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Desingularization of Nonelementary
Singularities

In this chapter we provide the basic tool for studying nonelementary singu-
larities of a differential system in the plane. This tool is based on changes of
variables called blow-ups. We use this technique for classifying the nilpotent
singularities; i.e., the singularities having both eigenvalues zero but whose lin-
ear part is not identically zero. Blow-up is also used to show that at isolated
singularities an analytic system has a finite sectorial decomposition.

3.1 Homogeneous Blow-Up

Before describing the effective algorithm that we use in the program P4 [9],
and which is based on the use of quasihomogeneous blow-up, we will first ex-
plain the basic ideas only introducing homogeneous blow-up, which essentially
means using polar coordinates. We position the singularity that we want to
study at the origin.

Let 0 be a singularity of a C∞ vector field X on R
2. Consider the map

φ : S
1 × R → R

2

(θ, r) �→ (r cos θ, r sin θ) .

We can define a C∞ vector field X̂ on the cylinder S
1 × R such that

φ∗(X̂) = X, in the sense that Dφv(X̂(v)) = X(φ(v)). It is called the pull
back of X by φ. It is nothing else but X written down in polar coordinates.
The map φ is a C∞ diffeomorphism, hence a genuine C∞ coordinate change
on S

1 × (0,∞), but not on {r = 0}; φ sends {r = 0} to (0, 0), and as such,
the inverse mapping φ−1 blows up the origin to a circle. In order to study
the phase portrait of X in a neighborhood V of the origin, it clearly suffices
to study the phase portrait of X̂ on the neighborhood φ−1(V ) of the circle
S

1×{0}, and we can even restrict to {r ≥ 0}. A priori this might seem a more
difficult problem than the original one, but as we will see in this chapter, the
construction is very helpful. If the k-jet jk(X)(0) is zero, then jk(X̂)(u) = 0
for all u ∈ S

1 × {0}.
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Although the cylinder is a good surface for getting a global view of X̂ and
its phase portrait, it is often less appropriate for making calculations, since
we constantly have to deal with trigonometric expressions. For that reason it
is often preferable to make the calculations in different charts.

On the parts of the cylinder given, respectively, by θ ∈ (−π/2, π/2) and
θ ∈ (π/2, 3π/2) use a chart given by

Kx : (θ, r) �→ (r cos θ, tan θ) = (x, y).

In this chart the expression of the blow-up map φ is given by

φx : (x, y) �→ (x, xy). (3.1)

Indeed we see that

φ = φx ◦ Kx : (θ, r) Kx

�→(r cos θ, tan θ)
φx

�→(r cos θ, r cos θ tan θ) = (r cos θ, r sin θ).
(3.2)

We call (3.1) a “blow-up in the x-direction”; the pull-back of X by means of
φx is denoted by X̂x, i.e., (φx)∗(X̂x) = X.

On the parts of the cylinder given, respectively, by θ ∈ (0, π) and θ ∈
(π, 2π), we use a chart given by

Ky : (θ, r) �→ (cot θ, r sin θ) = (x, y).

In this chart the expression of the blow-up map φ is given by

φy : (x, y) �→ (xy, y), (3.3)

in the sense that φ = φy ◦ Ky. We call (3.3) a “blow-up in the y–direction”;
the pullback of X by means of φy is denoted by X̂y, i.e., (φy)∗(X̂y) = X.

Both φx and φy are called “directional blow-ups.”
If jk(X)(0) = 0 and jk+1(X)(0) �= 0, then again jk(X̂x)(z) = 0 and

jk(X̂y)(z) = 0 for, respectively, z ∈ {x = 0} or z ∈ {y = 0}.
In case jk(X)(0) = 0 and jk+1(X)(0) �= 0 the pullback X̂ and likewise X̂x

and X̂y, are quite degenerate, and to make the situation less degenerate we
consider X̄ with

X̄ =
1
rk

X̂.

Then X̄ also is a C∞ vector field on S
1×R. On {r > 0} this division does not

change the orbits of X̂ or their sense of direction, but only the parametrization
by t. From the formulas it is clear that singularities of X̄|{r = 0} come in pairs
of opposite points.

For the related directional blow-up we use (1/x̄k)X̂x in case (3.1) and
(1/ȳk)X̂y in case (3.3). On {x̄ �= 0} (respectively {ȳ �= 0}) the vector fields
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(1/rk)X̂ and (1/x̄k)X̂x (respectively (1/ȳk)X̂y) are no longer equal up to
analytic coordinate change, as were X̂ and X̂x (respectively, X̂y), but they
are the same up to analytic coordinate change and multiplication by a nonzero
analytic function.

We work this out for the blow-up in the x-direction: since φ = φx ◦ Kx,
we see that (Kx)∗(X̂) = X̂x.

As such

(Kx)∗(X) = (Kx)∗(X̂/rk) =
1
rk

(Kx)∗(X̂) =
1
rk

X̂x = X
x
(
x

r
)k.

Seen in (θ, r)-coordinates we have x/r = cos θ, which is strictly positive
on the part of the cylinder given by θ ∈ (−π/2, π/2).

Similarly in the y-direction, we have (Ky)∗(X̂) = X̂y and (Ky)∗(X) =
X

y
(sin θ)k, with sin θ > 0 on the part of the cylinder given by θ ∈ (0, π).
The directional blow-up φx can also be used for making a study on {(θ, r) :

θ ∈ (π/2, 3π/2), r ≥ 0}, but in that case we have cos θ < 0.
For odd k, this means that in the phase portraits that we find for X

x|{x≤0}
we have to reverse time. A similar observation has to be made in using X

y

for studying X on {(θ, r) : θ ∈ (π, 2π), r > 0}.
Such a time reversal could be avoided in using φx (respectively, φy) only

for x ≥ 0 (respectively, y ≥ 0), and adding two extra directional blow-ups

φ−x : (x, y) �→ (−x,−xy),

φ−y : (x, y) �→ (−xy,−y),

that we limit to, respectively, x ≥ 0 and y ≥ 0. Of course the number of
calculations can be limited by using both φx and φy on a full neighborhood
of, respectively, {x = 0} and {y = 0}, avoiding having to work with φ−x and
φ−y.

We now treat a few examples.

Example 3.1 First we present an example in which we use one blow-up
to obtain quite easily the topological picture of the orbit structure of the
singularity:

X = (x2 − 2xy)
∂

∂x
+ (y2 − xy)

∂

∂y
+ O(‖(x, y)‖3).

The formulas for (polar) blow-up are

X̄ = η1
∂

∂θ
+ η2r

∂

∂r
,
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with

η1(θ, r) =
1

rk+2

〈
X,x

∂

∂y
− y

∂

∂x

〉
(φ(r, θ))

=
1

rk+2
(−r sin θX1(r cos θ, r sin θ) + r cos θX2(r cos θ, r sin θ)),

η2(θ, r) =
1

rk+2

〈
X,x

∂

∂x
+ y

∂

∂y

〉
(φ(r, θ))

=
1

rk+2
(r cos θX1(r cos θ, r sin θ) + r sin θX2(r cos θ, r sin θ)),

In our example k = 1 and the result is

X̄(θ, r) = (cos θ sin θ(3 sin θ − 2 cos θ) + O(r))
∂

∂θ

+ r(cos3 θ − 2 cos2 θ sin θ − cos θ sin2 θ + sin3 θ + O(r))
∂

∂r
.

