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Preface

Our aim is to study ordinary differential equations or simply differential sys-
tems in two real variables

ẋ = P (x, y),
ẏ = Q(x, y),

(0.1)

where P and Q are Cr functions defined on an open subset U of R2, with
r = 1, 2, . . . ,∞, ω. As usual Cω stands for analyticity. We put special emphasis
onto polynomial differential systems, i.e., on systems (0.1) where P and Q are
polynomials.

Instead of talking about the differential system (0.1), we frequently talk
about its associated vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
(0.2)

on U ⊂ R2. This will enable a coordinate-free approach, which is typical in
the theory of dynamical systems. Another way expressing the vector field is by
writing it as X = (P,Q). In fact, we do not distinguish between the differential
system (0.1) and its vector field (0.2).

Almost all the notions and results that we present for two-dimensional
differential systems can be generalized to higher dimensions and manifolds;
but our goal is not to present them in general, we want to develop all these
notions and results in dimension 2. We would like this book to be a nice
introduction to the qualitative theory of differential equations in the plane,
providing simultaneously the major part of concepts and ideas for developing
a similar theory on more general surfaces and in higher dimensions. Except
in very limited cases we do not deal with bifurcations, but focus on the study
of individual systems.

Our goal is certainly not to look for an analytic expression of the global
solutions of (0.1). Not only would it be an impossible task for most differential
systems, but even in the few cases where a precise analytic expression can be
found it is not always clear what it really represents. Numerical analysis of a
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differential system (0.1) together with graphical representation are essential
ingredients in the description of the phase portrait of a system (0.1) on U ; that
is, the description of U as union of all the orbits of the system. Of course,
we do not limit our study to mere numerical integration. In fact in trying
to do this one often encounters serious problems; calculations can take an
enormous amount of time or even lead to erroneous results. Based however
on a priori knowledge of some essential results on differential systems (0.1),
these problems can often be avoided.

Qualitative techniques are very appropriate to get such an overall under-
standing of a differential system (0.1). A clear picture is achieved by drawing
a phase portrait in which the relevant qualitative features are represented;
it often suffices to draw the “extended separatrix skeleton.” Of course, for
practical reasons, the representation must not be too far from reality and
has to respect some numerical accuracy. These are, in a nutshell, the main
ingredients in our approach.

The basic results on differential systems and their qualitative theory are
introduced in Chap. 1. There we present the fundamental theorems of exis-
tence, uniqueness, and continuity of the solutions of a differential system with
respect the initial conditions, the notions of α- and ω-limit sets of an orbit,
the Poincaré–Bendixson theorem characterizing these limit sets and the use of
Lyapunov functions in studying stability and asymptotic stability. We analyze
the local behavior of the orbits near singular points and periodic orbits. We
introduce the notions of separatrix, separatrix skeleton, extended (and com-
pleted) separatrix skeleton, and canonical region that are basic ingredients for
the characterization of a phase portrait.

The study of the singular points is the main objective of Chaps. 2, 3, 4,
and 6, and partially of Chap. 5. In Chap. 2 we mainly study the elementary
singular points, i.e., the hyperbolic and semi-hyperbolic singular points. We
also provide the normal forms for such singularities providing complete proofs
based on an appropriate two-dimensional approach and with full attention to
the best regularity properties of the invariant curves. In Chap. 3, we provide
the basic tool for studying all singularities of a differential system in the plane,
this tool being based on convenient changes of variables called blow-ups. We
use this technique for classifying the nilpotent singularities.

A serious problem consists in distinguishing between a focus and a center.
This problem is unsolved in general, but in the case where the singular point
is a linear center there are algorithms for solving it. In Chap. 4 we present the
best of these algorithms currently available.

Polynomial differential systems are defined in the whole plane R2. These
systems can be extended to infinity, compactifying R2 by adding a circle,
and extending analytically the flow to this boundary. This is done by the so-
called “Poincaré compactification,” and also by the more general “Poincaré–
Lyapunov compactification.” In both cases we get an extended analytic differ-
ential system on the closed disk. In this way, we can study the behavior of the
orbits near infinity. The singular points that are on the circle at infinity are
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called the infinite singular points of the initial polynomial differential system.
Suitably gluing together two copies of the extended system, we get an analytic
differential system on the two-dimensional sphere.

In Chap. 6 we associate an integer to every isolated singular point of a two-
dimensional differential system, called its index. We prove the Poincaré–Hopf
theorem for vector fields on the sphere that have finitely many singularities:
the sum of the indices is 2. We also present the Poincaré formula for computing
the index of an isolated singular point.

After singular points the main subjects of two-dimensional differential sys-
tems are limit cycles, i.e., periodic orbits that are isolated in the set of all
periodic orbits of a differential system. In Chap. 7 we present the more basic
results on limit cycles. In particular, we show that any topological configura-
tion of limit cycles is realizable by a convenient polynomial differential system.
We define the multiplicity of a limit cycle, and we study the bifurcations of
limit cycles for rotated families of vector fields. We discuss structural stability,
presenting a number of results and some open problems. We do not provide
complete proofs but explain some steps in the exercises.

For a two-dimensional vector field the existence of a first integral com-
pletely determines its phase portrait. Since for such vector fields the notion of
integrability is based on the existence of a first integral the following natural
question arises: Given a vector field on R2, how can one determine if this
vector field has a first integral? The easiest planar vector fields having a first
integral are the Hamiltonian ones. The integrable planar vector fields that are
not Hamiltonian are, in general, very difficult to detect. In Chap. 8 we study
the existence of first integrals for planar polynomial vector fields through the
Darbouxian theory of integrability. This kind of integrability provides a link
between the integrability of polynomial vector fields and the number of in-
variant algebraic curves that they have.

In Chap. 9 we present a computer program based on the tools introduced
in the previous chapters. The program is an extension of previous work due
to J. C. Artés and J. Llibre and strongly relies on ideas of F. Dumortier and
the thesis of C. Herssens. Recently, P. De Maesschalck had made substan-
tial adaptations. The program is called “Polynomial Planar Phase Portraits,”
abbreviated as P4 [9]. This program is designed to draw the phase portrait
of any polynomial differential system on the compactified plane obtained by
Poincaré or Poincaré–Lyapunov compactification; local phase portraits, e.g.,
near singularities in the finite plane or at infinity, can also be obtained. Of
course, there are always some computational limitations that are described in
Chaps. 9 and 10. This last chapter is dedicated to illustrating the use of the
program P4.

Almost all chapters end with a series of appropriate exercises and some
bibliographic comments.

The program P4 is freeware and the reader may download it at will from
http://mat.uab.es/∼artes/p4/p4.htm at no cost. The program does not in-
clude either MAPLE or REDUCE, which are registered programs and must
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be acquired separately from P4. The authors have checked it to be bug free,
but nevertheless the reader may eventually run into a problem that P4 (or
the symbolic program) cannot deal with, not even by modifying the working
parameters.

To end this preface we would like to thank Douglas Shafer from the Univer-
sity of North Carolina at Charlotte for improving the presentation, especially
the use of the English language, in a previous version of the book.
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5.3 Poincaré–Lyapunov Compactification . . . . . . . . . . . . . . . . . . . . . . 156
5.4 Bendixson Compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5 Global Flow of a Planar Polynomial Vector Field . . . . . . . . . . . . 157
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.7 Bibliographical Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 Indices of Planar Singular Points . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1 Index of a Closed Path Around a Point . . . . . . . . . . . . . . . . . . . . . 165
6.2 Deformations of Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3 Continuous Maps of the Closed Disk . . . . . . . . . . . . . . . . . . . . . . . 170
6.4 Vector Fields Along the Unit Circle . . . . . . . . . . . . . . . . . . . . . . . . 170
6.5 Index of Singularities of a Vector Field . . . . . . . . . . . . . . . . . . . . . 172
6.6 Vector Fields on the Sphere S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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1

Basic Results on the Qualitative Theory of
Differential Equations

In this chapter we introduce the basic results on the qualitative theory of
differential equations with special emphasis on planar differential equations,
the main topic of this book.

In the first section we recall the basic results on existence, uniqueness, and
continuous dependence on initial conditions, as well as the basic notions of
maximal solution and periodic solution. The basic notions of phase portrait,
topological equivalence and conjugacy, and α- and ω-limit sets of an orbit of
a differential equation are introduced in Sects. 2–4, respectively.

The local phase portrait at singular points and periodic orbits are studied
in Sects. 5 and 6, respectively. The beautiful Poincaré–Bendixson Theorem,
characterizing the α- and ω-limit sets of bounded orbits, is stated in Sect. 7.
Finally, in Sect. 8 the notions of separatrix, separatrix skeleton, extended (and
completed) separatrix skeleton and canonical region are given. These notions
are fundamental for understanding the phase portrait of a planar system of
differential equations.

1.1 Vector Fields and Flows

Let Δ be an open subset of the euclidean plane R2. We define a vector field
of class Cr on Δ as a Cr map X : Δ → R2 where X(x) is meant to represent
the free part of a vector attached at the point x ∈ Δ. Here the r of Cr denotes
a positive integer, +∞ or ω, where Cω stands for an analytic function. The
graphical representation of a vector field on the plane consists in drawing a
number of well chosen vectors (x,X(x)) as in Fig. 1.1. Integrating a vector
field means that we look for curves x(t), with t belonging to some interval in
R, that are solutions of the differential equation

ẋ = X(x), (1.1)

where x ∈ Δ, and ẋ denotes dx/dt (one can also write x′ instead of ẋ).
The variables x and t are called the dependent variable and the independent
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Δ

ϕ�(t) = X(ϕ(t))

ϕ(t)ϕ

tI

Fig. 1.1. An integral curve

variable of the differential equation, respectively. Usually t is also called the
time.

Since X = X(x) does not depend on t, we say that the differential equation
(1.1) is autonomous.

We recall that solutions of this differential equation are differentiable maps
ϕ : I → Δ (I being an interval on which the solution is defined) such that

dϕ

dt
(t) = X(ϕ(t)),

for every t ∈ I.
The vector field X is often represented by a differential operator

X = X1
∂

∂x1
+ X2

∂

∂x2
,

operating on functions that are at least C1. For such a function f , the image

Xf = X1
∂f

∂x1
+ X2

∂f

∂x2
,

represents at x the derivative of f ◦ ϕ, for any solution ϕ at t with ϕ(t) = x.
Associated to the vector field X = (X1, X2) or to the differential equation

(1.1) there is the 1–form

ω = X1(x1, x2)dx2 − X2(x1, x2)dx1.

In this book we mainly talk about vector fields or differential equations, but
we will see that it is sometimes useful or more appropriate to use the language
of 1–forms, as we will for instance do in Chap. 4.

A point x ∈ Δ such that X(x) = 0 (respectively �= 0) is called a singular
point (respectively regular point) of X. Often the word critical is used instead
of singular, but as critical may have different meanings depending on the
context, we prefer the word singular.

Let x be a singular point of X. Then ϕ(t) = x, with −∞ < t < ∞, is a
solution of (1.1), i.e., 0 = ϕ′(t) = X(ϕ(t)) = X(x).

Let x0 ∈ Δ and ϕ : I → Δ be a solution of (1.1) such that ϕ(0) = x0. The
solution ϕ : I → Δ is called maximal if for every solution ψ : J → Δ such
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that I ⊂ J and ϕ = ψ|I then I = J and, consequently ϕ = ψ. In this case we
write I = Ix0 and call it the maximal interval.

Let ϕ : Ix0 → Δ be a maximal solution; it can be regular or constant. Its
image γϕ = {ϕ(t) : t ∈ Ix0} ⊂ Δ endowed with the orientation induced by ϕ,
in case ϕ is regular, is called the trajectory, orbit or (maximal) integral curve
associated to the maximal solution ϕ.

We recall that for a solution defining an integral curve the tangent vector
ϕ′(t) at ϕ(t) coincides with the value of the vector field X at the point ϕ(t);
see Fig. 1.1.

Theorem 1.1 Let X be a vector field of class Cr with 1 ≤ r ≤ +∞ or r = ω.
Then the following statements hold.

(i) (Existence and uniqueness of maximal solutions). For every x ∈ Δ there
exists an open interval Ix on which a unique maximal solution ϕx of (1.1)
is defined and satisfies the condition ϕx(0) = x.

(ii) (Flow properties). If y = ϕx(t) and t ∈ Ix, then Iy = Ix − t = {r− t : r ∈
Ix} and ϕy(s) = ϕx(t + s) for every s ∈ Iy.

(iii) (Continuity with respect to initial conditions). Let Ω = {(t, x) : x ∈
Δ, t ∈ Ix}. Then Ω is an open set in R3 and ϕ : Ω → R2 given by
ϕ(t, x) = ϕx(t) is a map of class Cr. Moreover, ϕ satisfies

D1D2ϕ(t, x) = DX(ϕ(t, x))D2ϕ(t, x)

for every (t, x) ∈ Ω where D1 denotes the derivative with respect to time,
D2 denotes the derivative with respect to x, and DX denotes the linear
part of the vector field.

The proof of this theorem (and the others in this chapter) is given in [152]
and [151]. We can also refer to [44].

We denote by ϕ : Ω → R2 the flow generated by the vector field X.
It is clear that if Ix = R for every x, the flow generated by X is a flow

defined on Ω = R × Δ. But many times one has Ix �= R. For this reason
the flow generated by X is often called the local flow generated by X. In case
Ω = R × R2, condition (ii) of Theorem 1.1 defines a group homomorphism
t → ϕt from the additive group of the reals to the group of Cr diffeomorphisms
from R2 to R2, endowed with the operation of composition. In case Δ �= R2

or Ix �= R the homomorphism property, expressed by condition (ii), holds
only when the composition makes sense, inducing the word “local” in the
denomination. The name “flow” comes from the fact that points following
trajectories of X resemble liquid particles following a laminar motion.

Theorem 1.2 Let X be a vector field of class Cr with 1 ≤ r ≤ +∞ or r = ω,
and Δ ⊂ R2. Let x ∈ Δ and Ix = (ω−(x), ω+(x)) be such that ω+(x) < ∞
(respectively ω−(x) > −∞). Then ϕx(t) tends to ∂Δ (the boundary of Δ)
as t → ω+(x) (respectively t → ω−(x)), that is, for every compact K ⊂ Δ
there exists ε = ε(K) > 0 such that if t ∈ [ω+(x) − ε, ω+(x)) (respectively
t ∈ (ω−(x), ω−(x) + ε]), then ϕx(t) /∈ K.



4 1 Basic Results on the Qualitative Theory of Differential Equations

Proof. Contrary to what we wish to show we suppose that there exists a
compact set K ⊆ Δ and a sequence tn → ω+(x) < ∞ such that ϕx(tn) ∈
K for all n. Taking a subsequence if necessary, we may assume that ϕx(tn)
converges to a point x0 ∈ K. Let b > 0 and α > 0 such that Bb × Iα ⊆ Ω,
where Bb = {y ∈ R2 : |y − x0| ≤ b} ⊆ Δ and Iα = {t ∈ R : |t| < α}. From
statement (iii) of Theorem 1.1, Ω is open. From statement (ii), ϕx(tn + s)
is defined for s < α and coincides with ϕy(s) for n sufficiently large, where,
y = ϕx(tn). But then tn + s > ω+(x), producing the contradiction. ��

From Theorem 1.2 it follows that ω+(x) = ∞ (respectively ω−(x) = −∞)
if the orbit ϕx(t) stays in some compact set K as t → ω+(x) (respectively
t → ω−(x)).

Let ϕx(t) be an integral curve of X. We say that it is periodic if there
exists a real number c > 0 such that ϕx(t + c) = ϕx(t) for every t ∈ R.

Proposition 1.3 Let ϕx(t) be a solution of X defined on the maximal interval
Ix. If ϕx(t1) = ϕx(t2) with t1 �= t2, t1, t2 ∈ Ix then Ix = R and ϕx(t + c) =
ϕx(t) for every t ∈ R with c = t2 − t1. Therefore, ϕx is a periodic solution of
period c.

Proof. If we define ψ : [t2, t2 + c] → R2 by ψ(t) = ϕx(t − c), we have ψ′(t) =
ϕ′

x(t − c) = X(ϕx(t − c)) = X(ψ(t)) and ψ(t2) = ϕx(t1) = ϕx(t2). From the
uniqueness of the solutions, we have [t2, t2 + c] ⊆ I and ϕx(t) = ϕx(t + c) if
t ∈ [t2, t2+c]. Proceeding in the same way, we have I = R and ϕx(t+c) = ϕx(t)
for all t ∈ R. ��

1.2 Phase Portrait of a Vector Field

We recall that the orbit γp of a vector field X : Δ → R2 through the point p is
the image of the maximal solution ϕp : Ip → Δ endowed with an orientation
if the solution is regular.

Note that if q ∈ γp then γp = γq. Even more, if q ∈ γp, it means that exists
t1 ∈ Ip such that q = ϕ(t1, p), ϕ(t, q) = ϕ(t + t1, p) and Ip − t1 = Iq. In other
words, given two orbits of X either they coincide or they are disjoint.

Theorem 1.4 If ϕ is a maximal solution of a Cr differential system (1.1),
then one of the following statements holds.

(i) ϕ is a bijection onto its image.
(ii) I = R, ϕ is a constant function, and γϕ is a point.
(iii) I = R, ϕ is a periodic function of minimal period τ (that is, there exists a

value τ > 0 such that ϕ(t + τ) = ϕ(t) for every t ∈ R, and ϕ(t1) �= ϕ(t2)
if |t1 − t2| < τ).
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Proof. If ϕ is not bijective, ϕ(t1) = ϕ(t2) for some t1 �= t2. Then by Proposi-
tion 1.3, I = R and ϕ(t + c) = ϕ(t) for every t ∈ R and c = t2 − t1 �= 0.

We will prove that the set C = {c ∈ R : ϕ(t + c) = ϕ(t) for every t ∈ R}
is an additive subgroup of R which is closed in R. In fact, if c, d ∈ C, then
c+d,−c ∈ C, because ϕ(t+c+d) = ϕ(t+c) = ϕ(t) and ϕ(t−c) = ϕ(t−c+c) =
ϕ(t). So C is an additive subgroup of R.

But we also have that, if cn ∈ C and cn → c then c ∈ C, because

ϕ(t + c) =ϕ(t + lim
n→∞ cn) = ϕ( lim

n→∞(t + cn))

= lim
n→∞ϕ(t + cn) = lim

n→∞ϕ(t) = ϕ(t).

As we will prove in the next lemma, any additive subgroup C of R is of
the form τZ with τ ≥ 0, or C is dense in R.

Since C �= {0} is closed, it follows that C = R or C = τZ with τ > 0.
Each of these possibilities corresponds respectively to the cases (ii) and (iii)
of the theorem. ��

Remark 1.5 We will say period, instead of minimal period, if no confusion
is possible.

Lemma 1.6 Any additive subgroup C �= {0} of R is either of the form C =
τZ where τ > 0, or is dense in R.

Proof. Suppose that C �= {0}. Then C ∩ R+ �= ∅, where R+ denotes the
positive real numbers, since there exists c ∈ C, c �= 0, which implies that c or
−c belongs to C ∩ R+.

Let τ = inf(C ∩R+). If τ > 0, C = τZ, because if c ∈ C − τZ, there exists
a unique K ∈ Z such that Kτ < c < (K + 1)τ and so, 0 < c − Kτ < τ and
c − Kτ ∈ C ∩ R+. This contradicts the fact that τ = inf(C ∩ R+).

If τ = 0, we verify that C is dense in R. In fact, given ε > 0 and t ∈ R,
there exists c ∈ C such that |c − t| < ε. To see this, it is enough to take
c0 ∈ C ∩ R+ such that 0 < c0 < ε. Then the distance of any real number t
to a point of c0Z ⊆ C is less than ε, because this set divides R in intervals of
length c0 < ε with endpoints in c0Z. ��

We note that in statements (i) and (iii) of Theorem 1.4 we can add that
γϕ is Cr–diffeomorphic to R and that γϕ is Cr–diffeomorphic to a circle S1.
For a proof see Corollary 1.14.

Let P and Q be two complex polynomials in the variables x and y of degrees
m and n, respectively. Suppose that the two algebraic curves P (x, y) = 0 and
Q(x, y) = 0 intersect in finitely many points; i.e., that the polynomials P and
Q have no common factor in the ring of complex polynomials. Then the two
algebraic curves P (x, y) = 0 and Q(x, y) = 0 intersect in at most mn points
of the complex plane C2, and exactly in mn points of the complex projective
plane CP2, if we take into account the multiplicity of the intersection points.
This result is called Bezout’s Theorem; for more details see page 10 of [43].
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A differential system of the form

ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are polynomials in the real variables x and y is called a
polynomial differential system of degree m if m is the maximum degree of the
polynomials P and Q.

From Bezout’s Theorem it follows that a polynomial differential system
of degree m has either infinitely many singular points (i.e., a continuum of
singularities), or at most m2 singular points in R2.

By a phase portrait of the vector field X : Δ → R2 we mean the set of
(oriented) orbits of X. It consists of singularities and regular orbits, oriented
according to the maximal solutions describing them, hence in the sense of
increasing t. In general, the phase portrait is represented by drawing a number
of significant orbits, representing the orientation (in case of regular orbits) by
arrows. In Sect. 1.9 we will see how to look for a set of significant orbits.

Now we consider some examples.

Example 1.7 We describe the phase portrait of a vector field X = (P,Q)
on R2 where P (x, y) = P (x) and has a finite numbers of zeros and for which
Q(x, y) = −y. Let a1 < a2 < · · · < an be the zeros of P (x). We write a0 = −∞
and an+1 = ∞.

First it is easy to check that the straight line y = 0 is invariant under the
flow (i.e., is a union of orbits), as are all the vertical straight lines x = ai

for i = 1, . . . , n. Then for i = 0, 1, . . . , n, on each interval (ai, ai+1) of the
straight line y = 0, P has constant sign. We fix an interval (ai, ai+1) in which
P is positive. Then for x ∈ (ai, ai+1) we have that if ϕ(t, x) is a solution of
ẋ = P (x) passing through x, it has positive derivative in its entire maximal
interval Ix = (ω−(x), ω+(x)).

So the following statements hold:
(i) When t → ω−(x), ϕ(t, x) → ai and when t → ω+(x), ϕ(t, x) → ai+1.
The reason is that if ϕ(t, x) → b > ai as t → ω−(x), then because ϕ(t, b)
has positive derivative, the orbits γx and γb must intersect; but this implies
γx = γb which is a contradiction. In the same way we see that ϕ(t, x) → ai+1

when t → ω+(x).
(ii) If i ≥ 1 we have that ω−(x) = −∞, because for every t ∈ Ix we have that
ϕ(t, x) > a1 > −∞ and this implies, by Theorem 1.2, that ω−(x) = −∞.
(iii) If i < n we have that ω+(x) = ∞. The proof is identical to (ii).

An equivalent result may be proved in an interval (ai, ai+1) on which P is
negative.

The phase portrait of the vector field X = (P,Q) is given in Fig. 1.2 which
follows easily from the fact (taking into account the form of Q(x, y)) that the
solution through the point (x0, y0) is given by (ϕ(t, x0), y0e

−t).

Example 1.8 Linear planar systems. The phase portraits of systems ẋ = Ax,
where A is a 2 × 2 matrix with δ = det A �= 0 are well–known (see [98]). If
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Fig. 1.2. Phase portrait of Example 1.7

(a) (b) (c )

(d ) (e ) (f )

Fig. 1.3. Phase portraits of Example 1.8

δ < 0 we have a saddle; if δ > 0 and ρ = trace (A) = 0 we have a linear
center; if δ > 0 and ρ2 − 4δ < 0 we have a focus; and if δ > 0 and ρ2 − 4δ > 0
we have a node. The corresponding phase portraits are given in Fig. 1.3.

The eigenvalues of A are

λ1, λ2 =
ρ
√

ρ2 − 4δ

2
.

The corresponding eigenspaces are called E1 and E2, respectively. In the case
of the saddle, the orbits of the linear system corresponding to the four orbits
contained in E1 − {0} and E2 − {0}, are called the saddle separatrices of the
linear system.
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1.3 Topological Equivalence and Conjugacy

We need to introduce several notions of equivalence between two vector fields
which will allow us to compare their phase portraits.

Let X1 and X2 be two vector fields defined on open subsets Δ1 and Δ2

of R2, respectively. We say that X1 is topologically equivalent (respectively
Cr–equivalent) to X2 when there exists a homeomorphism (respectively a
diffeomorphism of class Cr) h : Δ1 → Δ2 which sends orbits of X1 to orbits
of X2 preserving the orientation. More precisely, let p ∈ Δ1 and γ1

p be the
oriented orbit of X1 passing through p; then h(γ1

p) is an oriented orbit of
X2 passing through h(p). Such a homeomorphism h is called a topological
equivalence (respectively, Cr–equivalence) between X1 and X2.

Let ϕ1 : Ω1 → R2 and ϕ2 : Ω2 → R2 be the flows generated by the vector
fields X1 : Δ1 → R2 and X2 : Δ2 → R2 respectively. We say that X1 is
topologically conjugate (respectively Cr–conjugate) to X2 when there exists
a homeomorphism (respectively a diffeomorphism of class Cr) h : Δ1 → Δ2

such that h(ϕ1(t, x)) = ϕ2(t, h(x)) for every (t, x) ∈ Ω1. In this case, it is
necessary that the maximal intervals Ix for ϕ1 and Ih(x) for ϕ2 be equal.
Such a homeomorphism (or diffeomorphism) h is called a topological conjugacy
(respectively Cr–conjugacy) between X1 and X2. Any conjugacy is clearly also
an equivalence. One also uses “C0–equivalent” and “C0–conjugate” instead
of respectively topological equivalent and topological conjugate.

A topological equivalence h defines an equivalence relation between vec-
tor fields defined on open sets Δ1 and Δ2 = h(Δ1) of R2. A topological
equivalence h between X1 and X2 maps singular points to singular points,
and periodic orbits to periodic orbits. If h is a conjugacy, the period of the
periodic orbits is also preserved.

Example 1.9 The function h : R2 → R2 defined by h(x, y) = (x, y + x3/4)
is a Cr–conjugacy between X(x, y) = (x,−y) and Y (x, y) = (x,−y + x3) as
ψ(t, (a, b)) = (aet, be−t) is a trajectory for X, ϕ(t, (a, b)) = (aet, (b−a3/4)e−t+
a3e3t/4) is a trajectory for Y and h(ψ(t, p)) = ϕ(t, h(p)).

Example 1.10 Let A =
(

0 a
−a 0

)
and B =

(
0 b
−b 0

)
be matrices on R2 with

ab > 0. All orbits of the systems ẋ = Ax and ẋ = Bx are periodic having
period 2π/a and 2π/b, respectively, with the exception of the origin which is a
singular point. If a �= b, these systems cannot be conjugate. But h = Identity
on R2 is a Cω–equivalence (even a linear equivalence).

The next lemma gives a characterization for a Cr–conjugacy with r ≥ 1.

Lemma 1.11 Let X1 : Δ1 → R2 and X2 : Δ2 → R2 be vector fields of class
Cr and h : Δ1 → Δ2 a diffeomorphism of class Cr with r ≥ 1. Then h is a
conjugacy between X1 and X2 if and only if

DhpX1(p) = X2(h(p)) for every p ∈ Δ1. (1.2)
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Proof. Let ϕ1 : Ω1 → Δ1 and ϕ2 : Ω2 → Δ2 be the flows of X1 and X2,
respectively. Assume that h satisfies (1.2). Given p ∈ Δ1, let ψ(t) = h(ϕ1(t, p))
with t ∈ I1(p). Then ψ is a solution of ẋ = X2(x), x(0) = h(p), because

ψ̇(t) =Dh(ϕ1(t, p))
d

dt
ϕ1(t, p) = Dh(ϕ1(t, p))X1(ϕ1(t, p)) =

=X2(h(ϕ1(t, p))) = X2(ψ(t)).

