K., Layzell, P.J., Budgen, D., Brereton, L., Munro, M.: Service-based software: the future of flexi-

ble software. In: Proceedings of the Asia-Pacific Software Engineering Conference (IEEE Computer Society,
Los Alamitos, CA 2000) pp 214–221

5. Bondavalli, A., Majzik, I., Mura, I.: Automatic dependability analysis for supporting design decisions in
UML. In: Proceedings of the 4th IEEE High Assurance System Engineering Symposium. (IEEE Computer
Society, Los Alamitos, CA 1999) pp 64–71

6. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach
(Addison-Wesley, Reading, MA 2000)

7. Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P., Stal, M.: Pattern Oriented Software Architecture.
A System of Patterns (Wiley, New York 1996)

8. Chung, L., Gross, D., Yu, E.: Architectural design to meet stakeholders requirements. In: The 1st Working
IFIP Conference on Software Architecture (Kluwer, Dordrecht 1999)

9. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software Engineering
(Kluwer, Dordrecht 2000)

10. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns (Addison-Wesley, Reading, MA
2002)

11. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architecture: Methods and Case Studies, 1st edn
(Addison-Wesley, Reading, MA 2002)

12. Cortellessa, V., Singh, H., Cukic, B.: Early reliability assessment of UML based software models. In: 3rd Inter-
national Workshop on Software and Performance (Association for Computing Machinery 2002) pp 302–309

13. Dobrica, L., Niemelä, E.: Using UML notation extensions to model variability in product line architectures.
In: ICSE, International workshop on Software Variability Management (2003) pp 8–13

14. Douglass, B.P.: Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and
Patterns (Addison-Wesley, Reading, MA 1999)

15. Dugan, J.B.: Software system analysis using fault trees. In: Handbook of Software Reliability Engineering, ed by
Lyu, M.R. (McGraw-Hill, New York 1995) pp 615–659

16. Everett, W.: Software component reliability analysis. In: IEEE Symposium on Application – Specific Systems
and Software Engineering and Technology (IEEE Computer Society, Los Alamitos, CA 1999) pp 204–211

17. Frankel, D.: Model Driven Architecture, Applying MDA to Enterprise Computing (Wiley, New York 2003)
18. Garlan, D., Shaw, M.: An introduction to software architecture. In: Advances in Software Engineering and

Knowledge Engineering (World Scientific, Singapore 1993) pp 1–39
19. Gokhale, S.S., Trivedi, K.S.: Dependency characterization in path-based approaches to architecture-based

software reliability prediction. In: Proceedings of the IEEE Workshop on Application-Specific Software En-
gineering Technology, ASSET-98 (IEEE Computer Society, Los Alamitos, CA 1998) pp 86–89

style selection. The style base should connect each style with the quality attributes it
promotes, and describe how and what level the quality attribute is promoted. At this
moment rare styles and patterns support reliability and availability. Therefore, new styles
and patterns are required that concentrate on these two quality attributes.

421

20. Goseva-Popstojanova, K, Trivedi, K.S. Architecture-based approach to reliability assessment of software
systems. Perform. Eval. 45: 179–204 (2001)

21. Rational Software Corp.: UML Profile for EJB. In: Public Review Draft JSR-000026, ed by Greenfield, J.
(2001)

23. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information system research. MIS Q.

24. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture (Addison-Wesley, Reading, MA 1999)
25. IEEE: IEEE Std 1471-2000. Recommended Practice for Architectural Description of Software-Intensive Sys-

tems (Institute of Electrical and Electronics Engineers, New York 2000)
26. Immonen, A., Niskanen, A.: A tool for reliability and availability prediction. In: Proceedings of the 31st Eu-

romicro Conference on Software Engineering and Advanced Applications (IEEE Computer Society, Los
Alamitos, CA 2005) pp 416–423

27. Immonen, A., Holappa, J., Kallio, P., Kalaoja, J.: Towards interoperability of wireless services – a descrip-
tion model of service interfaces. In: Proceedings of the IADIS International Conference WWW/Internet 2004
(2004) pp 983–988

28. ISO/IEC: ISO/IEC 9126-1 International Standard: Software Engineering – Product Quality. Part 1: Quality
Model (2001)

29. Jaaksi, A., Aalto, J.-M., Aalto, A., Vättö, K.: Tried & True Object Development: Industry-Proven Approaches
with UML (Cambridge University Press, Cambridge 1999)

30. Jazayeri, M., Ran, A., van der Linden, F. Software Architecture for Product Families (Addison-Wesley,
Reading, MA 2000)

32. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The architecture tradeoff analy-
sis method. In: The 4th IEEE International Conference on Engineering of Complex Computer Systems (IEEE
Computer Society, Los Alamitos, CA 1998)

33. Klein, M., Kazman, R., Bass, L., Carriere, J., Barbacci, M., Lipson, H.: Attribute-based architecture styles.
In: The 1st Working IFIP Conference on Software Architecture (Kluwer, Dordrecht 1999)

34. Koistinen, J.: Dimensions for reliability contracts in distributed object systems. Technical report HPL-97-119,
October 3, Hewlett-Packard (1997)

35. Krishnamurthy, S., Mathur, A.P.: On the estimation of reliability of a software system using reliabilities of its
components. In: Proceedings of the 8th International Symposium in Software Reliability Engineering (IEEE
Computer Society, Los Alamitos, CA 1997) pp 146–155

36. Kruchten, P.: The 4+1 view model of architecture. IEEE Softw. 12: 42–50 (1995)
37. Leangsuksun, C., Song, H., Shen, L.: Reliability modeling using UML. In: Proceedings of the International

Conference on Software Engineering Research and Practice, vol 1 (CSREA, Athens, GA 2003) pp 259–262
38. Matinlassi, M.: Quality-driven software architecture model transformation. In: Proceedings of the 5th Work-

ing IEEE/IFIP Conference on Software Architecture (IEEE Computer Society, Los Alamitos, CA 2004)
39. Matinlassi, M., Kalaoja, J.: Requirements for Service Architecture Modeling in Workshop of Software Mod-

eling Engineering of UML2002, Dresden, Germany (2002)
40. Matinlassi, M., Niemelä, E., Dobrica, L.: Quality-Driven Architecture Design and Quality Analysis Method,

A Revolutionary Initiation Approach to a Product Line Achitecture, VTT Publication 456 (VTT Technical
Research Centre of Finland, Espoo 2002)

41. Matinlassi, M., Pantsar-Syväniemi, S., Niemelä, E.: Towards service-oriented development in base station
modules. In: Service-Oriented Software System Engineering: Challenges and Practices, ed by Zoran, S.,
Ajantha, D., vol 2 (Austrian Society for Cybernetic Studies, Vienna 2004) pp 440–444

42. Merilinna, J.: A Tool for Quality-Driven Architecture Model Transformation. VTT Publication 561 (VTT
Technical Research Centre of Finland, Espoo 2005)

43. Miller, J., Mukerji, J.: MDA Guide, version 1.0.1 (Object Management Group 2003)
44. Ncube, C., Maiden, N.: COTS software selection: the need to make tradeoffs between system requirements,

architectures and COTS/components. In: Proceedings of 2nd International COTS Workshop: Continuing
Collaborations for Successful COTS Development, ICSE-2000, Limerick, Ireland (2000)

46. Object Management Group: Unified modeling language (UML), version 1.5 (2002)
47. Object Management Group: UML profile for schedulability, performance, and time specification (2003)

10 A Method for Predicting Reliability and Availability at the Architecture Level

31. Kazman, R., Abowd, G., Bass, L., Clements, P.: Scenario-based analysis of software architecture. IEEE Softw.
47–55 (1996)

45. Niemelä, E., Kalaoja, J., Lago, P.: Towards an architectural knowledge base for wireless service engineering.
IEEE Trans. Softw. Eng. 31: 361–379 (2005)

22. Grünbacher, P., Egyed, A., Medvidovic, N.: Reconciling software requirements and architectures with inter-

28: 75–105 (2004)

mediate models. Softw. Syst. Model. 3: 235–253 (2003)

 A. Immonen422

49. Object Management Group: Unified modeling language (UML), 2.0 Specification (2003)
50. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 2nd edn (McGraw-Hill, New York

1984)

66: 241–252 (2003)
53. Rodrigues, G.N., Roberts, G., Emmerich, W., Skene, J.: Reliability support for the model driven architecture.

In: Proceedings of Workshop on Software Architecture for Dependable Systems, ICSE-2003 (2003) pp 7–12
54. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline (Prentice-Hall,

Englewood Cliffs, NJ 1996)
55. Shooman, M.: Structural models for software reliability prediction. In: Proceedings of the 2nd International

Conference on Software Engineering (1976) pp 268–280
56. Taulavuori, A.

46: 535–546 (2004)
57. Thomason, M.G., Whittaker, J.A.: Rare failure-state in a Markov chain model for software reliability. In:

Proceedings of the 10th International Symposium on Software Reliability Engineering (IEEE Computer So-
ciety, Los Alamitos, CA 1999) pp 12–19

59. Voas, J.M.: Certifying off-the-shelf software components. Computer 31: 53–59 (1998)
60. Yacoub, S., Cukic, B., Ammar, H.: Scenario-based reliability analysis of component-based software. In: Pro-

ceedings of the 10th International Symposium on Software Reliability Engineering (IEEE Computer Society,
Los Alamitos, CA 1999) pp 22–31

48. Object Management Group: UML profile for modeling quality of service and fault tolerance characteristics
and mechanisms. Revised submission (2003)

(2002)
58. van der Linden, F.: Software product families in Europe: the ESAPS & CAF projects. IEEE Softw. 19: 41–49 É

69: 57–73 (2004)
51. Purhonen, A., Niemelä, E., Matinlassi, M.: Viewpoints of DSP software and service architectures. J. Syst. Softw.

52. Reussner, R.H., Schmidt, H.W., Poernomo, I.H.: Reliability prediction for component-based software architec-
tures. J. Syst. and Software

Niemelä, E., Kallio, P.: Component documentation – a key issue in software product lines. Inform.
Softw. Technol.

Part 4: Product Line Testing

Introduction

Part 4 deals with product line modeling from the viewpoints of domain and application
testing and explicitly links these processes with domain and application requirements
engineering. It consists of three chapters:

Chapter 11. Product Line Use Cases: Scenario-Based Specification and Testing of
Requirements

Chapter 12. System Testing of Product Lines: From Requirements to Test Cases
Chapter 13. The ScenTED Method for Testing Software Product Lines

testing to the final acceptance testing of the completed system. They build upon well-
known unit test techniques for components that are beyond the scope of this book. It
should be noted that Chap. 14 in Part 5 also deals with testing but from a project
coordination and management perspective slightly different from that of Part 4.

requirements from an external point of view. Chapter 11 defines extensions and modify-
cations of the Use Cases notation, called Product Line Use Cases (PLUCs), to describe
commonalities and variabilities of a product line. PLUCs rely on natural language to deal
with early analysis, whereas Chaps. 12 and 13 represent use cases using enhanced UML
Sequence Diagrams in later stages of product line engineering.

line, the PLUC approach makes it possible to express in the requirements specification of
the product line not only the possible variant characteristics that can differentiate products
of the same line, but also which combinations of variant characteristics are “legal” and
which are not. PLUCs are a good starting point for integration and system testing.

Traditional testing approaches cannot be directly applied on each product since, due to the
potentially huge number of products, the testing task would be far too long and expensive.
The cost of testing must be reduced by using common tests for the common parts of a
product line. New testing methods are thus needed.

requirements specification expressed as PLUCs. Chapter 12 presents another approach

requirements of the product line are modeled using enhanced UML use cases, which are
the basis for the test generation. Product-specific test objectives, test scenarios, and test

based on the automation of the application system test generation . The system

The chapters of Part 4 complement each other in many ways. Together they deal with
both domain and application testing as well as the test stages from integration and system

Use Cases can be employed in system requirements engineering to capture functional

In order to guarantee the conformance of the derived product with respect to the product

The derivation of test cases for product lines has so far received little attention.

Chapter 11 outlines a simple methodology for this purpose, which relies on the early

cases are successively generated through an automated process. Functional variation
points at requirement level are described to instantiate the behaviors specific to a chosen
product. The test cases derived from product-specific behaviors are executed against the
chosen product. The approach provides automated test generation for a new product and
guided test generation support to validate the evolution of the product.

the testing problem based on the systematic refinement of generic use case scenarios to
generic system and integration test case scenarios. It includes activities in domain
engineering for preserving the variability in the generic test artifacts as well as activities in
application engineering for binding the variability of the test artifacts. In addition, the
refinement of use case scenarios to test case scenarios enables the traceability between
development artifacts and test artifacts.

acceptance testing to ensure that the completed application works according to the
expectations of the targeted users. A refinement process from these descriptions to more
concrete ones is needed for obtaining executable test cases for system and integration

example, by preserving variability in test artifacts.

testing. Methods for system testing are found in Chaps. 12 and 13 and for integration

424 Part 4: Product Line Testing

testing in Chap. 13. Additionally, ScenTED complements the other two methods, for

Chapter 13 presents the ScenTED (Scenario based TEst case Derivation) method to tackle

In sum, the PLUC approach deals with abstract descriptions of test scenarios for

11 Product Line Use Cases: Scenario-Based
Specification and Testing of Requirements

A. Bertolino, A. Fantechi, S. Gnesi, and G. Lami

Abstract
Use Cases can be employed in system requirements engineering to capture requirements
from an external point of view. In product line modeling, commonalities and variabilities of
a family of systems have to be described. To this purpose, we have defined extensions and
modifications of the Use Cases notation, called Product Line Use Cases (PLUCs). In order
to guarantee the conformance of the derived product with respect to the product line we add
the capability of expressing constraints over the Product Use Cases that can be derived from
a PLUC. Using this notation, it is possible to express in the requirements specification of
the product line not only the possible variant characteristics that can differentiate products of
the same line, but also which combinations of variant characteristics are “legal” and which
are not. Testing is another activity in which PLUCs show their utility. Indeed, for a product
belonging to a product line, testing is a crucial and expensive part of software development.
Yet the derivation of test cases for product lines has so far received little attention. We
outline a simple methodology for this purpose, which relies on the early requirements
specification expressed as PLUCs.

11.1 Introduction

In the first stage of a software project, that is, requirements specification, the informa-
tion and knowledge of the system under construction is acquired. Chapter 4 addresses this
point. When gathering and expressing requirements on a product line two different pro-
blems have to be addressed. On one side there is the problem of capturing both require-
ments common to all members of the product line and requirements valid only for a subset

The development of industrial software systems may often benefit from the adoption of a
development cycle based on the product line engineering approach [5,16]. This approach
aims at lowering production costs by sharing an overall reference architecture and con-
cepts of the products, but at the same time allowing them to differ with respect to particu-
lar product characteristics in order to, e.g., serve different markets. The production process
in product lines is therefore organized with the purpose of maximizing the com-
monalities of the product line and minimizing the cost of variations [14].

of products. On the other side there is the problem of specializing and instantiating the ge-
neric product line requirements into application requirements for a single product.

To deal with these problems, the relations between line and product requirements have
to be handled by the adopted modeling approach, and the concepts of parameterization,
specialization and generalization need to be supported by the modeling concepts. Product
line requirements can be considered, in general, as composed of a constant and a variable

functions common to all the products in the product line and, for this reason, do not need
to be modified. The variable part represents those aspects that can be changed to
differentiate a product from another.

Indeed, a product line can be seen as a set of products with common characteristics that
link them together. While developing a product line it is possible to move from the line
level (which represents those common features) to the product level (which represents the
single product, with all its particular characteristics) by an instantiation process, and on
the contrary from the product level to the line level by an abstraction process.

Use Cases [6] are an easy, natural way to express functional requirements of a system.
Their popularity derives from the simplicity of their approach: a well structured, easy to
understand document written in controlled natural language. Use Cases are widely used in
modern industrial development, so it seems natural to try to find an effective way to

In this direction, we have previously proposed the notation of Product Line Use Cases

requirements of product lines. The well-known Cockburn’s Use Cases allow the
functional requirements of a system to be described, by imposing on requirements
documents a specified structure, which separates the various cases in which the system
can be used by external actors, and for each case defines scenarios of correct and incorrect
usage. The PLUC notation adds variability to Cockburn’s Use Cases, with the possibility
of expressing variation points and optional parts.

In this chapter, we show how the PLUC notation can be exploited for two fundamental
processes in product line engineering:

– The instantiation of a (legal) product from a product line at the early stage of
requirements definition.

– The derivation of a scenario-based test plan for a product of a product line.
Moreover, in [10] it has been shown how PLUCs can also support the abstraction process
for the definition of a product line from product instances.

 The first issue is addressed by providing a PLUC with the capability to express
constraints over the product-related Use Cases that can be derived from it. These
constraints are expressed as Boolean conditions associated to the variation points. The

techniques may even allow for automatic generation of product-specific Use Cases from
the line level Use Cases document.

The importance of the second issue we address in this chapter comes from the observa-
tion that testing takes a predominant amount of development resources and schedule.
Therefore, also reuse of test assets is a crucial issue in production processes. And, in the
same manner that a product line specification and design must tackle variability, the same

the product line requirements; on the other hand, the adoption of constraint-solving

information we add to PLUCs by means of such constraints provides on the one hand the
ability of automatically checking whether a product-related Use Case is conformant to

 A. Bertolino et al. 426

part [1,17,25]. The constant part includes all those requirements that deal with features or

(PLUC) [1,10], an extended version of Cockburn’s Use Cases [7] aimed at expressing

combine them with the product line paradigm.

need applies for testing. As evident from the discussion above, the phase in which the majority
of variation points are introduced is the requirement specification phase. Accordingly, we
believe that planning ahead for testing within the product line development must start
from the requirements. Hence, we base the testing process of product lines back on the
requirement specification, and in particular on the PLUC notation. We defined the PLUTO
methodology to derive specific test cases for product lines, and to instantiate the line
generic test plan into a suite of test scenarios for a specific product.

In Sect. 11.2, we present the proposed PLUC notation, with some examples of PLUC
described using this notation; in Sect. 11.3 we show how to exploit the information of
PLUC to support the derivation process of products conforming to the product line
constraints. Section 11.4 discusses how PLUCs can be exploited to derive test cases.
Section 11.5 presents related works, while Sect. 11.6 concludes the chapter.

11.2 PLUC Notation

Use cases are widely used in modern industrial development for early requirements elici-
tation and specification, so it seems natural to try to find an effective way to combine

system. An actor may be a class of users, roles users can play, or other systems. There are
two kinds of actors: primary actors and secondary actors.

– A primary actor is one having a goal requiring the assistance of the system
– A secondary actor is one from which the system needs assistance

A Use Case is initiated by a primary actor to achieve a goal, and completes
successfully when that goal is satisfied. It describes the sequence of interactions between
actors and the system necessary to accomplish the task that will lead to the goal. Use Case
descriptions also include possible extensions to this sequence, e.g., alternative sequences
that may also satisfy the goal, as well as sequences that may lead to failure in completing
the service in case of exceptional behavior, error handling, etc. The system is treated as a
“black box”; thus, Use Cases capture who (actor) does what (interaction) with the system,
for what purpose (goal), without dealing with system internals. A complete set of Use
Cases specifies all the different ways to use the system, and therefore defines the whole
required behavior of the system.

Generally, Use Case steps are written in an easy-to-understand, structured narrative
using the vocabulary of the domain. An instance of a Use Case is a scenario, and represents
a single path through the Use Case. Thus, there exists a scenario for the main flow through
the Use Case, and as many other scenarios as the possible variations of flow through the Use
Case (e.g., triggered by options, error conditions, security breaches, etc.). Scenarios may
also be depicted in a graphical form using UML Sequence Diagrams.

Figure 11.1 shows the template of the Cockburn’s Use Case taken from [7]. In this tex-
tual notation, the main flow is expressed, in the “Description” row, by an indexed sequence
of natural language sentences, describing a sequence of actions of the system. Variations

A Use Case defines a goal-oriented set of interactions between external actors and the
system under consideration. Actors are parties outside the system that in teract with the

42711 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

them with the product line paradigm.

 A. Bertolino et al.

are expressed (in the “Extensions” row) as alternatives to the main flow, linked by their
index to the point of the main flow from which they branch as a variation. This natural
language form of Use Cases has been widely used in industrial practice to specify Use
Cases, e.g., at Nokia [9].

USE CASE # <the name is the goal as a short active verb phrase>
Goal in Context <a longer statement of the goal in context if needed>
Scope & Level <what system is being considered black box under

design>
<one of: Summary, Primary Task, Sub function>

Preconditions <what we expect is already the state of the world>
Success
End Condition

<the state of the world upon successful completion>

Failed
End Condition

<the state of the world if goal abandoned>

Primary,
Secondary Actors

<a role name or description for the primary
actor>,
<other systems relied upon to accomplish Use Case>

Trigger <the action upon the system that starts the Use Case>
Description Step Action

1 <put here the steps of the scenario from
trigger to goal delivery, and any cleanup
after>

2 <...>
3

Extensions Step Branching Action
1a <condition causing branching> :

<action or name of sub-Use Case>
Sub-Variations Branching Action

1 <list of variations>

Fig. 11.1. Use Cases template

In [1] we extended the classical Use Case definition given by Cockburn to product
lines, adding variability to this formalism. The proposed extension is based on the
inclusion of tags that indicate those parts of the product line requirements that need to be
instantiated for a specific product in a product-specific document. For doing that, tags are
included into the Use Case sections (main scenario, extensions, etc.) in order to identify
and specify variations.

The tags can be of three kinds:

– Alternative: They express the possibility to instantiate the requirement by selecting an
instance among a predefined set of possible choices, each of them depending on the
occurrence of a condition.

428

This extension is called PLUC, while Product-related Use Cases where all tags have
been instantiated are called Product Use Cases (PUC).

– Parametric: Their instantiation is connected to the actual value of a parameter in the
requirements for the specific product.

– Optional: Their instantiation can be done by selecting indifferently among a set of
values, which are optional features for a derived product.

The instantiation of these types of variabilities will lead to a set of different product-
related Use Cases. Although mostly significant in scenario descriptions, tags can be
inserted in each field of a Use Case, thus leading to variability of actors, preconditions, etc.

Two examples of a PLUC are provided in Figs. 11.2 and 11.3. These PLUCs apply to
different mobile phones belonging to a same PL. We assume that the products differ at
least for the set of games made available to the user and for the provision or not of WAP
connectivity.

The example in Fig. 11.2 describes the behavior of the phones belonging to the product
line when a game is played by the user, while the example in Fig. 11.3 describes the func-
tion of answering an incoming call.

PL USE CASE GamePlay

Goal: Play a game on a [GP0] Mobile Phone and record score
Scope: The [GP0] Mobile Phone
Level: Summary
Precondition: The [GP0] Mobile Phone is on

Trigger: Function GAMES has been selected from the main menu
Primary actor: The Mobile Phone user
Secondary actors: The {[GP0] Mobile Phone} (the system)
 The Mobile Phone Company
Main success scenario

1. The system displays the list of the {[GP1] available} games
2. The user selects a game
3. The user selects the difficulty level
4. The user starts the game and plays it until completion
5.The user records the score achieved {and [GP2] sends the

 score to Club XXX via WAP}

Extensions
1a. No game is available:
 1a1. return to main menu
3a. The user starts the game and plays it until an incoming call arrives. See CallAnswer.

Variations
GP0: Alternative:
 0. Model 0
 1. Model 1
 2. Model 2
GP1: Parametric
if GP0=0 then display msg “No game available”

else if GP0=1 then Snake ll or Space Impact

else if GP0=2 then Snake ll or Space Impact or Bumper.

GP2: Optional
when GP0=2

Fig. 11.2. Example of a Use Case in the PLUC notation

42911 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

As shown in the examples, the variation points within the Use Case are enclosed within
curly brackets, and the tags are identified by proper labels ([GPi] for GamePlay PLUC in
Fig. 11.2 and [CAi] for CallAnswer PLUC in Fig. 11.3). Moreover, the possible
instantiations of the variable parts and the type of the variations are defined within an ad
hoc Variations section within the PLUC.

requirements for all the derivable products.

happen that some scenarios in a PLUC depend on other scenarios in another PLUC. In
other words, some functional requirements may span across several Use Cases, bypassing
the modeling capabilities of the simple formalism of PLUCs seen so far. We refer to these
requirements as cross-cutting features. We handle cross-cutting in a simple way: When a
scenario in a PLUC interacts with a scenario in another PLUC, we introduce a textual note
like “see PLUC name.” This is for instance the meaning of the note “See CallAnswer”
within the GamePlay PLUC of Fig. 11.2, i.e., if an incoming call arrives as the user is
playing a game, the related steps to be undertaken can be found in the CallAnswer PLUC.

11.2.1 Specification of a PLUC

 The specification of the tags into a PLUC is a critical step for making the PLUC approach
effective in practice. The examples we have shown in Figs. 11.2 and 11.3 just refer to single
use cases, each of which is intended to give all the possibilities foreseen within the prod-
uct line for the particular function described by the use cases. The derivation of a product
will amount to the instantiation to a given value of all the tags of all the PLUCs of the
product line: However, not all the combinations of values will be feasible, or “legal,”
products. Some more information is needed at the level of the PLUC definition in order to
set some constraints on the variability of the tag values. This requires a method to formal-

ric), as a necessary preliminary step for the verification of the compliance of a PUC to the
product line constraints. In fact, the constraints that characterize the products belonging to
a product line can be expressed in terms of the relations among the different tags indicat-
ing the variation points, both belonging to a single PLUC, and belonging to several
PLUCs (thus addressing cross-cutting features).

To express the variability tags of the PLUCs in a formal way we have to take into
account all the possible situations that can arise during the writing of a PLUC, paying
particular attention to the variable tags of the PLUC itself.

1. A tag is a variable which can assume any value inside a domain (often it is a finite,
explicitly enumerated domain). As already shown in the examples, for readability we
denote tags with the abbreviation of the PLUC name and a number (e.g., CA0).

First of all, we have to define the formalism to be used for expressing those relationships:

ize the three kinds of tags described in Sect. 11.2 (Alternative, Optional, and Param et-

430

A product line definition is given by a set of PLUCs describing the various (generic)

When considering the repository of all Use Cases specified for a product line, it can

PL USE CASE CallAnswer
Goal: Answer an incoming call on a [CA0] Mobile Phone
Scope: The [CA0] Mobile Phone
Precondition: Signal is available; Mobile Phone is switched on
Trigger: Incoming call
Primary actor: The user
Secondary actors: The {[CA0] Mobile Phone} (the system)

The Mobile Phone Company
Main success scenario
 1.The user accepts the call by pressing the Accept button
 2. The system establishes the connection by following the {[CA1] appropriate} procedure.
Extensions
 1a. The call is not accepted:
 1a.1. the user presses the Reject button
 1a.2. scenario terminates
PL Variability Features

CA0: Alternative:
 0. Model 0
 1. Model 1 [CA2]
 2. Model 2 [CA2]

CA1: Parametric:
case CA0 of
0: Procedure A:
 2.1 Connect Caller and callee
1 or 2: if CA2= a then Procedure B
 2.1 Interrupt the game
 2.2 Connect Caller and callee

else if CA2= b then Procedure C:
 2.1 Save current game status
 2.2 Interrupt the game
 2.3 Connect Caller and callee

CA2: Alternative:
a. games available, but if interrupted status is not saved
b. games available, and if interrupted status is saved

Fig. 11.3. Another PLUC example

2. A tag predicate is a Boolean proposition asserting the value of a tag, such as (CA0 ==

connectives. We use the symbols “||” (the logical OR operator), “&&” (the logical
AND operator) , “==” (the “equal to” logical operator), “=>” (the logical implication
operator) and “~” (the logical NOT operator). We denote tag predicates with a name
such as CA0_tag.

3. A tag predicate for a tag may include propositions about other tags, so to define
relationships between the values of the tags. Moreover, other expressions can set
constraints over the tag’s values; such constraints can span over more than one PLUC.

Using this formalism we can describe the essential types of tags by a logical expression
able to capture their meaning:

– Alternative tag indicates mutual exclusion, which means that during the instantiation
process one and only one from a set of different values can be assigned to the tag.
This type of relationship can be expressed with a logical Exclusive or.

43111 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

1), or an expression connecting such propositions using classical propositional

 A. Bertolino et al.

– Optional tag represents a subset of a PLUC steps that can or cannot be present in an
instantiated PUC, depending of the value of some other instantiated tag (i.e., if a
mobile phone type contains game C, the PUC called “starting a game” will have a
step “print GAME C on screen,” otherwise this step will not be present in the PUC).
The propositional connective that models this type of relationship is Implication.

– Parametric tag indicates that some subsets of PLUCs steps can be chosen so that at
least one of them will be chosen for a specific PUC, but more than one is allowed to
be chosen (i.e., there can be more than a way to start a game in a mobile phone
interface, and at least one must be present). This relationship is modeled with a
Logical or.

The two examples of PLUCs shown in Figs. 11.2 and 11.3 can be used to show the
process to be followed to represent the tags indicating variability in a formal way using
the formalism described above. For each of the variability tags in the two PLUCs we
derive a logical expression:

GP0_tag (alternative): (GP0 == 1 XOR GP0 == 2 XOR GP0 == 0);
GP1_tag (parametric): ((GP0 == 0 && GP1 == “display msg “No game available””) || (GP0 == 1 &&

GP1 == “Snake ll or Space Impact”) ||(GP0 == 2 && GP1 == “Snake ll or
Space Impact or Bumper”));

GP2_tag (optional): (GP0 == 2 => GP0 == “and sends the score to Club XXX via WAP ”) || ((GP0
== 1 || GP0 == 0) => (VGP2 == null));

CA0_tag (alternative): (CA0 == 1 XOR CA0 == 2 XOR CA0 == 0);
CA1_tag (parametric): (CA0 == 0 && CA1 == “procedure A”) || ((CA0 == 1 || CA0 == 2) && CA2 == a

&& CA1 == “procedure B”) || ((CA0 == 1 || CA0 == 2) && CA2 == b && CA1 ==
“procedure A”);

CA2_tag (alternative): (CA2 == a XOR CA2 == b)

GP-CA-constraint: CA0_tag == GP0_tag

The last expression is actually a constraint that relates two PLUCs: In this case this
constraint simply states that the first tag is actually common to the two PLUCs.

Due to the expressive power of propositional calculus, it is possible to define some
more complex and structured relationships, which can be used to more easily describe
some common situations we can find when we read through a PLUC. We have just
considered those kinds of expressions that define the three types of tags we have
identified. A deeper analysis of the needs of actual applications of PLUCs may
enlighten the need for other types of tags that should be analogously formalized.

The constraints that define the borders and the characteristics of a product line and that
must drive the specification of a PUC are expressed by means of the formalization of the
tags as seen above. These tags may be considered as the way to represent the conditions to
be satisfied in order to make a variability solution not contradictory with the product line
characteristics.

In summary, a PLUC describes the general behavior which all products should yield
during the accomplishment of a specific task: It acts like a template from which it is pos-
sible to derive single PUCs by the instantiation process of its tags, which can be of many
different types.

432

11.3 PUC Derivation from PLUC

In this section we describe our approach to effectively verify the compliance of a PUC to
the product line constraints. Our approach is in fact inherently conceived to handle closed
product lines, where it is intended that application engineering does not change the
requirement model. On the other hand, the verification of conformance during tag

with a means to detect those cases in which this could happen, and to identify the
requirement parts that should be changed to allow for the design of the application outside
the product line.

The process of instantiating tags consists of assigning an actual value to each variable
appearing in the tag expressions of PLUCs we are interested in. The instantiation of the
tags expressing the variabilities of the product line corresponds to the definition of the
compulsory characteristics of the PUC we are deriving. In other words, the instantiation of
the tags defines the requirements of a particular product belonging to the product line.

A possible instantiation of the tags of the two PLUCs in Figs. 11.2 and 11.3 is:

CA0 == GP0 == 1
CA1 == “procedure A”
CA2 == b
GP1 == “display msg “No game available” “
GP2 == null

This instantiation produces two PUCs derived by the two given PLUCs. A PUC is
compliant to the product line if, evaluating the tags expressions defining the constraints in
the product line with the instantiation of variables given for that PLUC, all the tags are
evaluated true. Otherwise, the PUC cannot be accepted as belonging to the product line:
an inconsistent PUC has been identified. The expressions having value false indicates the
points of the instantiation determining the non-compliance. Then it is simple to identify
those instantiation to be modified to achieve the compliance to the product line
constraints.

In the example the value of tag expressions of the PLUC with the actual values of the
variables for the considered instantiation are:

CA0_tag: true
CA1_tag: true
CA2_tag: true
GP0_tag: true
GP1_tag: false
GP2_tag: true

43311 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

instantiation, following the principles described below, provides the application engineers

 A. Bertolino et al.

This means that a PUC with the variabilities solved with the above values does not des-
cribe any valid product of the product line. In this case the lack of compliance is easily
identified as the erroneous instantiation of GP1.

One of the main merits of the methodology we have described is the ease of inserting
changes in product line requirements expressed by means of PLUCs. In fact, if a tag is
modified, because of the parametric nature of the approach, the effects of the modification
affect only its definition and not its individual occurrences over the PLUCs. Moreover, if
some new tags have to be added, the effort for doing that is mainly concentrated on the
corresponding formal definition, and, once the new tag formula has been defined, the

We note that our approach when used for the instantiation process (from product line to
product) allows a designer to enforce closed PLs, i.e., it prevents the insertion of

lines. On the contrary, it is interesting to note how the described methodology can also be
used for supporting the impact analysis of possible new variabilities on the existing (or
planned) products belonging to the product line. When a new variable feature is to be
added in the product line, it is of interest to evaluate its impact on the whole set of the
products of the product line. In particular, for evaluating if the new variability will
determine incompatibility with some of the existing or planned products of the product
line, a preliminary verification can be made adopting the verification procedure shown
above.

11.4 Using PLUCs for Derivation of Test Scenarios

We have addressed so far how PLUCs can help address variabilities and commonalities
during the upfront stages of development, i.e., modeling and specification of Use Case
scenarios. Commonalities and variabilities of course also affect test planning: In fact,
when considering a line, a test plan consisting of a generic frame of test cases pertaining
to the PL domain can be derived. In other terms, the line generic test plan includes a list of
test cases that apply to the whole set of admissible products, plus other test cases which
instead will vary for each specific product, depending on how the variants characteristics
are instantiated. At the product level, then, a methodology should support testers in instan-
tiating from the generic PL test frame the set of test cases relative to the specific product,
inclusive of common and variable test features.

the appropriate place of the affected PLUCs.
updating of the product line requirements simply consists in the inclusion of the tag at

This approach is promising due to its simplicity and effectiveness for being imple-
mented in an automatic way. In fact, it gives the advantage of an explicit identification of
the variability points in a product line requirements specification by means of the tags.

This characteristic may strongly facilitate the application of our approach in the indus-
try because it allows the use of automatic tools for the identification of variabilities. As
an example, a tool can be built able to generate all the admissible PUCs from the PLUC,
by assigning to tags all the combination of values admitted by the tool: This tool may be
useful to explore the possibilities given by possible software products in a product line,

434

requirements which are not allowed. Then in this sense it is conceived for closed product

before actually building them.

11.4.1 PLUTO: A Methodology to Derive Test Scenarios

PLUCs can provide a useful means for the above goal: Based on the PLUC formalism, we
have developed a simple and intuitive methodology for the early derivation of test scenar-
ios from the PL requirements specification, called PLUTO (Product Lines Use Case Test
Optimization) [2].

The PLUTO methodology is inspired by the well-known Category Partition (CP)
method [28], but expands it with the capability to handle PL variabilities and to instantiate
test cases for a specific product. In the following we illustrate the CP method, and how
this has been modified in PLUTO to handle PLUCs variabilities and commonalities.
A remark is noteworthy: We generically speak in terms of “test cases,” for readability.
However, this is not compliant with the common meaning of a test case in the testing
literature. A test case should consist of the precise specification of a test input, a sequence
of events and the expected output. We deal rather with abstract descriptions of test
scenarios: What we derive are not test cases, but scenarios of use that need to be tested for
validating that the user requirements are satisfied. Being derived from the Use Cases
description, which are high level and in natural language, both the input sequence and the
expected behavior are provided at a quite high level of description (the same one in the
considered scenario). A refinement process from these abstract descriptions to more
concrete ones is needed for obtaining executable test cases. This is outside the scope of
the current chapter, but a method for test case synthesis from test scenarios can for
instance be found in Chap. 12. CP is a well-known and quite intuitive method proposed in
the late eighties to derive functional tests from the specifications written in structured,
semiformal language. CP provides a systematic, formalized approach to partition testing
that is one standard functional testing methodology. Generally speaking, partition testing
is based on the simple idea that the input domain is first divided into several equivalence
classes (also called partitions, although to be true partitions these should be non-
overlapping, which is rarely the case in practice); then one or few tests are selected from
within each of the identified partitions, as representative of the behavior of the whole
class.

CP is organized into a stepwise methodology. The first step is to analyze the system
requirements to identify the functional units that will constitute the subjects of the test and
can be considered separately. In the case of PLs the elementary units of analysis are
naturally provided by the PLUCs.

Then, for each functional unit (here a PLUC), the tester identifies the environment
conditions (the required system properties for a certain functional unit) and the parameters
(the explicit inputs for the unit) that are relevant for testing purposes: these are called the
categories.

43511 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

For each category, the significant (from the tester’s viewpoint) values that it can take
are then selected, called the choices. A suite of test cases is finally obtained by taking all
the possible combinations of choices for all the categories.

As the approach is based on structured, natural language requirements, the test
derivation has to be done partially manually. In particular, the identification of relevant
Categories and of the Choices to be tested is left to the tester’s skill and judgment, and
then this constitutes the most critical step of the approach. However, lexical and

useful information to identify the relevant Categories. This could be augmented with
pragmatic hints derived from the specific meaning of fields forming a Use Case.
Moreover, this step has been empirically studied, leading to the identification of common
mistakes made by testers and to the compilation of a relative checklist [4].

To prevent the construction of redundant, not meaningful, or even contradictory,
combinations of choices, in CP the choices can be annotated with constraints, which can
be of two types: either (i) properties or (ii) special conditions. In the first case, some
properties are set for certain choices, and selector expressions related with them (in the form
of simple if conditions) are associated with other choices: A choice marked with an if
selector can then be combined only with those choices from other categories that fulfill
the related property. The second type of constraints is useful to reduce the number of test
cases: some markings, namely “error” and “single,” are coupled to some choices. The
choices marked with “error” and “single” refer to erroneous or special conditions,
respectively, that we intend to test, but that need not to be combined with all possible
choices. The list of all the choices identified for each category, with the possible addition
of the constraints, forms a Test Specification. It is not yet a list of test cases, but it
contains all the information necessary to instantiate them by unfolding the constraints.

A specific characteristic of test cases derived from Use Cases is the presence of several
scenarios, i.e., the main success scenario and in addition the possible extensions. Of
course all of them must be exercised during testing. Therefore a Test Specification derived
from PLUCs will normally include a category “Scenarios,” in which all the specified
scenarios are listed as choices.

Finally, when considering PLs, the CP method described above must be adapted for
dealing with the presence of the tags included in the PLUC to identify the PL variation
points. However, this can be done in a quite intuitive way: We use the tags similarly to the
original concept of CP constraints, i.e., in the Test Specification we associate to the
corresponding choices the variability tags; then, in the process of test case derivation we
match the tag values in such a way to establish the combinations that are significant with
respect to a specific product. In particular, in case of:

– An alternative tag: the relevant feature is selected
– An optional tag: the corresponding feature is taken into account or not depending on

whether it is present in the product
– A parametric tag: the feature corresponding to the pertinent value is taken

436

syntactical analyzers for natural language requirements [3,12] could be used to extract

Note that actually parametric tags do not directly contribute to the task of identifying
the test scenarios: In fact, they do not identify possible points of selection, but rather
assign the appropriate values once some other related tags are fixed.

When dealing with PLUCs, to express the selectors, since these are here used to express
relations over tag values, we continue to adopt the formalism of the logical expressions
introduced in Sect. 11.3.1. Hence properties over categories in PLUTO are expressed as
constraints over tags.

Conceptually, the suite of all potential test cases for a PL encompasses all those
combinations of choices that are common throughout the product line and are given by
those test cases that do not include variability tags. In addition to these, all the possible
combinations of choices involving tags form a set of variable test cases. The complete set
of mandatory and variables test cases, which would be obtained in this way, form the asset
of test scenarios for the line.

In PLUTO we do not derive the list of all admissible PL test cases; rather we derive the
PL Test Specification and leave it unfolded. The test cases are actually derived for a
specific product after having instantiated the tags in each PLUC to the appropriate values.

More precisely, for each Test Specification relative to a PLUC, a different set of test
cases will correspond to every specific product of the PL, depending on the tag values.
We observe that this intermediate step of tag instantiation between the definition of the
Test Specification and the derivation of the test sets is the means by which in PLUTO we
tackle variability. For readers familiar with the CP test method, this is also what makes
PLUTO basically different from the traditional CP. In the latter, only one set of test cases
directly correspond to each Test Specification. In PLUTO, from each Test Specification
several different sets of test cases can be instantiated, depending on the tag values.

Considering the testing process, the PLUTO approach addresses the stage of testing for
validation of user requirements, i.e., it can be used to support Acceptance testing against
the documented usage scenarios during application engineering to make certain that the
application works according to the expectations of the targeted users. Such test cases are
executed as Input/Output black box tests on the completed system. Along the application
engineering process, they should be complemented with other test stages addressing unit
and integration testing.

PLUTO could nicely be complemented with the ScenTED approach described in Chap.
13. Such an approach is conceived to derive application test cases for system and
integration test levels. Moreover, unit test techniques should also be considered for
components.

11.4.2 An Example

For illustration purposes, we now apply the PLUTO approach to the GamePlay PLUC in
Fig. 11.2. As a first step, from an analysis of it we identify the following Categories:
“Mobile Phone Model,” “Games,” “Difficulty Level,” and “Club,” plus of course
“Scenarios,” which is always present. These identify the relevant characteristics to be
varied when testing the Mobile Phone system for validating the user requirements with
respect to the functionality of playing games.

We proceed by partitioning these categories into the relevant choices, i.e., we single out
for each of the categories the values that are the relevant cases to be considered in specific

43711 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

tests. As said, when applying the CP method to PLs, in general we will have that some of
the choices will be available for all the products of the product line. On the other hand,
some of the categories are specialized into choices that depend on the specific product
considered. For instance, the category “Club,” which relates to the capability to exchange
the achieved game score with other Club affiliates, is relevant only for those models that
support WAP connection. Hence it cannot be tested for any potential applications of the
product line, but only for those supporting this feature. This is specified in the GamePlay
PLUC by means of the GP2 optional tag. Hence, when the test cases are being derived, we
make use of this tag similarly to the “constraint” formalism of the CP method. As shown
in Fig. 11.4 we derive the two possible choices pertaining to the “Club” category, but we
annotate them with an appropriate selector, which is a simple condition stating that
these choices are of interest only when the tag GP0 takes value 2, i.e., the Mobile Phone
is Model 2. The complete Test Specification is shown below in Fig. 11.4.

If we now applied to this Test Specification a generator that takes out all the possible
combinations of choices, we would obtain a long list of test cases. This list would include
all the potential test cases for all the products of the line relative to the PLUC under
consideration. However, what is more interesting in our opinion is that we can instead
derive directly a list of test cases for a specific product of interest. This is obtained easily
by just instantiating the relative tags. So, for instance, if we are interested to test the
Model 2 product of this line, we set the related optional tag to true (recall from Sect.
11.3.1 that this is modeled by Implication) and derive all and only the combinations that
remain valid.

PLUC GAMEPLAY TEST SPECIFICATION
[GP0]: Mobile Phone Model:
0. Model 0
1. Model 1
2. Model 2

Games:
None GP0 == 0
Snake ll GP0 <> 0
Space Impact GP0 <> 0
Bumper GP0 == 2

Difficulty Level: GP0 <> 0
easy
medium
expert

Scenarios:
Main GP0 <> 0
ext: no game available GP0 == 0
ext: a call arrives see CallAnswer [single]

[GP2]: Club:
WAP connection on GP0 == 2
WAP connection off GP0 == 2

Fig. 11.4. Main test categories for the GamePlay PLUC

438

As an example, we list below in Fig. 11.5 some of the test cases that would be thus so
obtained for different products, i.e., for different tag assignments. We show these as
abstract descriptions and leave to the reader the obvious transformation of these into the
corresponding functional test scenarios.

GP0 == 2
Tj1:
Mobile Phone Model: Model 2

Difficulty Level: easy
Scenarios: main
Club: WAP connection on

Tj2:
Mobile Phone Model: Model 2
Games: Bumper
Difficulty Level: expert
Scenarios: main
Club: WAP connection on

……..

Tk:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium
Scenarios: ext: a call arrives - see CallAnswer

Fig. 11.5. Some test scenarios

This case depicts a cross-cutting feature arising from a functional dependency between
the GamePlay PLUC and another Use Case, the CallAnswer PLUC, that describes the
handling of incoming calls and that we have already presented in Fig. 11.3. Considering
now the CallAnswer PLUC (independently from the GamePlay PLUC), we assume we

Games: Snake ll

PLUC do not depend on the features of another PLUC. Test Tk instead needs further
consideration. It considers the choice “a call arrives” of the Scenarios category, which has
a specific “See CallAnswer” annotation. This is an example of a cross-cutting feature,
whose notion we have introduced in Sect. 11.2. We now see below how this can be
handled in the PLUTO methodology.

11.4.3 Extending the Methodology

In Fig. 11.5 the test cases Tj1, Tj2 refer to a simpler situation in which the features in a

which it was interrupted.

Referring to the example used so far, let us suppose that the Mobile Phone PL under con-
sideration provides for some applications the capability to save the current status of a game
being played in the case that an incoming call arrives. The user may answer or refuse the
call. Then, after the communication is closed, the game can be resumed from the status in

43911 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

have already derived a Test Specification by applying to it the PLUTO methodology, as
shown in Fig. 11.6.

PLUC CALLANSWER TEST SPECIFICATION
[CA0]: Mobile Phone Model:

0. Model 0
1. Model 1
2. Model 2

Saving:
a. game status is not saved CA0 <> 0
b. game status is saved CA0 <> 0

Scenarios:
Main: Call is accepted
ext: Call is refused

Fig. 11.6. Main test categories for the CallAnswer PLUC

Similarly to what we have done for GamePlay, if we take all the potential combinations of
choices in the CallAnswer Test Specification, in respect of the associated constraints, we
would obtain the list of test scenarios relative to this PLUC. It is clear however that the
PLUCs GamePlay and CallAnswer are related with respect to the possibility to interrupt
and then retrieve a game play because a call arrives. To identify that a dependency exists,
as said, when we elicited the Use Cases we have annotated the related scenario in the

deriving the test cases from the GamePlay Test Specification (see Fig. 11.4) the case that
a call arrives is contemplated in all those tests in which for the “Scenarios” category the
choice “ext: a call arrives” is taken. In Fig. 11.5 the test case Tk for instance selects this
choice (we report it again below):

Tk:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium

ext: a call arrives - see CallAnswer

However, as described in the CallAnswer PLUC, when a call arrives several behaviors are
possible. This test hence is not complete: It must be further refined into several related test
cases, considering each of the possible combinations of choices offered in its turn by the
CallAnswer Test Specification. Hence for example from the above Tk, considering the
Test Specification relative to the CallAnswer PLUC (Fig. 11.6), we get at least four refined
test cases as follows:

Scenarios:

GamePlay PLUC with the note “See CallAnswer.” Correspondingly, in the process of

440

Tk-1:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium
Scenarios: ext: a call arrives

Saving: game status is not saved
Scenarios: Call is accepted

Tk-2:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium

ext: a call arrives
Saving: game status is saved
Scenarios: Call is accepted

Tk-3:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium

ext: a call arrives
Saving: game status is not saved
Scenarios: Call is refused

Tk-4:
Mobile Phone Model: Model 2
Games: Space Impact
Difficulty Level: medium

ext: a call arrives
Saving: game status is saved
Scenarios: Call is refused

More in general, whenever a test specification includes a directive “See another PLUC,”
the derivation of test cases is made by combining the relevant choices from the two related
PLUCs. Note that the annotation is made in the PLUC that triggers the test cases, in our
example the GamePlay PLUC. Note also that in the GamePlay Test Specification we have
marked the choice “ext: a call arrives” with the [single] constraint. As described above the
common heuristic in the CP method is that special, unusual, or redundant conditions are
not combined with all possible choices, and to recognize them, they are marked as [single].
This heuristic reduces the total number of test cases, while assuring that one frame will be
anyhow created with the marked choice. As explained in [28] the decision to use a [single]
marking is a judgment by the tester that the marked choice can be adequately tested with
only one test case. It is an attempt to trade-off between exhaustive testing of combinations
(which is unfeasible) against the pragmatic testing resource limitations. Accordingly, to
reduce the number of test scenarios, we have decided not to test separately the arrival of a
call together with all possible combinations of GamePlay choices (that are being tested
already along the main scenario). Instead we select one representative combination (as the
Tk example above) on the side of GamePlay, and from this we then derive as many tests
as are the possible refinements when considering the CallAnswer Test Specification.

Scenarios:

Scenarios:

Scenarios:

44111 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

 A. Bertolino et al.

11.5 Related Work

The problem of the PL modeling and scoping has been approached following different

variabilities inside PLUCs, is based on the proposal by Mannion [24] that addresses
general product line model requirements: He presents a way to describe the relationships
between product line requirements in order to formally analyze them and to extract
information about the internal consistency of the requirements (i.e., they provide a valid
template for at least one single product) and of the single products derived from the
product line model (i.e., they satisfy all constraints of product line requirements).

We adopt a similar approach and we apply it to the PLUCs, by transforming the
described relationships between PL requirements into relationships between PLUC tags
and between different PLUCs, and we also extend the set of basic relationships with some
composed new ones. The fact that we define a specific notation within which to embed
such constraints and relationships provides the product line engineering with a more
concrete technique, which can be supported by automatic tools as well.

Chapter 15 exploits UML diagrams and their transformation to address product
derivation. The fact that we base our product derivation approach on Use Cases (instead
of UML statechart diagrams) means that we focus on the early stages of the development
process, that is, requirement elicitation. Addressing product derivation at an early stage
has the advantage of early detection of problems and early derivation of test cases, as
shown in Sect. 11.4, advantage paid in terms of a higher level of abstraction.

work, for the purpose of identifying relevant differences and commonalities with our
ongoing research. For the first time, a whole workshop has been devoted to PL testing at
SPLC 2004 [11], recognizing the urgent need for testing to keep pace with PLE

particularly interesting because they address the problem of test cases generation starting
from the PL variability.

In [22] test-related activities in a product line organization are described. Test-related
activities are organized into a test process that is purposely designed to take advantage of
the economies of scope and scale that are present in a product line organization. These acti-
vities are sequenced and scheduled so that a test activity expands on the testing practice
area described by Clements and Northrop [5]. Here we present a test case derivation strat-
egy for PLs described starting from a very general description like the Use Cases are. We
can say therefore that the main difference between [22] and [5] and our work stays in the
focus, which is there on the process while here is on the methodology. A mutual influence
between these two directions of work would certainly be desirable and beneficial. In [18]
the authors propose that variability is introduced in the domain-level test cases corre-
sponding to the variabilities present in the Use Cases and that application specific test
cases are then derived from them. The derivation strategy depends on how the variability
is expressed, and different approaches, including Abstraction, Parameterization, Segmen-
tation, Fragmentation, and Instantiation are overviewed. It is envisaged that a combination
of these approaches needs to be used. The approach is still preliminary and details are
missing, in particular it is not clear to what extent it can be automated. However, the idea
of combining several derivation approaches is interesting and our approach could proba-
bly be incorporated in this general framework as one of the derivation strategies (in

442

approaches [13, 15, 29]. Our approach, aiming at introducing constraints on the

development productivity gains. Some papers presented in that workshop [20, 23, 30] are

For what concerns the field of product line testing, we quickly overview related

particular the Parameterization one). In [27] an approach to expressing test requirements
and to formally validate them in a UML-based development process which takes into
account PL specificities is presented. Behavioral test patterns (i.e., the test requirements)
are built as combinations of use-case scenarios, these scenarios being product-independent
and therefore constituting reusable PL assets. The difference between this approach and
ours is that from a methodological point of view they propose a whole process from early
modeling of requirements to test cases starting from UML specifications, whereas we
instead exploit the description of a PL given in natural language and work at the early
analysis stages. Perhaps the two approaches could be considered in combination, as

RITA [19], an environment under development at the University of Helsinki. RITA is
orthogonal to our work, in that it is specifically designed for framework and framelet-
based PLs, and does not assist the generation of test cases from requirements. Instead,
assuming that the test cases are supplied in input, the environment is conceived for sup-
porting test scripting, execution, result evaluation and more in general for helping with the
test process management activities. Different from ours finally are some recent app-
roaches that attack the testing problem based on the product line software architectures.
Indeed, the increased use of product line architectures in today’s software development
poses several challenges for existing testing techniques. In [26] those challenges are dis-

defines instead standardized test interfaces that minimize the effort needed to verify the
components by extending software components with configurations.

and shown how this notation allows several kinds of analysis to be performed over such
documents, which are extremely useful in the development of products of a software
product line. We have concentrated in this chapter over the analysis of PLUCs to derive
Product Use Cases and to derive test cases for a product line and its products. In [10] we
have applied PLUCs in the process of product line elicitation, that is, how to define a line
of products by generalization of some similar products.

44311 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

addressing different concerns of the PL life cycle. Product line testing is also addressed in

11.6 Conclusions and Future Research

We have presented the PLUC notation for the description of product lines requirements

In order to support our belief that PLUCs can meet industrial expectations for a nota-
tion which is at the same time rigorous and easy to understand, we plan to validate the
methodology through extensive industrial case studies. Another important direction we
are currently working on is the development of a suite of tools that can support both prod-
uct derivation from a line and test case derivation for the products of a line.

Moreover, PLUCs could complement the graphical and intuitive but abstract notation
of UML Use Cases. Defining a UML profile for PLUCs in order to include variabilities in
the diagrams and to associate them with the textual, more detailed descriptions using our
notation could be a step toward a standardized version of PLUCs. When we have com-
pleted the validation of our methodology, we will thus initiate the international standardi-
zation process for PLUCs, facilitating wide industrial adoption and application of the
PLUC notation.

cussed as well as the opportunities for addressing them. The Component+ architecture [8]

 A. Bertolino et al.

Kamsties, Timo Käkölä, Antti Tevanlinna, and Tewfik Ziadi significantly improved the
quality of this chapter.