Zeros on {r = 0} are located at

θ = 0, π; θ = π/2, 3π/2; tan θ = 2/3.

At these singularities, the radial eigenvalue is given by the coefficient of r∂/∂r
while the tangential eigenvalue can be found by differentiating the ∂/∂θ-
component with respect to θ. One thus obtains Fig. 3.1. In this figure we
represent the half cylinder S

1 × [0,∞) as E = {(x, y) : x2 + y2 ≥ 1}. This
visualization will also be used in the sequel. The phase portrait which we
see on E near the circle C = {x2 + y2 = 1} gives a very good idea of the
phase portrait of X near the origin. It suffices to shrink the circle to a point
(see Fig. 3.2).

All the singularities on S1 × {0} are hyperbolic. We say that we have
desingularized X at 0 since all singularities of X|{r=0} are elementary. The

Fig. 3.1. Blow-up of Example 3.1
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Fig. 3.2. Local phase portrait of Example 3.1

exact value of the eigenvalues at the different singularities depends only on
the 2-jet of X. Using techniques similar to the ones that served to study the
C0-conjugacy classes of elementary singularities, one can now prove that X
near the origin is C0-conjugate to the vector field Y = j2X(0), which has a
similar blow-up. We will not work this out. In this chapter we will only take
care of determining the sectorial decomposition of the singularity. Although in
the line of what we did explicitly for the elementary singularities, it is rather
tedious to show that for each kind of sectorial decomposition of an analytic
vector field there only exists one model for C0-conjugacy. We refer to [53]
or [33] for a detailed elaboration. The proof on the unicity of the model for
C0-equivalence is simpler, but nevertheless we do not wish to pay attention
to such constructions in general. We will treat some specific situations in the
exercises.

Concerning the sectorial decomposition, we remark that in the case of the
example, it is not hard to show, using the blow-up, that the vector field X
indeed has a finite sectorial decomposition near 0 as defined in Sect. 1.5. We
will come back to the proof of this in Sect. 3.5.

Concerning Fig. 3.1, we remark that the exact position of the invariant
manifolds, transverse to C, of the six hyperbolic singularities in the blow-up
can be approximated by Taylor approximation. After blowing down it leads to
an accurate presentation of the six “separatrices” in the local phase portrait;
see Fig. 3.2.

Example 3.2 Second we present an example for which blowing up once is
not sufficient to desingularize the singularity. There remain nonelementary
singularities of X|{r=0} at which we need to repeat the blow-up construction,
leading to successive blowing up. The starting vector field is

y
∂

∂x
+ (x2 + xy)

∂

∂y
+ O(‖(x, y)‖3).

Blowing up in the y-direction gives no singularities on {ȳ = 0}. Direct
calculations show that the singularities of X (and equally for X

x
and X

y
),
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as well as their eigenvalues, depend only on the first nonzero jet, hence on
y∂/∂x in this example. We now perform a blow-up in the x-direction, working
out the calculations explicitly. Writing

x = x̄, y = x̄ȳ,

or
x̄ = x, ȳ = y/x,

we get

˙̄x = ẋ

= y + O(‖(x, y)‖3)

= ȳx̄ + O(|x̄|3),

˙̄y =
ẏ

x
− y

ẋ

x2

= (x + y) +
1
x

O(‖(x, y)‖3) − y2

x2
− y

x2
O(‖(x, y)‖3)

= x̄ + ȳ x̄ − ȳ2 + O(|x̄|2).

(3.4)

The only singularity on x̄ = 0 occurs for ȳ = 0, where the 1-jet of the vector
field X̄x at this singularity is x̄∂/∂ȳ.

As the singularity is nonelementary, we are going to perform an extra blow-
up in order to study it. Blowing up in the x̄-direction gives no singularities.
Blowing up (3.4) in the ȳ-direction (x̄ = ¯̄y ¯̄x, ȳ = ¯̄y) gives

˙̄̄y = ˙̄y

= (x̄ + ȳ x̄ − ȳ2 + O(|x̄|2))
= ¯̄x ¯̄y − ¯̄y2 + O(‖(¯̄x, ¯̄y)‖3),

˙̄̄x =
˙̄x
ȳ
− x̄

˙̄y
ȳ2

= x̄ +
1
ȳ
O(|x̄|3) − x̄

ȳ2
(x̄ + ȳx̄ − ȳ2 + O(|x̄|2))

= ¯̄y ¯̄x − ¯̄x2 + ¯̄y ¯̄x + O(‖(¯̄x, ¯̄y)‖2).

The 2-jet is now (¯̄x¯̄y − ¯̄y2)∂/∂ ¯̄y + (2¯̄x¯̄y − ¯̄x2)∂/∂ ¯̄x. This singularity is not
elementary, but as we have seen in Example 3.1, it can be studied by blowing
up once. This succession of blowing up is schematized in Fig. 3.3. At each
step we blow-up a point to a circle, not forgetting that singularities of X on
{r = 0} always come in pairs of opposite points. If we need to blow-up one, we
also apply the same blow-up procedure to the second. As we already observed
in discussing the directional blow-up X

x
and X

y
in relation to X, the study

of both singularities at a pair of opposite points can be done on the same
expressions by treating x ≤ 0 as well as x ≥ 0, or, respectively, y ≤ 0 as well
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Fig. 3.3. Successive blowing up

as y ≥ 0. In terms of X it also means that we only have to consider one of the
singularities, but considering r ≤ 0 as well as r ≥ 0. It is possible that we have
to use a time-reversal, when k is odd (with X = X̂/rk), when transporting
information to the other singularity. At each step of the succession of blow-
ups we only need to keep part of the information, sufficient to cover a full
neighborhood of the origin after blowing down.

This procedure of successive blowing up can be formalized as follows, pro-
viding an overall geometric view like in Fig. 3.3. Instead of using the polar
blow-up φ and dividing by some power of r, we use the map

φ̃ :
{

z ∈ R
2 : ‖z‖ >

1
2

}
⊂ R

2 → R
2, z �→ z − z

‖z‖ ,

and divide by the same power of (‖z‖ − 1).
The vector field we so obtain is analytically equivalent to X, but the second

is now defined on an open domain in R
2 and therefore it becomes easier to

visualize how we can blow-up again at some point z0 ∈ {z ∈ R
2 : ‖z‖ = 1}:

we just use the mapping Tz0 ◦φ where Tz0 denotes the translation z �→ z + z0.
As we again end up on an open domain of R

2 we can repeat the construc-
tion if necessary. For simplicity in notation we denote the first blow-up by φ1,
the second by φ2 and so on.