So h(ϕ1(t, p)) = ϕ2(t, h(p)). Conversely, assume that h is a conjugacy. Given
p ∈ Δ1, we have that h(ϕ1(t, p)) = ϕ2(t, h(p)), t ∈ I1(p) = I2(h(p)). If we
differentiate this relation with respect to t and evaluate at t = 0, we get
(1.2). ��

Let X : Δ → R2 be a vector field of class Cr and Δ ⊂ R2 and A ⊂ R open
subsets. A Cr map f : A → Δ is called a transverse local section of X when
for every a ∈ A, f ′(a) and X(f(a)) are linearly independent. Take Σ = f(A)
with the induced topology. If f : A → Σ is a homeomorphism (meaning that
f is an embedding) we say that Σ is a transverse section of X.

Theorem 1.12 (Flow Box Theorem) Let p be a regular point of a Cr vec-
tor field X : Δ → R2 with 1 ≤ r ≤ +∞ or r = ω, and let f : A → Σ be a
transverse section of X of class Cr with f(0) = p. Then there exists a neigh-
borhood V of p in Δ and a diffeomorphism h : V → (−ε, ε) × B of class Cr,
where ε > 0 and B is an open interval with center at the origin such that

(i) h(Σ ∩ V ) = {0} × B;
(ii) h is a Cr–conjugacy between X|V and the constant vector field Y :

(−ε, ε) × B → R2 defined by Y = (1, 0). See Fig. 1.4.

Proof. Let ϕ : Ω → Δ be the flow of X. Let F : ΩA = {(t, u) : (t, f(u)) ∈
Ω} → Δ be defined by F (t, u) = ϕ(t, f(u)). F maps parallel lines into integral
curves of X. We will prove that F is a local diffeomorphism in 0 = (0, 0) ∈
R × R. By the Inverse Function Theorem, it is enough to prove that DF (0)
is an isomorphism.

−ε ε

Σ

0

BΔ

h

P

V

Fig. 1.4. The Flow Box Theorem



10 1 Basic Results on the Qualitative Theory of Differential Equations

We have that

D1F (0) =
d

dt
ϕ(t, f(0)) |t=0 = X(ϕ(0, p)) = X(p),

and D2F (0) = D1f(0) because ϕ(0, f(u)) = f(u) for all u ∈ A. So the vectors
D1F (0) and D2F (0) generate R2 and DF (0) is an isomorphism.

By the Inverse Function Theorem, there exists ε > 0 and a neighborhood B
in R around the origin such that F |(−ε, ε)×B is a diffeomorphism on an open
set V = F ((−ε, ε)×B). Let h = (F |(−ε, ε)×B)−1. Then h(Σ∩V ) = {0}×B,
since F (0, u) = f(u) ∈ Σ for all u ∈ B. This proves (i). On the other hand,
h−1 conjugates Y and X:

Dh−1(t, u)Y (t, u) = DF (t, u)(1, 0)
= D1F (t, u))
= X(ϕ(t, f(u)))
= X(F (t, u))

= X(h−1(t, u)),

for every (t, u) ∈ (−ε, ε) × B. This ends the proof. ��

Corollary 1.13 Let Σ be a transverse section of X. For every point p ∈ Σ,
there exist ε = ε(p) > 0, a neighborhood V of p in R2 and a function τ : V → R

of class Cr such that τ(V ∩ Σ) = 0 and:

(i) for every q ∈ V , an integral curve ϕ(t, q) of X|V is defined and bijective
in Jq = (−ε + τ(q), ε + τ(q)).

(ii) ξ(q) = ϕ(τ(q), q) ∈ Σ is the only point where ϕ(·, q)|Jq intersects Σ. In
particular, q ∈ Σ ∩ V if and only if τ(q) = 0.

(iii) ξ : V → Σ is of class Cr and Dξ(q) is surjective for every q ∈ V . Even
more, Dξ(q)v = 0 if and only if v = αX(q) for some α ∈ R.

Proof. Let h, V and ε be as in the Flow Box Theorem. We write h = (−τ, η).
The vector field Y of that theorem satisfies all the statements of the corollary.
Since h is a Cr–conjugacy, it follows that X also satisfies the statements. ��

Corollary 1.14 If γ is a maximal solution of a Crdifferential system (1.1)
and γ is not a singular point, then γ is Cr diffeomorphic to R or S1.

Proof. Let p be a point of γ. Let Σ be a transverse section of (1.1) such
that p ∈ Σ ∩ γ. We define D = {t ∈ Ip : t ≥ 0, ϕ(t, p) ∈ Σ}. We claim
that taking Σ sufficiently small ϕ(t, p) with t ≥ 0 has a unique point on
Σ. Indeed, because of the Flow Box Theorem, we know that D consists of
isolated points. If D �= {0}, let 0 and t0 be two consecutive elements of D.
Now {ϕ(t, p) : t ∈ [0, t0]}, together with the segment of Σ in between ϕ(0) = p
and ϕ(t0) = q, form a topological circle C, which by the Jordan’s Curve
Theorem divides the plane in two connected components, like we represent in
Fig. 1.5(a) or (b). In both cases it is clear that the orbit through p cannot have
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Σ
q

p

p

q

(a) (b)

or

Fig. 1.5. The arc {ϕ(t, p) : t ∈ [0, t0]}

other intersections with Σ, besides p, for Σ sufficiently small. So the claim is
proved.

If in the arguments above p = q, then γ is a periodic orbit Cr diffeomorphic
to S1. If p �= q, by the Flow Box Theorem applied again to this Σ, there is a
neighborhood of p in γ which is Cr diffeomorphic to an open interval. Since
p is an arbitrary point of γ, it follows that γ is Cr diffeomorphic to R. ��

Remark 1.15 The statement concerning regular periodic orbits is also valid
on surfaces in general and even in any dimension, but this is not the case for
the statement concerning regular non–periodic orbits.

1.4 α- and ω-limit Sets of an Orbit

Let Δ be an open subset of R2 and let X : Δ → R2 be a vector field of class
Cr where 1 ≤ r ≤ ∞ or r = ω.

Let ϕ(t) = ϕ(t, p) = ϕp(t) be the integral curve of X passing through the
point p, defined on its maximal interval Ip = (ω−(p), ω+(p)). If ω+(p) = ∞
we define the set

ω(p) = {q ∈ Δ : there exist {tn} with tn → ∞
and ϕ(tn) → q when n → ∞}.

In the same way, if ω−(p) = −∞ we define the set

α(p) = {q ∈ Δ : there exist {tn} with tn → −∞
and ϕ(tn) → q when n → ∞}.

The sets ω(p) and α(p) are called the ω-limit set (or simply ω-limit) and the
α-limit set (or α-limit) of p, respectively.

We begin with some examples:

Example 1.16 Let X : R2 → R2 be a vector field given by X(x, y) = (x,−y).
Then:

(i) If p = (0, 0), α(p) = ω(p) = {(0, 0)}.
(ii) If p ∈ {(x, 0) : x �= 0}, α(p) = {(0, 0)} and ω(p) = ∅.
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Fig. 1.6. A limit cycle and some orbits spiralling to it

(iii) If p ∈ {(0, y) : y �= 0}, ω(p) = {(0, 0)} and α(p) = ∅.
(iv) If p ∈ {(x, y) : xy �= 0}, α(p) = ω(p) = ∅.

Example 1.17 Let ϕ(t) = ϕ(t, p) be a periodic orbit of period τ . Then
ω(p) = {ϕ(t) : t ∈ R} = α(p).

Example 1.18 Let X : R2 → R2 be the vector field given by

X(x, y) = (y + x(1 − x2 − y2),−x + y(1 − x2 − y2)).

Its phase portrait is given in Fig. 1.6. It is easy to check that C = {(x, y) :
x2 + y2 = 1} is the only periodic orbit of this vector field. Then

(i) α(p) = {(0, 0)} if p ∈ Int(C) = {(x, y) : x2 + y2 < 1}.
(ii) α(p) = ∅ if p ∈ Ext(C) = {(x, y) : x2 + y2 > 1}.
(iii) α(p) = C if p ∈ C.
(iv) ω(p) = C for any p different from the origin.

Let γp be the orbit of X through the point p and q ∈ γp; then ω(p) = ω(q).
This is due to the fact that if q ∈ γp, then there exists c ∈ R such that
ϕ(t, p) = ϕ(t + c, q). In the same way α(p) = α(q).

We define the α-limit set of an orbit γ as the set α(p) for some p ∈ γ.
We define the ω-limit set of an orbit γ as the set ω(p) for some p ∈ γ.
Let ϕ(t) = ϕ(t, p) be an integral curve of a vector field X through the

point p, and ψ(t) = ψ(t, p) an integral curve of the vector field −X through
the point p; then ψ(t, p) = ϕ(−t, p). From this, it follows that the ω-limit set
of ψ(t) is equal to the α-limit set of ϕ(t) and conversely, the α-limit set of
ψ(t) is equal to the ω-limit set of ϕ(t). For this reason, in order to study the
general properties of the α-limit and ω-limit sets of orbits, it is enough to
study the ω-limit sets.

Theorem 1.19 Let X : Δ → R2 be a vector field of class Cr defined on
an open set Δ ⊂ R2 and γ+(p) = {ϕ(t, p) : t ≥ 0} (respectively γ−(p) =
{ϕ(t, p) : t ≤ 0}) a positive semi-orbit (respectively negative semi-orbit) of the
vector field X through the point p. If γ+(p) (respectively γ−(p)) is contained
in a compact subset K ⊂ Δ, then:

(i) ω(p) �= ∅ (respectively α(p));
(ii) ω(p) is compact (respectively α(p));
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(iii) ω(p) is invariant for X (respectively α(p)), that is, if q ∈ ω(p), then an
integral curve passing through q is contained in ω(p);

(iv) ω(p) is connected (respectively α(p)).
(v) If ω(γ) ⊂ γ (respectively α(γ) ⊂ γ) then ω(γ) = γ (respectively α(γ) = γ),

and γ is either a singular point or a periodic orbit.

Proof. From the previous observation it is sufficient to prove the theorem for
a set ω(p).

(i) ω(p) �= ∅.
Let tn = n ∈ N. From the assumptions we have that {ϕ(tn)} ⊂ K with

K compact. Then there exists a subsequence {ϕ(tnk
)} which converges to a

point q ∈ K. We have then that tnk
→ ∞ as nk → ∞ and ϕ(tnk

) → q. Then
by definition q ∈ ω(p).

(ii) ω(p) is compact.
We have that ω(p) ⊂ γ+(p) ⊂ K, so it is sufficient to prove that ω(p)

is closed. Let qn → q, with qn ∈ ω(p). We will prove that q ∈ ω(p). Since
qn ∈ ω(p), there exists for every qn a sequence {t(n)

m } such that t
(n)
m → ∞ and

ϕ(t(n)
m , p) → qn as m → ∞.
For every sequence {t(n)

m } we choose a point tn = t
(n)
m(n) > n such that

d(ϕ(tn, p), qn) < 1/n. Then we have that:

d(ϕ(tn, p), q) ≤ d(ϕ(tn, p), qn) + d(qn, q) <
1
n

+ d(qn, q).

Therefore, it follows that d(ϕ(tn, p), q) → 0 as n → ∞, that is, ϕ(tn, p) →
q. Since tn → ∞ as n → ∞, we get that q ∈ ω(p).

(iii) ω(p) is invariant under X.
Let q ∈ ω(p) and let ψ : I(q) → Δ be an integral curve of X passing

through the point q. Let q1 = ϕ(t0, q) = ψ(t0). We will prove that q1 ∈ ω(p).
As q ∈ ω(p), there exists a sequence {tn} such that tn → ∞ and ϕ(tn, p) → q
as n → ∞. Since ϕ is continuous, it follows that:

q1 = ϕ(t0, q) = ϕ(t0, lim
n→∞ϕ(tn, p))

= lim
n→∞ϕ(t0, ϕ(tn, p)) = lim

n→∞ϕ(t0 + tn, p).

We have then a sequence {sn} = {t0 + tn} such that sn → ∞ and
ϕ(sn, p) → q1 as n → ∞, that is q1 ∈ ω(p); see Fig. 1.7.

(iv) ω(p) is connected.
Assume that ω(p) is not connected. Then ω(p) = A ∪ B, where A and B

are closed, non-empty and A ∩ B = ∅. As A �= ∅, there exists a subsequence
{t′n} such that t′n → ∞ and ϕ(t′n) → a ∈ A as n → ∞. In the same way, there
exists a sequence {t′′n} such that t′′n → ∞ and ϕ(t′′n) → b ∈ B as n → ∞. Then
we can construct a sequence {tn} such that tn → ∞ as n → ∞ and such that
d(ϕ(tn), A) < d/2 and d(ϕ(tn+1), A) > d/2, where d = d(A,B) > 0 for every
n odd.
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Fig. 1.7. A subsequence converging to a point of a limit cycle

Since the function g(t) = d(ϕ(t), A), for tn ≤ t ≤ tn+1 for all n odd, is con-
tinuous, and g(tn) < d/2 and g(tn+1) > d/2, it follows (from the Intermediate
Value Theorem) that there exists t∗n, with tn < t∗n < tn+1 such that

g(t∗n) = d(ϕ(t∗n), A) = d/2.

Since the sequence {ϕ(t∗n)} is contained in the compact set Q = {x ∈ Δ :
d(x,A) = d/2}, it has a convergent subsequence which we also denote by
{ϕ(t∗n)}. Let p∗ = limn→∞ ϕ(t∗n). Then p∗ ∈ ω(p). But p∗ /∈ A, because
d(p∗, A) = d/2 > 0; also p∗ /∈ B, because d(p∗, B) ≥ d(A,B) − d(p∗, A) =
d/2 > 0. This is a contradiction.

(v) If ω(γ) ⊂ γ then ω(γ) = γ. We claim that γ is either a singular point
or a periodic orbit.

By Theorem 1.4 and Corollary 1.14 an orbit γ is homeomorphic to a point,
to a circle or to R. So (v) will be proved if, assuming that γ is homeomorphic
to R and ω(γ) ⊂ γ, we arrive at a contradiction. Clearly ω(γ) �= γ because
γ is not compact and ω(γ) is compact by (ii). Then ω(γ) is not invariant, in
contradiction to statement (iii). ��

We can also remark, from the proof of Theorem 1.19, that even if γ+(p)
(respectively γ−(p)) is not contained in a compact subset, nevertheless ω(p)
(respectively α(p)) is invariant under X and is closed. The closure of γ is
γ̄ = γ ∪ω(γ)∪α(γ). Of course, both ω(γ) and α(γ) can be empty and do not
need to be connected.

We consider the vector field X of Fig. 1.6 restricted to the open set
Δ = R2 \ {p1, p2}, where p1 and p2 are different points of the circle of
radius 1 centered at the origin. If p �= (0, 0) and p /∈ C \ {p1, p2}, then
ω(p) = C \{p1, p2}, which shows that ω(p) is not connected. Consequently the
compactness of K cannot be removed from the hypotheses of Theorem 1.19

1.5 Local Structure of Singular Points

Let p be a regular point of a planar Cr vector field X with 1 ≤ r ≤ ∞ or r = ω.
By the Flow Box Theorem, we know that there exists a Cr diffeomorphism
which conjugates X in a neighborhood of p with the constant flow Y = (1, 0).
Then both vector fields X and Y are locally Cr-conjugate near the regular
points. Near regular points there is a unique model for Cr-conjugacy.
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Let p be a singular point of a planar Cr vector field X = (P,Q). In general
the study of the local behavior of the flow near p is quite complicated. Already
the linear systems show different classes, even for local topological equivalence.
We say that

DX(p) =

⎛⎜⎜⎜⎝
∂P

∂x
(p)

∂P

∂y
(p)

∂Q

∂x
(p)

∂Q

∂y
(p)

⎞⎟⎟⎟⎠
is the linear part of the vector field X at the singular point p.

The singular point p is called non–degenerate if 0 is not an eigenvalue.
The singular point p is called hyperbolic if the two eigenvalues of DX(p)

have real part different from 0.
The singular point p is called semi-hyperbolic if exactly one eigenvalue of

DX(p) is equal to 0. Hyperbolic and semi-hyperbolic singularities are also
said to be elementary singular points.

The singular point p is called nilpotent if both eigenvalues of DX(p) are
equal to 0 but DX(p) �≡ 0.

The singular point p is called linearly zero if DX(p) ≡ 0.
The singular point p is called a center if there is an open neighborhood

consisting, besides the singularity, of periodic orbits. The singularity is said to
be linearly a center if the eigenvalues of DX(p) are purely imaginary without
being zero. In that case, and if we suppose the vector field X to be analytic
(see Chap. 4), the vector field X can have either a center or a focus at p.
To distinguish between a center and a focus is a difficult problem in the
qualitative theory of planar differential equations; see Chap. 4. We note that
a center-focus problem also exists for nilpotent or linearly zero singular points.

In order to study the local phase portrait at the singular point p we define
the determinant, the trace and the discriminant at p as

det(p) =

∣∣∣∣∣∣∣∣∣
∂P

∂x
(p)

∂P

∂y
(p)

∂Q

∂x
(p)

∂Q

∂y
(p)

∣∣∣∣∣∣∣∣∣ ,

tr(p) =
∂P

∂x
(p) +

∂Q

∂y
(p),

Δ(p) = tr(p)2 − 4det(p),

respectively. It is easy to check that

(i) if det(p) �= 0, then the singular point is non–degenerate and it is either
hyperbolic, or linearly a center;
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(ii) if det(p) = 0 but tr(p) �= 0, then the singular point is semi-hyperbolic;
(iii) if det(p) = 0 and tr(p) = 0, then the singular point is linearly zero or

nilpotent depending on whether DX(p) is the zero matrix or not.

It is obvious that if p = (x0, y0) is a singular point of the differential system

ẋ = P (x, y),

ẏ = Q(x, y),

then the point (0, 0) is a singular point of the system

˙̄x = P (x̄, ȳ),
˙̄y = Q(x̄, ȳ),

(1.3)

where x = x̄ + x0, and y = ȳ + y0, and now the functions P (x̄, ȳ) and Q(x̄, ȳ)
start with terms of order 1 in x̄ and ȳ. In other words, we can always move a
singular point to the origin of coordinates in which case system (1.3) becomes
(dropping the bars over x and y)

ẋ = ax + by + F (x, y),

ẏ = cx + dy + G(x, y),

where F and G vanish together with their first partial derivatives at (0, 0).
By a linear change of coordinates the linearization DX(0, 0) regarded as the
matrix (

a b

c d

)
,

can be placed in real Jordan canonical form.
If the singularity is hyperbolic, the Jordan form is(

λ1 0
0 λ2

)
or

(
λ1 1
0 λ1

)
or

(
α β

−β α

)
with λ1λ2 �= 0, α �= 0 and β > 0.

In the semi-hyperbolic case and the linearly center case, we obtain, respec-
tively (

λ 0
0 0

)
and

(
0 β

−β 0

)
with λ �= 0 and β > 0, while we obtain(

0 1
0 0

)
and

(
0 0
0 0

)
in the nilpotent case and the linearly zero case, respectively.
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If moreover we allow a time rescaling, introducing a new time u = γt for
some γ > 0, as is usual when working with equivalences, then we can also
suppose that in the hyperbolic case one of the numbers λ1 or λ2 is equal to
1 and either α = 1 or β = 1, while in the semi-hyperbolic case λ = 1 and

in the linearly center case β = 1.
We are now going to study these different cases systematically.
Let p be a singular point. A characteristic orbit γ(t) at p is an orbit tending

to p in positive time (respectively in negative time) with a well defined slope,
i.e., γ(t) → p for t → ∞ (respectively t → −∞) and the limit limt→∞(γ(t) −
p)/‖γ(t) − p‖ (respectively limt→−∞(γ(t) − p)/‖γ(t) − p‖) exists.

In Chap. 6 we will work along circles that can be obtained as the image
of an orientation preserving injective regular parametrization

ρ : S1 →R2

e2πit → ρ(e2πit)

with ρ of class C1, ρ′ �= 0 everywhere and ρ injective. We mean that there
exists some C1 functions Ψ : R → R2 with Ψ(t) = ρ(e2πit), Ψ|[0,1) injective,
and such that Ψ′(t) = (Ψ′

1(t),Ψ
′
2(t)) �= 0 and n(t) = (−Ψ′

2(t),Ψ
′
1(t)) points

out of the (topological) disk encircled by ρ(S1). We can also write Ψ′(t) =
ρ′(e2πit) and N(e2πit) = n(t); ρ′ and N are C0 functions on S1. We will call
ρ a permissible circle parametrization.

Let X be a C1 vector field defined in a compact neighborhood V of p, for
which ∂V is the image of a C2 permissible circle parametrization ρ : S1 → ∂V ,
and suppose that X(p) = 0 and X(q) �= 0 for all q ∈ V \ {p}.

(i) We say that X|V is a center if ∂V is a periodic orbit and all orbits in
V \ {p} are periodic.

(ii) We say that X|V is an attracting focus/node if at all points of ∂V the
vector field points inward and for all q ∈ V \ {p}, ω(q) = {p} and γ−(q)∩
∂V �= ∅.

(iii) We say that X|V is a repelling focus/node if at all points of ∂V the
vector field points outward and for all q ∈ V \ {p}, α(q) = {p} and
γ+(q) ∩ ∂V �= ∅.

(iv) We say that X|V has a non-trivial finite sectorial decomposition if we
are not in the case (i), (ii) or (iii) and if there exist a finite number
of characteristic orbits c0, . . . , cn−1, each cutting ∂V transversely at one
point pi, in the sense that ∂V is a transverse section near pi, and with
the property that between ci and ci+1 (with cn = c0 and ordered in such
a way that p0, . . . , pn−1 follows the cyclic order of ρ), we have one of the
following situations with respect to the sector Si, defined as the compact
region bounded by {p}, ci, ci+1 and the piece of ∂V between pi and pi+1:
(1) Attracting parabolic sector. At all points of [pi, pi+1] ⊂ ∂V the vector

field points inward, and for all q ∈ Si \ {p}, ω(q) = {p} and γ−(q) ∩
∂V �= ∅.
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(2) Repelling parabolic sector. At all points of [pi, pi+1] ⊂ ∂V the vector
field points outward, and for all q ∈ Si \ {p}, α(q) = {p} and γ+(q) ∩
∂V �= ∅.

(3) Hyperbolic sector. There exists a point qi ∈ (pi, pi+1) ⊂ ∂V with the
property that at all points of [pi, qi) the vector field points inward
(respectively outward) while at all points of (qi, pi+1] the vector field
points outward (respectively inward); at qi the vector field is tangent
at ∂V and the tangency is external in the sense that the x–orbit of qi

stays outside V ; and for all q ∈ Si\ci ∪ ci+1 ∪ qi we have γ+(q)∩ ∂V �=
∅ and γ−(q) ∩ ∂V �= ∅.

(4) Elliptic sector. There exists a point qi ∈ (pi, pi+1) ⊂ ∂V with the
property that γ(qi) ⊂ V with ω(qi) = α(qi) = {p}; at all points
q ∈ [pi, qi) the vector field points inward, γ+(q) ⊂ V and ω(q) = p.
We denote by S[pi,qi] =

⋃
q∈[pi,qi]

γ+(q); at all points of q ∈ (qi, pi+1] the

vector field points outward, γ−(q) ⊂ V and α(q) = p. We denote by
S[qi,pi+1] =

⋃
q∈[qi,pi+1]

γ−(q); at all points q of S\(S[pi,qi]∪S[qi,pi+1]∪{p})

we have γ(q) ⊂ V with ω(q) = α(q) = p.
The same may also be true for [pi, qi] and [qi, pi+1] interchanged.

See Figure 1.8 for a picture of the different sectors.
Let X be a C1 vector field defined in a neighborhood W of some singularity

p. We say that X has the finite sectorial decomposition property at p if there
exists some neighborhood V ⊂ W of p such that X|V satisfies one of the
conditions (i), (ii), (iii) or (iv).

In the first three cases we speak about a trivial sectorial decomposition,
since there is but one sector. We remark that the distinction between a focus
and a node is not topological but differentiable. We will deal with it in Chap. 2.
In the last case (case (iv)), we denote respectively by e, h and p the number of
elliptic, hyperbolic and parabolic sectors. Since we are not in the cases (i), (ii)
or (iii), we clearly need that e or h, or both, are different from zero. We try
to keep p as small as possible, both by joining two adjacent parabolic sectors,
in other words, not accepting two adjacent parabolic sectors, and by adding a
parabolic sector to an elliptic one if it is adjacent to it. Hence the remaining

Saddle sector or 
hyperbolic sector

Elliptic
sector

Attracting
Sector

Repelling
Sector

Fig. 1.8. Sectors near a singular point
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parabolic sectors can only be the ones lying between two hyperbolic sectors.
We call this a minimal sectorial decomposition.

Since X(pi) and X(pi+1) cannot both be pointing inward (or outward) if
Si is a hyperbolic or an elliptic sector, it is clear that e + h is always even.
It is also clear that in a minimal non-trivial sectorial decomposition we have
p ≤ h. For the sake of completeness we define (e, h) = (0, 0) in the cases (i),
(ii) or (iii).

It is possible to define a more general notion of sectorial decomposition
that could be called “C0 finite sectorial decomposition” and that avoids the
notion of tangency. However, since we are interested in analytic vector fields,
we do not need to do this. In the use of the finite sectorial decomposition,
we will therefore not try to be as general as possible, but we will require
the differentiability (the specific C1-class) which permits us to provide the
simplest proof.

In Chap. 3 we will show how to prove that every analytic vector field has
the finite sectorial decomposition property at every isolated zero. The same
does not necessarily hold for C∞ vector fields, but it does hold if we add the
so called �Lojasiewicz condition (see Chap. 3). In both cases we will see that
the permissible parametrization of the boundary ∂V can be taken as a C∞

mapping ρ : S1 → ∂V .
For an oriented regular simple closed curve surrounding a point p, like a

closed orbit of X or an oriented boundary of a neighborhood V of p, we will
sometimes say that it is “clockwise” or “counter-clockwise.” Such a notion
does not seem to need a definition, at least physically, but mathematically it
does.

To avoid ambiguity, we first adopt the convention that we call the standard
basis (e1, e2), with e1 = (1, 0) and e2 = (0, 1), positive and that we always
represent it with e1 pointing to the right and e2 pointing upward, like in
Fig. 1.9. If we then consider an oriented regular simple closed C1 curve γ
surrounding p, then we call it clockwise (respectively counter-clockwise), if at
each t, the basis (γ′(t), ne(t)) is positive (respectively negative), where ne(t)
stands for the normal at γ(t) pointing into the exterior of γ, as in Fig. 1.9.

P P
q2 q1

q1 q2

γ�(t )

γ�(t )

ne(t )ne(t )

e2

e1

Counter-clockwiseClockwise

Fig. 1.9. Curves surrounding a point p
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Both notions easily extend to piecewise C1 oriented simple closed curves
as well as to curves γ that are not closed, but move from a point q1 �= p to
some q2 with −→pq2 = r(−→pq1), with r > 0, in a way that the closed curve formed
by γ and −−→q2q1 is a piecewise C1 oriented simple closed curve surrounding p.