References

444

1. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Use case description of requirements for
product lines, REPL’02, Essen, Germany (September 2002)

2. Bertolino, A., Gnesi, S.: Use case-based testing of product lines. Proceedings of ESEC/FSE 2003 (ACM,
New York) pp 355–358

3. Cascini, G., Fantechi, A., Spinicci, E.: Natural language processing of patents and technical documentation.
Proceedings of DAS 2004, 6th IAPR International Workshop on Document Analysis Systems, Firenze, Italy,
September 2004. Lecture Notes in Computer Science, vol 3163 (Springer, Berlin Heidelberg New York
2004)

4. Chen, T.Y. et al: On the identification of categories and choices for specification-based test case generation.
Inform. Softw. Technol. 46: 887–898 (2004)

5. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI Series in Software
Engineering (Addison-Wesley, Reading, MA August 2001)

6. Cockburn, A.: Structuring use cases with goals. J. Object-Oriented Program. Sept–Oct 1997 (part I) and
Nov–Dec 1997 (part II)

7. Cockburn, A., Writing Effective Use Cases (Addison-Wesley, Reading, MA 2001)
8. Component+, “D4 – BIT Case studies”. http://www.component-plus.org (October 2002)
9. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Linguistic techniques for use cases analysis. Proceedings of

the IEEE Joint International Requirements Engineering Conference – RE02, Essen, Germany, 9–13
September 2002

10. Fantechi, A., Gnesi, S., John, I., Lami, G., Dörr, J.: Elicitation of use cases for product lines. 5th International
Workshop on Product Family Engineering, PFE-5, Siena, 4–6 November 2003. Lecture Notes in Computer
Science, vol 3014 (Springer, Berlin Heidelberg New York 2004)

11. Geppert, B., Krueger, C., Li, J.J. (eds): Proceedings of SPLiT 2004, International Workshop on Software
Product Line Testing, co-located with SPLC 2004, Boston, MA, USA, August 2004, Avaya Labs Research
Tech. Rep. series ALR-2004-031. http://www.research.avayalabs.com/techreport.html

12. Gnesi, S. et al: An automatic tool for the analysis of natural language requirements. Int. J. Comput. Syst.
Sci. Eng. 20(1), 53–62 (2005)

13. van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software product lines. Proceedings of
the Working IEEE/IFIP Conference on Software Architecture (WICSA 2001), pp 45–54

14. Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product Family to Customers Journal
of Software and Systems Modeling (Springer, Berlin Heidelberg New York 2003)

15. Jaring, M., Bosch, J.: Representing variability in software product lines: a case study. In: Software Product
Lines, ed by Chastek, G.J., 2nd International Conference, SPLC 2, San Diego, CA, USA, 19–22 August
2002. Lecture Notes in Computer Science, vol 2379, pp 15–36

16. Jazayeri, M., Ran, A., van der Linden, F.: Software Architecture for Product Families: Principles and
Practice (Addison-Wesley, Reading, MA 1998)

17. John, I., Muthig, D.: Tailoring use cases for product line modeling, REPL’02, Essen, Germany (September
2002)

This work was partially supported by the Eureka Σ!2023 Programme, ITEA (ip00004,
Project CAFÉ). We wish to thank in particular Alessandro Maccari from NOKIA, Isabel
John from IESE, and Emiliano Nesti from University of Florence for their contributions
on the research activity summarized in this chapter. The reviews of Erwin Engelsma, Erik

Acknowledgments

44511 Product Line Use Cases: Scenario-Based Specification and Testing of Requirements

24. Mannion, M., Camara, J.: Theorem proving for product line model verification. 5th International Workshop
on Product Family Engineering, PFE-5, Siena, 4–6 November 2003. Lecture Notes in Computer Science, vol
3014 (Springer, Berlin Heidelberg New York 2004)

25. von der Massen, S., Lichter, H.: Modeling variability by UML use case diagram. International Workshop on

(September 2002)
26. Muccini, H., van der Hoek, A.: Towards testing product line architectures. Electron. Notes Theor. Comput.

Sci. 82(6) (2003)
27. Nebut, C., Pickin, S., Le Traon, Y., Jézéquel, J.-M.: Reusable test requirements for UML-modeled product

line, REPL’02, Essen, Germany, Avaya Labs technical report, ALR-2002-033 (September 2002)
28. Ostrand, T.J., Balcer, M.J.: The category partition method for specifying and generating functional tests.

ACM Commun. 31(6), 676–686 (June 1988)
29. Schmid, K.: A comprehensive product line scoping approach and its validation. 24th International

Conference on Software Engineering, Orlando, FL, 2002
30. Stephenson, Z., Zhan, Y., Clark, J., McDermid, J.: Test data generation for product lines – a mutation testing

approach. International Workshop on Software Product Lines Testing, Boston, MA, 31 August 2004

18. Kamsties, E., Pohl, K., Reis, S., Reuys, A.: Testing variabilities in use case model. 5th International
Workshop on Product Family Engineering, Siena, November 2003

19. Kauppinen, R., Taina, J.: RITA environment for testing framework-based software product lines.
Proceedings of the 8th Symposium on Programming Languages and Software Tools (SPLST 2003), Kuopio,
Finland, June 2003 (University of Kuopio 2003) pp 58–69

20. Knauber, P., Schneider, J.: Tracing variability from implementation to test using aspect-oriented
programming. International Workshop on Software Product Lines Testing, Boston, MA, 31 August 2004

(July/August 2002)
22. MacGregor, J.D.: Testing a software product line. Technical report, CMU/SEI-2001-TR-022
23. MacGregor, J.D., Sodhani, P., Madhavapeddi, S.: Testing variability in a software product line. International

Workshop on Software Product Lines Testing, Boston, MA, 31 August 2004

É21. van der Linden, F.: Software product families in Europe: the ESAPS & CAF projects. IEEE Software

Requirements Engineering for Product Line (REPL’02), Avaya Labs Technical Report, ALR-2002-033

,

12 System Testing of Product Lines:
From Requirements to Test Cases

C. Nebut, Y. Le Traon, and J.-M. Jezequel

Abstract
Product line processes still lack support for testing end-product functions by taking advantage
of the specific features of a product line (commonality and variabilities). Indeed, classical test-
ing approaches cannot be directly applied on each product since, due to the potentially huge
number of products, the testing task would be far too long and expensive. There is thus a need
for testing methods, adapted to the product line context, that allow reducing the testing cost.
The approach we present is based on the automation of the generation of application system
tests, for any chosen product, from the system requirements of a product line. These PL
requirements are modeled using enhanced UML use cases which are the basis for the test
generation. Product-specific test objectives, test scenarios, and test cases are successively

tional variation points at requirement level to automatically generate the behaviors specific
to any chosen product. With such a strategy, the designer may apply any method to produce
the domain models of the product line and then instantiate a given product: the test cases

check that the expected functionalities have been correctly implemented. The approach is
adaptive and provides automated test generation for a new product as well as guided test
generation support to validate the evolution of a given product.

12.1 Introduction

generated through an automated process. The key idea of the approach is to describe func-

derived from product-specific behaviors are executed against the chosen end product to

Product lines elaboration and design brings up a large number of novel issues, testing meth-

satisfy its requirements: testing is the classical way to obtain confidence in a given product
with respect to its requirements. There is thus a need of adapted techniques to assist this test
generation from requirement in a PL context. Like any kind of software, product lines obvi-
ously require several types of software tests. In particular, unit testing has to be performed
independently on each asset, integration testing techniques can be used to assemble the

features. We here focus on system and functional testing. One of the specific issues
related to PL testing concerns the way a testing technique deals with the creation of new

dom used for driving the functional testing task. However, the end product is expected to

assets to obtain a product, and system testing ensures that the end product has the required

requirements is known as crucial task for the elaborated design, product requirements are sel-
ods being one among them [2,14,19,20,22,23,26]. While the elicitation of product line

products and the evolution of existing products. In this chapter, we present the automation
as a relevant way for dealing with these issues.

Testing a PL is all the more tedious since the common and the shared variant require-
ments have to be tested for each instantiated product. Indeed, the same piece of functional
test code, derived from a requirement, cannot be reused exactly: for instance, in an object-
oriented product line, the objects addressed to realize a given functionality may be differ-
ent from one product to another, due to the crossing of different variation points. For
example, the initialization sequence leading to the testing of a particular point may be totally

specific test cases may have to be written for each specific product. As a result, manually

Many approaches already exist to automatically generate tests from the requirements of

variability expressed in product line requirements. To benefit from the product line app-

automatically the test cases. That means to solve several problems (1) How to express the
product line requirements (and in particular the variability)? (2) How to generate tests
from them? (3) Is it possible to generate test cases that can directly be applied by a test
driver?

Two main approaches already exist to test PL from the use cases (see Chaps. 11 and 13

the same purpose of automating the testing task, the approach proposed here differs from

roach is also complementary to the ScenTED approach (Chap. 13) which is a systematic
approach to derive test scenarios for product lines. It tackles in particular the issue of the
test artifacts reuse. In Sect. 12.7.4, we explain how our approach could be coupled with
those two approaches.

of the use cases. The simulation is used to generate test objectives, as detailed in Sect.
12.5. Section 12.6 explains how test cases can be derived from the test objectives, using
test scenarios and behavioral test patterns to guide the test synthesis tools. Section 12.7
provides experiments and discusses our approach, in particular with respect to related
work. Section 12.8 concludes.

 C. Nebut et al. 448

different from one product to another. So, for testing a given function common to all products,

roach, there is a need for specifying the requirements of a product line and then deriving

the one proposed in Chap. 11 in the sense that this latter approach is data driven since it is
an adaptation of the category-partition method, while ours is behavior driven. Our app-

The rest of this chapter is organized as follows. Section 12.2 proposes an overview
of the approach and presents an illustrative example. Section 12.3 details our requirement
model, i.e., an enhanced use case model. Section 12.4 presents the simulation mechanism

a “classical” software (e.g., [4,9,24]), but they have to be adapted in order to deal with the

and [2,14]), that are complementary more than in opposition to ours. Though they have

Our approach is a proposal to answer those questions. Our idea is to express the
requirements using enhanced Unified Modeling Language (UML) [28] use cases or to
transform the requirements into enhanced UML use cases. The UML use cases are en-
hanced in order to express commonality and variability, and enhanced with parameters
and with contracts. Those use cases are also supposed to be documented by scenarios. Use
cases and scenarios are combined to generate test objectives that are refined into test sce-
narios (a test scenario is a potentially abstract and incomplete representation of a test
case). Then product-specific test synthesis is achieved to obtain test cases.

writing the tests cases for all the products is not conceivable, since it is far too expen-
sive. Automating the test generation appears as a possible way to deal with these cost and
time-to-market issues.

This section gives an overview of the proposed approach, which is summarized in Fig.
12.1. Each step of this approach will be detailed in a particular section in the following of

over this chapter.

Fig. 12.1. Overview of the test case generation

widely used in industry, probably since the underlying approach is simple and just consists
in producing a structured document in natural language, for example following the Cock-
burn schema [7]. Thus we have based our approach on requirements written in the form of
UML use cases. To be used as first input of an automated test generation process, UML use
cases need to be formalized and specialized for the product line context. The formalization
we propose first consists in making explicit the conceptual objects at business level that are

ization implies the expression of the constraints linking them: use cases usually depend upon

The specification of the variation points in the use cases is also supported, allowing des-
cribing which parts are common to the product line, and which depend on a variation
point.

ments of a product line, the product-specific requirements for each product can be auto-
matically deduced. So, the strategy proposed is to go from the requirements expressed for
the product line to the specific requirements that apply to a product; and then for every
product the test case derivation method is (re)applied to its specific requirements. The test

12.2 Overview of the Approach

Requirements

44912 System Testing of Product Lines: From Requirements to Test Cases

12.2.1 From the Product Line Requirements to Product-Specific

the chapter. This section ends with the presentation of an illustrative example that is used all

Use cases are an easy and natural way to express system functional requirements. They are

implicit in the use cases; this leads to dealing with parameterized use cases. Use cases formal-

one another. The constraints are expressed locally on each use case using contracts, i.e.,
preconditions and postconditions, written in a dedicated use case constraint language (based
on first-order logic).

From the knowledge of a decision model and the use cases describing the require-

technique is thus functional/black box and does not include any specific tactic to deal with

 C. Nebut et al.

PL typical variability and commonalities at design level. So, the force of the approach is
to describe functional variation points at requirement level to automatically generate,
based on the decision model, behaviors specific to any chosen product. Then, the designer
may apply any method to produce the domain models of the product line and then instan-
tiate a given product: the test cases derived from product-specific behaviors are executed

implemented. In this approach, we do not take into account the design activities carried
out to go from requirements down to domain applications, except for traceability pur-
poses. However, we suggest bridging the gap between requirement level behaviors and the
final design in two steps:

− Deriving test objectives into test scenarios by exploiting the sequence diagrams associ-
ated to use cases. Test scenarios may be combined in behavioral test patterns. A behav-
ioral test pattern describes the expected and rejected behaviors of one execution of the
product, but in an incomplete way, since the very specific design details are not known.

− By applying a test synthesis tool to generate the final test cases from each behavioral
test pattern. The idea is to use a detailed description of the final design behaviors
(typically expressed by statecharts associated to each active class) to extract from the
end-product design the exact expected/rejected inputs/outputs of the end-product corres-
ponding to a test scenario.

only requirement and analysis views while the final test cases are extracted from the final

following, the use of a test synthesis tool is not currently possible, mainly because of
traceability and design incompleteness issues and also due to tools limitations. However,
if a model-driven approach is adopted, these limitations are to be overcome.

Taking an opposite solution – but for testing purposes – to the general tendency in PL
engineering, where a topmost important feature is reuse and factorization, every time a varia-
tion is introduced, all test cases for a newly instantiated product are automatically derived
again. We believe this is the most efficient way to update dynamically the test cases for a
product. An improvement of the approach, which is beyond the scope of this chapter,
would be to identify among those derived, the test cases which are affected by the newly
introduced variations.

12.2.2 Simulating Product-Specific Requirements

Once the product-specific requirements have been expressed using an enhanced use case
definition, they can be simulated. The simulation process allows the requirement analyst
to check whether the requirements are correct, which is of prime importance. Indeed, it is
necessary to get trust in the requirements correctness before building the derived artifacts

objectives generation.

So, the “pattern,” i.e., the skeleton of the product-specific test scenario is expressed using

450

against the end product to check whether the expected functionalities have been correctly

detailed design, without care of the intermediate refinement steps. As is explained in the

(such as system tests and analysis documents). Simulation is also the basis for the test

12.2.3 Generation of the Test Objectives

The simulation model is based on a transition system deduced from the use case descrip-

makes the test generation possible. We define a set of test criteria based on the simulation
model to generate interesting paths of the simulation model, called test objectives. Such
test objectives are obtained in the form of sequences of use cases with actual parameters.

The generated test objectives are high-level tests that have to be progressively refined into
test cases. A first step of this refinement consists in transforming the test objectives into
test scenarios, using the sequence diagrams attached to each use case. A test scenario is a
sequence diagram representing a test case, but in which there can be missing messages.

12.2.5 Behavioral Test Patterns and Synthesis of Test Cases

To transform the test scenarios into test cases, we propose to use synthesis tools. Test syn-
thesis tools are originally used for testing telecommunication and distributed software.
From a final design which describes precisely the expected product behaviors (using
statecharts), a test synthesis tool automatically extracts the exact test cases which are the
refinements of a test scenario. In our approach, the test synthesis tools are guided with
particular test purposes called behavioral test patterns, and derived from the test scenarios.

12.2.6 An Illustrative Example of Product Line

The illustrative example that will be used all over the presentation of the method is a vir-
tual meeting system offering simplified web conference services. The same system has

the University of Rennes. The whole system contains more than 80 classes but a simpli-
fied version is presented here with few variants for the sake of readability (only functional
variants appear since we address functional testing). The case study is complete enough to
illustrate our method. The virtual meeting server PL (VMPL) permits several different
kinds of work meetings to be organized on a distributed platform. When connected to the
server, a user can enter or exit a meeting, speak, or plan new meetings. Each meeting has
a manager. The manager is the participant who has planned the meeting and set its main
parameters (such as its name, its agenda, etc.). Each meeting may also have a moderator,
designated by the meeting manager. The moderator gives the floor to a participant who

45112 System Testing of Product Lines: From Requirements to Test Cases

12.2.4 Generation of the Test Scenarios

tion, and especially from the contracts. Not only does simulation allow the requirements
analyst to ensure that her requirements are correct (from her point of view), but it also

been implemented in Java, Eiffel, and C# languages. It is used in the advanced courses of

has been asked to speak. Before opening a meeting, he or she may decide that it is to be
recorded in a log file. The log file will be sent to the moderator after the closing of the meet-
ing. Three types of meetings exist:

 C. Nebut et al.

− Standard meetings where the current speaker is designated by a moderator (nominated
by the organizer of the meeting). In order to speak, a participant has to ask for the floor,
then be designated as the current speaker by the moderator. The speaker can speak as
long as he or she wants; he or she can decide to stop speaking by sending a particular
message, on reception of which the moderator can designate another speaker.

− Democratic meetings which are like standard meeting except that the moderator is a
FIFO robot (the first client to ask for permission to speak is the first to speak).

− Private meetings which are standard meetings with access limited to a certain set of
users.

We define our PL describing the variation points and products (the commonalities corres-
ponding to the basic functionalities of a virtual meeting server, as described above). For
the sake of simplicity, we only present 5 variation points in our product line:

− The limitation or lack thereof upon the number of participants to three.
− The type of available meetings; possible instantiations correspond to a selection of 1, 2,

or all of the 3 types of possible meetings.
− The presence or absence of a facility enabling the moderator to ask for the meeting to

be recorded.
− The languages supported by the server (possible languages being English, Spanish,

French).
− The presence or absence of a supervisor of the whole system, able to spy and log it.

The other variation points which are not described here concern the presence of a transla-
tor, the operating system (OS) on which the software must run, various interfaces – from
textual to graphical, network interface etc. Testing all the possible products independently
is inescapable. In our case, this would mean testing 2*7*2*7*2*3*2 = 2352 products
(considering 3 OS and 2 GUIs), since the meetings can be limited or not (2 combinations),
there can be 1, 2 or 3 types of meeting available among 3 types (7 combinations), the
meetings can be recorded or not (2 combinations), there can be up to 3 languages sup-
ported (7 combinations), the system can be spied or not, there are 3 kinds of OS (3 combi-
nations) and 2 GUIs (2 combinations). In order to simplify the presentation, in this chapter
we only consider 3 products (a demonstration edition, a personal edition, and an enterprise
edition). However, this does not in any way reflect a restriction on the method. The char-

Table 12.1. Variation points and products

meeting limitation true True false
meeting types {std} {std, democ, priv} {std, democ, priv}
recording false False true
language {En} {En} {En, Fr, Sp}
supervisor False False true

452

edition demonstration personal enterprise

acteristics of the 3 products are given in the following Tab. 12.1.

12.3 An Enhanced Use Case Model for Product

12.3.1 Enhancing Use Cases with Parameters and Contracts

Use case parameters. We consider parameterized use cases; parameters allow to deter-
mine the inputs of the use case (denoted UC in the following). For example, the use case
enter is parameterized by the entering participant, and the entered meeting. It is expressed
as follows:

UC enter (u:participant, m:meeting).
Parameters can be either actors (like the participant u in the UC enter) or main con-

cepts of the application (like the meeting m in our example). Those main concepts will

ments analysis. All types are enumerated types, they are only needed for the simulation.

Use case contracts. Use cases are also enhanced with contracts that can be statically
evaluated. This approach is inspired by Meyer’s Design-By-Contract method [21]. The
declarative definition of such contracts expressions forces the requirement analyst to be

ble and easy to maintain and to modify: writing contracts is quite an easy task as soon as
the use cases are well defined.

To write contracts that can be evaluated, we propose a Use case Constraints Language
(UCL), based on first-order logic. The constraint language recommended by the UML is
the OCL [27]; nevertheless, we believe that the OCL is not suitable for requirements

ing. We have thus defined the UCL, however it can be seen as a subset of the OCL, with

model as a response to proposals such as the Catalysis approach [8], which suggests
enhancing use cases with pre and post conditions, like any other action.

The UC contracts are first-order logical expressions on predicates. A predicate has a
name, and a (potentially empty) set of typed formal parameters (those parameters are a
subset of the use cases parameters). The predicates are used to describe facts (on actors
state, on main concepts states, or on roles) in the system. The predicates names are seman-
tically rich: in this way, the predicates are easy to write and to understand. In order for the
contracts to be fully understandable, the semantics of each predicate has to be made explicit,
so as to avoid any ambiguity in the predicate’s meaning. As an illustration, here are two

− Created(m) is a predicate which is true when the meeting m is created and false other-
wise.

meeting m and false otherwise.
− Manager(u, m) is a predicate which is true when the participant u is the manager of the

45312 System Testing of Product Lines: From Requirements to Test Cases

precise and rigorous in the semantics given to each use case, being at the same time flexi-

phases. Indeed, the OCL has a syntax difficult to understand and requires a specific learn-

syntactic sugar in order to have an easy-to-handle language. The UCL provides a rigorous

examples of predicates with their semantics:

Use cases are good entry points for test generation [3,4,9,24], and several proposals exist
to adapt use cases to the product line context [1,5,10,11,13]. We detail in this section the
use case model that is the foundation of our test generation process.

probably be reified in the design process and are pointed out as business entities in the require-

 C. Nebut et al.

Since classical boolean logic is used, a predicate is either true or false, but never unde-
fined.

The precondition expression is the guard of the use case execution, and the postcondition
expresses the new values of the predicates after the execution of the use case. The opera-
tors are the classical ones of boolean logic: the conjunction (and), the disjunction (or) and
the negation (not). The implication (implies) is used to condition a new assertion with an
expression. It allows specifying conditional contracts. Quantifiers (forall and exists) are
also used in order to increase the expressive power of the contracts.
We also defined enumerated properties, for example, meetingType can be defined as an
enumerated property. For the simulation, the various possible values of meetingType will

An example of such contracts is given below, for the use cases open and close.

Examples of Enhanced Use Cases

12.3.2 Expressing Variability at the Use Case Level

The objective is to provide ways to specify which parts of the requirements depend on a
particular variant, i.e., to document variability in use case models. The coarsest granular-
ity level to define variability is the use case itself. A use case can be specific to the pres-
ence of certain variants, as for example the use case Record, which is only present in the
products owning the recording facility.

Variability can also occur at the parameters level. In our example, for some products
the use case Open owns a parameter representing the moderator of the meeting, and in the
others, for which only democratic meetings can be planned, the use case Open does not
own such a parameter.

The contracts may also depend on some variants. For example, in the case of limited

full.
Thus, to specify the variability, we have defined tags (in fact UML tagged values) for

the following model elements: contracts, parameters, and use cases. Those tags are a way
to specify which variants the model elements depend on. If a tag is attached to a given
model element e, then e is taken into account only for the product selected by this tag, i.e.,

with no tag is taken into account for all the products. The format of those tags is:

454

and not speaker(v,m)

opened(m) and connected(u)

and forall(v:participant)not entered(v,m) and not asked(v,m)

UC open(u:participant;m:meeting)
pre created(m) and moderator(u,m) and not closed(m) and not

post opened(m)

UC close(u:participant; m:meeting)

post not opened(m) and closed(m)
pre opened(m) and moderator(u,m)

be required (for example: standard, democratic , and private).

meetings, the use case enter will have a precondition checking that the meeting is not already

the product owning one of the variants specified in the tag. By default, a model element e

tions of the variation point.
For example, in our virtual meeting product line, the tagged value recording{true} selects

the product owning a recording facility, i.e., the enterprise edition, and the tagged value
language{En} selects the products handling the English language, i.e., all the products.
Several contracts of the same type can thus be added to the same element, if they are dif-

same product, they are conjuncted.
An example of contracts is given below: the use case Enter requires the entering par-

ticipant u to be connected and the entered meeting m to be opened. For a private meeting,
u must be authorized in m, and for limited meetings, there must be strictly less than 3 par-
ticipants already entered in m.

Example of Variability in an Enhanced Use Case

From a set of use cases with contracts for a product line, and using the decision model
(i.e., characteristics of each product given in terms of variants), a set of use cases with
contracts can be automatically built for each product, following the Algorithm 1.

algorithm extractRequirementsForAProduct
param p: the product
result : requirements R(p) for p

for each use case uc in the PL requirements
 if no tag t is present for uc or p.satisfies(t)
 then
 add uc to R(p)
 end
end
for each use case uc in R(p)
 for each precondition pre in uc
 if a tag t is present for pre and not p.satisfies(t)
 then
 remove pre
 end
 end
 for each postcondition post in uc
 if a tag t is present for post and not p.satisfies(t)
 then
 remove post
 end
 end
 for each parameter param in uc
 if a tag t is present for param and not p.satisfies(t)
 then
 remove param

45512 System Testing of Product Lines: From Requirements to Test Cases

and entered(w,m) and u/=v and v/=w and w/=u {VPLimitation(true)}

UC enter(u:participant; m:mtg)

pre priv(m) implies authorized(u,m) {VPMeetingType(priv)}

post entered(u,m)

pre connected(u) and opened(m)

pre not exists (u,v,w:participant) entered(u,m) and entered(v,m)

VP{variant_list}, where VP is a variation point name and variant_list is a list of instantia-

ferently tagged. When several preconditions (resp. post-conditions) are selected for a

 C. Nebut et al.

 end
 end
end
return R(p)

Algorithm 1. Algorithm to extract the requirements of a product from the product line requirements

12.4 Simulating the Use Cases

In this section, we explain how the enhanced use cases can be simulated for a chosen
product, the simulation being the basis of our test generation process.

12.4.1 The Simulation Model

The simulation model is made of:

− Use cases enhanced with parameters and contracts
− The enumeration of all the instances of objects present in the system
− An initial state

Declaring the objects of the system allows to instantiate the use cases: an instantiated
use case is a use case whose formal parameters have been replaced by actual parameters.
As an example, in the virtual meeting, suppose that we declared 2 participants p1 and p2,
and a meeting named m1. The instantiated use cases of plan(p:participant,m:meeting) are
plan(p1,m1) and plan(p2,m1). In the following, we call instantiated use cases (resp. predi-
cates) the set of use cases (resp. predicates) obtained by replacing their sets of formal para-
meters by all the possible combinations of their possible specific values.

To begin the simulation, we need an initial state and a simulation state. The simulation
state is the current valuation of all the instantiated predicates of the system. In our imple-
mentation, the state is represented by a set of true instantiated predicates. The initial state
is thus given in terms of instantiated predicates that are valuated to true at the beginning of
the simulation. An instantiated use case can be executed or not executed from a given
simulation state, depending on its precondition: it can be executed if its precondition is
implied by the current state of the simulator. To determine the effects of the execution of

requirement analyst to visualize at each step of the simulation which actions are valid, i.e.,
which use cases can be applied with which parameters. The requirement analyst can thus
choose one of those actions, which will be simulated, leading the simulation system in a
new state.

The benefits of such a simulation are obvious: the requirement analyst can check that

The simulator also permits to verify properties on the system. For example, one can check
that it is not possible to be in a meeting if not connected to the server.

456

an instantiated use case, we use its postcondition: to obtain the new current state, we
modify the current state so that the postcondition becomes true. The simulator allows the

the specified product has globally the same behavior like the one he or she had on mind.

12.4.2 Exhaustive Simulation and Building of a Behavioral Graph

The exhaustive simulation leads to build a behavioral graph. We defined such a graph as a
particular labeled transition system called UCTS (Use case Transition System). A UCTS

0

predicates
− q0 is the initial state
− A is the alphabet of actions, an action being an instantiated use case
− ⊆ Q × A × Q is the transition function

A state of the UCTS represents the state of the system (in terms of value of predicates) at
different stages of execution. A transition, labeled with an instantiated use case, represents
the execution of an instantiated use case. A path in the UCTS is thus a valid sequence of
instantiated use cases. A partial UCTS obtained for the demonstration edition is given in
Fig. 12.2. Due to its finite set of states (itself due to the finite number of combinations of

n

number of instantiated predicates present in the system. In practice, this maximal size is
never reached, since all the potential states are not reachable. However, in case of combi-
natorial explosion of the number of states, the graph is not built exhaustively, but only
partially using on-the-fly generation.

For example, in the virtual meeting, if the instantiated predicate Entered(p1,m1) is true
(meaning that the participant p1 has entered the meeting m1), then necessarily the instan-
tiated predicate opened(m1) is also true (meaning that the meeting m1 is opened). As a
consequence, all the potential states for which entered(p1,m1) is true and opened(m1) is
false are not reachable, and thus the actual size of the UCTS is smaller than the maximal
size. For the demonstration edition with 3 participants and one meeting, there are 21 in-
stantiated predicates (in fact 9 predicates were used to describe the requirements, which
are instantiated into 21 instantiated predicates) and the UCTS has 1616 states whereas its
theoretical maximal size is 221 = 2 097 152 states.

connected(p1)

connected(p1),
connected(p2)

connected(p1), created(m1),
manager(p1,m1)

connected(p1),connected(p2),
created(m1), manager(p1,m1)

connect(p2)

disconnect(p2)

plan(p1,m1)

plan(p1,m1)

connect(p2)

disconnect(p2)

Fig. 12.2. An example of a partial UCTS

45712 System Testing of Product Lines: From Requirements to Test Cases

is defined by the quadruple M = (Q; q , A,), where:

predicates), the UCTS is itself finite. Its maximal size in the worst case is 2 , where n is the

− Q is a finite nonempty set of states, each state being defined as a set of instantiated

 C. Nebut et al.

12.4.3 Simulating Each Product

The first step to build a UCTS for each specific product is to extract the requirements for

zation, the initial state is deduced from the initial true predicates. Then the algorithm suc-
cessively tries to apply each instantiated use case. Applying a use case is possible when its
precondition is true with respect to the set of true predicates contained in the current

states are explored.
The simulation of the use case model for each product is the basis of the test generation

process. The first step of this test generation process is detailed in the next section.

12.5 Test Objectives

In this section, we explain how test objectives can be generated using the simulation
model. Test objectives can be seen as application test specification. We first formalize the
notion of valid sequence of instantiated use cases and then we define test objectives from
the notion of UCTS.

458

 to_visit : STACK[STATE]

 newState : STATE

 result.initialState initState

 while (to_visit`"0)

 newState← apply(currentState, uc)

 currentState←to_visit.pop

 result : UCTS

 currentState : STATE

 to_visit.push(initState)

 do

 do

 if newState ∉result.Q
 then

 to_visit.push(newState)
 result.Q result.Q ∪ {newState}

 ∀ uc ∈useCases | currentState uc.pre

algorithm buildUCTS

var

init

body

param initState: STATE ; useCases : SET[ACTION]

each product from the PL requirements. This is simply done by parsing the variation notes
in the requirements, and using a decision model, following algorithm 1. Then, for each
product-specific requirement, algorithm 2 is applied to build the UCTS. Upon initiali-

state's label and leads to create an edge from the current state to the state representing the
system after the postcondition is applied. The algorithm stops when all the reachable

Algorithm 2. Algorithm producing the UCTS

Valid sequence of instantiated use cases. A sequence S of instantiated use cases is said
to be valid with respect to a system of enhanced use cases UCS if and only if there exists,
in the UCTS corresponding to UCS, a path whose sequence of labels is identical to S. A
path in the UCTS is here defined as the classical notion of path in a graph.

Test objective. A test objective (TO) is defined here as a valid sequence of instantiated
use cases beginning with the root of the UCTS (i.e., the initial state).

Test objectives set consistency with an UCTS. A set of test objectives is said to be

When extracting test objectives, we aim at minimizing cost by generating:

− A small number of test objectives. Since a test objective has to be treated (either manu-

a large test cost.
− Small test objectives, since we believe that they are more understandable than larger

ones (the size of a test objective being given in terms of the number of instantiated
predicates composing it). For example, when built with a breadth-first algorithm, the
height of the UCTS for demonstration edition is 10. We thus believe that the size of the
test objectives should be smaller than 10.

In other words, we want to obtain a small number of efficient test objectives, instead of
a large number of redundant test objectives. A test objective is redundant with respect to a
set S of test objectives if it does not improve the global efficiency of S. The efficiency of
the tests is measured here in terms of code coverage.

The two constraints (cost minimization and test efficiency) seem contradictory, but the
experimental studies showed that the two criteria defined in the following satisfy these
constraints [24]. The efficiency of a test objective can be measured using various criteria
(code covered by the corresponding test case, coverage of control graphs, etc.). In [24]
and in Sect. 12.7, we have used the code coverage.

All Instantiated Use Cases criterion. (AIUC) A test objective set TOS satisfies the all
instantiated use cases coverage criterion for a given use case transition system iff each in-
stantiated use case of the system is exercised by at least one TO from TOS. An instanti-
ated use case is said to exercise a test objective TO iff it is included in it.

All Precondition Terms criterion. (APT) A test objective set TOS satisfies the All Pre-
condition terms criterion for a contracts system iff each use case is exercised in as many
different ways as there are predicates combinations to make its precondition true. A use
case can be applied when its precondition is true; this precondition being a logical expres-
sion on predicates, there are several valuations of the predicates which makes it true (as an

45912 System Testing of Product Lines: From Requirements to Test Cases

 fi

 done

end

result. ← result. ∪{(currentState,uc,newState)}

 done

ally or automatically) to obtain a test case, too many test objectives would lead to having

consistent with an UCTS iff each TO exercises a path of the UCTS.

 C. Nebut et al.

example, if a precondition is a or b, 3 valuations makes it true: (true, true), (true, false),
and (false, true). The criterion APT will select sequences of use cases so that each use

These two criteria are not related by a theoretical subsume relationship. To illustrate
the APT criterion, suppose that a use case U(x:X,y:Y) has the precondition: p(x) or q(x,y).
Then the APT criterion selects 3 states in the UCTS (x1 being an instance of type X and
y1 being an instance of type Y):

− One for which the instantiated predicate p(x1) is true and the instantiated predicate
q(x1,y1) is false

− One for which the instantiated predicate q(x1,y1) is true and the instantiated predicate
p(x1) is false

− One for which both instantiated predicates p(x1) and q(x1,y1) are true

Then a path will be chosen to reach each state, from the initial state of the UCTS.
Those 3 paths satisfy the APT criterion.

Other criteria can be used, such as covering all the vertices or all the edges of the
UCTS, but they lead either to inefficient tests (all the vertices) or to a very large number
of tests (all the transitions) [24].

nique ensures that the obtained TOs are consistent with the considered UCTS. The choice
of a breadth-first visit is made in order to obtain smaller TOs: small tests are more mean-
ingful and understandable than larger ones.

As an example, let us consider again the UCTS of Fig. 11.2, for which we assume that
{connected(p1)} is the initial state. When applying the AIUC criterion, we will try to exer-
cise the instantiated use case disconnect(p2). For that, if we adopt a deep-first search algo-
rithm, we obtain the path [connect(p2), plan(p1,m1), disconnect(p2)] (the size is 3). If we

{connected(p1), connected(p2)} and {connected(p1), created(m1), manager(p1,m1)}) then
explore the successors of those 2 nodes. The path that will then be found is: [connect(p2),
disconnect(p2)] (the size is 2).

Robustness Testing

The tests generated as described above exercise the application into a nominal way since
only expected behaviors are produced from requirements. The system robustness may also

given test sequence. To generate such robustness tests from enhanced UCs, the contracts
must be detailed enough so that all the unspecified behaviors are considered incorrect: as
soon as the requirements are precise enough, the generated UCTS can be used as an oracle
for robustness tests.

The principle is to generate paths that lead to an invalid application of a use case. The

execution of such a robustness test must lead to a specific treatment (e.g., emitting an error
message, raising an exception). If not, a robustness weakness has been detected.

The criterion we use to generate robustness paths with the UCTS is quite similar to the
All Precondition Terms one: for each use case, it looks for all the shortest paths leading to

460

The two criteria are implemented with a breadth-first search of the UCTS. Such a tech-

apply a breadth-first search, we will first visit all the successors of the initial node (i.e.,

be tested since the application should detect the execution of nonexpected use cases in a

idea is thus to exercise correctly the system and then make a nonspecified action. The

case is applied with all the possible valuations of the expression precondition = true.

each of the possible valuations that violate its precondition. This criterion is illustrated in
Fig. 12.3.

Fig. 12.3. Robustness test objectives

Robustness criterion. A test objective set TOS satisfies the robustness criterion for a
contracts system iff each use case is exercised in as many different ways as there are
predicates combinations to make its precondition false.

The robustness tests test the defensive code of the application, which is not tested with

test that the application does what it should (according to the requirements) but also that it
does not do what it should not.

Specific and General Test Objectives

At this stage, when the sets of test objectives have been generated for each product, the
various test objectives are parsed, in order to detect which test objectives are common to
the product line, and which test objectives are specific to a given product.

Test Objectives versus Test Cases

In general, the test objectives generated as described above are not executable test cases.

tation of the system. In particular, they do not take into account the interface that the system
uses to offer the described services. The following section proposes a method to generate
application test cases from test objectives.

IUC1

IUC2

IUCn−1

IUCn

Valid sequence of instantiated use cases

configuration for which the
precondition of IUCn is false

Incorrect application
of an instantiated use case

46112 System Testing of Product Lines: From Requirements to Test Cases

the functional tests previously generated. By joining the two sets of tests, not only will we

Indeed, they are sequence of instantiated use cases and have no links with the implemen-

 C. Nebut et al.

12.6 Test Case Generation

Generating test cases that can directly be launched by a test driver requires more informa-
tion than only the use cases and their contracts. Other modeling elements are needed to
make precise the exact interface of the system, i.e., the protocol between the users and the
system under test to realize a given use case. In this section, we propose to use particular
scenarios to bridge the gap between test objectives (that are at the requirement level) and
test cases (that are at the implementation level).We first generate application test scenar-
ios, that are scenarios the tester wants to exhibit. Then we propose to complete those test
scenarios in order to obtain test cases, using test synthesis tools. This is done using an
intermediate test purpose format named Behavioral test pattern.

12.6.1 Generating Test Scenarios

Test scenarios are derived from test objectives using the scenarios attached to each use
case: we assume that each use case is documented by its contracts and by system scenar-
ios. We assume that those scenarios are expressed with UML sequence diagrams. Exam-
ples of sequence diagrams are given in Figs. 12.4 and 12.5.

Fig. 12.4. A nominal sequence diagram for the use case plan

462

Using sequence diagrams. The use of sequence diagrams is interesting for three main
reasons:

1. First, sequence diagrams are a way to improve the verdict preciseness. The test objec-
tives built with the contracts method do not embed a precise oracle. The oracle embed-
ded is just the expectation:

– Either of an error or of a warning for the robustness test objectives
Such verdicts are limited since they check neither the system outputs consistency nor
any property of the system state. Sequence diagrams are of a lower level of abstraction
than the use cases, thus they can embed more precise oracles.

2. Second, sequence diagrams allow to obtain test scenarios from which a code generator
can generate the test cases. The test objectives generated are far from the messages
exchanged during the test, since they just consist of sequences of parameterized cases.
The communication protocols are unknown at this stage. The sequence diagrams att-
ached to the use cases allow us to bridge part of the gap between the test objectives and
the test cases, since they describe the expected exchanges of messages between the actors
and the system.

3. Third, the scenarios and sequence diagrams are increasingly being used in industry in
the early phases of requirements. The conclusion of the survey of industrial software
projects [34] published in 1998 insists on the industrial need to base system tests on use
cases and scenarios, and explains that most projects lack a systematic approach to define
test cases based on scenarios. In [31] published in 2000, the authors still remark that in
practice, scenarios from the analysis phase are seldom used to create concrete system
test cases. The method presented here makes easier the use of scenarios in the valida-
tion phase.

one of its nominal or exceptional scenarios. Nominal scenarios represent the basic ways to
successfully exercise a use case. Exceptional scenarios represent ways to exercise a use
case leading to a failure, the raise of an exception, or an error message: exceptional sce-

they only involve the system itself and the actors.
Those sequence diagrams may involve parameters: since they are attached to para-

meterized cases, it is quite natural to find in the sequence diagrams at least the same para-
meters as in its owner use case. The sequence diagrams contain more information than the

contracts. As a result, each of those sequence diagrams may own OCL constraints describ-
ing on which condition they can be exercised, and what are the consequences on the sys-
tem.

One can wonder why the OCL is used instead of the UCL. The reason is that, at the
use-case level, the contracts are high-level ones, and independent from the static models
(class diagrams for example) that will be designed later in the development process. Thus

trary, at the sequence diagrams level, we want to design contracts relying on the rest of the

46312 System Testing of Product Lines: From Requirements to Test Cases

– Of a noninterrupted execution for the functional test objectives

Each of the sequence diagrams we deal with is attached to a use case and represents

use case, and thus they may own more detailed pre- and postconditions than the use case

narios make the use case fail. The sequence diagrams are system level, in the sense that

for the use cases, the OCL is not well suited, that is why we defined the UCL. On the con-

 C. Nebut et al.

model (on static models for example).We thus need a language to navigate into a UML
model, and the OCL is perfectly suited for that. In our context, the nominal scenarios will
be used for functional testing and the exceptional ones will be used for robustness testing.

Fig. 12.5. An exceptional sequence diagram for the use case plan

Figures 12.4 and 12.5 provide a nominal and an exceptional scenario for the use case plan
of the Virtual Meeting system. In the two scenarios, d and list_p are scenario parameters,

the meeting has been planned with the correct parameters. The exceptional scenario checks

parameters and they may own additional OCL contracts.

464

which designate the date and the list of the invited participants of the meeting being planned,
respectively. The nominal precondition is an OCL precondition that checks whether the
invited participants are available at the meeting date. The nominal postcondition checks that

To sum up, the sequence diagrams we deal with are system level, they may involve

that the participants are not available at the meeting date in its precondition, and that the

In the product line context, a given sequence diagram can be either common to the
product line, or only to a given set of products, depending on the presence of a particular
variant. We thus use the same notation as for the use cases to express the variability at the
sequence diagram level (see Sect. 12.3.2). Future work will consist in using sequence dia-
grams directly modeling the variability, such as the sequence diagrams proposed in [35].

Building test scenarios. We propose to replace the instantiated use cases with instantiated
scenarios in the test objectives. Sequences of scenarios are thus obtained, and scenario com-
position is applied on them to obtain a global system test scenario (strong sequential compo-
sition is used: strong sequential composition imposes that all the events of a scenario are
executed before an event of the next scenario can be executed).

When an instantiated use case is replaced by a scenario, the scenario is partially instan-
tiated using the effective parameters of the instantiated use case. As we already mentioned
it, the scenario may also own other parameters; those parameters are not instantiated at
this stage. A partially instantiated scenario is thus defined as a scenario whose formal pa-
rameters corresponding to the use case parameters are replaced by effective parameters. In
the following, this instantiation is supposed to be achieved by the inst method.

To define precisely how test scenarios are built, we first introduce the following nota-
tions:

− We note {scni,j}j∈1..n the set of n nominal scenarios attached to the use case uci, and
{scei,j}j∈1..m the set of m exceptional scenarios attached to the use case uci

− The strong sequential composition of scenarios is denoted by the symbol °.
− The Cartesian product on sets is denoted ×.

With those conventions, a test scenario is defined from a tuple of scenarios (sc1, …, scn)
as: sc1 ° … ° scn (the strong sequential composition the tuple elements). The set of tuples
defining a set of test scenarios TS ={ts1, …, tsu} obtained from a test objective TO =
[iuc1…iuct] is denoted TStuple. The set TStuple is obtained applying a Cartesian product on
sets of partially instantiated scenarios, as explained in the following definitions.

Functional nominal test scenarios. A nominal test objective TO = [iuc1…iuct] is trans-
formed into the set of tuples TStuple defined by:

Building the functional test scenarios can be seen as replacing one after the other each of
the instantiated use cases of TO by each of its nominal scenarios. Once all the instantiated
use cases have been replaced, then a tuple of sequence diagrams is obtained, and strong
sequential composition is achieved to obtain a test scenario.

Functional robustness test scenarios. A robustness test objective TO = [iuc1…iuct] is
transformed into the set of tuples TStuple defined by:

46512 System Testing of Product Lines: From Requirements to Test Cases

meeting is not planned in its postcondition.

 C. Nebut et al.

Building the robustness test scenarios can also be seen as replacing the instantiated use
cases by its scenarios. The process to replace the t–1 first instantiated use cases is the
same as for functional test scenarios. The last instantiated use case is each time replaced
by one of its exceptional scenarios.

Some test objectives are general for the whole product line, and others are specific to
products. During the replacement of the use cases by sequence diagrams, this is taken into
account: for product-specific test objectives, only the sequence diagrams corresponding to
the particular product have to be taken into account, thus producing specific test scenarios;
while for general test objectives, all the scenarios have to be taken into account, thus pro-
ducing either general test scenarios (when only general sequence diagrams have been
used) or specific test scenarios.

The cartesian product of scenarios may lead to a very large number of tests if there are
a large number of scenarios per use case. If the test launching is automatic, this is not a
problem. If the number of tests has to be reduced, then another strategy has to be applied.
Techniques such as the ones proposed in the tobias tool [15] can be used: in the tobias
tool, _lters are proposed to reduce the combinatorial explosion of the number of tests gen-
erated by combining different test schemas. Filters applied at runtime allow not to run
tests with a prefix that have already failed. Such a technique could be used with our app-
roach.

Examples. To illustrate how the test scenarios are built, suppose that we want to gener-
ate the test scenarios corresponding to the functional test objective [connect(p1),
plan(p1,m1)]. We suppose that the use case connect is documented by 2 nominal seq-
uence diagrams:

− SNconnect2 describing a participant asking to connect giving her address
and that the use case plan is documented by the 2 nominal sequence diagrams:

− SNplan1 describing the planning of a meeting with a name, a date, and an agenda
– SNplan2 describing the planning of a meeting with just a name and a date

Four functional test scenarios will then be generated: (SNconnect1, SNplan1), (SNcon-

tions of scenarios are thus tested, for example, the one of Fig. 12.6 composing SNconnect1
with SNplan2. In a general case, when the system under test is described by many scenar-
ios, testing all possible combinations of scenarios may lead to a combinatorial explosion:
another strategy may consist in executing each (nominal and exceptional) scenario at least
once.

If we want to generate robustness test scenarios, only the exceptional sequence dia-
grams of the use case plan will be used. Suppose that we have 3 exceptional sequence

requested by the system
− SNconnect1 describing a participant asking to connect and then giving her address

nect1, SNplan2), (SNconnect2, SNplan1), and (SNconnect2, SNplan2). All the combina-

466

ing the 2 nominal sequence diagrams of the use case connect with the 3 exceptional sequence
diagrams of the use case plan.

Fig. 12.6. An example of test scenario

verdicts:

sequence diagram. If not, an error is detected.
− The pass verdict is emitted when the test scenario can be executed without error.
− The inconclusive verdict is emitted when a test scenario execution had to be aborted

due to a violated precondition. An inconclusive verdict does not mean that an error is
detected; it means that the test scenario could not be played. It should be possible to refine
each test objective (except for the last use case of a robustness test objective) into a test
scenario which satisfies all the preconditions. The fact a test scenario violates a pre-
condition reveals a default in the test objective refinement, when use cases have been
replaced by scenarios. An automated approach to generate test cases unhappily may

manual refinement of the associated test objective into a correct test scenario must be
done.

12.6.2 Test Scenarios and Test Cases

The test scenarios may still be incomplete, depending on the sequence diagrams that have
been used. The only case when a test scenario can directly be considered as an application
test case occurs when the sequence diagrams used exactly contain the messages to exchange

46712 System Testing of Product Lines: From Requirements to Test Cases

diagrams SEplan1, SEplan2, and SEplan3, we will then generate 6 test scenarios compos-

Verdicts. The oracle embedded in the test scenarios is built from the OCL pre- and
postconditions associated to the sequence diagrams. The test scenarios can emit 3 kinds of

− The fail verdict is emitted when a postcondition is violated during the execution. The
postconditions ensure that the system is in a correct state after the execution of a

generate such nonrelevant tests. Here we identify them with a distinct verdict, and a

 C. Nebut et al.

to realize the use case, only using the use case parameters, and without using wildcards (a
wildcard is a symbol replacing any expression, the symbol * is often used, see Fig. 12.7).

cases using parameters and omitting certain parts of the scenario, in order for them to be gen-

specific sequence diagrams for each product, but that leads to several problems: time, main-
tenance, and so on. For example, in the virtual meeting system, 3 different types of meetings
can be planned: democratic, standard and private. However, since the way to plan a meeting
is similar for each type of meeting, it can be useful either not to specify the type at all (like
in Fig. 12.4) or to replace the type by a wildcard, like in Fig. 12.7.

Fig. 12.7. An example of sequence diagram with wildcard

Thus the test scenarios built with the method described above still contain genericity
marks: parameters, wildcards, or lack of certain messages or parameters. In the example
of Fig. 4, the message setting the meeting type is missing, and in the example of the Fig.
12.7, only the type of the meeting is missing. In order to complete them, we propose to
use test synthesis tools.

12.6.3 Test Synthesis Tools

to explain why and how they can be used to transform test scenarios into test cases. In
short, the principle of the test synthesis tools (such as Agatha [16] or TGV [12]) is to explore
the behavioral specification of a system, in order to derive tests from it. We have chosen
to use the TGV tool since the exploration is driven by a test purpose: that means that the
behavioral specification is parsed until a test case corresponding to the given test purpose
is found.

In a product line, it is very useful to model the sequence diagrams documenting the use

468

The objective here is not to explain in detail the principles of the test synthesis tools, but

eric, and to correspond to all the products [25,26]. The other way to proceed is to design

The UMLAUT tool generates a simulation API from the UML model of a system. The
way such an API can be built can be found in [29]. This simulation API can then be used
by TGV. TGV also needs a test purpose, which has to be given in the form of a labeled
transition system (LTS). From the simulation API and the LTS representing the test pur-

and stops this building task when a path in the built operational semantics satisfies the test
objective. Such a path is considered to be a test case, and is transformed into a UML
sequence diagram.

Ideally, it should be possible to use the test scenarios as test purpose (sequence dia-
grams can easily be transformed into labeled transition system), in order to obtain test
cases using the TGV and UMLAUT tools. The problem with such an approach is the huge
size of the LTS representing the operational semantics of each product. In practice, as
soon as a real-sized system is studied, if the test purpose is not detailed enough, the part of

12.6.4 Using Behavioral Test Patterns

A behavioral test pattern is a test purpose composed of 3 parts, each being given in the
form of sequence diagrams:

– The specification of the behavior the test designer wants to test; such a scenario, also
called .positive scenario., serves to select the scenarios of the specification which are
relevant for the test case.

– The specification of the behaviors the test designer wants to avoid in the test; such sce-
narios, also called .negative scenarios., serve to eliminate the scenarios of the specifica-
tion which are irrelevant for the test case.

– The specification of the behavior needed to place the system under test in a state in
which the positive scenario can take place; such a scenario, also called .prefix scenario,
serves to factorize the part of the positive scenario which may be common to several
behavioral test patterns.

The behavioral test patterns are an efficient way to guide the test synthesis. The nega-
tive scenarios describe the behaviors which, though correct, are unwanted in the test. Sev-
eral negative scenarios can be associated to the same behavioral test pattern. They serve to
limit the exploration required by the synthesis algorithms in order to find a test case that
fits the behavioral test pattern, thereby improving performance. From a pragmatic point of
view, if several test executions fit the accept part of the behavioral test pattern, negative
scenarios can be used to guide the synthesis tool to produce the most suitable test case.
Guiding the tool may be done to help minimize the synthesized test case by excluding
calls which are known to be superfluous for the purposes of the test. This reduction of
“noise” is particularly useful in testing concurrent applications.

The prefix is a high-level representation of the initialization of the behavior to be
tested. It describes the preamble part of the test case, i.e., the behavior previous to that des-

46912 System Testing of Product Lines: From Requirements to Test Cases

pose, TGV builds on the _y the LTS representing the operational semantics of the system

the LTS that has to be built is far too huge. That is why we propose to use what we call
behavioral test patterns to guide the test synthesis, instead of just test scenarios. As explai-
ned in the following, those behavioral test patterns can be generated from the use cases
and the test scenarios.

 C. Nebut et al.

duction of a minimal preamble. Like the negative scenarios, the prefix can be constructed
from the other use-case scenarios. Unlike a negative scenario, a prefix may be composed
of a sequence of such scenarios. Building the prefix is therefore a process of selecting use-
case scenarios and composing them.

To guide the test synthesis, behavioral test patterns are much more efficient than just
test scenarios. The behavioral test patterns can automatically be generated from the use
cases and the test scenarios, as explained in the following.
Generating behavioral test patterns. A test scenario corresponds to the prefix and the
positive scenario of a behavioral test pattern. The test scenario is a composition of
various sequence diagrams, the last one representing the positive scenario and the other
ones representing the prefix.

The difficulty is thus to generate the negative scenarios. One criterion is to avoid behav-
iors involving objects which do not interact with the objects involved in the test objective.
Suppose that we want to generate the negative scenarios of a behavioral test pattern from
a functional test objective [iuc1,...,iucn]. All the instantiated exceptional scenarios of the
system will be added as negative scenarios, as well as all the instantiated scenarios handling
none of the object handled in the test objective [iuc1,...,iucn].

behavioral test pattern corresponding to this test scenario, we will have as preamble the
first part of the test scenario corresponding to the connection, then as positive scenario the
second part concerning the planning. Concerning the negative scenarios, we will add all
the instantiated scenarios which are not dealing with instances p1 and m1 (for example,
the planning of m2), and all the exceptional scenarios of the other use cases of the system.

narios attached to each use case. The use case scenarios may include genericity marks
(such as parameters and wildcards), thus the test scenarios are still incomplete.

To complete the test scenarios, test synthesis tools can be applied. However, the test
synthesis usually fails for large system when the synthesis is not guided by a very detailed
test scenario. Thus we propose to guide the test synthesis using particular sets of scenarios
called behavioral test patterns.

12.7 Results and Discussion

This section offers an experimental validation of the proposed approach: we give an over-
view of the tests synthesized for the 3 products of our PL example, then we study the
efficiency of the tests generated for the demonstration edition. The link from the test sce-
narios to the test cases (using test synthesis tools and behavioral test patterns) is not yet
integrated in our prototype tools, so the experiments we present here are based on the rest
of the approach: from use cases to test scenarios.

470

cribed in the positive scenario. The prefix serves to guide the synthesis toward the pro-

For example, let us come back to the example of Fig. 12.6. If we want to generate a

To sum up this section, from test objectives, test scenarios are generated using the sce-

12.7.1 Test Generated for the 3 Products

From the PL use cases enhanced with contracts, we derived one specific UCTS per prod-

Table 12.2. Statistics on generated tests

generated TS with AIUC 50 65 78
generated TS with APT 15 18 21

generated TS for robustness 65 110 128
average size of the tests 5 4 4

12.7.2 Study of the Generated Test Efficiency for

For the experimental validation, we used a Java implementation of the virtual meeting.
The virtual meeting example has been built using a common modeling for the whole
product line, making use of various well-known design patterns. To perform code cover-
age studies for the demonstration edition, we performed an ad hoc and manual analysis to
distinguish the source code of the product line which was not executed by the demonstra-
tion edition, in order to obtain exact coverage figures, which only concerns the code in-
volved in this product. For this given instance of product, around 20% of the code (in
terms of executable lines of code) is specific to the product while the remaining is
extracted from the common code. This proportion is the same for all of the products.