After a sequence of n blow-ups we find some C∞-vector field X̄n defined
on a domain Un ⊂ R

2. X̄n is even analytic if we start with an analytic X. We
write Γn = (φ1 ◦ . . . ◦ φn)−1(0) ⊂ Un. Only one of the connected components
of R

2 \ Γn, call it An, has a noncompact closure. Furthermore ∂An ⊂ Γn and
∂An, which is homeomorphic to S,1 consists of a finite number of analytic
regular closed arcs meeting transversely. The mapping (φ1 ◦ . . . ◦ φn)|An

is
an analytic diffeomorphism sending An onto R

2 \ {0}. There exists a strictly
positive function Fn on An such that X̂n = FnX̄n and X̂n|An

is analytically
diffeomorphic to X|R2\{0} by means of the diffeomorphism (φ1 ◦ . . . ◦ φn)|An

.
The function Fn extends in a Cω way to ∂An where in general it is 0.
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Fig. 3.4. Blowing up Example 3.2

Fig. 3.5. Local phase portrait of Example 3.2

The reconstruction of the local phase portrait of Example 3.2 is repre-
sented in Fig. 3.4. To understand the figure one has to start from the right,
representing the phase portrait of a vector field X

3
obtained after three blow-

ups. One must not forget that at the second step one simultaneously blows up
two (opposite) singularities and at the third step their 4 counter images. The
calculations show that all the singularities of X

3
on ∂A3 are hyperbolic, and

hence, that X
3

is a desingularization of X. We say that X has been desingu-
larized after three successive blow-ups. The structure of the desingularization
of X

3
is as represented in Fig. 3.4. In following the arrows to the left, we

successively represent the phase portraits of X
2

near ∂A2, X
1

near ∂A1, and
finally X near the origin. The sectorial decomposition of X near the origin is
clear from its desingularization X

3
.

Again the method permits us to show that the vector fields of Example
3.2 are topologically determined by the 2-jet in the sense that such X near
0 is C0-conjugate to Y = j2X(0). A precise drawing of the two separatrices
of the cusp can be obtained by using Taylor approximations of the invariant
manifolds in the desingularization followed by a blowing down, as shown in
Fig. 3.5.

3.2 Desingularization and the �Lojasiewicz Property

To control whether a sequence of blow-ups finally leads to a desingularization
we use the notion of a �Lojasiewicz inequality. We say that a vector field X on
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R
2 satisfies a �Lojasiewicz inequality at 0 if there is a k ∈ N with k ≥ 1, and

a c > 0 such that ‖X(x)‖ ≥ c‖x‖k on some neighborhood of 0.
For analytic vector fields at isolated singularities, a �Lojasiewicz inequality

always holds (see [18]).

Theorem 3.3 ( [52]) If X at 0 satisfies a �Lojasiewicz inequality, then there
exists a finite sequence of blowing ups φ1 ◦ . . . φn leading to a vector field
X̄n defined in the neighborhood of ∂An of which the singularities on ∂An are
elementary.

These elementary singularities can be as follows:

(i) Isolated singularities p which are hyperbolic or semi-hyperbolic with non-
flat behavior on the center manifold;

(ii) Regular analytic closed curves (or possibly the whole of ∂An when n = 1)
along which X̄n is normally hyperbolic.

The position on ∂An as well as the determinating properties of the singu-
larities as used in the classification presented in the Theorems 2.15 and 2.19
depend only on a finite jet of X.

We do not give a proof of this theorem. We merely consider blow-up as
a technique to desingularize singularities. The technique turns out to be suc-
cessful, at least if we apply it to a singularity of �Lojasiewicz type, such as an
isolated singularity of an analytic system.

Taking a close look at the singularities of X
n

on ∂An, we see that some
lie on regular arcs of ∂An, while others lie in corners. At the former we see,
because of the Theorems 2.15 and 2.19, that there always exists an invariant
C∞ curve, transversely cutting ∂An, unless the singularity is a resonant hy-
perbolic node. The most degenerate one is such that the linear part of the
singularity consists of a single Jordan block. We represent the attracting case
in Fig. 3.6a. In any case, near all singularities on the regular part of ∂An

we find at least one orbit that blows down to a characteristic orbit of X. We
repeat, from Sect. 1.6, that a characteristic orbit is an orbit which tends to
the singularity, either in positive or negative time, with a well-defined slope.
We see therefore that X necessarily has a characteristic orbit at 0 if X

n
has

at least one singularity on the regular parts of ∂An.

(a) (b)

∂An

∂An
An

Fig. 3.6. Some singularities of X on ∂An



100 3 Desingularization of Nonelementary Singularities

C

(a)

C

(b)

Fig. 3.7. Samples of desingularizations of monodromic orbits

Singularities at corners of ∂An also lead to the existence of characteristic
orbits, except when the singularity has a hyperbolic sector with both separa-
trices in An, as represented in Fig. 3.6b.

Because of Theorem 3.3, and the observation just made, we thus see that
a �Lojasiewicz singularity either has a characteristic orbit or, if it does not
have a characteristic orbit, is a center or a focus. The latter situation is also
called monodromic. This can only happen if either X = X

1
has no singular-

ities on ∂A1 (see Fig. 3.7a) or if all singularities are corners of saddle type
(see Fig. 3.7b). In that case there is a segment C lying in An ∪ ∂An that is
transverse to the flow of X and cuts ∂An transversely at a regular point p.
A first return map can be defined for values q ∈ C for q sufficiently close
to p.

We now treat the two cases separately, starting with the monodromic
one. We consider only analytic systems, and we choose C to be an analytic
curve with an analytic choice of a regular parameter s on it; we let s = 0
coincide with ∂An and s > 0 with An. In case there are no singularities (see
Fig. 3.7a) the return map f is analytic in s, and as such, either f(s) = s or
jn(f(s)− s) �= 0 for some n ∈ N with n ≥ 1 . In the former case, X represents
a center, and in the latter case a focus. The focus need not to be a hyperbolic
one, but is at least C0-conjugate to a hyperbolic focus.

In the case there are singularities (see Fig. 3.7b), then we enter into a really
difficult subject. Although X as well as X

n
are analytic, the first return map

f does not need to be analytic. Nevertheless it is possible to prove that in this
case as well the system is either a center or a focus, excluding the possibility
of having accumulation of limit cycles at the singularities (which can occur in
the C∞ case).

An important paper dealing with the proof is [51]. The paper contains
valuable results on which subsequent work still relies. It does not however
provide a complete proof, leaving a gap that was detected only in the mid-
seventies. For a while this gap was called Dulac’s problem (see e.g., [113]). In
the meantime the proof has been completed independently by Ecalle [59] and
Ilyashenko [88].
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In the case that characteristic orbits occur, we show how to prove that such
singularities have a “finite sectorial decomposition” as defined in Sect. 1.6. We
do not have to restrict to analytic systems, but can consider C∞ singularities
of �Lojasiewicz type. The proof relies completely on Theorem 3.3, together
with Theorems 2.15 and 2.19; we provide only a rough sketch, referring to the
exercises for working out some of the details.

Choosing an orientation for ∂An we get a cyclic order on the singularities
of X

n|∂An
. To fix the ideas, we suppose that ∂An is oriented in a clockwise

way. We denote the cyclic order by “<.” The only way to get a hyperbolic
sector is by having two singularities p and q, neither lying in a corner of ∂An,
such that:

(i) Every singularity r with p < r < q is a corner of saddle type;
(ii) There is an invariant C∞ curve C1 (respectively, C2), transversely cutting

∂An at p (respectively, q), which, together with ∂An ∩ [ p, q] borders a
hyperbolic sector.

For a general picture we refer to Fig. 3.8.
Based on the normal form given in the Theorems 2.15 and 2.19, it is an easy

exercise to prove the existence of a C∞ curve that transversely cuts both C1

and C2 and that meets, inside the hyperbolic sector in between C1 and C2, the
requirements expressed in the definition of “finite sectorial decomposition.”