The permissible circle parametrizations, that we have used in the definition
of finite sectorial decomposition, turn in a clockwise way.

It can be proven that the topological equivalence classes for a given isolated
singular point are characterized by the number of elliptic, hyperbolic and
parabolic sectors (denoted by e, h, p, respectively) and the arrangement of
these sectors. There also exist results describing which triples of non-negative
integers (e, h, p) are possible and which arrangement can be realized for each
of these triples, depending on the minimal degree m of the singularity, which is
the lowest degree of the non-zero terms in the Taylor expansion of the vector
field at the singular point. We state a theorem on the number of elliptic and
hyperbolic sectors without giving a proof.

Theorem 1.20 Suppose that (e, h) is a couple of non-negative integers such
that e+h > 0. Then there is a singular point of minimal degree m whose local
phase portrait has e elliptic sectors and h hyperbolic sectors if and only if

(i) e + h ≡ 0 (mod 2);
(ii) e ≤ 2m − 1 and e + h ≤ 2m + 2;
(iii) if e �= 0, then e + h ≤ 2m.

There also exist results on the maximum number of parabolic sectors p
depending on m, e and h. For a precise description of such results and their
proofs see the bibliographical comments in Sect. 1.11.

We remark that Theorem 1.20 does not give any information about centers
or foci, since then e+h = 0, but we have the well-known fact that the center-
focus class is non-empty if and only if m is odd.

By using Theorem 1.20, we can easily get a finite list of pictures for any
given m such that the local phase portrait of a singularity of a vector field
of minimal degree m is topologically equivalent to one of them. To do this,
it suffices to draw all possible minimal sectorial decompositions for any triple
(e, h, p) with (e, h) satisfying Theorem 1.20 and p ≤ h. Notice that this list
may contain some pictures which cannot be realized.

1.6 Local Structure Near Periodic Orbits

Let γ = {ϕp(t) : t ∈ R} be a periodic orbit of period τ0 of a vector field X of
class Cr defined in an open subset Δ ⊂ R2, where r denotes a positive integer,
+∞ or ω. Let Σ be a transverse section to X at p. Due to the continuity of
the flow ϕ of X, for every point q ∈ Σ close to p, the trajectory ϕq(t) remains
close to γ, with t in a given compact interval, for example, [0, 2τ0]. We define
f(q) as the first point where ϕq(t) intersects Σ. Let Σ0 be the domain of f .
Of course we have that p ∈ Σ0 and f(p) = p; see Fig. 1.10.
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q (q)f
Σ

P

Fig. 1.10. Local behavior near a periodic orbit

The properties of X close to γ are reflected in f . For example, the periodic
orbits of X close to γ correspond to fixed points of f , which are points q ∈ Σ
for which f(q) = q. The asymptotic behavior of the orbits of X close to γ is
also described by f . So limn→∞ fn(q) = p implies that limt→∞ d(ϕq(t), γ) = 0,
where d denotes the Euclidean distance on R2.

We want to observe that a section Σ as we use here is a differentiable curve
contained in Δ. We may assume that Σ is an “open” segment of R2 in the
sense that it is the regular image of an open interval in R.

Given Σ we will define the Poincaré map f : Σ0 → Σ as the return map of
the flow on Σ, i.e., for each point of Σ belonging to a specific orbit, the map
will give us the first point where the orbit intersects Σ in positive time. We
suppose that Σ0 is sufficiently small such that f is defined for all points in
Σ0,

Proposition 1.21 Let ϕ be a Cr-flow with 1 ≤ r ≤ ∞ or r = ω. Then the
Poincaré map f : Σ0 → Σ is a diffeomorphism of class Cr onto its image Σ1.

A periodic orbit γ of X is called a limit cycle if there exists a neighborhood
V of γ such that γ is the only periodic orbit contained in V .

Let γ be a periodic orbit of R2. We denote by mathrmExt(γ) the set of
points which belong to the unbounded component of R2 \ γ (the exterior of
γ), and by Int(γ) the set of points which belong to the bounded component
of R2 \ γ (the interior of γ).

Proposition 1.22 There exist only three different types of limit cycles in R2:

(i) Stable, when ω(q) = γ for every q ∈ V ;
(ii) Unstable, when α(q) = γ for every q ∈ V ;
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(iii) Semi-stable, when ω(q) = γ for every q ∈ V ∩ Ext(γ) and α(q) = γ for
every q ∈ V ∩ Int(γ), or conversely.

We see that γ is a limit cycle if and only if p is an isolated fixed point of
f . Moreover,

(i) γ is stable if and only if |f(x) − p| < |x − p| for every x �= p sufficiently
close to p;

(ii) γ is unstable if and only if |f(x)− p| > |x− p| for every x �= p sufficiently
close to p;

(iii) γ is semi-stable if and only if |f(x)−p| < |x−p| for every x ∈ Σ∩ Ext (γ),
x �= p sufficiently close to p, and |f(x) − p| < |x − p| for every x ∈
Σ ∩ Int (γ), x �= p sufficiently close to p, or conversely.

In particular, if X is analytic and f(x) is not the identity, then f(x) =
x + ak(x − p)k + · · · with ak �= 0. So if k is odd, then γ is stable if ak < 0,
and unstable if ak > 0. If k is even, then γ is semi-stable. If f(x) ≡ x, then
all ak are zero and γ lies in the interior of an annulus of periodic orbits of X,
that is, it is not a limit cycle.

If f ′(p) < 1 then we can apply the Intermediate Value Theorem and
deduce that γ is stable. Equivalently, γ is unstable if f ′(p) > 1; see Fig. 1.11.
We remark that f ′(p) > 0, because a Poincaré map on the plane is orientation
preserving. It is easy to see that f ′(p) is independent of the chosen regular
parameter x on Σ as well as on p ∈ γ; it is called the characteristic exponent
of γ.

In what follows we shall study the Poincaré map for a differential equation
in the plane. We consider a differential equation in the plane given by

ẋ = P (x, y),
ẏ = Q(x, y).

Let X(x, y) = (P (x, y), Q(x, y)) be the corresponding vector field. Denote the
divergence of X at q by (divX)(q). Assume that Σ is a transverse section and
Σ′ ⊂ Σ is an open subset on which the Poincaré map is defined, f : Σ′ → Σ.

Fig. 1.11. Different classes of limit cycles and their Poincaré maps
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Since the differential equations are in the plane, Σ is a curve which can be
parametrized by γ : I → Σ with γ(I ′) = Σ′ and |γ′(s)| = 1. Let X⊥(q) be the
scalar component to the tangent line to Σ at q given by

X⊥ ◦ γ(s) = det(γ′(s), X ◦ γ(s)).

In the case that Σ is a horizontal line, {(x, y∗) : x1 < x < x2}, X⊥(q) = Q(q).
In the case that Σ is an vertical line, {(x∗, y) : y1 < y < y2}, X⊥(q) = P (q).

Let τ(q) be the return time for q ∈ Σ′, so f(p) = ϕτ(q)(q) = ϕq(τ(q)).
The next theorem gives a sufficient condition for determining the stability

of a limit cycle.

Theorem 1.23 Let γ : I ′ → Σ′ be a parametrization of the transverse section
Σ′ as above with |γ′(s)| = 1. Then for s ∈ I ′,

(γ−1 ◦ f ◦ γ)′(s) =
X⊥ ◦ γ(s)

X⊥ ◦ f ◦ γ(s)
exp

(∫ τ◦γ(s)

0

(divX) ◦ ϕt ◦ γ(s) dt

)
.

Thus if f(p) = p and γ(s0) = p, then the characteristic exponent of γ is
given by

f ′(p) = (γ−1 ◦ f ◦ γ)′(s0) = exp

(∫ τ(p)

0

(divX) ◦ ϕt(p) dt

)
.

Proof. The first variational equation states that

d

dt
Dϕt

q = DXϕt(q)Dϕt
q.

Since det(Dϕ0
q) = det(id) = 1, Liouville’s formula for time-dependent linear

equations gives

det(Dϕτ(q)
q ) = exp

(∫ τ(q)

0

(divX) ◦ ϕt(q) dt

)
.

Notice that the right-hand side of this equality is the exponential in the for-
mula for (γ−1 ◦ f ◦ γ)′(s) as stated in the theorem. Therefore to complete the
proof, we must relate (γ−1 ◦ f ◦ γ)′(s) to det(Dϕ

τ◦γ(s)
γ(s) ).

Taking the derivative of f ◦ γ(s) = ϕτ◦γ(s)(γ(s)) with respect to s yields

(f ◦ γ)′(s) = (Dϕ
τ◦γ(s)
γ(s) )γ′(s) + (τ ◦ γ)′(s)[X ◦ ϕτ◦γ(s)(γ(s))]

= (Dϕ
τ◦γ(s)
γ(s) )γ′(s) + (τ ◦ γ)′(s)[X ◦ f ◦ γ(s)].
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Then

(γ−1 ◦ f ◦ γ)′(s)[X⊥ ◦ f ◦ γ(s)] = det((f ◦ γ)′(s), X ◦ f ◦ γ(s))

= det((Dϕ
τ◦γ(s)
γ(s) )γ′(s), X ◦ f ◦ γ(s))

+ det((τ ◦ γ)′(s)[X ◦ f ◦ γ(s)], X ◦ f ◦ γ(s))

= det((Dϕ
τ◦γ(s)
γ(s) )γ′(s), (Dϕ

τ◦γ(s)
γ(s) )X ◦ γ(s))

= det((Dϕ
τ◦γ(s)
γ(s) )det(γ′(s), X ◦ γ(s))

= exp

(∫ τ◦γ(s)

0

(divX) ◦ ϕt ◦ γ(s) dt

)
X⊥ ◦ γ(s).

Dividing by X⊥ ◦ f ◦ γ(s), the theorem is proved. ��

Theorem 1.23 is contained in Sect. 28 of [4] or in Sect. 5.8.3 of [136].
The following theorem provides another way to compute the stability of a

limit cycle. This result is due independently to Freire, Gasull and Guillamon
[68] and to Chicone and Liu [34].

Theorem 1.24 Let γ be a τ0-periodic orbit of a C2 planar vector field X.
Assume that in a neighborhood V of γ, X admits a transverse Lie symmetry
given by the vector field Y , i.e., [Y,X] = μY . Let Σ = {ψ(p, s) : s ∈ R} ∩ V ,
be a transverse section to γ, where ψ(p, s) is the solution of ẋ = Y (x) with
ψ(p, 0) = p. Then the characteristic exponent of γ is given by

f ′(p) = exp
(∫ τ0

0

μ(γ(s)) ds

)
,

where f is the Poincaré map on Σ.

1.7 The Poincaré–Bendixson Theorem

In what follows, we are going to assume that Δ is an open subset of R2 and
X is a vector field of class Cr with r ≥ 1. Also, in Δ, γ+

p denotes a positive
semi–orbit passing through the point p.

Theorem 1.25 (Poincaré–Bendixson Theorem I) Let ϕ(t) = ϕ(t, p) be
an integral curve of X defined for all t ≥ 0, such that γ+

p is contained in
a compact set K ⊂ Δ. Assume that the vector field X has at most a finite
number of singularities in K. Then one of the following statements holds.

(i) If ω(p) contains only regular points, then ω(p) is a periodic orbit.
(ii) If ω(p) contains both regular and singular points, then ω(p) is formed by

a set of orbits, every one of which tends to one of the singular points in
ω(p) as t → ∞.
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Fig. 1.12. Scheme of the section

(iii) If ω(p) does not contain regular points, then ω(p) is a unique singular
point.

The next lemmas will facilitate the proof of this theorem.

Lemma 1.26 If p ∈ Σ ∩ ω(γ) where Σ is a transverse section of X and
γ = {ϕ(t)} is an orbit of X, then p is the limit of a sequence of points ϕ(tn)
in Σ as tn → ∞

Proof. We assume that γ = {ϕ(t)} = {ϕ(t, q)} and p ∈ Σ ∩ ω(γ), as in
Fig. 1.12.

We consider a neighborhood V of p, and a map τ : V → R, as given by
Corollary 1.13.

Since p ∈ ω(γ) there exists a sequence {t̃n} such that t̃n → ∞ and ϕ(t̃n) →
p as n → ∞.

Now there exists n0 ∈ N such that ϕ(t̃n) ∈ V for every n ≥ n0. Let
tn = t̃n + τ(ϕ(t̃n)) for n ≥ n0. We have that

ϕ(tn) = ϕ(t̃n + τ(ϕ(t̃n)), q) = ϕ(τ(ϕ(t̃n)), ϕ(t̃n)),

and by the definition of τ we get that ϕ(tn) ∈ Σ.
Since τ is continuous, it follows that

lim
n→∞ϕ(tn) = lim

n→∞ϕ(τ(ϕ(t̃n)), ϕ(t̃n)) = ϕ(0, p) = p,

because ϕ(t̃n) → p and τ(ϕ(t̃n)) → τ(p) = 0 as n → ∞. ��

We remark that a transverse section Σ for a vector field X has dimen-
sion 1, because we are considering a vector field on R2. Then locally, Σ is
a diffeomorphic image of an interval of the straight line. From now on, we
will suppose that every transverse section Σ is a diffeomorphic image of an
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interval. So Σ has a total order “≤” induced by the total order of the interval.
We can then talk about monotonic sequences in Σ. By an argument similar
to the one used in Corollary 1.14 one can prove the next lemma. We repeat
the argument, since it is very crucial in the proof of Theorem 1.25.

Lemma 1.27 Let Σ be a transverse section for X contained in Δ. If γ is an
orbit of X and p ∈ Σ∩γ, then γ+

p = {ϕ(t, p) : t ≥ 0} intersects Σ in a (finite
or infinite) monotonic sequence p1, p2, . . . , pn, . . ..

Proof. Let D = {t ∈ R+ : ϕ(t, p) ∈ Σ}. From the Flow Box Theorem, we get
that D is discrete. Then we can order the set D = {0 < t1 < t2 < · · · < tn <
· · · }.

Let p1 = p. We define, in the case that it exists, p2 = ϕ(t1, p). By induction,
we define pn = ϕ(tn−1, p). If p1 = p2, then γ is a periodic orbit of period
τ = t1, and p = pn for all n. If p1 �= p2, say p1 < p2 and if p3 exists, we shall
prove that p3 > p2.

We take an orientation on the section Σ as in Fig. 1.13(a), and we see that
due to the fact that Σ is connected, and from the continuity of the vector
field, the orbits of X always cross the section in the same sense, we say, from
left to right, as it is shown in Fig. 1.13(b).

We recall that in R2 the Jordan Curve Theorem holds, which says that
if J is a continuous and simple closed curve (J is a homeomorphic image of
a circle), then R2 \ J has two connected components: Si (bounded) and Se

(unbounded) having J as their common boundary.
We consider now a Jordan curve formed by the union of the segment

p1p2 ⊂ Σ with the arc p̂1p2 of the orbit p̂1p2 = {ϕ(t, p) : 0 ≤ t ≤ t1}, as
shown in Fig. 1.14.

In particular, the orbit γ, starting at p2 (that is, for values of t > t1) is
contained in Si. In fact, it cannot intersect the arc p̂1p2 due to the uniqueness
of the orbits (see Fig. 1.15(a)) and it cannot intersect the segment p1p2 because
it would go in the direction opposite to the flow; see Fig. 1.15(b).

In short, in the case that t3 exists, we must have p1 < p2 < p3 as shown
in Fig. 1.16. Repeating these arguments, we have that p1 < p2 < p3 <
· · · < pn < · · · . So {pn} is a monotonic sequence. If p2 < p1 the proof is
analogous. ��

(b)

Σ

(a)

Fig. 1.13. Scheme of flow across the section
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Fig. 1.14. Definition of Jordan’s curve

Σ Σ

Si Si

p1 p1

p2 p2

? ?

Fig. 1.15. Impossible configurations
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Fig. 1.16. Possible configuration

Lemma 1.28 If Σ is a transverse section of a vector field X and p ∈ Δ, then
Σ intersects ω(p) at most in one point.

Proof. From Lemma 1.27, a set of points of γ+
p in Σ has at most one limiting

point, because this set is a monotonic sequence. Therefore, from Lemma 1.26
the result follows. ��
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Lemma 1.29 Let p ∈ Δ, with γ+
p contained in a compact set, and γ an orbit

of X with γ ⊂ ω(p). If ω(γ) contains regular points, then γ is a closed orbit
and ω(p) = γ.

Proof. Let q ∈ ω(γ) be a regular point, and let V be a neighborhood of q given
by Corollary 1.13 and Σq be a corresponding transverse section. From Lemma
1.26 there exists a sequence tn → ∞ such that γ(tn) ∈ Σq. As γ(tn) ∈ ω(p),
the sequence {γ(tn)} reduces to a point, by Lemma 1.28. This proves that γ
is periodic.

Now we prove that γ = ω(p). Since ω(p) is connected and γ is closed and
non-empty, it is enough to prove that γ is open in ω(p).

Let p̄ ∈ γ, Vp̄ a neighborhood of p̄ given by Corollary 1.13, and Σp̄ a
corresponding transverse section. We will prove that Vp̄ ∩ γ = Vp̄ ∩ ω(p),
inducing that γ is open in ω(p).

Obviously, Vp̄ ∩γ ⊂ Vp̄ ∩ω(p). Assume, contrary to what we wish to show,
that there exists q̄ ∈ Vp̄ ∩ω(p) such that q̄ /∈ γ. From the Flow Box Theorem,
and the invariance of ω(p), there exists t ∈ R such that ϕ(t, q̄) ∈ ω(p) ∩ Σp̄

and ϕ(t, q̄) �= p̄. So there exist two different points of ω(p) in Σp̄, which is
impossible by Lemma 1.28. Thus Vp̄ ∩ γ = Vp̄ ∩ ω(p). ��

Proof of Theorem 1.25. Under assumption (i) take q ∈ ω(p), then the orbit
γq ⊂ ω(p). Since ω(p) is compact, we get that ω(γq) �= ∅. It immediately
follows from Lemma 1.29 that ω(p) = γq, a periodic orbit; see Fig. 1.17.

Under assumption (ii), if γ is a regular orbit contained in ω(p), then from
Lemma 1.29, and since α(γ) and ω(γ) are connected, it follows that both α(γ)
and ω(γ) are singular points of the vector field X. Note that X has only a
finite number of singularities in ω(p); see the different examples of Fig. 1.18.

Under assumption (iii), the result follows directly from the fact that ω(p)
is connected and X can only have finitely many singularities in ω(p); see
Fig. 1.19.

Using the same arguments as in the proof of the Poincaré–Bendixson The-
orem I, we obtain the next result for Cr vector fields with r ≥ 1 whose
singularities have a “finite sectorial decomposition.”

Fig. 1.17. Periodic orbit as ω-limit
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Fig. 1.18. Possible ω-limit sets

Fig. 1.19. A singular point as ω-limit

Corollary 1.30 (Poincaré–Bendixson Theorem II) Let ϕ(t) = ϕ(t, p)
be an integral curve of X defined for all t ≥ 0, such that γ+

p is contained
in a compact set K ⊂ Δ. Assume that the vector field X has a finite number
of singularities in ω(p), each having a “finite sectorial decomposition.” Then
one of the following statements holds.

(i) If ω(p) contains only regular points, then ω(p) is a periodic orbit.
(ii) If ω(p) contains regular and singular points, then ω(p) is formed by a

finite number of orbits γ1, . . . , γn and a finite number of singular points
p1, . . . , pn such that α(γi) = pi, ω(γi) = pi+1 for i = 1, . . . , n−1, α(γn) =
pn and ω(γn) = p1. Possibly, some of the singular points pi are identified.

(iii) If ω(p) does not contain regular points, then ω(p) is a singular point.

As we have observed (without proof) in Sect. 1.5, analytic vector fields
have the finite sectorial decomposition property at their singularities, and
under mild conditions (to be specified in Sect. 2.7) C∞ vector fields also have
it. However, there exist C∞ vector fields having singularities without the finite
sectorial decomposition property, and for which it is possible to encounter an
ω-limit set ω(q) consisting of one singularity p together with an infinity of
regular orbits having p as their ω-limit and α-limit set.

The Poincaré–Bendixson Theorem also holds for vector fields on the two-
dimensional sphere S2. If X has a finite number of singular points in S2, then
the ω-limit set of an orbit passing through p ∈ S2 has the same possibilities
(i), (ii) and (iii) as given in the Poincaré–Bendixson Theorem of R2.

As an application of the Poincaré–Bendixson Theorem we present the next
result.
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Theorem 1.31 Let X be a vector field of class C1 on an open set Δ ⊂ R2.
If γ is a periodic orbit of X such that Int(γ) ⊂ Δ, then there exists a singular
point of X contained in Int(γ).

Proof. We will suppose that there are no singular points in Int(γ). We consider
the set Γ of closed orbits of X contained in Int(γ), ordered with the following
partial order: γ1 ≤ γ2 if and only if Int(γ1) ⊇ Int(γ2).

We will show that any completely ordered subset S of Γ (i.e., γ1 �= γ2 in
S implies that either γ1 < γ2 or γ1 > γ2), admits an upper bound; that is, an
element greater than or equal to any other element of S.

Let σ = ∩{Int(γi) : γi ∈ S}. We see that σ �= ∅, since every Int(γi) is
compact and the family {Int(γi) : γi ∈ S} has the finite intersection property.
That is, any finite intersection of elements of a family cannot be empty. Let
q ∈ σ. From the Poincaré–Bendixson Theorem, ω(q) is a closed orbit contained
in σ, since this set is invariant under X and does not contain singular points.
This orbit is an upper bound of S.

From Zorn’s Lemma, Γ has a maximal element. So there does not exist
any element of Γ contained in Int(μ). But if p ∈ Int(μ), α(p) and ω(p) are
closed orbits by the Poincaré–Bendixson Theorem (since there do not exist
singular points). As α(p) and ω(p) cannot be both equal to μ, one of them will
be contained in Int(μ). This contradiction proves that there must be singular
points in Int(μ). ��

1.8 Lyapunov Functions

In trying to follow orbits in order to detect their asymptotic behavior, it is
often interesting to use the method of Lyapunov functions.

Therefore, throughout this section, we will consider a C1 vector field X :
Δ ⊂ R2 → R2 defined on some open set Δ ⊂ R2 (it in fact suffices to require
that X be locally Lipschitz) and we denote by φ(p, t) its flow, defined on some
open domain D ⊂ R2 × R. Let f : Δ ⊂ R2 → R be a C1 function; then for
p ∈ Δ, the derivative of the function f along the solution φ(p, t) is given by

Xf(p) = d
dtf(φ(p, t)) = Dfp(X(p)) =< ∇fp, X(p) >

= ∂f
∂x (p)X1(p) + ∂f

∂y (p)X2(p), (1.4)

where ∇fp = ∇f(p) denotes the gradient of f at p. It is common to also
denote Xf(p) by ḟ(p).

Definition 1.32 Under the condition expressed earlier, f is called a Lya-
punov function for X if ḟ(p) = Xf(p) < 0 on Δ.

By definition a Lyapunov function is strictly decreasing along the orbits
of f , meaning, among other things, that X is everywhere transverse to the
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p

Fig. 1.20. A saddle-node loop

level curves of f at regular points of f . We will now see in a few examples how
the use of Lyapunov functions can be very helpful. We will also see that it is
often not necessary to require that ḟ(p) < 0 everywhere, but that one may
allow that on certain closed subsets ḟ(p) = 0 or, in other words, that f is a
Lyapunov function on a smaller open domain than Δ. We now first consider
the stability of the singularities, always under the conditions expressed earlier.

Definition 1.33 (i) A singularity p of X is called Lyapunov stable if for each
neighborhood V ⊂ Δ of p there exists a neighborhood W ⊂ V of p such
that for all q ∈ W and for all t ∈ [0,∞), φ(q, t) ∈ V .

(ii) If moreover limt→∞ φ(q, t) = p for all q ∈ W , then p is called asymptoti-
cally stable.

Remark 1.34 The example given in Fig. 1.20 shows that the limit condition
in (ii) does not imply the stability, hence not what we defined as “asymptotic
stability.”

The following criterion for stability relies on the use of Lyapunov functions.

Theorem 1.35 Let X be a C1 vector fields on an open set Δ ⊂ R2, let p be
a singularity of X and V a neighborhood of p such that f is continuous on V
and C1 on V \ {p}, f(p) = 0 and for all q ∈ V \ {p} : f(q) > 0 and ḟ(q) ≤ 0
(respectively ḟ(q) < 0). Then p is stable (respectively asymptotically stable).

Proof. For every neighborhood W of p, choose ε > 0 so small that Bε(p) ⊂
W . Let mε = min{f(q)| q ∈ Sε(p)}, where Sε(p) = ∂Bε(p); by supposition
mε > 0. We now choose δ > 0 such that f(q) < mε for all q ∈ Bδ(p). It
is now clear, from the fact that ḟ(q) ≤ 0, that φ(q, t) remains in Bε(p) for
all t ∈ (0,∞) since f(φ(q, t)) can never reach the value mε. This implies the
stability of p.

If moreover we have the condition ḟ(q) < 0, then first we can observe
that X has no other singularities in V but p, so by the Poincaré–Bendixson
Theorem, either φ(q, t) → p, for all q ∈ Bδ(p), or for some q, φ(q, t) tends to
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an ω-limit set that contains some point p1 at which f(p1) �= 0. We leave it as
an exercise to show that this is not possible since f(φ(q, t)) has to be strictly
decreasing. ��

Remark 1.36 In the second part of the previous proof it is not necessary to
rely on the Poincaré–Bendixson Theorem. Simple reasoning that can be found
in many text books (e.g., [128]) applies. We leave the alternate proof as an
exercise.

Remark 1.37 In the case that ḟ ≡ 0, f is called a first integral of X (see
Chap. 8). By Theorem 1.35 it is clear that if this condition is satisfied in a
neighborhood V of p on which f(q) > 0 for all q ∈ V \ {p}, then p is a stable,
although not asymptotically stable, singularity of X.

Example 1.38 (i) The system

ẋ = −y3,
ẏ = x3,

(1.5)

has x4+y4 as a first integral and hence has a stable but not asymptotically
stable singularity at the origin.

(ii) The system

ẋ = −y3 − x3,
ẏ = x3 − y3,

(1.6)

has x4 + y4 as a Lyapunov function on R2 \ {(0, 0)} and hence has a
(globally) asymptotically stable singularity at the origin.

Lyapunov functions are also useful for detecting the stability and asymp-
totic stability of periodic orbits. We will show this with an example.

Definition 1.39 (i) Under the conditions expressed earlier, a periodic orbit
γ of X is called Lyapunov stable if for each neighborhood V of γ there
exists a neighborhood W ⊂ V of γ such that for all q ∈ W and for all
t ∈ (0,∞), φ(q, t) ∈ V .

(ii) If moreover φ(q, t) has γ as ω-limit for all q ∈ W , then γ is called asymp-
totically stable.

We leave it to the reader to prove the following theorem. The proof is
similar to the proof of Theorem 1.35.

Theorem 1.40 Under the conditions expressed earlier, let γ be a periodic
orbit of X and V a neighborhood of γ such that f is continuous on V and
C1 on V \ γ, f |γ = 0 and for all q ∈ V \ γ we have f(q) > 0 and ḟ(q) ≤ 0
(respectively ḟ(q) < 0). Then γ is stable (respectively asymptotically stable)
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Example 1.41 Consider the system

ẋ = y + (1 − x2 − y2)x,
ẏ = −x + (1 − x2 − y2)y.