Moreover, we studied the code of the demonstration edition to evaluate which part of

Around 9% of the code is dead code. Nevertheless, this code is relevant: it consists of per-
tinent but unused accessors, which could be used in future evolutions of the system. Func-
tional testing cannot deal with this code: it has to be tested during the unit test step. For
the study presented below, we removed those 9% of dead code to focus on the efficiency
of our tests on reachable code.

Around 26% of the code is robustness code: robustness with respect to the specification
which asserts that only the required functions are present, and robustness with respect to
the environment which asserts that the inputs coming from the environment are correct.

The results of the code coverage measures are given in Fig. 12.8. The APT (resp.
AIUC) criterion covers 71% (resp. 60%) of the functional code. Note that since the AIUC
criterion generates many more TC than the APT one, the APT criterion is more efficient
in terms of covered statement per test scenario. Since our robustness tests stem from func-
tional requirements, they cannot cover all the robustness code but they cover 100% of the
robustness code with respect to requirements. The uncovered code concerns syntactic
verification of the inputs treatment of network exceptions, these aspects are specific to the

Demonstration Edition

47112 System Testing of Product Lines: From Requirements to Test Cases

(demonstration, personal and enterprise edition are denoted DE, PE, and EE respectively).
A study of those test scenarios reveals that common tests have been generated (corres-
ponding to the commonalities of the PL), and specific tests have been generated for each
product, due to the different combinations of variants in the products.

the code is possible to cover with a pure functional and system testing approach.

edition DE PE EE

uct, and then we generated the test scenarios (TS). Statistics are given in Tab. 12.2

 C. Nebut et al.

distributed platform. Globally, the robustness tests add a 10% code coverage to the func-
tional tests. So, for the parts of code related to functional requirements, half of the robust-
ness code and 98% of the functional one have been covered. The remaining uncovered
code is specific to the platform or unused code (“dead code”) dedicated to future PL evo-
lution. This result is promising since it reveals that the functional code can be tested from
test cases derived from requirement stages. The same kind of approach could be used to

Fig. 12.8. Code coverage of the tests

The ratio between the number of robustness tests and the corresponding coverage is decep-
tive. Improving the robustness test efficiency would require defining more efficient test
generation criteria and more detailed scenarios (however requiring such detailed diagrams
from the designers has a heavy cost).

This study shows that the tests generated from the product requirements expressed at
the PL level (and extracted for a specific product using a decision model) are relevant at
the product code level, with the use of adequate criteria. However, to get higher confi-
dence in these encouraging results, future work will consist in evaluating the approach
with other case studies, and other efficiency criteria (code coverage is a weak criterion,
better criteria are branch coverage or mutation score for example). Other experiments also
showed that classical faults – using mutation analysis – manually injected in the products
were detected by our tests. The approach has also been successfully applied on two sys-
tems components of last generation combat aircrafts (Mirage 2000-9 and Rafale), of mid-
complexity (several thousands C++ KLOC). These real-case studies are not designed in a
product-line context but reveal that approximately 80% of the functional requirements
could be treated and used for test generation. This experience return shows the relevance

related to detailed design features and did not describe services requirements.

472

generate test cases dedicated to nonfunctional properties, such as security and real time.

of the approach for functional requirements, since the 20% nontreated requirements were

12.7.3 Discussion on the Benefits and Limitations of the Approach

As several other approaches to test product lines (and in particular the approach presented
in Chap. 11), we assume that a common requirement model is available. In Chap. 11, this
requirement model is made of PLUCs (Product Lines Use Cases), while in our approach it

not dependent on the way UML models are obtained: they can be obtained using model
transformations on a common model for the whole PL or manually built. In this sense, our
approach fits into the overall process of product line engineering, since it only requires a
common requirement engineering phase.

The automation of the approach can be discussed. Globally, to use our approach, a
tester has to:

considered product
– Manually define the instances/objects the tests have to deal with (at the requirement

level and at the code level)

The quality of the obtained tests strongly depends on the quality of the inputs, which
come from the specification. This is a classical problem for testing, since tests are always
generated to validate an implementation with respect to a specification. If the quality of
the specification is low, test cases will only test a little part. Improving the quality of the
input models is beyond the scope of this chapter. However, robustness test cases may help
reveal lack of precision in the specification, since robustness test cases aim at exploring
the bounds of the possible behaviors. This analysis is manual but may help identifying defaults

(mainly the use cases and the sequence diagrams) are detailed enough, the generated tests
will be efficient enough, and the manual task of the tester will not be important: it will
simply consist in the verdict analysis emitted by the tests. However, if those inputs are not
detailed enough, some tests may be missing to satisfy a chosen coverage criteria. Classical
unit testing must be done to complete the test. The main advantage of the approach is to
get confidence in the end-product implementation with respect to the functional product
requirements, even in the case these requirements are not complete enough to cover the
whole code. A consequence of the approach is to identify – by measuring the actual test
coverage obtained for requirement-based tests – the lack of precision in the requirements
and analysis views.

Concerning the adequacy of the approach to the PL context, when new requirements
are added, a brutal approach consists in regenerating automatically all the test cases.

However, the test generation tool allows a guided test cases generation. For instance,

test cases when testing the newly added features. The approach is thus adaptable and allows
both to generate again test cases and to generate test cases that exercise a chosen require-

full-test generation when a new product is created. As explained in the case study, the

47312 System Testing of Product Lines: From Requirements to Test Cases

– Take the use cases, sequence diagrams, the decision model, and the UML model of the

in the specification. Concerning the artifacts the tester has to manipulate, if the inputs

only tests cases that exercise the new added property, parameter, or use case can be gener-
ated. To ensure some regression testing, it is highly recommended to reapply the existing

ment. Thus, the process is either incremental for an underevolution product or allows a

approach does not allow nonfunctional test case generation from requirement. We believe

is made of use cases with contracts, parameters, and sequence diagrams. Our approach is

 C. Nebut et al.

such as execution time and security testing.

12.7.4 Related Work

however, PL validation is not yet mature, and in particular PL testing is not studied
enough in comparison with the large set of new issues implied by PL testing. However,
judging by the test generation approaches briefly presented in the SPLIT workshop [32]
(e.g., use of mutation techniques and formal methods), PL testing is undergoing a resur-
gence of interest.

The PL testing issues and challenges are described in [22]. They are also evoked in
[18], which gives an overview of the product line testing. McGregor describes the whole

described, as well as the process from which they are produced and the related PL speci-
ficities. The main contribution concerning the testing process comes from references [6]
and [33].

Concerning methodological and technical PL testing approaches, from our point of

In Chap. 11, the authors have adapted the well-known Category-Partition (CP) method
in their PLUTO approach. The CP method is applied at the use-case level, and more pre-
cisely at the PLUC level. The PLUCs mechanism to manage variability and ours are quite
similar. However, the underlying testing method is different in the sense that the approach
proposed in Chap. 11 focuses more on test data. We thus believe that for applications for
which the handled data are more complex than the control, the PLUTO approach is better-
suited than ours. On the contrary, for applications with complex control, our approach is

is that the test data have to be manually managed by the tester. We thus believe that our
approach would benefit from a coupling with the PLUTO approach. The PLUTO approach
could for example be used to generate adequate test data to feed our approach.

In Chap. 13, the authors propose a testing method relying on different test strategies,
depending on the ways variability appears in the use cases. Four strategies are identified:

gies are discussed depending on the type of variability that can appear in the event flow,

but yet not automatic. Our approach would benefit from using parts of the ScenTED app-
roach in several ways. A first obvious point is that we focus on functional system testing
whereas ScenTED covers other kinds of testing such as integration testing. Second,
ScenTED introduces an enhancement of activity diagrams such that activity diagrams can
embed variability information. Such activity diagrams could be used in our approach
instead of sequence diagrams, or (better) complementary to sequence diagrams.

474

PL testing process, in particular, all the different test artifacts that have to be produced are

found in Chaps. 11 and 13.

better suited. As previously explained in this chapter, one of the weaknesses of our approach

abstraction, parameterization, segmentation, and fragmentation. The most adequate strate-

the pre- and postconditions, the actors, and the relationships. This approach is systematic,

that an analogous approach may be applied for some specific nonfunctional properties,

The PL engineering now appears as a major issue in the field of software engineering;

view the two main approaches are [2] and [14,30]. Details on those approaches can be

suffers of time-to-market constraints leading to reduce the time dedicated to the validation
of the system. The problem of the testing cost is all the more crucial in the product line
context since it is not a single system that has to be validated, but several (and potentially
a large number of) systems of the same product line. That is why the automation of the
testing task is a challenging issue in the field of product line validation.

We have presented a complete chain for functional test cases derivation from the func-
tional requirements of a product line. Avoiding testing all possible combinations of prod-
ucts (most of them being never instantiated in practice), the approach targets a given

are improved by declarative information under the form of contracts as an anchor for fur-
ther testability purposes and to express variability and commonality.

In this context, the approach we presented partially automates the generation of prod-
uct-specific system test cases from Use Cases, taking into account traceability problems
between high-level views and concrete test case execution. Due to the automation, the
approach is adaptable to several product-line evolution processes. Indeed, it supports full-

tion of dedicated test cases when new features are added to an existing product.

47512 System Testing of Product Lines: From Requirements to Test Cases

The testing task is known to be an important part of software development and usually

product in the product line, extracts its functional requirements using the decision model,
and generates test cases from these requirements. Requirements, expressed by used cases,

test generation when a new product is added to the product line as well as partial genera-

12.8 Conclusions and Future Research

At requirement stage, the analyst may check the consistency of each product’s re-
quirements using the UCTS as a simulation platform. The test cases are generated in two
steps: correct sequences of use cases are deduced from use case contracts and then scenar-
ios are substituted to each use case to produce a test scenario that is finally transformed
into a test case thanks to test synthesis tools. One of the principal objectives of this ap-
proach is the possibility to use it in an industrial context. For that, instead of pushing for-
mal methods to the industry (one of the motto in this community) we proposed to work
the other way round, i.e. starting from established practices and gently pushing them to-
wards formally exploitable models. We concentrated here on widely accepted practices
based the use of the UML to support an object-oriented development process. The indus-
trial feasibility of the approach has been validated for a single product in the context of the
Carroll project, with the industrial partner Thalès [17] and using academic case studies for
the product-lines aspects.

Several future research directions can be explored to improve our approach. The first
step consists of studying the different ways for users to enter the models of use case de-
pendencies. As mentioned in the previous section, other approaches propose graphical no-
tations and, in particular, UML activity diagrams to enter such models. It is thus worth
studying precisely the exact expressiveness of the two languages (i.e., activity diagrams
versus contracts) and detecting in which situations one language is better-suited than the
other. Then, compatibility rules between the languages can be detected and transforma-
tions from one language to another can be envisioned. The second step is to focus on test

 C. Nebut et al.

References

476

1. Bertolino, A., Fantechi, A., Gnesi, A., Lami, G., Maccari, A.: Use case description of requirements for prod-
uct lines. In: Proceedings of the International Workshop on Requirements Engineering for Product Lines
(2002) pp 12–19

2. Bertolino, A., Gnesi, S.: Use case-based testing of product lines. In: Proceedings of the 9th European Soft-
ware Engineering Conference held jointly with 10th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (2003) pp 355–358

3. Binder, R.V.: Testing Object-Oriented Systems (Addison-Wesley, Reading, MA 2000) Chapter 8
4. Briand, L., Labiche, Y.: A UML-based approach to system testing. J. Softw. Syst. Model. 10–42 (2002)
5. Bühne, S., Halmans, G., Pohl, K.: Modelling dependencies between variation points in use case diagrams. In:

Proceedings of the 9th International Workshop on Requirements Engineering: Foundation For Software
Quality – REFSQ’03 (2003)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns (Addison-Wesley, Reading, MA
2001)

7. Cockburn, A.: Structuring use cases with goals. J. Object-Oriented Program. 35–40 and 56–62 (Sept/Oct and
Nov/Dec 1997)

8. D’Souza, D.F., Wills, A.C.: Objects, Component, and Frameworks with UML: The Catalysis Approach, Chapter
Interaction Models: Uses Cases, Actions, and Collaborations (Addison-Wesley, Reading, MA 1999)

9. Fröhlich, P., Link, J.: Automated test case generation from dynamic models. In: Proceedings of the 14th
European Conference on Object-Oriented Programming (ECOOP’00) (2000)

10. Gomaa, H., Shin, M.E.: Multiple-view meta-modeling of software product lines. In: Proceedings of the 8th
International Conference on Engineering of Complex Computer Systems (2002) 238–246

11. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to customers. Softw.
Syst. Model. 2(1), 15–36 (2003)

12. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. In: Proceedings of the 6th World Conference on
Integrated Design and Process Technology (2002)

13. John, I., Muthig, D.: Product line modeling with generic use cases. In: Proceedings of SPLC2 Workshop on
Techniques for Exploiting Commonality Through Variability Management (2002)

14. Kamsties, E., Pohl, K., Reis, S., Reuys, A.: Testing variabilities in use case models. In: Proceedings of the
Fifth Workshop on Product Family Engineering. Lecture Notes in Computer Science, vol 3014 (Springer,
Berlin Heidelberg New York 2003)

15. Ledru, Y., du Bousquet, L., Maury, O., Bontron, P.: Filtering tobias combinatorial test suites. In: Proceedings
of ETAPS/FASE’04 – Fundamental Approaches to Software Engineering. Lecture Notes in Computer Sci-
ence, vol 2984 (Springer, Berlin Heidelberg New York 2004)

16. Lugato, D. et al: Validation and automatic test generation on UML models: the AGATHA approach. Elec-
tron. Notes Theor. Comput. Sci. 66(2) (2002)

17. Lugato, D., Maraux, F., Le Traon, Y., Normand, V., Gallois, J.P., Dubois, H., Pierron, J.Y., Nebut, C.:
Automated functional test case synthesis from Thales industrial requirements. In: Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications Symposium (2004)

We gratefully acknowledge the extensive reviews of Antonia Bertolino, Erik Kamsties,

quality of this chapter.

Acknowledgments

Timo Käkölä, Andreas Metzger, and Antti Tevanlinna, which significantly improved the

data. Currently, our approach needs to be manually fed with the test data for the test gen-
eration and the simulation. Since the existing research work in the field principally aims at
generating relevant test data for product line testing, future research can couple our ap-
proach with the existing work concerning test data generation and experiment the effi-
ciency of the generated tests. Finally, our approach needs to be validated with real-world
case studies.

47712 System Testing of Product Lines: From Requirements to Test Cases

26. Nebut, C., Pickin, S., Le Traon, Y., Jézéquel, J.M.: Automated requirements-based generation of test cases
for product families. In: Proceedings of the 18th IEEE International Conference on Automated Software En-
gineering (ASE’03) (2003)

27. OMG: OCL. http://www.omg.org/docs/ptc/03-08-08.pdf (2003)
28. OMG: Unified modeling language specification, version 2.0. http://www.omg.org/docs/formal/03-03-01.pdf

(2004)
29. Pickin, S., Jard, C., Le Traon, Y., Jéron, T., Jézéquel, J.M., Le Guennec, A.: System test synthesis from UML

models of distributed software. In: Proceedings of the 22nd Conference on Formal Techniques for Net-
worked and Distributed Systems (FORTE’02), Houston, Texas (2002)

30. Reuys, A., Kamsties, E., Pohl, K., Reis, S.: Model-based system testing of software product families. In: Pro-
ceedings of the 17th Conference on Advanced Information Systems Engineering (CaiSE’05) (2005)

31. Ryser, J., Glinz, M.: Scent – a method employing scenarios to systematically derive test cases for system test.
Technical report (Institut für Informatik, University of Zurich 2000)

32. Proceedings of the International Workshop on Software Product Line Testing (2004)
33. Tevanlinna, A. et al: Product family testing: a survey. SIGSOFT Softw. Eng. Notes 29(2) (2004)
34. Weidenhaupt, K. et al: Scenario usage in system development: A report on current practice. IEEE Softw.

(1998)
35. Ziadi, T., Hélouet, L., Jézéquel, J.M.: Behaviors generation from product lines requirements. In: Proceedings

UML2004 Workshop on Software Architecture Description (2004)

18. McGregor, J.D.: Testing a software product line. Technical report, CMU/SEI (2001)
19. McGregor, J.D.: Building reusable test assets for a product line. In: Proceedings of the 7th International Con-

ference on Software Reuse: Methods, Techniques, and Tools (Springer, Berlin Heidelberg New York 2002)
pp 345–346

20. McGregor, J.D., Sykes, D.A.: A Practical Guide to Testing Object-Oriented Software (Addison-Wesley,
Reading, MA 2001)

21. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
22. Muccini, H., van der Hoek, A.: Towards testing product line architectures. In: Proceedings of the ETAPS03

Workshop “Test and Analysis of Component Based Systems” (“TACOS’03”), vol 82 (2003)
23. Nebut, C., Fleurey, F., Le Traon, Y., Jézéquel, J.M.: A requirement-based approach to test product families.

In: Proceedings of the 5th Workshop on Product Families Engineering (PFE-05). Lecture Notes in Computer
Science (Springer, Berlin Heidelberg New York 2003)

24. Nebut, C., Fleurey, F., Le Traon, Y., Jézéquel, J.M.: Requirements by contracts allow automated system test-
ing. In: Proceedings of the 14th IEEE International Symposium on Software Reliability Engineering
(ISSRE’03) (2003)

25. Nebut, C., Pickin, S., Le Traon, Y., Jézéquel, J.M.: Reusable test requirements for UML-modeled product
lines. In: Proceedings of the Workshop REPL’02 (Requirements Engineering for Product Lines) (2002)

13 The ScenTED Method for Testing
Software Product Lines

A. Reuys, S. Reis, E. Kamsties, and K. Pohl

Abstract
In current practice, a significant problem of testing software product lines is the immense ef-
fort required. However, this effort can be reduced by applying the systematic reuse concepts
of product line engineering to the reuse of test artifacts. Such a reuse is established by defin-
ing and preserving variability throughout generic test artifacts in domain engineering, and by
reusing these generic test artifacts in application engineering to derive product-specific test
case scenarios. In this contribution, the ScenTED method (Scenario based TEst Case Deriva-
tion) is presented. The ScenTED method is based on the systematic refinement of generic
use case scenarios to generic system and integration test case scenarios. The method in-
cludes activities in domain engineering for preserving the variability in the test artifacts as
well as activities in application engineering for binding the variability of the generic test ar-
tifacts. In addition, the refinement of use case scenarios to test case scenarios enables the
traceability between development artifacts and test artifacts.

13.1 Introduction

lopment. The goal is to uncover faults in the executable software modules. Although the
individual applications of a software product line are derived from the core assets (cf.
[17]), each application has to be tested individually, because the combination of common
parts with different configurations of variants will lead to differing behaviors of the indi-
vidual applications.

13.1.1 Strategies for Testing Product Lines

In product line engineering, artifacts for specific applications are derived from generic ar-
tifacts that have been developed in domain engineering. As a consequence, three different

1. Separate test case development. In this strategy, test cases for each derived

strategy results in an extremely high test effort, because – without reuse –
the same test effort as in single system development is required for each

strategies for creating test cases for testing the derived applications can be identified [11,22]:

Testing in product line engineering has the same goal than testing in single system deve-

application are developed independently from each other (see Fig. 13.1). This

application. Test cases for functionalities that are contained in several appli-
cations must be derived several times.

Fig. 13.1. Separate test case development

2. Opportunistic reuse of existing test cases. In this strategy, a first attempt is
made for reusing application test cases. For the first application that is de-
rived for a given product line, test cases are developed. As soon as a further
application is derived from the product line, test cases of the first application
can be reused for the new application (see Fig. 13.2). The main problem with
this form of reuse is that it is not performed systematically. This means that
there is no method that supports the tester in selecting reusable test cases.
Functionalities of the new application might not have been tested completely
if the selection of the test cases was carried out falsely, i.e., the test coverage
of an application is not guaranteed.

Development

Domain Engineering

Application Engineering

Product B Product B

Product A Product A

Fig. 13.2. Opportunistic reuse of existing test cases

3. Design test cases for reuse. This strategy follows the product line engineer-
ing principle design for reuse and enables the overall goals of shortening the

is divided into two subprocesses. The partitioning takes place similar to the
product line approach, which is classified into domain engineering and ap-
plication engineering. In domain testing, reusable test artifacts are created.

480 A. Reuys et al.

Artifacts

Development Artifacts Test Artifacts

Development Artifacts Test Artifacts

Development

Domain Engineering

Application Engineering

Product B Product B

Product A

Artifacts

Product A
Development Artifacts

Development Artifacts

Test Artifacts

Test Artifacts

time-to-market, reducing cost, and increasing quality (see Fig. 13.3). Testing

basis of the generic test cases from domain engineering. The problem of this
strategy is that initially, a set of domain test cases has to be developed.
Therefore, the gain in effort when reusing these domain test cases has to be
higher than the effort for developing these generic artifacts in the first place.
Further, adequate techniques for describing generic test cases (by means of
variability) have to exist.

Development

Domain Engineering

Application Engineering

Product B Product B

Product A

Fig. 13.3. Design test cases for reuse

Obviously, strategy (1) cannot be considered a serious approach for testing software prod-
uct lines except in the cases where only very few applications are derived from the core
assets. Equally, strategy (2) is not a suitable approach, because of the unsystematic reuse
of test cases. Consequently, strategy (3) presents the most promising and efficient ap-
proach toward testing software product lines. A systematic approach for realizing strategy
(3) is the ScenTED method that is presented throughout this chapter.

13.1.2 The ScenTED Method

The ScenTED method presents a solution for applying product line concepts to the testing
process by providing detailed guidelines on how to create generic test artifacts in domain
engineering and how to reuse these generic artifacts in application engineering. ScenTED
supports the system test as well as the integration test of software product lines.

The method can be classified as a model-based testing approach [20]. Based on use
cases and their scenarios, a test model is created. By employing the test model, test case
scenarios for system and integration tests are derived systematically. This derivation is
performed in such a way that the achievement of a specific coverage criterion can be
guaranteed. The test model is represented by activity diagrams.

Traceability links are recorded between use cases, use case scenarios, architecture sce-
narios, and test case scenarios. This extensive form of traceability enables an effective
change management.

Variability is preserved in the domain test artifacts to facilitate reuse. Test case scenar-
ios can be derived from these domain test artifacts for each product line application, because
all intended variants are reflected in the domain test case scenarios. If additional requirements

13 The ScenTED Method for Testing Software Product Lines 481

Test ArtifactsArtifacts

Product A
Development Artifacts

Development Artifacts

Test Artifacts

Test Artifacts

In application testing, test cases for a specific application are derived on the

decision, whether these additional requirements should be transferred to the reference model
in domain engineering, is not the task of testing but that of requirements management.

13.1.3 Overview

This chapter provides a detailed description of the ScenTED method with its respective
activities in the subprocesses domain testing and application testing. Section 13.2 briefly
describes the basics of the ScenTED method. After that, we explain how reusable domain
test case scenarios are created (Sect. 13.3). The reuse of domain test case scenarios in ap-
plication testing is described in Sect. 13.4. Section 13.5 presents an overview of an
evaluation of the ScenTED method at Siemens Medical Solutions HS. The contributions
of this chapter are summarized and discussed in Sect. 13.6.

13.2 Basics of the ScenTED Method

The ScenTED method employs use cases and scenarios as test references, from which test
cases are derived. In this section, we elaborate on the benefits of this use case-based ap-
proach and introduce the underlying information model of ScenTED.

13.2.1 Use Case Based Testing

Use cases represent the goal-oriented use of the system’s functionality. The interactions of
a potential user with the software system are described by the scenarios that are contained
in the use cases [5]. Scenarios are particularly well suited for the derivation of test cases,
because testing requires a description of interactions between users and the software sys-

a form that variability can be suitably represented. Further, these extended use cases can
be employed for supporting the communication between specialized experts and the
customers.

Other approaches for testing product lines are also based on use cases, use case scena-
rios, and creation of domain test cases. Some of these approaches support the idea of ex-
tending the principle of proactive reuse to product line testing.

McGregor [13] and Geppert et al. [6] create reusable test cases during domain engineering.
McGregor proposes to create reusable test cases by generalizing among the different variants.
Application-specific test cases are derived by specialization, i.e., supplementing details about
the chosen variant. The test cases are derived from natural language requirements. Geppert
et al. assume that a set of applications already exist. That means, test cases are generalized
from existing test cases. In contrast to ScenTED, both approaches are not model based.

fragments in domain engineering that are assembled to test case scenarios. However, there
is no test model that guides the assembly of these fragments during domain engineering.
Dependencies between use cases are specified in a use case transition graph, but test case

482 A. Reuys et al.

tem [3,4]. Moreover, as we already have shown in [8], use cases can be extended in such

Nebut et al. [15,16] also follow the idea of proactive reuse. They consider scenario

should be realized, this has to be considered in application engineering. However, the

scenarios are only derived for specific applications when the variability has already been
bound. A detailed specification of this approach can be found in Chap. 12.

Hartmann et al. [9] use activity diagrams as a test model, which contain variability, but

In summary, the approaches of McGregor, Geppert et al., and Nebut support the idea
of extending proactive reuse to product line testing. Hartmann et al. support the idea of
model-based testing in product line engineering. However, there is no approach for pro-
duct line testing up to now that combines proactive reuse with the benefits of model-
based testing. The benefits of model-based testing like the systematic and repeatable
creation of test cases, the early validation of the requirements, or the prerequisite for
test automation as well as the pro-active reuse are realized by the ScenTED method.

13.2.2 Information Model of ScenTED

An information model is the general basis of the ScenTED method. The model describes
the types of artifacts that are created and used by ScenTED (see Fig. 13.4). It is structured
in four columns: requirements artifacts, architecture artifacts, test artifacts, and executable
artifacts. The arrows between all artifacts represent traceability links. In the following
paragraphs, the artifacts of the information model are briefly described.

– Use Case. A use case defines the high-level usage of the system’s functionality in a
given context, i.e., the application of the functionality of the system to achieve a par-
ticular goal of a user. By this, a requirement is enriched with a typical usage context
(see [5]).

– Use Case Scenario. A use case scenario describes specific user–system interactions,
which are instances of the use case’s workflow. A scenario is either a success or an
exception scenario. A scenario is one possible way to realize a use case goal (success
scenario) or a flow of events that prevents the use case goal (exception scenario).

– Architecture Configuration. An architecture configuration defines a specific software
architecture. It combines the specific components and connectors with complementary
interfaces by defining allowed links between them.

– Architecture Scenario. An architecture scenario defines the specific architectural inter-
action sequences with respect to a given architecture configuration. An architecture
scenario describes the interactions between components of the system and the user, as
well as the interactions between the components themselves.

– Test Case Design. A test case design defines the functionality to be tested by a set of
test cases, i.e., the scope of the associated test cases. Besides the functional test goal,
the chosen quality attributes like correctness or performance are specified in the test
case design. In addition, the test phase is indicated to which the associated test cases
belong. Test phases that are maintained by ScenTED are system testing and integration
testing.

– Test Case Scenario. A test case scenario defines the interactions that have to be exe-
cuted to test a specific functionality. Depending on the associated test case design, a

13 The ScenTED Method for Testing Software Product Lines 483

test cases are derived only in application engineering. Therefore, it is a model-based

are created for each application based on this specification.

testing approach, but it does not consider the reuse of test cases. Bertolino and Gnesi [1, 2]
do not use a test model, but a structured test specification that contains variability. Test cases

test case scenario contains user–system interactions (system testing) or additional inter-
actions between the system’s components (integration testing).

– Runtime System. The run-time system consists of the implemented components of the
architecture configuration. It includes additional information about the system envi-
ronment, e.g., platform and hardware information.

– Executable Test Case. An executable test case contains specific test data (i.e., concrete
input values and expected results) in addition to the test case scenario. For each execu-
table test case, a set of verification points can be indicated. A verification point de-
scribes the place in the flow of the test case, in which an examination should take
place.

Use Case

Use Case
Scenario

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Requirements Architecture Test

Runtime
System

Executable
Test Case

Executable

Fig. 13.4. Information model of ScenTED

13.3 ScenTED in Domain Engineering

In domain engineering, reusable test artifacts are developed with the ScenTED method. In
this section, the method’s activities for deriving generic system and integration test case
scenarios in domain engineering are described together with the activities that are required
for creating necessary intermediate artifacts. It should be noted that all domain artifacts
contain variability.

13.3.1 Activities for System Testing

This section describes the activities of the ScenTED method that are executed to derive

these are represented by the numbered arrows. All other arrows represent traceability
links.

domain system test case scenarios. Figure 13.5 gives an overview of these activities, where

Artifacts Artifacts Artifacts Artifacts

484 A. Reuys et al.

ScenTED supports the development of system test case scenarios in domain testing
through two activities:

DS1: Development of Domain Use Case Scenarios
DS2: Derivation of Domain System Test Case Scenarios

In the following sections both activities are described in detail. The activities are clari-
fied on the basis of an abstract example.

Domain
Engineering

Artifacts

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Use Case

DS1

DS2

Use Case
Scenario

Fig. 13.5. Overview of the activities for deriving domain system test case scenarios

DS1: Development of Domain Use Case Scenarios

Domain use case scenarios are developed in the first activity DS1 of the ScenTED
method. A use case contains the description of selected use case scenarios. However,
other scenarios than the ones that have been described in the use case might be important
for test case derivation. Therefore, a systematic creation of use case scenarios is neces-
sary.

To accomplish such a systematic derivation, a model-based representation of the sce-
narios of a use case is necessary. The Unified Modeling Language (UML) provides se-
quence diagrams as a means to describe such scenarios [23]. These sequence diagrams can
be used as a starting point to synthesize activity diagrams, which are a more comprehen-
sive form of representing behavior. Consequently, these activity diagrams might have to
be supplemented before they can be used for testing, e.g., if not all possible exceptions
were modeled in the use case, the activity diagrams must be extended accordingly.

In ScenTED, activity diagrams are used to represent several use case scenarios in one
comprehensive model (following the aforementioned synthesis approach). Therefore,
variability of the use cases must be preserved in the activity diagrams to enable a later re-
use of the domain use case scenarios. To model variability in activity diagrams, an exten-
sion of the representation of activity diagrams is necessary.

Representation of Variability in Activity Diagrams. The standard UML notation for acti-
vity diagrams does not provide means for explicitly modeling variability. Therefore, it is
necessary to extend the activity diagram notation by the concept of variability to be able
to use such models for the creation of domain test artifacts.

13 The ScenTED Method for Testing Software Product Lines 485

A

B1 B2

E

<<VP>>

Variation Point 1
Co-Existing (1..2)

Optional Branch:
Variant 1 Mandatory Branch:

Variant 3

B3

Optional Branch:
Variant 2

Use Case 1

User

Use Case 2

C

D

Fig. 13.6. Use case model and activity diagram including variability

A simple and abstract example of a use case model and a supplementing activity dia-
gram is represented in Fig. 13.6. The activity diagram is a compact representation of all
possible scenarios of Use Case 1. Variation points in activity diagrams are modeled as
special decision points [21]. These variation points are identified by the stereotype
<<VP>> (see Fig. 13.6). Additionally, the symbols of these special decision points are
colored black. For the identification of the variation points their name is annotated by
notes. By this means, a direct reference to the corresponding use case exists, which pro-
vides for traceability.

Variants that belong to a variation point can either be optional or mandatory ones. In
this context, mandatory variants always have to be chosen if the associated variation point
has to be considered for a specific application. If the variation point itself belongs to a
variant that is not chosen for a specific application, the mandatory variant is also not
part of this application. For deriving test case scenarios, this information is of utmost
importance and therefore is also annotated by notes. A further relevant constraint on the
selection of variants can be provided for each variation point. A variation point can de-
scribe that several variants from the possible (optional) variants can be selected (co-

Supplementation of Activity Diagrams with Additional Information. As it has been noted
above, activity diagrams must be supplemented by additional information to derive the
test case scenarios completely from the activity diagram. Most importantly, main scenar-
ios, alternative scenarios, and exception scenarios must be reflected in the activity dia-
grams. Usually, not all existing exceptions are considered in activity diagrams. Depending
on the intended purpose, activity diagrams are described on different levels of abstraction

selected (alternative dependency). In the example in Fig. 13.6 at least one variant and
up to two of the three possible variants can be selected.

existing dependency), or that only one variant from the possible variants can be

(starting with the activity diagrams that reflect the most important use case scenarios).

486 A. Reuys et al.

13.6. This activity diagram has been supplemented by considering one additional excep-
tion scenario and one additional alternative scenario. The additional exception scenario is
caused by the additional end state after activity B3, the additional alternative scenario is
caused by the additional activity F.

A

B1 B2

D

E

<<VP>>

Variation Point 1
Co-Existing (1..2)

Optional Branch:
Variant 1 Mandatory Branch:

Variant 3

Optional Branch:
Variant 2

F

additional
elements

C

B3

Fig. 13.7. Supplementation of activity diagram by considering additional scenarios

In this activity of the ScenTED method, the first explicit traceability information is
generated. The traceability link between the use case and the supplemented activity dia-
gram, which represents the use case scenarios, is called Link_DS1.

DS2: Derivation of Domain System Test Case Scenarios

The activity DS2 of the ScenTED method describes the derivation of domain test case
scenarios for system testing from the domain use case scenarios that have been developed
in activity DS1.

Definition of a Coverage Criterion. Based on the structure of the activity diagrams, a cov-
erage criterion for the derivation of test case scenarios can be defined. Such a coverage
criterion allows a tester to decide when a sufficient set of test case scenarios has been de-
rived. A domain test case scenario corresponds to one possible path through the activity
diagram. In the literature, coverage criteria for structural tests (initially developed for de-
termining the coverage of source code) have been applied to use cases (e.g., see [24]).
Well-known structural coverage criteria are the statement coverage criterion, the branch
coverage criterion, and the path coverage criterion. Statement coverage is a poor criterion
that does not imply a thorough test of the system. Path coverage on the contrary results in

For test case scenario derivation, the diagrams must be modeled with the aforementioned
detail.

13 The ScenTED Method for Testing Software Product Lines 487

In Fig. 13.7 such an activity diagram is shown, which is an extension of the one in Fig.

a thorough test, but achieves this thoroughness through a huge number of scenarios [14],
which might prohibit its practical use.

In ScenTED, the branch coverage criterion is used as a coverage criterion that achieves
a fairly thorough test (subsuming the statement coverage criterion) with a relatively mod-
erate number of scenarios that have to be tested. To achieve full branch coverage, scena-
rios have to be derived in such a way that each possible branch of the activity diagram is
covered by at least one scenario. In the example in Fig. 13.7, four scenarios are necessary
to cover all possible branches. As a compact notation, scenarios can be represented by
vectors that contain the sequence of actions (or scenario steps). With this notation, the fol-
lowing scenarios achieve full branch coverage in the example:

(A, B1, C, D, E), (A, B2, C, F, E), (A, B3, C, F, E), (A, B3)

However, the first two scenarios that contain the variants B1 and B2 become invalid if
only variant B3 is realized in the application under consideration. Unfortunately, the re-
maining scenarios (A, B3, C, F, E) and (A, B3) do not cover all the branches of the activ-
ity diagram. Therefore, the original branch coverage criterion must be extended for the
use within software product line engineering.

Technique for the Derivation of Domain Test Case Scenarios. The extension of the origi-
nal branch coverage criterion has led to the following definition of the criterion: “For each
application that can be derived from the domain artifacts, each branch of the activity dia-
grams where the variability has been bound must be covered by at least one test case sce-
nario.” To achieve this coverage, the derivation of domain test case scenarios is performed
in two steps. In the first step, domain test case scenarios are derived in such a way that
each branch that does not represent an optional variant is covered at least once. For all
other branches placeholders are inserted. In the second step, the domain test case scenar-
ios are supplemented by adding the optional variants of a variation point. All branches of
all variants must be covered. If necessary, additional scenarios have to be developed.

Fig. 13.8. Diagram including variability in only one branch of the control flow

488 A. Reuys et al.

<<VP>>

D1 D2

E

B C

A

D3

Optional branch:
Variant 1

Optional branch:
Variant 2

Variation
Point 1
Coexisting(1..2)

The extended branch coverage criterion, which is achieved by this two-step technique,
can be illustrated with the example in Fig. 13.8. The example shows the activity diagram
for Use Case 2 (from Fig. 13.6). As it can be observed, the activity diagram contains one
variation point in one of its branches. To reflect the occurrence of variation points within
scenarios, the compact scenario notation from above is extended. Variation points are
specified by sets. To the closing curly braces of each set, the identifier of the variation
point is added as a subscript. Within these sets, the possible variants of the variation
points are depicted by vectors that contain the actual activities (scenario steps) of the vari-
ant. Again, the closing brace of each vector is annotated with the respective name of the
variant as a subscript.

Applying the first step to the example results in the following test case scenarios:

(A, B, E), (A, C, {}VP1, E)

The first scenario represents a scenario without variability. It can be reused without any
modification in the further activities of application testing. In the second scenario, the
possible variants are represented by their variation point as a placeholder. After applying
the second step, the following test case scenarios result:

(A, B, E), (A, C, {(D1)V1, (D2, D3)V2}VP1, E)

The second test case scenario still contains variability, which has to be bound in appli-
cation engineering to derive concrete test case scenarios.

If a decision point exists between the activities of a variant (e.g., assuming that in the
above example, there was an additional decision point between D2 and D3 and a further
branch to a hypothetical activity D4), additional test case scenarios have to be specified.
These have to consider the different decisions that can be taken at the respective decision
point.

Representation of Domain Test Case Scenarios by Sequence Diagrams. A more detailed
representation of test case scenarios is necessary when pre- and postconditions of test
cases should be described, and the expected test results should be annotated for the differ-
ent steps of the scenario. We have chosen the UML’s sequence diagram notation for this
purpose.

Using the segmentation mechanism, all possible variants of a test case scenario are rep-
resented in one single sequence diagram. The advantage of the segmentation mechanism
is that each possible test case scenario for a specific application can be directly derived
from such a “segmented” sequence diagram.

With the fragmentation mechanism, the domain test case scenario and its variability are
described by more than one sequence diagram. In contrast to the segmentation mecha-
nism, each possible variant is represented by exactly one sequence diagram. A disadvan-
tage of this mechanism is that for deriving a test case scenario for a specific application,
additional information is necessary. It is important to know, which fragments can be com-
bined to a meaningful test case scenario. This information has to be described in separate
documents. The advantage of the fragmentation mechanism is the possibility to reuse
variants separately in different test case scenarios.

[10, 12].
for expressing variability in these diagrams exist: (1) segmentation and (2) fragmentation

To represent a test case scenario by a sequence diagram, two different possibilities

13 The ScenTED Method for Testing Software Product Lines 489

As a conclusion, both mechanisms can be useful when representing domain test case
scenarios. Often, a combination of both mechanisms is appropriate. Different cases can be
identified:

– In general, the segmentation mechanism is used, because test case scenarios for spe-
cific applications in application testing can be derived more easily and no additional in-
formation has to be documented.

– If a test case scenario includes too many possible variants, the fragmentation mecha-
nism should be used. As the segmentation mechanism describes all possible variants in
one single diagram, this diagram might become too complex or unreadable for many
variants. The number of possible variants from which on the fragmentation mechanism
should be used varied from project to project, as it depends on different influences, e.g.,
the number of interactions of a variant.

– The fragmentation mechanism should normally be used to specify the scenario steps
that stem from pre- and postconditions of a domain use case scenario. The conditions
are described by individual scenarios. Therefore, each one can easily be represented by
a fragment, and thus the conditions can be reused for different test case scenarios.

Fig. 13.9. Example of a domain test case scenario

Figure 13.9 shows an example of a test case scenario that is represented by a sequence
diagram using the segmentation mechanism. Additional test information (e.g., expected

490 A. Reuys et al.

: Actor System

A

C

(V1.1) D1

(V1.2) D2

(V1.2) D3

E

Variation
Point 1

Additional
Test Info A

Additional
Test Info

Additional
Test Info C

Additional
Test Info D2

Additional
Test Info D1

Additional
Test Info D3

Additional
Test Info E

Additional
Test Info

Additional
Test Info

Additional
Test Info

Additional
Test Info

Additional
Test Info

Pre A

Pre B

results) is annotated by comments for each of the interactions. Accordingly, the variability
within the sequence diagram is represented by annotations. The example contains the
variation point and the two variants of the test case scenario (A, C, {(D1)V1, (D2,
D3)V2}VP1, E), which has been derived from the activity diagram in Fig. 13.8. All interac-
tions of the two possible variants were transferred to the sequence diagram and in both
cases marked by the name of the variant. A comment for the variation point identifies the
variable part. The variation point enables the traceability to the associated use case, since
the variation point is clearly identifiable by its name. The precondition is considered by
two additional interactions Pre A and Pre B in the diagram.

The activity DS2 of the ScenTED method derives test case scenarios with the help of
(1) the activity diagrams extended by variability aspects, (2) the extended branch coverage
criterion, and (3) the associated two-stage coverage technique. These test case scenarios
serve as a starting point for the further test case derivation for system testing of specific
applications. The traceability link between domain use case scenarios and the domain test
case scenarios is called Link_DS2.

13.3.2 Activities for Integration Testing

In this section, the activities of the ScenTED method that are performed for deriving
domain integration test case scenarios are presented. These integration test activities are
an extension of the activities of the above system test method. In these activities, inter-
actions between components are considered in addition to the interactions between a user
and the system. The component interactions are described in architecture scenarios, from
which test case scenarios that contain component interactions are derived. The effects of
different forms of integration strategies (i.e., how to incrementally construct sub-systems
from smaller ones or components) and the additional variability that is contained in
domain architecture models (e.g., the alternative choice of components for realizing a
similar function) will be dealt with in future work.

DI1: Development of Domain Architecture Scenarios
DI2: Derivation of Domain Integration Test Case

Domain
Engineering

Artifacts

Use Case
Scenario

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Use Case

DI1 DI2

Fig. 13.10. Overview of the activities for deriving domain integration test case scenarios

13 The ScenTED Method for Testing Software Product Lines 491

Figure 13.10 shows an overview of ScenTED’s integration test activities, which are:

DI1: Development of Domain Architecture Scenarios

An architecture scenario describes the interactions between users and the system components
as well as the interactions between the individual components. The domain architecture scena-
rios are derived by refining the interactions that have been defined in the domain use case sce-
narios and which have been created in the activity DS1 of the ScenTED method (see Sect.
13.3.1). Therefore, the components of the system have to be known. The required information
is found in the architecture configuration (see Fig. 13.10).

Analogous to the derivation of domain test case scenarios in system testing, the
ScenTED method considers variation points and variants in the domain use case scenarios
when deriving domain architecture scenarios. This implies a further variability in scenar-
ios as some components might only have to be considered if they take part in an interac-
tion.

For the development of the domain architecture scenarios, the interactions of the do-
main use case scenarios and the component information from the architecture configura-
tion are merged. At this point, the interactions between components have to be known.
Therefore, the interactions that have been described in the domain use case scenarios are
augmented by adding these additional interactions.

Fig. 13.11. Abstract example of a domain architecture scenario

Figure 13.11 shows a domain architecture scenario. In this example, the sequence

(A, C, {(D1)V1, (D2, D3)V2}VP1, E)

is realized by components X and Y. Like domain system test case scenarios, sequence
diagrams that include variability information are used for the representation of the domain
integration test case scenarios (see Sect. 13.3.1). In the example, it can be observed that
component Y is only necessary for variant 1.1 (as annotated by a respective comment).

492 A. Reuys et al.

: Actor :X :Y

Variation
Point 1

A

C

(V1.2) D2

(V1.2) D3

E

(V1.1) D1

only for
necessary
V1.1

The domain architecture scenarios that are developed in activity DI1 form the basis for
the derivation of domain integration test case scenarios. In this step, two traceability links
are generated. The first link connects the domain use case scenarios and the domain archi-
tecture scenarios and is called Link_DI1a. The second link that is created is called
Link_DI1b and it connects the domain architecture configuration and the domain architec-
ture scenarios. In this activity, two traceability links are recorded, because two artifacts
have served as a starting point for developing architecture scenarios.

DI2: Derivation of Domain Integration Test Case Scenarios

Activity DI2 of the ScenTED method derives domain integration test case scenarios from
domain architecture scenarios. The approach and the employed representations correspond
to activity DS2 of the ScenTED method, in which domain system test case scenarios were
derived (Sect. 13.3.1). The main difference lies in the additional consideration of the in-
teractions between system components. The refinement that is performed by this activity
again preserves the variation points by transferring them to the domain integration test
case scenarios. Additional information and additional interactions for preconditions and
postconditions of the use cases are supplemented. The traceability link that is generated in
activity DI2 connects the domain architecture scenarios and the domain integration test
case scenarios. It is called Link_DI2.

13.4 ScenTED in Application Engineering

Application testing has to ensure that the application derived from the product line fulfills
the specified application requirements. On the one hand, the application requirements re-
flect the wishes (or needs) of the customers. On the other hand, these requirements must
not violate the dependencies between variants and variation points defined in the domain
requirements. The creation of application test cases is realized by considering these two
aspects.

The efficiency of application testing can be improved if a structured reuse of former
application test artifacts takes place. If a former application has bound a set of identical
variants, some of test case scenarios that have already been derived for this application
might be reused. The dependencies between the domain and application artifacts must be
recorded to enable such a structured reuse. Based on these dependencies, a tester can iden-
tify reusable test artifacts and can incorporate them into the test set for the new applica-
tion.

The goal of this section is to give advice on how to test applications that stem from a
software product line. The application testing process can be separated into three activities
that can be (and usually are) interwoven:

1. How to create application test case artifacts to test the functional correctness
of the application (Sects. 13.4.1 and 13.4.2).

2. How to ensure that customer specific applications do not violate the depend-
encies defined during domain engineering (Sect. 13.4.3).

13 The ScenTED Method for Testing Software Product Lines 493

3. How to make product-specific test artifacts reusable and how to systemati-
cally reuse them (Sect. 13.4.4).

The first activity describes how application test artifacts are derived from domain test
artifacts. To ensure the systematic reuse of these artifacts, a tester has to consider the rela-
tion between application-specific requirements and the specified variants in the domain
model. Three different cases of such a relation can be identified:

1. The application-specific requirements represent a subset of the defined do-
main variants: The application requirements that are not part of the common
functionality are represented by variants. The domain artifacts that contain
the variants have to be determined first. The application use case scenarios
and application test case scenarios are generated based on the corresponding
domain artifacts.

2. The customer requires specific adaptations of a use case: The domain arti-
facts are used as a basis and are then changed according to the specific cus-
tomer requirements.

3.
New application-specific use case scenarios and test case scenarios have to
be created in this case.

All of these tasks are performed in application system testing (AS) as well as in appli-
cation integration testing (AI) (see Sects. 13.4.1 and 13.4.2).

13.4.1 Creating Application Test Artifacts for System Testing

For each of the three cases described above, different approaches for creating application
test case scenarios have to be chosen. These are (in the order of the above cases):

AS1: Create Application Test Case Scenarios by Reuse
AS2: Adapting Application System Testing Artifacts
AS3: Considering New Customer Requirements

AS1: Create Application Test Case Scenarios by Reuse

If the application-specific requirements represent a subset of the defined domain variants,
application test case scenarios can be created by reusing domain test case scenarios.

Four activities are performed in the ScenTED method to enable such a reuse process
(see Fig. 13.12):

AS1.1: Identification of the domain use case scenarios
AS1.2: Derivation of the application use case scenarios
AS1.3: Identification of the domain test case scenarios
AS1.4: Derivation of the application-specific test case scenarios

494 A. Reuys et al.

Another case is that a customer requires new functionality in his application.

Application
Engineering

Use Case

Use Case
Scenario

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Use Case Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Domain
Engineering

Customer
Requirements

Use Case
Scenario

AS1.4

AS0

AS1.1

AS1.2

AS1.3

Creation
Traceability

Fig. 13.12. Create application system test case scenarios by reuse

AS1.1: Identification of the Domain Use Case Scenarios. Based on the domain use cases,
the corresponding domain use case scenarios can be identified. These were created during
the first step of domain system testing (DS1) and are retrieved by following the traceabi-
lity link Link_DS1.

As has been explained above, the domain use case scenarios are specified as activity
diagrams. An example is shown in the right half of Fig. 13.6. This example presents
domain use case scenarios, including a variation point with three variants. Two of the
three variants may coexist, but one variant is mandatory. Not more than two of the three
variants may be included in the application.

AS1.2: Derivation of the Application Use Case Scenarios. In this activity, the domain use
case scenarios, more precisely the domain activity diagram, is refined for the desired ap-
plication. The application use case scenario model is specified as an activity diagram and
represents the application’s functionality. The common activities that are described in the
domain activity diagram do not have to be refined and are transferred into the application
model without any changes. All variants must be examined whether they are part of the
application or not. The variation point is transformed into a regular decision. Where the
variants that are not needed are left out of the application model, the variants that have
been selected for the application are added as regular activities.

In the example of Fig. 13.13, only the two variants B1 and B3 are chosen for the con-
sidered application, and therefore the application activity diagram is created accordingly
(see right hand side of the figure).

During the activity AS1.2, the traceability link Link_AS1.2 between the domain activ-
ity diagram and the application activity diagram is created.

13 The ScenTED Method for Testing Software Product Lines 495

Artifacts

Artifacts

a) domain use case scenario model b) application use case scenario model

Link_AS1.2

A

B1 B2 B3

D

E

<<VP>>
Optional Branch:
Variant 1

Optional Branch:
Variant 2

Mandatory Branch:
Variant 3

Variation Point 1:
Co-Existing (1..2)

C

F

A

B1 B3

D

E

C

F

Fig. 13.13. From the domain to the application model – selection of variants

Domain Use Case Scenarios Domain System Test Case Scenarios

Link_DS2

Link_D
S2

Link_D
S2

: Actor System

A

A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2

(V1.3) B3

(V1.3) B3

Variation
Point 1

C

C

D

D

E

E

: Actor System

Variation
Point 1

A

A

(V1.3) B3

(V1.3) B3

: Actor System

Variation
Point 1

A

A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2

(V1.3) B3

(V1.3) B3

C

C

F

F

E

E

A

B1 B2 B3

D

E

<<VP>>
Optional Branch:
Variant 1

Optional Branch:
Variant 2

Mandatory Branch:
Variant 3

Variation Point 1:
Co-Existing (1..2)

C

F

Fig. 13.14. Domain use case scenarios and system test case scenarios

496 A. Reuys et al.

AS1.3: Identification of the Domain Test Case Scenarios. The domain test case scenarios
have been derived from the domain activity diagram that represents the use case scenarios.
Each domain activity diagram is related to n test case scenarios via the traceability link
Link_DS2. This trace link can now be used to identify the domain test case scenarios.

In the example, three domain test case scenarios are produced for the domain use case
scenarios (modeled by an activity diagram shown on the left-hand side of Fig. 13.14). The
domain test case scenarios that preserve the variability are shown on the right-hand side of
Fig. 13.14.

AS1.4: Derivation of Application Test Case Scenarios. The activity AS1.4 describes how
the application-specific test case scenarios are assembled from the domain artifacts. The
domain test case scenarios that have been retrieved in the previous activity are used as in-

Application Use Case Scenarios Application System Test Case Scenarios

Domain System Test Case Scenarios

: Actor
System

A

A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2

(V1.3) B3

(V1.3) B3

Variation
Point 1

C

C

D
D
E
E

: Actor
System

Variation
Point 1

A

A

(V1.3) B3

(V1.3) B3

: Actor
System

Variation
Point 1

A

A

(V1.1) B1
(V1.1) B1

(V1.2) B2
(V1.2) B2

(V1.3) B3

(V1.3) B3

C

C

F
F
E

E

: Actor
System

A

A
(V1.1) B1

(V1.1) B1

C

C

D

D

: Actor
System

A
A

(V1.3) B3

(V1.3) B3

C

C

F

F

: Actor
System

A

A

(V1.3) B3

(V1.3) B3

E

E
E
E

A

B3

E

Variation
Point 1

Variation
Point 1

C

D F

B1

Fig. 13.15. Creating application test case scenarios

13 The ScenTED Method for Testing Software Product Lines 497

put. As the domain test case scenarios contain variability, this variability has to be bound
to define the application-specific test case scenarios. This is done based on the information
about which variants are desired by the customer. Only the variants that are desired by the
customer are incorporated into the application test case scenarios. We have used the seg-
mentation strategy to describe variability in the domain test case scenarios. Therefore,
creating application test case scenarios from the domain artifacts is performed by removing
all the variants that are not realized in the application.

two domain test case scenarios (because it is not desired by the customer). Then, the two
remaining variants are distributed over the three domain test case scenarios, e.g., B1 is
kept in the first scenario, whereas B3 remains in the second and third scenarios. Conse-
quently, the variability has successfully been bound in the application use case scenarios.

When the application test case scenarios are assembled from the domain test case sce-
narios, the question arises as to how many application test case scenarios have to be
created, if we assume that there was only one variation point of which m variants had been
realized and that there were n domain test case scenarios. With these assumptions, three
different cases to cover all branches in the application test case scenarios can be identi-
fied:

– n = m: If there is an equal number of chosen variants and domain test case scenarios,
then the variants are distributed over the test case scenarios. The number of application
test case scenarios is also equal to the domain test case scenarios.

– m < n: If there are less variants than domain test case scenarios, the chosen variants
may be used more than once in the test case scenarios. Each test case uses one of the
realized variants and all realized variants are part of the test case scenarios. The number
of application test case scenarios is equal to the number of domain test case scenarios.

– m > n: If there are more chosen variants than domain test case scenarios, the amount of
domain test case scenarios is insufficient, because not all variants can be tested. Addi-
tional scenarios have to be derived. The same domain test case scenarios have to be
used for different variants (see Fig. 13.16). The number of application test case scena-
rios is equal to the chosen variants incorporated into the application.

Domain System Test Case Scenario

A

B1 B2

<<VP>>

Optional Branch:
Variant 1

Optional Branch:
Variant 2Variation Point 1:

Co-Existing (1..2)

C
: Actor

System

A

A

(V1.2) B2

(V1.2) B2

C
C

: Actor
System

A

A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2

C
C

Variation
Point 1

: Actor
System

A

A

(V1.1) B1

(V1.1) B1

C
C

Application System Test Case Scenarios

Bind V1.1 &
V1.2

Fig. 13.16. Using domain test case scenarios for a set of application test case scenarios

498 A. Reuys et al.

In Fig. 13.15, an example of this activity is shown. The variant B2 is deleted from the

If more than one variation point is contained within the diagrams, the determination of
the required test cases is more complicated as the dependencies between the different
kinds of variants (optional, mandatory, etc.) and the branch coverage criterion have to be
considered.

The activities AS1.1–AS1.4 allow the derivation of application-specific test artifacts
from previously created domain artifacts. However, this is not always the case, as a cus-
tomer might wish to adapt the application to his specific needs (which are not matched by
the existing domain artifacts).