The way to encounter an elliptic sector is by having two singularities p
and q such that:

(i) Every singularity r with p < r < q is a corner of saddle type;
(ii) Both at p and q there is a parabolic sector adherent to [p, q] ⊂ ∂An,

of which one is attracting and the other is repelling. We refer to Fig. 3.9 for
an example. In this picture we cannot however guarantee that we see the full
elliptic sector, and surely not the maximal one as defined in Sect. 1.5.

In fact the curve C1 in Fig. 3.9 could be transverse to ∂An, but it could
also belong to ∂An. It is also possible that C2 (or its blow down) is not a good

C1

p q

C2

Fig. 3.8. Blowing up a hyperbolic sector

C1
C2

p q

Fig. 3.9. Blowing up an elliptic sector
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(a)
p

∂An
∂An

∂An (b)

Fig. 3.10. Blowing up of part of adjacent elliptic sectors

choice for bordering a maximal elliptic sector, since it is possible that the orbits
to the right of C2 also tend in negative time to ∂An, and as such, belong to
the elliptic sector if we want it to be maximal (in the sense that it is an elliptic
sector of a minimal sectorial decomposition). From the desingularized vector
field X

n
it is easy to find a maximal elliptic sector containing the part near

[p, q] as given in Fig. 3.9. We will treat some examples in the exercises.
We find two kind of bordering curves for a maximal elliptic sector. On

the one hand there are the bordering curves which also border a hyperbolic
sector. On the other hand there are bordering curves separating two adjacent
elliptic sectors; their choice is not unique, as we see in the examples given in
Fig. 3.10.

In any case, for an elliptic sector, the normal forms from the Theorems 2.15
and 2.19 permit us an easy proof of the existence of a C∞ curve, transversely
cutting the bordering curves and having the exact properties as described in
the definition of “finite sectorial decomposition” (see Sect. 1.5).

In between two hyperbolic sectors one can encounter a unique maximal
parabolic sector, whose desingularization can be quite complicated; however,
based on the normal forms in the Theorems 2.15 and 2.19 one can easily
find, inside any a priori chosen neighborhood of 0, a C∞ curve, the portion
of which that lies inside the parabolic sector is everywhere transverse to the
orbits, including the bordering orbits. We again refer to the exercises for the
details of the construction.

For a minimal sectorial decomposition it is always possible to find bor-
dering curves or separatrices (see Sect. 1.5) which are images by a blow down
mapping of a C∞ curve. The ones bordering a hyperbolic sector are of finite
type in the sense that they possess a C∞ parametrization γ : [0, ε] �→ R

2 with
jrγ(0) �= 0 for some r ∈ N. They can also be seen as graphs of a C∞ function
in the variable x1/n for some n ∈ N with n ≥ 1 in suitable C∞ coordinates
(x, y); see [57]. The separatrices between two elliptic sectors do not need to
have this property, which is the case for example in Fig. 3.10b if the corner
point p is a semi-hyperbolic point. For more information see [57].

3.3 Quasihomogeneous blow-up

Although the method of successive homogeneous blow-ups is sufficient for
studying isolated singularities of an analytic vector field, it turns out to be
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much more efficient to include quasihomogeneous blow-ups. In fact the algo-
rithm that we have implemented in the program P4 [9] relies on the systematic
approach presented in [124], and which is based on the use of quasihomoge-
neous blow-ups; see also [23] and [22]. We first present the technique before
describing the algorithm.

Let 0 be a singularity of a C∞ vector field X on R
2. Consider the map

φ : S
1 × R → R

2

(θ, r) �→ (rα cos θ, rβ sin θ) ,

for some well chosen (α, β) ∈ N × N with α, β ≥ 1. Exactly as in the “homo-
geneous case,” where (α, β) = (1, 1), we can define a C∞ vector field X̂ on
S

1 × R with φ∗(X̂) = X. We will divide it by rk, for some k ∈ N with k ≥ 1,
in order to get a C∞ vector field X̄ = 1

rk X̂, which is as non–degenerate as
possible along the invariant circle S

1 × {0}.
In practice one again uses directional blow-ups:

positive x-direction: (x̄, ȳ) �→ (x̄α, x̄β ȳ), leading to X̂x
+,

negative x-direction: (x̄, ȳ) �→ (−x̄α, x̄β ȳ), leading to X̂x
−,

positive y-direction: (x̄, ȳ) �→ (x̄ȳα, ȳβ), leading to X̂y
+,

negative y-direction: (x̄, ȳ) �→ (x̄ȳα,−ȳβ), leading to X̂y
−,

inducing also the systems X
x

−, X
x

+, X
y

− and X
y

+ that we obtain dividing,
respectively, by xk and yk.

If α is odd (respectively, β is odd), the information found in the posi-
tive x-direction (respectively, y-direction) also covers the one in the negative
x-direction (respectively, y-direction).

To show by an example that this technique can be quite efficient, we again
study the cusp-singularity

y
∂

∂x
+ (x2 + xy)

∂

∂y
+ O(‖(x, y)‖3), (3.5)

this time using a quasihomogeneous blowing up with (α, β) = (2, 3).
In the positive x-direction we consider the transformation (x, y) = (x̄2, x̄3ȳ).

In this case we have ẋ = 2x̄ ˙̄x, hence ˙̄x = 1
2 x̄2ȳ + O(x̄3) and ˙̄y = 3x̄2ȳ ˙̄x + x̄3ȳ,

hence ˙̄y = (1 − 3
2 ȳ2)x̄ + O(x̄2). We divide by x̄ and find

˙̄x =
x̄ȳ

2
+ O(x̄2),

˙̄y = 1 − 3
2
ȳ2 + O(x̄).

We find two hyperbolic singularities of saddle type, situated at the points
(x̄, ȳ) = (0,

√
2/3).
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Fig. 3.11. Quasihomogeneous blow-up of the cusp singularity

Similar calculations in the negative x̄-direction, as well as in the ȳ-direction
show that no other singularities are present.

As such blowing up once suffices to desingularize the singularity leading
to the picture in Fig. 3.11.

Again an accurate positioning of the invariant separatrices can be obtained
by Taylor approximation of the stable and unstable manifolds.

A question one might ask is how to effectively find the coefficient (α, β)
to use in a quasihomogeneous blow-up. This can be obtained by using the so
called Newton diagram. We first define the Newton diagram.

Let X = P (x, y) ∂
∂x + Q(x, y) ∂

∂y be a polynomial vector field with an iso-
lated singularity at the origin.

Let P (x, y) =
∑

i+j≥1

aijx
iyj and Q(x, y) =

∑

i+j≥1

bijx
iyj . The support of X

is defined to be

S = {(i − 1, j) : aij �= 0} ∪ {(i, j − 1) : bij �= 0} ⊂ R
2,

and the Newton polygon of X is the convex hull Γ of the set

P =
⋃

(r,s)∈S

{(r′, s′) : r′ ≥ r, s′ ≥ s}.

The Newton diagram of X is the union γ of the compact faces γk of the
Newton polygon Γ, which we enumerate from the left to the right. If there
exists a face γk which lies completely on the half-plane {r ≤ 0}, then we start
the enumeration with k = 0, otherwise we start with k = 1. Since the origin
is an isolated singularity we have that at least one of the points (−1, s) or
(0, s) is an element of S for some s, and also at least one of the points (r, 0)
or (r,−1) is an element of S for some r. Hence there always exists a face γ1

in the Newton diagram.
Suppose that γ1 has equation αr + βs = d, with gcd(α, β) = 1. As a first

step in the desingularization process we use a quasihomogeneous blow-up of
degree (α, β). As an example we calculate the Newton diagram of the vector
field (3.5), providing the best choice of coefficients (α, β).