(1.7)

We see that γ = S1 = {(x, y)|x2 + y2 = 1} is a periodic orbit, while f
defined by

f(x, y) =

{
1 − (x2 + y2) when x2 + y2 < 1
(x2 + y2) − 1 when x2 + y2 > 1,

satisfies the conditions of Theorem 1.40 on R2 \ {(0, 0)}. As such, γ is stable
and moreover all orbits in R2 \ {(0, 0)} have γ as their ω-limit set.

1.9 Essential Ingredients of Phase Portraits

For linear vector fields it is possible to describe all conjugacy classes, but this
is not possible when we study non-linear vector fields. However, there exists
a general characterization of the topological equivalence classes for vector
fields on the plane. To present it we will introduce some definitions. These
definitions together with Proposition 1.42 and Theorem 1.43 can be found
in [107] and [116]. In these works much more general situations are considered.

In this section we do not need X to be C1; it need only be sufficiently
regular to admit the existence of a continuous flow (local Lipchitz continuity
suffices). We consider a differential equation ẋ = X(x) where X is a locally
Lipschitz function on R2 and let φ(s, x) be the flow defined by the differential
equation. Following the notation of the works of Markus and Neumann, we
denote by (R2, φ) the flow defined by the differential equation. By the theorem
of continuous dependence on initial conditions, the flow (R2, φ) is continuous.

We say that a flow (R2, φ) is a parallel flow if it is topologically equivalent
to one of the following flows:

(i) The flow defined on R2 by the differential system ẋ = 1, ẏ = 0, which we
denote by strip flow.

(ii) The flow defined on R2 \ {0} by the differential system given in polar
coordinates r′ = 0, θ′ = 1, which we denote by annulus flow.

(iii) The flow defined on R2 \ {0} by the differential system given in polar
coordinates r′ = r, θ′ = 0, which we denote by spiral or nodal flow.

Given a maximal open region on R2 on which the flow is parallel, it is
interesting to know the orbit-structure of its boundary. Clearly following types
of orbits can be present:

(i) a singular point,
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(ii) a periodic orbit for which there does not exist a neighborhood entirely
consisting of periodic orbits,

(iii) an orbit γ(p), homeomorphic to R for which there does not exist a neigh-
borhood N of γ(p) such that
(1) For all q ∈ N α(q) = α(p) and ω(q) = ω(p),
(2) The boundary ∂N of N , that is ∂N = N̄ \N , is formed by α(p), ω(p)

and two orbits γ(q1) and γ(q2) such that α(p) = α(q1) = α(q2) and
ω(p) = ω(q1) = ω(q2).

Orbits satisfying (i), (ii) or (iii) are called “separatrices” in [107] and [116].
In this book we prefer to keep the name separatrix for an orbit satisfying
(iii), meaning for instance that a linear saddle has four separatrices. Indeed,
orbits limiting on a singularity and bordering a hyperbolic sector are always
separatrices. We also remark that for analytic flows, the orbits satisfying (ii)
are the limit cycles. In view of presenting the next result we introduce the
separatrix skeleton consisting of the set of all orbits satisfying either (i) or
(iii); if we also add the orbits satisfying (ii) we speak about the extended
separatrix skeleton. It is easy to see that the union S of all orbits in the
extended separatrix skeleton is a closed set invariant under the flow. Let V be
a (maximal) connected component of R2 \ S. It necessarily is invariant under
the flow. We call V a canonical region.

Proposition 1.42 Every canonical region of (R2, φ) is parallel, given by ei-
ther a strip, an annular or a spiral flow.

Proof. Let U be a canonical region of the C0 flow (R2, φ). We denote the flow
φ on U by (U, φ′) with φ′ = φ|U where U does not contain singularities. Since
there are no separatrices in U nor closed orbits satisfying (ii), the set consisting
of orbits homeomorphic to S1 is open, and similarly the set consisting of orbits
homeomorphic to R (which we term line orbits) is open. Hence U consists
entirely of closed orbits or entirely of line orbits.

We claim that two orbits of φ′ can be separated by disjoint parallel neigh-
borhoods. To prove this, we suppose to the contrary that γ(p) and γ(q) are
distinct orbits (closed or not) which cannot be separated. Then for any parallel
neighborhood Np of p, we have q ∈ cl(Np); i.e.,

q ∈
⋂
Np

cl(Np) = α(p) ∪ γ(p) ∪ ω(p).

This means that q ∈ α(p) (or q ∈ ω(p)). But this is impossible because
q ∈ Nq ⊂ U and α(p) ∪ ω(p) ⊂ cl(Nq) \ Nq �⊂ U .

It follows that the quotient space U/φ′, obtained by collapsing orbits of
(U, φ′) to points, is a (Hausdorff) connected one dimensional manifold. Hence
the natural projection π : U → U/φ′ is a locally trivial fibering of which there
are only three possibilities, namely the three classes of parallel flows described
earlier. This proves the proposition. ��
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Given a flow (R2, φ) by the completed separatrix skeleton we mean the
union of the extended separatrix skeleton of the flow together with one orbit
from each one of the canonical regions (it is also called separatrix configura-
tion by other authors). Let C1 and C2 be the completed separatrix skeletons
of the flows (R2, φ1) and (R2, φ2), respectively. We say that C1 and C2 are
topologically equivalent if there exists a homeomorphism from R2 to R2 that
maps the orbits of C1 to the orbits of C2 preserving the orientation.

Theorem 1.43 (Markus–Neumann–Peixoto Theorem) Assume that
(R2, φ1) and (R2, φ2) are two continuous flows with only isolated singular
points. Then these flows are topologically equivalent if and only if their com-
pleted separatrix skeletons are equivalent.

From this result, it is enough to describe the completed separatrix skeleton
in order to determine the topological equivalence class of a differential system.

1.10 Exercises

Exercise 1.1 Let X be a linear vector field on a neighborhood of 0 ∈ R2, with
X(0) = 0, and denote by ϕ(t, x) the flow of X. Show that Dxϕ(t, 0) = eAt,
with A = DX(0).

Exercise 1.2 Consider the equation x′′ = F (x) defined on an interval of R,
which corresponds to an one dimensional conservative system. Clearly this is
equivalent to the system

ẋ = v,

v̇ = F (x).
(1.8)

(i) Prove that the total energy E = T + U is a first integral of (1.8) where
T (v) = v2/2 is the kinetic energy and U(x) = −

∫ x

x0
F (z)dz is the potential

energy.
(ii) Prove that all the singular points of (1.8) are on the x-axis. Prove also

that all the periodic orbits of (1.8) intersect the x-axis and are symmetric
with respect to it.

(iii) Prove that if U(x1) = U(x2) = c, U ′(xj) �= 0 for j = 1, 2 and U(x) < c
for all x1 < x < x2, then (1.8) has a periodic orbit passing through the
points (x1, 0) and (x2, 0).
Hint: An orbit that passes through (x0, 0) is given by v2/2 + V (x) = E
where E is its energy. Use the fact that dv/dx = F (x)/v to conclude that
this orbit must again cut the x-axis and that this must happen at (x2, 0).
Then use (ii).

(iv) Assume that F (x) �= 0 for 0 < |x− x0| < a. Prove that (1.8) has a center
or a saddle at (x0, 0) when U(x0) is a relative minimum or maximum.
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y

Fig. 1.21. Figure for Exercise 1.5

Exercise 1.3 Following the previous exercise, determine the phase portrait
of the following equations:

(i) x′′ = −x (spring),
(ii) x′′ = − sin x (pendulum),
(iii) x′′ = −1/x2 (gravitation).

Exercise 1.4 Consider the equation x′′+q(x) = 0 where q ∈ C1(R), q(0) = 0
and xq(x) > 0 if x �= 0. This is the equation of the motion of a unit mass
attached to an elastic spring which reaches a displacement x with a force q(x).
We define the rigidity of the spring by h(x) = q(x)/x. From (iv) in Exercise
1.2 we know that (0, 0) is a center of the phase portrait (x, v).

(i) Given an orbit close to the origin, with energy E and limits of oscillation
−B and A (see Fig. 1.21), show that its period is

T = 2
∫ A

−B

dx√
2(E − U(x))

.

Hint: Note that x′ = v =
√

2(E − U(x)).
(ii) Consider two springs with h1(x) ≥ h(x) which oscillate inside the same

limits (see (i)). Let T1 and T be their periods. Then T ≥ T1.
Hint: Note that at the point A, E = U(A) =

∫ A

0
q(u)du and so E−U(x) =∫ A

x
q(u)du. Use this to prove that E −U(x) ≤ E −U1(x). Then apply (i).

(iii) A spring for which h(x) = h(−x) is called symmetric. In this case, U(x) =
U(−x) and B = A in (i). The number A is called the amplitude of the
oscillation. Then we will say that a symmetric spring is strong if h′′(0) > 0,
and weak if h′′(0) < 0. Prove that the period of a strong (respectively
weak) spring decreases (respectively increases) when the amplitude of the
oscillations increases.
Hint: Let A1 = cA with c > 1. By symmetry it is necessary to consider
only the time that the spring needs to oscillate between 0 and A (respec-
tively 0 and A1). Take x = cy and obtain the equation y′′ + yh(cy) = 0.
Note that the oscillation of the amplitude A for this equation corresponds
to the oscillation of the amplitude A1 = cA for the original equation, both
with the same period. Then apply (ii).
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Exercise 1.5 Let a, b, c, d be real numbers and f, g : B → R functions of
class C1 defined in a ball B with center at the origin (0, 0) of R2 and radius
r. The system

ẋ = ax + by + f(x, y),
ẏ = cx + dy + g(x, y),

(1.9)

is called a perturbed system of the linear system

ẋ = ax + by,

ẏ = cx + dy.

(i) Prove that if f = O(r), g = O(r) and ad − bc �= 0, then the origin (0, 0)
is an isolated singular point of (1.9). As usual, f = O(r) means that
f = rF (x, y) with F (x, y) bounded in a neighborhood of the origin.

(ii) Suppose that f = g = 0. Determine the conditions on a, b, c, d such that
(0, 0) is a hyperbolic singularity of (1.9). In this case, describe the phase
portrait of (1.9) in a neighborhood of the origin. There are three topolog-
ical types.

(iii) Describe the phase portraits of the systems later. Show that they are not
topologically equivalent each other or to the types found in (ii).

ẋ = x2, ẏ = −y,

ẋ = e−1/x2
sin

1
x

, ẏ = −y.

Exercise 1.6 Let X be a C1 vector field on Δ ⊂ R2. Prove that if ϕ(t) is
a trajectory of X defined on the maximal interval (ω−, ω+) and such that
limt→ω+ ϕ(t) = p ∈ Δ, then ω+ = ∞ and p is a singular point of X.

Exercise 1.7 Let ϕ(t, x) be the flow generated by a C1 vector field X on R2.
A non-empty subset S ⊂ R2 is called minimal (for X) if it is invariant (i.e.,
if x ∈ S then ϕ(t, x) ∈ S for all t ∈ R), compact, and does not contain proper
subsets with these properties.

Prove that in R2, the only minimal subsets for X are the singular points
and the periodic orbits of X.

Exercise 1.8 Determine ω(p) and α(p) for p ∈ R2 and for the vector field
Z = (X,Y ) given by

X = − y + x(x2 + y2) sin

(
π√

x2 + y2

)
,

Y =x + y(x2 + y2) sin

(
π√

x2 + y2

)
.

Hint: Study the inner product 〈(x, y), Z(x, y)〉 = xX + yY .
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Exercise 1.9 Determine the set ω(p) for all p ∈ R2 for the system

ẋ = y[y2 + (x2 − 1)2] + x(1 − x2 − y2),

ẏ = − y[y2 + (x2 − 1)2] + y(1 − x2 − y2).

Hint: The same as in the previous exercise.

Exercise 1.10 Determine the singular points of the system

ẋ = y,

ẏ = − b sin x − ay,

with a, b > 0. Assuming that it has no periodic orbits, make a sketch of the
phase portrait for this system.

Exercise 1.11 Prove that

ẋ = 2x − x5 − xy4,

ẏ = y − y3 − x2y,

has no periodic orbits.
Hint: Show that all singularities of this system are on the coordinate axes.

Consider the phase portrait of this system restricted to the axes and prove
that the existence of a closed orbit provides a contradiction.

Exercise 1.12 Let X be a C1 vector field on R2. Let p be a regular point of
X such that p ∈ ω(p). Then ω(p) is a periodic orbit.

Exercise 1.13 Let X be a C1 vector field on R2 and γ an orbit of X. Prove
that if γ is not a periodic orbit, then either it is a singular point or ω(γ) ∩
α(γ) = ∅.

Exercise 1.14 Let X be a C1 vector field on R2 such that there exists a
neighborhood V of the origin on which X|V is the linear vector field

(x1, x2) → (λ1x1, λ2x2)

with λ1λ2 < 0 and λ1 + λ2 < 0.
Let L = γp∪{(0, 0)} be like in Fig. 1.22, and JL be the bounded connected

component of R2 \ L. Prove that there exists a neighborhood WL of L such
that for all q ∈ WL ∩ JL we have that ω(q) = L.

Hint: Consider Fig. 1.22. Note that it is possible to define a Poincaré map
π for the loop L using the transverse segment Σ which is contained in the
upper side of the square. Prove that π = f ◦ g where g maps points from this
segment to Σ0 and f : Σ0 → Σ. Prove that g(x) = xθ with θ > 1 and conclude
that π′(x) < 1.
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Fig. 1.22. Hint for Exercise 1.14

Exercise 1.15 Prove that the origin is an asymptotically stable singular
point of the system

ẋ = − x − x3

3
− 2 sin y,

ẏ = − y − y3

3
.

That is, prove that the ω-limit of every solution in a neighborhood of the
origin is the origin.

Exercise 1.16 Let f : R2 → R2 be a C1 function such that f(0, 0) = (0, 0)
and 〈x, f(x)〉 < 0 for all x �= 0. Prove that x → |x|2 is a Lyapunov function
for the system x′ = f(x).

Exercise 1.17 Let X be a C1 vector field on some open domain Δ ⊂ R2. Let
S = {p ∈ Δ : X(p) = 0} and let f : Δ \ S → R be a C1 Lyapunov function
for X on Δ \ S. Show that for all q ∈ Δ \ S, ω(q) ⊂ S.

Exercise 1.18 Let Δ ⊂ R2 be an open set and V : Δ → R a C2 function.
The gradient vector field associated to V is defined by ẋ = −gradV (x) for
x ∈ Δ where

gradV (x) =
(

∂V

∂x1
(x),

∂V

∂x2
(x)
)

.
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Note that the C1 vector field gradV satisfies

DVx · y =< gradV (x), y >,

for all x ∈ Δ and y ∈ R2. Let V̇ be a derivative of V along the trajectories of
the field. Prove:

(i) V̇ (x) ≤ 0 for all x ∈ Δ, and V̇ (x) = 0 if and only if x is a singularity of
gradV .

(ii) If x0 is an isolated minimum of V , then x0 is an asymptotically stable
singularity of −gradV .

(iii) −gradV does not have periodic solutions.

Exercise 1.19 Let X = ∇f = gradf , where f is a Cr function, r ≥ 2,
defined on an open set Δ ⊂ R2. Prove that X has no periodic orbits. If X has
only isolated singular points, then for all p ∈ Δ the ω-limit set of p is either
empty or is a singular point.

Hint: If ϕ(t) is a trajectory of X note that df(ϕ(t))/dt > 0; that is, f ◦ ϕ
is an increasing function.

Exercise 1.20 Let Δ ⊂ R2 be open and let V : Δ → R be of class C2. Given
c ∈ R, the set V −1(c) is called a level of V . If x ∈ V −1(c) is a regular point
(that is, DVx �= 0), then V −1(c) is a C1 curve near x. Prove that in this case,
gradV (x) is perpendicular to V −1(c) at x. For each case later, make a sketch
of the graph of V and of the phase portrait of −gradV .

(i) V (x, y) = x2 + y2;
(ii) V (x, y) = x2 − y2;
(iii) V (x, y) = x4 − x2 + y2.

Exercise 1.21 Let f : R2 → R2 be a C1 function such that f(0, 0) = (0, 0).
The singular point (0, 0) ∈ R2 is called globally stable when is stable and
limt→∞ ϕ(t) = (0, 0) for every solution ϕ(t) of

x′ = f(x). (1.10)

Let V : R2\{(0, 0)} → R be a Lyapunov function of system (1.10). Suppose
that for every c > 0 there exists R > 0 such that if |x| > R then V (x) > c for
all x ∈ R2. Then (0, 0) is a globally stable solution of (1.10). Note that the
condition {x ∈ R2 : V (x) = 0} = {(0, 0)} is not necessary. It is sufficient to
suppose that this set does not contain a full trajectory different from x(t) =
(0, 0).

Exercise 1.22 Let f : R → R be a C1 function such that f(0) = 0. Consider
the system

x′′ + ax′ + f(x) = 0, (1.11)

for x ∈ R. If a > 0 and f(x)x > 0 for all x �= 0, then a null solution is an
asymptotically stable solution for system (1.11) (that is, the corresponding
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solution for the associated first order system on R2 is an asymptotically stable
solution). If f(x)/x > ε > 0 for all x �= 0, then a null solution is globally stable
(see Exercise 1.21).

Hint: Take V (x, y) = y2 + 2
∫ x

0

f(x)dx.

Exercise 1.23 Under the assumptions that a < 0 < b, F, g ∈ C1(a, b),
xg(x) > 0 for x �= 0, G(x) =

∫ x

0
g(s)ds → ∞ as x → a if a = −∞

and G(x) → ∞ as x → b if b = ∞, f(x)/g(x) is monotone increasing on
(a, 0)∪ (0, b) and is not constant on any neighborhood of x = 0, it follows that
the system

ẋ = y − F (x),
ẏ = − g(x),

has at most one limit cycle in the region a < x < b and if exists it is stable.

Exercise 1.24 Under the assumptions that g(x) = x, F ∈ C1(R), f(x) =
F ′(x) is an even function with exactly two positive zeros a1 < a2 with F (a1) >
0 and F (a2) < 0, and f(x) is monotone increasing for x > a2, it follows that
the system from previous exercise has at most two limit cycles.

1.11 Bibliographical Comments

For a deeper introduction to the topics of this chapter, the reader can look
at the following books: Chow and Hale [35], Guckenheimer and Holmes [77],
Hirsch and Smale [84], Hartman [80], Sotomayor [151], Zhang, Ding, Huang
and Dong [169] and mainly the book of Sotomayor [152]. Many of the proofs
of the results of this chapter are translations of the corresponding proofs from
the book of Sotomayor [152].

The results related to Theorem 1.20 are due to several authors. Condition
(i) was obtained by Bendixson [15]; and (ii) and (iii) were proved by Berlinskii
[16] and [17]. For results on the number of parabolic sectors p we refer to
Sagalovich [138] and [139].

The proof of Theorem 1.43 is due to Markus [108], to Neumann [116] and
to Peixoto [123].
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Normal Forms and Elementary Singularities

In this chapter we study the elementary singular points; i.e., the hyperbolic
and semi-hyperbolic singular points. The first are those singular points having
two eigenvalues with non-zero real part, the second have a unique non-zero
eigenvalue. We also provide complete information about invariant manifolds
as well as good normal forms for such singularities.

2.1 Formal Normal Form Theorem

Since it is no simpler to limit to R2, we present the general normal form
theorem for C∞ vector fields on Rn.

Let X = A+f be a vector field on Rn with A linear, and f a C∞ function
such that f(0) = 0 and Df(0) = 0. The aim of a normal form theory is
to determine for each given linear vector field A a restricted class of non-
linearities Fn as small and as simple as possible, and such that for each f ,
the equation can, by appropriate C∞ coordinate change, be brought to the
form X ′ = A + f̃ with f̃ ∈ Fn. We also recall that a Cr coordinate change
h, with r ≥ 1, operates on a vector field X1 to change it into X2 as given by
expression (1.2), namely

Dhh−1(p)X1(h−1(p)) = X2(p);

we also write X2 = h∗X1.
In view of finding appropriate coordinate changes, consider for each m ∈ N

with m ≥ 1 the so called “adjoint action”:

admA : Hm(Rn) →Hm(Rn)
X → [A,X],

where Hm(Rn) denotes the set of polynomial vector fields on Rn which are
homogeneous of degree m. Here, [A,X] = A ◦ X − X ◦ A, seen as differential
operators. Let Bm = admA(Hm(Rn)) and let Gm be any complement of Bm,
i.e., Bm ⊕ Gm = Hm(Rn).
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Theorem 2.1 (Formal Normal Form Theorem) Let X be a Cr vector
field defined in a neighborhood of 0 with X(0) = 0 and DX(0) = A, r ∈ N

with r ≥ 1. Let Bk and Gk be as above. Then there is an analytic change of
coordinates φ : (Rn, 0) → (Rn, 0) in a neighborhood of 0 such that X ′ = φ∗(X)
is of the form

X ′(y) = Ay + g2(y) + · · · + gr(y) + o(‖y‖r)

with gi ∈ Gi, for all i = 2, . . . , r.

Proof. The proof proceeds by induction on 2 ≤ s < r. We assume that

X(x) = A(x) + g2(x) + · · · + gs−1(x) + fs(x) + o(‖x‖s),

with gi ∈ Gi, for all i = 2, . . . , s − 1 and fs is homogeneous of degree s. We
try a coordinate transformation of the form

x = h(y) = y + P (y),

where P is a homogeneous (vector valued) polynomial of degree s, which needs
to be determined. Substitution gives

(I + DP (y))ẏ = A(y + P (y)) + g2(y) + · · · + gs−1(y) + fs(y) + o(‖y‖s)

or

ẏ = (I + DP (y))−1[Ay + g2(y) + · · · + gs−1(y) + fs(y) + AP (y) + o(‖y‖s)]
= (I − DP (y) + O(‖y‖s))[Ay + · · · ]
=Ay + g2(y) + · · · + gs−1(y) + fs(y) + AP (y) − DP (y)Ay + o(‖y‖s)].

The (s− 1)-jet of X remains unchanged, while for the terms of order s we get

fs(y) − adsA(P )(y).

Clearly a suitable choice of P will make this term lie in Gs. ��

Remark 2.2 The proof we use can be found in [77]. It is constructive, and
it can be used to implement the calculation in specific examples.

The original proof in [156] is quite similar but uses the time 1-mapping of
the flow Pt instead of I + P .

Remark 2.3 Using Theorem 2.1 and Borel’s Theorem (see [19] and [115]) on
the representation of ∞-jets, one can show the following.

If X is a C∞ vector field defined in a neighborhood of 0 ∈ Rn, with
X(0) = 0, then there is a C∞ coordinate change φ : (Rn, 0) → (Rn, 0) in a
neighborhood of 0 such that X ′ = φ∗(X) has an ∞-jet:
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j∞X ′(0) = A +
∞∑

i=2

gi,

with gi ∈ Gi, for all i = 2, 3, . . .. Note that this result is purely formal. It
provides a simple form for the ∞-jet but not for the vector field itself. Later
on we will see essential differences.

We recall that Borel’s Theorem states that for every p ∈ Rn and for every
∞-jet (i.e., formal series in n variables), there exists a C∞ function f defined
on a neighborhood of p whose ∞-jet j∞f(p) (i.e., its Taylor series at p) is
equal to the given ∞-jet.

Remark 2.4 A great deal of information concerning normal forms can be
found in [20]. Especially interesting is the treatment of singular vector fields
belonging to special Lie subalgebras like, for instance, Hamiltonian vector
fields, volume preserving vector fields or reversible vector fields (L∗X = −X,
with L a linear involution). In these cases one can find normal forms belonging
to the same Lie subalgebra, and this for a coordinate change lying in the Lie
subgroup belonging to the Lie subalgebra. The presentation of the results is
done in the framework of filtered Lie algebras having the Borel property.

Choice of the Gm From a computational point of view, the normal form
theory presented in this way is not yet satisfactory. An improvement was made
in [23] and [61]. It concerns the choice of the complementary spaces Gm.

The idea is that one can always use

Gm = Ker(admAT ),

where AT denotes the transpose of A, defined by 〈AT x, y〉 = 〈x,Ay〉, or equiv-
alently (AT )ij = Aji. We give a sketch of the proof, referring to [162] for a
detailed elaboration. We consider an inner product 〈 , 〉m on Hm(Rn) de-
fined as 〈 ∑

|σ|=m

aσxσ,
∑

|σ|=m

bσxσ

〉
m

=
∑

|σ|=m

σ!〈aσ, bσ〉, (2.1)

for all aσ, bσ ∈ Rm with |σ| = m.
For this inner product 〈 , 〉m we have

(admAT ) = (admA)T ,

and hence Hm(Rn) = Im(admA) ⊕ Ker(admA)T .
We show by an example that Ker(adAT ) can serve as a complement Gm,

but not Ker(adA). For this take

A =
(

0 1
0 0

)
.

Look at the 2-jet
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y

∂

∂x
, xiy2−i ∂

∂x

]
= ixi−1y3−i ∂

∂x
,[

y
∂

∂x
, xiy2−i ∂

∂y

]
= ixi−1y3−i ∂

∂y
− xiy2−i ∂

∂x
.

The image contains xy(∂/∂x), y2(∂/∂x), y2(∂/∂y) − xy(∂/∂x), 2xy(∂/∂y) −
x2(∂/∂x). It is four dimensional such that Ker(ad2A) is two-dimensional.

As y2(∂/∂x) ∈ Ker(ad2A), we cannot have Im(ad2A) ⊕ Ker(ad2A) =
H2(R2).

For ad2A
T we have[

x
∂

∂y
, xiy2−i ∂

∂x

]
= (2 − i)xi+1y1−i ∂

∂x
− xiy2−i ∂

∂y
,[

x
∂

∂y
, xiy2−i ∂

∂y

]
= (2 − i)xi+1y1−i ∂

∂y
,

and Ker(ad2A
T ) is spanned by x2(∂/∂y) and x2(∂/∂x) + xy(∂/∂y).

This gives one possible choice of the normal form; in certain proofs it is
better to take x2(∂/∂y), xy(∂/∂y) as a basis for G2, because then the 2-jet
takes the form y(∂/∂x) + (ax2 + bxy)(∂/∂y) which, for instance, corresponds
to a second order scalar differential equation. We will come back to these
nilpotent singularities in Sect. 3.4.

We now start a systematic study of the singularities, starting with the
elementary ones.

2.2 Attracting (Repelling) Hyperbolic Singularities

Throughout this section we deal with vector fields that are at least C∞, and
have an attracting or repelling hyperbolic singularity. We always position the
singularity of interest at the origin.

The differential equation X near such a singularity can be written as

ẋ = ax + by + P (x, y),
ẏ = cx + dy + Q(x, y),

with P (0, 0) = Q(0, 0) = DP (0, 0) = DQ(0, 0) = 0, and where the matrix of

DX(0) =
(

a b
c d

)
can be written as

(
λ1 0
0 λ2

)
,

(
λ1 1
0 λ1

)
, or

(
α β
−β α

)
with λ1λ2 > 0, α �= 0 and β > 0.