AS2: Adapting Application System Testing Artifacts

As introduced earlier in this book, platform-based product line development (e.g., handy
product line) and mass customization product lines (e.g., radiology systems for hospitals)
exist. In the latter case, the customer may not only select variants from the domain model
(which is hopefully most often the case to reduce effort), but also ask for specific changes
to adapt the software to his specific needs. This change in requirements leads to changes
in use cases and therefore requires adaptations of the test artifacts. One can distinguish
between the following two basic forms of such changes:

– The customer adds functionality
– The customer deletes functionality

Another case, the modification of functionality, can be mapped to a respective se-
quence of adding and deletion of functionality. The aspect whether the change occurs in
common or variant functionality and its implications to the use case model may be inter-
esting. However, this is an advanced aspect, which should be dealt with in requirements
engineering.

Application
Engineering

Use Case

Use Case
Scenario

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Use Case Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Domain
Engineering

Customer
Requirements

Use Case
Scenario

AS2.2

AS2.1

Fig. 13.17. Adapting application system test artifacts

Artifacts

Artifacts

13 The ScenTED Method for Testing Software Product Lines 499

For the following discussions, we use the example of a variant that has been enriched
in its functionality. This fact is identified on the application use case level. The original
domain use case is known. When the effected domain and application use cases are
known, two activities are needed to incorporate the change into the test artifacts (see Fig.
13.17):

AS2.1: Adaptation of the application use case scenarios
AS2.2: Adaptation of the application test case scenarios

AS2.1: Adaptation to the Application Use Case Scenarios. The adaptation of application
specific test cases requires the creation of application specific use case scenarios first.

The domain activity diagram that has been identified in step AS1.1 (see above) is re-
trieved as a template for the application use case scenarios. The chosen variants from the
customer selection are incorporated as described in step AS1.2. The key activity in this ac-
tivity is the adaptation to the activity diagram to reflect the desired changes in functional-
ity. The place where the additional functionality has to be introduced into this model is

As an example (see Fig. 13.18), the customer selects the variants B1 and B3, but the
functionality B1 shall be extended with the functionality BA. The result is an adapted set
of application use case scenarios.

Fig. 13.18. Changes in application specific control flow

500 A. Reuys et al.

identified and the required activities are inserted and deleted respectively. The dependency
between the originating domain use case scenario model and the application model is
recorded in a traceability link Link_AS2.1 for later use.

Link_AS2.1

Domain Use Case Scenarios Application Use Case Scenarios

A

B1 B2 B3

D

E

<<VP>>
Optional Branch:
Variant 1

Optional Branch:
Variant 2

Mandatory Branch:
Variant 3

Variation Point 1:
Co-Existing (1..2)

C

F

A

B1

B3

D

E

C

F

BA

Application Use Case Scenarios

Domain System Test Case Scenarios

Application System Test Case Scenarios

: Actor System

A

A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2

(V1.3) B3

(V1.3) B3

Variation
Point 1

C

C

D

D

: Actor System

Variation
Point 1

A

A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2

(V1.3) B3

(V1.3) B3

C

C

F

F

: Actor System

Variation
Point 1

A

A

(V1.3) B3

(V1.3) B3

: Actor System

A

A

(V1.1) B1
(V1.1) B1

BA
BA

C
C

: Actor System

A

A

(V1.3) B3

(V1.3) B3

F

F
E

E

C

C

: Actor System

A

A

(V1.3) B3

(V1.3) B3

A

B1
B3

D

E

C

F

BA

E

E

E
E

D
D

E
E

Fig. 13.19. Changes in application specific test case scenarios

AS2.2: Adaptation of the Application Test Case Scenarios. The application use case sce-
narios are used as templates for defining the application test case scenarios. The initial
steps to create the application test case scenarios are identical to the steps that have been
described for activities AS1.3 and AS1.4. However, after these steps, the application test
case scenario is adapted, because the changed functionality has to be reflected in the sce-
narios.

Figure 13.19 shows an example of such an adaptation. The application-specific activity
diagram is shown on the left-hand side of Fig. 13.19, the domain system test case scenar-
ios (retrieved via the Link_DS2) are shown in the top of the figure. As has been explained,
both models serve as input for creating the application-specific system test case scenarios.
The application test case scenarios that contain the variant B1 are extended with the addi-
tional functionality BA.

AS3: Considering New Customer Requirements

Customers can add new requirements besides adapting existing ones. They can simply add
new functionality by introducing new use cases. Consequently, the testing activities must
support that. Two activities are necessary to derive application test case scenarios from
“new” application use cases (see Fig. 13.20):

13 The ScenTED Method for Testing Software Product Lines 501

AS3.1: Create new application use case scenarios
AS3.2: Derive new application test case scenarios

The activity AS3.1 is similar to the activity DS1 (see Sect. 13.3.1). In fact, this activity
is even easier, as no variability is included in the use cases. During this creation, the de-
pendency is recorded. An activity diagram that must be tested is produced as result.

Application
Engineering

Use Case

Use Case
Scenario

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Use Case Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Domain
Engineering

Customer
Requirements

Use Case
Scenario

AS3.2

AS3.1

Fig. 13.20. Deriving new application system test artifacts

The activity AS3.2 is similar to the activity DS2 (see Sect. 13.3.1). Again, this activity
is easier, because the traditional form of branch coverage can be applied.

Summarizing, this task consists of two previously described steps. If another customer
requires the same enhancements, may be the created artifacts should be made reusable by
transferring them to domain models. In this case additional activities are necessary. These
activities are not part of this work.

13.4.2 Creating Application Test Artifacts for Integration Testing

For integration testing, we assume that the corresponding domain and application use case
scenarios from system testing exist. The same constraints on the form of domain integra-
tion testing that have been explained in Sect. 13.3.2 accordingly hold for application inte-
gration testing.

Following the three different approaches for creating application test case scenarios in
system testing, the following three approaches are possible in integration testing:

AI1: Creating Application Architecture Scenarios by Reuse
AI2: Adapting Application Integration Testing Artifacts
AI3: Considering New Customer Requirements

502 A. Reuys et al.

Artifacts

Artifacts

AI1: Creating Application Architecture Scenarios by Reuse

After the customer has selected the desired functionality, the affected domain architecture
scenarios can be identified. Based upon these domain architecture scenarios, the applica-
tion-specific architecture scenarios can be created. Four steps are needed to derive appli-
cation-specific architecture scenarios from the domain architecture scenarios (see Fig.
13.21):

AI1.1: Identification of domain architecture scenarios
AI1.2: Derivation of the application architecture scenarios
AI1.3: Identification of domain integration test case scenarios
AI1.4: Derivation of the application integration test case scenarios

Application
Engineering

Artifacts

Use Case

Use Case
Scenario

Architecture
Configuration

Test Case
Design

Use Case Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Domain
Engineering

Artifacts

Customer
Requirements

Use Case
Scenario

AI1.4

AI1.3

AI1.2

AI1.1 Architecture
Scenario

Test Case
Scenario

Fig. 13.21. Creating application integration test scenarios

AI1.1: Identification of Domain Architecture Scenarios. During the creation of the do-
main architecture scenarios in DI1 the traceability links Link_DI1 have been created.
These links are used in this activity to retrieve the domain architecture scenarios for the
respective domain use cases.

In the upper half of Fig. 13.22, the domain architecture scenarios for the previously
shown domain use case scenarios are presented. Three domain architecture scenarios exist.
Both contain variability and a component (Y) that is only needed when the variant B1 is used
within the scenario.

AI1.2: Derivation of the Application Architecture Scenarios. In this activity (AI1.2) the
application-specific architecture scenarios are created. Therefore, the application use case
scenarios are required, which specify what must be included. The domain architecture
scenarios are used as template to simplify the scenario creation. During this step, the vari-
ability in the domain architecture scenarios is removed.

Figure 13.22 shows the example for the derivation of architecture scenarios. The appli-
cation requirement is that the two variants B1 and B3 are included. Three architecture
scenarios are needed. Variant B1 requires component X, therefore three actors are involved

13 The ScenTED Method for Testing Software Product Lines 503

in the first scenario. The variant B3 does not need this component. Therefore, it is not part
of the second and third application test case scenarios.

Application Architecture Scenarios

Domain Architecture Scenarios

Application Use Case Scenarios

: Actor :X :Y

Variation
Point 1

A
A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2
(V1.3) B3

(V1.3) B3

C

C
D

D

(V1.1) Bx1

(V1.1) Bx1

: Actor :X :Y

Variation
Point 1

A
A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2
(V1.3) B3

(V1.3) B3

C
C

F
F

(V1.1) Bx1

(V1.1) Bx1

: Actor :X

Variation
Point 1

A

A

(V1.3) B3

(V1.3) B3

E

E

E
E

: Actor :X :Y
A
A

(V1.1) B1

(V1.1) B1

C

C
D

D

(V1.1) Bx1

(V1.1) Bx1

: Actor :X
A

A

(V1.3) B3

(V1.3) B3

C

C
F

F

: Actor :X
A

A

(V1.3) B3

(V1.3) B3

E

E

E

E

A

B1 B3

D

E

C

F

Fig. 13.22. Example for the derivation of application architecture scenarios

AI1.3: Identification of the Domain Integration Test Case Scenarios. The domain integra-

easily be achieved via the recorded trace links Link_DI2 that have been created during the
domain engineering activity DI2 (see Sect. 13.3.2).

templates. Additional information is needed as described in activity DI2. This additional
information is added and completes the application integration test case scenarios.

AI2: Adapting Application Integration Test Artifacts

This step assumes that the specified, additional functionality stemming from the cus-
tomer can be added within the existing packages and classes. As this activity focuses on
integration testing, no details will be given on how to change the architecture. Instead, it

efficiently. Therefore, the domain integration test case scenarios must be retrieved. This can
tion test case scenarios should be used as a template to create the application scenarios

architecture scenarios are refined to application integration test case scenarios. The domain
integration test case scenarios that have been retrieved in the prior activities are used

AI1.4: Derivation of the Application Integration Test Case Scenarios. The application

504 A. Reuys et al.

is assumed that the changes in architecture have been already incorporated. Furthermore, it is
assumed that the changes have been propagated in the application use case scenarios.

Two steps remain for creating application-specific integration test case scenarios based
on a customer-based change (see Fig. 13.23):

AI2.1: Adapting the application architecture scenarios
AI2.2: Adapting the application integration test case scenarios

Application
Engineering

Artifacts

Use Case

Use Case
Scenario

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Use Case Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Domain
Engineering

Artifacts

Customer
Requirements

Use Case
Scenario

AI2.2

AI2.1

Fig. 13.23. Adapting application integration test artifacts

AI2.1: Adapting the Application Architecture Scenarios. The architecture scenarios have
to be adapted according to the changes in use case scenarios and the architecture. One has
to consider the following cases:

1. The changes imply the deletion of steps in an architecture scenario
2. The changes imply the addition of steps considering existing components
3. The changes imply the addition of steps considering additional components
4. The changes imply the change of components, as the functionality has been

moved from one component to another

Ad 1: The deletion of scenario steps is quite trivial. As a result of this deletion, some
components may not be required for the scenario anymore. These would have to be de-
leted also.

Ad 2: In this case, additional scenario steps have to be introduced. If there are new
component interfaces involved, this information has to be elicited from the architects.

Ad 3: Similar to case 2), additional steps have to be incorporated. These steps involve
at least one component that has previously not been considered in this architecture sce-
nario.

Ad 4: This step can be reduced to cases 1 and 3. First, the steps for the moved func-
tionality are deleted from the scenario. Second, the new component is included and con-
nected with corresponding messages.

13 The ScenTED Method for Testing Software Product Lines 505

As an example for case 3, the additional functionality BA requires a component Z. This
leads to the following application architecture scenario (see Fig. 13.24).

Application Use Case Scenarios Application Architecture Scenarios

Domain Architecture Scenarios

: Actor :X :Y

Variation
Point 1

A
A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2
(V1.3) B3

(V1.3) B3

C

C
D

D

(V1.1) Bx1

(V1.1) Bx1

: Actor :X :Y

Variation
Point 1

A
A

(V1.1) B1

(V1.1) B1

(V1.2) B2

(V1.2) B2
(V1.3) B3

(V1.3) B3
C
C
F
F

(V1.1) Bx1

(V1.1) Bx1

: Actor :X

Variation
Point 1

A

A

(V1.3) B3

(V1.3) B3

A

B1
B3

D

E

C

F

BA

E

E
E

E

: Actor :X :Y :Z
A

A

(V1.1) B1

(V1.1) B1

C
C
D
D

(V1.1) Bx1

(V1.1) Bx1

BA
BAz1

BAz1

BA

: Actor :X
A

A

(V1.3) B3

(V1.3) B3

C
C
F

F

: Actor :X
A

A

(V1.3) B3

(V1.3) B3

E
E

E

E

Fig. 13.24. Adaptation of the application architecture scenarios

AI2.2: Adapting the Application Integration Test Case Scenarios. The change in func-
tionality must be propagated from the application architecture scenario into the applica-
tion integration test case scenario. Therefore, one has to distinguish between the three
cases described in the previous section, but as these have been considered in activity
AI3.2, the changes in the application architecture scenarios have only to be propagated
into the corresponding integration test case scenarios.

AI3: Considering New Customer Requirements

For the effects of new customer requirements, we consider the same assumption as in the
previous section: The additional functionality can be incorporated in existing architecture
elements. Furthermore, we assume that this adaptation in architecture has already been
performed by the software architects.

The propagation of new customer requirements into the application integration tests
artifacts consists of two activities (see Fig. 13.25).

AI3.1: Creating new application architecture scenarios
AI3.2: Derivation of application specific integration test case scenarios

506 A. Reuys et al.

Application
Engineering

Artifacts

Use Case

Use Case
Scenario

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Use Case Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Domain
Engineering

Artifacts

Customer
Requirements

Use Case
Scenario

AI3.1

AI3.2

Fig. 13.25. Deriving new application integration test artifacts

The activity AI3.1 relates to the same cases that have been mentioned in activity AI1.2.
The approach to create the application specific architecture scenarios is therefore identical
to the above approach.

The activity AI3.2 is similar to the activity AI1.4. Its main contribution is to propagate
the application-specific architecture scenarios into the application integration test case
scenarios.

13.4.3 Ensure the Correct Binding

In addition to testing the functionality as has been described above, it has also to be tested,
if the application does not contain more functionality than required and that no variability
dependencies have been violated. The test approaches of the former sections have tested
whether the specified application requirements have been correctly realized within the ap-
plication. Now, we want to test whether an application does not contain more functional-
ity than required.

Testing Excluded Variants

The domain artifacts of a product line contain all the functionality that has been identified
as being relevant for the considered domain. However, the realized applications usually

the more functionality an application contains, the higher its price can be chosen (e.g.,
community editions of a software package vs. the developer editions). From the custom-
ers’ point of view, only the desired functionally has to be paid and not the extra function-
ality that will never be used by them.

To evaluate if not too much functionality is contained within an application, additional
tests are required within application testing. These are called Variants Absence Tests (VAT).
The special property of these tests is that VAT test cases are passed when the scenarios that

13 The ScenTED Method for Testing Software Product Lines 507

should contain a small portion of the whole functionality. From a company’s perspective,

contain the undesired variants fail when executed with the regular functional tests from
above.

The identification and creation of these absence scenarios is performed as follows (also
see Fig. 13.26):

VAT1: Identification of unused variants
VAT2: Derive variants absence tests

Application
Engineering

Artifacts

Use Case

Use Case
Scenario

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Use Case Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Domain
Engineering

Artifacts

Customer
Requirements

Use Case
Scenario

VAT2

VAT1

Fig. 13.26. Creation of variant absence tests

VAT1: Identification of Unused Variants. Based on the application use case model and the
traceability link Link_AS1.2, one can identify the corresponding domain use case model.
The domain use case model contains all variants of the product line. Therefore, the unused
variants can easily be identified.

Revisiting the example from above, where the customer has chosen B1 and B3 out of
three possible variants (see Fig. 13.27), the step VAT1 leads to the identification of vari-
ant B2.

VAT2: Derive Variant Absence Tests. The activity VAT2 aims at deriving one absence
test for the variants that have not been selected. Therefore, the domain test case scenarios
are retrieved via the traceability link Link_DS2. Based on these domain test case scenar-
ios, one can derive the variant absence tests for the specific application.

Considering the example, a test case has to be created that includes the variant B2. The
first domain system test case scenario is selected and the variant B2 is bound for the vari-
ant absence test. The result can be seen on the bottom right half of Fig. 13.27.

508 A. Reuys et al.

Fig. 13.27. Deriving fail test case scenarios

Ensuring “Co-Existing” and “Alternative” Dependencies

The dependencies between variation points and variants must be observed to reach at an
application with correctly bound variability. The dependency between variation points and
variants can be an alternative or a co-existing relation. Co-existing specifies a maximum
number of variants that can be part of the application, whereas the alternative dependency
limits the maximum number to one.

Checking that the maximum number of variants is not exceeded is performed by compar-
ing the application requirements with the domain requirements. This is a form of review
technique, because the two documents are compared and no execution of the application is
required.

For a comprehensive assurance of quality, additional testing of the correct considera-
tion of these dependencies can be performed with absence tests:

– If the maximum number of variants is not exceeded in the application requirements
document, then the supernumerary variants must be part of the unused variants. This
can be tested with the above variant absence test (VAT).

– If the maximum number of variants is exceeded, then the product derivation has not
been performed correctly. In this case, either the product derivation has to correct the

13 The ScenTED Method for Testing Software Product Lines 509

Domain Use Case Scenarios Application System Fail Test Case Scenario

Domain System Test Case Scenarios

Link_DS2

: Actor System

A
A

(V1.1) B1
(V1.1) B1
(V1.2) B2
(V1.2) B2
(V1.3) B3
(V1.3) B3

Variation
Point 1

C
C
D
D

: Actor System

Variation
Point 1

A
A

(V1.1) B1
(V1.1) B1
(V1.2) B2
(V1.2) B2
(V1.3) B3
(V1.3) B3

C
C
F
F

: Actor System

Variation
Point 1

A
A

(V1.3) B3

(V1.3) B3

: Actor System

A

A

(V1.2) B2

(V1.2) B2

C

C

D

D

E
E

E
E

E

E

A

B1 B2 B3

D

E

<<VP>>
Optional Branch:
Variant 1

Optional Branch:
Variant 2

Mandatory Branch:
Variant 3

Variation Point 1:
Co-Existing (1..2)

C

F

application requirements or the domain model should be adapted to allow the respec-
tive number of variants in the application.

The dependency for the example in Fig. 13.27 is co-existing 1..2. The mandatory vari-
ant B3 is always part of the application. Furthermore, the variant B1 has been chosen that
completes the maximum number of co-existing variants. Therefore, the remaining variant
B2 must not be part of the application. This fact has been tested during the variant absence
tests.

Ensuring “Requires” and “Excludes” Dependencies

Application testing must check that the requires- and excludes-dependencies between
variants and variation points have been observed when deriving the application. The

requires the binding of another variant. The excludes-relation is bidirectional and expresses
that a binding of both variants is not allowed within the same application.

Potential violations can be uncovered by comparing the application requirements and
the domain model. The dependencies between the variants are specified in the domain
model, whereas the variants to be realized are defined in the application requirements
model. Consequently, for each requires- and excludes-dependency in the domain model
its correct observation must be checked in the application.

The requires-dependency will already (implicitly) have been tested within a compre-
hensive system test. If one variant had required another variant and this required variant
had not been bound in the application under test, a fault would have been observed, as the
variant cannot work correctly without the other.

In contrast to that, the excludes-dependency has to be tested explicitly. The reasons for
the introduction of the dependency into the domain models may not have been stated ex-
plicitly (e.g., product management could have decided that two similar variants should
never be offered in the same product). Therefore, binding both variants must not necessar-
ily lead to a fault that could be detected by employing the above test approaches.

13.4.4 Reuse of Application Artifacts

So far, this chapter has shown how domain test case artifacts can be reused during appli-
cation engineering for creating the desired application test artifacts. However, as this deri-
vation still involves manual tasks (e.g., when the artifacts have to be modified to reflect
customer-specific adaptations), one should also try to systematically reuse these applica-
tion test artifacts.

Therefore, the goal is to provide an approach that allows one to identify identical appli-
cation artifacts from an already developed application and reuse them during application
engineering of the new application.

Coming back to our running example, three application test case scenarios have been
created by employing activities AS1.1–AS1.4, and three scenarios have been created by
performing the activities AS 2.1–AS2.2. As the reader can observe, two of the created
scenarios are identical, namely the application test case scenarios containing the former
variant C3.

510 A. Reuys et al.

requires-relation is a unidirectional relation that expresses that the binding of one variant

Two activities are necessary to enable artifact reuse (also see Fig. 13.28):

R1: Prepare for application reuse
R2: Systematically reuse artifacts of former applications

Application
Engineering

Use Case

Use Case
Scenario

Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Use Case Architecture
Configuration

Architecture
Scenario

Test Case
Design

Test Case
Scenario

Domain
Engineering

Customer
Requirements

Use Case
Scenario

R1

R2

R1R1

R2 R2

Fig. 13.28. Artifact reuse

Prepare for Application Reuse

All of the considered test artifacts, more precisely the application use case scenarios, the
application architecture scenarios, and the application (system and integration) test case
scenarios, should be stored in an artifact base. The dependencies between the artifacts

pendencies as it has been explained in the above sections.
Figure 13.29 depicts the traceability structure between the domain and the applica-

tion artifacts. During application testing, the domain variants are bound or domain arti-
facts are adapted. The information about this binding or adaptation has to be captured
in the trace dependencies. Therefore, additional information is attached to each of
these links to record what and how the adaptation has been performed. This is modeled
in Fig. 13.29 by association classes Use Case Scenario Adaptation, Architecture Sce-
nario Adaptation, and Test Case Scenario Adaptation, respectively.

For the application activity diagrams, that information includes the chosen variants,
new activities, deleted activities, new transitions, and deleted transitions. This information
is sufficient for describing the difference between the domain and application use case
scenarios.

For the architecture scenarios and the test case scenarios, also the variant configuration,
the new steps, and the deleted steps are recorded. With that information the application ar-
chitecture scenarios and application test case scenarios and their originating domain arti-
facts can be identified unambiguously.

Artifacts

Artifacts

must be recorded to enable the structured reuse. Trace links are used to record these de-

13 The ScenTED Method for Testing Software Product Lines 511

Fig. 13.29. Traceability structure between domain and application artifacts

Systematically Reuse Artifacts of Former Applications

The defined traceability structure can be used to retrieve similar application artifacts when
needed. Usually, dependency links are stored in a database. Database requests can then be
used to generate the information about similar or identical artifacts. Therefore, the previ-
ously described activities must be extended. Before an application artifact is generated,
one would first search for an identical or similar artifact.

In activity AS1.2, it has to be checked if another application has been built that has
used the same variant configuration. In this case, the attribute VariantConfiguration in-
cludes the same variants as for the application under consideration. It has to be checked if
the available model is useable, e.g., one must ensure that there are no new activities or
branches have been added or existing ones have been deleted.

Consequently, the same observation holds for AS1.4 considering the test case scenar-
ios. Using the value of the attribute VariantConfiguration of the association class Test
Case Scenario Adaptation it has to be verified that the same variants are implemented as
in the intended application. Afterward, the other attributes can be inspected whether they
are empty or adequate.

This procedure does not only work for variants within an application, but also for
adapted artifacts. The step AS2.1 has to inspect the attributes NewActivities, DeletedActiv-
ities, NewTransitions, and DeletedTransitions if the adaptations are the same as for the in-
tended application. Furthermore, the VariantConfiguration must be the same. The same
adaptations and validations have to be made in activity AS2.2.

To summarize, this section has extended the activities within system application to al-
low for the reuse of application artifacts on top of reusing domain artifacts. In an analo-
gous way, the activities of application integration testing are extended.

512 A. Reuys et al.

Use Case Scenario
Adaptation

VariantConfiguration
NewActivities
DeletedActivities
NewTransitions
DeletedTrasitions

Test Case Scenario
Adaptation

VariantConfiguration
NewSteps
DeletedSteps

Domain
Use Case

Domain
Test Case

Domain Use Case
Scenario

Domain Test
Case Scenario

Domain
Configuration

Application
Use Case

ProductDerivation>

Application
Test Case

Application Use
Case Scenario

Application
Configuration

Application Test
Case Scenario

Domain Architecture
Scenario

Application Architecture
Scenario

Architecture Scenario
Adaptation

VariantConfiguration
NewSteps
DeletedSteps

13.5 ScenTED at Siemens Medical Solutions – A Case Study

In this section, the partial validation of the ScenTED method at Siemens Medical Solu-

detailed information is confidential.
First, the software product line development at Siemens Medical Solutions is briefly

described. Then, the objectives of introducing the ScenTED method at Siemens Medical
Solutions are depicted. Finally, the lessons that have been learned in the case study are
presented.

13.5.1 Product Line Development at Siemens Medical Solutions HS

Siemens Medical Solutions HS IM develops software systems for workstations in the
radiology domain. A typical clinical workflow includes the electronic assignment of a
medical examination by the attending physician, the creation of patient images with the
help of a so-called modality (e.g., an X-ray or CT scanner), and the diagnosis of the
patient (see Fig. 13.30). The developed software systems support the registration and
administration of patient and image data. The data are centrally stored on a server.
Image processing is done on client workstations (the so-called workplaces), at which
the diagnoses of the images are performed by radiologists.

Fig. 13.30. Basic clinical workflow [7]

The variability of the product line concerns the workplaces as well as different RIS
(Radiology Information System) alternatives. The focus of this case study is on the differ-
ent workplaces. Several workplaces are developed based on the same development docu-
ments (requirements, architecture, and code). The workplaces have a varying functionality
(possibilities of image editing) as well as variable nonfunctional properties (support of

13 The ScenTED Method for Testing Software Product Lines 513

tions HS IM is presented [18,19]. The validation is only shown in a shortened way. More

high-end and low-end hardware). This product line is a closed one, which means that all
products that will ever be derived for this product line are known beforehand. To put it
concretely, this means that Siemens Medical Solutions develops three different work-
places based on common documents, architecture, and code.

13.5.2 Objectives of the ScenTED Introduction

ScenTED was introduced at Siemens Medical Solutions to achieve two objectives. First,
ScenTED is supposed to support the handling of variability in requirements documents
and test cases to allow for the systematic reuse of these artifacts. Second, an efficient
traceability of use cases to test cases will be achieved by ScenTED, thus providing a con-
sistent change management. Before the introduction of ScenTED, the derivation of test
cases was based on textual specifications of the requirements. If requirements changed,
there was no chance to identify the test cases that had to be customized without relying on
the help of experts.

To evaluate the achievement of these two goals, two hypotheses have been formulated
for this case study:

– Hypothesis H1: The ScenTED method supports the systematic reuse of test cases
within product line development.

– Hypothesis H2: Test cases that are derived by the ScenTED method improve the trace-
ability.

13.5.3 Lessons Learned

During the introduction of the ScenTED method, further interesting observations consid-
ering the testing of product lines were made. These lessons learned are depicted in the fol-
lowing sections.

Lesson 1: Early Validation of Variability is Enabled

Before the introduction of ScenTED, the variability of the radiology products was de-
scribed only implicitly in the textual specifications of the products. Therefore, not all of
the members of the development teams (e.g., product managers, architects, programmers,
or testers) had the same understanding of the assignment of the variable functionalities to
the products. The introduction of the explicit modeling of variability led to a much better
comprehension of the variability among all persons involved. All persons were now able
to check, whether a specific variant should be assigned to a specific product or not. This
supported the validation of the variability.

Lesson 2: Developers Prefer the Product-Oriented Modeling of Variability

Techniques and methods usually have to be customized according to project specific
objectives and the personal skills of the involved persons. During the application of
ScenTED at Siemens Medical Solutions, the modeling of variability has been customized

514 A. Reuys et al.

accordingly. For modeling the variability in activity diagrams (as has been introduced at
the beginning of this chapter), variation points and possible variants were specified inde-
pendent from any concrete product, i.e., depending on the desired functionality of the
product, the required variants were determined in application requirements engineering.
For ScenTED’s application at Siemens, this process has been simplified by identifying the
variants directly with the planned products. In the example in Fig. 13.31, the variants
<<magicSyngo>>, <<mvNG>>, <<genericViewer>> directly relate to the products
magicSyngo, mvNG, and generic Viewer, respectively (we have chosen a slightly differ-
ent notation to make this modification of variability modeling visible). The involved per-
sons are more adept to this way of variability modeling, because the names of the different
products are part of their daily vocabulary and they can more easily associate functionality
with the name of the product. What allows for this modification is the fact that the chosen
product line is closed and all possible variants are known beforehand. If the result of the
application of ScenTED is positive for only three well-known products, the results should
be more positive if more than three products would be derived and the reuse rate is much
higher. The effort to develop the domain test case scenarios would be the same and the
benefit in reuse increases with every additional product. Therefore, no negative impact to
the validation is expected.

loadOptions

openReport

loadTo3D
<<magicSyngo>>

loadToFusion
<<magicSyngo>>

loadToFilming
<<magicSyngo>>

task

loadWithPriors

reportNeeded?

imageCallup
<<magicSyngo, mvNG>>

[ris]

openExamination
(from loadUnload)

[3D]
[filming]

[fusion]

[magicSyngo, mvNG, genericViewer] [magicSyngo]

[noRis]

[yes]

[no]

Fig. 13.31. Domain activity diagram (excerpt from [7])

Lesson 3: Reduction of the Test Effort by Preserving the Variability in the
Test Case Scenarios

As has been noticed before, variability enables the reuse of test case scenarios. A direct
measurement of the testing effort did not make sense in this case study, because of differ-
ent reasons. One reason was that it is always difficult to generalize the results of the meas-
urement of effort because of different knowledge of the involved persons and other
constraints. The main reason was that the involved persons developed the scenarios in

13 The ScenTED Method for Testing Software Product Lines 515

addition to their normal work. The measured effort would have been totally different to
the real effort they needed. To still provide a feeling for the reduction in effort that was
achieved, the number of test cases has been used as an evaluation criterion. Test case sce-
narios have been derived with the modified ScenTED method for seven use cases in the
Siemens case study. Twenty seven domain test case scenarios based on these use cases
have been developed. For the three different kinds of workplaces that are created by
Siemens Medical Solutions, these test case scenarios were reused in the derivation of 63
application test case scenarios. These numbers already show that the reuse approach
was a success, as on average, each domain test case was reused 2.3 times. In other
words, to achieve a test effort reduction, the effort for the development of one domain
test case scenario could have been more than twice as high as the effort of the develop-
ment of one application test case scenario without reuse.

Lesson 4: A Hierarchical Storage of the Test Cases Supports Reuse

The storage of test cases in a suitable and hierarchical way can support the testing of mul-
tiple applications on the same basis. At Siemens Medical Solutions, the hierarchy – prod-
uct – use case – test case scenario – test case – was realized in a test tool.

In the used test tool folders were created for each application. Under these folders other
folders were arranged for the use cases which are realized by the respective application.
The use case folders contain folders for the application use case scenarios. In each folder
of the application use case scenarios, the application test cases are managed. The test
cases differ in the different test case parameters. This hierarchy realizes the traceability.
As soon as a use case has to be tested in a new product, the existing scenario folders of a
prior product (same variability in this use case is assumed) are copied into the new prod-
uct and use case folders of the test tool. The precondition for this is that the refinement
from use cases to test cases is performed in a stepwise fashion and that the assignments of
use cases to products are documented. If the product contains another variant, only com-
mon scenarios are used further on and the additional test cases are derived from the se-
quence diagram.

The storage of test cases in a hierarchical way supports the reuse of test cases, because
for the test of a use case in a new product all test cases of another already tested product
can easily be reused if the variability is bound in the same way.

13.5.4 Summary of Results

The systematic reuse of test cases (see Hypothesis H1) is supported by the ScenTED
method. In the case study the domain test cases were reused 2.3 times on average (see
Lesson 3). Moreover, the hierarchical storage can support the reuse of application test
cases for the test of a new application, if the same variability was bound (see Lesson 4).

ScenTED also improves the traceability (see Hypothesis H2). The people who are in-
volved in the case study modeled the variability by stereotypes of the different products
(see Lesson 2). By this way of modeling and the refinement of use case to test case sce-
narios they associate functionality and requirements to test cases. The refinement of use
cases to test cases is also a prerequisite for the hierarchical storage to reuse application
test cases (see Lesson 4).

516 A. Reuys et al.

The application of ScenTED at Siemens Medical Solutions has found wide acceptance.
The support for validating the variability, the product oriented modeling of variability, and
especially the support of reuse was received most positively. The acceptance of the
ScenTED method was evaluated through a questionnaire that was handed out to nine per-
sons involved in the project. As a general result of the case study, the test engineers have
suggested the ScenTED method to be applied in other departments at Siemens.

Variability is the basic concept that is employed during software product line engineering.
By using the concept of variability, generic artifacts are modeled during domain engineer-
ing, which are then reused during application engineering to derive concrete artifacts.

In this contribution, the ScenTED method has been introduced to systematically sup-
port such a systematic reuse for the purpose of system and integration testing of product
line applications. ScenTED’s activities that allow for developing reusable test artifacts in
domain engineering as well as for reusing artifacts in application engineering have been
described in detail. The conceptual basis of the ScenTED method is a scenario-based ap-
proach for describing requirements as well as test cases.

In domain engineering, domain use case scenarios are developed with ScenTED by
creating or supplementing activity diagrams. The provided domain use case scenarios
serve as starting point for deriving test case scenarios for system and integration testing by
considering an extended branch coverage criterion. For the derivation of integration test
case scenarios, the derivation of architecture scenarios from component interactions is an
additional activity that is supported by ScenTED. These domain test case scenarios can
then be reused during application engineering.

For application engineering, three product line specific issues have been covered by
ScenTED:

1. Structured reuse of test artifacts. The domain test artifacts are reused in ap-
plication engineering to derive test artifacts for testing the common func-
tionality as well as application specific functionality. As most of the product
line’s functionality is common to all derived applications, a relatively high
number of test artifacts can be reused. Specific functionality that is not
common has to be reused in a structured way and not in an ad hoc fashion to
achieve the product line engineering’s goals of efficiency and time-to-
market. Only if new functionality that has not been considered in the domain
artifacts should be realized by an application, new artifacts have to be cre-
ated. For this case, ScenTED supports the efficient derivation of such arti-
facts by a systematic selection and adaptation of existing domain artifacts.

2. Considering dependencies. For each application, it has to be ensured that the
variability of the domain artifacts has been bound correctly. Dependencies
that have been defined during domain engineering must be considered dur-
ing product derivation, and it has to be ensured that these are correctly ob-
served in the application. This also holds for variants that will not be part of

13 The ScenTED Method for Testing Software Product Lines 517

13.6 Conclusions and Future Research

the application. Their absence must be tested, because the incorporation of
such variants can lead to financial losses.

3. Preparing application test artifact reuse. Deriving application test artifacts
still presents some effort. Therefore, reusing these application test artifacts
for their reuse in future applications is a consequent continuation of the
product line idea of design for reuse. It is therefore supported by ScenTED.

test case scenarios on the basis of the overall activity diagram can be performed automati-
cally as well as the binding of variants to derive application test case scenarios.

Our current research plans include the extension of the ScenTED method in several
directions:

First of all, new activities will be added to ScenTED that support the derivation of test
inputs and expected results to extend the test case scenarios to form complete test cases.

In addition, adaptations of traditional integration strategies are evaluated in integration

Further, once an application test case has been identified as a reuse candidate, new
activities for determining whether such a reused test case has to be executed again for the
new application will be added to ScenTED. With such an addition, the redundant
execution of tests can be eliminated, thus leading to a further reduction of test effort.
Finally, nonfunctional (or quality) requirements will be dealt with in the future, and an
analysis of the complexity of the ScenTED is planned.

Acknowledgments
We would like to thank the staff at Siemens Medical Solutions HS IM who contributed to
the case study, especially Helmut Goetz, Frank Rometsch, Jürgen Neumann, Harald
Lauritsch, and Josef Weingärtner. We would also like to thank Andreas Metzger for
suggestions on improving the contribution. Moreover, we gratefully acknowledge the
helpful comments from the reviewers Stefania Gnesi, Timo Käkölä, Patrick Tessier, and
Antti Tevanlinna.

References

for ScenTED’s integration test approach is the consideration of additional variability in

scenarios.

ScenTED has a high potential for automation. For example, the derivation of domain

testing for reflecting product line specific aspects. A further extension that is planned

518 A. Reuys et al.

1. Bertolino, A., Gnesi, S.: PLUTO: a test methodology for product families. In: Software Product-Family
Engineering, ed by van der Linden, F., 5th International Workshop, Siena, Italy, November 2003. Lecture
Notes in Computer Science, vol 3014 (Springer, Berlin Heidelberg New York 2003) pp 181–197

2. Bertolino, A., Gnesi, S.: Use case-based testing of product lines. In: Proceedings of the 9th European Soft-
ware Engineering Conference & 11th SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSM, Helsinki, Finland, September 2003, ed by Inveradi, P. (ACM, New York 2003) pp 355–358

3. Binder, R.V.: Testing Object-Oriented Systems – Models, Patterns, and Tools (Addison-Wesley, Reading,
MA 2000)

the domain architecture (e.g. alternative components) in the derivation of architecture

13 The ScenTED Method for Testing Software Product Lines 519

4. Briand, L., Labiche, Y.: A UML-based approach to system testing. J. Softw. Syst. Model. (SoSyM) 1(1),
10–42 (2002)

5. Cockburn, A.: Writing Effective Use Cases (Addison-Wesley, Reading, MA 2001)
6. Geppert, B., Li, J., Rößler, F., Weiss, D.M.: Towards generating acceptance tests for product lines. In: Soft-

ware Reuse: Methods, Techniques, and Tools, ed by Bosch, J., Krueger, C., 8th International Conference,
ICSR 2004, Madrid, Spain, July 2004. Lecture Notes in Computer Science, vol 3107 (Springer, Berlin
Heidelberg New York 2004) pp 35–48

7. Goetz, H., Kamsties, E., Neumann, J., Pohl, K., Reis, S., Reuys, A., Weingärtner, J.: Testing a product line of
radiology systems at Siemens. In: Proceedings of the 5th Conference on Software Validation for Healthcare
(CSVHC 2005), Düsseldorf, Germany (2005)

8. Halmans, G., Pohl, K.: Communicating the variability of a software product family to customers. J. Softw.
Syst. Model. 2(1), 15–36 (2003)

9. Hartmann, J., Vieira, M., Ruder, A.: UML-based approach for validating product lines. In: Proceedings of the
International Workshop on Software Product Line Testing – SPLiT, Boston, USA, August 2004, ed by
Geppert, B., Krueger, C., Li, J.J, Avaya labs technical report, ALR-2004-031 (2004) pp 58–64

10. Kamsties, E., Pohl, K., Reis, S., Reuys, A.: Testing variabilities in use case models. In: Software Product-
Family Engineering, ed by van der Linden, F., 5th International Workshop, Siena, Italy, November 2003.
Lecture Notes in Computer Science, vol 3014 (Springer, Berlin Heidelberg New York 2003) pp 6–18

11. Kamsties, E., Pohl, K., Reis, S., Reuys, A.: Anforderungsbasiertes Testen. In: Software-Produktlinien –
Methoden, Einführung und Praxis, dpunkt, Heidelberg (in German), ed by Böckle, G., Knauber, P., Pohl, K.,
Schmid, K. (2004) Chapter 10, pp 119–136

12. Kamsties, E., Pohl, K., Reuys, A.: Supporting test case derivation in domain engineering. In: Proceedings of
the 7th Biennial World Conference on Integrated Design and Process Technology, IDPT, Austin, USA, De-
cember 2003), ed by Ertas, A. et al, vol 2 (Society for Design and Process Science, USA 2003)

13. McGregor, J.D.: Testing a software product line. Technical report SEI, CMU/SEI-2001-TR-022 (Software
Engineering Institute, Carnegie Mellon University, USA 2001)

14. Myers, G.J.: The Art of Software Testing (Wiley, New York 1979)
15. Nebut, C., Pickin, S., Le Traon, Y., Jezequel, J.-M.: Reusable test requirements for UML-modeled product

lines. In: Proceeding of the International Workshop on Requirements Engineering for Product Lines, Essen,
Germany, September 2002, ed by Geppert, B., Schmid, K., Technical report, ALR-2002-033 (Avaya Labs,
Basking Ridge 2002) pp 51–56

16. Nebut, C., Fleurey, F., Le Traon, Y., Jézéquel, J.-M.: A requirement-based approach to test product families.
In: Software Product-Family Engineering, ed by van der Linden, F., 5th International Workshop, Siena, Italy,
November 2003. Lecture Notes in Computer Science, vol 3014 (Springer, Berlin Heidelberg New York
2003) pp 198–210

17. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering – Foundations, Principles, and
Techniques (Springer, Berlin Heidelberg New York 2005)

18. Reuys, A., Götz, H., Neumann, J., Weingärtner, J.: Medizintechnik bei Siemens AG Medical Solutions HS
IM. In: Software-Produktlinien – Methoden, Einführung und Praxis, dpunkt, Heidelberg (in German), ed by
Böckle, G., Knauber, P., Pohl, K., Schmid, K. (2004), pp 247–260

19. Reuys, A., Kamsties, E., Pohl, K., Götz, H., Neumann, J., Weingärtner, J.: Testen von Software-
Produktvarianten – Ein Erfahrungsbericht. In: Multikonferenz Wirtschaftsinformatik (in German), MKWI,
Essen, March 2004, ed by Adelsberger, H.H., Eicker, S., Krcmar, H., Pawlowski, J.M., Pohl, K., Rombach,
D., Wulf, V., vol 1 (Akademische, Berlin 2004) pp 244–259

20. Reuys, A., Kamsties, E., Pohl, K., Reis, S.: Model-based system testing of software product families. In:
Advanced Information Systems Engineering, CAiSE 2005, Porto, Portugal, June 2005, ed by Pastor, O.,
Falcao e Cunha, J. Lecture Notes in Computer Science, vol 3520 (Springer, Berlin Heidelberg New York
2005) pp 519–534

21. Reuys, A., Reis, S., Kamsties, E., Pohl, K.: Derivation of domain test scenarios from activity diagrams. In:
Proceedings of the International Workshop on Product Line Engineering: The Early Steps: Planning, Model-
ing, and Managing, PLEES’03, Erfurt, Germany, September 2003, ed by Schmid, K., Geppert, B., IESE-
report no. 139.03/E Fraunhofer IESE 2003, pp 35–41

520 A. Reuys et al.

22. Tevanlinna, A., Taina, J., Kauppinen, R. Product family testing – a survey. ACM SIGSOFT Softw. Eng.
Notes 29(2) (2004)

23. Unified Modeling Language Specification (OMG), Object Management Group Document. http://www.
omg.org/docs/formal/03-03-01.pdf (2003)

24. Winter, M.: Qualitätssicherung für objektorientierte Software – Anforderungsermittlung und Test gegen die
Anforderungsspezifikation (in German). Dissertation, FernUniversität Hagen, 1999

Part 5: Specific Product Line Engineering Issues

Introduction

Part 5 deals with specific product line engineering issues that deepen the coverage of
testing discussed in Part 4 and model-based product line engineering discussed in Chap. 6.
Most importantly, Part 5 probes the transition from the product line assets (i.e., the results
of domain engineering) to actual products under the responsibility of application
engineering. It consists of three chapters:

Chapter 14. Incremental Systems Integration within Multidisciplinary Product Line
Engineering using Configuration Item Evolution Diagrams

Tools

components so that an application engineering organization can integrate these
components into a system. Configuration Management is used to keep track of the
configurations and their variability. Chapter 13 addressed integration and testing of
components. It assumed implicitly that components are available and of sufficiently high
quality to be tested. In practice, this is often not the case as efficient development,
integration and testing of components is difficult due to synchronization problems
between the evolution and delivery of work products from various organizational units
(including those related with mechanical or systems engineering). Chapter 14 explains
how to control the evolution of components and organize their testing with the help of
Configuration Item Evolution Diagrams (CIED). To shorten project throughput time, the
CIED specifies the order in which components evolve and clarifies the relationships
between the work products that form the components and the testing of those work
products. Preliminary validation, comprising two case studies, objective data taken from
management statistics, and interviews, shows the usefulness and applicability of the CIED
in industrial settings.

envisage efficient and effective product development. Chapters 15 and 16 deal with
model-driven product line engineering. Chapter 15 recognizes that there is plenty of
research on modeling variability but product derivation, a complete process of building
products from the product line, has been investigated very little. While Chaps. 5 and 11
deal with deriving application requirements from product line requirements in the front-
end of product line engineering and Chap. 6 discusses, among other issues, the derivation
of complete products (including automatically generated program code) from models

A product line is developed by a domain engineering organization that produces

Both the model-driven development (MDD) and the product line engineering approaches

Chapter 15. Software Product Line Engineering with the UML: Deriving Products
Chapter 16. Evaluation Framework for Model-Driven Product Line Engineering

designed using domain-specific modeling languages, Chapter 15 studies the derivation of
detailed UML designs from which program code could be generated and, specifically, the
formalization of product derivation using UML model transformations. It presents model
transformation algorithms to transform both static and behavioral aspects of the product
line into a specific product and two simple case studies to illustrate the overall process
from the modeling of the product line to the product derivation.

communication, coordination, and collaboration of architects, engineers, and other
stakeholders involved in tasks such as system modeling, variability modeling, model
analysis, model transformation, system derivation, code generation, and model
traceability. How to manage and automate these processes and tasks? No existing tool
fully supports the model-driven product line engineering approach. However, there is an
increasing number of emerging tools that support model-driven development and could
eventually be used for model-driven product line engineering. It can thus be difficult to
know what tool features to look for and what to expect. Chapter 16 relates traditional
model-driven engineering to product line engineering and defines a general framework for
evaluating tools in this area.

522 Part 5: Specific Product Line Engineering Issues

To succeed with model-driven product line engineering, tools are needed to support the

14 Incremental Systems Integration within
Multidisciplinary Product Line Engineering
Using Configuration Item Evolution Diagrams

Abstract

available hardware and software. Configuration Management is used to keep track of the
various configurations and their variability. In practice, efficient development, integration
and testing of components is difficult due to synchronization problems between the
evolution and delivery of work products from the various disciplines. This chapter explains
how to control the evolution of components and organize their testing. It introduces a
Configuration Item Evolution Diagram (CIED) designed for this purpose. The CIED
specifies the order in which components evolve and clarifies the relationships between the
work products that form the components and the testing of those work products, so that
project throughput time can be won. A preliminary validation of the CIED, comprising two
case studies, objective data taken from management statistics, and interviews of three key
people, shows the usefulness and applicability of the CIED in industrial settings.

14.1 Introduction

Projects that develop product lines comprising work products derived from different
disciplines have to integrate those work products. Often, valuable time is lost in the course
of the integration process. During initial integration, faults are found, the root causes of
which have to be traced, which is a time-consuming process. Solving these root causes
often entails discarding work that has been done and reworking what remains. This loss of
time and effort is one reason why many projects end up being late and over budget, if
indeed they get completed at all. Within an organization where product line engineering
takes place, the situation becomes more complicated still, since the organization is dealing
with a number of components that are re-used in various system configurations. While
product line engineering allows for greater flexibility, it also adds to the complexity of
managing and testing components.

E.S. Engelsma

A Product Line is developed by a domain engineering organization that produces
components, so that an application engineering organization can integrate these com-
ponents into a system. The components consist of proprietary and commercially

The current chapter addresses the integration and testing problem by introducing a way
of evolving, integrating and testing work products from various disciplines in a closely
defined and controlled manner. This approach makes early integration and testing of
partly completed products possible. To this end, the Configuration Item Evolution
Diagram (CIED) is introduced. The CIED enables a project crew taken from different
disciplines to synchronize their work products, render these work products testable and
link their deliverables to test activities. The role of testing in the proposed approach is
extended beyond just a final evaluation of achieved quality. It is also used to measure
project progress in terms of objectively realized functionality during the development
process. An additional function of testing is to provide rapid feedback to development, so
that mistakes can be solved with a minimum loss of time. The idea of “testing while
developing” is not new [3]. The extent to which testing is part of project progress
measurement is a new practice.

engineering process in which the commonality and the variability of a product line are
defined and realized. Application Engineering is the product line engineering process in
which the applications of the product line are built by reusing domain artifacts and
exploiting the product line variability.

management of their work products, both in finished form and in intermediate forms, for
the following reasons:

– Application-specific environments may need an early prototype of a configuration for,
e.g., application experiments or compatibility testing with existing products or end-user
protocols.

– Early tests on designated items are used to verify intermediate work products and to get
an early feedback on true project progress. In traditional project management, project
progress is measured using indicators such as “which requirements have been met,”
“which reviews have been passed” and “what code has been generated.” In the
proposed approach, in addition over and above the classical measures, tests are used to
evaluate which functions are actually working as specified. This measure is then used
to assess project progress. This approach ensures far tighter project control than the
classical measures, particularly in an incremental and multidisciplinary development
environment.

– New insights are gained during development. New requirements may emerge, or
technological changes may have to be implemented in cases where a project has a long
throughput time (relative to technology cycles or market influences).

– The business environment may introduce unexpected changes, demanding a flexible
response.

issue. Chapter 13 addresses the issue of how components can be effectively tested in an
organization that produces product lines by reusing test artifacts. It assumes implicitly that
the development work products are:

524

In an organization that develops Product Lines, a distinction is drawn between domain

It is important for the domain engineering organization to be adept at the configuration

The testing of components that are developed in a domain engineering (DE) organization

engineering and application engineering [21]. Domain Engineering is the product line

and reused in an application engineering (AE) organization is a major and recognizable

E.S. Engelsma

– Available to be tested
– Of a sufficiently high quality to make testing a sensible activity to undertake in a real-

world project

In practice, the availability of development work products at the right time, with the
right intermediate functionality, the right performance and with the right quality level is
by no means a given. It is precisely this type of unfounded optimism about the ease of
integration that places projects at risk of falling into the “90% finished trap” described by
Brooks [7]. Therefore, the tool of choice to check actual project progress (besides the
usual quality measures in a project, like reviewed documentation and effort spent) is
testing. Testing ensures that only the functionality that has been verified and validated
(against the Product Requirements to be fulfilled in a certain increment) and that is found
to be correct is declared ready and “transferable” to a customer, or to an archive where it
is baselined. The defined and controlled evolution, integration and testing of these
development work products will be addressed later in this chapter.

The proposed approach can be used to advantage in environments that are
characterized by:

– An organization that uses an integrated design, creation and testing process
– The use of incremental development to make components

A less stringent condition is that there is a clear distinction between domain engineering
and application engineering activities in the organization.

Configuration Management plays a large part in the definition of what is to be
developed.

The proposed approach entails paying special attention to the following issues:

– Defining how the defined Configuration Items evolve over time
– Defining integration moments during development
– Synchronizing testing and work products
– Actively ensuring that the right people have access to the right information

The CIED has been used in the development of Medical Imaging Equipment at Philips
Medical Systems. Comparisons between projects that were executed before the
introduction of the CIED and after the introduction of the CIED brought to light the
characteristics outlined below.

Projects that were run without using the CIED were characterized by the following:

– A high level of initial optimism regarding timing – the project was “right on track”
until testing started

– No (extensive) testing during development of work products
– A high level of independence on the part of the various development disciplines
– A large number of faults, not discovered until after integration
– Integration and testing of the product took (almost) an order of magnitude longer than

expected

14 Incremental Systems Integration within Multidisciplinary Product 525

– Because of this delay, total project time was over budget by more than a factor 2
– A high level of rework and frustration

The projects that used the CIED were characterized by the following:

– Less initial optimism regarding timing
– More time spent initially on making sure everything fitted across the disciplines
– More intermediate testing moments
– More automated regression testing
– Steady progress
– High level of cooperation across disciplines
– Rapid response to unforeseen circumstances
– First projects were over target by only 30% (compared to a factor of 2), and once

experience had been gained, projects were within time and budget

Discussions with representatives from the automobile industry indicate that the kind of
problems encountered when developing the software for a car (specifically fuel injection
systems and cruise control) lend themselves to the approach outlined in this chapter.

– The CIED forms a very good means of communication when decisions about how to

– The CIED gives insight in what tests are performed at what level and therefore can be
used in optimizing testing across the DE and AE activities.

14.2 Configuration Management and Problems with Integration

products during all stages of development and sustainment” [16]. Similar definitions exist

Thinking in terms of management of configurations has been (and continues to be)
extremely useful. From the point of view of a company that designs and creates
functionality involving several development disciplines, a number of problems remain
during integration. In standard Configuration Management practices, the following issues
are ignored:

– How to define and evolve software content along with development in hardware
Mechatronics

526

in [11,14,20,27].

– The CIED forms an ideal interface between domain engineering and application
engineering when discussing delivery of prototypes for testing purposes.

solve errors are needed that cross the boundary between domain engineering and
application engineering.

According to the American Software Technology Support Center, “software configu-
ration management (SCM) is a discipline to manage the evolution of computer program

E.S. Engelsma

Using the CIED is of particular interest to organizations that use product line
engineering because:

14 Incremental Systems Integration within Multidisciplinary Product

– How to integrate the products from these disciplines (during development using a
“bottom-up” of functional integration approach)

– How to test the integrated intermediate products

address the version and configuration control of software (and documentation) files
(including the tools that created these files). This is done by creating items whose content
is controlled for version and configuration. These items are referred to as Configuration
Items (C.I.). While a Configuration Item is an abstract entity, the implementation of a
Configuration Item is always something tangible, like a printed circuit board or a cabinet
or a software carrier. Common SCM practices limit themselves to the question of how the
“containers” of a given technical (software) content can be identified, and do not address
the issue of how to define the content of those containers. They address the names given
to files, how version and configuration numbering is done, and what identification to give
to base lines. SCM may describe a generic set of tests to be executed before files are
allowed to enter the project software archive, but it does not deal with the content of the
files managed in the system – only with the processes surrounding the handling of
the files. SCM facilitates Incremental Development by introducing the base lining
approach (i.e., freezing the content of C.I.s in time) which solves the problem of how to
ensure that there is a stable (and tested!) base to work from for an increment. SCM also
uses workspaces to allow different developers or groups of developers to work in parallel

way, so they can be integrated and tested during development. Otherwise, it is impossible
in practice to test in a sensible and effective incremental manner, avoiding the Big Bang
strategy.

14.2.1 Extensions Needed for SCM

To evolve and integrate C.I.s in the way proposed, a configuration management system
needs to fulfill a number of additional requirements:

1. Synchronize deliveries from the disciplines involved, including test environ-
ments and infra structure

2. Manage the knowledge required to create the work products
3. Adapt the order in which configuration items develop, are integrated and tested

to new situations
4. Manage testability of work products, test environments and test tooling
5. Manage synchronization of development and integration over several projects
6. Manage personal accountability for work products and their quality

In projects that do not meet the requirements listed above, project delays are likely. These
delays are caused by:

1. Misunderstandings, which lead to problems during the integration of components
and hence take time to solve. This is further aggravated by the amount of design and
coding work that has to be redone.