The support of (3.5) surely contains (−1, 1), (2,−1), and (1, 0) coming,
respectively, from y ∂

∂x , x2 ∂
∂y , and xy ∂

∂y . Besides these three points it can
contain many other points, which are in fact not essential since they all lie
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r r

s s

(a) (b)

Q1

Q2

Q3

p

q

Fig. 3.12. Calculating the Newton polygon

in the convex hull Q of Q1 ∪ Q2 ∪ Q3 with Q1 = {(r, s) : r ≥ −1, s ≥ 1},
Q2 = {(r, s) : r ≥ 2, s ≥ −1}, and Q3 = {(r, s) : r ≥ 1, s ≥ 0}. In Fig. 3.12
we represent Qi for i = 1, 2, 3 in (a) as well as P = Q in (b).

We see that the Newton diagram consists of one compact face, that we
denote by γ1 and which is the line segment joining the points p = (−1, 1) to
q = (2,−1). The line segment lies on the line of equation 2r+3s = 1 inducing
the choice (α, β) = (2, 3).

In view of an efficient use of a quasihomogeneous blow-up with coefficients
(α, β) we will no longer decompose a vector field in homogeneous components,
but in adapted quasihomogeneous components. Based on this decomposition
we will now describe an algorithm for blowing up.

We write

X =
∑

j≥d

Xj , where Xj = Pj(x, y)
∂

∂x
+ Qj(x, y)

∂

∂y

is the quasihomogeneous component of X of type (α, β) and quasihomogeneous
degree j, that is to say Pj(rαx, rβy) = rj+αPj(x, y) and Qj(rαx, rβy) =
rj+βQj(x, y). After blowing up we will divide by rd. In practice we first blow-
up the vector field in the positive x-direction, yielding, after multiplying the
result with αx̄−d:

X̄x
+ :

˙̄x =
∑

δ≥d

x̄δ+1−dPδ(1, ȳ),

˙̄y =
∑

δ≥d

x̄δ−d(αQδ(1, ȳ) − βȳPδ(1, ȳ)).

We determine the singularities on the line {x̄ = 0}.
(1) If αQd(1, ȳ)−βȳPd(1, ȳ) �≡ 0, the points (0, ȳ0) satisfying the equation

αQd(1, ȳ)−βȳPd(1, ȳ) = 0 are isolated singularities of X̄ on the line {x̄ = 0},
at which

d(X̄x
+)(0,ȳ0) =

(
Pd(1, ȳ0) 0

� α∂Qd

∂ȳ (1, ȳ0) − β(Pd(1, ȳ0) + ȳ0
∂Pd

∂ȳ (1, ȳ0))

)
,
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which immediately gives the eigenvalues as the diagonal entries. If the sin-
gularity is hyperbolic, we are done. If the singularity is semi-hyperbolic, we
have to determine the behavior on the center manifold. If the singularity is
nonelementary, we introduce ỹ = ȳ − ȳ0, and blow-up this vector field again
in the positive x̄-direction as well as in the positive and negative ỹ-direction
with a certain degree (α′, β′), which we determine from the Newton diagram
associated to the vector field.

(2) If αQd(1, ȳ) − βȳPd(1, ȳ) ≡ 0, we have a line of singularities. Since

D(X̄x
+)(0,ȳ0) =

(
Pd(1, ȳ0) 0

� 0

)
,

all the singularities are semi-hyperbolic, except those singularities (0, ȳ0) for
which Pd(1, ȳ0) = 0. The latter will require further blow-up.

Next we blow-up the vector field in the negative x-direction and study this
vector field in the same way as in the previous case.

Finally we have to blow-up the vector field in the positive and the negative
y-direction, and determine whether or not (0, 0) is a singular point, since the
others have been studied in the previous charts.

It is easy to see that (0, 0) is a singularity if and only if γ1 lies completely
in the half-plane {r ≥ 0}. If this is the case then (0, 0) is elementary. Indeed,
blowing up the vector field in the positive y-direction yields, after multiplying
the result by βȳ−d:

X̄y
+ :

˙̄x =
∑

δ≥d

ȳδ−d(βPδ(x̄, 1) − αx̄Qδ(x̄, 1)),

˙̄y =
∑

δ≥d

ȳδ+1−dQδ(x̄, 1).

Hence (0, 0) is a singular point if Pd(0, 1) = 0, i.e., if Pd(x, y) = xF (x, y),
implying that γ1 lies completely in the half-plane {r ≥ 0}. Suppose now that
(0, 0) is a singular point of X̄y

+; then we have

D(X̄y
+)(0,0) =

(
β ∂Pd

∂x̄ (0, 1) − αQd(0, 1) �
0 Qd(0, 1)

)
.

Let (0, s) be the intersection of the line γ1 and the line r = 0. Then
Pd(x, y) = axys + G(x, y) and Qd(x, y) = bys+1 + H(x, y), with a2 + b2 �=
0, degx G(x, y) ≥ 2 and degx H(x, y) ≥ 1. Hence β ∂Pd

∂x̄ (0, 1) − αQd(0, 1) =
aβ − bα. So if aβ − bα �= 0 then (0, 0) is nonelementary. If aβ − bα = 0, then
Qd(0, 1) = b �= 0, and (0, 0) is elementary, too.

In [124] it has been proven that the algorithm, as presented here, leads to
a desingularization. It is also more efficient than the usual one.

In the program P4 [9] we not only perform a detailed study near the
singular points in R

2, but also near singular points at infinity. In Chap. 5 we
will describe how polynomial vector fields on R

2 can be extended to infinity.
We now apply the blow-up technique to study nilpotent singularities.
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3.4 Nilpotent Singularities

In this section we study singularities, positioned at the origin, at which the

linear approximation DX(0) of the vector field X is linearly conjugate to y
∂

∂x
.

As usual we take X to be at least of class C∞; we recall that such a
singularity is called a nilpotent singularity or nilpotent singular point.

Using the Formal Normal Form Theorem presented in Sect. 2.1 and, more
specifically, the example treated there, we find the following normal form for
C∞-conjugacy:

ẋ = y + A(x, y),

ẏ = f(x) + yg(x) + y2B(x, y),

where f , g, A, and B are C∞ functions, j1f(0) = g(0) = j∞A(0, 0) =
j∞B(0, 0) = 0. By introducing the new variable Y = y + A(x, y), we change
the former expression into

ẋ = y,

ẏ = f(x) + yg(x) + y2B(x, y),
(3.6)

for appropriately adapted f , g, and B with similar properties as before. If
B ≡ 0, then the system comes from the Liénard equation ẍ = f(x) + ẋg(x).
We now make a complete local topological study of all cases in which j∞f(0)
is not zero. This includes the local study of the related Liénard equations.
Either j∞g(0) �= 0 and

f(x) = axm + o(xm),
g(x) = bxn + o(xn),

(3.7)

with ab �= 0, or j∞g(0) = 0. The dual 1-form of (3.6) is given by

−ydy + (f(x) + yg(x) + y2B(x, y))dx,

which is equal to

− ydy + df(x) + ydg(x) + y2B(x, y)dx, (3.8)

for some C∞ functions f and g such that

f(x) =
axm+1

m + 1
+ o(xm+1) and

g(x) =
bxn+1

n + 1
+ o(xn+1),

provided j∞g(0) �= 0.
A linear change in x permits f to be changed into

f(x) =
δxm+1

m + 1
+ o(xm+1),
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with δ = 1 in case m is even and δ = 1 in case m is odd. Changing y by −y
if necessary we may suppose that b > 0. Instead of reducing a to δ, we could
also perform on g an operation similar to the one performed on f to reduce b
to +1, hence obtaining

g(x) =
xn+1

n + 1
+ o(xn+1),

provided j∞g(0) �= 0.
So up to linear (not necessarily orientation preserving) equivalence, we can

suppose that in expression (3.7)

either a = δ and b > 0, or b = 1, (3.9)

with δ = 1 when m is even and δ = 1 when m is odd.
If j∞g(0) �= 0, we observe that a coordinate change

y = Y +
∫ x

0

g(u)du = Y + G(x), (3.10)

permits changing an expression (3.6) with B ≡ 0 into

ẋ = Y + G(x),
ẏ = f(x).