We will now show that such a singularity is locally C0-conjugate to its
linear part. It suffices to give the proof for the attracting case, meaning that
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Fig. 2.1. Transverse section around an attracting singular point

λ1 < 0, λ2 < 0 and α < 0. The repelling case can be reduced to it by reversing
time. We start with the third case, for which Sr = {(x, y) : x2 + y2 = r2} is
a transverse section for both X and L = DX(0), if r > 0 is taken sufficiently
small (see Fig. 2.1). We fix such value r = r0 > 0. It clearly follows that for all
points p ∈ Br0(0) = {(x, y) : x2 + y2 ≤ r2

0}, both the X-orbit and the L-orbit
tend to 0 for t → ∞ and leave Br0(0) = {(x, y) : x2 + y2 < r2

0} for t → −∞.
Let ϕ(p, t) and ψ(p, t) denote the respective flows of X and L. Taking

any point p ∈ Br0(0) \ {0}, there exists a unique time tp > 0 such that
ϕ(p,−tp) ∈ Sr0 . We define the local C0-conjugacy h : Br0(0) → Br0(0) as
follows:

h(0) = 0,
h(p) = ψ(ϕ(p,−tp), tp).

(2.2)

We leave it to the reader to check that h is indeed a homeomorphism conju-
gating the flows ϕ and ψ.

For the second case we first observe that it is possible to find a linear
coordinate change bringing the linear part DX(0) into the form(

λ1 ε
0 λ1

)
where ε > 0 is any given positive number. In taking ε > 0 sufficiently small, the
same construction as in the former case shows that X is locally C0-conjugate
to L = DX(0).

A similar method works in the first case, except that instead of working
with circles Sr and a related ball Br0(0) it is preferable to use S′

r = {(x, y) :
|λ2|x2 + |λ1|y2 = r2} and B′

r0
(0) = {(x, y) : |λ2|x2 + |λ1|y2 < r2

0}.
In any case the simple argumentation that we have presented proves this

(very) special case of the Hartman–Grobman Theorem which states that in any
dimension, a vector field at a hyperbolic singularity is locally C0-conjugate
to its linear part DX(0). We recall that a singular point p is hyperbolic if
the eigenvalues of the linear part of the system at p have non-zero real part.
A similar method shows that all attracting (respectively repelling) hyperbolic
singularities in Rn are mutually C0-conjugate. We will also develop a simple,
although more complicated, argumentation to prove the same statements for
the saddle case in dimension two.
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Before proving the Hartman–Grobman Theorem in dimension two, we
however describe the C∞-conjugacy classes of attracting and repelling hyper-
bolic singularities. To that purpose, we start by applying the Formal Normal
Form Theorem presented in Sect. 2.1. It depends on the respective Jordan
Normal Form for the linear part. We restrict to the repelling case.

Case 1: Let DX(0) = λ1x(∂/∂x) + λ2y(∂/∂y) with λ2 ≥ λ1 > 0. The Lie–
bracket operation of Sect. 2.1 (dividing all calculations by λ1) gives[

x
∂

∂x
+ λy

∂

∂y
, xmyn ∂

∂x

]
= ((m − 1) + nλ)xmyn ∂

∂x
,[

x
∂

∂x
+ λy

∂

∂y
, xmyn ∂

∂y

]
= (m + (n − 1)λ)xmyn ∂

∂y
,

with λ = λ2/λ1 ≥ 1. Besides the linear terms we see that all terms in the
Taylor development can be removed, except for xm(∂/∂y) in the case λ = m.
Based on Borel’s Theorem on the realization of formal power series we hence
know the existence of a C∞ coordinate change near 0 such that the vector
field can be written as

ẋ = λ1x + f(x, y),
ẏ = λ2y + g(x, y),

where f and g are C∞ functions and j∞f(0, 0) = j∞g(0, 0) = 0, in the case
λ2/λ1 /∈ N.

If λ2 = mλ1 for some m ∈ N with m ≥ 1, then a C∞ normal form is given
by

ẋ = λ1x + f(x, y),
ẏ = λ2y + axm + g(x, y),

for some a ∈ R, where f and g are C∞ functions and j∞f(0, 0) = j∞g(0, 0) =
0. By a linear change (x, y) �−→ (bx, δy) for some b ∈ R and δ ∈ {−1, 1} we
can reduce to a = 1.

In Sect. 2.7 we will show that it is possible to reduce to f = g = 0, which
is a special case of Sternberg’s Theorem; see [153]. Before proving this, we
consider the other cases.

Case 2: Let DX(0) = λ(x(∂/∂x) + (x + y)(∂/∂y)) with λ > 0. We again
divide by λ in the Lie-bracket calculations:[

x
∂

∂x
+ (x + y)

∂

∂y
, xmyn ∂

∂x

]
= (m + n − 1)xmyn ∂

∂x
+ nxm+1yn−1 ∂

∂x

− xmyn ∂

∂y
,[

x
∂

∂x
+ (x + y)

∂

∂y
, xmyn ∂

∂y

]
= (m + n − 1)xmyn ∂

∂y
+ nxm+1yn−1 ∂

∂y
.
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By making the appropriate linear combinations it is clear that all terms of
order at least two can be removed, inducing a C∞ normal form

ẋ = λx + f(x, y),
ẏ = λy + x + g(x, y),

where f and g are C∞ functions and j∞f(0, 0) = j∞g(0, 0) = 0.

Case 3: Let DX(0) = α((x + γy)(∂/∂x) + (−γx + y)(∂/∂y)) with αγ �= 0.
We divide by α in the normal form calculations and get[

(x + γy)
∂

∂x
+ (−γx + y)

∂

∂y
, xmyn ∂

∂x

]
= (m + n − 1)xmyn ∂

∂x

+ mγxm−1yn+1 ∂

∂x
− nγxm+1yn−1 ∂

∂x
+ γxmyn ∂

∂y
,[

(x + γy)
∂

∂x
+ (−γx + y)

∂

∂y
, xmyn ∂

∂y

]
= (m + n − 1)xmyn ∂

∂y

+ mγxm−1yn+1 ∂

∂y
− nγxm+1yn−1 ∂

∂y
− γxmyn ∂

∂x
.

Again appropriate linear combinations show that all terms of order at least
two can be removed, inducing a C∞ normal form

ẋ = αx + βy + f(x, y),
ẏ = −βx + αy + g(x, y),

where αβ �= 0, f and g are C∞ functions and j∞f(0, 0) = j∞g(0, 0) = 0.
In Sect. 2.7 we will show how in all three cases the “flat” terms f and g

can be removed, providing linear normal forms for C∞-conjugacy, except in
the case λ = m ∈ N with m ≥ 1, for which the normal form is

ẋ = λx, ẏ = mλy + δxm, (2.3)

for some λ �= 0 and δ ∈ {0, 1}.
In the analytic case it is even possible to prove that the obtained normal

forms can be obtained by an analytic change of coordinates, but we will not
prove this. For the proof in the C∞ case we refer to Sect. 2.7.

2.3 Hyperbolic Saddles

2.3.1 Analytic Results

The differential equation X near such a singularity can be written as

ẋ = λ1x + P (x, y),
ẏ = λ2y + Q(x, y),

(2.4)
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where P (0, 0) = Q(0, 0) = DP (0, 0) = DQ(0, 0) = 0 with λ1 > 0 and λ2 < 0.
From the beginning we normalize to λ1 = 1 and λ2 = −λ with λ ≥ 1.

All other cases can easily be reduced to this one, through multiplication by a
non-zero real number. We hence study X given by

ẋ = x + P (x, y),
ẏ = −λy + Q(x, y),

(2.5)

with λ > 0. We start by taking P and Q analytic. We want to prove the
existence of an analytic function y(x) with y(0) = y′(0) = 0 and with the
property that its graph (x, y(x)) represents an invariant manifold of (2.5).
This manifold is called the unstable manifold of (2.5).

It suffices to use this result (existence of unstable manifold) on −X in
order to find for (2.5) the existence of a function x(y) with x(0) = x′(0) = 0,
whose graph (x(y), y) is invariant. This is called the stable manifold of (2.5).
To prove the existence of y(x) we first write (x, y) = (x, xu). This changes
(2.5) into:

ẋ = x + P (x, xu),
uẋ + xu̇ = −λxu + Q(x, xu),

which we can write as
ẋ = x(1 + R(x, u)),
u̇ = −μu + S(x, u),

(2.6)

with μ = λ + 1 > 1 and R and S analytic.
We again write u as y and μ as λ. In order to prove the existence of the

unstable manifold of (2.5) as an expression y = xu(x), it hence suffices to
consider (2.6), multiplied by (1 + R(x, u))−1, whose study can be reduced to
the following lemma that we will prove using a simple majorization argument.

Lemma 2.5 Consider the differential equation

x
dy

dx
= −(λ + B(x, y))y + A(x), (2.7)

with A and B analytic, A(0) = 0, B(0, 0) = 0 and λ > 0. Then there exists an
analytic solution y(x) defined on some (−ε, ε) with ε > 0, such that y(0) = 0
and y′(0) = A′(0)/(λ + 1).

Proof. We search a formal power series solution

y = y(x) =
∞∑

n=1

ynxn, (2.8)

with y(0) = 0 of (2.7) and show uniqueness and convergence.
By substituting (2.8) into (2.7), one easily finds that y1 = A′(0)/(λ + 1).

To simplify the study of the recursion, one introduces the change of variables
y = x(y1 + ỹ):

x
dỹ

dx
+ μỹ = xf(x, ỹ), (2.9)
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with f analytic near (0, 0) and with μ = λ + 1 > 1. In the sequel we drop the
tildes however and proceed as if (2.9) is the main equation to solve.

It is now easily seen that (2.9) is a recursive relation for the sequence
(yn)n after substitution of (2.8). Indeed, when evaluating (2.9) at order xk,
one sees in the left-hand side (k+μ)yk, and in the right-hand side one finds an
expression Hk(y1, . . . , yk−1) that involves only lower order coefficients. This
argument shows the existence of (2.8) solving (2.7) formally, and it also shows
the unicity.

We now take care of the convergence properties. If at any step of the recur-
sion we replace the right-hand side by a larger (positive) value, we certainly
get larger values of yk, so one can find bounds for the coefficients by replacing
the right-hand side by an expression that at every step yields a larger value.

Since

f(x, y) =
∞∑

m=0

∞∑
n=0

fmnxmyn

is analytic, we know that |fmn| ≤ Mrmsn for M > 0, r > 0 and s > 0. In the
light of what was said earlier, we consider (2.9), replacing f by

F (x, y) =
∞∑

m=0

∞∑
n=0

Mrmsnxmyn =
M

(1 − rx)(1 − sy)
.

The new equation certainly leads to a formal solution that majorizes the
original one. We are hence interested in

x
dy

dx
+ μy =

Mx

(1 − rx)(1 − sy)
. (2.10)

The recursive relation that is generated by (2.10) can be written down explic-
itly, if we multiply both sides of the equation by (1 − sy):

(n + μ)yn − s
∑

k+l=n

(k + μ)ykyl = Mrn−1.

Keeping in mind that y0 = 0 this yields

yn =
Mrn−1

n + μ
+ s

n−1∑
k=1

k + μ

n + μ
ykyn−k.

We again replace this recursion by a “larger” recursion, i.e., a recursion that
has a solution for which all coefficients are larger: we consider

Yn =
M

μ + 1
rn−1 + s

n−1∑
k=1

YkYn−k.
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This is the recursion that is generated from the simple equation

Y (x) =
M

μ + 1
x

1 − rx
+ sY (x)2, Y (0) = 0.

One can easily compute that there is a unique analytic solution Y with radius
of convergence

ρ =
μ + 1

r(μ + 1) + 4Ms
.

This is a lower bound for the radius of convergence of the solution (2.8) to
our original equation (2.7). ��

2.3.2 Smooth Results

In the case that we start with an expression (2.5) in which P and Q are only
C∞, it is possible to prove the existence of a C∞ unstable (respectively stable)
manifold. In the same way as in the analytic case, it follows from the next
lemma.

Lemma 2.6 Consider the differential equation

x
dy

dx
= −(λ + B(x, y))y + A(x), (2.11)

where A and B are C∞ functions, A(0) = 0, B(0, 0) = 0 and λ > 0. Then
there exists a C∞ solution y(x) defined on some (−ε, ε) with ε > 0, such that
y(0) = 0 and y′(0) = A′(0)/(λ + 1).

Proof. Exactly as in the proof of Lemma 2.5 we can prove the existence of a
unique power series

y = ĝ(x) =
∞∑

n=1

ynxn,

with y1 = A′(0)/(λ + 1) such that ĝ(x) is a formal solution of (2.11).
Let g(x) be any C∞ function with j∞g(0) = ĝ, of which the existence

is guaranteed by Borel’s Theorem, which permits one to write every formal
power series as the Taylor development of a C∞ function. If we now write

y = Y + g(x),

then (2.11) changes into

x
dY

dx
= −(λ + B(x, Y ))Y + A(x),

where A and B are C∞ functions, j∞A(0) = 0, B(0, 0) = 0 and λ > 0. We
hence continue working with expression (2.11), having the extra property that
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(0,0)

(x0,y 0)

(x0,−y 0)

Fig. 2.2. The flow on the boundary of V0

j∞A(0) = 0. Expression (2.11) can also be represented by the planar system

ẋ = −x,

ẏ = (λ + B(x, y))y − A(x).

We continue working on x ≥ 0, proving the existence of a C∞ solution y(x) on
[0, x0] with x0 > 0 and j∞y(0) = 0. Similar reasoning will clearly be possible
on x ≤ 0, too.

On V = [0, x0] × [−y0, y0], for x0 > 0 and y0 > 0 sufficiently small (see
Fig. 2.2), we leave it as an exercise to prove that there exists at least one point
on {x0}× [−y0, y0] with the property that the ω-limit of its orbit is (0, 0). We
observe that because ẋ = −x �= 0 on V , this orbit, completed with the origin,
is the graph (x, f(x)) of a continuous function f : [0, x0] → R. In fact f is C∞

for x > 0.
We call the graph of f a stable manifold and we now prove that such a

stable manifold is unique.
We therefore introduce the new coordinates (x, Y ) = (x, y − f(x)). Since

the coordinate change is C∞ for x > 0, it operates on the vector field X and
changes it into Y given by

ẋ = −x,

Ẏ = Y (λ + F (x, Y + f(x))).
(2.12)

At x = 0, this vector field Y extends in a C0 way to Y |{x=0} = X|{x=0}. It is
clear that {Y = 0} is the unique stable manifold for Y , implying the unicity
of the stable manifold for X, too.

We hence know that an equation like in (2.11) has, for x0 > 0 sufficiently
small, a unique continuous solution f : [0, x0] → R with f(0) = 0; f is C∞ on
(0, x0).

We now prove that f must also be C∞ at 0 and that j∞f(0) = 0. To that
end we take an arbitrary n ∈ N with n ≥ 1 and try a solution of the form
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f(x) = xnfn(x). Recalling that j∞A(0) = 0, we see that fn(x) has to be a
solution of

x
dy

dx
(x) = −y(λ + n + B(x, xny)) + An(x),

with An(x) = A(x)/xn. Since we know that this equation has a solution
fn(x) where fn is C∞ on (0, x0], for some x0 > 0, and with fn(0) = 0, we
hence obtain that necessarily the unique solution f of (2.11) has the property
f(x) = O(xn) for every n ∈ N with n ≥ 1.

By differentiating (2.11) it is now easy to inductively show that all deriv-
atives of f tend to zero for x → 0 and hence to obtain that f is C∞ with
j∞f(0) = 0. ��

We can now summarize the results in the following theorem on hyperbolic
saddles.

Theorem 2.7 Take a differential equation

ẋ = λ1x + P (x, y),
ẏ = λ2y + Q(x, y),

(2.13)

where P and Q are C∞ functions, P (0, 0) = Q(0, 0) = 0 and also DP (0, 0) =
DQ(0, 0) = 0, λ1 > 0 and λ2 < 0. Then in a sufficiently small neighborhood of
the origin there exist invariant manifolds Wu and W s with Wu = {(x, α(x))},
W s = {(β(y), y)}, where α and β are both C∞ with α(0) = α′(0) = β(0) =
β′(0) = 0. Moreover, both Wu and W s are uniquely defined. If P and Q are
analytic, then α and β are analytic.

If we successively introduce the new coordinates

(x, Y ) = (x, y − α(x)),

and then
(X,Y ) = (x − β(Y ), Y ),

for (β(Y ), Y ) representing the stable manifold in the (x, Y )–coordinates, then
we change (2.13) into

ẋ = x(λ1 + R(x, y)),
ẏ = y(λ2 + S(x, y)),

(2.14)

for some C∞ functions R and S. We can even take R and S to be analytic
when starting with analytic P and Q.

The special form of expression (2.14) clearly shows the saddle like structure
of the phase portrait, as represented in Fig. 2.3.

In Sect. 2.4 we prove that two hyperbolic saddles are C0-conjugate near
the origin, implying the Hartman–Grobman Theorem in this case. Before do-
ing this, we will however first study the C∞-conjugacy classes. We start by
applying the Formal Normal Form Theorem. As in the attracting/repelling
case, we divide by λ1 in the calculations, writing λ = λ2/λ1. Then we have
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x

y

Fig. 2.3. A hyperbolic saddle

[
x

∂

∂x
− λy

∂

∂y
, xmyn ∂

∂x

]
= (m − 1 − nλ)xmyn ∂

∂x
,[

x
∂

∂x
− λy

∂

∂y
, xmyn ∂

∂y

]
= (m − (n − 1)λ)xmyn ∂

∂y
.

Clearly all terms of order at least two can be removed when λ is irrational. If
λ = k/l ∈ Q, then the normal form is given by(

1 +
∞∑

i=1

ai(xkyl)i

)
x

∂

∂x
+

(
−k

l
+

∞∑
i=1

bi(xkyl)i

)
y

∂

∂y
.

By using Borel’s Theorem on the realization of formal power series, together
with Theorem 2.7, we obtain that a C∞ hyperbolic saddle is C∞-conjugate
to one of the following C∞ systems:

ẋ = x(λ1 + R(x, y)),
ẏ = y(λ2 + S(x, y)),

(2.15)

with λ2/λ1 ∈ R \ Q and j∞R(0, 0) = j∞S(0, 0) = 0; or

ẋ = x(λ1 + f(xkyl) + R(x, y)),

ẏ = y(λ2 + g(xkyl) + S(x, y)),
(2.16)

with λ2/λ1 = k/l ∈ Q and j∞R(0, 0) = j∞S(0, 0) = 0.
In Sect. 2.7 we will prove that in both cases the flat terms R and S can be

removed. Unlike the attracting/repelling case the theory of analytic normal
forms is not that simple. In starting with an analytic hyperbolic saddle we
cannot guarantee the existence of an analytic linearization when λ ∈ R \ Q;
neither we can guarantee that f and g are analytic in the case that λ ∈ Q.
For more information on this very delicate matter we refer to [148].

2.4 Topological Study of Hyperbolic Saddles

Having the nice C∞ normal forms (for C∞-conjugacy) that one can find, as
explained in Sect. 2.3, it is now easy to prove that two hyperbolic saddles are
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x

y

C2

C1

Fig. 2.4. The transition close to a saddle

mutually C0-conjugate. The proof is essentially based on a time analysis along
the X-orbits near the singularity. Because of its intrinsic interest we will start
the presentation in a rather general context.

Take any hyperbolic saddle X, of which we suppose that the stable and
unstable manifolds are represented, respectively, by the y-axis and the x-axis.

Let C1 (respectively C2) be a C∞ segment, transversely cutting the y-axis
(respectively, the x-axis) at y0 > 0 (respectively, x0 > 0). Let s be a regular
C∞ parameter on C1 with s > 0 lying in the first quadrant {x > 0, y > 0},
as is represented in Fig. 2.4.

We denote by T (s), with s > 0, the time an X-orbit needs to pass from
C1 to C2. We intend to prove that T (s) tends in a monotone way to ∞ for
s → 0, by showing that T ′(s) = (dT/ds)(s) tends to −∞.

A first observation, which we leave as an exercise, consists in proving that
this statement does not depend on the choice of C1 and C2, nor on the regular
parametrization.

The second observation is that it suffices to consider the normal forms
(2.15) and (2.16) taking the flat terms R and S identically zero. In Sect. 2.7
we will indeed remove these terms R and S by means of a C∞ change of
coordinates ϕ with the property j∞ϕ(0, 0) = Id, a result that will not rely
on the Hartman–Grobman Theorem that we are treating now. Because of our
first observation, in the normal form we can even consider C1 = {y = 1},
C2 = {x = 1} and s = x as a regular parameter on C1.

In the case that the normal form is linear, which is always the case if the
hyperbolicity ratio λ2/λ1 is irrational, then the statement follows by a simple
calculation. Indeed for (ẋ = λx, ẏ = −μy) one immediately gets T (x) =
− lnx/λ.

For a resonant normal form, which one obtains in case the hyperbolicity
ratio is rational, we can proceed as follows.

Consider X given by

ẋ = x(l + f(xkyl)),

ẏ = y(−k + g(xkyl)),
(2.17)
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v = 1

u = v

v

u

Fig. 2.5. Modified transition close to a saddle

with l, k ∈ N with l, k ≥ 1, both f and g of class C∞ and f(0) = g(0) = 0. If
we introduce v = xk and u = xkyl, then (2.17) changes into Y given by

v̇ = v(kl + kf(u)) = v(kl + G(u)),

u̇ = u(kf(u) + lg(u)) = u2F (u)(kl + G(u)),
(2.18)

where F and G are C∞ and G(0) = 0. The curves {x = 1} and {y = 1} are
now given by {v = 1} and {u = v} respectively; see Fig. 2.5.

We continue by making the necessary calculations for system (2.18), writ-
ing x instead of v. We also introduce the system Z given by

ẋ = x, u̇ = u2F (u), (2.19)

which, for x > 0, can also be expressed as the scalar differential equation

x
du

dx
= u2F (u). (2.20)

Let the solution of (2.20) be denoted as u(x0, x), with as initial condition
u(x0, x0) = x0. The time which the flow of (2.19) spends along such a solution
from (x0, x0) to (1, u(x0, 1)) is given by − lnx0, fulfilling the requirements.

We now show that the requirements also hold for (2.18). The orbits of
(2.18) are the same as those of (2.19), hence the time function along these
orbits, going from (x0, x0) to (1, u(x0, 1)) is now given by

T (x0) =
∫ 1

x0

dv

v(kl + G(u(x0, v)))
,

while

dT

dx0
(x0) = − 1

x0(kl + G(x0))
−
∫ 1

x0

G′(u(x0, v))
∂u

∂x0
(x0, v)

v(kl + G(u(x0, v)))2
dv. (2.21)
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From the variational equation of (2.20) it follows that

∂u

∂x0
(x0, v) = exp

(∫ v

x0

u(x0, s)
s

(2F (u(x0, s)) + u(x0, s)F ′(u(x0, s)))ds

)
.

Recall that we work on a region in the (x, u)-plane in which u ≤ x ≤ 1, with
u > 0 and u sufficiently small. In this region it is easy to see that u(x0, x)/x
stays bounded, and hence that (∂/∂x0)(u(x0, x)) stays bounded for x0 ≈ 0.
For sufficiently small x0, the absolute value of the integral in expression (2.21)
is hence bounded by

C

∫ 1

x0

dv

v
= −C lnx0 = o

(
1
x0

)
, as x0 → 0,

for some C > 0; we may suppose that 1/2 < 1+G(x0) < 3/2. It clearly follows
that (dT/dx0)(x0) → −∞ for x0 → 0, which is what we wanted to prove.

Knowing the monotonicity of the time between C1 and C2 for a hyper-
bolic saddle, it is now easy to prove that not only a hyperbolic saddle is C0-
conjugate to its linear part, but also that any two hyperbolic linear saddles
are mutually C0-conjugate.

We show how this construction works by considering two hyperbolic sad-
dles X and Y with related transverse sections C1 and C2 for X and D1 and
D2 for Y ; see Fig. 2.6. We suppose that {x = 0} represents the stable manifold
for both X and Y , while {y = 0} represents the unstable manifold for both
vector fields. Let r1 = C1 ∩ {x = 0}, r2 = C2 ∩ {y = 0}, s1 = D1 ∩ {x = 0}
and s2 = D2 ∩ {y = 0}.

The construction is such that we send C1–D1 and C2–D2, in a way that
a piece γ of an X-orbit between p1 ∈ C1 and p2 ∈ C2 is sent to a piece
δ of a Y -orbit between q1 ∈ D1 and q2 ∈ D2 (i.e., h(γ) = δ, h(p1) = q1

and h(p2) = q2), taking care that the time to travel from q1 to q2 along δ
is exactly equal to the time to travel from p1 to p2 along γ. Because both
for X and Y , the time function tends in a monotone way to infinity, the
choice for δ is uniquely determined by γ, at least for p1 sufficiently close to
r1 (and hence p2 sufficiently close to r2). The other points of each γ are sent
to points of the related δ by respecting time. This construction clearly leads

C2 D2

C1 D1p1 q1

p2 q2

r1 s1

r2 s2

g d

h

x x

yy

Fig. 2.6. Comparing transitions close to two saddles
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to a homeomorphism which extends in a unique way to a homeomorphism on
the closure (hence including both axes and the origin). We leave the details
as an exercise. This construction clearly provides a C0-conjugacy.

By this construction we have proven the Hartman–Grobman Theorem for
two-dimensional hyperbolic saddles. In the literature different proofs exist for
this result. We have chosen to give a proof based on the monotonicity of the
time function and we have proven this monotonicity using suitable C∞ normal
forms.

2.5 Semi-Hyperbolic Singularities

2.5.1 Analytic and Smooth Results

As before we work with vector fields that are at least C∞, and we position
the singularity at the origin. By the Jordan Normal Form Theorem, we can
write the vector field X as

ẋ = −λx + F (x, y),
ẏ = G(x, y),

(2.22)

where λ �= 0, F and G are C∞ functions, and F (0, 0) = G(0, 0) = DF (0, 0) =
DG(0, 0) = 0. We take λ > 0. A first observation is that there exists a unique
invariant one dimensional manifold of the form (x, y(x)), where y(x) is a C∞

function and y(0) = y′(0) = 0, on which X is a hyperbolic contraction. We
call it the strong stable manifold.

Theorem 2.8 Let X be a C∞ vector field as in (2.22). Then there exists
near x = 0 a unique C∞ function y = α(x), with α(0) = α′(0) = 0, whose
graph (x, α(x)) is invariant under X. If F and G are analytic, then α(x) is
analytic.

Proof. We introduce new variables (x, y) = (x, xY ). In these new variables
the expression (2.22) changes into

ẋ = x(−λ + H(x, Y )),

Ẏ = λY + K(x, Y ),

with H(x, Y ) = F (x, xY )/x and K(x, Y ) = (G(x, xY ) − Y F (x, Y ))/x.
The result now immediately follows from the stable manifold theorem for

hyperbolic saddles. ��
Depending on whether X is analytic or C∞ we can find a coordinate

change, which is respectively analytic or C∞, straightening the strong stable
manifold to {y = 0}, and hence changing expression (2.22) into

ẋ = −λx + F (x, y),
ẏ = yH(x, y).

(2.23)
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We can do even better, by linearizing X|{y=0} in a respectively analytic or
C∞ way. A similar result holds on the invariant manifolds of a hyperbolic
saddle.

Proposition 2.9 Let
u̇ = λu(1 + g(u)), (2.24)

be a differential equation on R, where λ �= 0, g is a C∞ function and g(0) = 0.
Then there exists a unique change of coordinates

u = x(1 + α(x)), (2.25)

with α a C∞ function and α(0) = 0, changing (2.24) into ẋ = λx. If g is
analytic, then α is analytic, too.