527

[2,15,27,28]. It follows that there is a need to evolve C.I.s in a predefined and controlled

A standard way of implementing software configuration management (SCM) is to

2. Items being tested that were not yet ready for testing. This wastes time, and
requires the unexpected re-planning of test resources. Moreover, faulty
information is generated, as problem reports are written and responded to that
should never have been written in the first place, tying up developers’ time.

The above problems can be overcome with the correct application of a CIED.

Evolution Diagram (CIED)

The content of hardware, mechanical and software C.I.s evolves step by step over time in
a controlled manner. In the following sections, an approach is presented that lays out a
practical, feasible content for each step. It synchronizes the contents of the work products
from the various disciplines involved in the project. It is assumed that hardware and
mechanics use Configuration Management in the same way that software uses it.

The term “synchronizing” entails:

– Communicating about the contents of these steps
– Adjusting the contents of each step for each discipline, so that the needs of other

disciplines are met
– Providing feedback about impact on related disciplines
– Providing feedback about the needs that various disciplines have that need to be met by

other disciplines, and how these needs are addressed

The approach centers on the use of the Configuration Item Evolution Diagram, which
diagrammatically depicts:

– The content of C.I.s as delivered by development
– The technical relationships that are valid within and between the C.I.s
– The integration activities that take place
– The test activities that take place
– The deliverables to customers

14.3.1 Requirements of the Proposed Solution

Requirements for the solution to the problem are as follows:

1. It must be compatible with standard Configuration Management practices as used
in the company. Any changes must be implemented using proper change
management techniques [23].

2. It must be independent of the discipline (HW, SW, Mechatronics) involved.
3. A set of supplier-customer relations between projects (at multiple sites, and

between the DE AE boundaries) must be definable.

528

14.3 Solving the Problems by Using the Configuration Item

E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

4. The relation between development work products and testing must be indicated.
5. It must be applicable in an incremental development environment.
6.
7. It must support multiple configurations.
8. It must help minimize test effort for multiple configurations.
9. It must be communicable.
10. The items in the model must be traceable to requirements, Project Test Plan, test

designs, test reports, as described in the IEEE standards [12].
11. The model must only indicate relations between C.I.s that are technically or

logically necessary.
12. The CIED must be usable as an input for planning sessions.
13. The model should not be seen as a replacement for architecture overviews as

described in tools like Rational Rose and Doors. Whereas the architecture
overview presents the overall system in a finished state, the CIED indicates in
which order it is to be built and tested.

14. The model must be in line with object-oriented development techniques and
object-oriented testing techniques. The use of results of internal tests carried out by
the development groups can save time [18].

14.3.2 Symbols Used in the CIED

A diagram is created using symbols to represent the evolution of Configuration Items, so
that the decisions regarding what to integrate and test can be visualized. It would be ideal
to use UML for this, but we find that these modeling techniques are not yet mature
enough for use in our environment. An extension to this effect for UML would be very
welcome.

The constraints listed in Sect. 14.2 lead to the selection of symbols that are used to
create this diagram. The concepts (and the symbols) that are introduced are the following:

– Integration activit

from are each other’s mirror image. A development activity results in a work product that
adheres to a defined level of quality, coming from a (team of) developer(s), before it is
integrated with other work products and then tested. How each development activity
results in a work product is a discipline responsibility. This shows the first step in
abstraction that is needed to make disciplines synchronize their activities. Each of the

correctness, who can be approached if problems arise. The concepts listed in the bullet list
above are described in more detail below.

529

– dependency indicator
– development activity
– validated-deliverable-to
– validated-deliverable-from

y

For reasons of scalability, the validated-deliverable-to and the validated-deliverable-

activities that lead to a “validated-deliverable-to” has a person responsible for its

– test activity

Modeling at various levels of abstraction must be possible.

Dependency Indicator

the technical or logical necessity between work products. Although a time indication for
planning purposes can (and should) be derived from it, the time aspect is not in itself
made explicit by this Indicator. It is not meant to represent a timing dependency for
subjects like project planning and resource assignment issues. This is because timing
dependencies in a project also depend on a number of other factors, like the assignment of
personnel and the availability of other development resources. While this issue must be
addressed in the project, this can not be done until the technical requirements are clear.
The assignment of project resources takes place later in the project, using more traditional

is depicted as an arrow (Fig. 14.1).

Fig. 14.1. Dependency indicator

The direction of this arrow is defined such that the tip indicates the client of a certain
dependency and the start indicates the previous activity that the client is dependent upon.

Take as an example motor and mechanics assembly that needs software to control its
movements. Successful integration requires the presence of the motor assembly, the

indicates this “must.” Once this “must” is known, project – timing relations and resource
assignment can be worked out.

Development Activity

the project. A work product can be a C.I. in a defined state. The development team itself is
supposed to have executed its discipline tests, like white box testing for a Software
discipline. The team has applied all standard quality actions (code coverage, design
reviews, etc.) needed to achieve a predefined quality level. If a product is the result of
more than one team, this is always indicated by at least two Development Activities and

Depending on the likelihood of faults being made and how great the impact of a fault

tested first by an independent team. The integration manager can decide on this and
communicate his/her decision in the diagram. The likelihood of faults being made is
influenced by both technical and nontechnical factors. Technical factors include the
technology used and the complexity of the algorithms or decision structure in the
software. Nontechnical factors include the maturity of the development team, the location
and the level of competence and experience of the developers.

530

The dependency indicator links the symbols that are used. This indicator makes explicit

methods like Gantt charts [17] and work sheets for individuals. The dependency indicator

A development activity results in a work product from a monodisciplinary team within

an integration activity.

would be, the development activity may be directly linked to an integration activity or

E.S. Engelsma

relevant controlling hardware and at least some software. The dependency indicator

14 Incremental Systems Integration within Multidisciplinary Product

Fig. 14.2. Development activity symbol

The symbol contains a reference to the functionality that has to be made and the team
that will make it. The reference to the functionality includes a description of the level of

contributes. By using this symbol, the diagram helps to clarify what has been delivered for
possible testing (or further integration), so that a clear definition emerges of what is going
to be tested (or integrated). Examples of Development Activities are:

– A prototype for an image sensor chip that gives images with substandard image quality.
– A Sequencer1 board that provides the hardware infrastructure to program all sequences

to be generated.
– A control board with only its HW communication layer working. In this context, a

control board may also have an application layer that provides functions to a user, and
several technical layers translating user input to device-specific instructions. The full
product would be the result of the integration of HW, software drivers and application
layers.

– Part of a Feedback Control Loop with specified behavior, used to adapt (real-time) the
precise characteristics of an X-ray beam to optimize image quality for a specific
patient. The behavior of the Feedback Control Loop is based on knowledge about how
X-ray behaves in a human body and knowledge of the transfer functions of the imaging
subsystem and the X-ray generation system. The technical implementation of the
Feedback Control Loop spans a number of C.I.s, as it measures data from the imaging
subsystem as well as adapting the output parameters of the X-ray generation
subsystem.

Validated-Deliverable-To

transferred to a higher level in the organization. The higher level may entail transferring
from one project to another project or from the DE organization to the AE organization. It
is used:

– To define cross-border deliverables between projects.

1

531

A Sequencer is a device that controls the real-time synchronization of sequences (of State
Changes) in other devices. It may react to synchronization signals that the devices return to it. The
Sequencer referred to controls the X-ray imaging equipment.

– To define cross-border deliverables between domain engineering and application engi-
neering groups.

The development activity symbol is shown in Fig. 14.2.

functionality and the corresponding quality contributed by this development activity. The
development activity also contains a reference to the C.I. (or set of C.I.s) to which it

The validated-deliverable-to indicates that a work product has been validated and can be

Fig. 14.3. Validated-deliverable-to

of a number of C.I.s (this number may be equal to 1) in a defined state, but not necessarily
complete. A C.I. may be simulated. It provides the customer (i.e., the higher level project

nonfunctional requirements implemented) with a known and agreed level of quality. The
end-functionality may be present but not yet guarded against user input errors, or only one
type or algorithm may be selectable, or the processing speed may be lower than in the
final product, and so on.

– An identification (for trace ability purposes)
– A person who is responsible
– A link to requirements that are implemented in this deliverable (using tagging)
– A link to a Validation Report (e.g., IEEE 829-1998 based)
– Some other meta-data (ownership)

It does not have a time or milestone associated with it. It defines the “what” (content in
terms of realized functionality from a technical point of view), not the how or when. In
terms of Configuration Management, this represents a C.I. (or set of C.I.s) in a particular
state. The state indicates the functionality that is supported by a C.I., and the actual level
of quality and performance involved. The C.I.s are considered here in terms of the tests
needed to verify and validate the content of a C.I. From a software configuration
management point of view, there will still be a list of files indicating which files comprise
the used C.I.s at a particular time. Similarly, version control is also required for hardware.

Validated-Deliverable-From

from may be used to look at a project from a subcontractor’s point of view or to look at
DE products from an AE point of view. The way these symbols are connected to the rest

532

or application engineering group) with a defined set of functionality (with agreed

deliverable-from, the dependency indicator emerges from its top, whereas in the case of

The validated-deliverable-to is depicted in Fig. 14.3.

A validated-deliverable-to is usually a combination of software and hardware. It consists

A validated-deliverable-to has

The counterpart of the validated-deliverable-to is the lower-level validated-deliverable-
from. The symbols used for these two concepts are the same. The validated-deliverable-

the validated-deliverable-to, the dependency indicator enters at the bottom.

of the diagram makes the distinction clear and unambiguous. In the case of the validated-

E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

Test Activity

test result reporting, and test incident reporting, plus retesting and regression testing. It is
executed on a known and identified test base, by a more or less independent team of
testers. The level of independence of the test team can be selected as appropriate to the
phase of a project. In practice, if verification takes place while development is still in
progress, it is more effective to have a high level of dependency between developers and
testers, as this generates fast feedback loops. Exploratory testing is a good technique to
use. The level of independence does not become a serious issue until a phase has been
reached in which validation is more important than verification. Experience has shown
that the more closely the proposed way of working with a CIED is followed, the better
testers and developers are able to work together, exchanging valuable information. The
level of cooperation may or may not be an issue, depending on the organization in which
the CIED is introduced. Organizations determined to maintain a strict division between

benefits of the CIED. The integration model discussed in this chapter is used in a
development organization where a high level of integration and cooperation exists
between developers and testers.

Fig. 14.4. Test activity

The symbol contains a reference to the items that must be tested, and to the test designs
and test cases used to execute it. It also holds:

– A reference to test reports that are to be produced
– A reference for test incident reports when the testing is actually executed
– The person or group responsible for test execution

As the activities for testing and the type of test design used are indicated in the Project
Test Plan, a reference to the relevant chapter in the test plan is the most practical. Our
experience is that at the time of writing the Project Test Plan, detailed knowledge about a
certain item may not be precise enough to give the level of detail needed to derive test
designs. This will often be the case in large-scale projects. This problem can be addressed
in one of two ways:

– Work incrementally on new versions of the Project Test Plan
– Write a detailed test plan per increment, referred to as an Increment Test Plan

The right choice depends on the organizations’ ability to work with incremental
documents and the level of abstraction that is preferred for the Project Test Plan. Both

533

development and testing (as suggested by TMAP [22, 26]) will struggle to reap the

products coming from a development activity, namely test preparation, test execution,
A test activity is the complete set of activities needed to test an integrated set of work

The symbol used to represent the test activity is shown in Fig. 14.4.

options have their strengths and weaknesses. What matters most is that a decision
regarding the approach to be taken is made, deployed and adhered to throughout the
running project.

On the basis of the outcome of the test execution, the project manager or management
can decide whether the project is ready to proceed to the next integration phase or whether
rework is needed. The results of the tests provide the project manager with early objective
feedback about the achieved functionality and quality of the product, thereby all but
eliminating the “90% finished” syndrome. [7]

The term “objective” (above) means that tests have been designed using existing test
design techniques and have been reviewed by a body made up of both testers and
designers to give impartial and correct information about the status of a given tested
functionality.

Resource usage is an issue at this point. As not all eventual functionality will be
running on a processor at the time an increment is tested, a process may actually be taking
too much time. However, as it can use a greater amount of processor time than in the end
situation, this may not be evident from the tests (the same is true for memory usage and
other types of resources). Testing at this stage must also make sure that no more than the
allotted resources are actually used.

Integration Activity

deliverables may be:

Its symbol is shown in Fig. 14.5.

Fig. 14.5. Integration activity

The symbol refers to the person responsible for the integration activities (building a
software archive, setting up a test environment, organizing the hardware and software

acts as a summation point for the deliverables that are now about to “see” each other for
the first time. The work in practice consists of:
– Integrating HW and SW
– Making sure archives are in order
– Making sure a test system is in a fit state to be used

534

− The output from a development activity

− The output from a previous test activity
− The output from a validated-deliverable

An integration activity is the work needed to integrate several deliverables. These

− The output from a previous integration activity

needed) and the functionality that is to be realized in this particular integration activity. It

E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

– Ensuring that testers are competent to carry out the testing activities that are to follow
– Ensuring that test interfaces are supplied
– Ensuring that scripting languages are available (where automated testing is used)
– Making sure that regression test sets are available or defined

14.3.3 How the CIED Should be Used in Practice

This section addresses how the symbols described above are used to create a CIED in a
real organization. In order to introduce this approach successfully, the organization must
have a certain level of maturity. In other words, it must have a clearly described and
deployed development process, based on, e.g., IEEE Standards for software development [25].

In addition, the role of Integration Manager must be filled in. The Integration Manager
defines the CIED, makes sure that testability requirements are generated for the design
and acts as Test Manager. He/she writes the test plans and test reports, and may have daily
operational responsibility over the test engineers. The last point is not essential – daily
operational leadership can also be delegated to the leaders of a development team.

Although the CIED approach can be used within the context of many different
Software development lifecycle models, it has by nature more in common with rapid
development models than with the traditional waterfall development model. See [13] for
an extensive discussion of the various development models. It is questionable whether an
organization that works strictly in accordance with the waterfall model will have the
mindset needed to use the CIED. This has not been researched.

The starting situation is that a set of main product requirements is available in (nearly)
completed form. An overall architecture or system design is also available. The minimum
prerequisite is that the requirements and overall architecture must be in a form in which
the experts can make reasonable technical assumptions based on those requirements. It is
also assumed that the product is not completely new. The subject matter is fairly well
understood and something similar to the present functionality has been made before,
though the technological implementation may be completely new and new functionality
may have been added. The above assumption is made because this is the only situation in
which the CIED has been used in practice.

The first goal is to get the different disciplines to give their input in a group session to
enhance common understanding. This process is layered, in that the work starts at a high
level of abstraction, with individuals able to operate at this level. One person, assuming
the role of integration manager, will moderate the meeting and create and distribute the
resulting integration diagrams. Also present are an architect, several designers from the
various disciplines and a test expert. As moderator, the integration manager will invite
the people, make sure that a common goal is defined and generally fulfill all the standard

diagram that he has drawn up beforehand in cooperation with the integration manager.
This is then adapted according to remarks made by the various designers and the test
expert. Ideally, these changes are made “real time” using a setup with a beamer once those
present have agreed that an amendment is valid. The precise way of reaching agreements
will have been outlined in advance by the moderator. Where questions or objections are
raised that cannot be immediately answered, it may be necessary to assign “homework,”

535

tasks of a moderator [9]. The architect shows an initial version of the integration

in which case the moderator has to decide whether the meeting should be postponed or
whether it is advantageous to continue.

Questions and remarks can be made about the following subjects:

– The ground for certain decisions
– Particular behavior at an interface, including possible “side effects”
– The definition of side effects and preconditions
– How a behavior can be tested at this point

All questions and solutions are written down, preferably by a secretary. After a small
number of these sessions, a development and integration strategy will have been developed.

The second goal is for the project manager to define the project milestones, based on
the above development and integration strategy. The project manager defines tasks and
assigns people (or subgroups) to those tasks. He may also draw up more precise planning,
as well as analyzing and addressing risks.

The third goal is to use the diagrams to create common understanding of all relevant
issues for the engineers. The resulting diagrams are deployed in the project organization.
This is done in small groups, where an overview is given to the engineers so that they
understand their position within the project, and where more attention is given to the
details that matter to these particular engineers. This enables engineers to gain a rapid
overview of where their contribution fits in the whole picture and what its importance is to
the overall project progress. More detailed discussions will then take place within
development subgroups.

The fourth goal is to define, clarify and create insight into the subject matter for testers.
They can then design their tests and have a means of knowing when which tests can be
meaningfully run.

14.3.4 Simple Examples of a CIED

In this section, a number of simple combinations of the elements of an integration diagram
are shown and their meanings are discussed. The examples are imaginary (though based
on a realistic technical background) and are used simply to provide the reader with a
“taste” of a CIED. See Fig. 14.6.

Fig. 14.6. A simple example of a CIED

536 E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

Figure 14.6 depicts how two development activities are delivered for integration. A
number indicates the Configuration Item to which these development activities contribute.
CI 12 has version 1 and CI 8 has version 2. A separate document (a configuration plan)
describes what this version of a C.I. contains. In practice, any agreed way of coding and
referencing C.I.s that is found useful can be applied. The two development products are
integrated. A separate plan describes which actions and test models are needed for this
integration action, identified by Int 1. Section 3.5 describes the management of the
documents that are produced. After integration, a working software archive according to
predefined acceptance criteria is transferred to the test phase TP 1. The integration
manager specifies beforehand which type of tests will be run in TP1, having analyzed the
risks involved and the necessary test-depth. These tests are designed by the verification
engineers and reviewed by peers and a designer before being applied. Following
successful completion of the test phase, the product is validated for customer use
(indicated by D1). Incident reports have been solved during this phase. The customer
receives the product plus a transferal document as outlined in step D1 (D = delivery). This
example leads to the introduction of an integration as input for another integration (see
Fig. 11.7).

In this case, there is no external team that tests Int 2 before delivery to Int 3. The C.I.s
1, 5, 8, 12 and 14 with their respective versions are integrated, once initial steps (Int 1 and
Int 2 plus TP 1) have been taken to ensure a good enough quality to start TP 2. The

from a subcontractor. Validation has taken place, so in this diagram no further testing is
done prior to integration.

Fig. 14.7. Integration as input for another integration

537

validated-deliverable-from is then introduced (VDF21). This may be a software package

1. The outcome of balancing the risk for project throughput time against the effort of
additional testing of CI 5/3 has resulted in the decision that it can be transferred
directly to Int 3. A number of reasons may have influenced this decision

considered sufficient
– It may be prohibitively expensive, for whatever reason, to test CI 5 stand-alone
If testing is not carried out because of prohibitive expense, there is a risk for the
organization, and it may be wise to review the architecture or research cheaper test
possibilities.

2. Similar remarks apply to the outcome of Int 2.
3. One of the added values of the CIED is that it makes the decisions taken visible. The

more transparent nature of the decisions means that they can be challenged and adapted
if needed.

14.3.5 Linking Test Documentation to Design Documentation

At this point, the question arises as to how the test documents are managed and made
accessible to the staff in the project. The purpose of this chapter is to provide the answer.
Figure 14.8 shows an overview of the documents that are of immediate interest for the
testing activities. These documents are a subset of all documents used in an entire project.

Fig. 14.8. Document overview

Additional remarks about the diagram (Fig. 14.7):

– Version 2 of CI 5 may have been thoroughly tested, with only very small changes
implemented in version 3

– The internal testing carried out by the group that produces CI 5 may have been

538 E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

Below is a description of each of the documents depicted in Fig. 14.8.

– System Design: A Document that describes the System Design at the highest level of
abstraction. It describes how the requirements are to be implemented at a global level.

– CIED: This is the Integration Diagram. This diagram is heavily influenced by the
System Design Document. It gives feedback to the System Design Document, for
instance to make sure part deliveries are testable.

– The detailed design per increment and per C.I. gives the design details required for
implementation.

– The Increment Assignments details the development activities that are to be undertaken
to develop the current increment, and assigns these activities to specific people. Part of
the Increment Assignments defines the relationship between the work products that are
created for the current increment and the configuration of the final system, as described
in the Configuration Management Plan (not depicted).

– The Development Test Suite is the set of test cases (usually based on a white box
approach) that is developed, maintained and executed by development staff themselves.
Test engineers may be consulted on the definition of these suites.

– The Increment Test Plan is a detailed version of the Project Test Plan, which is relevant
for the current increment. Details are added that were not known at the time of writing
the Project Test Plan.

– Test Design Documents describe the important values (or actions) that the system must
be exercised with, based on a formal test design technique ([4] introduces the subject of
formal test techniques).

– Test Cases describe step by step the actions that must be taken to enter the values or
take the actions as described in the Test Designs.

– Test Scripts are the automated versions of the Test Cases.
– The Test Summary is a summary of the findings as a result of testing an increment.
– The Validation Report gives the results of the validation tests that were executed and

advices about release or otherwise of a product.

The relations between the documents are as follows:
The System Design Document serves as input for determining the CIED. While the

CIED is being made, remarks will be made that reflect upon the System Design
Document. The System Designer updates the System Design Document accordingly. In
practice, Requirements also come under test scrutiny. As Test Designs are made before
the CIED is used, the question arises as to whether Requirements are testable in principle.
In practice, the verifiability of Requirements is essential from the moment they are drawn
up. This means that requirement engineers have to be taught the basics of testing theory
and need to cooperate with verification engineers.

The detailed designs are derived from the System Design Document, and use the CIED
to ensure that the correct decisions are made regarding what should be implemented in
what increment. Once the detailed design is good enough to start assigning tasks,
development tasks are defined and assigned to people. Development groups themselves
make the development test suites to test the work product they make.

The Project Test Plan derives its information from the System Design Document and
other relevant sources. It describes the strategy for testing the work products, gives an
overview of the work involved and lists the resources required. When adaptations to the

539

design are needed, these are implemented into the System Design Document. The newly
acquired details are added per increment to form the increment test plan for the increment
in question. In this increment test plan, the link is made to the Test Activities within the
CIED. The CIED is updated to show in which increment an activity takes place.

Test Designs are derived from the specific Test Activities as described in the Increment
Test Plan. Test cases and scripts can therefore be derived from Test Designs. Test results
arising from test execution are described in the reporting documents.

Project staff can access the documents via an intranet application, where documents are
categorized in accordance with FDA2 criteria for health and safety critical systems. A
strict document control mechanism is in place to ensure that versions are correct and up to
date.

14.3.6 A Practical Example of Using a CIED

This section gives an example of how the CIED is used for a simple imaging system
(generic and simplified, based on a number of real systems). The purpose is to make the
abstract diagrams used so far more accessible, and to show a relation to the Configuration
Plan. The system consists of:

1. A sensor (to detect X-rays).
2. A control system to optimize the settings of the sensor.

– Mechanical shutters that regulate the amount of X-ray that is incident upon the
detector

– A focusing mechanism for the detector
– Setting the resolution of the detector

3. A control system to control system timing
– To synchronize the detector system with the X-ray bursts, which may last

from a few milliseconds to several minutes
– To synchronize data transfer to an Image Processing system
– Other issues that are beyond the scope of this section

4. Communication with a Main Data Acquisition system. This Main Data
Acquisition system informs the detector regarding the image resolution it has to
acquire, how many images to expect, what type of calibration to use and a
number of other technical settings.

5. An Image Processor System (with controls for setting required processing
functions, filter parameters and controlled timing to synchronize with the
detector).

6. A pipeline to streamline processed image data (in a standard format) to the
outside world.

This example is based on commercial projects that have actually been completed using the
CIED. A number of technical details that make this system quite complex to develop in

2

540

The American Food & Drug Agency also verifies adherence to standards for Medical Systems.

E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

the real world have been ignored. Figure 14.9 gives a static overview of the system and its
decomposition into Configuration Items.

The division into Configuration Items makes visible which parts are implemented into
hardware, indicated by the letters HW in front of the number (e.g., the Sensor Assembly,
and the Iris motor assembly) and which are implemented into software.

This static overview can be used as a preparation for the logistics operations, such as
selecting possible providers of the hardware and starting initial negotiations with them. A
Configuration Item that implements a function that is high enough in the function
hierarchy to be of interest to customers is given the letters CI S and a number (CI =
Configuration Item, S = System). In a perfect world with the capacity available to build
the C.I.s flawlessly in one go, the project would now essentially be ready.

Fig. 14.9. Decomposition into Configuration Items

In practice, people make mistakes and have misunderstandings, and capacity is far from
limitless, so not everything can be built perfectly in one go. Hence the need for
incremental development and reviewing techniques. These can also be used to verify
functionality that can be delivered to a customer. Because functions and C.I.s have a
many-to-many relationship, C.I.s are sometimes needed in a form that is not necessarily a
completed C.I. Hence the policy to integrate partly completed C.I.s. It must be made very
clear to all project members which state C.I.s must reach before integration is possible.

541

Similarly, testers must know precisely what functions can be meaningfully tested. The
diagram that emerges as a result of the discussion between Integration Manager and
designers is shown in Fig. 14.10.

Fig. 14.10. CIED involving various development groups

The CIED in Fig. 14.10 defines that:

− Development group A delivers tested functionality, which implements the communi-
cation with the outside world. This is implemented on a standard CAN Card (HW1.3).
What exactly is tested and how this is done is predefined and known, as is the exact
functionality as delivered at this stage.

− In parallel, Development group B implements a motor driver and a mechanical
assembly which is then integrated with the communications card and tested in MT 2.

Discussion will take place as this model is being created, so that engineers have a
thorough insight and understanding of the various work products. During this discussion,
each designer explains his assumptions, so that others can ask questions, challenge
assumptions and verify whether they can actually do what is being required of them. This
is especially helpful in the case of testing, as it means that test interfaces and test services
can be predefined. It should be clear that this does not lessen the need for clear
requirements. However, requirements can only be clear and unambiguous if there is a
commonly understood context. The discussions held while making these diagrams create
much of the needed context that facilitates true understanding.

542 E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

It would take more steps than depicted above to model the entire set of activities
needed to create this subsystem. But the above serves as a good illustration, and one
which the reader might like to complete. A preliminary question would be whether HW
1.2.1 and Mech 1.2.1 really do not need a separate test before linking them with the rest of
the system. That choice may have been made because it is difficult to test these two
without having the communication layer running. The point is that once you have the
diagram in front of you, you start asking questions that would probably not have been
asked otherwise.

The diagram in Fig. 14.10 shows the following: A group (group A) is identified that is
responsible for integrating the communication functionality. The integration manager who
is responsible for the Test Activities (T Com) is involved at this point to:

– Verify that the requirements are testable
– Make sure he understands the functionality
– Prepare the testing activities (possibly adding requirements for a script editor or other

test tooling)
– Design test cases
– Make sure by asking penetrating questions that the developers understand what is

expected of them (this task can be assigned to a designer)

At this point, the designers of the various work products can clarify how they intend
the functions they have designed to be used. For example, the mechanics people can tell
the software developers about overshoot, speed requirements, mechanical response times
and other technical aspects.

After T Com has been completed, we trust that the communication has been correctly
implemented so the commands can now be issued to exercise the agreed functionality. For
this trust to be warranted a high level of test process maturity in the organization is
necessary. This agreed functionality is laid down in the Increment Design Specifications,
and the precise types of tests are described in the Increment Test Plan. Specific examples
of test subjects that may be described in the Increment Test Plan at this point are:

– All communication commands have been correctly transferred to the Sensor Assembly
(HW 1.2)

– The mechanical shutter can be moved from fully open to fully closed, but not (yet) to
intermediate positions

– Image Resolution parameters have been correctly transferred to the Sensor Assembly.
The Sensor Assembly is not yet reacting to these parameters

This list would be longer in practice.
At T Sensor, tests can be run on positioning accuracy, reliability of repositioning,

performance, mechanical wear and so on, in an environment that imitates the true working
conditions (using user profiling for example, [19]) to determine how the equipment will
be used. The above tests all are related to functionality that is created, but in the medical
world additional operating constraints are imposed by Federal Agencies. These constraints
are related to safety (hazard of electrical shock, parts falling out, EMC). The tests carried
out to make sure these constraints are satisfied are referred to as “approbation.” At this
point, a test prototype may be defined to be used to execute all actions related to running

543

the approbation tests. The entire system is gradually built up by continuing along this
path.

It should be clear by now how the initial requirements as outlined in Sect. 14.2.1 are
met. These requirements are to make it possible to carry out combined evolution of work
products and to synchronize integration and testing activities. The CIED as such is not
what really matters – what is important is the mutual understanding that is the result of all
the relevant disciplines having joined forces to build the CIED and then depict it correctly
in the model for future reference. This approach enables the parties involved to gain a
clear insight into the complexity of a certain function beforehand. As s result, risks can be
better identified and mitigated by, e.g., testing or paying special attention to these risks in
the design phase.

One result of the above course of action is that the developers of C.I.s may work with
different cycle times. It can also lead to the project having several types of cycles, i.e.,

– Release management
– Increment delivery
– Work product promotion
– Archive building
– Document release

A release is a completed set of functionality, delivered to the customer. It is meant to
be stable for some length of time. As such, it is the end deliverable of a project, which
makes its cycle equal to the project cycle.

The increment delivery is the longest cycle within the project. It is the cycle in which
increments (a set of related functionality that is of some use to a customer) are released
during the project. In the case of medical systems products, typical cycle times are
measured in months.

Work product promotion is the cycle in which a software module is created by a
developer in his own environment, released by him to his own group, tested and released
to the project. The duration of this cycle is measured in weeks.

The archive building cycle is a potentially short cycle. It may even be as short as twice
a day, though in medical equipment every two days or weekly is more usual. This is the
cycle in which all promoted modules are built into a new archive.

Documents are under strict change control. The cycle therefore starts with initial
conception and moves via draft and reviews to a final state. The documents in question
may be design documents, project control documents, test plan documents, etc.

The CIED has considerable impact on work product promotion planning and execution,
and on the quality of built archives. Experience shows that the CIED tends to speed up
cycles, until they arrive at an optimum point at which no further project throughput time is
won by making the cycles even faster. Each C.I. has its own specific cycle length, thanks
to the insight that the CIED creates into what is needed.

544

14.3.7 Configuration Item Cycle Times

E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

14.4 A Preliminary Validation of the Proposed Solution

A preliminary validation process has been carried out, comprising two case studies,
objective data taken from management statistics, and interviews with three people who
played key roles in the projects.

14.4.1 Comparing Two Case Studies to Illustrate the Usefulness
of the CIED

Two case studies are described, the first one using traditional project management
techniques only. The second project adds the CIED approach into the existing project
management practices. The purpose of these studies is to clarify the difference it makes to
a project when the CIED approach is adopted. The projects were not defined in order
to show the viability of the CIED concept. Both projects were real-life projects set up to
create actual products.

Project A: Using Traditional Project Management Techniques Only

The need for the CIED started to become apparent early in the 1990s, during the
implementation of a project to develop a device called a collimator. A collimator is a
mechatronical device that limits, shapes and spectrally filters an X-ray beam. This beam
can be aimed at those parts of a patient that actually need to be imaged with the required
X-ray spectrum, so that a certain contrast in the patient image can be created. The device
contains material that can spectrally filter or block an X-ray beam. This material can be
moved about quickly enough to adapt the shape of the X-ray beam in real time. As a result
of the X-ray imaging equipment moving about the patient, the actual image as projected
onto the patient changes if no action is taken to collimate the X-ray Beam. An extremely
high availability and reliability of the function is required.

The project was started in the traditional way, using designs, work breakdowns,
GANTT charts and other standard project management practices. This led to a number of
monodisciplinary building blocks being defined for the various disciplines (mechanics,
motor control, analogue hardware, digital hardware, communication layers and software
control). The people involved then went their own way, building their deliverables as
specified in the Design Documents and carrying out the tasks as defined in the Gantt
chart. Each of the disciplines was reporting progress to the project manager, and the
expectation was that the project would finish on time and within budget.

But towards what should have been almost the end of the project, cracks started to
appear:

– Due to the required reliability of the system, the mechanical engineers required a set of
test models for checking some aspects of their design that were critical for reliability.
These could only be meaningfully tested if they were tested in a way that closely
resembled actual use. To this end, they needed some software and a driver as used in
the actual product. The software department had not planned the specific software
needed to do this until much later. Since changing the order of development would
adversely influence their throughput time, the software department was not willing to

545

supply the required software functionality for the test. The mechanical engineers just
built some test models using a form of Automated Test Equipment that exercised the
mechanics in a nonuser specific way and hoped for the best. The project manager was
not informed.

– The people from the software department were unaware of a certain number of
characteristics and behaviors of the hardware they were controlling, despite all the
traditional interface specifications and designs having been made and reviewed. For
example, the mechanical system had some overshoot, before returning and finding its
intended position. Under certain conditions, this led to damage being caused to the
hardware after a fairly large number of repetitions of the movement under those special
conditions. Nobody had identified the problem.

When the cause of the damage (overshoot) was established, the software department
studied more closely the way the motors should be controlled, and came up with a newly
adapted algorithm. However, at the same time the mechanics people had found that some
of their constructions (which could now be tested as the software was available) were not
reliable enough. So they changed the mechanical subsystem. When the new software
became available, the newly developed algorithm was unsuitable for the new situation. At
that point, tempers began to flare.

Many similar cases started to appear. Taken on their own, they were not terribly
difficult to solve. But each change influenced the products of another team at design level.
This started a domino effect throughout all disciplines, and people started blaming each
other. It was not long before the project manager was forced to admit he had lost control.

This situation is by no means unique. There are numerous examples of company
projects where something similar has happened. Richard Feynman’s book The Pleasure of
Finding Things Out contains an excellent chapter about the Space Shuttle Challenger
accident [8].

One question that may be raised is why it takes people so long to see that something is
going wrong. The answer lies in psychology and people’s capacity to live in cognitive
dissonance. The early tests as proposed by the CIED force people to relinquish this stance
much faster than traditional ways of working.
Management accepted that it was correct to conclude that the project was out of control.
Sessions were held with the aim of finding the root causes and formulating approaches to
solve them. Coaching was needed to put a stop to unhelpful blame games. Below are a
number of the root causes relevant to this subsection:
1. Changes affecting other disciplines were implemented without consultation

−
discipline.

−

2. Changes in the different disciplines were not synchronized. This resulted in
combinations of hardware and software that temporarily failed to function upon
integration. People started to search for faults that were not caused by design or coding

In most instances, nobody had realized that the change would impact another

other disciplines. The hardware disciplines did not have the knowledge to ask the
software group the right questions. The result was that everyone remained in the dark
until harsh reality clarified the situation.

People did not have the knowledge to judge how their changes would influence

546 E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

mistakes. Synchronizing the software and hardware solved a number of problems that
had caused severe loss of time. Synchronizing was a tedious job, and would have
happened automatically anyway at the next software archive built. This made people
feel they were chasing windmills and had a negative impact on motivation.

Management made it clear that it was only interested in a completely finished product,
with the right level of functionality and reliability. Starting from this basis, sessions were
organized, during which the different disciplines came together to discuss a certain
building block and how it worked from their point of view. A working method was soon
established that made sure people knew and understood the requirements and their and
others’ contributions towards fulfilling these requirements. It must be clarified that the
requirements had all been written down and reviewed. They were accessible to everyone
in the project. These group discussions made the subject really come alive. Now,
everybody was working towards the same project goal that had been defined at the
beginning of the week. They kept to the agreement even if it meant additional work for
their own discipline. They soon found that in order to get things going and establish clear
communication, it was helpful to draw diagrams. This was the start of the CIED. In
popular parlance these diagrams were called the “rocket model.” Now that the project goal
was clear, common communication could be established and work could be synchronized.
The product was completed rapidly. People from the various disciplines enjoyed working
together and started to appreciate each other. The collimator is now a successful product.

Project B: Using CIED from the Start

The aim of the project discussed in this subsection was to develop a new concept for
X-ray detection. The sensor technology was completely new, and a number of issues were
not fully clear when the project was started. The product consisted of the new X-ray
detector, digital hardware to control the detector and Image Processing Algorithms to
adapt for detector characteristics. When this project started, the CIED had already been
introduced to testers and project managers, following the successful launch of the CIED in
the collimator project discussed previously. The project manager believed in the CIED,
and appointed a person to act as integration manager with the specific task (among others)
of creating a CIED that was supported by the development and test crew. The integration
manager started by holding a number of meetings with the chief designer and the senior
verification engineer about how best to establish the order of building the device and
identifying high risk areas (defined as “we do not know precisely how this should be done
as there is no experience with this technology”). Based on these initial discussions, a first
CIED was made. When this was presented to more members of the development staff, it
met with some resistance. To start with, people from various disciplines claimed that the
discussions were robbing them of time they could put to better use developing their own
(monodisciplinary) products. However, the project manager was quick to pick up the
signals, and got his team together to impress upon them how important he considered the
CIED to be. At the second discussion with the development team, people were more
involved and started expressing the problems they saw at certain integration moments. It
also became clear how much extra effort was going to be put into making test activities
for part deliveries possible. Tough discussions followed. Meanwhile, however, the
verification engineer (who was a specialist both in software and testing) had already

547

started to cooperate with a few software developers. He had carried out tests that showed
shortcomings that were easy to solve at the time they were found but would have been
very time-consuming to solve at a later stage. Developers started seeing that the net result
of the extra effort of making testing possible and the time advantage it gave them in
solving mistakes more quickly was positive. Another characteristic that started to emerge
was that in the discussion surrounding the so-called calibrations,3 certain issues had not
been thought about by anyone. And though this meant that much more work had to be
done than anticipated, staff also realized that if they had discovered these issues in the
final testing phase there would have been even more work. As things stood, the design
could be adapted to solve these issues with the least possible effort. The first integration
took less time than predicted, as there were fewer complicated problems than had been
anticipated. Thereafter, testers and developers intensified their cooperation. Faults were
detected within 1 or 2 days, so solving them went very quickly and without any negative
feelings. Not everything went completely smoothly: There were some issues that nobody
had thought about, but even then the CIED always made clear where the project as a
whole was. For example, the suppliers of a printed circuit board made a change on one of
the processor boards without making a notification. It should not have had an impact, but
it did. The resulting problem was not easily solved, as extensive analysis was needed to
find the way from the symptom to the root cause. But here again, the CIED came to the
rescue. Firstly, the CIED made it possible to trace things back beyond a shadow of a doubt
to a stage at which the problem did not yet arise, although it had been tested for. Secondly,
the CIED was used to show what functionality could already be offered to the customer in
a prototype to ensure that overall delay was minimal, despite the problems. There was no
panic, there were no blame games – only a concerted effort to find the error and to deal
with it in the best way possible. The clarity provided by the CIED meant that the project
customer’s point of view could easily be taken into account. In the end, the project
delivered the complete, fully functional system, ahead of the agreed deadline.

14.4.2 Comparing the Two Projects

The first project went from initial optimism and enthusiasm to moments of deep despair
when reality hit. The second project used the CIED to identify and address the tough
issues head-on, the moment they were spotted. In the first project, every mishap came as
an unwelcome surprise leading to internal discussions, turf battles and a lot of rework. In
the second project, the few surprises that arose were quickly identified, acknowledged and
solved in a cooperative manner. At no time did those involved in the second project feel
they were out of control. These differences should not be attributed to the “mechanical”
use of the CIED but to the mindset of interdisciplinary cooperation facilitated by the
CIED and stimulated by the mindset and way of working that go with it.

At the beginning of a project, drawing up the CIED takes time and there is a risk of
running into analysis-paralysis. When properly managed, the time it actually takes can be
measured in a few man days, even for complicated products – time that is soon regained

3

548

Measuring the various characteristics of the detector so they can be corrected for.

E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product

via improved communication and a reduction in the number of surprises encountered
during integration.

14.4.3 Objective Evidence

Several projects to develop products have been carried out by Philips Medical Systems,
and specifically by the X-ray development group. Most of these projects did not use the
CIED, and can therefore be used for reference purposes. In a small number of projects (5),
the CIED was defined and then refined following feedback. The CIED is now in use for
all running projects. Projects the outcome of which form part of this study involved the
development of a medical diagnostic imaging device consisting of millions of lines of
code, developed at several different sites in the world across many disciplines, including
digital hardware, software, mechatronics and domain-specific engineering skills. This
project involved more than ten subprojects, each bigger than 70 man-years. Projects that
used the CIED have been compared with projects that did not use it.

To illustrate practical advantages as experienced in real-life projects, objective
evidence has been collected from project management statistics. These statistics relate to
project planning information and project progress reports. The project progress reports are
official reports from the project manager to the operational management of the Business
Unit. The figures quoted are based on the money spent and the hours that staff have
booked in an automated system. Graphs compare the time and money that was planned to
be spent with the time and money actually spent. A project progress report is written each
time a project move on to a different phase. A project starts at phase 0 and finishes at
phase 6. For each phase transition, a “GO/NOGO” decision is taken by management,
based on the evidence in the progress reports. The first few phases focus primarily on
requirement analysis and architecting and overall-design issues. Later phases involve
engineering and testing.

The following trends emerged from projects undertaken before the CIED was used:

– The first three phase transitions were met with a unanimous GO at the time that was
planned for these transitions.

– The fourth phase transition also met with a GO, but usually slightly later, and with
conditions attached.

– The fifth and sixth phase transitions were initially met with NOGO, after which the
project started working overtime and other measures were taken. A much later GO was
given.

Depending on the project, the time and effort taken to complete the project could be up
to an order of magnitude more than originally planned, and a factor of 2–3 was not
unusual.

The first few projects that used the CIED (introducing the concept) showed the
following profile:

– The first two transitions were met with unanimous GO, on time.

549

– The third transition met with some difficulty, was usually a bit late and demanded the
adaptation of the original project planning for the next phase transitions. This meant a
small delay of about 20–30% on the original planning.

– The final phase transitions were then completed with a GO at the re-planned time.

The projects undertaken once the CIED had been “learned” showed the following profile:

– The first transition was on time, with a GO.
– The second transition became the critical point. Here, it was either decided to cancel

the project or the transition got a GO and then the project was completed on time and
within budget.

14.4.4 Qualitative Evidence from Interviews

A system designer; an integration manager and a project manager who have used the
CIED in a number of real projects were interviewed. All three interviewees have worked
both in a more “traditional” environment and with the CIED. Their position and
experience also gives them a good overview of the projects and what they entail. This
enables them to make practical comparisons between the two ways of working.

Focus points of interest in the interview were:

– What practical advantages do working with the CIED have, in your experience?
– How can this be demonstrated by your experience in the projects you have worked for?
– What indications do you have that the practical advantages you noted are actually due

to the CIED?

The opinions of the interviewees can be used as supporting evidence of the practical
relevance of using the CIED. Their opinions are detailed below. All interviews were
conducted in Dutch, and the questions were posed in an open way, giving the interviewees
as much scope as possible to express their own opinion using their own words.

Bas Wolfs is system-designer, involved with the design of a new generation of imaging
subsystems for X-ray applications. His opinion is that using the CIED contributes to a

own words:

gaining a true insight into the technical relationships within the increments. Reasoning is
now based on an individual’s position in the whole, rather than on his/her own little area. If
we had not used this, the project would have reached completion a lot later. It was used not
only by the system designer but by the whole team. It can be shown to work in relation to
other projects that I have been in, because in the past integration of systems has always led
to huge problems, whereas this time everything just fell in place. It was clear that the
advantages were down to the CIED because we literally saw true understanding dawning as
we were making these drawings. In fact this way of drawing relationships is essential for

Andre Vermeulen is integration manager in a product group that deals with Image
Processing. In his opinion, a holistic insight into technical relationships is created, which

The practical advantage of using the CIED is that it helps the developers enormously in

incremental development.

550 E.S. Engelsma

holistic understanding of the issues, which in turn contributes to time-to-market. In his

14 Incremental Systems Integration within Multidisciplinary Product

creates better opportunities to take a proactive approach to dealing with problems. Any
unexpected issues that arise can also be dealt with more effectively. These factors lead to
better project control. In his own words:

The practical advantages are that you gain a true insight into the technical relationships and
dependencies across the various development disciplines. You can see beforehand where
you may run into problems, as the preconditions at each point are known, so you have the
chance to do something about it ahead of time. Also, unexpected issues always pop up, and
because now you always know exactly where you are, you are better equipped to deal with
the unexpected. All in all, this creates a basis for much better project control and flexibility.
The first project I worked for did not use this approach, and we often ran into problems
because we did not know what was in the software archive, did not really know what to test
and how to test it and we were running round trying to find the right things like proper
documentation, or hardware, or some special software that we needed. But now, all
deliverables are defined and related to the CIED - even design documents and test reports.
Before we adopted this approach, we had a lot of arguments with customers. They wanted
functions (in prototype models) that we could not yet supply, and we had great problems
explaining why. Now it is much easier to see the relationships, and not only can we explain
the issues better, we are also better able to make changes to meet our customers’ wishes.
The test activities that are defined serve as a entry for doing proper test design, using the
IEEE standard. These things are clearly related to the CIED, because that is the backbone of
our communication. We have also adapted its use to graphically display progress. Once a
work product or integration phase has been tested and is correct (and complete), we make its
symbols green and hang up a new version in the corridor. People are always looking at it
when they come in and before they go home.

Frans van Grotel is the project manager for a new technology imaging system. In his

controlled, planning can be done more proactively, and response to unexpected situations
is more rapid. He says:

The advantages are that the CIED gives a very clear graphical overview of what you are
doing in a project. Once the planning and the relations have been visualized, the developers
become much more involved in discussing dependencies. The planning comes alive, and we
now know where we stand at all times. Especially when things change because of outside
influences, we can react quickly because we have a clear insight in relationships at all times.
It is not a substitute for a Gantt chart. [28] It gives our customers and other projects that
depend on us a very clear insight into what we will deliver, and gives them a basis for
discussing planning and technical relations. The fact that test moments are clearly defined
means that we also know what we have really achieved.

We have introduced a color code to make clearly visible what has and has not been
achieved. This brings the planning alive for all disciplines, leading to better-controlled and
shorter development cycles. You can see that it really works because it is alive. It is such a
powerful communication tool that we are finding many sorts of information being added to
the original concept, such as types of documentation (like design documents and test
documents and their state), an indication of the teams that are responsible (using color
coding). We have added planning data that has been derived from the Gantt Chart, which
clearly marks the “critical path.” We apply a tag to a development work product as it is put
into the software archive, and we provide a link to the daily build software archive in which
the software for a work product is archived. During project progress meetings, we discuss
these blocks to see if there are any items that we have missed or whether any new insights
have been gained. The CIED is discussed on a weekly basis with all the different disciplines
involved. The above should make it clear that the successes are actually due to the use of
this approach. However, the CIED should not be seen as a complete substitute for a Gantt
chart.

551

opinion, the use of the CIED leads to a shorter time-to-market, because the project is better

To sum up the findings that emerged from the interviews:

1. The CIED leads to a better holistic understanding for developers of technical
relationships and their own roles.

2. The CIED leads to better understanding of project planning issues.
3. The CIED provides greater flexibility to deal with changes in the outside world

and unforeseen problems.
4. The CIED provides excellent synchronization between project activities.
5. The CIED leads to shorter development cycles.
6. Insight in what has really been developed improves the efficiency of testing.
7. Because of the above, the CIED leads to better time-to-market times.

Table 14.1 gives an overview of the findings and whether the interviewees agree,
according to the evidence contained in their interviews.

Table 14.1. Overview of agreement in evidence

better holistic understanding of
project

yes yes yes

better insight into planning
issues

yes yes yes

greater flexibility no data yes yes
good synchronization yes yes yes
shorter development cycles no data no data yes
more efficient testing no data yes yes
insight into what has really
been developed

no data yes yes

yes yes no data

14.5 Conclusions and Future Research

This chapter presented a model that adds those aspects to Configuration Management that
would enable a company to manage content for a complicated multidisciplinary product
and to predefine the evolution of content. The beneficial effects of the CIED and the
associated approach can be summarized as follows:

– The CIED functions as a mental tool, creating clear understanding between the relevant
designers, developers and testers regarding what is to be made and in which order, and
especially why it is to be done in a given way.

552

finding
B Wolfs F van Grotel A Vermeulen

agrees agrees agrees

E.S. Engelsma

better time-to-market

14 Incremental Systems Integration within Multidisciplinary Product

– The CIED furnishes clear insight into how disciplines can help each other achieve the
project goal.

– The technical and logical relationships between the various C.I.s are identified.
– Where test tooling and a test environment is required, the requirement is identified in

advance, so that the design can be optimized to incorporate the tooling.
– Clear criteria are identified for each testing point, against which the work product is to

be measured during testing, thus creating clarity and a practical sense of purpose
among the developers.

– It is found in practice that the process of discussing the CIED brings to light a good
many requirements that were not clear or interactions that no-one had thought of. This
improves the inherent quality of the product, and simplifies the integration process.

– The increment work breakdown document defines how a C.I. (or set of C.I.s) grows
and how functionality is mapped over C.I.s.

The integration diagram together with the associated approach is a simple and valuable
tool for enhancing technical understanding and better managing the development and
integration of C.I.s. In the real-life industrial environment for which this way of thinking
was developed, it is impractical to expect to achieve the scientific rigidity that would be
required of a proper completed theory. However, the following conclusions are supported
by large-scale projects:

– Developers involved see the CIED as an excellent way of enhancing understanding of
the subject matter.

– Project managers feel that their project is better defined (as evidenced by project
throughput times).

– Testers have a better idea of what they can expect to be testing.
– Test interfaces and test methods can be defined beforehand.
– Group motivation to achieve a common goal is far higher, across the disciplines.

If an organization wants to adopt the use of CIED’s, critical success factors are:

– An integrated product development and test environment
– A mature development and testing process
– Highly skilled testers
– A highly qualified integration manager
– Deployment of a near-perfect Configuration Management process
– As in all changes, initial management commitment
– A Project Manager who understands change management

The approach described here is the approach of a company that needs to make products
and will therefore take anything that is “good enough” for their practical needs. This in
itself does not invalidate the results, but the symbols and what they stand for have not
been checked for orthogonality, nor have they been checked for completeness. A further
area of interest may be to define a vocabulary that would enable mechatronics experts,
hardware developers, domain specialists and software developers to work together.
Further research would give this a more thorough scientific base, and possibly enable
implementation in standards such as UML. It is not always the case that changes in a

553

product can readily be modeled by the CIED. Take a change of operating system. An
operating system provides a set of services that can be used and a complicated set of
parameter settings, which in many cases influence each other. The task of working out
how to model this in a CIED was too complicated in the time available for the real
projects, due to the high number of parameters that had to be set and their interactions.
How to group these parameters into some kind of equivalence classes that can then be
modeled in the CIED may be an area for further research. Further study could also focus
on the scientific rigidity of the concept of using the CIED. This would include working
out where the limits of the applicability of the CIED lie and what they are.

Acknowledgments

I gratefully acknowledge the extensive reviews of Juan Carlos Dueñas, Tor Erlend Fægri,
and Anne Immonen that significantly improved the quality of this chapter. Timo Käkölä
diligently guided the numerous revisions of this chapter during a period of more than a
year. I thank Philips Medical Systems for allowing me to spend considerable time
researching for and writing the chapter and my colleagues for the information they
willingly shared with me.

References

554

1. Alciatore, D.G., Histand, M.B.: Introduction to Mechatronics and Measurement Systems (McGraw-Hill, New
York 2002)

2. Bachmann, F., Bass, L.: Symposium on software reusability, Toronto, Canada. http://www.sei.cmu.edu/
plp/variability.pdf (18 20 May 2001)

3. Beck, K.: Test-Driven Development (Addison-Wesley, Reading, MA 2003)
4. Beizer, B.: Black Box Testing (Wiley, New York 1995)
5. Binder, B.: Testing Object Oriented Systems (Addison-Wesley, Reading, MA 2000)
6. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Software Development Process (Addison-Wesley, Reading,

MA 2002)
7. Brooks Jr., F.P.: The Mythical Man-Month, Anniversary edn (Addison-Wesley, Reading, MA 1995)
8. Feynman, R.: The Pleasure of Finding Things Out. (The Perseus Books Group 1999)
9. Gilb, T., Graham, D.: Software Inspection (Addison-Wesley, Reading, MA 1993)
10. Gilb, T.: Requirements Engineering (Addison-Wesley, Reading, MA 2002)

12. IEEE Std 829-1998: IEEE Standard for Software Test Documentation
13. IEEE Std 1058-1998: IEEE Standard for Software Project Management Plans
14. IEEE Std 828-1998: IEEE Standard for Software Configuration Management Plans
15. Jonassen-Hass, A.M.: Configuration Management Principles and Practice (Addison-Wesley, Reading, MA

2003)
16. Jones, J., Hewitt, P., Lee, R., Smith, L., Sorenson, R.: Software configuration management technologies and

applications, STSC (Software Technology Support Center), US Air Force report. http://www.stsc.hill.af.mil
(May 1999)

17. Kerzner, H.: Project Management, A Systems Approach to Planning Scheduling, and Controlling (Wiley,
New York 2003)

18. McGregor, J.D., Sykes, A.M.: A Practical Guide to Testing Object Oriented Software (Addison-Wesley,
Reading, MA 2001)

19. Musa, J.: Software Reliability Engineering (McGraw-Hill, New York 1999)

–

11. IEEE Std 1042-1987: IEEE Guide to Software Configuration Management

E.S. Engelsma

14 Incremental Systems Integration within Multidisciplinary Product 555

20. Paulk, M., Mark, C. et al.: Key practices of the capability maturity model for software, version 1.1, Technical
Report CMU/SEI-93-TR-25 (Software Engineering Institute, Carnegie Mellon University, Pittsburgh 1993)

21. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering (Springer, Berlin Heidelberg
New York 2005)

22. Pol, M., Teunissen, R., van Veenendaal, E.: Software Testing: A Guide to the TMAP Approach (Addison-
Wesley, Reading, MA 2002)

23. Senge, P.: The Dance of Change (Doubleday, Broadway 1999)
24. Sommerville, I., Sawyer, P.: Requirements Engineering (Wiley, New York 1997)
25. Steve McConnell, S.: Rapid Development (Microsoft 1996)
26. Van Veenendaal, E., McMullan, J.: Achieving Software Product Quality, Chapter 12 (Tutein Nolthenius 1997)
27. White, B.A.: Software Configuration Management Strategies and Rational Clearcase (Addison-Wesley,

Reading, MA 2000)
28. Wysocki, R.K., McGary, R.: Effective Project Management: Traditional, Adaptive, Extreme, 3rd edn (Wiley,

New York 2003)

15 Software Product Line Engineering with the UML:
Deriving Products

T. Ziadi and J.-M. Jézéquel

Abstract
Software product line engineering introduces two new dimensions into the traditional
engineering of software-based systems: the variability modeling and the product derivation.
The variability gathers characteristics that differ from one product to another, while the
product derivation is defined as a complete process of building products from the product
line. Software Product Line Engineering with the UML has received a lot of attention in
recent years. However most of these works only concern variability modeling in UML static
models and few works concern behavioral models. In addition, there is very little research
on product derivation. This chapter investigates the product derivation in the context of the
product line engineering with the UML. First, a set of extensions are proposed to model
product line variability in two types of UML models: class diagrams (the static aspect) and
sequence diagrams (the behavioral aspect). Then we formalize product derivation using a
UML model transformation. An algorithm is given to derive a static model for a product and
an algebraic approach is proposed to derive product-specific statecharts from the sequence
diagrams of the product line. Two simple case studies are presented, based on a Mercure
product line and the banking product line, to illustrate the overall process, from the
modeling of the product line to the product derivation.