If B �≡ 0, then (3.10) changes expression (3.6) into

ẋ = Y + G(x),

Ẏ = F (x) + Y H(x) + Y 2D(x, Y ),
(3.11)

where G, F , H, and D are C∞ functions, j∞F (0) = j∞f(0), j∞H(0) =
j∞D(0, 0) = 0. By a well chosen C∞ coordinate change Y = y + α(x) with
j∞α(0) = 0 we can even change (3.11) into

ẋ = y + G(x),

ẏ = F (x) + y2C(x, y),
(3.12)

with j∞G(0) = j∞G(0), j∞F (0) = j∞F (0) and j∞C(0, 0) = 0. Then expres-
sion (3.12) is also valid if j∞g(0) = 0.

We write (3.12) as
ẋ = y + H(x),

ẏ = F (x) + y2C(x, y),
(3.13)

with H(0) = 0. The relation between (3.12) and (3.13) is given by

j∞H ′(0) = j∞g(0),
j∞F (0) = j∞f(0).
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The study of these singularities now relies on (quasihomogeneous) blow-
up. We systematically work it out, depending on the values of m and n, where
m ≥ 2 and n ≥ 1 including n = ∞, the latter of which means that we accept
j∞g(0) = 0 in expression (3.6).

We distinguish three cases.
Hamiltonian like case: m < 2n + 1. If m is odd we use the blow-up

x = u, y = uky, (3.14)

with k = (m + 1)/2 and we divide by uk−1.
If m is even we use

x = u2, y = um+1y, (3.15)

and we divide by um−1.
Singular like case: m > 2n + 1. We use the blow-up

x = u, y = un+1y, (3.16)

and we divide by un.
Mixed case: m = 2n + 1. We use again the blow-up (3.16)

In all cases there is no need to check the directional charts {y = 1}
because of the specific expression of the linear part. We may also restrict to
{x = 1}, since the n-exponent in front of x is odd, except for blow-up (3.15).

3.4.1 Hamiltonian Like Case (m < 2n + 1)

We start with expression (3.8) for the dual 1-form and change f(x) to
δxm+1/(m+1) by a coordinate change in x. This changes expression (3.6) by
C∞ equivalence into

ẋ = y,

ẏ = δxm + y(bxn + o(xn)) + O(y2).

Case m odd: We know that δ = 1 and we use blow-up (3.14) in the
x-direction (x, y) �−→ (u, uky), with k = (m + 1)/2. After division by uk−1

we get
u̇ = uy,

ẏ = (δ − ky2) + O(u).

The blow-up and related phase portraits for this system that can be seen in
Fig. 3.13.

For δ = 1 we get a singularity of saddle-type. One can prove that it is C0-
conjugate to a hyperbolic saddle, but we will not work it out, as announced
before. The contact between the different separatrices is described by the
blowing up mapping.

For δ = −1 we get a singularity of center or focus type. It is not a simple
problem to determine whether it is a center or a focus.
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C2

C1

?

Fig. 3.13. Desingularization of Hamiltonian like case when m is odd

Case m even: In this case we can take δ = 1 and we use blow-up (3.15) in
the x-direction as well as in the −x-direction

(x, y) = (u2, um+1y), or

(x, y) = (−u2, um+1y).

After division by um−1 we get, respectively,

u̇ =
uy

2
,

ẏ =
(

1 − m + 1
2

y2

)
+ O(u),

and
u̇ = −uy

2
,

ẏ =
(

1 +
m + 1

2
y2

)
+ O(u).

The blow-up and related phase portraits for this system can be seen in
Fig. 3.14.

We get a singularity consisting of two hyperbolic sectors. It is called a cusp
point. The contact between the separatrices is described by the blowing up
mapping.

We note that in the Hamiltonian like case we can also take n = +∞,
meaning that j∞g(0) = 0 in expression (3.6).

3.4.2 Singular Like Case (m > 2n + 1)

We start with expression (3.8) for the dual 1-form and, making analogous
changes as in the Hamiltonian like case but on g instead of f , we change
expression (3.6) by C∞ equivalence, and possible time reversion, into
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x = −1−

x = 1−

Fig. 3.14. Desingularization of Hamiltonian like case when m even

(a) (b) (c) (d )

Fig. 3.15. Blow-ups of the singular like case

ẋ = y,

ẏ = axm + y(xn + o(xn)) + O(y2),

with a �= 0.
We use blow-up (3.16) in the x-direction

(x, y) = (u, un+1y).

After division by un we get

u̇ = uy,

ẏ = y(1 − (n + 1)y + O(u)) + aum−2n−1.

On {u = 0} we find two singularities, situated, respectively, at y = 1/(n + 1)
and at y = 0. The former is clearly a hyperbolic saddle. The latter is a
semi-hyperbolic point with {u = 0} as unstable manifold and having a center
manifold transverse to it. We leave it as an exercise to prove that the center
behavior is not flat, because of the presence of the term aum−2n−1. This leads
to the possible portraits for the blow-up given in Fig. 3.15.

In getting the {x = −1}–chart out of these pictures, we must take care
concerning the parity of n. Depending on the parity of n, cases (b) and (d) in
Fig. 3.15 will induce two different phase portraits (see, respectively, (a), (c)
and (e), (f) in Fig. 3.16).
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(a)

(f )(d) (e)

(b) (c)

Fig. 3.16. Phase portraits of the singular like case

The totality of phase portraits obtained is represented in Fig. 3.16. Again
the contact in between the separatrices is clear from the blow-up mapping.

The cases (d) and (f) are topologically equivalent, so we have five different
phase portraits.

Figure 3.16 may give the impression that a global attractor, similar to the
global repellor in (c), might not be possible in the singular like case, but
this is merely because of the choice of the coefficients in the normal form.
Multiplying the vector field by −1, corresponding to a time reversal, creates
the possibility of getting such an attractor. Thus there are six topologically
distinct phase portraits in all.

3.4.3 Mixed Case (m = 2n + 1)

We start with expression (3.8) for the dual 1-form and, making analogous
changes as in the previous cases, we change expression (3.6) by C∞ equiva-
lence, and possible time reversion, into

ẋ = y,

ẏ = ax2n+1 + y(xn + o(xn)) + O(y2),

with a �= 0.
We use blow-up (3.16) in the x-direction (x, y) = (u, un+1y). After division

by un we get
u̇ = uy,

ẏ = a + y − (n + 1)y2 + yO(u),

with a �= 0.
On {u = 0} the singularities are given by the solution of

a + y − (n + 1)y2 = 0.