Proof. The coordinate change (2.25) changes (2.24) into

(1 + α(x) + x
dα

dx
(x))ẋ = λx(1 + α(x))(1 + g(x(1 + α(x)))),

for which we need

1 + α(x) + x
dα

dx
(x) = (1 + α(x))(1 + g(x(1 + α(x)))).

A straightforward calculation shows that α(x) needs to be solution of the
differential equation

dy

dx
= (1 + y)h(x, y), (2.26)

with h(x, y) = g(x(1 + y(x)))/x.
Equation (2.26) clearly has a unique solution α with α(0) = 0. It is C∞,

and is analytic if h is analytic. ��
Remark 2.10 The unicity of the linearizing coordinate in Proposition 2.9
comes from the fact that we require (du/dx)(0) = 1. We leave it as an exercise
to check what happens if we require (du/dx)(0) = a with a �= 0.

To continue the study of (2.23) we will now look for one dimensional
invariant manifolds that are tangent to the y-axis, the axis representing the
eigenspace of the zero eigenvalue. To better see the link with previous results,
we prefer to switch coordinates and continue working with X given by

ẋ = xG(x, y),
ẏ = λy + F (x, y),

(2.27)

where λ �= 0, F and G are C∞ functions and G(0, 0) = DF (0, 0) = 0.
A first question to deal with concerns the singularities of X in a neighbor-

hood of the origin. They lie on

λy + F (x, y) = 0,
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which by the Implicit Function Theorem is given by the graph of y = f(x)
for some C∞ function f ; f is analytic in case F is.

The x-coordinates of the singularities are hence solutions of

G(x, f(x)) = 0.

From now on we will deal only with the case that this function is not flat, i.e.,

G(x, f(x)) = xnh(x)

for some C∞ function h with h(0) �= 0. We say that X has non-flat center
behavior.

Flat center behavior for an analytic X implies that G(x, f(x)) ≡ 0, in
which case X has an analytic one dimensional manifold of singularities. By
an analytic change of coordinates, straightening the curve of singularities,
system (2.27) can then be transformed into

ẋ = xyG(x, y),

ẏ = y(λ + F (x, y)).
(2.28)

It is Cω equivalent to
ẋ = yB(x, y),
ẏ = δy,

for some analytic function B and δ = 1, which is nothing but a regular vector
field

ẋ = B(x, y),
ẏ = δ,

multiplied by the function y. The phase portrait is represented in Fig. 2.7.
We do not wish to consider flat behavior in the C∞ case. We now continue

the study of semi-hyperbolic singularities with non-flat center behavior by

d = +1 d = −1

Fig. 2.7. Flows of system (2.28)
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first applying the Formal Normal Form Theorem of Sect. 2.1. As usual we
take λ > 0 and divide by λ in the Lie bracket calculations[

y
∂

∂y
, xmyn ∂

∂x

]
=nxmyn ∂

∂x
,[

y
∂

∂y
, xmyn ∂

∂y

]
= (n − 1)xmyn ∂

∂y
.

This shows that in the Taylor series of X at 0 all terms can be removed except
for the terms xm(∂/∂x) and xmy(∂/∂y).

Using Borel’s Theorem, which permits one to write every formal series
as the Taylor development of a C∞ function, we obtain the existence of C∞

coordinates (x, y) in which we can write X as

ẋ = xkf(x) + xα(x, y),
ẏ = y(λ + g(x)) + xβ(x, y),

(2.29)

where f , g, α and β are C∞ functions, j∞α(0, 0) = j∞β(0, 0) = 0, f(0) �= 0
and k ≥ 2. Besides the Formal Normal Form Theorem, we have also used the
existence of a C∞ unstable manifold, that we can hence change into {x = 0},
and we have linearized X|{x=0} in a C∞ way, as made possible by Proposition
2.9.

We can take f(0) �= 0 since we suppose that X has non-flat center behavior;
by a linear change in x we can take f(0) = 1.

If we write
α(x, y) = yα0(y) + xα0(x, y),

and let γ(y) be a C∞ solution of

λγ′(y) = −α0(y)γ(y),
γ(0) = 1,

then j∞(γ(y) − 1)(0) = 0 and (x, y) = (Xγ(y), y) is a C∞ coordinate change
transforming (2.29) into a similar expression with

α(x, y) = xα1(x, y).

Further adaptation of the x-coordinates will lead to

α(x, y) = xkA(x, y),

where A is a C∞ function.
This can be done by inductively showing that

α(x, y) = xlαl(x, y),

where αl is a C∞ function and 2 ≤ l ≤ k + 1.
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We start with an expression

ẋ = xkf(x) + xl(yαl(y) + xαl(x, y)),
ẏ = y(λ + g(x)) + xβ(x, y),

for some 2 ≤ l ≤ k. By using the C∞ flat function

γ(y) = − 1
λ

∫ y

0

αl(u)du,

we find that (x + xlγ(y), y) are new C∞ variables for which X gets a similar
expression as (2.29) with

α(x, y) = xl+1αl+1(x, y)

for some C∞ function αl+1.
As such, the expression that we get after the previous steps is

ẋ = xk(f(x) + xA(x, y)),
ẏ = y(λ + g(x)) + xB(x, y),

(2.30)

where f , g, A and B are C∞ functions, j∞A(0, 0) = j∞B(0, 0) = g(0) = 0,
f(0) = 1, k ≥ 2 and λ > 0.

We are now ready to prove the existence of (one or more) invariant C∞

manifolds that are tangent to the x-axis. Such an invariant manifold is called
a center manifold. We can represent it as the graph (x, y(x)) of a C∞ function,
with y(0) = y′(0) = 0, and which is solution of the scalar differential equation
related to (2.30) and having an expression

xk dy

dx
= y(λ + h(x) + xC(x, y)) + xD(x, y), (2.31)

where h, C and D are C∞ functions, j∞C(0, 0) = j∞D(0, 0) = h(0) = 0,
k ≥ 2 and λ > 0. We now study the required solutions of (2.31) in the next
lemma.

Lemma 2.11 Consider a scalar differential equation

xk dy

dx
= y(λ + xF (x, y)) + G(x), (2.32)

where F and G are C∞ functions, j∞G(0) = 0 and λ �= 0. Then there is
at least one C∞ solution y = α(x) with α : (−ε, ε) → R for some ε > 0
sufficiently small, such that j∞α(0) = 0. Moreover, whenever β : (0, ε) → R

(respectively β : (−ε, 0) → R) is a solution, for some ε > 0, with lim
x→0

β(x) = 0,

then β : [0, ε) → R (respectively β : (−ε, 0] → R) defined by β(x) = β(x) for
x �= 0 and β(0) = 0, is everywhere C∞ on its domain of definition and
j∞β(0) = 0.
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Fig. 2.8. Flow near a center manifold when λ > 0

Proof. All solutions are clearly C∞ for x �= 0. We need only deal with x = 0.
As in Lemma 2.5, we now attach to the differential equation (2.32) the planar
system

ẋ = xk,

ẏ = y(λ + xF (x, y)) + G(x).

We first take λ > 0 and restrict to {x ≥ 0}. If we choose l ∈ N with l ≥ 1
and c ∈ R \ {0}, we see that at any point of the curves (x, cxl), and for x > 0
sufficiently small, ∣∣∣∣dy

dx
(x, cxl)

∣∣∣∣ > |c|lxl−1. (2.33)

See Fig. 2.8.
As such all solutions y(x), for x > 0, have 0 as their limit as x → 0. They

are clearly C∞ for x > 0 and they are flat at 0 in the sense that y(x) = O(xl),
for any l ∈ N with l ≥ 1.

Since they are solutions of equation (2.32), the flatness property also holds
for the derivative y′(x), and by differentiating (2.32) we can prove inductively
that it holds for all derivatives y(n)(x). As such, on x ≥ 0, y(x), defined by
y(x) for x > 0 and by y(0) = 0, also has to be C∞ at x = 0 and j∞y(0) = 0.

Second we consider the case λ < 0, still keeping x ≥ 0. Property (2.33) still
holds along the curves (x, cxl) for any l ∈ N with l ≥ 1 and any c ∈ R \ {0}.
It induces a picture as in Fig. 2.9.

It easily follows that there exists at least one solution y(x), for x > 0
sufficiently small, such that lim

x→0
y(x) = 0. Based on the same reasoning as in

the previous case it follows that y, with y(x) = y(x) for x > 0 and y(0) = 0,
is also C∞ at 0 and j∞y(0) = 0.

The side {x ≤ 0} can be reduced to {x ≥ 0} by a reflection in x. ��

The lemma hence proves that there exists at least one C∞ center manifold
for (2.30). It also proves that every center manifold is necessarily C∞. All
center manifolds are also infinitely tangent to the x-axis, and hence mutually
infinitely tangent.
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Fig. 2.9. Flow near a center manifold when λ < 0

We choose any of these center manifolds, given as a graph {y = ψ(x)} for
some C∞ function ψ with j∞ψ(0) = 0. The change of variables (x, y) �−→
(x, y − ψ(x)) changes expression (2.30) into

ẋ = xk(f(x) + xA(x, y)),
ẏ = y(λ + g(x) + xB(x, y)),

(2.34)

for some f , g, A and B that are C∞ functions, with λ �= 0, f(0) = 1, g(0) = 0
and j∞A(0, 0) = j∞B(0, 0) = 0.

By expression (2.34) it is now easy to see that in case λ < 0, there is a
unique center manifold on the side {x ≥ 0}. The same happens on the side
{x ≤ 0} in case k is odd. If k is even, then in sufficiently small neighborhoods
of the origin, every point (x, y) with x < 0 lies on a center manifold formed
by the orbit through (x, y) together with the origin.

In Sect. 2.7 we will show that the flat terms A and B in expression (2.34)
can be removed by a C∞ coordinate change ϕ with the property that ϕ
is infinitely tangent to the identity at (0, 0). Since the proof of this fact is
independent of what follows, we will take this for granted in our further in-
vestigation of the semi-hyperbolic singularities, in the sense that we suppose
the semi-hyperbolic vector field X to have the following simple normal form
near the origin:

ẋ = xkf(x),
ẏ = y(λ + g(x)).

(2.35)

This is the general C∞ normal form for semi-hyperbolic singularities with a
non-flat behavior on the center manifold.

Contrary to the situation for a stable (respectively unstable) manifold,
there is no reason to believe that there should always exists an analytic center
manifold in the analytic case, not even if the center manifold is unique. We
will see a counterexample in a moment. Before concentrating on the analytic
case however, we describe a simplification of the center behavior comparable
to the linearization on the stable (respectively unstable) manifold as given in
Proposition 2.9.
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Proposition 2.12 Let
u̇ = uk(1 + g(u)), (2.36)

be a differential equation on R, where k ∈ N with k ≥ 2, g is a C∞ function
and g(0) = 0. Then there exists a change of coordinate

u = x(1 + α(x)), (2.37)

with α a C∞ function and α(0) = 0, changing (2.36) into

ẋ = xk(1 + axk−1), (2.38)

for some a ∈ R. If g is analytic then α can be chosen to be analytic.

Proof. In fact we will not prove the proposition for the indicated normal form
(2.38) but for the related one

ẋ =
xk

1 − axk−1
. (2.39)

The latter result, of course, implies the required one. We will treat both the
C∞ and the Cω results at once, each time writing C∞ (respectively Cω). So
we start with an equation (2.36) where g is C∞ (respectively Cω). We write

g(u) =
N−1∑
i=1

aiu
i + O(uN ),

for some arbitrarily chosen N ≥ k. By inductively using a coordinate change

u = x(1 + αxl),

for a well chosen α, and 1 ≤ l ≤ k − 2, we can change g into

g(u) = auk−1 + O(uk).

The coefficient in front of uk−1 cannot be changed, but continuing the induc-
tion on l we can, for each N > k, get

g(u) = auk−1 + O(uN ).

We can also adapt the power series of g in such a way that for (2.36) we get:

u̇ =
uk

1 − auk−1
(1 + h(u)), (2.40)

where h is C∞ (respectively Cω) and h(u) = O(uN ). We leave this as an
exercise, but take it now for granted.

We do not yet need to take a precise value for N , but we will see that
N ≥ 2k − 2 will permit us a proof of the proposition.
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We now try a coordinate change

u = x(1 + y(x)), (2.41)

where y(x) is C∞ (respectively Cω), y(0) = 0, and check the necessary con-
dition. Substituting (2.41) into (2.40) we immediately see that y needs to be
solution of

(1 + y + x
dy

dx
) =

1 − axk−1

1 − axk−1(1 + y)k−1
(1 + y)k(1 + O(xN )),

with O(xN ) some function in (x, y) which is C∞ (respectively Cω).
A straightforward calculation reduces this to:

x
dy

dx
= y((k − 1) + A(x, y)) + B(x), (2.42)

where A and B are C∞ (respectively Cω functions), A(0, 0) = 0, B(x) =
O(x2k−2).

If we write y = x2k−3Y , then (2.42) changes into

x
dY

dx
= Y ((2 − k) + A(x, x2k−3Y )) + C(x), (2.43)

for a function C which is C∞ (respectively Cω) and C(0) = 0.
The differential equation (2.43) can be represented by the system

ẋ = x,

Ẏ = Y ((2 − k) + A(x, x2k−3Y )) + C(x).
(2.44)

This system has a hyperbolic saddle at (0, 0) when k ≥ 3, while it has a
semi-hyperbolic singularity for k = 2. In any case there exists a C∞ (re-
spectively Cω) unstable manifold given by a graph (x, Y (x)). The function
y(x) = x2k−3Y (x) provides a solution of (2.42). ��

Applying Proposition 2.12 to expression (2.35) we can put a semi-hyperbolic
singularity with non-flat center behavior in a very simple normal form for C∞-
equivalence. We first multiply (2.35) by (λ + g(x))−1, leading to

ẋ = xkf(x),
ẏ = y,

(2.45)

for some C∞ function f . We can require that f(0) = 1 by a linear coordinate
change. Applying Proposition 2.12 to xkf(x) we can change (2.45) into:

ẋ = xk(1 + axk−1),
ẏ = y.

(2.46)

This is the final normal form for C∞ equivalence, in the sense that the coef-
ficient a is an invariant if we want to keep the expression as it is.
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d = +1 d = −1

Fig. 2.10. Saddle–nodes

2.5.2 Topological Results

Topological models, also for C0-conjugacy, are even simpler: there are three
hyperbolic cases of, respectively, attracting, repelling and saddle type, besides
the saddle-node type singularities

ẋ = x2,

ẏ = δy,

with δ = 1. See Fig. 2.10.
We remark that it is a common practice, in representing local phase por-

traits of semi-hyperbolic singularities, to use double arrows for the flow on the
stable/unstable invariant manifolds, and to use simple arrows on the center
manifold. This rule of double arrows is not always used when representing
global phase portraits.

To prove our claim about topological models we start with the C∞ models
(for C∞-conjugacy):

ẋ = xk(1 + h(x)),
ẏ = y(λ + g(x)),

(2.47)

where h and g are C∞, h(0) = g(0) = 0 �= λ. The method of proof is a
combination of the proofs employed in the topological study of the hyperbolic
singularities. The most delicate part deals with the monotonicity of the time
function in the hyperbolic sectors. We study it on {x ≥ 0, y ≥ 0} for an
expression (2.47) with λ < 0. Without loss of generality we can take λ = −1.

We can also restrict to the calculation of the time that orbits spend be-
tween sections C1 = {y = a} and C2 = {x = b} (see Fig. 2.11) with a > 0 and
b > 0 and using the x-coordinate as a regular parameter on C1.

Along the orbits we have

dt =
dx

xk(1 + h(x))
.

So starting at a point (v, a), the time needed to arrive at {x = b} is given by

T (v) =
∫ b

v

dx

xk(1 + h(x))
.
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Fig. 2.11. Transition close to a semi-hyperbolic point

For the derivative we get

dT

dv
(v) = − 1

vk(1 + h(v))
,

which clearly tends to −∞ as v → 0.
Other sectors of saddle-type (hyperbolic sectors) can be treated similarly,

while parabolic sectors rely on a method similar to that used in the C0 study
of attracting/repelling hyperbolic singularities. We leave the details of the
elaboration as an exercise.

2.5.3 More About Center Manifolds

To trace a center manifold in a specific example, it is often necessary to
calculate its Taylor development. As we can expect from the previous obser-
vations, such a Taylor development is uniquely determined. To formally prove
this statement we can use the simple normal forms (for C∞–equivalence) that
we have obtained in (2.46). They have a related scalar differential equation

(1 + axk−1)xk dy

dx
= y

for which it is clear that the only formal solution
∞∑

i=1

aix
i is given by ai = 0

for all i.
To finish this section about semi-hyperbolic singularities, we add some

more detailed information about analytic vector fields. We first provide an
example (due to Euler) in which there is no analytic center manifold,

ẋ = x2,

ẏ = y − x.
(2.48)

In view of the previous observation, it suffices to prove that the unique formal
center manifold is not convergent.
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To that end, consider a formal sum

ŷ =
∞∑

n=1

ynxn,

such that ŷ is a formal center manifold of (2.48), i.e.,

x2 dŷ

dx
= ŷ − x.

This equation leads to the easy recursion {nyn−yn+1, y1 = 1}. Hence yn = n!
is the unique solution.

The formal expansion

ŷ =
∞∑

n=1

n!xn,

is clearly divergent at all non-zero values of x.
Although not convergent, the series in the example is not too divergent.

It is Gevrey-1 in x of type 1.

Definition 2.13 A formal power series

f̂(x) =
∞∑

n=0

fnxn,

is Gevrey-1/σ in x of type A if there exist positive constants A, C and α such
that

|fn| ≤ CAn/σ Γ
(
α +

n

σ

)
,

for all n ≥ 0; Γ is the traditional gamma function.

For semi-hyperbolic singularities of analytic vector fields there is the fol-
lowing result, which we state without proof.

Proposition 2.14 Let X be an analytic vector field having an expression
(2.27) whose center behavior starts with the leading term xm, or more pre-
cisely, such that

G(x, f(x)) = xm + o(xm).

Then there exists a unique formal center manifold y = f̂(x), and this unique
formal power series is Gevrey-1/m in x of type m/|λ|.

The n th coefficient of a Gevrey-1/σ series is roughly of the order given by
|Axσ|n/σ Γ (α+n/σ). It should be clear that for small |x|, the factor |An/σxn|
competes against the factor Γ (α + n/σ). This explains the behavior of the
upper bound: it is decreasing for small n, up to a point N(x), from which the
upper bound rapidly tends to infinity. The order N(x) at which the upper
bound is the smallest can be approximated, using Stirling’s formula, by
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N(x) =
[

σ

A|x|σ
]

,

(
|Axσ|n/σ Γ(α + n/σ)

)
n=N(x)

= O

(
exp

(
− 1

A|x|σ
))

.

One can introduce now the notion of a Gevrey function: we say that a func-
tion is Gevrey-1/σ asymptotic to a power series f̂ if its N th order Taylor
development coincides with the N th order truncation f̂N of f̂ , and if |f − f̂N |
is of the order |Axσ|N/σ Γ(α + N/σ), for all N .

One can now approximate a function f by its N th order Taylor develop-
ment, and by choosing the cut-off point equal to N(x), one finds an approxi-
mation for which the error is exponentially small:∣∣∣f(x) − f̂N(x)

∣∣∣ = O

(
exp

(
− 1

A|x|σ
))

.

The finite sum f̂N(x) is called the summation to the least term.
Let f be a function whose graph represents a center manifold of a vector

field of the earlier type. It is known that such a function is Gevrey-asymptotic
to its formal counterpart. The approximation earlier is the best one can hope
for, and this is reflected in the fact that these center manifolds are in general
non-unique and can differ by a function of the order O(exp(−1/A|x|σ)).

2.6 Summary on Elementary Singularities

Here we state two specific and practical theorems which summarize the pre-
vious results and which are very helpful in determining the behavior of ele-
mentary singular points.

We characterize the local phase portrait at a hyperbolic singular point in
the following theorem. Since we are mainly interested in polynomial differen-
tial systems, we present the theorem for analytic systems.

Theorem 2.15 (Hyperbolic Singular Points Theorem) Let (0, 0) be an
isolated singular point of the vector field X, given by

ẋ = ax + by + A(x, y),
ẏ = cx + dy + B(x, y), (2.49)

where A and B are analytic in a neighborhood of the origin with A(0, 0) =
B(0, 0) = DA(0, 0) = DB(0, 0) = 0. Let λ1 and λ2 be the eigenvalues of the
linear part DX(0) of the system at the origin. Then the following statements
hold.

(i) If λ1 and λ2 are real and λ1λ2 < 0, then (0, 0) is a saddle (see Fig. 2.12(a)).
If we denote by E1 and E2 the eigenspaces of respectively λ1 and λ2, then
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x x x x

y y y y

(b) (c) (d )(a)

Fig. 2.12. Phase portraits of non–degenerate singular points

one can find two invariant analytic curves, tangent respectively to E1 and
E2 at 0, on one of which points are attracted towards the origin, and on
one of which points are repelled away from the origin. On these invari-
ant curves X is Cω-linearizable. There exists a C∞ coordinate change
transforming (2.49) into one of the following normal forms:

ẋ = λ1x,

ẏ = λ2y,

in the case λ2/λ1 ∈ R \ Q, and

ẋ =x(λ1 + f(xkyl)),

ẏ = y(λ2 + g(xkyl)),

in the case λ2/λ1 = −k/l ∈ Q with k, l ∈ N and where f and g are C∞

functions. All systems (2.49) are C0-conjugate to

ẋ = x,

ẏ = − y.

(ii) If λ1 and λ2 are real with |λ2| ≥ |λ1| and λ1λ2 > 0, then (0, 0) is a
node (see Fig. 2.12(b)). If λ1 > 0 (respectively < 0) then it is repelling or
unstable (respectively attracting or stable). There exists a C∞ coordinate
change transforming (2.49) into

ẋ = λ1x,

ẏ = λ2y,

in case λ2/λ1 /∈ N, and into

ẋ = λ1x,

ẏ = λ2y + δxm,

for some δ = 0 or 1, in case λ2 = mλ1 with m ∈ N and m ≥ 1. All
systems (2.49) are C0-conjugate to
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ẋ = δx,

ẏ = δy,

with δ = 1 and λ1δ > 0.
(iii) If λ1 = α+iβ and λ2 = α−iβ with α, β �= 0, then (0, 0) is a “strong” focus

(see Fig. 2.12(c)). If α > 0 (respectively < 0), it is repelling or unstable
(respectively attracting or stable). There exists a C∞ coordinate change
transforming (2.49) into

ẋ = αx + βy,

ẏ = − βx + αy.

All systems (2.49) are C0-conjugate to

ẋ = δx,

ẏ = δy,

with δ = 1 and αδ > 0.
(iv) If λ1 = iβ and λ2 = −iβ with β �= 0, then (0, 0) is a linear center,

topologically, a “weak” focus or a center (see Figs. 2.12(c) and (d)).

Remark 2.16 The proofs concerning the C∞- and C0-normal forms rely on
the results presented in Sect. 2.7 about the “removal of flat terms.” In fact we
could have given proofs of the C0 results not depending on it, but we decided
not to do so, since they can be found in many other texts.

Remark 2.17 The denomination strong focus in (iii) is used in describing
singularities of which the linear part DX(0) is already a focus, while the
denomination weak focus is used in the case DX(0) is a center. All results
presented in this theorem are proven in this chapter (including Sect. 2.7),
except for the last statement of (iv), namely that X is topologically a focus or
a center. This proof will be given in Chap. 3. We added it here only for sake
of completeness.

Remark 2.18 The origin of system (2.49) is a hyperbolic singular point in
cases (i), (ii) and (iii) of Theorem 2.15.

Theorem 2.15 can also be stated in terms of the determinant (det), the
trace (tr) and the discriminant (dis) of the linear part at the singular point.
Thus, statement (i) corresponds to det < 0; statement (ii) corresponds to
det > 0, tr �= 0 and dis ≥ 0; statement (iii) corresponds to det > 0,
tr �= 0 and dis < 0; and statement (iv) corresponds to det > 0, tr = 0
and dis < 0.

We characterize the local phase portrait at a semi-hyperbolic singular point
in the following theorem, for whose proof we again rely on Sect. 2.7.
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Theorem 2.19 (Semi-Hyperbolic Singular Points Theorem) Let (0, 0)
be an isolated singular point of the vector field X given by

ẋ = A(x, y),
ẏ = λy + B(x, y),

(2.50)

where A and B are analytic in a neighborhood of the origin with A(0, 0) =
B(0, 0) = DA(0, 0) = DB(0, 0) = 0 and λ > 0. Let y = f(x) be the solution of
the equation λy+B(x, y) = 0 in a neighborhood of the point (0, 0), and suppose
that the function g(x) = A(x, f(x)) has the expression g(x) = amxm + o(xm),
where m ≥ 2 and am �= 0. Then there always exists an invariant analytic
curve, called the strong unstable manifold, tangent at 0 to the y–axis, on which
X is analytically conjugate to

ẏ = λy;

it represents repelling behavior since λ > 0. Moreover the following statements
hold.

(i) If m is odd and am < 0, then (0, 0) is a topological saddle (see Fig. 2.13(a)).
Tangent to the x-axis there is a unique invariant C∞ curve, called the cen-
ter manifold, on which X is C∞-conjugate to

ẋ = −xm(1 + axm−1), (2.51)

for some a ∈ R. If this invariant curve is analytic, then on it X is Cω-
conjugate to (2.51).
System X is C∞-conjugate to

ẋ = − xm(1 + axm−1),
ẏ = λy,

and is C0-conjugate to
ẋ = − x,

ẏ = y.

x x x

y y y

(b) (c)(a)

Fig. 2.13. Phase portraits of semi-hyperbolic singular points
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(ii) If m is odd and am > 0, then (0, 0) is a unstable topological node (see
Fig. 2.13(b)). Every point not belonging to the strong unstable manifold
lies on an invariant C∞ curve, called a center manifold, tangent to the
x-axis at the origin, and on which X is C∞-conjugate to

ẋ = xm(1 + axm−1), (2.52)

for some a ∈ R. All these center manifolds are mutually infinitely tangent
to each other, and hence at most one of them can be analytic, in which
case X is Cω-conjugate on it to (2.52).
System X is C∞-conjugate to

ẋ = xm(1 + axm−1),
ẏ = λy,

and is C0-conjugate to
ẋ = x,

ẏ = y.

(iii) If m is even, then (0, 0) is a saddle-node, that is, a singular point whose
neighborhood is the union of one parabolic and two hyperbolic sectors (see
Fig. 2.13(c)). Modulo changing x into −x, we suppose that am > 0. Every
point to the right of the strong unstable manifold (side x > 0) lies on an
invariant C∞ curve, called a center manifold, tangent to the x-axis at the
origin, and on which X is C∞-conjugate to

ẋ = xm(1 + axm−1), (2.53)

for some a ∈ R. All these center manifolds coincide on the side x ≤ 0
and are hence infinitely tangent at the origin. At most one of these center
manifolds can be analytic, in which case X is Cω-conjugate on it to (2.53).
System X is C∞-conjugate to

ẋ = xm(1 + axm−1),
ẏ = λy,

and is C0-conjugate to
ẋ = x2,

ẏ = y.

Remark 2.20 The case λ < 0 can be reduced to λ > 0 by changing X
into −X. Besides the results on semi-hyperbolic singularities with non-flat
center behavior, as stated in Theorem 2.19, we also recall that in case g(x) =
A(x, f(x)), as defined in Theorem 2.19, is identically zero, then there exists
an analytic curve consisting of singularities.
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We leave it as an exercise to prove that, in that case, X is Cω-conjugate
to

ẋ = 0,

ẏ = yh(x),

for some Cω function h with h(0) �= 0. It is hence Cω-equivalent to

ẋ = 0,

ẏ = δy,

with δ = 1.