15.1 Introduction

Rather than describing a single software system, the model of a software product line (PL)
describes the set of products in the same domain. This is done by distinguishing elements
shared by all the products of the line, and elements that may vary from one product to
another. Concepts of commonality and variability are, respectively, used to designate
common and variable elements in a PL [39] Variability can concern two main aspects:

can be omitted in others. Variation elements define alternatives (variants) to choose from.
Beyond variability modeling, the product derivation process is defined as a complete
process of constructing products from the software PL [12].

Unified modeling language (UML) [33] is an object-oriented notation for software
system modeling. It proposes a set of models to specify several aspects of systems. Class
diagrams are UML models that can be used to specify static aspects of systems, while

optionality or variation [7,18]. An optional element only concerns some products and it

sequence diagrams (SD) and statechart diagrams are examples of models describing be-
havioral aspects. Software PL Engineering with the UML has received a lot of attention in
recent years [3,5,9,10,13,14,18,26,27,37,38]. Section 15.4 presents a study on these works
and shows that the most of existing works only concern UML static models and few
works concern behavioral models [3,14,17]. In addition, there is very little research on
product derivation [3,13]. The product derivation support is a significant criterion for de-
termining the utility for users of any PL approach. The approaches that only model vari-
ability in UML models without product derivation support have only a descriptive utility.
This means that these approaches are only useful for PL architecture description.

In this work we defend the idea that any approach of PL engineering should go beyond
the descriptive utility and propose supports for resolving the variability and obtaining
product models. For this, we investigate the product derivation process in the context of
PL engineering with the UML. We give an overview of PL design by first presenting
structural variability involved in class diagrams, then how behavioral aspects may be
designed using UML sequence diagrams. We then formalize product derivation as UML
model transformations. First, a transformation algorithm is given to automatically derive
the static product model from the PL model. Second, an algebraic approach is proposed to
derive product-specific statecharts from PL sequence diagrams.

To present these design techniques, Sect. 15.2 focuses on static aspects of the PL design,
its constraints, and its derivation process into specific products; this part also stresses the
need to check derived products with respect to variability constraints. Next, Sect. 15.3
proposes an algebraic approach to derive product-specific statecharts from the SD of the
PL. Here PL behaviors are specified as algebraic expressions on basic UML2.0 sequence
diagrams, where variability is introduced by means of three new algebraic constructs. Our
derivation approach is defined in two steps: We first define an algebraic way to derive
product expressions from the PL expression and then statecharts are generated by
transforming product SD given as an expression into a composition of statecharts. Section
15.4 discusses related work, and finally Sect. 15.5 draws some conclusions and
perspectives.

15.2 Deriving Static Aspects

15.2.1 The Mercure Product Line

T. Ziadi and J.-M. Jézéquel

As a case study for describing static aspect derivation, we consider the Mercure PL, which

558

is a line of Switched Multi-Megabit Data Service servers whose design and implemen-

software delivering, forwarding, and relaying messages from and to a set of network

network interface boards (NetDriver), levels of functionality (Manager), user interface

tation have been described in [23,24]. It can abstractly be described as a communication

interfaces connected into heterogeneous distributed system. The Mercure PL must
handle variants for five variation points: any number of specialized processors (Engines),

(GUI) and support for languages (Language). Figure 15.1 shows a feature diagram of the
Mercure PL (we follow FODA notations [28]). The Mercure consists of Engine, Net
Driver, Manager, GUI, and Language. The Mercure product may support one or more of
Engine 1,…, Engine N, the selection being represented by FODA alternative features. In
the same way, we define all NetDriver, Manager, GUI, and Language dimensions.

The FODA [28] notations allow us to specify dependency relationships, called
composition rules, between domain features. FODA supports two types of composition
rules: the “require” rule that expresses the presence implication of two or more features,
and the “mutually exclusive” rule that captures the mutual exclusion constraint on feature
combinations. A “require” rule is identified in the context of the Mercure PL: it specifies
that the choice of the NetDriver1 implies the choice of the Engine1 (see Fig. 15.1).

Fig. 15.1. The FODA diagram for the Mercure PL

15.2.2 PL Static Architecture as UML Class Diagrams

To describe the PL static architecture, we use UML class diagrams. In [42], we have pro-
posed a UML profile for PL. This profile includes mechanisms to specify variability
within two types of UML 2.0 diagrams: class diagrams and sequence diagrams. For class
diagrams, we proposed to specify variability using two mechanisms:

– Optionality. Optionality in PL means that some features are optional for the PL
members, i.e., they can be omitted in some products. To specify optionality in class
diagrams, we introduced the <<optional>> stereotype. This stereotype can be
applied to classes, packages, attributes, or operations [42].

15 Software Product Line Engineering with the UML 559

– Variation. Inheritance in UML allows defining variability in class diagrams [2]. The
idea is to define a variation point as an abstract class and variants as concrete
subclasses. Each subclass defines the implementation of the abstract class in a specific
way. However, this variability is only resolved at run time and it is not explicit in the
model. To explicitly specify the variation in UML class diagram, we introduced two
stereotypes <<variation>> and <<variant>> [42]. The <<variation>>
stereotype is associated with the abstract class while <<variant>> is associated with
subclasses. Each product can choose one or more subclasses [42]. Figure 15.2 shows an
example of a variation point specified using the <<variation>> and
<<variant>> stereotypes. Notice that the subclass A in Fig. 15.2 is not stereotyped
<<variant>>; this means that this subclass is mandatory for all products.

Fig. 15.2. Example of a variation point

Let us now apply these extensions to the Mercure PL. As previously specified in the
FODA diagram of the Mercure PL, the Mercure product may support a set of Engines
among Engine1, Engine2, EngineN. Using the variation mechanism presented
earlier, we define an abstract class called Engine and stereotyped <<variation>>

15.3 shows the UML class diagram of the Mercure PL. It basically says that a Mercure
system is an instance of the Mercure class, aggregating an Engine (that encapsulates the
work that Mercure has to do on a particular processor of the target distributed system), a

functionalities available), and the GUI that encapsulates the user preference variability
factor. A GUI has itself a collection of supported languages (see Fig. 15.3).

T. Ziadi and J.-M. Jézéquel 560

and the several dimensions as subclasses stereotyped <<variant>>. In the same way

collection of NetDrivers, a collection of Managers (that represent the range of

we specify other variation points: NetDriver, Manager, GUI, and Language. Figure

Mercure

<<variation>>
Engine

<<variation>>
NetDriver

<<variant>>
Engine 1

<<variant>>
Engine N

<<variant>>
NetDriver 1

<<variant>>
NetDriver N

<<variation>>
Manager

<<variant>>
Manager 1

<<variant>>
Manager N

Message

<<variation>>
GUI

<<variant>>
GUI 1

<<variant>>
GUI N

<<variation>>
Language

<<variant>>
Language 1

<<variant>>
Language N

Buffers

1..*

1

Watch

1

*

Observe 1..*

1..*

1..*

1..*

1

1..*

Use 1..*

Available

1

1..*
Use 1

1

..........

..........

..........

..........

..........

Fig. 15.3. The Mercure Product Line UML class diagram

15.2.3 Product Line Constraints

In addition to variability, the PL architecture is defined as a standard architecture with a
set of constraints [4]. In this context, we have identified in [45] two types of PL con-
straints that guide the product derivation process. We proposed to define them as Object

15 Software Product Line Engineering with the UML 561

specific PL (a detailed description of these constraints can be found in [45]).

Generic Constraints

The introduction of variability using the <<variant>>, <<variation>>, and
<<optional>> stereotypes improves genericity, but can generate some inconsistencies.
For example, if a mandatory element depends on an optional or on a variant one, the
derivation can produce an incomplete product model. So the derivation process should
preserve the consistency of the derived products. In [45], we proposed the formalization
of consistency constraints using OCL and we called them Generic Constraints. An
example of such constraint is the dependency constraint that forces mandatory elements to
depend on mandatory ones only. It is specified using OCL as the following invariant
for the Dependency1 metaclass:

context Dependency inv:

 S.isStereotyped(’optional’) or
S.isStereotyped(’variant’)) implies

self.client -> forAll (C|
 C.isStereotyped(’optional’) or

C.isStereotyped(’variant’))

isStereotyped(S) is an auxiliary primitive indicating if an element is stereotyped by a
string S. It is formalized using OCL as follows:

context Construct::Class::isStereotyped(
 s: string):Boolean;

isStereotyped =
self.extensions-> exists(E|
 E.ownedEnd.type.name =s)

Specific Constraints

A fundamental characteristic of the PL is that all elements are not compatible. That is, the
selection of one element may disable (or enable) the selection of others. For example in
the class diagrams for the Mercure PL in Fig. 15.3, the choice of the class variant Net-
Driver1 in the specific product needs the presence of the Engine1 variant. Another
challenge for the product derivation is to ensure these dependencies in the derived prod-
ucts. In our work, these dependencies are called Specific Constraints and are also formal-

1A dependency in the UML specifies a require relationship between two or more elements. It is

represented in the UML metamodel [33] by the metaclass Dependency; it represents the relationship
between a set of suppliers and clients. An example of the UML Dependency is the “Usage,” which
appears when a package uses another one.

T. Ziadi and J.-M. Jézéquel

Constraints Language (OCL) metal evel constraints. In what follows we briefly present

562

self.supplier->exists (S|

both the generic constraints that apply to all PLs, and specific constraints that concern a

ized as OCL metalevel constraints [45]. The presence constraint in the Mercure PL is for-
malized as an invariant for the Model metaclass as follows:

context Model inv:
self.presenceClass(’NetDriver1’) implies

self.presenceClass(’Engine1’)

presenceClass(C) is an auxiliary operation indicating if a specific class called C is
present in the model. It is formalized using OCL as follows:

context Model::presenceClass(C : Class) : Boolean;
presenceClass =

 self.ownedMember->exists(el : NamedElement|
 (el.oclIsKindOf(Class) and cl.name = C.name) or
 (el.isKIndOf(Namespace) and el.presenceClass(C)))

15.2.4 From Product Line Models to Product Models

Deriving static aspects in PL consists in generating the UML class diagram of each prod-
uct from the PL class diagram. As shown previously, the PL class diagram is defined by a
set of variation points and to derive a product-specific class diagram, some decisions (or
choices) associated with these variation points are needed. For example, each Mercure
product could choose among the presence or absence of all variant classes. A mechanism
is needed to capture the decisions that are made for a specific product. As in [3], we call
this mechanism a decision model. In this section, we propose to use the Abstract Factory
design pattern as a decision model associated with the PL class diagram. Then we propose
an algorithm, based on models transformation, to derive product class diagrams. To illus-
trate this algorithm, we use three products in the Mercure PL: FullMercure, Custom-
Mercure, and MiniMercure:

– FullMercure is the product that includes all NetDrivers, all Engines, all Managers, all
GUIs, all Languages. Thus, all combinations can be dynamically bound.

– CustomMercure is a restricted product. It only supports two different network drivers :
NetDriver1 and NetDriver2, one manager: Manager1, two GUIs: GUI1 and
GUI2, two languages: Language1 and Language2.

– MiniMercure is the lightest product that only supports NetDriver1, Engine1,
GUI1, Manager1, and Language1.

The Decision Model

The Abstract Factory is a creational design pattern [15]. It allows defining an interface for
creating a line of related objects. In [25], one of the authors proposed the use of this pat-
tern to refine product derivation at compilation time. Our aim in this section is to reuse
again this pattern as a design of the PL decision model. Figure 15.4 shows the structure of
our decision model applied to the Mercure PL. We use an abstract factory, called Mer-
cure_Factory, to define an interface for creating variants of Mercure’s five variation

15 Software Product Line Engineering with the UML 563

points. The abstract class Mercure_Factory defines five factory methods, one for
each variation point. new_gui()for example is the factory method, which concerns the
GUI variation point. These factory methods are abstractly defined in the class Mer-
cure_Factory and given concrete implementation in its subclasses called concrete
factories. We create one concrete factory for each product in the PL. FullMercure,
CustomMercure, and MiniMercure in Fig. 15.4 are concrete factories for the Mer-
cure PL. We propose to specify decisions related to each product using stereotypes ap-
plied to method factories. We use stereotypes to restrict the return type of factory methods
to the possible one. For example, the CustomMercure product model includes only
GUI1 and GUI2. The Factory Method that corresponds to the GUI variation point is
new_gui(), so we add two stereotypes <<GUI1>> and <<GUI2>> to this factory
method (see Fig. 15.4).

Derivation

Now we have to tackle the automation of the derivation process exploiting the variation
points and the decision model. The derivation algorithm we use to derive product models
is described in Fig. 15.5. It takes as input the PL class diagram, and the concrete factory
from the decision model and it generates as output the product class diagram. It is
decomposed into three steps: selection of variant classes, model specialization, and model
optimization. They are:

T. Ziadi and J.-M. Jézéquel

Mercrure_Factory

FullMercrure

CustomMercrure

MiniMercrure

+new_gui():GUI
+new_language():Language
+new_network_manager():Manager
+new_netdriver():NetDriver
+new_engine():Engine

+new_gui():GUI
+new_language():Language
+new_network_manager():Manager
+new_netdriver():NetDriver
+new_engine():Engine

+<<GUI1, GUI2>>new_gui():GUI
+<<Language 1, Language 2>>new_language():Language
+<<Manager 1>>new_network_manager():Manager
+<<NetDriver 1, NetDriver 2>>new_netdriver():NetDriver
+<<Engine 1>>new_engine():Engine

+<<GUI1>>new_gui():GUI
+<<Language 1>>new_language():Language
+<<Manager 1>>new_network_manager():Manager
+<<NetDriver 1>>new_netdriver():NetDriver
+<<Engine 1>>new_engine():Engine

Fig. 15.4. The Abstract Factory as a decision model for the Mercure PL

564

15 Software Product Line Engineering with the UML

– Step 1: Variant classes selection. The first step consists of selecting variant classes
using the concrete factory. For each factory method, we retrieve its stereotypes. These
stereotypes define the names of the selected subclasses of the abstract class returned by
the factory method. When the factory method does not define stereotypes (such as in
the FullMercure concrete factory methods), all the subclasses of its return type are
selected.

– Step 2: Model specialization. In this step, we remove all variants classes from the
model that have not been selected in the first step. However, to preserve coherence,
variant ancestors of selected variant elements are not removed.

– Step 3: Model optimization. Here we delete unused factories and optimize the
inheritance. Inheritance optimization is applied when there is only one concrete class
inheriting from an abstract one. In this case the abstract class is omitted and replaced
by the concrete one.

Fig. 15.5. Static aspect derivation: the derivation algorithm

565

To achieve the implementation of the derivation algorithm, we have used the INRIA
Model Transformation Language (MTL). Information about implementation and technical
materials can be found at http://modelware.inria.fr/mtl. We have applied the derivation for
the three Mercure products: FullMercure, CustomMercure, and MiniMercure.
Figure 15.6 shows the CustomMercure model obtained by derivation from the Mercure
model in Fig. 15.3.

T. Ziadi and J.-M. Jézéquel

Mercure

Engine

NetDriver

Engine 1

Engine 2

NetDriver 1

NetDriver N

Manager 1

Message

GUI

GUI 1

GUI 2

Language

Language 1

Language 2

Buffers

1..*

1

Watch

1

*

Observe 1..*

1..*

1..*

1..*

1

1..*

Use 1..*

Available

1

1..*
Use 1

1

Fig. 15.6. The CustomMercure model, automatically derived from the Mercure PL model

566

Derivation vs. Constraints

The PL model should satisfy generic constraints before the derivation and the product
model derived should satisfy specific constraints. The generic constraints represent the
preconditions of the derivation algorithm while specific constraints represent the post-
conditions:

15 Software Product Line Engineering with the UML

DeriveProductModels(PL_classDiagram:Model,
aConcreteFactory:Class)

pre: check Generic Constraints on PL classDiagram
post: check Specific Constraints on the Product classDiagram

result.

15.3 Deriving Behavioral Aspects

In addition to static aspect description, behavior modeling plays an important role in the
traditional engineering of software-based systems; it is the basis for systematic approaches
to requirements capture, specification, design and simulation, code generation, testing,
and verification. Scenario languages such as UML2.0 SD are an example of formalisms
for modeling behavior. They focus on the global interactions between actors and system
components. To be useful in the PL context, SD should also allow for expression of vari-
ability. We show in this section how variability can be expressed in UML2.0 SD using
UML stereotypes and tagged values. We take advantage of UML2.0 SD and their compo-
sition operators to specify PL SD as algebraic expressions extended by algebraic constructs
for variability. Then we present an algebraic approach to derive the product behaviors
from the PL SD. Before illustrating behavioral aspect derivation, we briefly present the
banking product line (BPL) as an example, which is used throughout this section.

15.3.1 The Banking Product Line

In this section, we reuse the example of a BPL as described in [3]. It is a set of products
providing simple functionalities to clerks in the banking domain. It provides four main
functionalities:

– Creation of accounts (F1). Customers are able to open simple accounts but must do so
with a minimum balance. Account can have an associated limit specifying to what
extent a customer can overdraw money.

– Money deposit on accounts (F2). Customers can deposit an amount of money on their
accounts.

– Money withdrawal from accounts (F3). Customers can withdraw money from their
account. If the account has a limit, a customer can only withdraw money up to this
limit. If not, he (or she) cannot withdraw beyond the current balance of the account.

– Currency exchange calculation (F4). The bank system can offer a functionality for
exchange calculation. This particularly concerns currency exchange: euros, dollars, etc.

567

Variability in the BPL example concerns the support of overdrawing to a set limit,
which is optional because some products do not allow the addition of limits on accounts.
Currency exchange calculation is also an optional functionality and it is only supported by
some products. Table. 15.1 shows four different product members of the BPL. The BS1
product for example supports limits on accounts and does not support exchange
calculation while BS4 is a complete product with limits on accounts and exchange
calculation support.

T. Ziadi and J.-M. Jézéquel

Table 15.1. The Banking PL members

BS1
BS2
BS3
BS4

yes
no
no
yes

no
no
yes
yes

UML2.0 Sequence Diagrams

UML2.0 SD [33] enhances the previous versions of scenarios proposed in UML1.x by
introducing composition operators. A basic SD describes a finite number of interactions
between a set of objects. The semantics of a basic SD is now based on partially ordered
events (instead of ordered collections of messages as in UML1.x), which makes it easy to
introduce concurrency and asynchronism, and allows the definition of more complex
behaviors.

Figure 15.7 shows the basic SD related to the Banking PL. A UML2.0 SD is
represented by a rectangular frame labeled by the keyword sd followed by the name of the
SD. The SD Deposit for example shows interactions between Clerk, Bank, and
Account to deposit an amount on a specific account. The vertical lines represent life
lines for the given objects. Interactions between objects are shown as horizontal arrows
called messages (like deposit). Each message is defined by two events: message
emission and message reception, which induce an ordering between emission and
reception. Events located on the same lifeline are ordered from top to down.

UML2.0 basic SD can be composed into composite SDs called combined interactions
using a set of operators called interaction operators [33]. We only use three fundamental
operators: seq, alt, and loop. The seq operator specifies a weak sequence2 between
the behaviors of two operand SDs. The alt operator defines a choice between a set of in-
teraction operands. The loop operator specifies an iteration of the SD. For all these op-
erators, each operand is either a basic or a combined SD. The combined SD BankPL in
Fig. 15.8 shows how basic SDs for the BPL are related. It refers to the basic interactions

2UML2.0 [33] defines two operators, seq and strict to define weak and strict sequence, res-
pectively. A weak sequence means that only events on the same lifeline in the first SD are executed
before events on the same lifeline in the second SD. A strict sequencing means that all events in the
first SD are executed before events in the second diagram.

568

product limit support exchange calculation

15.3.2 Product Line Behaviors as UML 2.0 Sequence Diagrams

15 Software Product Line Engineering with the UML

:Bank : Account

depositOnAccount(accID, amount)

sd Deposit

deposit(amount)

:Clerk :Bank

: Account

createAccount(custD, curr, bal)

sd CreateAccount

create(custID)

:Bank

sd CreateAccountOK

:Bank

insufficientMessage(l)

sd CreateAccountFailed

deposit(bal)

: Account:Bank

sd SetLimit

setLimit()
: Account:Bank

sd SetCurrency

setCurrency()

:Bank : Account

sd WithdrawOk

:Bank : Account

sd WithdrawFailed

insufficientBalance()

insufficientMessage()

withdraw(amount)
withdrawMessage()

depositMessage()

:Bank : Account

withdrawFromAccount(accID, amount)

sd WithdrawWithLimit

verifyBalance(amount)

verifyLimit(amount)

:Bank : Converter

sd ConvertFromEuro

convertFromEuro(amount)

fromEuro(amount)

:Bank : Converter

sd ConvertToEuro

convertToEuro(amount)

toEuro(amount)

sufficientBalance()

:Bank : Account

withdrawFromAccount(accID, amount)

sd WithdrawWithoutLimit

verifyBalance(amount)

Clerk

Clerk

Clerk

Clerk

Clerk

Clerk

Clerk

Clerk

Fig. 15.7. UML2.0 sequence diagrams for the Banking PL

using the ref operator. BankPL specifies that there are five main alternative behaviors
for requirements of BPL members (1) Account creation. (2) Deposit on account. (3)
Withdraw from account (this last functionality is described using the combined SD
WithdrawFromAccount). (4) Exchange calculation from euro and (5) Exchange cal-
culation to euro. Following UML2.0 notations [33], combined SDs are defined by rect-
angles whose left corner is labeled by an operator (alt, seq, loop). Operands for
sequence and alternative are separated by dashed horizontal lines. Sequential composition
can also be implicitly given by the relative order of two frames in a diagram. For example,
in the SD BankPL basic SD CreateAccountOk is referenced before SD SetLimit.
This is equivalent to the expression CreateAccountOk seq SetLimit.

569

T. Ziadi and J.-M. Jézéquel

Variability in Sequence Diagrams

As shown in [42,43], variability can be specified in UML2.0 SD using simple stereotypes

refer to [42,43] for more details:

– Optionality. A combined SD can refer to an optional SD: interactions specified by this
optional SD are only supported by some products and can be omitted in others. To
specify optionality of an SD, we introduced the <<optionalInteraction>>
stereotype and the optionalPart tagged value. The tagged value specifies the
occurrence name of the optional SD (to differentiate among various occurrences of the
optional SD, since an optional SD might be referred to more than once in the same
combined SD). Figure 15.8a shows an example of a combined SD called CDS1,
which refers to an optional SD called SD1. The tagged value optionalPart takes
SD1-occ1 as value.3

– Variation. This variability mechanism makes it possible to define a set of variants of
behaviors from which a particular product would have to select exactly one variant.
Using UML2.0 SDs, the variation of the behavior is modeled as a combined SD
stereotyped <<variation>>, which refers to a set of subinteractions stereotyped
<<variant>>. Each subinteraction specifies a variant behavior. As for the optional
SD, a variation SD <<variation>> can be referred to several times in the same
combined SD. To differentiate among multiple occurrences, we introduce the tagged
value variationPart to specify the name of the occurrence. Figure 15.8b shows an
example of a variation SD called CSD2, which refer to two SD variants SD-v1 and
SD-v1. Note that this variation mechanism is different from the alt interaction
operator. The variation mechanism proposes a choice that must be made at product
derivation time so that the derived product contains only one of the alternative
behaviors, while the alt operator defines a choice made after the product derivation,
i.e., at run time.

3

and tagged values. We briefly describe here these mechanisms; interested readers can

– Virtuality. The virtuality of an SD means that its behavior can be redefined by another

at product derivation time by the behavior of the refinement SD associated with the
product. Virtuality is introduced by the stereotype <<virtual>> and the tagged

SD3.

We follow new notations of tagged values in UML2.0: a tagged value is now represented in
 UML2.0 as a note [33].

570

value virtualPart indicating the occurrence of the virtual interaction. Figure 15.8c
shows an example of a combined SD called CSD3, which refers to a virtual SD called

by an existing construction in MSC [22]. The behavior of the virtual SD will be replaced
SD or refinement associated with a specific product. This type of variability is inspired

15 Software Product Line Engineering with the UML

A1:A b1:B

sd CSD1

SD1

ref
<<optionalInteraction>><<optionalInteraction>>

optionalPart = SD1-occ1

SD-v1
ref

SD-v2
ref

a1:A b1:B

sd CSD2
<<variation>>

<<variant>>

<<variantion>>
variationPart = SD-occ1

<<variant>>

A1:A b1:B

sd CSD3

SD3
ref

<<virtual>><<virtual>>
virtualPart = SD3-occ1

(a) Optionality

(b) Variation

(c) Virtuality

Fig. 15.8. Variability for UML2.0 SD

The combined SD in Fig. 15.9 BankPL illustrates two variability mechanisms:
optionality and variation.

1. Since some products of the BPL do not support overdrawing, a stereotype <<op-
tionalInteraction>> is added to the basic SD SetLimit and the tagged
value optionalPart takes the value settingLimit (see the combined SD
AccountCreation in Fig. 15.9). In addition, since exchange calculation is an
optional functionality in the BPL, basic SD SetCurrency, ConvertToEuro,
and ConvertFromEuro are defined as optional too (see the combined SD
AccountCreation in Fig. 15.9).

2. There are two SD variants when withdrawing from an account: withdraw with balance
and limit checking, and withdraw with balance checking only. The SD Withdraw is
defined with the <<variation>> stereotype. The two SDs WithdrawWithLimit
and WithdrawWithoutLimit are stereotyped <<variant>>. The tagged value
variation Part takes withdraw Account as value (see the WithdrawFrom
Account combined SD in Fig. 15.9).

571

T. Ziadi and J.-M. Jézéquel

Algebraic Specification

Taking advantage of UML2.0 composition operators for SD, we introduce in this section
an algebraic specification of UML2.0 SDs in the form of reference expressions. We then
extend it for PLs by including variability constructions defined above.

Definition 1. A reference expression for SD (noted RESD hereafter) is an
expression of the form:

<RESD>::=<PRIMARY> ("alt" <RESD> |"seq" <RESD>)*
<PRIMARY>::=EØ | <IDENTIFIER> | "("<RESD>")" |

"loop" "(" <RESD> ")"
<IDENTIFIER>::= (["a"-"z","A"-"Z"]|["0"-"9"])*

seq, alt and loop are the SD operators mentioned above. EØ is the empty expression
that defines a sequence diagram without interaction.

So far, this algebraic framework does not contain any means to specify variability. We
introduce three algebraic constructs that correspond to the three variability mechanisms
presented earlier. This allows the definition of optional, variation, and virtual expressions.

Definition 2. The optional expression (OpE) is specified in the following form:

OpE ::= "optional" <IDENTIFIER> "[" <RESD> "]"

where <IDENTIFIER> refers to the name of the optional part and the <RESD>
refers to its corresponding expression.

specified by an optional expression. The tagged value optionalPart in the diagram
specifies the name of the expression. For the BPL example, optionality of the interaction
SetLimit is specified by the expression:

optional settingLimit [SetLimit]

Definition 3. A Variation expression (VaE) is defined as follows:

VaE::="variation" <IDENTIFIER> "[" <RESD> "," (<RESD>)* "]"

For example, the variation interaction Withdraw in Fig. 15.9 encloses two interaction
variants. It is specified algebraically as follows:

variation withdrawAccount [WithdrawWithLimit,
 WithdrawWithoutLimit]

An optional SD (i.e., an SD stereotyped <<optionalInteraction>>) can be

572

15 Software Product Line Engineering with the UML

:Bank :Account

sd BankPL

: :

Deposit
ref

alt

loop

AccountCreation
ref

WithdrawFromAccount
ref

:Bank :Account

sd AccountCreation

: :

CreateAccountOk
ref

alt

CreateAccountFailed
ref

CreateAccount
ref

<<optionalInteraction>>
optionalPart =settingLimit

<<optionalInteraction>>
optionalPart =settingCurrency

<<optionalInteraction>>
optionalPart =fromEuro

<<optionalInteraction>>
optionalPart =toEuro

:Bank :Account

sd WithdrawFromAccount

: :

<<variation>>
sd Withdraw

WithdrawOk
ref

alt

WithdrawFailed
ref

Clerk

Clerk
Clerk

:Convertor
<<optionlaLifeline>>

<<variation>>
variationPart =withdrawAccount

WithdrawWithoutLimit
ref

<<variant>>

WithdrawWittLimit
ref

<<variant>>

SetCurrency
ref

<<optionalInteraction>>

ConvertFromEuro
ref

<<optionalInteraction>>

ConvertToEuro
ref

<<optionalInteraction>>

SetLimit
ref

<<optionalInteraction>>

Fig. 15.9. The UML2.0 combined sequence diagram for the Banking PL

573

T. Ziadi and J.-M. Jézéquel

Definition 4. Virtual expressions (ViE) are specified as:

ViE ::= "virtual" <IDENTIFIER> "[" <RESD> "]"

Hence, algebraic expressions including variability will be defined by expressions of the
form:

<RESD-PL>::=<PRIMARY-PL>("alt" <RESD-PL> | "seq" <RESD-PL>)*
<PRIMARY-PL>::= EØ |<IDENTIFIER> |"("<RESD-PL>")" |

"loop" "(" <RESD-PL> ")" | VaE | OpE
|ViE

The SD BankPL of Fig. 15.9 can be algebraically represented by the following
expression:

EBPL = loop (Deposit alt (CreateAccount seq (CreateAccountOk seq

(optional settingLimit[SetLimit]) seq (optional

settingCurrency [SetCurrency])) alt CreateAccountFailed)

alt ((variation withdrawAccount [WithdrawWithLimit,

WithdrawWithoutLimit]) seq (WithdrawOk alt WithdrawFailed))

alt (optional fromEuro [ConvertFromEuro])

alt (optional toEuro [ConvertToEuro]))

15.3.3 Deriving Product Behaviors

In section “Algebraic specification,” we have specified PL behaviors using scenarios rep-
resented as UML2.0 SD enriched with variability mechanisms. Scenarios are not the only
way to describe software behaviors; statecharts [19] are another formalism that is often
used to depict the behavioral aspects of systems. However, if scenarios capture require-
ments in the early stage of the development process, statechart models are more dedicated
to detailed design phases as they are closer to the implementation (some tools such as
Rhapsody [21] generate code from them). To formalize product behavior derivation, we
have studied the problem of statechart synthesis from scenarios. Furthermore, scenarios
and statecharts differ in their nature (scenarios capture interactions amongst a set of ob-
jects, and statecharts represent the internal behavior of a single object). Statechart syn-
thesis out of a collection of scenarios has received a lot of attention in the context of
single product development [29,30,32,40]. So far, the proposed solutions do not consider
the PL aspects. In this section, we propose an algebraic approach to synthesize product
statecharts from PL scenarios. Firstly, variability is resolved by deriving the RESD-PL
into a set of RESDs, one for each product. Then statecharts are generated by transforming
product scenarios given as an RESD into a composition of statecharts.

574

15 Software Product Line Engineering with the UML

Step 1: Product Expressions Derivation

The first step toward product behavior derivation is to derive the corresponding product
expressions from the RESD-PL. Decision resolutions for a specific product are defined in
what we call an Instance of decision model (IDM), which is defined as follows:

i i

1 2 3

Ei is the selected expression.

Table. 15.2 shows four Instances of Decision Model associated with the four products
in the BPL. For example, IDM1 is the Instance of Decision Model associated with the
product BS1, which supports limits on accounts and does not offer the currency exchange
calculation functionality.

The derivation can be seen as a model specialization through abstract interpretation of a
generic PL expression in the IDMi context, where IDMi is the Instance of Decision
Model related to a specific product. For each variability mechanism, the interpretation in a
specific context is quite straightforward:

1. Interpreting an optional expression means deciding on its presence or absence in
the product expression. This is defined as:

[][] E] [nameoptional IDMi =

Note that the empty expression is a neutral element for the sequential and the alternative
composition. It is also idempotent for the loop, i.e:

– E seq EØ = E ; EØ seq E = E
– E alt EØ = E ; EØ alt E = E
– loop (EØ) = EØ

This allows us to replace a complete part of a RESD-PL by EØ when this part should be
removed.

E if (name,TRUE) ∈ IDMi

EØ if (name,FALSE)∈ IDMi

575

Definition 5. An Instance of Decision Model (noted hereafter IDM) for a product P is a
set of pairs (name , Res), name designates a name of an optional, variation or
virtual part in the RESD-PL and Res is its decision resolution related to the product P.
Decision resolutions are defined as follows:

– The resolution of an optional part is either TRUE or FALSE.
– For a variation part with E ,E ,E .. as expression variants, the resolution is i

if
– The resolution of a virtual part is a refinement expression E.

T. Ziadi and J.-M. Jézéquel

2. Interpreting a variation expression means choosing one expression variant among
its possible variants. This is defined as:

[][] ..]E2,E1, [namevariation IDMi = Ej if (name,j)∈ IDMi

3. Interpreting virtual expressions means replacing the virtual expression by another
expression:

[][]] E [namevirtual IDMi = E’ if (name,E’)∈ IDMi

BS1 IDM1 ={(settingLimit,TRUE),(settingCurrency, FALSE),(withdraw
Account, 1),(fromEuro, FALSE), (toEuro, FALSE)}

BS2 IDM2 ={(settingLimit, FALSE), (settingCurrency,
FALSE),(withdrawAccount, 2), (fromEuro, FALSE),
(toEuro, FALSE)}

BS3 IDM3 ={(settingLimit, FALSE), (settingCurrency,
FALSE), (withdrawAccount, 2), (fromEuro, TRUE),
(toEuro, TRUE)}

BS4 IDM4 ={(settingLimit, TRUE),(settingCurrency,
TRUE),(withdrawAccount, 1), (fromEuro, TRUE), (toEuro, TRUE)}

The BS2 product expression EBS2 is obtained by the interpretation of the EBPL in the IDM2
context:

EBS2 = [][] EBPL IDM2.

The derivation of the four optional expressions and the variation expression in EBPL is
realized as follows :

[][]SetLimit] [itsettingLimoptional IDM2 = EØ
[][] y]SetCurrenc [rencysettingCuroptional IDM2 = EØ
[][] uro]ConvertToE [toEuro optional IDM2 = EØ
[][] mEuro]ConvertFro [fromEurooptional IDM2 = EØ

]thoutLimitWithdrawWithLimit,WithdrawWi [

 countwithdrawAcvariation
 IDM2 =

 thoutLimitWithdrawWi

Table 15.2. Instances of the decision model for the banking product line

576

product instance of decision model (IDM)

15 Software Product Line Engineering with the UML

The reference expression obtained for the BS2 is the expression EBS2below. Since EØ is a
neutral element for seq and alt, EØ is removed from the product expression:

EBS2 = loop(Deposit alt (CreateAccount seq (CreateAccountOk)

alt CreateAccountFailed) alt (WithdrawWithoutLimit

seq (WithdrawOk alt WithdrawFailed))

The BS4 product, which provides overdrawing on accounts and exchange operations,
will be characterized by the presence of SetLimit, SetCurrency,
ConvertToEuro, and ConvertFromEuro SDs; and by the choice of
WithdrawWithLimit SD. The product expression obtained for product BS4 is:

EBS4

seq (SetLimit seq SetCurrency)) alt CreateAccountFailed)

alt (WithdrawWithLimit seq (WithdrawOk alt

 WithdrawFailed))

 alt (ConvertFromEuro)

 alt (ConvertToEuro)

Step 2: Statechart Synthesis

The derived product expressions are expressions without variability, i.e., expressions that
only compose basic SDs by interaction operators: alt, seq, and loop. The second step
of our derivation approach aims at generating statecharts for objects in each derived product.
Product SD are translated into statecharts using the method proposed in [44]. We generate
flat statecharts, i.e., statecharts without hierarchy. Figure 15.10 shows examples of flat
statecharts, in which states represented by double circled states are called junction states.
Junction states are introduced to formalize statechart composition [44]. Transitions are
labeled e/a, where e is a triggering event and a is an action. STØ refers to an empty
statechart, containing a single state, which is at the same time an initial and a junction
state (see the STØ statechart in Fig. 15.10).

Statechart Operators

Our method for statechart synthesis is based on an algebraic framework for statechart
composition. This framework is inspired by the algebraic composition of UML2.0 SD
[44]. We have formalized three statechart operators: seqs, alts and loops for the

577

 = loop(Deposit alt (CreateAccount seq (CreateAccountOk

T. Ziadi and J.-M. Jézéquel

e2'/a2'

/a3'

e1/a1 /a2

ST1

e'1

ST2

ST
Ø

Fig. 15.10. Example of flat statecharts

section, we briefly describe these operators; the complete formalization can be found in
[44]:

– Sequence (seqs). The sequential composition of two statecharts is a statechart
that describes the behavior of the first operand followed by the behavior of the
second one. Figure 15.11 shows the sequential composition of the ST1 and ST2.

– Alternative (alts). The statechart resulting from the alternative composition
describes a choice between the behaviors of its operands. See for example ST1
alts ST2 in Fig. 15.11.

– s

the iteration of the ST2.

As for sequence diagrams, we algebraically describe statechart composition with refer-
ence expressions.

Definition. 6. A reference expression for statecharts (noted REST hereafter) is an expres-
sion of the form:

<REST>::=<PRIMARY-REST> ("alts" <REST> | "seqs" <REST>)*
<PRIMARY-REST>::= STØ | <IDENTIFIER> | "("<REST>")"

 | " loops " "(" <REST> ")"

Synthesis Process

Using our algebraic framework for statecharts, translating product UML SD to statecharts
is defined in two steps: synthesis from basic sequence diagrams and synthesis from com-
bined SD. The next paragraphs describe these two steps.

Synthesis from basic sequence diagrams. In the first step of our synthesis method we gen-
erate statecharts from all basic SD in the PL. This step is based on an algorithm generating
a statechart P(SD,O) depicting the behavior of each object O in each basic SD SD. We

sequencing, alternation, and the iteration of statecharts, respectively. In the rest of this

578

Loop (loop). This operator defines iteration of a statechart. Figure 15.11 shows

15 Software Product Line Engineering with the UML

do not detail here the algorithm computing P(SD,O), which can be found in [44]. To
summarize, this algorithm uses projections of SDs on object lifelines to generate the state-
charts. Receptions in the SD become events in the statechart and emissions become
actions. For a transition associated with a reception, the action part will be void, and for

e2'/a2'

/a3'

e1/a1 /a2

ST1 seq
s
 ST2

e'1

e2'/a2'

/a3'

e1/a1 /a2

ST1 alt
s
 ST2

e'1

e2'/a2'

/a3'

e'1

loop
s
 (ST2)

Fig. 15.11. Statechart operators

transitions associated with actions, the event part will be empty. The generated statechart
contains a single junction state, which corresponds to the state reached when all events
situated on an object lifeline have been executed. When an object does not participate in a
basic SD, the algorithm generates an empty statechart. Figure 15.12 illustrates the synthe-
sis of the statechart associated with the Bank object from the Deposit basic SD.

:Bank

depositOnAccount(accID, amount)

sd Deposit

deposit(amount)

depositMessage()

?depositOnAccount(accID, amount)

/ !deposit(amount)

/ !depositMessage()

P(Deposit , Bank)

Fig. 15.12. Statechart synthesis from basic SD

579

T. Ziadi and J.-M. Jézéquel

Figure 15.13 shows the flat statecharts generated from the twelve basic SDs from Fig.
15.9 for the Bank object.

Let us apply this construction method to the combined SD for the BS2 product. The
Bank’s REST, called RESTBS2 is described below. Figure 15.14 shows the statechart
obtained from this REST.

O,

seqs, alts, s

.

RESTBS2 = loops (P(Deposit,Bank) alts (P(CreateAccount, Bank)

seqs (P(CreateAccountOk, Bank) alts P(CreateAccountFailed,

 Bank)))

alts (P(WithdrawWithoutLimit,Bank) seqs (P(WithdrawOk,Bank)

alts P(WithdrawFailed,Bank))))

The same method can be applied for the BS4 product. Its reference expression EBS4 is
transformed into the statechart composition expression RESTBS4 defined below. Figure
15.15 shows the Bank statechart obtained from RESTBS4. Note that as BS2 and BS4
differ in the presence or the absence of an overdrawing limit and exchange operations, the
synthesized statecharts differ in the transitions that concern these two functionalities. The
differences between the statecharts obtained for product BS2 and BS4 are illustrated in
Fig. 15.15 by gray zones.

EBS4 = loops (P(Deposit, Bank) alts (P(CreateAccount, Bank)

seqs ((P(CreateAccountOk, Bank) seqs P (SetLimit, Bank)

seqs P(SetCurrency, Bank)) alts P (CreateAccountFailed,

 Bank)))

 alts (P(WithdrawWithLimit,Bank) seqs ((P (WithdrawOk, Bank)

alts P(WithdrawFailed, Bank)))

 alts (P(ConvertFromEuro, Bank))

 alts (P(ConvertToEuro, Bank)))

method is based on the correspondence between interaction operators and statecharts
a RESToperators and it allows constructing RESTs from RESDs [44]. For each object

loop by statecharts operators is constructed by replaci ng in the RESD seq, alt, and
 and loop , respectively, and each reference to an SD by the statechartS

operators.
P(S,O) From the REST obtained, a statechart can be built using statechart composition

statecharts through projections of basic SDs, we now deal with combined SDs. Our
Synthesis from Combined Sequence Diagrams Once we have obtained a collection of

580

?depositOnAccount

P(Deposit, Bank)

?deposit / !depositMessage ?withdrawFromAccount

P(WithdrawWithLimit, Bank)

/ !verifyBalance / !verifyLimit

?withdrawFromAccount

P(WithdrawWithoutLimit, Bank)

/ !verifyBalance ?sufficientBalance

P(WithdrawOk, Bank)

/ !withdraw / !withdrawMessage

?insufficientBalance

P(WithdrawFailed, Bank)

/ !insufficientMessage ?createAccount

P(CreateAccount, Bank)

/ !create

P(CreateAccountOk, Bank)

/ !deposit

/ !insufficientMessage

P(CreateAccountFailed, Bank)

/ !setLimit

P(SetLimit, Bank)

/ !setCurrency

P(SetCurrency, Bank)

?convertFromEuro

P(WithdrawFromEuro, Bank)

/ !fromEuro ?convertToEuro

P(WithdrawToEuro, Bank)

/ !toEuro

Fig. 15.13. Bank basic statecharts

?createAccount / !create

/ !deposit

?insufficientMessage

?depositOnAccount

/ !deposit

?withdrawFromAccount

/ !verifyBalance

?sufficientBalance / !withdraw / !withdrawOk

/ !withdrawOkMessage

?insufficientBalance
?withdrawFailedMessage

Bank

15 Software Product Line Engineering with the UML

Fig. 15.14. The Bank statechart in the BS2 product

581

?createAccount / !create / !deposit

?insufficientMessage

?depositOnAccount

/ !deposit

?withdrawFromAccount

/ !verifyBalance

?sufficientBalance / !withdraw / !withdrawOk

/ !withdrawOkMessage

?insufficientBalance
?withdrawFailedMessage

Bank

/ !verifyLimit

/ !setLimit

? convertFromEuro

? convertToEuro

 / !toEuro

 / !fromEuro

/ !setCurrency

Fig. 15.15. The Bank statechart in the BS4 product

15.3.4 Implementation and Validation

has been implemented in Java and is integrated into the Eclipse platform. It is freely
available from http://modelware.inria.fr/plibs. UML2.0 SD with variability are specified
in Eclipse, thanks to the Omondo case tool (see Fig. 15.16a) Then RESD-PL are
automatically extracted from these diagrams. The prototype implements product
expression derivations from RESD-PL according to a given IDM. Then a statechart for a
specific object is generated from the derived expression. The generated statecharts can be
visualized using the Omondo case tool again (see Fig. 15.16b). A complete description of
the prototype can be found at http://modelware.inria.fr/plibs.

T. Ziadi and J.-M. Jézéquel 582

In the context of the ITEA FAMILIES [1] project, a prototype tool of the proposed approach

Fig. 15.16. Sequence diagrams and statechart visualization in the PLiBS prototype

We have used our approach for a complete BPL case study with 14 basic SDs. Table. 15.3
shows statistics (number of states and transitions) on the generated statecharts for the
Bank object in each BPL member (these statistics show that the generated statechart for
the Bank object differs from one product to another). We have also validated our
approach on two case studies: The camera PL [42] and the auction PL [41]. As we noticed
in Sect.15.3, some tools allow generating code from statecharts. We are currently studying
code generation from the generated statecharts in our method using existing tools.

BS1
BS2
BS3
BS4

12
10
13
15

16
14
19
21

15.4 Related Work

Software PL Engineering with the UML has received a lot of attention in recent years.
Table 15.4 summarizes existing work on PL engineering with the UML. Most of these
works address variability modeling whereas only two works refer to the product
derivation process.

15 Software Product Line Engineering with the UML

Table 15.3. States and transitions for the generated Bank statechart in the different products.

583

product # states # transitions

(a) Example of sequence diagrams specification. (b) Example of the generated statecharts.

variability in a textual description of uses cases. In Chap. 11, readers can find a detailed

to support PL requirements specification. In our work, we do not consider uses cases.
Even if the textual description through templates, used by the previous works, is a good
way to document PL requirements, SD are more operational and as shown with our app-
roach detailed design can be generated from them.

ability in UML static models. However, few works model variability in behavioral mod-

duces the stereotype <<variant>>, which can be applied to messages in SD and to

Indeed, if all messages in the same SD are optional, the user should specify all these mes-
sages with the stereotype <<variant>>. This can compromise the readability of the
SD. On contrary, our <<optionalInteraction>> is applied to the complete SD.

only concern UML1.x models.

tices implementing the product architecture derivation. The main assumption in this
proposition is: the PL is defined by an engineering assets repository and each product
should choose components from this repository to obtain a product-specific architecture.

new operator called xatl to distinguish between mandatory and potential behaviors. A
potential behavior represents a variant of a mandatory behavior. This is close to our
variation construct where interaction variants correspond to the potential behaviors.

In addition to these works, readers can find in Chap. 6 a complete study about Model
Driven Engineering for Software PLs. The chapter also proposes a framework for model-
ing variability in PLs.

In Sect. 15.3, we have used statechart synthesis from scenarios to derive product-
specific behaviors. There are many works on statechart synthesis; however these works
only concern single product development (i.e., without consideration for variability). To
our knowledge, there are no other works proposing statechart synthesis from software PL
scenarios. The next paragraph describes existing works on statechart synthesis in the con-
text of a single product development. There are works that synthesis statecharts from
UML1.x, from Message Sequence Charts MSC [22] and from Live Sequence Charts [11].

Due to the poor expressive power of UML1.x SD, the proposed solutions for statechart

and postconditions given in (Object Constraint Language) OCL, which refer to global

T. Ziadi and J.-M. Jézéquel 584

For variability modeling, many works [5,17,18,26,37] are related to functional mod-

synthesis [29,30,32,40] often use additional information or ad hoc assumptions for man-

Flege [13,14] also introduces variability in UML statecharts. Note that all these works

stereotypes <<kernel>>, <<optional>>, and <<variant>>. KobrA [3] intro-

ity. Use cases are described using templates. Bertolino et al. [5] introduce tags to describe

description of Bertolino et al.’s work. Maßen et al. [37] extend the UML use case meta-
model to support variability. John et al. [26] tailor use case diagrams and textual use cases

els: Gomaa et al. [17] introduce variability in UML collaboration diagrams with three

Haugen et al. [20] also use UML2.0 SD to specify behaviors of systems. They introduce a

statecharts. The KobrA’s solution to specify variability in SD is difficult to use in practice.

While we formalized product derivation as UML model transformations, KobrA and
Flege do not propose a means to implement derivation. Cerón et al. [8] propose two prac-

aging several scenarios. For example, Whittle et al. [40] enrich messages in SD with pre-

els (use cases). Halmans et al. [18] extend use cases with stereotypes to specify variabil-

There are many works [3,10,14,16,27,34,38] that propose extensions to specify vari-

state variables. State variables identify identical states throughout different scenarios and
guide the synthesis process. Our approach does not use variables, and structures the state-
charts and transitions based on information provided by lifeline orderings and SD opera-

programs from traces. This work establishes a correspondence between traces and scenar-
ios and between programs and statecharts. In [29,32] it is also proposed to use interactive
algorithms to generate statecharts from UML1.x sequences diagrams.

Several other approaches [31,35,36] study statechart synthesis from MSC [22], a
scenario formalism similar to sequence diagrams. MSCs allow composition of basic
scenarios (bMSCs) with High-Level Message Sequence Charts (HMSC). This
composition mechanism is very close to that of current SDs in UML2.0 and our approach
can be used to generate statecharts from MSCs.

PL requirements and not for statechart synthesis.

Table 15.4. Existing works on PL engineering with the UML

Bertolino et al. [5] X
Halmans and Pohl [18] X
John and Muthig [26] X
Maßen and Lichter
[37]

X
Robak et al. [34] X X
Clauß [9,10] X
Gomaa [16, 17] X X X
Flege [13, 14] X X X
KobrA [3] X X X X
SPLIT-Daisy [27] X
Webber [38] X

15.5 Conclusions and Future Research

In this chapter we have described PL design and derivation techniques building on
advanced model transformation technology. Working at the level of UML design models,
derivation of both static and behavior aspects was considered. For static aspect derivation,
we started from a class diagram modeling the full PL along with a decision model given in

according to the PL-specific constraints.

15 Software Product Line Engineering with the UML

Finally, Chap 13 also uses SD but it uses them to derive product-specific .test cases from

the form of a set of concrete factories to build specialized UML models corresponding
to the selected products. The challenge of such model manipulation is to be able to trans-
form the model accessing its metalevel and ensuring the integrity of the derived model

585

variability modeling Product Derivation
functional static behavior static behavior

aspects aspects aspects aspects aspects

tors. Koskimies et al. [30] use the Biermann–Krishnaswamy algorithm [6], which infers

For behavioral aspects derivation, we started from UML2.0 Sequence Diagrams
extended with algebraic constructs to specify variability. We use interpretations of the
algebraic expressions to resolve the variability and derive product expressions, which are
ultimately transformed into a set of product-specific statecharts. The introduction of
variability in behavioral models can be used to factorize common behavioral models in
different products, and should then facilitate domain-engineering phases. However, some
parts of the synthesis can be reused from one product to another, hence facilitating reuse
during application engineering. As discussed in [44], statechart synthesis should be
considered more as a step toward implementation rather than as a definitive bridge from
user requirements to code.

roaches have been implemented. We used Model Transformation Language MTL and its
related framework UMLAUT-NG for implementing the static aspect derivation. For
behavioral aspects, a prototype tool has been implemented in Java and integrated into the
Eclipse platform. We used our approach in several case studies; however we hope in the
future to use it in an industrial context.

This work has been partially supported by the ITEA project ip02009, FAMILIES in the
Eureka ! 2023 Program. We wish to thank Loïc Hélouët for many inspiring discussions.
We also gratefully acknowledge the reviews of Stan Bühne, Juan Carlos Dueñas, Timo
Käkölä, Kim Lauenroth, Jim Steel, and Patrick Tessier, which significantly improved the
quality of this chapter.

References

T. Ziadi and J.-M. Jézéquel

Acknowledgments

586

1. FAMILIES project. http://www.esi.es/Families/ (2003)
2. Anastasopoulos, M., Gacek, C.: Implementing product line variabilities. Technical report, IESE report no.

089.00/E, version 1.0, IESE (November 2000)
3. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D., Paech, B., Wüst, J.,

Zettel, J.: Component-Based Product Line Engineering with UML. Component Software Series (Addison-
Wesley, Reading, MA 2001)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practices, 1st edn (Addison-Wesley, Reading,
MA 1998)

5. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Use case description of requirements for
product lines. In: International Workshop on Requirement Engineering for Product Line (REPL02),
September 2002, pp 12–18

6. Biermann, A.-W., Krishnaswamy, R.: Constructing programs from example computations. IEEE Trans.
Softw. Eng. 2(3), 141–153 (September 1976)

7. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H., Pohl, K.: Variability issues in software product
lines. In: 4th Workshop Product Family Engineering (PFE4), 2001, pp 11–19

8. Cerón, R., Arciniegas, J.L., Ruiz, J.L., Dueñas, J.C., Bermejo, J., Capilla, R.: Architectural modelling in
product family context. In: EWSA, ed by Oquendo, F., Warboys, B., Morrison, R. Lecture Notes in Computer
Science, vol 3047 (Springer, Berlin Heidelberg New York 2004) pp 25–42

9. Clauß, M.: Generic modeling using UML extensions for variability. In: Workshop on Domain Specific
Visual Languages at OOPSLA 2001, Tampa Bay, FL, USA, 2001

10. Clauß, M.: Modeling variability with UML. In: GCSE 2001 Young Researchers Workshop, 2001

In the context of the ITEA FAMILIES [1] project, prototype tools of the proposed app-

15 Software Product Line Engineering with the UML 587

11. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Formal Meth. Syst. Des. 19(1),
45–80 (2001)

12. Deelstra, S. et al: Product derivation in software product families: a case study. Syst. Softw. 74(2), 173–194
(January 2004)

13. Flege, O.: System family architecture description using the UML. Technical report, IESE-report no. 092.00/E,
IESE (December 2000)

14. Flege, O.: Using a decision model to support product line architecture modeling, evaluation, and instantia-
tion. In: Proceedings of Product Line Architecture Work-shop. The 1st Software Product Line Conference
(SPLC1), 2000, pp 15–20

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pattern Elements of Reusable Object-Oriented Soft-
ware (Addison-Wesley, Reading, MA 1995)

16. Gomaa, H.: Object oriented analysis and modeling for families of systems with UML. In: IEEE International
Conference for Software Reuse (ICSR6), ed by Frakes, W.B., June 2000, pp 89–99

17. Gomaa, H.: Modeling software product lines with UML. In: International Workshop on Software Product
Lines: Economics, Architectures, and Implications (SPLW2), ed by Knauber, P., Succi, G., 2001, pp 27–31

18. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to customers. Softw.
Syst. Model. 2(1), 15–36 (2003)

19. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)
20. Haugen, O., Stolen, K.: STAIRS-steps to analyze interactions with refinement semantics. In: UML Confer-

ence UML2003, October 2003, pp 388–402
21. I-Logix. Rhapsody. http://www.ilogix.com/
22. ITU-T. Z.120: Message Sequence Charts (MSC) (November 1999)
23. Jézéquel, J.-M.: Object Oriented Software Engineering with Eiffel (Addison-Wesley, Reading, MA 1996)
24. Jézéquel, J.-M.: Object-oriented design of real-time telecom systems. In: IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, ISORC’98, Kyoto, Japan, April 1998
25. Jézéquel, J.-M.: Reifying configuration management for object-oriented software. In: Proceedings of the 20th

International Conference on Software Engineering (IEEE Computer Society, Silver Spring, MD 1998)
pp 240–249

26. John, I., Muthig, D.: Tailoring use cases for product line modeling. In: International Workshop on Requirement
Engineering for Product Line (REPL02), September 2002, pp 26–32

27. El Kaim, W.: Managing variability in the LCAT SPLIT/Daisy. In: Proceedings of Product Line Architecture
Workshop. The 1st Software Product Line Conference (SPLC1), 2000, pp 21–32

28. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson S.: Feature-oriented domain analysis (FODA) feasibility
study. Technical report, CMU/SEI-90-TR-21 (Software Engineering Institute November 1990)

29. Khriss, I., Elkoutbi, M., Keller, R.: Automating the synthesis of UML statechart diagrams from multiple col-
laboration diagrams. In: Proceedings of UML’98: Beyond the Notation, 1998, pp 115–126

30. Koskimies, K. et al: Automated support for modelling OO software. IEEE Softw. 15: 87–94 (January 1998)
31. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to statecharts. In: Distributed and Parallel Embedded

Systems (Kluwer, Dordrecht 1999) pp 61–71
32. Mäkinen, E., Systä, T.: MAS – an interactive synthesizer to support behavioural modeling. In: Proceeding of

International Conference on Software Engineering (ICSE 2001) (2001)
33. Object Management Group (OMG): Unified modeling language specification version 2.0: superstructure.