We either have zero, one, or two solutions. No solution can be situated at the
origin, since a �= 0. The blow-ups are shown in Fig. 3.17.
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(a) (b) (c) (d)

Fig. 3.17. Blow-ups of the mixed case

(a)

(f )(d) (e)

(b) (c)

?

Fig. 3.18. Phase portraits of the mixed case

Again, depending on the parity of n, cases (b) and (c) give rise to two
different phase portraits.

The blow-ups in Fig. 3.17 hence induce the phase portraits of Fig. 3.18.
Although contacts of separatrices might differ, these phase portraits are

not topologically different from the ones we already found before. In case (f)
we are again left with a center or focus problem.

Remark 3.4 One can prove that for nilpotent singularities with j∞f(0) �= 0,
there are eight different classes for topological conjugacy. As we have seen, the
multiplicity is clearly given by the number m.

With respect to (3.6) it remains to consider the cases in which j∞f(0) = 0.
We perform this study only for analytic vector fields. We start with an

analytic vector field X given by

ẋ = y + α(x, y),
ẏ = β(x, y),

with α and β analytic, j1α(0, 0) = j1β(0, 0) = 0.
If we introduce the new variable Y = y + α(x, y), and write y instead of

Y , then we get
ẋ = y,

ẏ = δ(x) + yγ(x, y).
(3.17)



114 3 Desingularization of Nonelementary Singularities

We now prove that

j∞f(0) = 0 if and only if δ(x) ≡ 0. (3.18)

The Normal Form Theorem relies on transformations of the form

(u, v) = (x + A(x, y), y + B(x, y)), (3.19)

with A and B polynomials of a given degree n; the procedure uses an induction
on n. To prove (3.18) we need only make a formal calculation, that is simply
look at ∞-jets at (0, 0). The operation to transform (3.17) to a normal form
by means of (3.19) implies that

(
1 +

∂A

∂x

)
y +

∂A

∂y
(δ(x) + yγ(x, y)) = y + B(x, y),

∂B

∂x
y +

(
1 +

∂B

∂y

)
(δ(x) + yγ(x, y)) = f(x + A(x, y))

+ (y + B(x, y))Γ(x, y),

(3.20)

for some function Γ.
If we consider the second equation at y = 0, this gives

(
1 +

∂B

∂y
(x, 0)

)
δ(x) = f(x + A(x, 0)) + B(x, 0)Γ(x, 0).

Taking into account the degree of the terms, we see that jnδ(0) = jnf(0)
when jn−1δ(0) = jn−1f(0) = 0.

An induction argument hence shows that both f and δ have the same term
of lowest degree, with the same coefficient.

Therefore the condition j∞f(0) = 0 on the normal form implies that
δ(x) ≡ 0 in expression (3.17), and we get the vector field X given by

ẋ = y,

ẏ = yγ(x, y),
(3.21)

for which {y = 0} is a line of singularities.
We now prove that

j∞g(0) = 0 if and only if γ(x, 0) = 0. (3.22)

This means that, under the condition j∞f(0) = 0, j∞g(0) = 0 as well if and
only if the divergence of X is identically zero along the curve of singularities.

The proof of (3.22) is similar to the proof of (3.18). Instead of (3.20) we
now find the equations (at the ∞-jet level)

(
1 +

∂A

∂x

)
y +

∂A

∂y
yγ(x, y) = y + B(x, y),

∂B

∂x
y +

(
1 +

∂B

∂y

)
yγ(x, y) = (y + B(x, y))g(x + A(x, y)).
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In the second equation we see that

B(x, 0)g(x + A(x, 0))

has to be zero. So either B(x, 0) = 0 or j∞g(0) = 0.
We first take B(x, 0) = 0. If we now divide the second equation by y, and

put y = 0 we then get
(

1 +
∂B

∂y
(x, 0)

)
γ(x, 0) = g(x + A(x, 0)),

implying that the n-jet of γ(x, 0) is given by jng(0) when their (n − 1)-jets
are both zero. If however j∞g(0) = 0, then we get

∂B

∂x
(x, 0) +

(
1 +

∂B

∂y
(x, 0)

)
γ(x, 0) = 0,

implying inductively that the ∞-jet of γ(x, 0) also has to be zero.
We hence find two different situations for expressions (3.21). On the one

hand we have
ẋ = y,

ẏ = y2ϕ(x, y),
(3.23)

describing the cases whose formal normal form is zero. The phase portrait is
obtained by drawing the flow box

ẋ = 1,

ẏ = yϕ(x, y),

and multiplying it by the function y. The result is presented in Fig. 3.19.
On the other hand we have the analytic expressions

ẋ = y,

ẏ = yxn(1 + r(x)) + y2ψ(x, y),
(3.24)

for some n ≥ 1.
It is again a flow box multiplied by the function y. The flow box is

ẋ = 1,

ẏ = xn(1 + r(x)) + yψ(x, y).
(3.25)

Fig. 3.19. Phase portrait of (3.23)
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n odd n even

Fig. 3.20. Phase portrait of (3.24)

Along {y = 0} the contact of (3.25) with the x-axis is described by

ẏ = xn(1 + r(x)) ∼ xn.

This leads to the phase portraits described in Fig. 3.20.

3.5 Summary on Nilpotent Singularities

Here we give a specific and practical theorem which summarizes the previ-
ous results and which is very helpful for determining the local behavior at a
nilpotent singular point; see [2] for more details.

Theorem 3.5 (Nilpotent Singular Points Theorem) Let (0, 0) be an iso-
lated singular point of the vector field X given by

ẋ = y + A(x, y),
ẏ = B(x, y),

(3.26)

where A and B are analytic in a neighborhood of the point (0, 0) and also
j1A(0, 0) = j1B(0, 0) = 0. Let y = f(x) be the solution of the equa-
tion y + A(x, y) = 0 in a neighborhood of the point (0, 0), and consider
F (x) = B(x, f(x)) and G(x) = (∂A/∂x + ∂B/∂y)(x, f(x)). Then the fol-
lowing holds:

(1) If F (x) ≡ G(x) ≡ 0, then the phase portrait of X is given by Fig. 3.21a.
(2) If F (x) ≡ 0 and G(x) = bxn + o(xn) for n ∈ N with n ≥ 1 and b �= 0,

then the phase portrait of X is given by Fig. 3.21b or c.
(3) If G(x) ≡ 0 and F (x) = axm + o(xm) for m ∈ N with m ≥ 1 and a �= 0,

then
(i) If m is odd and a > 0, then the origin of X is a saddle (see Fig. 3.21d)

and if a < 0, then it is a center or a focus (see Fig. 3.21e–g);
(ii) If m is even then the origin of X is a cusp as in Fig. 3.21h.