2.7 Removal of Flat Terms

2.7.1 Generalities

In the previous sections we have left three problems concerning removal of
flat terms in order to get the required C∞ normal forms. In each case we
have two C∞ vector fields X and X +Y , with the property that j∞Y (0) = 0;
both vector fields are defined in a neighborhood of (0, 0). We want to find
a local C∞ diffeomorphism ϕ : R2 → R2 with ϕ(0) = 0, ϕ∗X = Y and
j∞(ϕ− I)(0, 0) = 0, for I the identity isomorphism; we call it a near-identity
transformation.

To that end we will use the so called homotopic method (see, e.g., [91]).
We introduce a parameter τ ∈ [0, 1], consider Xτ = X + τY , and look for a
family ϕτ of near-identity transformations with the property that

(ϕτ )∗X = X + τY. (2.54)

It now suffices to look for a τ -dependent vector field Zτ with j∞(Zτ )(0, 0) =
0 and satisfying

[X + τY, Zτ ] = Y, (2.55)

where [·, ·] denotes the usual Lie-bracket operation that we already used in
Sect. 2.1. We prove that this is sufficient in the next lemma, in which we use
z = (x, y), Z(z, τ) = Zτ (z) and ϕ(z, τ) = ϕτ (z).

Lemma 2.21 Let Zτ be a solution to equation (2.55). Then ϕτ defined by

∂ϕ

∂τ
(z, τ) = Z(ϕ(z, τ), τ), (2.56)

is a solution of equation (2.54).

Proof. It clearly follows from j∞(Zτ )(0, 0) = 0 that j∞(ϕ − I)(0, 0) = 0. We
furthermore have to check condition (2.54), which we can write as
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∂ϕ1

∂x
(z, τ)

∂ϕ1

∂y
(z, τ)

∂ϕ2

∂x
(z, τ)

∂ϕ2

∂y
(z, τ)

⎞⎟⎠(X1(z)
X2(z)

)
=
(

(X1 + τY1)(ϕ(z, τ)
(X2 + τY2)(ϕ(z, τ)

)
. (2.57)

To find the relation with equation (2.55), we differentiate (2.57) with respect
to τ

(
Y1(ϕ(z, τ))
Y2(ϕ(z, τ))

)
=

⎛⎜⎝
∂

∂x
(
∂ϕ1

∂τ
)(z, τ)

∂

∂y
(
∂ϕ1

∂τ
)(z, τ)

∂

∂x
(
∂ϕ2

∂τ
)(z, τ)

∂

∂y
(
∂ϕ2

∂τ
)(z, τ)

⎞⎟⎠(X1(z)
X2(z)

)
−

⎛⎜⎝
∂(X1 + τY1)

∂x
(ϕ(z, τ))

∂(X1 + τY1)
∂y

(ϕ(z, τ))

∂(X2 + τY2)
∂x

(ϕ(z, τ))
∂(X2 + τY2)

∂y
(ϕ(z, τ))

⎞⎟⎠
⎛⎜⎝∂ϕ1

∂τ
)(z, τ)

∂ϕ2

∂τ
)(z, τ)

⎞⎟⎠ .

(2.58)

In this expression we can write

∂ϕi

∂τ
(z, τ) = Zτ,i(ϕ(z, τ)), (2.59)

and by differentiating (2.59) we get⎛⎜⎝
∂

∂x
(
∂ϕ1

∂τ
)(z, τ)

∂

∂y
(
∂ϕ1

∂τ
)(z, τ)

∂

∂x
(
∂ϕ2

∂τ
)(z, τ)

∂

∂y
(
∂ϕ2

∂τ
)(z, τ)

⎞⎟⎠ =

⎛⎜⎝
∂Zτ,1

∂x
(ϕ(z, τ))

∂Zτ,1

∂y
(ϕ(z, τ))

∂Zτ,2

∂x
(ϕ(z, τ))

∂Zτ,2

∂y
(ϕ(z, τ))

⎞⎟⎠
⎛⎜⎝

∂ϕ1

∂x
(z, τ)

∂ϕ1

∂y
(z, τ)

∂ϕ2

∂x
(z, τ)

∂ϕ2

∂y
(z, τ)

⎞⎟⎠ .

This relation, together with (2.57) and (2.59), shows that (2.58) is the same
as (2.55). As such (2.57) follows from (2.55) by integration, i.e., solving
(2.56). ��

Remark 2.22 If instead of having j∞Y (0, 0) = 0, we had only j∞Y (x, 0) = 0
(respectively j∞Y (0, y) = 0), then clearly the “homotopic method” would
imply that j∞(ϕ−I)(x, 0) = 0 (respectively j∞(ϕ−I)(0, y) = 0). It suffices in
equation (2.55) to look for a solution which has the property that j∞Zτ (x, 0) =
0 (respectively j∞Zτ (0, y) = 0).

Taking into account the previous remark, and knowing that we will need
it in the sequel, we will from now on suppose that j∞Y (z) = 0 for all z ∈ M ,
where M is either {(0, 0)}, {x = 0} or {y = 0}.

For solving (2.55) in the traditional way, it is important for X + τY to be
a τ -family of complete vector fields, or at least, vector fields whose orbits exist
for t → ∞. For the moment we take this for granted and denote the orbits by
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γ(z, τ, t). We also suppose that, uniformly in τ ∈ [0, 1] and for initial values z
in some ε-neighborhood of M , all orbits tend to M in an exponentially fast
way

‖γ(z, τ, t)‖M ≤ Ce−λt‖z‖M , (2.60)

for some λ > 0, C > 0, and where ‖ · ‖M represents the distance to M . Under
some extra (rather mild) conditions, we will see that (2.55) can be solved by
defining

Zτ (z) = −
∫ ∞

0

(F (γ(z, τ, t)))−1(Y (γ(z, τ, t)))dt for z /∈ M,

Zτ (z) = 0 for z ∈ M,

(2.61)

where F (γ(z, τ, t)) represents, along an orbit γ(z, τ, t), the matrix solution of
the related variational equation

d

dt
F (γ(z, τ, t)) = [Dz(X + τY )(γ(z, τ, t))](F (γ(z, τ, t))),

F (γ(z, τ, 0)) = I.
(2.62)

From now on we suppose that Zτ is defined as in (2.61). In order to prove
that Zτ is C∞, with j∞Zτ (z) = 0, for all z ∈ M , we will have to impose some
extra conditions on X + τY . Once these conditions are proven, it is easy to
check that Zτ satisfies the Lie-bracket relation required in (2.55), since (2.55)
can clearly be written as

d

dt
(Zτ (γ(z, τ, t))) = (Dz(X + τY )(γ(z, τ, t)))(Zτ (γ(z, τ, t))) + Y (γ(z, τ, t)),

from which it is clear that Zτ , as defined in (2.62), is a solution.
To prove the smoothness of Zτ and the flatness at points z ∈ M , it will turn

out to be necessary to find good bounds on the norm of (F (γ(z, τ, t)))−1 as
well as on the norms of successive derivatives of (F (γ(z, τ, t)))−1 with respect
to (z, τ). Since we know that

‖(F (γ(z, τ, t)))−1‖ =
‖F (γ(z, τ, t))‖

|det(F (γ(z, τ, t)))| , (2.63)

it clearly shows that we essentially need to control the value of ‖F (γ(z, τ, t))‖
and |det(F (γ(z, τ, t)))|. Upper bounds on ‖F (γ(z, τ, t))‖ will be obtained
from (2.62) by considering appropriate upper bounds on the expression
Dz(X + τY )(γ(z, τ, t)). To find strictly positive lower bounds on the determi-
nant |det(F (γ(z, τ, t)))| we will use Liouville’s formula stating that

|det(F (γ(z, τ, t)))| = exp
(∫ ∞

0

div(Dz(X + τY )(γ(z, τ, t)))dt

)
. (2.64)

This shows the importance that div(Dz(X + τY )(γ(z, τ, t))) has in this cal-
culation. We now treat the specific cases encountered in the previous sections
of this chapter.
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2.7.2 Hyperbolic Case

The simplest case is the attracting one, so we start with it.
The divergence at (0, 0) is a strictly negative number, so on some neigh-

borhood V of the origin we can suppose that the divergence stays bounded,
implying, in view of (2.64), the existence of some ν > 0 such that

|det(F (γ(z, τ, t)))| ≥ e−νt. (2.65)

Together with (2.62) this proves the existence of some μ > 0 with the property
that

‖(F (γ(z, τ, t)))−1‖ ≤ eμt. (2.66)

Taking into account (2.60) with M = {(0, 0)}, and the fact that j∞Y (0, 0) = 0,
we see at once that the integral in (2.61) converges and that

lim
z→(0,0)

Zτ (z) = 0.

Concerning the different derivatives (∂j+k+lZτ,i)/(∂xj∂yk∂τ l), we can ei-
ther rely on uniform expressions of these derivatives (or their related tensors),
or we can work inductively. In any case, from (2.62)–(2.64), and using the fact
that Y is C∞ with j∞Y (0, 0), similar estimates as earlier will permit us to
prove that Zτ is C∞ on V \ {(0, 0)} and that all derivatives tend to zero for
z tending to the origin. We do not work it out, but leave it as an exercise. In
any case, the flatness at the origin of all derivatives implies that Zτ is also
C∞ at the origin, with of course j∞Zτ (0, 0) = 0.

The repelling case can be reduced to the attracting one by reversing time,
hence looking at −(X + τY ).

The treatment of the saddle case is more subtle, since we do not have
property (2.60) with respect to the origin. The idea now is to proceed in two
steps, relying on the following lemma that we state without proof. The proof
can be obtained by using a partition of unity in combination with a polar
blow-up at the origin. We do not work this out but refer to [91].

Lemma 2.23 Let f : R2 → R be a C∞ function defined on a neighborhood
V of (0, 0) with j∞f(0) = 0. Then there is a decomposition f = g + h such
that both g and h are C∞ functions on V with j∞g(p) = 0 and j∞h(q) = 0
for all p = (x, 0) or q = (0, y) in V .

We consider a saddle point with expression (2.4) of Sect. 2.3, implying that
{y = 0} represents the stable manifold while {x = 0} represents the unstable
one.

Based on Lemma 2.23 we decompose the flat terms Y as Y = Ys +Yu with
respectively j∞Yu(x, 0) = 0 and j∞Ys(0, y) = 0 and we apply the homotopic
method in order to subsequently remove Ys and Yu.

We start by removing Ys.
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We recall that the family X + τY with Y = Ys has an expression

ẋ = x(−λ1 + A(x, y) + τY1),
ẏ = y(λ2 + B(x, y) + τY2),

with λ1 > 0, λ2 > 0, A(0, 0) = B(0, 0) = 0 and j∞Y1(0, y) = j∞Y2(0, y) = 0.
We can chose a neighborhood V = V1 × V2 of the origin in which we have

−λ1 + A(x, y) + τY1 < −λ1

2
.

We now consider a C∞ function α(y) with compact support inside V2 and
equal to 1 in a neighborhood of 0. We change our focus to the study of

ẋ =x(−λ1 + α(y)(A(x, y) + τY1)),
ẏ = yα(y)(λ2 + B(x, y) + τY2).

For this vector field, it is clear that there exists an ε-neighborhood of M =
{x = 0} on which not only all orbits exist for t → +∞, but also condition
(2.60) holds with respect to M .

From now on it will be rather unimportant to know the exact behavior of
X + τY on M . So in view of an application of the same method to the semi-
hyperbolic case, as we will do in the next subsection, we prove the following
proposition, which is of independent interest.

Proposition 2.24 Consider the differential equation

ẋ =x(f(x, y) + τY1),
ẏ = g(x, y) + τY2,

(2.67)

on some ε-neighborhood V of M = {x = 0}, where f , g, Y1 and Y2 are
C∞ functions and j∞Y1(0, y) = j∞Y2(0, y) = 0. Suppose moreover that g is
supported in C×R for a compact set C ⊂ M , and that f(x, y)+τY1 < −λ < 0,
for some λ > 0, τ ∈ [0, 1] and (x, y) ∈ V . Then the vector field Zτ , as defined
in (2.61), with respect to X + τY as in (2.65), is a C∞ vector field satisfying
j∞Zτ (0, y) = 0 for all y.

Proof. The proof is essentially similar to the one we have given in studying
the attracting hyperbolic case, i.e., M = {(0, 0)}. Of course, all estimates
need to be made using ‖ · ‖M instead of ‖ · ‖, which is possible because of the
fact that j∞Y1 and j∞Y2 are infinitely flat along M . Again the conditions on
(2.67) imply that the divergence of X +τY stays bounded, implying condition
(2.65) on |det(F (γ(z, τ, t)))| and condition (2.66) on ‖(F (γ(z, τ, t)))−1‖. The
proof is then completely analogous to the one in the case M = {(0, 0)} and
we leave it as an exercise. ��

After removing Ys we can remove Yu in exactly the same way, by reversing
time and working with respect to M = {y = 0}.
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2.7.3 Semi-Hyperbolic Case

To remove flat terms in the semi-hyperbolic case, we start with the following
expression for X

ẋ = − xk(1 + f(x) + yw1(x, y)),
ẏ = y(λ + g(x) + yw2(x, y)),

(2.68)

where λ �= 0, f and g are C∞ functions and f(0) = g(0) = j∞w1(0, 0) =
j∞w2(0, 0) = 0. We claim that there exists a C∞ near-identity change of
coordinates at (0, 0) adapting (2.68) in a way that j∞wi(0, x) = 0 for i = 1, 2.
In this way, the flat perturbation w = (w1, w2) can be considered to be flat
along {y = 0}. Since (2.68) is exponentially contracting towards {y = 0} (up
to changing X into −X), Proposition 2.24 will permit us to completely remove
it.

To prove the claim we work with Taylor expansions in y, having as coeffi-
cients C∞ functions in x. The proof relies first on an induction procedure on
the powers of yn followed by an application of Borel’s Theorem for represent-
ing such semi-formal developments by genuine C∞ functions in two variables
(see for example [19] and [115]).

We now work out the induction procedure on n. Suppose that we can write
(2.68) as

ẋ = − xk(1 + f(x) + ynw1,n(x, y)),
ẏ = y(λ + g(x) + ynw2,n(x, y)),

(2.69)

for some n ≥ 1. We will now show how transformations of the form Id+O(yn)
can change (2.69) into a similar expression with n replaced by n + 1.

We first try
(x, y) = (X(1 + Xk−1ynα(X)), y), (2.70)

proving the existence of a flat C∞ function α(X) that permits us to change
ynw1,n(x, y) into yn+1w1,n(X, y) for some C∞ function w1,n(X, y) such that
j∞w1,n(0, 0) = 0. We write fn(x) = w1,n(x, 0).

Substituting (2.70) into the first equation of (2.69), and writing x instead
of X, gives

ẋ(1 + kxk−1ynα(x) + xkynα′(x)) + nxkyn−1α(x)ẏ =

− xk(1 + xk−1ynα(x))k(1 + f(x(1 + xk−1ynα(x)))+

ynfn(x(1 + xk−1ynα(x))) + O(yn+1)).

Working modulo O(yn+1), this gives the following equation:

ẋ(1 + kxk−1ynα(x) + xkynα′(x)) =

− xk
[
(1 + kxk−1ynα(x))(1 + f(x) + xkynα(x)f

′
(x) + ynfn(x))+

nynα(x)(λ + g(x))] .
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A straightforward calculation of the terms in yn shows that we have to solve
the following equation:

(1 + f(x))xkα′(x) = (n(λ + g(x)) + xkf
′
(x))α(x) + fn(x).

Seeing that j∞fn(0) = 0, Lemma 2.11 guarantees the existence of a C∞

solution α(x) with j∞α(0) = 0.
Substituting (2.70) into the second equation of (2.69) does not change the

form of it.
Coordinate change (2.70) hence reduces (2.69) to some expression

ẋ = − xk(1 + f(x) + yn+1w1,n+1(x, y)),

ẏ = y(λ + g(x) + yn+1w2,n+1(x, y)),
(2.71)

of which we do not specify the relation with the previous expression, except
for the fact that the ∞-jet is unchanged.

Next we try
(x, y) = (x, Y (1 + Y nβ(x)), (2.72)

proving the existence of a flat C∞ function β(x) that permits us to change
ynw2,n(x, y) into Y n+1w2,n(x, Y ) for a convenient C∞ function w2,n such that
j∞w2,n(0, 0) = 0. We write gn(x) = w2,n(x, 0)

Substituting (2.72) into the second equation of (2.71), and writing y in-
stead of Y , gives:

ẏ(1 + (n + 1)ynβ(x)) + yn+1β′(x)ẋ =

y(1 + ynβ(x))(λ + g(x) + yng(x) + O(yn+1)).

Working modulo O(yn+2) this gives the following equation:

ẏ(1 + (n + 1)ynβ(x)) =

y(λ + g(x) + yngn(x) + (λ + g(x))ynβ(x) + ynβ′(x)xk(1 + f(x))).

A straightforward calculation of the terms in yn+1 shows that we have to
solve the following equation:

β′(x)xk(1 + f(x)) = n(λ + g(x))β(x) − gn(x).

Seeing that j∞gn(0) = 0, Lemma 2.11 guarantees the existence of a C∞

solution β(x) with j∞β(0) = 0.
Substituting (2.72) into the first equation of (2.71) does not change its

form.
The successive coordinate changes (2.70) and (2.72) prove that the induc-

tion works.
We hence know that a semi-hyperbolic singularitiy is C∞-conjugate to

some normal form
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ẋ = − xk(1 + f(x)),
ẏ = y(λ + g(x)),

(2.73)

We are now going to prove that two such normal forms are C∞-conjugate
if they have the same formal development at (0, 0). We therefore consider

ẋ = − xk(1 + f(x) + v1(x)),
ẏ = y(λ + g(x) + v2(x)),

(2.74)

with j∞v1(0) = j∞v2(0) = 0, and will show that (2.73) and (2.74) are mutu-
ally C∞-conjugate.

We therefore first eliminate v1(x) by means of a coordinate change

(x, y) = (X(1 + α(X)), y). (2.75)

Substituting (2.75) into (2.74) and writing x instead of X gives

ẋ(1 + α(x) + xα′(x)) = −xk(1 + α(x))k(1 + f(x(1 + α(x))))

leading to the equation

(1 + f(x) + v1(x))(1 + α(x) + xα′(x)) = (1 + α(x))k(1 + f(x(1 + α(x)))).

A straightforward calculation leads to

(1 + f(x) + v1(x))xα′(x) = ((k − 1) + O(x) + O(α(x)))α(x) − v1(x); (2.76)

by Lemma 2.6 and since j∞v1(0) = 0, we know that (2.76) has a C∞ solution
with j∞α(0) = 0.

As such, the inverse transformation of (2.75) has changed (2.74) into

ẋ = − xk(1 + f(x)),
ẏ = y(λ + g(x) + w(x)),

(2.77)

for some C∞ function w(x) with j∞w(0) = 0.
We now consider the coordinate change

(x, y) = (x, Y (1 + β(x))). (2.78)

Substituting (2.78) into (2.77) and writing y instead of Y gives

ẏ(1 + β(x)) + yβ′(x)ẋ = y(1 + β(x))(λ + g(x) + w(x)).

This leads to

ẏ(1 + β(x)) = y((1 + β(x))(λ + g(x) + w(x)) + (1 + f(x))xkβ′(x)).

A straightforward calculation gives

(1 + f(x))xkβ′(x) = −(1 + β(x))w(x),

which can be written as

(1 + f(x))β′(x) = −w(x)
xk

(1 + β(x)).

This equation clearly has a C∞ solution with j∞β(0) = 0.
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2.8 Exercises

Exercise 2.1 Find stable, unstable and center subspaces Es, Eu and Ec for
the linear systems given by the following matrices:(

2 −1
0 3

) (
3 6
2 4

) (
−3 6
2 −4

)
.

Exercise 2.2 Given the system ẋ = x + 2y, ẏ = y, show that there is a
unique invariant regular C∞ curve through the origin.

Exercise 2.3 Suppose that X is a vector field on R2 with R∗(X) = X and
X(0) = 0, where R(x, y) = (−x, y).

(i) Check all possible non-zero linear parts (1-jets) DX(0) of X at the origin.
(ii)Give the formal normal form Y of j∞X(0), show that it also satisfies

R∗(Y ) = Y , and that it can be obtained by a coordinate change ϕ =
Id + O(‖(x, y)‖2) such that ϕ ◦ R = R ◦ ϕ.

Exercise 2.4 For nilpotent singularities (i.e., X(0) = 0 and j1X(0) ∼
y(∂/∂x)), we have found two interesting formal normal forms, namely

(y +
∞∑

i=2

aix
i)

∂

∂x
+ (

∞∑
j=2

bjx
j)

∂

∂y

and

y
∂

∂x
+ (

∞∑
j=2

bjx
j + y

∞∑
i=1

aix
i)

∂

∂y
.

Calculate the relation between (ai, bj) and (ai, bj).

Exercise 2.5 Given a formal power series
∑∞

i=0 aix
i, we know by Borel’s

Theorem that there exists a C∞ function f such that j∞f(0) =
∑∞

i=0 aix
i.

Show that such a C∞ function f is never uniquely determined.

Exercise 2.6 Check that for the inner product in expression (2.1) then
(admAT ) = (admA)T indeed holds as claimed.

Exercise 2.7 Given a smooth two-dimensional vector field X such that
X(0) = 0 and DX(0) = A with A semi-simple (i.e., A is C-diagonalizable),
show that there exists a formal normal form Y for X at 0 such that
(etA)∗Y = Y for all t ∈ R.



2.8 Exercises 85

Exercise 2.8 Let X and Y be two-dimensional smooth vector fields with
X(0) = Y (0) = 0 and let h be a local C0-conjugacy between X and Y at
0, which is differentiable at the origin (Dh(0) exists). Show that DX(0) and
DY (0) are linearly conjugate.

Hint: Use Exercise 1.1.

Exercise 2.9 Let X and Y be two-dimensional smooth vector fields with
X(0) = Y (0) = 0. Suppose that X and Y are both hyperbolic attractors at
0 with diagonal linear part and respective eigenvalues λ1 ≤ λ2 < 0 and μ1 ≤
μ2 < 0. If X and Y are C0-equivalent at 0, by means of a homeomorphism
h that it is differentiable at the origin (Dh(0) exists), then it can be proven
that λ1/λ2 = μ1/μ2. Show this in case λ1 = λ2.

Exercise 2.10 Show that the mapping h, defined in (2.2) and related to
Fig. 2.1, indeed defines a C0-conjugacy between X and L.

Exercise 2.11 Calculate a Taylor approximation of order 4 for the stable
and unstable manifold of

ẋ = 2x + 3x2 + 4xy + 6y3,

ẏ = − y + x + 2x2 + 3xy2.

Exercise 2.12 Show that all vector fields (λ + εy)(∂/∂x) + λy(∂/∂y), for a
fixed λ ∈ R and variable ε �= 0, are mutually linearly conjugate.

Exercise 2.13 Prove the claim, made in the proof of Lemma 2.6 (see
Fig. 2.2), that there exists at least one point on {x0} × [−y0, y0] whose ω-
limit set is (0, 0).

Exercise 2.14 Solve next items:

(i) Prove the claim, made at the end of the proof of Lemma 2.6, that the
property f(x) = O(xn), for every n ∈ N with n ≥ 1, also holds for the
derivative f ′ of f .

(ii) Prove the same claim for all successive derivatives of f .
(iii) Give an example of a C∞ function f on (0, 1) with f(x) = O(xn) for all

n ∈ N with n ≥ 1, but such that this property does not hold for f ′.

Exercise 2.15 Check in Sect. 2.4 (see Fig. 2.6) the details of the construction
of a C0-conjugacy between two hyperbolic saddles.
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Exercise 2.16 Consider a C∞ vector field X = (X1, X2) defined on R2 and
having both coordinate axes as invariant curves. Suppose that for X|{x≥0,y≥0}
the following properties hold: X1(x, y) > 0 for x > 0, X2(x, y) < 0 for y > 0,
(∂X2/∂y)(0, 0) < 0 and (∂X1/∂x)(0, 0) > 0. Let ϕ(p, t) denote the flow of X,
with ϕ = (ϕ1, ϕ2). Show that for T > 0 sufficiently large there exists a unique
p ∈ {x ≥ 0, y ≥ 0} such that ϕ2(p, 0) = 1 and ϕ1(p, T ) = 1.

Exercise 2.17 Calculate a Taylor approximation of order 4 of the center
manifold of the following vector fields X at the origin:

(y + 2x + 3xy)
∂

∂y
+ (x2 + 2y2)

∂

∂x
,

(3x3 + y3)
∂

∂y
+ (x + 4y3)

∂

∂x
.

Also calculate in each of the foregoing cases the 3-jet of the center behavior
at the origin, i.e., the 3-jet at 0 of the vector field X|W c , where W c represents
a C∞ center manifold.

Exercise 2.18 Calculate the precise expression of all possible center mani-
folds at 0 for the following vector fields:

−y
∂

∂y
+x2 ∂

∂x
,

−y
∂

∂y
−x3 ∂

∂x
.

Exercise 2.19 Solve the exercise given in Remark 2.10.

Exercise 2.20 Let X be an analytic vector field on some open neighborhood
of (0, 0) in R2, having the origin as a non-isolated singularity and with the
property that the divergence divX(0) �= 0.

(i) Show that X near the origin is Cω-conjugate to

ẋ = 0
ẏ = yh(x)

for some Cω function h with h(0) = 0.

Hint: Starting from (2.23), divide the vector field by y and use the flow
box theorem.

(ii) Show that X near the origin is Cω-equivalent to

ẋ = 0
ẏ = δy

with δ = 1.
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Exercise 2.21 Let X be a C∞ vector field on some open set U ⊂ R2, having
at some point p ∈ U a hyperbolic saddle with eigenvalues λ1 and λ2 satisfying
λ2/λ1 ∈ R \ Q. Show that if f : U → R is C∞ with Xf = 0 and f(p) = 0,
then j∞f(p) = 0.

Exercise 2.22 Let X be a C∞ vector field on an open set U ⊂ R2, having
at p a hyperbolic saddle with eigenvalues λ1 and λ2 and such that λ2/λ1 ∈
R \ Q. Show that there exists a neighborhood V of p in U and C∞ mappings
πs : V → W s, πu : V → Wu, with πs|W s = Id and πu|Wu = Id and with
the property that inside V both the foliations {π−1

s (y)} and {π−1
u (x)} are

preserved under the flow of X, where x and y denote a regular parameter on
respectively the unstable and stable manifolds Wu and W s.

REMARK: The foliations {π−1
s (y)} and {π−1

u (x)} are called invariant C∞

foliations.

Exercise 2.23 Let X be a C∞ vector field on an open set U ⊂ R2, having
at p a hyperbolic saddle with respectively W s and Wu as stable and unstable
manifolds. Suppose that there exist C∞ mappings πs : V → W s and πu :
V → Wu with the properties described in the previous exercise. Show that X
near p is (locally) C∞-linearizable.

REMARK: A similar technique can be used in any dimension to prove
C∞-linearization of a hyperbolic saddle.

Exercise 2.24 Let U be an open subset of R2, let f : U → R be a Cr with
r ≥ 2 function and let X(p) = ∇f(p) be the associated gradient vector field
given by

ẋ =
∂f

∂x
(x, y)

ẏ =
∂f

∂y
(x, y).