Technical report pct/03-08-02 (OMG 2003)
34. Robak, S. et al: Extending the UML for modeling variability for system families. Int. J. Appl. Math. Comput.

Sci. 12(2), 285–298 (2002)
35. Uchitel, S. et al: Synthesis of behavioral models from scenarios. IEEE Trans. Softw. Eng. 29(2), 99–115

(February 2003)
36. Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from scenarios. In: Proceedings of

37. van der Maßen, T., Lichter, H.: Modeling variability by UML use case diagrams. In: International Workshop
on Requirement Engineering for Product Line (REPL02), September 2002, pp 19–25

38. Webber, D.L.: The variation point model for software product lines. Ph.D. thesis (George Mason University,
George Mason University, Fairfax, VA 2001)

39. Weiss, M.D., Robert Lai, C.T.: Software Product-Line Engineering: A Family Based Software Development
Process (Addison-Wesley, Reading, MA 1999)

40. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: Proceeding of International

41. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Moédélisation de lignes de produits en UML. In: Proceedings of LMO
2003, Langages et Modeles a Objets, Vannes, France, February 2003

International Conference on Software Engineering (ICSE 2001) (2001) pp 188 197 –

Conference on Software Engineering (ICSE 2000) (2000) pp 314 323 –

T. Ziadi and J.-M. Jézéquel 588

42. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML profile for software product lines. In: Proceedings of
the 5th International Workshop on Product Family Engineering (PFE-5). Lecture Notes in Computer Science,
vol 3014 (Springer, Berlin Heidelberg New York 2003) pp 129–139

43. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Modeling behaviors in product lines. In: Proceedings of REPL’02,
Workshop on Requirements Engineering for Product Lines, Essen, Germany, September 2002

45. Ziadi, T., Jézéquel, J.M., Fondement, F.: Product line derivation with UML. In: Proceedings of Software
Variability Management Workshop (University of Groningen, Department of Mathematics and Computing
Science February 2003)

pp 242 251

44. Ziadi, T., Hélouët, L.L., Jézéquel, J.M.: Revisiting statecharts synthesis with an algebraic approach.
In International Conference on Software Engineering, ICSE’26, Edinburgh, Scotland, UK, May 2004,

–

16 Evaluation Framework for Model-Driven Product
Line Engineering Tools

J. Oldevik, A. Solberg , Ø. Haugen, and B. Møller-Pedersen

Abstract
Both the model-driven development (MDD) approach and the product line engineering
(PLE) approach envisage more efficient system development capable of delivering high-
quality products by means of reuse, abstraction, configuration, and transformation. In
order to succeed with model-driven product line engineering we need tools that support
architects and engineers in tasks such as system modeling, variability modeling, model
analysis, model transformation, system derivation, code generation, and model
traceability.

Managing and automating these processes and tasks can be complex processes
themselves. How to solve these complexities is a current topic of research. Unsurprisingly,
no existing tool provides full support for an envisioned model-driven product line
engineering approach. However, MDD and PLE are being paid a great deal of attention by
the software development community, leading to an increasing number of tools emerging
within this area. This is particularly the case for tools supporting Object Management
Groups (OMG) envisioned model-driven engineering approach, Model Driven Architecture
(MDA).

When exploring tool support for the evolving MDD and PLE disciplines, it can be
difficult to know what features to look for and what to expect. This chapter relates
traditional model-driven engineering to product line engineering and establishes a general
framework for evaluation of tools in this area. The framework is defined in terms of desired
characteristics, based on elicited requirements for model-driven product line engineering. It
adheres to the general tool selection process described in the ISO 14102 standard. Some
example MDD/PLE tools are evaluated using the framework to show its applicability and
results.

16.1 Introduction

variability [35]. Chapter 6 defines an approach toward a standard way of representing
commonality and variability of product lines. Based on the product line, specific systems
are derived by resolution of variability and abstractions. This task is often called product

such as model transformation, code generation, and variability resolution. Examples are
the approach described in Chap. 15, which looks at using UML for describing static and
dynamic PL aspects and deriving products from these, and the approaches described in

In model-driven system engineering, system development is performed in an integrated
environment where models are the main instrument for development and integration. In

models at different abstraction levels is developed. These models may range from
business models, requirements models, and design models to deployment models and
code. MDD envisions efficiency through modeling at different abstraction levels and
automatic transformations between abstractions, including the generation of executable
code. Thus, an advanced framework for MDD should provide well-structured support for
modeling at different abstraction levels, traceability between model elements at different
abstraction levels, model transformations, code generation and model synchronization.

MDD and PLE are currently being paid a great deal of attention by both academia and
industry. A growing number of tools supporting MDD and PLE tasks are becoming
available. In [4], Gartner predicts that model-driven service frameworks with architecture-
based code generators will become as prevalent as traditional fourth-generation languages
were in the 1990s. Furthermore, the Gartner Group recognizes portfolio management of
product lines becoming a peak technology by 2004 [9].

MDD and PLE have similarities and differences, which in combination can provide
mutual benefits. For instance, [14] suggests using PLE principles and techniques to define
appropriate modeling concepts and thus obtaining proper scoping in an MDD
environment, and using MDD principles to model the product line and derive systems. A

Within testing, PLE and MDD share many of the needs. Chapters 11 and 12 show this in
their applications of testing product line requirements.

Performing MDD and PLE tasks can be very complex, and tool support is essential to
success. Since MDD and PLE are evolving and are relatively recent software system
engineering disciplines, there are no well-established guidelines on how to evaluate and
select proper MDD and PLE tools. In this chapter, we present an evaluation framework to
support evaluation and selection of MDD and PLE tools.

The following sections justify, define, and exemplify the evaluation framework.
Section 16.2 describes the relationships that exist between model-driven development and
product line engineering. Section 16.3 elicits characteristics for tools and defines the
evaluation framework. Section 16.4 shows an example of an evaluation of a selection of
tools. Section 16.5 evaluates the tool evaluation framework and draws conclusions.

590 J. Oldevik et al.

model-driven development (MDD) processes, an extensive set of different interrelated

[1,2,17].

combined approach has also been investigated in the FAMILIES [11] project [17,34].

In product line engineering (PLE), the philosophy is to specify a general product line from
which specific products can be derived or configured. The product line is specified at a

derivation. There exists a set of various techniques for performing product derivation,

higher abstraction level than the specific product, and it encompasses commonalities and

16.2 Combining Model-Driven Development and Product Line
Engineering

The product line engineering approach brings concepts such as scoping, product line
architecture, definition of domain concepts and components, variation, and product

To combine MDD and product line engineering, it is necessary to specify the product
line by models. Models can be specified using a standard modeling language such as
Unified Modeling Language (UML). Another trend in MDD is to specify the models

the profile mechanism [33] provides a means of defining DSM languages, for instance by
defining stereotypes of domain specific concepts.

In addition to product specifications the model specifications typically describe the
product line reference architecture, domain concepts, patterns, variability specifications,
etc. By viewing product line derivation as a special case of model transformation [17],
tools supporting MDD should in principle be able to support essential PLE tasks.

Many MDD and PLE approaches are based on component frameworks [8], in which
abstractions, concepts, transformations, etc. are defined as part of the framework. The
MDD/PLE combination can be implemented as a component framework, in which the
product line defines the scope and MDD technologies, such as for instance UML and
Meta Object Facility (MOF) [27], are used for specification of the framework. Model
transformation technology may be used to perform model transformation and product
derivation.

An example of a generic MDD framework that can be customized to support PLE is
described in [36]. It provides tailoring to specific domains by means of UML profiles,
reusable models, and patterns. UML profiles are used for defining domain concepts and
reference architectures. Existing models are prepared for reuse if applicable. Patterns
describe standard solutions of recurring problems within the domain. Using a product line
to scope the domain, the framework will provide an environment of (a) domain concepts
relevant for the actual product line, (b) the product line architecture, (c) common
components and artifacts represented as reusable models at the product line level, and
(d) variability mechanisms and variability that can be specified by patterns. Table 16.1
shows some parallels between activities of PLE and MDD.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools 591

approach [24], Microsoft’s software factory approach [14,24], or Xactium [38]. In UML,

Combining model-driven development (MDD) and product line engineering implies
that the set of artifacts developed is based on models. In MDD, models are actively
used in the development process, both as first-class artifacts and for producing docu-
mentation, code, etc.

derivation into play [1,2,3,5,6,14]. A well-defined product line inherently specifies
the scope of ones domain and defines the common architecture for the set of products in
the product line. The variation spans the set of systems that may be derived. The product
line approach aims to gain extensive reusability by generalizing a set of related products

using Domain Specific Modeling (DSM) languages, for example using the MetaCase

in a product line.

Table 16.1. Parallels between the product line and MDD approaches

scoping elicitation of requirements

model of product line high-level model of system

variability resolution and product derivation model refinement and transformation

model of product model of system

transformation of product model transformation of system model

testing of product testing of system

executable product executable system

There are many overlaps between activities in PLE and traditional MDD approaches.
The major difference is the reuse aspect of a single product line model, the scoping of this
model, and the management of variability and commonality within it. The product line
model is used for each production of new products. However, this is similar to the reuse of
domain libraries (and models) in traditional development. Reuse is the main motivation
for product lines. The main differentiating technical factor is the explicit usage of
variability and variability resolution in the development process in PLE.

Variability resolution can be viewed as a kind of transformation process, or part of a
transformation process, whereby decisions regarding variability in a Product Line Model
are taken. The result is a new model, with less (or no) variability. The main difference
between variability resolution and traditional MDD transformations is that the latter
traditionally has no human interactions during the process.

Looking at the forthcoming standard transformation specification language in OMG,

model transformation are not allowed. However, provision of such interactions has been
suggested in an evaluation report on QVT [15]. QVT is in the final stages of
standardization at the time of writing. It defines a metamodel for transformations and
concrete notations for expressing transformations. Two main parts are defined: a relational
part that provides a declarative way of specifying and enforcing relationships between
metamodels, and an operational part that offers imperative constructs for writing trans-
formations in a procedural style. Another related process in OMG is the standardization of
MOF Model to Text Transformations [29]. This process addresses the generation of text
from MOF-based models, for example generating code or documentation from UML
models. Standards such as these are likely to become key technologies in MDD and play
important roles in model-driven product line engineering processes.

An example of a process in which a product line approach is combined with model-
driven techniques is illustrated in Fig. 16.1. Here, it is assumed that the product line model
is defined by a formal model, e.g., in UML. This model describes different aspects of the
product line, such as business aspects, requirements, architecture, design, platform details,
and the variability of the product line.

592 J. Oldevik et al.

product line approach model-driven development approach

the Query/View/Transformation language (QVT) [30,32], human interactions during the

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Product
Line

Model

Business
model

Requirements
model

Architecture
model

Platform
model

Design
model

Variation
points

Derived
Product

Model (PIM)

Business
model

Initial
Requirements

model

Initial
Architecture

model

New product
requirements

New product
requirements

Variation
points?

Transformed
Product

Model (PIM)

Business
model

Requirements
model

Architecture
model

Refined
Product

Model (PSM)

Business
model

Requirements
model

Architecture
model

Design
model

Platform
model

Runtime
Product
(Model)

Business
model

Requirements
model

Architecture
model

Design
model

Platform
model

Executable
model / code

Variation
points?

Variation
points?

Variation
points?

Product Derivation

Transformation and configuration

Transformation, configuration

Transformation,
code generation

Fig. 16.1. Model-driven product line engineering – example process

When the process of developing a new system is initiated, it is based on a product
derivation from the Product Line Model. This derivation and the model of the variability
in the product line are the main factors that differentiate PLE and MDD. The variability
defines a space of possible systems that can be derived. Once this process is completed
and the Product Model has been defined, PLE can use the same techniques as traditional
MDD.

During the development process, there may be unresolved variabilities from the
original Product Line Model at different levels, which can be resolved at some point in the
process. Consequently, a product line can be resolved, or configured, through a set of
steps toward a more specific system.

Following the product derivation come phases that allow for system extension as well
as refinement and configuration toward the final runtime system, starting with the Derived
Product Model. Here, MDD techniques such as transformation and configuration may be
used. New model elements, driven by new requirements, may be introduced on the way.
In this kind of process, there may be any number of refinement steps toward different
levels of model abstraction. In the example, the terms platform-independent model (PIM)
and platform-specific model (PSM) are used to describe the abstractions.

The terms PIM and PSM are relative to some definition of the platform. For example,
defining middleware as the platform (e.g., J2EE, CORBA and .Net), separation of
platform-independent and platform-specific concerns occurs when a middleware-independent

593

model (a PIM) and a corresponding middleware-specific model (a PSM) are defined for a
particular application. Since the PIM and PSM are relative to the chosen platform, these
concepts form a recursive structure, in which a PSM in one context may be a PIM in
another. (This terminology is compliant with the MDA [31] definitions of these concepts.)
MDD and PLE tools need to provide support for specifying systems at different levels of
abstraction. Techniques for model transformation, product derivation, and configuration
are keys to the provision of model-driven product line engineering.

16.3 Tool Evaluation Framework

This section defines the evaluation framework by discussing elicited characteristics for
model-driven product line engineering (Sect. 16.3.1). The elicited characteristics are
analyzed in order to derive the evaluation framework table shown in Sect. 16.3.2. The
usage of the evaluation framework is exemplified by evaluating a set of tools (Sect. 16.4).

MODELWARE [26], and through our own experience gained in the course of

16.3.1 Characteristics Elicitation

The following subsections offer motivation for the evaluation framework characteristics.

Support for MDD and PLE Mechanisms

Combining model-driven development (MDD) and product line engineering implies some
prerequisites. First, it is required that the set of artifacts developed is in the form of
models. Furthermore, model specifications of both the product line and the specific
products need to be available. In MDD, the engineering process is driven by the set of
prescribed models that need to be developed. Thus, tool support for modeling should be
provided, and modeling languages such as UML should be supported.

Providing tailoring and configuration of the tool to better support a specific domain
such as support for defining DSM languages (e.g., UML profiling) is important. In [10],
several advantages of DSM languages over general purpose modeling languages are
discussed. For instance, a DSM language raises the level of abstraction using constructs
directly related to the application domain and provides notation close to practitioners’
natural way of thinking.

In a combined MDD and PLE approach, the domain should be scoped by the product
line. Variability specification and support for transformations and product derivation are
other key mechanisms that ought to be in place.

594 J. Oldevik et al.

12,15,30,38], through case studies in projects like FAMILIES, COMBINE [7], and

development and provision of the UML Model Transformation open source tool [16,37].

The characteristics have been elicited via a survey of relevant literature, such as [1,2,5,8,

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Support for Standards

In many cases, it is important that a tool should support standards, as this caters for open
architectures, easy integration, tool interoperability, and tool migration. For a business
that is investing in model-driven tool technologies, this is important in order to avoid
vendor locking.

The Object Management Group (OMG) is a major standardization organization in the
MDD area. It operates through the promotion of MDA, which is based on standard
modeling technologies such as the Unified Modeling Language (UML) [33], Meta Object
Facility (MOF) [27], and XML Metadata Interchange (XMI) [28]. Ongoing standardi-
zation efforts like QVT and MOF Model to Text Transformation are also expected to be
key technologies for realizing the MDA vision. These standards target languages for
specifying model transformations and code generation, respectively.

MDD and PLE tools should provide mechanisms that support the separation of
concerns, such as abstraction levels and views. Most graphical modeling languages
provide a set of views through its set of diagram types (e.g., UML, which provides class
diagram, interaction diagram, deployment diagram, etc.). Furthermore, the modeling
language should support modeling of standardized viewpoints such as ISO RM-ODP [18],
as well as any number of user-defined views. Also, features for modeling of PLE
variability should be provided. General modeling languages like UML enable modeling of
standardized and user-defined views. UML also support modeling of PLE variability to
some extent, and UML profiles can be defined to extend the support for variability

Product Line Support

Currently, MDD does not address all aspects needed for product line engineering, such as
specification and resolution of variability, which are key tasks for PLE.

In PLE, the timing for resolving variabilities may vary. For example, some variation
elements may be resolved when deriving architecture models from business and
requirements models, others when deriving detailed design models. When deriving
implementations as executable code, some variabilities may still remain unresolved. These
can be resolved at run time (runtime variability), for instance in order to gain context
adaptation of the running system.

A tool should provide a flexible way of handling variability resolution. Variability
should be permitted to be resolved at different stages in the development lifecycle, and
also during run time.

Variation specifications may be inter-related. This may imply that a specific resolution
of a variation may conflict with a set of possible resolutions of other specified variations.
A resolution of a variation can depend on resolutions of a set of other variation
specifications. Management of these kinds of dependences needs to be handled.

The consolidated meta-model for variability described in Chap. 6 provides valuable
input for model-driven product line engineering, as it brings forward standard concepts for
representing variability. It aims to provide a common basis for implementation by PLE
tools.

595

modeling [17,39].

Process Support

Process support is important in software engineering. Many general-purpose system
development process frameworks are available and can be chosen in a combined MDD
and PLE approach, for example the Rational Unified Process [22]. In addition to support

In order to support a consistent development process, iterative and incremental
development should be supported. In comparison with a waterfall-oriented process,
iterative and incremental development caters better for change and for the fact that

and incremental processes have become mainstream in the software engineering
discipline, and tool chains used in software development should provide support for this
paradigm. For MDD and PLE tools, this includes features such as:

• Support for roundtrip engineering
• Management of traces and relationships between models
• Management of change propagation between model abstraction levels without

distorting model consistency

Model Transformation

Providing general refinements of abstract system specifications to more concrete specifi-
cations, and eventually to executable artifacts that meet expectations in terms of provided
functionality and quality is a complex process.

Tools supporting a combined MDD and PLE approach should offer the capability to
specify and execute transformations between models at different abstraction levels, as well
as between models and implementation code. The standardization of model transformation
technologies within OMG (QVT and the MOF model to text transformation) will coerce a
new level of maturity in this field. Related aspects, such as traceability support in
transformations and bidirectionality, will be of importance in many model transformation
scenarios.

When performing model transformation and code generation it is essential to produce the
desired results in terms of derived models and code. An important consideration in this
respect is production of expected functionality; another key aspect is to deliver models and
code that specify systems that will adhere to the required quality of the provided services.
Thus, the specification and consideration of quality of service (QoS) when deriving product
models are significant. Quality aspects such as usability, availability, performance, and
security need to be managed throughout the system development process. For this reason,
the support provided by tools in this respect needs to be evaluated.

Nonfunctional Properties

Nonfunctional tool properties will also be of importance for selecting the appropriate tool.
Aspects such as tool pricing, availability, licensing, and maturity of the tool are important
properties that affect decisions and the selection of tools. In [20], a more extensive set of
nonfunctional properties is defined; subsets of these may be considered relevant
dependent on the particular needs of the user.

596 J. Oldevik et al.

MDD and PLE tasks, a model-driven product line engineering tool should enable inte-

knowledge of the system and its purpose is typically evolving as it is developed. Iterative

gration and interoperability with standard tool portfolios used in software engineering
 processes.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

16.3.2 Evaluation Characteristics

This section presents the evaluation characteristics for MDD tools in general and MDD
tools that support PLE in particular. The previous section suggested a number of
characteristics that were analyzed with the aim of identifying appropriate criteria within
the evaluation framework.

The evaluation characteristics define a set of desired properties. The justification for
each of them is indicated by a question, which needs to be answered during an evaluation.
The output domain of permitted answers is defined for each question. Some questions
have Yes or No as the output domain while others have a range of possible answers. An
evaluation framework can hardly be complete, as is also argued in [23]. This framework
includes common characteristics derived from a survey of relevant literature, case studies
and own experience. However, the user can extend or modify the framework. For
instance, more details of a characteristic can be explored by adding subcharacteristics with
associated questions. Answers can be extended to include more options, and the weighting
and criticality may be altered. Finally, characteristics can be added or removed by users.
Each answer may also be accompanied by a more elaborate description of the specific
issues concerning that feature of a tool. Table 16.2 shows the characteristics of the
evaluation framework.

Table 16.2. Evaluation characteristics

CID
x.y

characteristic description/question weight
1–5

critical
Y/N

1 model specification does the tool support specification of systems
as graphical models? {Yes/No}

4 N

2 graphical notation for
model transformation

does the tool support graphical specification of
transformation? {Yes/No}

1 N

3 lexical notation for model
transformation

does the tool support lexical specification of
transformation? {Yes/No}

5 N

4 model-to-model
transformation support

does the tool support model-to-model
transformation? (e.g., from one UML model to
another?) {Yes/No}

4 N

5 model-to-text
transformation support

does the tool support model-to-text transforma-
tion, such as generation of source code?
{Yes/No}

5 Y

6 support for model analy-
sis

is there any support for model analysis?
{Yes/No}

1 N

7 support for QoS
management

is there any support for managing QoS during
model specification and transformation?
{Yes/No}

1 N

597

8 metamodel-based is the tool based on explicit descriptions of the
metamodels of source and target
transformation? {Yes/No}

3 N

9 MOF integration is the tool integrated with a MOF (or other
metamodel-based repository)? {Yes/No}

4 N

10 XMI integration is the tool integrated with XMI? {Yes/No}
which version(s) of XMI is supported? {list
of versions}

4 Y

11 based on UML is the tool based on UML models as source
and/or target models for transformation?
{Yes/No}

2 N

12 UML specification does the tool provide support for UML
modeling {Yes/No}

4 N

13 UML tool integration can the tool be integrated with existing UML
tools? either directly, as active plug-ins in
UML tools, or indirectly through model
exchange via, e.g., XMI? {Yes/No}or{names
of the set of techniques}

4 N

14 iterative and incremental
transformation support

does the tool handle reapplication of
transformation after model updates? {Yes/No}

3 N

15 bidirectional
transformations

does the tool support bidirectional transforma-
tions? {Yes/No}

1 N

16 traceability does the tool handle traceability of
transformations, i.e., can it maintain traces of
the source and targets of a transformation?
{Yes/No}

4 N

17 product line variability
modeling

is there support for modeling product line
variability? {Yes/No}

4 N

18 product line variability
Resolution

is there support for variability resolution?
{Yes/No}

5 Y

19 DSM language support is there support for defining domain-specific
modeling languages (e.g., UML profiling) and
DSM transformations? {Yes (1)/DSM
Transformations (0,5)/No.(0)}

4 N

20 QoS variability is there support for modeling and resolving
QoS variability? {Yes/No}

3 N

21 decision process support is there support for a decision process?
{Yes/No}

5 N

598 J. Oldevik et al.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

22 maturity what is the maturity of the tool?
 {Mature (0.7–1), medium(0.4–0.6), under
development (0–0.3)}

2 N

23 usability what is the usability level of the tool? is it
{Easy and intuitive (0.7–1), medium learning

curve (0.4–0.6), steep learning curve (0–0.3)}

1 N

24 availability and license what is the license for the tool?
{Open source (1), freeware (0.4–0.9),

 commercial(0–0.3)}

2 N

25 pricing what is the pricing of the tool?
{the approximate pricing (0–0.9), N/A (1)}

4 N

Characteristics 1–6 evaluate general support for MDD and to what extent a tool
supports model specification and transformation. The support for model analysis
characteristic will evaluate support for analysis and checking of model consistency,
correctness, etc. Management of QoS during system specification and transformation is
evaluated through characteristic 7. Flexibility and the extent to which the tool supports
standards and enables easy integration and interoperability are the focus of characteristics
8–13. Supporting an iterative and incremental process model is evaluated through
characteristics 14–16. Characteristics 17–21 are specifically tuned to supporting the
specific requirements of product line engineering. General nonfunctional properties of the
evaluated tool are the focus of characteristics 22–25. Many additional nonfunctional
properties such as the extensive set presented in [20] may be relevant in particular cases.
This framework only includes some of the important ones that will typically be
considered. The user can add more nonfunctional properties if needed.

The Characteristic Identification (CID) field is used to number the characteristics for
later reference. The numbering can be flat as shown in Table 16.2. The CID field can also
be used to define a hierarchy of categories and characteristics. For instance, defining a
category five named Support for Product Line Techniques would appear as shown in the table
below.

5 support for product line specific techniques

5.1 product line variability model-
ing

is there support for modeling product line vari-
ability? {Yes/No}

5.2 DSM language support is there support for defining domain specific
modeling languages (e.g., UML profiling) and
DSM transformations? {Yes (1)/DSM Transfor-
mations (0.5)/No(0)}

5.3 product line variability resolu-
tion

is there support for variability resolution?
{Yes/No}

5.4 decision process support is there support for a decision process? {Yes/No}

599

This allows categories of characteristics to be summed separately. The CID field can
also be used to add subcharacteristics using a similar technique. The weights and critical
fields of the table are optional and are used to perform more advanced evaluations. The
values assigned are used for the purpose of exemplification. The weight field is used to
indicate how important a particular feature is for a particular user/domain. The weight
function is used to cater for different users with various preferences and different problem
categories requiring different types of support. The answers to the set of questions are
normalized to a figure ranging from zero to one. For yes/no answers, yes can be
normalized to 1 and no to 0. The weight may be a number from 1 to 5, and the final value
of the characteristic is the product of weight and normalized value. If all features have the
same importance, the weighting function is superfluous.

The critical field is used to indicate if a feature is critical. If the normalized answer
appears to be 0 for a critical characteristic, the tool is not usable for the particular case.
The evaluation framework characteristics in Table 16.2 define example instances of

In the following section, the evaluation framework is applied on a set of MDA-oriented
tools.

16.4 Examples of Tool Evaluations

This section presents a selection of existing tools in the MDD/PLE area, examining their
characteristics and seeing how they support the characteristics described in Sect. 16.3.2.
The evaluations apply the weights for each characteristic and calculate the weighted score,
which are summed up for each tool.

16.4.1 The Evaluated Tools

Since variability, domain concepts, and reference architectures can be specified in
modeling languages like UML and product derivation can be viewed as a special case of
model transformation [17], tools supporting MDD should in principle be able to support
essential PLE tasks. Most of the relevant tools currently on the market are promoted as
MDD tools. However, the evaluation framework explores the extent to which tools are
able to support essential PLE tasks and to which they can be used in a model-based PLE
approach.

The focus has been on evaluating a selection of tools, some of them commercial and
some open-source based, which are positioned within the MDD arena and that focus on
model transformation and code generation. In consequence, they should in principle
support product derivation to some extent. Pure modeling tools such as traditional UML
tools have not been evaluated, since we are interested in evaluating tools that provide
support for the distinctive software engineering tasks that have appeared with the
introduction of the MDD and PLE approaches, such as model transformation and system
derivation.

The list below gives a brief overview of the tools evaluated:

600 J. Oldevik et al.

weights for each characteristic and set some of them to be critical [5,10,18].

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

• Atlas Transformation Language (ATL). An open-source MOF-based model
transformation tool, which is part of the Eclipse GMT project (Sect. 16.4.3).

• UML Model Transformation Tool (UMT). An open-source UML/XMI-based tool
for model transformation and code generation (Sect. 16.4.4).

• ArcStyler. A commercial MDA tool from Interactive Objects, which is bundled
with the UML tool Magic Draw (Sect. 16.4.5).

• XMF-Mosaic. A commercial tool from Xactium, which provides a meta-
programming environment (Sect. 16.4.6).

16.4.2 A Common Example

This chapter introduces a common example used in the evaluation of the tools – the watch
example – a simple application representing a software wrist watch, described in terms of
a UML-based feature model as shown in Fig. 16.2.

Fig. 16.2. The Watch example UML model

The Watch model represents a Watch product line (a general watch application), with a
set of commonalities (such as the Time feature) and a set of variabilities (such as the
Alarm and StopWatch feature). We recommend specifying a concrete domain example
relevant for the particular product line, and using this actively when performing tool
evaluation and selection. The watch example used here is defined in full detail in Chap. 6.

In the evaluation process, the Watch example has been used as a common basis for
investigating tool characteristics. It has typically been used as an input model for testing
transformation and product derivation capabilities, which has been valuable input for
performing evaluation of the set of characteristics specified by the framework.

Alarm
<<property>> alarm_number : int
<<range>> volume_max : double = {0.1 - 5.0}

setAlarm()
activate()
deactivate()

Time

setTime()

Timer

StopWatchWaterProof
<<alternative>> depthResistance : int = {0, 100, 200}

Button

Speaker
<<alternative>>

Watch
<<property>> name : String
brand : String

0.1

stopwatch

<<optional>>

+speaker

<<optional>>

1. *
+buttons

<<cardinality>>

0.1

timer

<<optional>>

0.1

alarm

<<optional>>

0.1 world Time

<<optional>>

time

+water Proof

<<optional>>

Polyphonic SpeakerBasic Speaker

601

<<P roduct line>>

16.4.3 Atlas Transformation Language (ATL)

The Atlas Transformation Language (ATL) was developed by INRIA/University of
Nantes as open source under the Eclipse (Generative Model Transformer GMT –
http://www.eclipse.org/gmt) project. It is a hybrid language (a mix of declarative and
imperative constructions) designed to express model-to-model transformations. ATL is
similar to the QVT submission in terms of semantics, but differs in syntax. It is based on
declarative rule definitions, which define mapping between source models and target
models. The example below illustrates the ATL syntax in a transformation from a product
line model to a product model, which could take as input, the Watch model.

module ProductLineDerivation;
create OUT:ProductMdl from IN:ProductLineMdl, IN2:VariabiliyMdl;

--
-- Product Line Model to Product Model rule
--
rule ProductLineMdl2ProductModel {

from lineMdl : ProductLineMdl!Model
to prodMdl : ProductMdl!Model

 (
 name <- lineMdl.name,
 classes <- lineMdl.modelElements
)
}
--
-- Optional classes
--
rule ClassToClass {

from lineClass :
ProductLineMdl!Class[lineClass.getVariability('Optional')

 and lineClass.variabilityIsSelected()]
to productClass : ProductMdl!Class

 (
 name <- lineClass.name,
 description <- lineClass.description,
 attributes <- lineClass.attributes
)
}

ATL provides no direct support for product line derivation. One possible way of
supporting this would be to use a variability resolution metamodel as input for

this combination of models to derive product models. The ATL code shown above
illustrates this process. Two separate models are defined as input models; one defining the
product line; the other the variability resolutions. Table 16.3 describes the characteristics
of ATL.

602 J. Oldevik et al.

transformations together with the Product Line Model. The transformations could then use

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Table 16.3. ATL characteristics

CID characteristic score/evaluation weighted
score

1 model specification no. ATL cannot be used to specify models. It uses
models as input for transformations and can
generate new models

0

2 graphical notation for
model transformation

no. ATL only provides lexical syntax for
transformation

0

3 lexical notation for model
transformation

yes. ATL lexical language, a declarative (hybrid)
language

5

4 model-to-model transfor-
mation support

yes. ATL’s main functional purpose is model-to-
model transformation.

4

5 model-to-text transforma-
tion support

yes. Model-to-text transformation can be supported
by streaming mechanisms of models to textual
format.

5

6 support for model analysis no. There is no direct support for model analysis.
However, queries on models may be used to
perform different analytical tasks

0

7 support for QoS manage-
ment

no. There is no support for quality of service in
ATL

0

8 metamodel-based yes. ATL is based on MOF metamodels. It
provides integration with several metamodel
repository implementations

3

9 MOF integration yes. ATL integrates with Netbeans Metadata
Repository (MDR) and Eclipse Modeling
Framework (EMF)

4

10 XMI integration yes. ATL imports XMI files for metamodels and
models, using support in underlying MOF/XMI
frameworks, such as EMF

4

11 based on UML yes. ATL supports transformation on UML models
through MOF and XMI support

2

12 UML specification no. There is no support for UML specification in
ATL

0

13 UML tool integration no. There is no direct integration with UML tools.
There is indirect integration through MOF/XMI

0

14 iterative and incremental
transformation support

no. There is no specific support for handling
aspects such management of retransformations,
reverse transformations, etc.

0

15 bidirectional
transformations

no. There is no support for bidirection
transformations

0

16 traceability no. Traceability is not handled explicitly 0

603

17 product line variability
modeling

no. There is no support for variability modeling
in ATL

0

18 product line variability
resolution

no. There is no support for variability resolution in
ATL, but it may be supported through
transformations based on input models that
represent resolutions

1

19 DSM language support the tool does not provide support for defining
DSM languages. It provides support for
transformations of DSM languages.
E.g., transforming one DSM-based model to
another DSM-based model

2

20 QoS variability no. There is no support for variability of QoS
aspects

0

21 decision process support no. There is no support for handling a decision
process. This would require human interaction
during the transformation process

0

22 maturity medium/underdevelopment 0.8

23 usability steep learning curve 0.2

24 availability and license open source (Eclipse Public License) 2

25 pricing N/A 4

Summary. ATL provides a transformation language and tool that supports very general
and flexible means of transforming between model abstractions defined by metamodels. It
is open source, with an increasing user community, and currently under continuous
development. However, it provides poor support for product line characteristics, such as
the critical characteristic 18. The total weighted score using the defined weighting system
is 37.

16.4.4 UML Model Transformation Tool (UMT)

on reading UML models via XMI from different UML tools, such as Rational Rose,
Together, ArgoUML, Poseidon, and Objecteering. Currently, it supports structural models
(class) and activity models. It uses Java and XSLT as code generation/model trans-
formation language and provides several example transformations toward EJB, WSDL,
XML Schema, IDL, SQL, and more. The process of installing new transformations is
quite simple.

UMT provides a graphical environment to install generators and run transformations on
UML models. It uses a simplified XMI-like representation as the internal format, which is
the structure used as input by transformations. There is no explicit basis in metamodels of

604 J. Oldevik et al.

UMT is an open-source tool for code generation from UML models [34,37]. It is based

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

target and source models. Transformations are thus based on ad hoc assumptions
regarding input and output. It has support for a crude representation of profiles, which to
some extent can be used to check model compliance. Figure 16.3 shows a snapshot of the
UMT GUI after the product line model (the Watch model) has been loaded. The left field
shows the model tree, with different model features and properties. The right field shows
the variations and provides the user with resolution options.

In addition to code generation support, UMT supports variability resolution of UML
product line models based on profiles and constraints on the source models. It provides a
GUI that allows the user to resolve variabilities and generate configurations or products
based on the decisions taken. Variability can be expressed within a UML model according
to a simple UML profile. It supports selection of values (resolution of variability) and
generation of new model configurations or concrete product models. Table 16.4 describes
the characteristics of UMT.

Summary. UMT is an open-source, XMI-based tool tuned to code generation through
XSLT or Java. It provides support for UML-based models, but not general MOF models.
It provides support for product line variability based on a UML profile. Product line
functionality is currently limited to using UML models that are according to a predefined
UML profile. All the critical characteristics are supported. The total weighted score using
the defined weighting system is 35.5.

Fig. 16.3. UMT with variability resolution support

605

Table 16.4. UMT characteristics

score/evaluation weighted
score

1 model specification no. There is no support for specifying models in
UMT. It relies entirely on exported models from
UML tools

0

2 graphical notation for model
transformation

no. There is no graphical notation for model
transformation

0

3 lexical notation for model
transformation

yes. UMT uses XSLT and Java as transformation
languages, with possibilities of extending to
support other languages

5

4 model-to-model
transformation support

no. There is no real support for model-to-model
transformations. There is, however, possibility to
generate “new” XMI models based on existing
ones

0

5 model-to-text transformation
support

yes. Model-to-text transformation is the main
functional domain for UMT

5

6 support for model analysis no. There is no support for model analysis, except
for very simple support for checking of a model’s
conformance to simple profiles

0

7 support for QoS
management

no. There is no support for management of QoS 0

8 metamodel-based no. UMT only targets the UML metamodel and is
not flexible with respect to changing this

0

9 MOF integration no. There is no integration with MOF 0

10 XMI integration yes. UMT imports UML/XMI files from different
UML tools

4

11 based on UML yes. UMT supports UML through XMI integration. 2

12 UML specification no. There is no support for specifying UML mod-
els. UMT relies wholly on model input from exter-
nal UML tools

0

13 UML tool integration no. There is no direct UML tool integration.
Integration is indirect through XMI

0

14 iterative and incremental
transformation support

yes/no. There is lightweight support for regenerat-
ing code without overwriting previously generated
and modified code

1

CID characteristic

606 J. Oldevik et al.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

15 bidirectional transformations no. There is no direct support for bidirectional
transformation. However, there is some support for
reverse engineering of code to XMI models

0

16 traceability no. There is no support for traceability in UMT 0

no. There is no modeling support, but active
support for loading UML models in which
variability is specified

0

yes. There is support for resolution of variability
specified in a UML model. This is supported for
models that adhere to a product line profile,
provided by a specialized tool for variability
resolution.

5

19 DSM language support the tool does not provide support for defining
DSM languages. It provides support for
transformations of DSM languages.
E.g., transforming one DSM-based model to
another DSM-based model

2

20 QoS variability no. There is no support for QoS variability 0

21 decision process support yes. A decision process is partly guided by the
variability resolution part of the tool

4

22 maturity medium 1

23 usability medium learning curve 0.5

24 availability and license open source (LGPL) 2

25 pricing N/A 4

16.4.5 ArcStyler

ArcStyler is a commercial MDA tool bundled with the MagicDraw UML tool. ArcStyler
is tuned to code generation, based on what are called MDA Cartridges, which have been
developed in the MDA Cartridge Architecture – CARAT. A cartridge is essentially a
specification and implementation of a transformation.

In ArcStyler, a set of predefined cartridges for common platforms is provided (e.g.,
J2EE, .NET). A user can also develop his own cartridges or adapt existing ones. A special
model and code-based editing environment is provided for cartridge development.

Cartridges are designed partly on the basis of cartridge models, which specify the high-
level structure of a cartridge in terms of artifacts and sets of artifacts. These specify which
metamodel elements to work on. The details of cartridge transformations are implemented
in Jython (previously JPython). Table 16.5 describes the characteristics for ArcStyler.

modeling
17 product line variability

resolution
18 product line variability

607

Table 16.5. ArcStyler characteristics

CID characteristic score/evaluation weighted
score

1 model specification yes. Model specification is provided in a bundled
UML environment (MagicDraw)

4

2 graphical notation for model
transformation

yes. The overall structure of a cartridge is
specified as a graphical model structure. The de-
tails of a transformation, however, are specified
textually

1

3 lexical notation for model
transformation

yes. The Jython language is used for lexical
transformations

5

4 model-to-model
transformation support

yes. There is some support for specifying and
executing model-to-model transformations

4

5 model-to-text transformation
support

yes. Generation of code is supported via the MDA
Cartridges and the Jython language. This is the
main functional area of ArcStyler

5

6 support for model analysis no. There is no specific support for model analysis 0

7 support for QoS management no. There is no specific support for QoS
management

0

8 metamodel-based yes. In some sense, ArcStyler is based on
metamodels. The elements of a Cartridge use
metamodel elements as input

3

9 MOF integration no. There is no MOF integration 0

10 XMI integration yes. The XMI capabilities provided by
MagicDraw are supported

4

11 based on UML yes. UML models from the bundled MagicDraw
tool are the basis of generation

2

12 UML specification yes, through the bundled UML tool 4

13 UML tool integration yes. ArcStyler is bundled with MagicDraw.
Integration with other UML tools is also possible
through plug-ins

4

14 iterative and incremental
transformation support

yes/no. Does not protect code areas in the built-in
editor. Regeneration operates on the basis of
commented tags. There is support for
re-engineering through a Harvesting component

2

608 J. Oldevik et al.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

15 bidirectional transformations no. There is no support for bidirectional
transformation. However, there is support for
harvesting code and regeneration

0

16 traceability yes. Traces model elements to code using ID’s in
code comments

3

no. There is no support for variability modeling.
However, this can be supported by applying a
product line profile

0

no. There is no support for variability resolving 0

19 DSM language support yes. Since it is bundled with MagicDraw, DSM
language definitions can be specified using UML
profiles

4

20 QoS variability no. There is no support for QoS variability 0

21 decision process support no. There is no support for a decision process in
transformations

0

1.6

23 usability steep learning curve. Medium usability when just
applying built-in cartridges. Cartridge develop-
ment requires more time/has a quite steep learning
curve

0.2

24 availability and license commercial. Free “Community Architect Edition” 0.6

25 pricing from €0 for the Community Edition to €9,800 for
the full Architect Edition

0.4

Summary. The transformation capabilities of ArcStyler are powerful with respect to
structuring, definition, and reuse of transformations. However, it is not possible to define
points in a transformation where user decisions can control a transformation during
progress. It thus seems difficult to support product line derivation using variation
elements. The evaluation reveals a lack of support of critical characteristics [18]. The total
weighted score using the defined weighting system is 47.8.

16.4.6 XMF-Mosaic

resolution
18 product line variability

modeling
17 product line variability

609

version 1.0. XMF-Mosaic provides a metaprogramming environment, which aims to
offer freedom to program and model in any language with full support from graphical and
textual editors.

22 maturity mature

XMF-Mosaic has been developed by Xactium. It is a new tool, currently available in

The languages and tools that come with XMF-Mosaic provide general capabilities for
language modeling. The tool is currently based on MDA standards such as MOF, OCL,
and QVT.

XMF-Mosaic provides a modeling interface that is typically used to define the domain
language (metamodel). It may also be used to model mappings. An example is shown in
Fig. 16.4, which shows the definition of a simple interaction metamodel and a mapping to
Corba Interfaces (the arrow symbol in the model). The source and target are specified
using domain and range associations to the anchor concepts of the source and target for
the specific transformation (Lifeline and CORBAInterface in Fig. 16.4).

Fig. 16.4. Modeling interface

XMF-Mosaic provides support for the specification of model transformation through a
language called XMap. XMap is defined using the XOCL language, a metaprogramming
language for constructing languages and environments. It provides facilities for inspecting
and controlling its own behavior and is the key technical feature that allows XMF-Mosaic
to support tool development. The language is an imperative extension of OCL.

XMap is aligned with OMG’s QVT language. An example of XOCL XMap syntax is
as follows:

610 J. Oldevik et al.

@Clause Lifel2ci
 Lifeline[name = name, type = T, messageEnds = ME]

 O = ME->collect(me | me.message.name

 me.message.receiveEvent = me)

 CORBAInterface[name = T.name, operations = O]

end

 where

 and

do

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Since XMF-Mosaic is a framework with support for defining languages and environments
and for building tools, and almost every technical criteria of our evaluation framework
may be supported. It just has to be built first. However, the current version provides basic
tools that support modeling and model transformations. The following evaluation is partly
based on the provided tools and partly on the fact that characteristics may be developed as
extensions. Table 16.6 describes the characteristics of XMF-Mosaic.

Table 16.6. XMF-Mosaic characteristics

CID characteristic score/evaluation weighted
score

1 model specification yes. The tool supports specification of systems as
graphical models by providing a subset of UML
diagrams and notation

4

2 graphical notation for model
transformation

yes. The downloadable version comes with limited
graphical notation, which is combined with lexical
notation (XMap) to make the specification
complete

1

3 lexical notation for model
transformation

yes. Lexical notation for model transformation is
provided through XMap

5

4 model-to-model
transformation support

yes 4

5 model-to-text
transformation support

yes 5

6 support for model analysis yes. Validity of models can be checked (i.e.,
whether they are according to their metamodel),
both through an editor console and by building
snapshots using the modeling interface. XWalk is
an extension to XOCL, which provides facilities
for efficiently running over large XCore object
structures and evaluating their properties, for
example running constraints or modifying data

1

7 support for QoS
management

no. There is no explicit support for QoS
management. However a QoS profile may be
defined and used to specify QoS. These QoS
profile concepts may also be used to derive
QoS-aware transformation specifications

0

8 metamodel based yes. It is based on XMF XCore, which is a
MOF-like metakernel

3

9 MOF integration yes 4

611

10 XMI integration yes. XMF provides facilities for parsing and
generating XML documents. High-level
grammatical rules can be written, which state how
a specific XML element pattern can be mapped to
an XCore element or trigger the invocation an
XOCL action. These rules can be used to generate
a parser for a specific XML syntax

4

11 based on UML yes. There is support for UML. It may support
arbitrary modeling languages defined using XOCL.
The downloadable version provides UML syntax

2

12 UML specification yes. A subset of UML diagrams and notation is
provided

2

13 UML tool integration no. May use XMI. XMF-Mosaic supports
sophisticated input and output facilities, which
enable data to be streamed to and from files or
other tools in a variety of different data formats

0

14 iterative and incremental
transformation support

no. Process support, configuration management,
etc. are not part of the XMF-Mosaic framework.
XMF-Mosaic comes with the XSync language,
which provides a high-level way of synchronizing
data, where changes in one element cause changes
to be automatically propagated to other elements

0

15 bidirectional
transformations

yes. Languages for specifying bidirectional
transformations may be defined using XOCL

1

16 traceability no 0

17 product line variability
modeling

yes. A product line variability modeling language
may be defined

4

18 product line variability reso-
lution

yes. Product line variability resolution mappings
may be defined

5

19 DSM language support yes. The tool provides support for defining DSM
language through its metaprogramming
environment and performs transformations based
on these language definitions

4

20 QoS variability no. There is no explicit support for QoS variability,
but resolving functional types of QoS such as
security and transaction control will be similar to
defining and resolving functional variability

0

21 decision process support no. There is no explicit support for a decision
process

0

612 J. Oldevik et al.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

23 usability medium learning curve 0.5

24 availability and license commercial, free evaluation version 0.6

25 pricing according to the web page XMF-Mosaic is
competitively priced and includes 12 months’
support and maintenance as standard. Discounts
are available for bulk purchases and with
consultancy-related packages. A significantly
discounted noncommercial license (for students
and academic departments) is also available

1.2

Summary. XMF-Mosaic is a very flexible tool, due to its meta-architecture providing
functionality for defining relevant metamodels of the actual product line. This flexibility
can appear as a problem as it lays the burden of defining metamodels on the user.
However, some common metamodels and features come with the tool. Due to its
flexibility, the tool can be configured to support many of the MDD and PLE tasks. The
tool is model oriented, and both metamodels and transformations may be specified using

This section evaluates the work done, by analyzing the evaluation framework, the

16.5.1 The Tool Evaluation Framework

The evaluation framework was derived from characteristics discussed in Sect. 16.3. The
evaluation criteria are tuned to model-driven development tools in general with a specific
focus on model transformation. The tool also includes important requirements for product

The resulting criteria are a mix of technical and practical aspects, which can act as a
guide for selecting appropriate tools. The criteria alone do not allow for an easy
comparison. In order to achieve this, the weight and critical properties must be defined
and used in the evaluation. It is not fruitful to predefine these properties, since they will
always be relative to specific domain needs. A set of domain experts should therefore
define these prior to an evaluation.

613

16.5 Evaluation of the Framework

evaluated tools, and the applicability of the results. Then it compares the results with
related works.

22 maturity mature. XMF-Mosaic v1 was released in 2005 1.4

models. The total weighted score using the defined weight system is 52.7.

line engineering, which are essential for supporting PLE in a model-driven context.

16.5.2 The Tools Evaluated

The example evaluation is included to illustrate how the evaluation framework can be
used. A set of state-of-the-art and advanced tools for model-driven development, both
open source and commercial, are evaluated. The particular tools were included on the
basis of their positioning as MDD tools, with a tuning to model transformation and code
generation aspects. However, other tools could as well have been chosen. As part of the
work, several additional tools were evaluated. These were mostly dedicated MDD tools,
most of them lacking support for PLE, but providing different aspects of MDD
functionality. The ones evaluated here were selected on the basis of their maturity and
relevance as open source or commercial tools. Among the tools evaluated but not included
in this chapter were the open source tools MTL Engine, ModFact, and AndroMDA, and
the commercial tools OptimalJ, Codagen Architect, and IQGen.

This study has not included evaluations of dedicated UML tools. To a large extent,
these also provide many aspects of MDD functionality, such as modeling and code
generation. Traditionally, there has been little support for model transformation in this
category of tools, and no direct support for PLE characteristics. At this time, however, we
observe a growing degree of support for model transformation frameworks and even QVT
in commercial UML tools. Examples are the latest Borland Together product, which
implements the QVT specification, and the IBM Rational Software Architect (RSA),
which implements a proprietary model transformation framework. Using built-in
extension mechanisms in these tools, some support for PLE characteristics may be
provided.

The evaluated Xactium tool is a representative of a DSM tool. This category of tools is
characterized by their ability to support specification of domain specific languages. The
language definition is then used to specify appropriate transformation specifications. In a
PLE setting this is appealing, since specifying domain specific languages is an efficient
mechanism for scoping product lines. Examples of other tools in this category are [24,
25].

The V-Manage tool suite from European Software Institute (ESI) has been described in
Chap. 6. It provides an environment for defining and resolving variation models, and
relating this to implementation of specific components. This tool has been excluded
primarily because it is an in-house product not available to external purchasers.

16.5.3 Applicability of Results

The evaluation framework provides a baseline that can be used to evaluate and compare

As shown above, the framework can be applied using selection guidelines and weights
based on user requirements, which would leverage it for practical applications. It can also

purposes. The evaluation examples show how different tools can be evaluated using the
assigned weights. The resulting evaluation sum for a tool can be used to guide the final
tool selection. A clear specification of the characteristics and the weighting is the key to a
good evaluation.

614 J. Oldevik et al.

be integrated with existing case tool evaluation frameworks [20,23] for more holistic

tools in order to make decisions when acquiring tools for model-driven product
line engineering.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

This framework can be used in tool selection processes for model-driven product line
tools, and will give the users a baseline, which can be modified based on their specific
selection of characteristics. Such a selection would be more easily achieved if the
framework characteristics have assigned weights and criticality.

16.5.4 Related Work

The ISO 14102 standard, guideline for the evaluation and selection of CASE tools [20],
proposes a general standard for evaluation and selection. It defines a broad hierarchy of
characteristics used to evaluate and select case tools in general. As pointed out in [23],
there is a coverage problem with this standard; in any given case, it is not likely that the
standard will cover all relevant characteristics; at the same time, it will probably include
irrelevant characteristics.

This framework has a smaller scope and focuses only on evaluations of MDD- and
PLE-type case tools. In line with experiences presented in [23], this framework is less
extensive than that of ISO 14102, but it includes characteristics not listed there. Reference
[23] also argues that the hierarchy presented in ISO 14102 can be a problem, since there is
an agreed characteristic hierarchy, while most cases will need to deviate from this
hierarchy. This framework provides a flat structure that can be defined as a hierarchy by
the user. This is done by means of the identification number for categorization. (For
example, the identification numbers of characteristics in category 1 is numbered 1[.x]*,
where x is a subnumber and [.x]* implies zero or more subnumbers in order to build a

to those of the ISO 14102 standard.
This framework can be seen as a specialization of ISO 14102, in which the domain of

tools has been narrowed. Moreover, when using this framework, the evaluation and
selection process as described in ISO 14102 can be used. ISO 14102 defines four major
processes: Initiation Process, Structuring Process, Evaluation Process, and Selection
Process.

In [13], the Gartner group suggests a list of recommendations when evaluating and
selecting tools, including (1) do not worship one “hot” technology, (2) do not select tools
before institutionalizing an application architecture and infrastructure, (3) do not acquire
tools without an analysis/design tools acquisition strategy, (4) do not acquire too many or
too few tools, (5) do not make deliberate trade-offs between application portability and
optimization per platform, (6) always consider return on investment (ROI) and time-to-
payback of analysis and design technologies, but extend the ROI model through end-user
costs/benefits, (7) always try to select stable vendors with durable technology, (8) institute
a modern, iterative methodology for analysis and design.

These characteristics are generally valid when evaluating and selecting many kinds of
tools and are somewhat orthogonal and supplementary to guidelines like ISO 14102 and
the framework presented here. One of the criteria (7), however, is in conflict with
selecting open source technology, which is not always good advice. As this evaluation
shows, open-source providers may provide software that supports pieces of model-driven
product line processes, which may not even be supported by commercial tools.

615

multilevel hierarchy.) Other standards in the area such as [19,21] have similar problems

This chapter has offered an overview of model-driven development and product lines and
has looked at how they can be integrated. We have described a framework, based on tool
characteristics that can be used to evaluate and compare the suitability of MDD and PLE
tools. We have also described a set of tools, which we have used as examples for
evaluation, and applied the framework to these in specific evaluations.

tools available today provide specific functionality capable of supporting product line and
MDD concepts out of the box. This is primarily due to lack of acknowledgment of the
need for product line support from traditional MDD tool providers. Looking at the
assessment of the range of tools used as input for this chapter, some tendencies can be
seen: A growing number of tools support model-driven development in both modeling and
transformation. Generally speaking, few of these specifically address PLE at present.
However, the inherent flexibility of many tools permits extensions that may address this to
be built. Looking ahead, we can expect more stability and more possibilities of providing
such extensions. The increasing attention to domain-specific modeling (DSM) languages

domain-specific modeling languages can for instance be used to scope product lines and
provide more efficient support for modeling domain specific concepts.

PLE is predicted to be an important part of modern software engineering. This is
confirmed by recent provisions in Microsoft’s Visual Studio tool suite, such as the
domain-specific language tools and the spec# language [24].

Our experience from projects such as COMBINE [7] and MODELWARE [24] is that
well-defined scoping is essential for success with MDD. Using product line engineering
techniques to provide proper scoping seems appropriate. For this reason, we believe that
PLE techniques and mechanisms will be incorporated in future MDD tools. Initially, this
will happen through suitable configuration and scoping mechanisms, then through the
provision of product line-reusable assets and variability management. Support for more
interactive transformation processes is also needed both for pure MDD [15], and in
model-driven product line engineering approaches.

The market and focus for tools supporting different aspects of MDD are steadily
growing, and the quality and functionality of such tools are improving. Influencing or
initiating standards, e.g., for variability modeling, will improve the chances of achieving
more tool support for PLE, through both open source and commercial tools.

The evaluation framework presented here provides a baseline for evaluating MDD and
PLE tools. It can be extended or supplemented, for example with characteristics defined in
ISO 14102 and tailored to the need of the specific domain, and as such would be applied
to future tools.