(4) If F (x) = axm + o(xm) and G(x) = bxn + o(xn) with m ∈ N, m ≥ 2,
n ∈ N, n ≥ 1, a �= 0 and b �= 0, then we have
(i) If m is even, and

(i1) m < 2n + 1, then the origin of X is a cusp as in Fig. 3.21h;
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Fig. 3.21. Phase portraits of nilpotent singular points

(i2) m > 2n + 1, then the origin of X is a saddle-node as in Fig. 3.21i
or j;

(ii) If m is odd and a > 0 then the origin of X is a saddle as in Fig. 3.21d;
(iii) If m is odd, a < 0 and

(iii1) Either m < 2n + 1, or m = 2n + 1 and b2 + 4a(n + 1) < 0, then
the origin of X is a center or a focus (see Fig. 3.21e–g);

(iii2) n is odd and either m > 2n + 1, or m = 2n + 1 and b2 + 4a(n +
1) ≥ 0, then the phase portrait of the origin of X consists of one
hyperbolic and one elliptic sector as in Fig. 3.21k;

(iii3) n is even and either m > 2n+1, or m = 2n+1 and b2+4a(n+1) ≥
0, then the origin of X is a node as in Fig. 3.21l, m. The node is
attracting if b < 0 and repelling if b > 0.

Remark 3.6 In Fig. 3.21 we have represented all possible phase portraits of
nilpotent singularities. In the pictures we have paid attention to the fact that
the separatrices have certain contacts, but we have of course not stressed
the exact order of contact they have. This easily follows from the blow-up
procedures. We have also ignored to the exact position of the different sep-
aratrices in relation to {y = 0} in case that we change the expression of
(3.26), by means of an analytic coordinate change, to a new one in which
x = y. Such information can also be easily been obtained by the blow-up
procedure.
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Remark 3.7 Section 3.4 has not really been arranged in such a way as to
contain a systematic proof of this theorem. We have preferred to treat the
different nilpotent singularities according to the kind of blow-up that is needed
to study them. It is however clear that in order to get a precise proof of
Theorem 3.5 it is sufficient to go through the different cases and to apply the
blow-ups as indicated in Sect. 3.4. We can leave this as an exercise.

The remaining center-focus problem, on the other hand, is an open
problem.

3.6 Exercises

Exercise 3.1 Consider the vector field (y +2x3) ∂
∂x +(x2 +xy +y3) ∂

∂y . Make
an appropriate quasihomogeneous blow-up at the origin and calculate a para-
metrization γ : (R, 0) → (R2, 0) of the two separatrices, up to terms of order
5, i.e., with a remainder of order O(t5).

Exercise 3.2 Study the following vector fields by means of an appropriate
quasihomogeneous blow-up

(i) −y ∂
∂x + x3 ∂

∂y ,
(ii) (y3 + xy2) ∂

∂x + x2 ∂
∂y .

Exercise 3.3 Let X be a C∞ vector field satisfying a �Lojasiewicz inequality
at p and suppose that the C∞ vector field Y at q is C∞-conjugate to X at p.
Show that Y at q also satisfies a �Lojasiewicz inequality.

Exercise 3.4 Check that the following vector fields satisfy a �Lojasiewicz
inequality at the origin:

(i) (y + x3) ∂
∂x − x3 ∂

∂y .
(ii) (x + y) ∂

∂x + y4 ∂
∂y .

Exercise 3.5 Prove that a �Lojasiewicz inequality holds for

(i) all hyperbolic singularities.
(ii) Singularities whose 1-jet is a center.
(iii) Semi-hyperbolic singularities with nonflat center behavior.
(iv) Nilpotent singularities for which in (3.6) j∞f(0) �= 0 holds.

Exercise 3.6 Prove that a C∞ vector field X satisfies a �Lojasiewicz inequal-
ity at a singularity p if and only if there exists a finite jet jkX(p) with the
property that ||jkX(p)|| ≥ c||x||k for some c > 0.

Exercise 3.7 Prove that no �Lojasiewicz inequality holds for the vector field

X = (y + x2)2
∂

∂x
+ (y + x2)

∂

∂y
,
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but its 2-jet j2X(0) does satisfy a �Lojasiewicz inequality ||j2X(0)|| ≥ c||x||4
for some c > 0.

Exercise 3.8 Prove the existence of a finite sectorial decomposition for the
following singularities at (0, 0).

(i) y ∂
∂x + x2 ∂

∂y ,
(ii) (3x2 − 2xy) ∂

∂x + (y2 − 3xy) ∂
∂y ,

(iii) (x2 − y2) ∂
∂x + 2xy ∂

∂y ,
(iv) x2 ∂

∂x + y(2x − y) ∂
∂y

Exercise 3.9 Consider the vector field in Example 3.1, of which the local
phase portrait is represented in Fig. 3.2,

X = (x2 − 2xy)
∂

∂x
+ (y2 − xy)

∂

∂y
+ O(‖(x, y‖3).

(i) Show that for ε sufficiently small, the six separatrices of this system cut
Sε = {(x, y)|x2 + y2 = ε} transversely.

(ii) Show that for each of these systems the “finite sectorial decomposition”
property holds on some neighborhood V of the origin.

(iii) Prove that any two of the above systems are locally C0-equivalent.
(iv) Show that inside any hyperbolic sector, the time to go from the boundary

∂V to itself tends monotonically to infinity when the orbit approaches the
separatrices.

(v) Use (iv) to prove that any two of the above systems are mutually C0-
conjugate.

Exercise 3.10 Show that for any C∞ singularity of �Lojasiewicz type (sat-
isfying a �Lojasiewicz inequality) with a characteristic orbit, there is a finite
sectorial decomposition whose boundary is C∞.

Remark: The proof of the existence of a C∞ boundary relies on the use of
a “C∞-partition of the unity.” As a first step in the proof we suggest proving
the existence of a C0 boundary.

Exercise 3.11 Check that every C∞ singularity that satisfies a �Lojasiewicz
inequality but does not have a characteristic orbit is necessarily monodromic.

Hint: Provide a proof based on the theorems that are cited in the book,
even those whose proof is not incorporated.

Exercise 3.12 Use Theorem 3.5 to check the nature of the singularity at the
origin of

(−x2 + ay2 − xy − 2xy2)
∂

∂x
+ (y2 + xy + y3)

∂

∂y
,

with a �= 0 and 1 + 2a > 0.
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3.7 Bibliographical Comments

The desingularization theorem for planar vector fields has a long history. It
was first stated by Bendixson in 1901, however without proof. The paper also
included the topological classification of the elementary singular points.

In 1968, Seidenberg gave the first rigorous proof of the theorem for the
analytic case. The desingularization procedure was extended to C∞ vector
fields of �Lojasiewicz type in [52]. This paper is based on the Ph.D.–thesis of
Dumortier from 1973. In the mid seventies, van den Essen found a transformed
proof of the desingularization theorem for analytic vector fields; see [159].

In all previous papers, the desingularization was based on quadratic trans-
formations, or in the real case, on polar blow-up, hence in the terminology of
this chapter, on the homogeneous blow-up.

Quasihomogeneous blow-up was already used in the book of Lyapunov
[106] but was essentially put forward as a systematic and a more powerful
technique in the paper by Brunella and Miari [22] and especially in the book
of Bruno [23]. A proof of the desingularization theorem for C∞ vector fields of
�Lojasiewicz type, based on quasihomogeneous blow-ups, was given by Pelletier
in her thesis [124]; see also [125]. The desingularization procedure used in
the program P4 [9] is based on the algorithm presented in that thesis. The
classification of nilpotent singularities can be found in the papers of Andreev
[2] and of Arrowsmith [8]. The elaboration that we provide in this chapter
is based on quasihomogeneous blow-up and is by far the simplest that seems
possible.