616 J. Oldevik et al.

16.6. Conclusions and Future Research

in the MDD area, e.g., [14,24,38] is promising seen from the PLE perspective. Defining

instance in [5,9,35]. In [14], which describes the Microsoft Software Factory concept,

When considering MDD and product lines in light of existing tools, it is clear that few

Product line engineering is currently the subject of much attention, as documented for

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Acknowledgments

We gratefully acknowledge the extensive reviews of Juan Carlos Dueñas, Alessandro Fan-
techi, Timo Käkölä, Janne Luoma, Juha-Pekka Tolvanen, and Tewfik Ziadi, which sig-
nificantly improved the quality of this chapter.

References

617

1. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Lagua, R., Muthig, D., Peach, B., Wust, J.,
Zettel, J.: Component-based Product Line Engineering with UML (Kobra) (Addison-Wesley, Reading, MA
2001) ISBN 0-201-73791-4. http://www.iese.fhg.de/Kobra_Method/

2. Atlas Transformation Language (ATL) homepage. http://www.sciences.univ-nantes.fr/lina/atl. Cited 24 Nov
2005

3. Becker, M.: Towards a general model of variability in product families. In: Software Variability Management
Workshop (SVM 2003). 25th International Conference on Software Engineering (ICSE, 2003)

4. Blechar, M.J., Driver, M.: Predicts 2004: MDSFs Offset J2EE Complexity, Gartner report, ID Number: SPA-
21-5432

5. Bosch, J.: Design & Use of Software Architectures – Adopting and Evolving a Product-Line Approach
(Addison-Wesley, Reading, MA 2000) ISBN 0-201-67494-7

6. Clauß, M.: Generic modeling using UML extensions for variability. In: Workshop Domain Specific Visual
Languages, OOPSLA, USA, October 2001

7. COMponent-Based INteroperable Enterprise system development (COMBINE), ESPRIT V IST project no.
20893. http://www.opengroup.org/combine/. Cited 16 Nov 2005

8. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: 2nd Workshop on
Generative Techniques in the Context of Model-Driven Architecture, Conference on Object-Oriented
Programming, Systems, Languages, and Applications 2003 (OOPSLA’03)

9. Duggan, J., Vecchio, D., Plummer, D.C., Driver, M., Natis Y.V., Hotle, M., Feiman, J., James, G.A., Sinur,
J., Pezzini, M., Light, M., Blechar, M.J., Valdes, R., Lanowitz, T.: Hype Cycle for Application Development,
25 June 2004, Gartner report, ID Number: G00120914

10. Estublier, J., Vega, G., Ionita, A.D.: Composing domain-specific languages for wide-scope software
engineering. In: MoDELS 2005 Conference, ed by Briand, L., Williams, C., ISBN3-540-29010-9, pp 69–83

11. FAct-based Maturity through Institutionalisation Lessons-learned and Involved Exploration of System-
family engineering (FAMILIES), ITEA project ip02009, Eureka !2023. http://www.esi.es/en/Projects/
Families/. Cited 16 Nov 2005

12. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of OMG MOF 2.0 Query/Views/Transformations
Submissions and Recommendations towards the final Standard, (MetaModeling for MDA Workshop Nov
2003. York, UK)

13. Gartner Group: Application Development Management – Enterprise Applications Development Tools –
Evaluation and Selection, Strategic analysis report, Gartner Group, Sept 1996

14. Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories, Assembling Applications with
Patterns, Models, Frameworks and Tools (Wiley, New York 2004) ISBN 0-471-20284-3

15. Grønmo, R., Aagedal, J., Solberg, A., Belaunde, M., Rosenthal, P., Faugere, M., Ritter, T., Born, M.:
Evaluation of the QVT Merge Language Proposal, MODELWARE project report, SINTEF report number
STF90 A05046, ISBN 82-14-03659-3, OMG document ad/2005-03-05. http://www.omg.org/cgi-
bin/doc?ad/05-03-05

16. Grønmo, R., Oldevik, J.: An empirical study of the UML Model Transformation Tool (UMT). In: The 1st
International Conference on Interoperability of Enterprise Software and Applications (INTEROP-ESA),
Geneva, Switzerland, Feb 2005

17. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Solberg, A.: An MDA-based framework for model-driven
product derivation. In: The 8th IASTED International Conference on Software Engineering and Applications,
ed by Hamza, M.H. (ACTA, Nov 2004) pp 709–714

18. International Standards Organization (ISO): ISO/IEC 10746-1:1998, Information technology – open distributed
processing – reference model: overview (ISO RM-ODP), ISO/IEC 10746-1:1998 (ISO standard, 1998)

19. International Standards Organization (ISO): ISO/IEC 12119:1994, Information technology – software
packages – quality requirements and testing (ISO Standard 1994)

618 J. Oldevik et al.

20. International Standards Organisation (ISO): ISO 14102:1995, Information technology, guideline for the
evaluation and selection of CASE tools, JTC 1/SC 7 (ISO Standard 1995)

21. International Standards Organization (ISO): ISO/IEC 25000:2005, Software engineering – software product
quality requirements and evaluation (SQuaRE) (ISO Standard, 2005)

22. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process (Addison-Wesley, Reading,
MA 1999) ISBN 0-201-57169-2

23. Lundella, B., Lings, B.: Comments on ISO 14102: the standard for CASE-tool evaluation. Comput.
Standards Interf. 24(5), 381–382 (November 2002)

24. MetaCase Whitepaper: ABC to MetaCase Technoology. http://www.metacase.com/, © 2004 by MetaCase.
Cited 26 Nov 2005

25. Microsoft Corporation: Visual Studio 2005 Team System Modeling Strategy and Faq, In: MSDN Library.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/vstsmodel.asp. Cited 16 Nov
2005

26. MODELing Solutions for softWARE systems (MODELWARE), ESPRIT VI IST project no. 511731.
http://www.modelware-ist.org. Cited 16 Nov 2005

27. Object Management Group (OMG): Meta Object Facility 2.0 (MOF), Meta Object Facility (MOF) 2.0 Core
Specification, OMG document ptc/03-10-04. http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-04.pdf. Cited
16 Nov 2005

28. Object Management Group (OMG): Meta Object Facility 2.0 XMI Mapping Specification, OMG document
ptc/04-06-11. http://www.omg.org/cgi-bin/apps/doc?ptc/04-06-11.pdf . Cited 16 Nov 2005

29. Object Management Group (OMG): MOF model to text transformation language request for proposal, OMG
document: ad/2004-04-07. http://www.omg.org/cgi-bin/doc?ad/04-04-07. Cited 16 Nov 2005

30. Object Management Group (OMG): MOF Query/Views/Transformations RFP, OMG document: ad/2002-04-
10. http://www.omg.org/cgi-bin/doc?ad/02-04-10. Cited 16 Nov 2005

31. Object Management Group (OMG): OMG MDA Guide v1.0.1, OMG document omg/2003-06-01.
http://www.omg.org/docs/omg/03-06-01.pdf. Cited 16 Nov 2005

33. Object Management Group (OMG): Unified Modeling Language 2.0 (UML 2.0), UML 2.0 infrastructure
final adopted specification. http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf. Cited 16 Nov 2005

34. Oldevik, J., Model transformation for system families prototype, FAMILIES consortium-wide deliverable,
CWD4.3:2.3 version 1.0. http://www.esi.es/Families/. Cited 16 Nov 2005

35. Pohl, K., Böckle, G., van der Linden, F.: Software product line engineering – foundations, principles, and
techniques (Springer, Berlin Heidelberg New York 2005) ISBN 3-540-24372-0

36. Solberg, A., Oldevik, J., Jensvoll, A.: A generic framework for defining domain-specific models. In: UML
and the Unified Process, ed by Favre, L. (IRM, Hershey, 2003) pp 23–38

37. UML Model Transformation Tool (UMT). http://umt-qvt.sourceforge.net/. Cited 16 Nov 2005
38. Xactium Limited: Language Driven Development and XMF-Mosaic, Whitepaper. http://www.xactium.com

(2005). Cited 24 Nov 2005
39. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML profile for software product lines. In: Software Product-

Family Engineering, ed by van der Linden, F., 5th International Workshop, PFE 2003, Italy, Nov 2003. Lecture
Notes in Computer Science, vol 3014 (Springer, Berlin Heidelberg, New York 2003) pp 129–139

32. Object Management Group (OMG): MOF QVT Final Adopted Specification, OMG Adopted Specification,
OMG document number ptc/05-11-01 http://www.omg.org/cgi-bin/doc?ptc/05-11-01. Cited 9 April 2006

Glossary

Annotations or, in UML 2.0 terms, stereotypes are used to describe extra language
constructs for defining variability within the notations of the base model language.
Application Artifacts are the development artifacts of specific product line applications.
Application Design is the development of a single application architecture conforming to
the reference architecture.
Application Engineering is the process in which the applications of the software product
line are built by reusing platform artifacts and exploiting the variability of the product
line.
Application Realization is the development of applications based on the application
architecture and the set of domain artifacts.
Application Requirements Engineering is the sub-process of application engineering
dealing with the communication of product line capabilities to the stakeholders, the
elicitation of stakeholder requirements, and the creation of the application requirements
specification.
Application Test Case captures the input specification, output specification, execution
information, environment information, and fail-pass criterion for the application under
test. It refers to the corresponding application test case scenarios.
Application Test Case Scenario specifies the interactions between internal and/or
external actors of the application under test in terms of precise instructions for the tester.
Application Test Plan contains the specification of the resources, the test strategy, and
the test case prioritization for the application. It specifies precisely the application test
cases to be created and how variability is dealt with in the application test, e.g. which
configuration mechanisms are used for the test cases.
Application Testing is the process of uncovering the evidence of defects in a software
product line application.
Architecture, see software architecture.
Architectural Pattern is a specialized architectural tactic that may include prescribed
components, component specifications, component collaborations and component roles.
Architectural Solution is a representation of knowledge of how particular problems can
be solved in software architecture. Architectural solutions span a continuum from high-
level architectural tactics to specialized architectural patterns.
Architectural Structure is the decomposition of a software system into parts and
relationships.
Architectural Tactic is a means of satisfying a quality-attribute-response measure by
manipulating some aspect of a quality attribute model through architectural design
decisions. Architectural tactics are high-level architectural patterns.

applications of a software product line.
Asset, see development artifact

Architectural Texture is the collection of common development rules for realizing the

Glossary 620

Base Model is a model defined in a standard language such as UML 2.0 that consists of
model elements.
Component is a unit of composition with contractually specified component interfaces
and explicit context dependencies only; it can be deployed independently and is subject to
composition by third parties.
Component Framework is a structure of components, or object classes, where plug-in
components or object classes may be added at specified plug-in locations. To fit, each
plug-in has to obey rules defined by the framework.
Component Interface provides a connector between components. A required interface of
a component has to be connected to a provided interface of another one.

object or system.

how the concepts are interrelated. The metamodel contains base model, variation model,
and resolution model.
COTS is the acronym of ‘‘Commercial-off-the-shelf’’. This term subsumes components
from different sources with different degrees of modification possibilities. Sources may
vary from in-house, through nuances of non-developmental, to commercial.
Development Artifact is the output of a sub-process of domain or application
engineering. Development artifacts encompass requirements, architecture, components,
and tests.
Domain is an area of process or knowledge driven by business requirements and
characterized by a set of concepts and terminology understood by stakeholders in that
area. The problem domain and the solution domain are two kinds of domains.
Domain Artifacts are reusable development artifacts created in the sub-processes of
domain engineering. Synonyms are platform artifacts and product line artifacts.
Domain Design is the development of a reference architecture for the complete software
product line.
Domain Engineering is the process of software product line engineering in which the
commonality and the variability of the product line are defined and realized.
Domain Realization is the development of the set of reusable components and interfaces
within a given reference architecture.
Domain Requirements Engineering is the sub-process of domain engineering dealing
with the identification of common and variable requirements and their documentation in
reusable requirements artifacts.
Domain Specific Language is a (modeling) language designed for a particular domain. It
expresses domain concepts as language constructs. A product line is the set of all systems
that may be modeled with this language.
Domain Specific Modeling is the art of using a domain specific language.
Domain Test Case is a description of a single test flow that has to be performed to test a
specific test item. A test case consists of a test case scenario, input data, the expected
result, information about the execution, environmental needs, and fail-pass-criteria.
Domain Test Case Scenario A domain test case scenario is a variable sequence of
interactions between variable internal and/or external actors of a system under test.
Domain Test Plan specifies the kind of results of the test planning activity. Additionally,
it documents precisely the domain test cases to be created and how to deal with
variability.

Composite Structure, a UML 2.0 term, denotes the architectural structure of parts of an

Consolidated Variability Metamodel defines the concepts of variability modeling and

Glossary 621

Domain Testing is the process of uncovering the evidence of defects in domain artifacts
and creating reusable test artifacts for application testing.
DSL, see Domain Specific Language.
DSM, see Domain Specific Modeling.
Evolution denotes the changes performed to any asset or a set of them with respect to
time, including expectations for future changes.
External Variability is variability of domain artifacts that is visible to customers; see
also internal variability.
Feature is an end-user visible characteristic of a system.
Feature Model is a description of a variation model (often in a specific non-standard
language).
Goal is an objective the system under consideration should achieve.
Internal Variability is variability of domain artifacts that is hidden from customers; see
also external variability.
Mass Customization is the large-scale production of goods tailored to individual
customers' needs.
Metamodel is a model which describes a language with which models can be expressed.
A metamodel can also be understood as the model of the repository of a tool for the
modeling language.
Model Element represents any kind of a model asset in a model in a given modeling
language. It is a constituent of a base model.
Orthogonal Variability Model describes the variation points and variants and their
relationships in a model that is separate from other software models. Links are defined to

Plug-in denotes a component fitted into a component framework through an explicit
interface (in UML 2.0, through a port).
Product Line Artifacts, see domain artifacts.
Product Line Model is an instantiation of the consolidated variability metamodel for one
specific product line. Specific products may be derived from the product line model by
instantiating the related resolution model.
Product Management is the process of controlling the development, production and
marketing of the software product line and its applications.
Quality-attribute-response Measure denotes a quantifiable impact on a quality attribute.
Redefinition is the mechanism to override definitions of properties in a specialization.
Reference Architecture is a core software architecture that captures the high level design
of a software product line.
Requirement: (1) A condition or capability needed by a user to solve a problem or
achieve an objective. (2) A condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard, specification, or other
formally imposed document. (3) A documented representation of a condition or capability
as in (1) or (2) [IEEE Std 610.12-1990].
Requirements Artifacts are products of the requirements engineering process. They can

Resolution Element is a constituent of a resolution model defining a particular binding of
transformers.

relate the orthogonal variability model to artifacts of these other models (or base models).

be textual or model-based requirements.

Platform Artifacts, see domain artifacts.

Glossary 622

Resolution Model defines resolutions of variability for a product line model. The
resolutions reference variability specifications. A resolution model defines the particular
bindings of variability in a variation model. A resolution model containing resolutions for
all variability specifications of a product line model represents the derivation of a product
model.
Scenario is a specific sequence of interactions between two or more actors illustrating the
external behavior of these actors.
Security Architecture Language denotes a semantically rich vocabulary of architectural
solutions that individually promise to address security quality requirements. The reference
architecture containing the language adds a reasoning framework to support the
construction of software architectures expressed in the language.
Software Architecture is the set of the main guiding development principles for one or
more software applications. The principles are the solution for one or more architectural
concerns dealing with quality. There are other, more instrumental, definitions in literature.
Software Platform is a set of software subsystems and interfaces that form a common
structure from which a set of derivative products can be efficiently developed and
produced.

Software Product Line Engineering is a paradigm to develop (models of) software

Software Product Line Engineering Framework is an abstract representation of the two
core processes for software product line engineering and the assets produced.
Specialization denotes a relation between concepts indicating that a concept is more
specialized than the other more general concept in the relation. In object orientation, the
respective term is inheritance.
Subclass is a specialization of a class.
Template is a generic term used in languages such as C++ and UML 2.0 to denote the
parameterization of types.
Transformer denotes a variability specification describing the change needed to the
referred model elements. When a transformer is completely bound by a resolution
element, the base model will change accordingly and the transformer is no longer needed
in the model, see variant.
Use Case is a description of system behavior in terms of scenarios illustrating different
ways to succeed or fail in attaining one or more goals.
Use Case Model captures the functional requirements of a system in terms of use cases.
Variability Constraint is a variability specification representing constraints on valid
resolutions, see variability dependency.
Variability Dependency is a relationship between a variation point and a set of variants
indicating that the variation point implies a decision about the variants.
Variability in Space is the existence of an artifact in different shapes at the same time.
Variability in Time is the existence of different versions of an artifact that are valid at
different times.
Variability Object is a particular instance of a variability subject.

product lines and to produce software applications (software-intensive systems and software
. It uses software platforms and products) by resolving variability in product line models

Software Product Line is a set of software-intensive systems that share a common, managed
set of features satisfying the specific needs of a particular market segment or mission

enables mass customization through domain engineering and application engineering.

and that are developed from a common set of domain artifacts in a prescribed way.

Glossary 623

Variability Subject is a variable item of the real world or a variable property of such an
item.
Variant is a representation of a variability object within a development artifact.
Variation Element represents something with variable nature. It is a constituent of a
variation model. The variation elements will refer to model elements of the base model
pinpointing what model elements are affected by variation. Common model elements of a
product line are not related to variation. Variation element is more general than a
variation point.
Variation Model consists of variation elements and defines the properties of variation. It

Variation Point is a representation of a variability subject within a development artifact
enriched by contextual information.

keeps track of all variation elements of the product line model.

Variability Specification represents the variability of a variation element, such as
optionality (the element is either included or not in the derived product), required
dependencies etc. It has a range of further specializations.

Index

Activity diagram, 44, 336, 398, 403, 408,
474, 475, 481, 483, 485-489, 491, 495,
497, 500-502, 511, 515, 517-519

Annotation. See Variability by language
enhancement, Variability using
annotations/extensions

Application, 161, 162, 163-172, 174,
175-188, 190, 191

architecture, 267, 319, 320, 330, 364, 615
scenario, 502-506, 511

artifact, 479, 493, 510-512. See Artifact
design, 163, 181, 330
engineering, XIII, XIV, 120-122, 127, 136,

143, 161-163, 166-168, 174, 186, 192,
204, 222, 233, 234, 238, 246, 250,
327, 330, 341, 424, 433, 437,
479-481, 483, 489, 493, 495, 499,
502, 503, 505, 507, 508, 510, 511,
517, 521, 523-526, 531, 532, 586

requirements engineer, XV, 126, 161,
164

requirements engineering, XV, 125, 126,
161, 163-170, 174, 175, 177, 190,
191, 192, 423, 515

requirements specification, 126, 161,
164-166, 175, 177, 181, 182,
185-188, 190, 191, 192, 493, 509

stakeholders, 126, 161-164, 172, 175-178,
180, 181, 185-188, 190, 191

system test, XVI, 423, 447, 494, 499,
502

test case, 437, 461, 467, 479, 480, 493,
512, 516, 518

test case scenario
integration test, 479, 481, 483, 484,

491-494, 502-507, 511, 512, 517,
518

system test, XVI, 481, 483-485, 487,
491-497, 499, 501, 502, 508, 510

testing, 423, 480, 482, 489, 490, 493,
507, 510, 511. See Domain testing,
Testing

test plan. See Test plan
test scenario, 462
test specification, 458
use case scenario, 168, 494, 495, 498,

500-503, 505, 511, 516
Architecting method, 3-6, 15

Attribute Driven Design, 4
Bosch, 4, 13
Scenario-Based Architecting, 1, 5, 6, 11,

12, 14, 15, 49, 55, 57, 270
Visual Architecting Process, 4, 5, 10, 46

Architectural
model, VI, XIII, 244, 252, 327-329, 333,

335, 338, 340, 366, 373-380, 395,
407, 409, 417-419, 491

pattern, 248, 253, 266, 268, 269, 276,
277, 284, 286, 302, 336, 377, 386,
387, 410, 419

solution, 246, 266, 267, 268, 276-280,
285, 286, 289, 300, 302, 304-323,
374, 375, 409, 417, 418

structure, 10, 29, 47, 197, 198, 201, 202,
214, 218, 248, 249, 251, 252, 257,
261, 267, 271, 277, 331, 338, 376,
377, 386, 395, 396, 398, 399, 401,
402, 404, 405, 407, 408, 417, 418

style, 9, 40, 46, 248, 253, 374-377, 379,
380, 384, 386-388, 393-395, 399,
405, 410, 416-420

tactic, 277-279, 282, 283, 300, 301, 328
texture, 248, 249, 251, 252, 257, 267,

270, 271

626 Index

variation, XVI, 243, 245, 248-251, 257,
260, 266, 270, 384

Architecture, V-VII, IX, XIV-XVI, 1-30,
32-34, 36-41, 45-50, 53-55, 57, 61,
62, 67, 69-72, 76, 78, 82, 83, 85-87,
96, 97, 126, 130, 157, 167, 170, 198,
204, 205, 223-225, 243-267, 269, 270,
275-287, 289-300, 308, 311, 312, 314,
316, 318, 320, 322-324, 327-341,
349-351, 353-355, 360, 364, 366, 367,
373-381, 384-389, 391, 393, 395, 396,
399, 401, 404-407, 409, 410, 415-419,
483-485, 491-493, 495, 503-507,
511-514, 517, 518, 529, 535, 538, 558,
559, 561, 584, 590-593, 595, 600, 615

Component-based architecture, IX, 9, 10,
248, 251

configuration, 483, 484, 492, 493
conformance, 329, 330, 339, 340, 358, 366
derivation, 267, 318, 319, 341, 584
evaluation, 13, 62, 316, 319, 320, 375,

379-381, 384, 388, 394, 397, 404,
407-409, 411, 412, 417-419

recovery, 130, 157, 327-330, 332-336,
338-341, 366, 367

methods, 334, 336, 366
tools, 336

Reference architecture, XIV, XVI, 4,
126, 204, 243, 244, 245, 247-253,
257, 259, 262, 268-271, 275-281,
287, 289, 312, 318-320, 322-324,
327-331, 334, 338, 339, 341, 349,
350, 367, 425, 482, 591, 600

roadmap, 59, 72, 86, 87
scenario, 5, 6, 11-14, 16, 24, 25, 28, 29,

34, 36, 39, 40, 49, 50, 57-59, 66-68,
70-75, 77-88, 481, 483, 491-493,
502-507, 511, 517. See Scenario

Trade-off Analysis Method, ATAM, 13,
55, 67, 269, 379

view, 8, 11, 12, 33, 49, 331, 332, 334,
338, 377, 379, 396, 398, 417-419

4+1, 10, 332, 377
CAFCR, 8, 10, 12, 18, 26, 34, 40, 50,

57, 58, 86
QADA, 376, 377, 396-398, 401-403
Siemens Four View, 10

Visual Architecting Process, 4, 5, 10,
46

Artifact
Application artifact, 479, 493, 510-512
Architecture artifact, 330, 331, 483
CAFCR artifact, 5, 7, 14, 40, 45
dependency, 171, 173, 191, 500, 502,

511, 512
Development artifact, 270, 360, 424
Domain artifact, XIII, 480, 484, 488,

493, 494, 497, 499, 507, 511, 512,
517, 518

Executable artifact, 483, 596
Product line artifact, 138, 139, 141-145,

147-149, 151, 156, 161, 170, 174,
185, 591. See Domain artifact

Requirements artifact, 131, 138, 139, 141,
143, 156, 161, 162, 167, 169-171,
173, 174, 181, 189-192, 483, 514

Test artifact, XVI, 424, 448, 474,
479-481, 483, 485, 493, 494, 499,
502, 504-506, 511, 514, 517, 518

Asset, VI, VII, XIV, 3, 53, 54, 61, 62, 68, 99,
100, 102, 107, 109, 111-122, 127, 128,
130, 132, 143, 161, 203-205, 207, 225,
243, 245-248, 269, 275-283, 285, 288,
289, 298, 301, 302, 305, 306, 314, 317,
320, 330, 337-339, 342, 343, 351, 367,
374, 377, 384, 385, 397, 398, 403, 426,
437, 443, 447, 479, 481, 521, 584, 616

SIA, Significant Implemented Asset,
339, 340, 351, 353-355, 358

SSA, Significant Standard Asset, 339,
340, 351, 353-355, 358

ATAM, 13, 55, 67, 269, 379
Automobile industry, 526

BAPO/CAFCR, 8, 10, 12, 18, 26, 34, 40,
50, 57, 86

Base model, 168, 174, 207-211, 214, 217,
218, 224, 238. See Consolidated
variability metamodel

Big Bang strategy, 527

CBAM, 66, 67
CC, Common Criteria, 314, 315, 339, 342,

343, 346, 348, 367

Index 627

Chapman-Kolmogorov equation, 406, 412
CIED, 521, 523-526, 528, 529, 533, 535,

536, 538-540, 544-554
CIM, Common Information Model, 329,

341-343, 345, 346, 348, 353-355, 367
Class diagram, 43, 45, 205, 227, 350, 463,

557-564, 585, 595
Code generation, XVI, 167, 232, 233, 522,

567, 574, 583, 589, 590, 595, 596, 600,
601, 604, 605, 607, 614

Commonality and variability, VI, XIII, XV,
1, 63, 64, 104, 105, 125, 127, 128, 130,
131, 135, 137-139, 141, 146, 161, 189,
190, 203, 204, 233, 243, 328, 331, 351,
355, 367, 423, 425, 426, 432, 434, 435,
442, 447, 448, 450, 452, 471, 475, 557,
590, 592, 601

Component, 248, 250-252, 254, 257-261,
263, 264, 266-270, 491, 492, 503-506,
517, 523-525, 527

Business component, 268
collaboration, 9, 28, 29, 33, 34, 40, 200,

248, 254, 270, 284, 397, 401, 408,
412, 417, 491, 517, 584

COTS, commercial off-the-shelf, 24, 46,
289, 398, 406

deployment, 311, 312, 361, 364, 365,
376, 381, 396-398, 409, 412

development group, VI, 63, 83, 100,
113-116, 118-120, 122, 123, 384,
521, 531

diagram, 396, 398
framework, 199, 201, 204, 235, 237-239,

266, 267, 331, 348, 349, 354, 358,
367, 591

interface, 251, 398, 407, 412, 505
Open source component, 289, 322, 406
role, 255, 257, 269, 270, 284
specification, 10, 166, 251, 254, 257,

269, 284
structure, 29, 166, 248, 257, 258, 331
testing, 423, 437, 521, 523, 524

Composite structure diagram, 197, 202,
396, 398

Configuration, XIV, 62, 166, 167, 196,
229-231, 235, 240, 249, 250, 257, 260,
261, 270, 328, 348, 443, 461, 479, 483,

484, 492, 493, 511, 512, 523-529, 532,
537, 539-541, 544, 552-554, 589, 590,
593, 605, 616

item, 523-525, 527-529, 537, 541, 544
management, 99, 102, 104-106, 112,

114, 305, 310-312, 523-528, 532,
539, 552-554, 612

Consolidated variability metamodel, VII,
XV, 12, 126, 170, 171, 174, 192, 195-
197, 202, 203, 206, 207, 219, 221, 224,
227, 239, 240, 243, 256, 270, 584, 595

Base model, 168, 174, 207-211, 214,
217, 218, 224, 238

Model element, 204, 205, 207, 212,
214, 219, 221, 222, 224, 228, 235,
237-239

Product line model, 207-209, 211,
218-220, 221

Resolution model, 207, 209, 211,
221-224, 227, 237-239

Resolution element, 208, 209, 221-223
Variation model, 171, 207-210, 221-225,

228, 239, 240
Variability constraint, 171, 205, 209,

211, 219, 220, 222, 237-239
Variability specification, 208-211,

222-225, 236, 256, 591, 594
Variation element, 170, 208, 210, 211,

219, 221-225, 227, 237, 595, 609
Transformer, 171, 208-211, 215, 217,

219, 222-225, 256
See Variability Model, Variant, Variation

Model

Decision model, 143, 166, 168, 203, 204,
221, 225, 228, 239, 255-257, 262, 267,
276, 277, 286, 288, 289, 302, 319, 321,
449, 450, 455, 458, 472, 473, 475, 563,
564, 575, 576, 585

Design
alternative, 376, 381, 386, 392, 393, 411
for reuse, 162, 167, 174, 210, 480, 518
pattern, 328, 377, 386, 387, 397, 471,

563
Abstract Factory, 563
Client Server, 255, 317
MVC, Model View Controller, 254

Index 628

See Pattern, Architectural style
rationale, 40, 143, 165, 278, 378, 395,

397, 399, 401, 406, 409, 410
Development test suite, 539
Documentation, 161, 165, 167, 168, 170, 174,

175, 178, 180-183, 185, 186, 188-191.
cf. Requirements documentation

pattern, 379
Domain

architecture, 330, 491, 518
scenario, 491-493, 503

artifact, XIII, 480, 484, 488, 493, 494,
497, 499, 507, 511, 512, 517, 518.
See Artifact

engineering, XIII-XVI, 115, 119, 120,
122, 127, 129, 133-136, 141, 161,
163, 166, 167, 174, 177, 222, 233,
246, 341, 367, 424, 479-482, 484,
485, 491, 493, 504, 517, 521,
523-526, 531

requirements, 235, 240, 493, 509
requirements engineering, XIV, 125,

129, 131, 132, 134, 161-163, 165,
169, 174, 180, 189, 190, 192, 243,
331, 375, 384, 385, 417, 499

specific language, 195-197, 227, 236-239,
598, 599, 614, 616

specific modeling, DSM, 227, 228, 232,
522, 591, 616

test case scenario
integration test, 479, 481, 483, 484,

491-494, 502-507, 517, 518

491-495, 501, 502, 508, 510
testing, 480, 482, 485
test plan. See Test plan
use case scenario, 168, 485, 487, 492,

495, 497, 500, 503, 508, 517

Elicitation, 126, 128, 131, 133, 136-139,
145, 154-156, 177-179, 181, 190, 191,
427, 442, 443, 447, 592, 594. cf.
Requirements elicitation

Evolution, V, VII, 99, 121, 169, 203, 204,
243, 244, 246-248, 270, 277, 327-329,
331, 333, 339, 341, 349, 366, 367, 424,

447, 448, 471-473, 475, 521, 523, 525,
526, 544, 552

of domain architectures, V, VII, XVI, 4,
6, 49, 54, 92, 121, 248, 264, 260,
319, 321, 323, 327, 328, 349, 355,
358, 359, 366, 367

of domain requirements, 189, 246, 321,
of product line strategy, V, VII, 2, 115,

120
Executable test case, 424, 435, 461, 484
Exploratory testing, 533
Extraction pattern, 125, 127, 138, 139, 143,

144, 147, 148, 150, 156

Feature, 373, 559
model (or diagram), 12, 18, 21, 143, 167,

170, 207, 211-214, 216, 233, 234,
236, 239, 559, 601

repository, 212
tree, 18

Fragmentation mechanism, 442, 474, 489,
490

Goal. See Requirements, Quality Goal

Implementation
of consolidated variability metamodel,

196, 197, 206, 207, 221-224
of product line practices, 2, 86, 92, 95,

98, 99, 101, 105, 111
of software-intensive systems, VI, XIV, 1,

15, 23, 25, 34, 49, 61, 63, 66, 69,
79-81, 100, 116, 121, 203, 205, 244,
248, 249, 254, 258, 259, 264, 278,
283, 293, 299, 306, 312, 315, 316,
318, 327-331, 336, 338-341, 347-351,
353, 358-360, 364, 366, 367, 373-379,
386, 391, 397, 407, 410, 412, 419,
462, 473, 527, 531, 535, 539, 545,
560, 564, 566, 574, 586, 596, 614

of tool support for product derivation
and variability modeling, 221,
231-233, 582, 586, 595, 596, 603,
607, 614

Increment Test Plan, 533, 539, 540, 543.
See Test Plan

system test, 481, 483, 485, 487,

Index 629

Integration
manager, 530, 535, 537, 542, 543, 547,

550, 553
of applications and tools, 221, 240, 266,

268, 275, 286, 294, 299, 590, 595,
598, 599, 603, 606, 608, 612

of components into a product line, 339,
523-531, 533-537, 539, 541-544,
546-551, 553

of legacy systems into a product line,
128, 130, 148, 151, 243, 245, 246

of models, 231, 338, 598, 603, 606, 608,
611

of requirements into a specification,
165

test, 424, 437, 479, 481, 483, 484, 491-
494, 502-507, 511, 512, 517, 518

application engineering, 479-481, 483,
489, 493, 510, 517

domain engineering, 479, 482, 484,
493, 504, 517

testing, XVI, 423, 424, 437, 447, 474,
483, 484, 491, 494, 502, 504, 512,
517, 518

Interface evaluation, 407

Key driver diagram, 30-33, 39, 41

Layered architecture, 33, 46, 386, 387,
393, 394, 399. See Architectural
style

Mass customization, V, 499
Metamodel, 136, 138, 139, 146-148, 350,

562, 592
Middleware, 258, 335, 365, 383, 389-391,

394, 399, 401, 593, 594
Model

element. See Consolidated variability
metamodel

Markov chain, 378, 402, 403, 405, 406,
411, 412

transformation, VII, XVI, 196, 202, 233,
418, 473, 522, 535, 537, 545, 546,
551, 557, 558, 566, 584-586, 589-
592, 594-597, 600-604, 606, 608,
610, 611, 613, 614

Model-based testing, 481, 483
Model-driven

Architecture, MDA, 328, 338, 340, 377,
378, 418, 594, 595, 600, 607, 608,
610

Development, MDD, 124, 521, 589-592,
594, 613, 614, 616

and product line engineering, XV, 521,
522, 589-596, 599, 613, 614,
616

systems engineering, 590
Modeling product lines, XV, 125, 127-132,

134, 135, 139, 141, 143, 147, 156, 195,
202, 206-209, 211, 215, 218-221, 233-
239, 243, 423, 425, 442, 563, 589-596,
598, 599, 601, 602, 604, 605, 607, 609,
614-616

Negotiation, 83, 84, 102, 112, 126, 161,
163-165, 175, 178, 179, 181, 184, 185,
190, 244, 257, 298, 373, 374, 376, 384,
385, 387, 419, 541. cf. Requirements
negotiation

Object Management Group, OMG, 240,
342, 348, 367, 589, 592, 595, 596,
610

Open Source Gateway initiative, OSGi, 327,
329, 347, 351, 353-359, 363-367

Oscar, 327, 348-353, 358-360, 362, 364,
367

Orthogonal variability model, OVM,
126, 165, 169, 170, 174, 176, 188,
189, 190-192, 195. See Variability
model

Package, 138, 140-143, 146, 147, 169, 199,
220, 351, 356, 377, 402, 504, 559, 562

Pattern, 30, 227, 246, 252-257, 261, 262,
267-269, 277, 283, 332, 338, 377, 591

language, 252, 253, 256, 257, 262, 267
See also Architectural, Design, Docu-

mentation, Extraction and Test
patterns

Platform, VI, XIII, 54, 56, 59, 61, 69-75,
112, 167, 231, 232, 244, 258, 263-265,
267, 269-271, 279, 316, 321, 322, 324,

630 Index

329, 331, 346, 347, 349, 351, 354, 355,
359-361, 363, 366, 367, 377, 378, 382,
383, 484, 499, 582, 586, 592, 593, 607,
615 cf. Component framework

artifact. See Domain artifact
Distribution platform, 375, 381

Platform-independent model, PIM in
MDA, 328, 338, 377, 418, 593, 594

Platform-specific model, PSM in MDA,
328, 338, 377, 593, 594

Plug-ins, 197, 199, 200, 235, 237-239, 598,
608

Product compliance to
product line constraints, 430, 433, 434
standards, 367

Product derivation, XVI, 1, 3, 4, 113, 166-
169, 202, 205, 209, 218, 220, 227,
231-233, 243, 245, 247, 248, 251, 255,
257, 264, 267-269, 271, 367, 426, 427,
430, 435, 437, 441, 442, 443, 449, 475,
509, 517, 521, 522, 557, 558, 561-563,
570, 583-585, 590-594, 600-602, 609

Product family, V, IX, XIII, 13, 49, 116,
127, 166, 168, 169, 368, 373

Product line, 275, 276, 279, 280, 523, 524,
526

artifact. See Domain artifact
economical models

COCOMO II, 60, 61, 67, 68
Comprehensive framework, 53, 60
Dale Peterson, 62, 63
Function Point Analysis, 60, 67, 68
Klaus Schmid, 88

economics, V, XV, 54, 66
Business case, 1, 41, 53-56, 62, 65,

72-76, 85, 384
Cash flow, 56-58, 71, 74, 76, 80,

83-85, 87, 88, 107, 108
Cost estimation, 59, 60, 67, 68, 87
Cost model, 54, 61, 70, 87
Cost of reuse, 62, 63, 68
Cost of variability, 65
Cross-product compatibility, 75, 76
Development cost, 1, 46, 53, 55,

60-62, 68, 70, 75, 98, 113, 246
Economical value, XV, 1, 2, 13, 16,

53, 56, 57, 67

Effect of time, 56, 57, 62, 66, 67, 72
Expected NPV, 58, 68, 70, 72, 76,

80, 81, 84
Income, revenue 1, 31, 33, 53, 57,

58, 62, 66, 68, 71-73, 75, 76, 80,
83, 86

Internal Rate of Return, 108
Life cycle cost, 53, 62, 68, 71, 86,

87
Net Present Value, NPV, 57-59, 62,

65-74, 76, 80, 81, 83-86,
107-109

Perfectionism, 69
Return on Investment, ROI, VI, 56,

59, 67, 69, 75, 91, 94, 96, 97, 106,
108-111, 123, 246, 281, 615

Time-to-market, X, XV, 1, 53, 54,
62, 72, 73, 75, 78, 79, 83, 85,
147, 373, 374, 475, 480,
550-552

Uncertainty, V, 1, 53, 54, 56, 57, 59,
62, 66, 67, 70, 72, 80, 107, 110,
111

engineering, PLE, 161, 163, 166-169,
175, 176, 178, 181, 185, 331, 373-
376, 379, 388, 417, 419, 557,
589-597, 616

and model-driven development, MDD,
589-592, 594, 613, 614, 616

configuration, 589, 593, 594, 605, 612,
616

decision process support provided by
tools, 596, 598, 599, 604, 607,
609, 612

other support provided by tools, 613,
616

metamodel
Product management, 189, 510
Product population, 243, 245-247, 249,

251, 253, 254, 257, 263, 269, 271
Project Test Plan, 533, 539. See Test plan
Propositional calculus, 432

Quality (of software product lines), XVI, 4,
275-280, 282, 283, 285-289, 295, 298,
300, 307, 318-321, 323, 324

model. See Consolidated variability

Index 631

Accountability, 527. See Security:
Accountability

attribute, XVI, 10, 13, 32-34, 36-38, 40,
45, 50, 67, 134, 163, 253, 255, 257,
262, 264, 278-280, 282, 283, 285-
289, 300, 307, 318-321, 323, 339,
341, 367, 376-378, 384, 386, 387,
418, 420

evaluation based on architectural models,
1-5, 13, 24, 26, 29, 32-36, 38-40, 49,
50, 62, 87, 277, 285, 318, 319, 323,
379, 388, 394, 408, 412, 417-419

goal (i.e., a non-functional requirement
to be achieved), 379, 380, 384, 385,
387, 392, 394, 396, 419

model, 276, 277, 285, 287, 318-321, 323,
328

of service, QoS, 339, 340, 348, 377, 596,
603

Reliability and availability, VI, XVI, 13,
132, 243, 244, 283, 317, 318, 333,
373-375, 377, 378, 380, 383, 386,
387, 394-396, 404-406, 410, 411,
417-420, 545

requirements, 4, 13, 29, 33, 36, 37, 40,
45, 120, 162, 243, 247, 255, 257,
261, 276, 277, 279, 285, 286, 318,
319, 328-330, 338, 340, 344, 345,
347, 376, 377, 379, 385, 387, 389,
390, 396, 397, 518

of architecture, 81, 84
Security. See Quality model, Security

Quality-attribute-response measure, 282
Quality-driven Architecture Design and

quality Analysis, QADA, 205, 376,
377, 379, 380, 384, 386, 395-397, 418

Redefinition (in object-oriented system
analysis and design), 197, 201, 235

Reference architecture
Definition of, 277, 282, 285

Requirements
agreement, 13, 33, 163, 164, 178, 179,

181, 185, 190, 535, 547

Application requirement, 161-170, 174,
175, 177, 181-188, 190, 191

Application specific requirement,
161-165, 167-181, 184, 185, 191

artifact, 131, 138, 139, 141, 143, 156,
161, 162, 167, 169-171, 173, 174,
181, 189-192, 483, 514

delta, 162, 169, 176, 178, 185-188
documentation, 147, 181, 426, 509, 514
Domain requirement, 235, 240, 493, 509.

See Requirements: Product line
requirement

elicitation, 176-179, 181
engineering (of single systems), 42, 129,

163, 287, 321, 375, 423, 425. See
Application requirements engineering,
Domain requirements engineering

mapping to architecture, 377, 379, 386,
391-399, 402, 417

negotiation, 178, 179, 184, 185
Nonfunctional requirements, XVI, 10,

146, 323, 327, 328, 339, 348, 367,
473, 474, 513, 518, 532

Product line requirement, 161-169, 175,
176, 178, 179, 181, 183, 185, 190, 191

Stakeholder requirement, 161, 164, 166,
167, 176-181, 185-187

validation, 4, 126, 161, 163, 185, 186,
165, 175, 178, 181, 184-186, 188,
191, 437, 483

Resolution (of variability)
element, 208, 209, 221-223
model, 207, 209, 211, 221-224, 227,

237-239
See Consolidated variability metamodel

Reuse, 479-483, 485, 489, 493-495, 502,
503, 510-512, 514-518. See Design for
reuse

Reverse Engineering, 130, 136, 330, 332,
333, 335, 607

Roadmap, 1, 2, 17, 21, 22, 27, 30, 35, 41,
53, 54, 57, 59, 60, 68, 72, 83, 86, 87,
125, 328

Economical valuation of roadmaps, 11,
53, 54, 60, 68, 83, 86, 87

See Architecture roadmap

See Architecture: Reference architecture
Extensibility of, 280, 319

Index 632

Roundtrip engineering, 234, 237, 239, 596
Runtime

Binding variability at runtime, 196, 199,
202, 221, 234, 237, 239, 264, 595

Scenario, V, VII, 1-7, 10-17, 19, 21-24, 27-
30, 34-40, 49, 50, 53, 55-59, 61, 62,
65-74, 76-85, 161, 168, 171, 173-191,
280, 282, 283, 285-299, 302, 305, 319-
322, 329, 332, 339, 353, 355, 359-367,
567, 568, 570, 584, 585

Application scenario, 26, 30, 86, 183,
184, 186-188

Product line scenario, 126, 173,
176-188, 190, 191, 192, 339, 397,
399, 408

resolving, 286, 289-299, 319
Stakeholder scenario, 11, 28, 40, 176,

179, 180, 183, 184, 186, 187
Strategic scenario, 2, 5, 6, 10, 11, 13-17,

21, 23, 36-38, 40, 49, 50, 53, 56-59,
66-74, 76-83, 85-88

Usage scenario, 5, 146, 255, 305, 329,
437

See Application use case, Application
test case, Architecture, Domain
use case, and Domain test case
scenarios

See Security: Accountability, Availabi-
lity, Confidentiality, and Integrity

ScenTED method, 424, 437, 448, 474, 479,
481-485, 487, 491-494, 513, 514,
516-518

Security, 275-285, 287-297, 299-306, 309,
311-324, 327-332, 338, 339, 341-356,
358-363, 365-368

Accountability, 287, 288, 298, 305, 306,
310, 314, 321, 342, 344, 347, 348,
357

architecture, 275-280, 283, 284, 289-
291, 299, 300, 303, 318-320, 322,
323

language, 276-279, 283, 284, 289, 300,
303, 319, 322, 323

Availability, 286-288, 294, 295, 298,
301, 308, 313, 318, 321, 342, 344.
See Quality: Reliability and
Availability

Confidentiality, 286-288, 294, 295, 298,
305, 306, 308, 309, 312, 314-317,
320, 321, 342, 344, 345, 347, 362,
363, 365, 383

countermeasure, 278-280, 282, 323, 341,
343-347, 357, 359-363, 365

Integrity, 284, 287-293, 298, 301, 305, 306,
309, 310, 312, 314-317, 321-323, 342,
344, 345, 347, 361-363, 365

reference model, 339, 341, 345, 346
risk, 278, 280-282, 288, 289, 292, 293,

301, 308, 312, 314, 316, 365
threat, 275, 278, 279, 282, 290, 314, 315,

317, 320-322, 341, 342, 359-361,
365

tools, XVI, 244, 305, 318-320, 323, 327,
330, 333, 334, 336, 340, 350, 365,
366, 472, 474, 596, 612

Unwanted incident, 281-284, 292, 296,
298, 299, 315, 317

Vulnerability, 272, 281, 282, 295, 302,
317, 341, 342, 359, 365

Segmentation mechanism, 442, 474, 489,
490, 497

Sequence diagram, 28, 171, 175, 398, 403,
407, 408, 412, 423, 427, 450, 451,
462-470, 473, 474, 485, 489-492, 516,
557-559, 568-570, 572, 573, 578, 580,
583, 585, 586

Software
architecture, 327, 328, 331-334, 336-339,

374, 378, 395, 405. See
Architecture

evolution. See Evolution
platform. See Platform
product line. See Product line

engineering framework, 162, 330
testing. See Test, Testing

Specialization, 197, 201, 207-209, 237-239,
247, 253, 255, 257, 261, 262, 269, 271,
283, 284, 300, 302, 320, 324, 426, 482,
565, 575

system, 484, 593. See Artifact: Execut-
able artifact, Variability in time

Index 633

Standardization
issues proposed by this book, 126, 192,

195, 196, 202, 206, 227, 239, 240,
443

Tool support for standards, 340, 418,
595

Subsystem, 6, 46, 77, 258, 317, 346, 381,
386, 387, 531, 546, 550

System test
during application engineering, 479-481,

483, 489, 493, 510, 517
during domain engineering, 479-482,

484, 493, 504, 517
See Application test case scenario:

System test, Domain test case
scenario: System test

Systems Engineering, XIII, 128, 163, 175,
237, 239, 419, 521, 590

Template. See Variability using templates
Test

automation, VII, XVI, 423, 424,
447-451, 455, 459, 466, 467, 470,
473-475, 483, 518, 526, 535, 539,
546

case design, 483
case scenario, XVI, 424, 479, 481-498,

500-512, 515-518
coverage criterion, 407, 459, 471-473,

481, 487-489, 491, 499, 517
effort, 479, 515, 516, 518, 529
model, 481-483, 537, 545, 546
Partition testing, 435, 437, 448, 474
pattern, 443, 448, 450, 451, 462, 469,

470
plan, XVI, 426, 427, 434, 529, 533, 535,

539, 540, 543, 544
scenario, 423, 424, 427, 434, 435, 437,

439, 440, 441, 447, 448, 450, 451,
462, 463, 465-471, 475, 503

strategy, VII, 479-481, 491, 497, 518
summary, 539

Testing, VII, XIV, XVI, 185, 204, 238,
328, 331, 338, 406, 407, 423-427,
435-437, 441-443, 447-452, 460,
464, 466, 469, 471, 473-476,
479-485, 487, 489-495, 499, 501,

502, 504, 507, 509-512, 514-518,
521, 523-526, 528-531, 533-535,
537-539, 542-544, 548, 549, 552,
553. See Application, Component,
Domain, Exploratory, Integration,
and Model-based testing

Time-to-market. See Product line
economics: Time-to-market

Tool evaluation
characteristics, 589, 590, 594, 597,

599-609, 611, 613-616
framework, 590, 594, 613, 614

Non-functional properties, 596, 599
Traceability, XVI, 119, 122, 151, 156, 164,

169, 174, 181, 183, 185, 397, 424, 450,
475, 479, 481, 483, 484, 486, 487, 491,
493, 495, 497, 500, 503, 508, 511, 514,
516, 522, 529, 548, 590, 596

Transformation, 589-616
Model transformation, 589-592, 594-

597, 600-604, 606, 608, 610, 611,
613, 614

tools, 589-591, 594-601, 603, 604, 606,
608, 610-616

Transformer. See Consolidated variability
metamodel, Variant

UML, 30, 43-45, 48, 126, 143, 195-201,
204-207, 211, 212, 214, 215, 217-221,
224, 225, 227, 239, 254, 259, 266, 330,
336, 342, 374, 377, 378, 384, 395, 396,
418, 447-449, 453, 454, 462, 464, 469,
473, 475, 485, 489, 557-563, 567, 574,
577, 578, 582, 586

model element, 214, 395
OCL, 167, 205, 211, 453, 463, 464, 467,

562, 563, 584, 610
profile, 204, 206, 342, 377, 378, 443,

559, 591, 595, 605
statecharts, 442, 557, 558, 574, 577-

586
Use case, 20, 28-30, 34, 35, 40, 43, 453,

456, 457, 460, 463, 468, 479, 481-
487, 489-503, 505, 508, 511, 514,
516, 517, 584

model, 432, 438, 448, 453, 454, 458,
486, 499, 508

634 Index

scenario, 470, 479, 481-483, 485-487,
490-498, 500-503, 505, 511, 516,
517

See Application use case scenario,
Domain use case scenario

Validation
of product lines and related artifacts, 115,

463, 475, 512-515, 523, 532, 533,
537, 539

of requirements, 4, 126, 161, 163, 185,
186, 165, 175, 178, 181, 184-186,
188, 191, 437, 483

Scientific validation, VII, X, 125, 127,
129, 151, 188, 191, 192, 257, 320,
342, 358-360, 365, 375, 381, 417,
419, 443, 470, 513, 521, 523, 545,
582, 614

Variability, 65, 161, 163, 165-183,
185-192, 195-199, 201-212, 218-225,
227-229, 231, 232, 234-239, 248, 328,
330, 331, 348, 360, 479, 481-486, 488,
489, 491, 492, 497, 498, 502, 503, 507,
509, 513-518

by language enhancement, 126, 169,
195-197, 202, 206, 211, 218, 428,
474, 485

constraint, 171, 205, 209, 211, 219, 220,
222, 237-239, 558, See Consolidated
variability metamodel, Variability
constraint dependency

constraint dependency, 167, 170, 171,
174, 182, 185, 187, 203, 211, 223,
225, 256, 558, 561-563, 567, 585

excludes, 170, 211, 510, 517, 559
requires, 170, 172, 178, 182, 185, 187,

205, 211, 482, 494, 499, 500, 502,
503, 506, 510, 559, 562

Cost of, 65
dependency (cf., Transformer), 170, 171,

174, 182, 185, 203, 222, 224, 225,
493, 507, 595

alternative, 18, 170, 171, 179, 180, 182,
185, 187, 188, 210, 255, 256, 381,
392, 431, 432, 436, 486, 487, 491,
509, 513, 518, 557,

co-existing, 18, 486, 509, 510

mandatory, 18, 170-172, 182, 185,
188, 257, 381, 392, 437, 486, 495,
499, 510, 560, 562, 584

optional, 18, 20, 21, 23, 141, 146,
147, 150, 151, 170-172, 177,
182, 188, 203, 205, 206, 208,
212, 214, 217, 219, 249, 225,
252, 255-257, 267, 297, 381,
392, 401, 426, 429, 432, 436,
438, 486, 488, 499, 557, 559,
562, 568, 570-576, 584, 601

Documentation of, 163, 167, 168, 170,
174, 175, 178, 180-183, 185,
188-191, 234, 514

in product requirements, 275
in quality requirements, 276, 384
in requirements models, VII, 169

in space, 17, 25, 227, 228, 230, 231, 270,
593

in standard languages, 196, 197, 202,
235

in tests, VII, 424, 435, 437, 438, 440,
442, 474, 479, 481, 482, 489, 497,
515, 516

in time, VII, 196, 199, 202, 206, 221,
234, 237, 250, 263, 264, 560, 563,
570, 595

in use cases, 131, 143, 151, 423, 427,
428, 432, 438, 454, 482, 485, 516,
584

metamodel, VII, 125, 126, 141, 143, 196,
197, 206, 207. See Consolidated
variability metamodel

model, 125, 141-144, 147, 161, 163-165,
169, 170, 171, 173-183, 185-192,
205, 251, 252. See Orthogonal
variability model, Consolidated vari-
ability metamodel

of security requirements, 288
Representation of, 165, 169, 190

585
497, 503, 508, 515, 517, 570, 574,
435, 440, 448, 450, 475, 482-492,
397, 399, 401, 424, 426-431, 433,
255, 270, 276, 280, 283, 285-290,

in scenarios, 11-13, 17, 25, 28, 39,
40, 49, 126, 168, 173, 175-192,

Index 635

resolution, 206, 207, 209-211, 214-219,
221-223, 225, 227, 231, 235, 237-239,
590, 592, 595, 598, 599, 602, 604,
605, 607, 609, 612

specification
Transformer, 209-211, 217, 219, 223

220.

subject, 360
using annotations/extensions, 126, 131,

143, 145, 195, 202, 204, 206, 211,
212, 214, 215, 217, 229, 234, 235,
377, 384, 423, 427, 428, 436,
438-441, 485, 486, 489, 491, 492,
557, 560, 584

using plug-ins, 197, 199, 200, 235, 237,
239, 348

using specialization, 197, 201, 208, 209
using state machines, 218, 219, 228, 229
using templates, 197, 198, 199, 235, 258,

259, 261, 266, 267, 432
using UML, 195-201, 204-207, 211, 212,

214, 217-221, 224, 225, 227
Variant, VI, XIV, 20, 77, 126, 154, 161, 165,

167, 168, 170-174, 176-182, 185-191,
199-201, 203-206, 227-230, 233, 234,
236-239, 245-250, 254, 256, 257, 269,
275, 276, 280, 282, 285, 286, 289,

317-319, 321, 322, 331, 383, 399, 423,
425, 434, 448, 451, 454, 455, 465, 471,
479, 481, 482, 486, 488-501, 503, 504,
507-512, 514-518, 557, 558, 560-565,
570-573, 575, 576, 584

absence test, 507-510
Variation

element, 170, 208, 210, 211, 219,
221-225, 227, 237, 595, 609. See
Variation point, Consolidated
variability metamodel

model, 12, 16-25, 34, 36, 39, 40, 171,
207-210, 221-225, 228, 239, 240.
See Variability model, Consolidated
variability metamodel

point, 170, 251, 254, 255, 257, 261, 262,
267, 268, 270, 280, 282, 285, 286,
319, 322, 327, 331, 340, 341, 348,
351, 355, 358-360, 367, 486, 488,
489, 491-493, 495, 498, 499, 509,
510, 515

Verification, 309, 311, 312, 336, 345, 363,
394, 430, 433, 434, 471, 484, 533, 537,
539, 547, 567

V-manage suite, 221, 223-227, 614

WSS, Web Service Security, 344, 355, 364,
365

Variability constraint, 209, 211, 219,

metamodelSee Consolidated variability