Suppose that p is a singularity of X, then

(i) the eigenvalues of DX(p) are real.
(ii)X has a hyperbolic singularity at p if and only if Df(p) = 0 and D2fp(·, ·)

is a non–degenerate bilinear form.

Exercise 2.25 Determine the Lyapunov stability and the asymptotic sta-
bility (see Sect. 1.8) of the following list of singularities: hyperbolic saddle,
hyperbolic focus, center, semi-hyperbolic singularity with non-flat center
behavior.
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Exercise 2.26 Let X1 and X2 be two C∞ vector fields having a hyperbolic
saddle at the origin. Then it is possible to prove that they are C0-equivalent,
without using the monotonicity of the time function, as we did. One such
proof goes as follows:

(i) Use the existence of C∞ invariant stable and unstable manifolds to prove
the existence of C∞ coordinates in which W s = {x = 0} and Wu = {y =
0}.

(ii)Consider both X⊥
i , where X⊥

i = gi(x, y)(∂/∂x) − fi(x, y)(∂/∂y) if Xi =
fi(x, y) ∂

∂x + gi(x, y) ∂
∂y .

Show that a mapping h is a C∞-equivalence between X1 and X2 on a neigh-
borhood of (0, 0) if h is defined as follows:

(i) h|{x=0}∪{y=0} is the identity,
(ii) h sends X1-orbits to X2-orbits,
(iii) h sends X⊥

1 -orbits to X⊥
2 -orbits,

(iv) for some y0 sufficiently small, let y = γi (x) denote the X⊥
i -orbit with

γi (x) = y0. Then we require that h(x, γ1(x)) = (x, γ2(x)) for x in a
sufficiently small neighborhood of 0.

2.9 Bibliographical Comments

Although the idea of simplifying ordinary differential equations through
changes of variables can already be found in earlier works, we can call
Poincaré the founding father of normal form theory as we use it nowadays.
After Poincaré the theory was developed by many people, among others Lya-
punov, Dulac, Birkhoff, Siegel, Sternberg, Chen, Moser, Arnol’d, Pliss, Be-
litskii, Bruno, Takens, Cushman, Sanders, Elphick, van der Meer, Yoccoz,
Pérez Marco and Stolovitch. In February 2005, MathSciNet provides 1618
hits for “Normal forms” as element in the title. Maybe not all deal with
differential equations, but many do. Some deal with formal aspects or with
computational aspects. Others impose extra conditions on the normal forms
or the normalizing transformations (like symmetries, preservation of extra
structure). Some deal with Cr normal forms, some with C∞ or analytic nor-
mal forms, with individual vector fields or with families of vector fields. To
cite a few books, we mention in alphabetic order the books by Arnol’d [5],
Arnol’d and Il’Yashenko [6], Bronstein and Kopanskii [21], Bruno [23], Chow
and Hale [35], Chow, Li and Wang [36], Golubitsky and Schaeffer [74, 75],
Guckenheimer and Holmes [77], Murdock [114] and Wiggins [164]. We also
would like to mention the paper of Stowe [154] for many results concerning
Cs-linearization of resonant saddles, focusing on the problem of finding the
best s possible.

The theory of invariant manifolds also has a long history, although as with
normal form theory, it is still a very active branch of research. Introducing
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“invariant manifold” on MathSciNet as element in the title gave 468 hits in
February 2005, besides another 144 with “invariant curve” in the title, 91 with
“stable manifold,” 140 with “center manifold” and 42 with “centre manifold.”
A number of these papers merely deal with the use of these objects but many
deal with more theoretical aspects.

Besides mentioning such names as Hadamard and Perron concerning the
stable (and unstable) manifold, we want to mention the book of Hartman [80],
as well as refer to some books that we have listed before concerning normal
forms. We also cite the paper by Meyer [110] for the analyticity of these
objects.

Concerning center manifolds we would like to refer to Carr [26], Fenichel
[64], Kelley [96], Hirsch, Pugh and Shub [83], Sijbrand [149] and especially to
Vanderbauwhede [162], besides some of the books that we already mentioned
earlier. We also want to refer to van Strien [161] for an example of a polynomial
vector field not having a C∞ center manifold.

For a general introduction to the theory of dynamical systems, paying
significant attention to normal forms and invariant manifolds, we can also refer
to Palis and de Melo [118], Robinson [136] and Katok and Hasselblatt [95].

The usual methods of proving results about normal forms and invariant
manifolds are somewhat different than the ones that we have used here. Our
choice of proof is more elementary but is perhaps less appropriate for gener-
alization to higher dimensions. For the two-dimensional case we believe that
it is quite complete in comparison to other texts since we not only prove the
existence of C∞ center manifolds, but also include good C∞ normal forms
for the elementary singularities. We also proved the existence of analytic sta-
ble/unstable manifolds for elementary analytic singularities as well as good
analytic normal forms on one dimensional analytic invariant manifolds. The
theory of analytic normal forms for hyperbolic two-dimensional saddles is
however beyond the scope of this book.



3

Desingularization of Nonelementary
Singularities

In this chapter we provide the basic tool for studying nonelementary singu-
larities of a differential system in the plane. This tool is based on changes of
variables called blow-ups. We use this technique for classifying the nilpotent
singularities; i.e., the singularities having both eigenvalues zero but whose lin-
ear part is not identically zero. Blow-up is also used to show that at isolated
singularities an analytic system has a finite sectorial decomposition.

3.1 Homogeneous Blow-Up

Before describing the effective algorithm that we use in the program P4 [9],
and which is based on the use of quasihomogeneous blow-up, we will first ex-
plain the basic ideas only introducing homogeneous blow-up, which essentially
means using polar coordinates. We position the singularity that we want to
study at the origin.

Let 0 be a singularity of a C∞ vector field X on R2. Consider the map

φ : S1 × R → R2

(θ, r) �→ (r cos θ, r sin θ) .

We can define a C∞ vector field X̂ on the cylinder S1 × R such that
φ∗(X̂) = X, in the sense that Dφv(X̂(v)) = X(φ(v)). It is called the pull
back of X by φ. It is nothing else but X written down in polar coordinates.
The map φ is a C∞ diffeomorphism, hence a genuine C∞ coordinate change
on S1 × (0,∞), but not on {r = 0}; φ sends {r = 0} to (0, 0), and as such,
the inverse mapping φ−1 blows up the origin to a circle. In order to study
the phase portrait of X in a neighborhood V of the origin, it clearly suffices
to study the phase portrait of X̂ on the neighborhood φ−1(V ) of the circle
S1×{0}, and we can even restrict to {r ≥ 0}. A priori this might seem a more
difficult problem than the original one, but as we will see in this chapter, the
construction is very helpful. If the k-jet jk(X)(0) is zero, then jk(X̂)(u) = 0
for all u ∈ S1 × {0}.
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Although the cylinder is a good surface for getting a global view of X̂ and
its phase portrait, it is often less appropriate for making calculations, since
we constantly have to deal with trigonometric expressions. For that reason it
is often preferable to make the calculations in different charts.

On the parts of the cylinder given, respectively, by θ ∈ (−π/2, π/2) and
θ ∈ (π/2, 3π/2) use a chart given by

Kx : (θ, r) �→ (r cos θ, tan θ) = (x, y).

In this chart the expression of the blow-up map φ is given by

φx : (x, y) �→ (x, xy). (3.1)

Indeed we see that

φ = φx ◦ Kx : (θ, r) Kx

�→(r cos θ, tan θ)
φx

�→(r cos θ, r cos θ tan θ) = (r cos θ, r sin θ).
(3.2)

We call (3.1) a “blow-up in the x-direction”; the pull-back of X by means of
φx is denoted by X̂x, i.e., (φx)∗(X̂x) = X.

On the parts of the cylinder given, respectively, by θ ∈ (0, π) and θ ∈
(π, 2π), we use a chart given by

Ky : (θ, r) �→ (cot θ, r sin θ) = (x, y).

In this chart the expression of the blow-up map φ is given by

φy : (x, y) �→ (xy, y), (3.3)

in the sense that φ = φy ◦ Ky. We call (3.3) a “blow-up in the y–direction”;
the pullback of X by means of φy is denoted by X̂y, i.e., (φy)∗(X̂y) = X.

Both φx and φy are called “directional blow-ups.”
If jk(X)(0) = 0 and jk+1(X)(0) �= 0, then again jk(X̂x)(z) = 0 and

jk(X̂y)(z) = 0 for, respectively, z ∈ {x = 0} or z ∈ {y = 0}.
In case jk(X)(0) = 0 and jk+1(X)(0) �= 0 the pullback X̂ and likewise X̂x

and X̂y, are quite degenerate, and to make the situation less degenerate we
consider X̄ with

X̄ =
1
rk

X̂.

Then X̄ also is a C∞ vector field on S1×R. On {r > 0} this division does not
change the orbits of X̂ or their sense of direction, but only the parametrization
by t. From the formulas it is clear that singularities of X̄|{r = 0} come in pairs
of opposite points.

For the related directional blow-up we use (1/x̄k)X̂x in case (3.1) and
(1/ȳk)X̂y in case (3.3). On {x̄ �= 0} (respectively {ȳ �= 0}) the vector fields
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(1/rk)X̂ and (1/x̄k)X̂x (respectively (1/ȳk)X̂y) are no longer equal up to
analytic coordinate change, as were X̂ and X̂x (respectively, X̂y), but they
are the same up to analytic coordinate change and multiplication by a nonzero
analytic function.

We work this out for the blow-up in the x-direction: since φ = φx ◦ Kx,
we see that (Kx)∗(X̂) = X̂x.

As such

(Kx)∗(X) = (Kx)∗(X̂/rk) =
1
rk

(Kx)∗(X̂) =
1
rk

X̂x = X
x
(
x

r
)k.

Seen in (θ, r)-coordinates we have x/r = cos θ, which is strictly positive
on the part of the cylinder given by θ ∈ (−π/2, π/2).

Similarly in the y-direction, we have (Ky)∗(X̂) = X̂y and (Ky)∗(X) =
X

y
(sin θ)k, with sin θ > 0 on the part of the cylinder given by θ ∈ (0, π).
The directional blow-up φx can also be used for making a study on {(θ, r) :

θ ∈ (π/2, 3π/2), r ≥ 0}, but in that case we have cos θ < 0.
For odd k, this means that in the phase portraits that we find for X

x|{x≤0}
we have to reverse time. A similar observation has to be made in using X

y

for studying X on {(θ, r) : θ ∈ (π, 2π), r > 0}.
Such a time reversal could be avoided in using φx (respectively, φy) only

for x ≥ 0 (respectively, y ≥ 0), and adding two extra directional blow-ups

φ−x : (x, y) �→ (−x,−xy),

φ−y : (x, y) �→ (−xy,−y),

that we limit to, respectively, x ≥ 0 and y ≥ 0. Of course the number of
calculations can be limited by using both φx and φy on a full neighborhood
of, respectively, {x = 0} and {y = 0}, avoiding having to work with φ−x and
φ−y.

We now treat a few examples.

Example 3.1 First we present an example in which we use one blow-up
to obtain quite easily the topological picture of the orbit structure of the
singularity:

X = (x2 − 2xy)
∂

∂x
+ (y2 − xy)

∂

∂y
+ O(‖(x, y)‖3).

The formulas for (polar) blow-up are

X̄ = η1
∂

∂θ
+ η2r

∂

∂r
,
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with

η1(θ, r) =
1

rk+2

〈
X,x

∂

∂y
− y

∂

∂x

〉
(φ(r, θ))

=
1

rk+2
(−r sin θX1(r cos θ, r sin θ) + r cos θX2(r cos θ, r sin θ)),

η2(θ, r) =
1

rk+2

〈
X,x

∂

∂x
+ y

∂

∂y

〉
(φ(r, θ))

=
1

rk+2
(r cos θX1(r cos θ, r sin θ) + r sin θX2(r cos θ, r sin θ)),

In our example k = 1 and the result is

X̄(θ, r) = (cos θ sin θ(3 sin θ − 2 cos θ) + O(r))
∂

∂θ

+ r(cos3 θ − 2 cos2 θ sin θ − cos θ sin2 θ + sin3 θ + O(r))
∂

∂r
.

Zeros on {r = 0} are located at

θ = 0, π; θ = π/2, 3π/2; tan θ = 2/3.

At these singularities, the radial eigenvalue is given by the coefficient of r∂/∂r
while the tangential eigenvalue can be found by differentiating the ∂/∂θ-
component with respect to θ. One thus obtains Fig. 3.1. In this figure we
represent the half cylinder S1 × [0,∞) as E = {(x, y) : x2 + y2 ≥ 1}. This
visualization will also be used in the sequel. The phase portrait which we
see on E near the circle C = {x2 + y2 = 1} gives a very good idea of the
phase portrait of X near the origin. It suffices to shrink the circle to a point
(see Fig. 3.2).

All the singularities on S1 × {0} are hyperbolic. We say that we have
desingularized X at 0 since all singularities of X|{r=0} are elementary. The

Fig. 3.1. Blow-up of Example 3.1
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Fig. 3.2. Local phase portrait of Example 3.1

exact value of the eigenvalues at the different singularities depends only on
the 2-jet of X. Using techniques similar to the ones that served to study the
C0-conjugacy classes of elementary singularities, one can now prove that X
near the origin is C0-conjugate to the vector field Y = j2X(0), which has a
similar blow-up. We will not work this out. In this chapter we will only take
care of determining the sectorial decomposition of the singularity. Although in
the line of what we did explicitly for the elementary singularities, it is rather
tedious to show that for each kind of sectorial decomposition of an analytic
vector field there only exists one model for C0-conjugacy. We refer to [53]
or [33] for a detailed elaboration. The proof on the unicity of the model for
C0-equivalence is simpler, but nevertheless we do not wish to pay attention
to such constructions in general. We will treat some specific situations in the
exercises.

Concerning the sectorial decomposition, we remark that in the case of the
example, it is not hard to show, using the blow-up, that the vector field X
indeed has a finite sectorial decomposition near 0 as defined in Sect. 1.5. We
will come back to the proof of this in Sect. 3.5.

Concerning Fig. 3.1, we remark that the exact position of the invariant
manifolds, transverse to C, of the six hyperbolic singularities in the blow-up
can be approximated by Taylor approximation. After blowing down it leads to
an accurate presentation of the six “separatrices” in the local phase portrait;
see Fig. 3.2.

Example 3.2 Second we present an example for which blowing up once is
not sufficient to desingularize the singularity. There remain nonelementary
singularities of X|{r=0} at which we need to repeat the blow-up construction,
leading to successive blowing up. The starting vector field is

y
∂

∂x
+ (x2 + xy)

∂

∂y
+ O(‖(x, y)‖3).

Blowing up in the y-direction gives no singularities on {ȳ = 0}. Direct
calculations show that the singularities of X (and equally for X

x
and X

y
),
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as well as their eigenvalues, depend only on the first nonzero jet, hence on
y∂/∂x in this example. We now perform a blow-up in the x-direction, working
out the calculations explicitly. Writing

x = x̄, y = x̄ȳ,

or
x̄ = x, ȳ = y/x,

we get

˙̄x = ẋ

= y + O(‖(x, y)‖3)

= ȳx̄ + O(|x̄|3),

˙̄y =
ẏ

x
− y

ẋ

x2

= (x + y) +
1
x

O(‖(x, y)‖3) − y2

x2
− y

x2
O(‖(x, y)‖3)

= x̄ + ȳ x̄ − ȳ2 + O(|x̄|2).

(3.4)

The only singularity on x̄ = 0 occurs for ȳ = 0, where the 1-jet of the vector
field X̄x at this singularity is x̄∂/∂ȳ.

As the singularity is nonelementary, we are going to perform an extra blow-
up in order to study it. Blowing up in the x̄-direction gives no singularities.
Blowing up (3.4) in the ȳ-direction (x̄ = ¯̄y ¯̄x, ȳ = ¯̄y) gives

˙̄̄y = ˙̄y

= (x̄ + ȳ x̄ − ȳ2 + O(|x̄|2))
= ¯̄x ¯̄y − ¯̄y2 + O(‖(¯̄x, ¯̄y)‖3),

˙̄̄x =
˙̄x
ȳ
− x̄

˙̄y
ȳ2

= x̄ +
1
ȳ
O(|x̄|3) − x̄

ȳ2
(x̄ + ȳx̄ − ȳ2 + O(|x̄|2))

= ¯̄y ¯̄x − ¯̄x2 + ¯̄y ¯̄x + O(‖(¯̄x, ¯̄y)‖2).

The 2-jet is now (¯̄x¯̄y − ¯̄y2)∂/∂ ¯̄y + (2¯̄x¯̄y − ¯̄x2)∂/∂ ¯̄x. This singularity is not
elementary, but as we have seen in Example 3.1, it can be studied by blowing
up once. This succession of blowing up is schematized in Fig. 3.3. At each
step we blow-up a point to a circle, not forgetting that singularities of X on
{r = 0} always come in pairs of opposite points. If we need to blow-up one, we
also apply the same blow-up procedure to the second. As we already observed
in discussing the directional blow-up X

x
and X

y
in relation to X, the study

of both singularities at a pair of opposite points can be done on the same
expressions by treating x ≤ 0 as well as x ≥ 0, or, respectively, y ≤ 0 as well
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Fig. 3.3. Successive blowing up

as y ≥ 0. In terms of X it also means that we only have to consider one of the
singularities, but considering r ≤ 0 as well as r ≥ 0. It is possible that we have
to use a time-reversal, when k is odd (with X = X̂/rk), when transporting
information to the other singularity. At each step of the succession of blow-
ups we only need to keep part of the information, sufficient to cover a full
neighborhood of the origin after blowing down.

This procedure of successive blowing up can be formalized as follows, pro-
viding an overall geometric view like in Fig. 3.3. Instead of using the polar
blow-up φ and dividing by some power of r, we use the map

φ̃ :
{

z ∈ R2 : ‖z‖ >
1
2

}
⊂ R2 → R2, z �→ z − z

‖z‖ ,

and divide by the same power of (‖z‖ − 1).
The vector field we so obtain is analytically equivalent to X, but the second

is now defined on an open domain in R2 and therefore it becomes easier to
visualize how we can blow-up again at some point z0 ∈ {z ∈ R2 : ‖z‖ = 1}:
we just use the mapping Tz0 ◦φ where Tz0 denotes the translation z �→ z + z0.

As we again end up on an open domain of R2 we can repeat the construc-
tion if necessary. For simplicity in notation we denote the first blow-up by φ1,
the second by φ2 and so on.

After a sequence of n blow-ups we find some C∞-vector field X̄n defined
on a domain Un ⊂ R2. X̄n is even analytic if we start with an analytic X. We
write Γn = (φ1 ◦ . . . ◦ φn)−1(0) ⊂ Un. Only one of the connected components
of R2 \ Γn, call it An, has a noncompact closure. Furthermore ∂An ⊂ Γn and
∂An, which is homeomorphic to S,1 consists of a finite number of analytic
regular closed arcs meeting transversely. The mapping (φ1 ◦ . . . ◦ φn)|An

is
an analytic diffeomorphism sending An onto R2 \ {0}. There exists a strictly
positive function Fn on An such that X̂n = FnX̄n and X̂n|An

is analytically
diffeomorphic to X|R2\{0} by means of the diffeomorphism (φ1 ◦ . . . ◦ φn)|An

.
The function Fn extends in a Cω way to ∂An where in general it is 0.
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Fig. 3.4. Blowing up Example 3.2

Fig. 3.5. Local phase portrait of Example 3.2

The reconstruction of the local phase portrait of Example 3.2 is repre-
sented in Fig. 3.4. To understand the figure one has to start from the right,
representing the phase portrait of a vector field X

3
obtained after three blow-

ups. One must not forget that at the second step one simultaneously blows up
two (opposite) singularities and at the third step their 4 counter images. The
calculations show that all the singularities of X

3
on ∂A3 are hyperbolic, and

hence, that X
3

is a desingularization of X. We say that X has been desingu-
larized after three successive blow-ups. The structure of the desingularization
of X

3
is as represented in Fig. 3.4. In following the arrows to the left, we

successively represent the phase portraits of X
2

near ∂A2, X
1

near ∂A1, and
finally X near the origin. The sectorial decomposition of X near the origin is
clear from its desingularization X

3
.

Again the method permits us to show that the vector fields of Example
3.2 are topologically determined by the 2-jet in the sense that such X near
0 is C0-conjugate to Y = j2X(0). A precise drawing of the two separatrices
of the cusp can be obtained by using Taylor approximations of the invariant
manifolds in the desingularization followed by a blowing down, as shown in
Fig. 3.5.

3.2 Desingularization and the �Lojasiewicz Property

To control whether a sequence of blow-ups finally leads to a desingularization
we use the notion of a �Lojasiewicz inequality. We say that a vector field X on
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R2 satisfies a �Lojasiewicz inequality at 0 if there is a k ∈ N with k ≥ 1, and
a c > 0 such that ‖X(x)‖ ≥ c‖x‖k on some neighborhood of 0.

For analytic vector fields at isolated singularities, a �Lojasiewicz inequality
always holds (see [18]).

Theorem 3.3 ( [52]) If X at 0 satisfies a �Lojasiewicz inequality, then there
exists a finite sequence of blowing ups φ1 ◦ . . . φn leading to a vector field
X̄n defined in the neighborhood of ∂An of which the singularities on ∂An are
elementary.

These elementary singularities can be as follows:

(i) Isolated singularities p which are hyperbolic or semi-hyperbolic with non-
flat behavior on the center manifold;

(ii) Regular analytic closed curves (or possibly the whole of ∂An when n = 1)
along which X̄n is normally hyperbolic.

The position on ∂An as well as the determinating properties of the singu-
larities as used in the classification presented in the Theorems 2.15 and 2.19
depend only on a finite jet of X.

We do not give a proof of this theorem. We merely consider blow-up as
a technique to desingularize singularities. The technique turns out to be suc-
cessful, at least if we apply it to a singularity of �Lojasiewicz type, such as an
isolated singularity of an analytic system.

Taking a close look at the singularities of X
n

on ∂An, we see that some
lie on regular arcs of ∂An, while others lie in corners. At the former we see,
because of the Theorems 2.15 and 2.19, that there always exists an invariant
C∞ curve, transversely cutting ∂An, unless the singularity is a resonant hy-
perbolic node. The most degenerate one is such that the linear part of the
singularity consists of a single Jordan block. We represent the attracting case
in Fig. 3.6a. In any case, near all singularities on the regular part of ∂An

we find at least one orbit that blows down to a characteristic orbit of X. We
repeat, from Sect. 1.6, that a characteristic orbit is an orbit which tends to
the singularity, either in positive or negative time, with a well-defined slope.
We see therefore that X necessarily has a characteristic orbit at 0 if X

n
has

at least one singularity on the regular parts of ∂An.

(a) (b)

∂An

∂An
An

Fig. 3.6. Some singularities of X on ∂An
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C

(a)

C

(b)

Fig. 3.7. Samples of desingularizations of monodromic orbits

Singularities at corners of ∂An also lead to the existence of characteristic
orbits, except when the singularity has a hyperbolic sector with both separa-
trices in An, as represented in Fig. 3.6b.

Because of Theorem 3.3, and the observation just made, we thus see that
a �Lojasiewicz singularity either has a characteristic orbit or, if it does not
have a characteristic orbit, is a center or a focus. The latter situation is also
called monodromic. This can only happen if either X = X

1
has no singular-

ities on ∂A1 (see Fig. 3.7a) or if all singularities are corners of saddle type
(see Fig. 3.7b). In that case there is a segment C lying in An ∪ ∂An that is
transverse to the flow of X and cuts ∂An transversely at a regular point p.
A first return map can be defined for values q ∈ C for q sufficiently close
to p.

We now treat the two cases separately, starting with the monodromic
one. We consider only analytic systems, and we choose C to be an analytic
curve with an analytic choice of a regular parameter s on it; we let s = 0
coincide with ∂An and s > 0 with An. In case there are no singularities (see
Fig. 3.7a) the return map f is analytic in s, and as such, either f(s) = s or
jn(f(s)− s) �= 0 for some n ∈ N with n ≥ 1 . In the former case, X represents
a center, and in the latter case a focus. The focus need not to be a hyperbolic
one, but is at least C0-conjugate to a hyperbolic focus.

In the case there are singularities (see Fig. 3.7b), then we enter into a really
difficult subject. Although X as well as X

n
are analytic, the first return map

f does not need to be analytic. Nevertheless it is possible to prove that in this
case as well the system is either a center or a focus, excluding the possibility
of having accumulation of limit cycles at the singularities (which can occur in
the C∞ case).

An important paper dealing with the proof is [51]. The paper contains
valuable results on which subsequent work still relies. It does not however
provide a complete proof, leaving a gap that was detected only in the mid-
seventies. For a while this gap was called Dulac’s problem (see e.g., [113]). In
the meantime the proof has been completed independently by Ecalle [59] and
Ilyashenko [88].
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In the case that characteristic orbits occur, we show how to prove that such
singularities have a “finite sectorial decomposition” as defined in Sect. 1.6. We
do not have to restrict to analytic systems, but can consider C∞ singularities
of �Lojasiewicz type. The proof relies completely on Theorem 3.3, together
with Theorems 2.15 and 2.19; we provide only a rough sketch, referring to the
exercises for working out some of the details.

Choosing an orientation for ∂An we get a cyclic order on the singularities
of X

n|∂An
. To fix the ideas, we suppose that ∂An is oriented in a clockwise

way. We denote the cyclic order by “<.” The only way to get a hyperbolic
sector is by having two singularities p and q, neither lying in a corner of ∂An,
such that:

(i) Every singularity r with p < r < q is a corner of saddle type;
(ii) There is an invariant C∞ curve C1 (respectively, C2), transversely cutting

∂An at p (respectively, q), which, together with ∂An ∩ [ p, q] borders a
hyperbolic sector.

For a general picture we refer to Fig. 3.8.
Based on the normal form given in the Theorems 2.15 and 2.19, it is an easy

exercise to prove the existence of a C∞ curve that transversely cuts both C1

and C2 and that meets, inside the hyperbolic sector in between C1 and C2, the
requirements expressed in the definition of “finite sectorial decomposition.”

The way to encounter an elliptic sector is by having two singularities p
and q such that:

(i) Every singularity r with p < r < q is a corner of saddle type;
(ii) Both at p and q there is a parabolic sector adherent to [p, q] ⊂ ∂An,

of which one is attracting and the other is repelling. We refer to Fig. 3.9 for
an example. In this picture we cannot however guarantee that we see the full
elliptic sector, and surely not the maximal one as defined in Sect. 1.5.

In fact the curve C1 in Fig. 3.9 could be transverse to ∂An, but it could
also belong to ∂An. It is also possible that C2 (or its blow down) is not a good

C1

p q

C2

Fig. 3.8. Blowing up a hyperbolic sector

C1
C2

p q

Fig. 3.9. Blowing up an elliptic sector



102 3 Desingularization of Nonelementary Singularities

(a)
p

∂An ∂An

∂An (b)

Fig. 3.10. Blowing up of part of adjacent elliptic sectors

choice for bordering a maximal elliptic sector, since it is possible that the orbits
to the right of C2 also tend in negative time to ∂An, and as such, belong to
the elliptic sector if we want it to be maximal (in the sense that it is an elliptic
sector of a minimal sectorial decomposition). From the desingularized vector
field X

n
it is easy to find a maximal elliptic sector containing the part near

[p, q] as given in Fig. 3.9. We will treat some examples in the exercises.
We find two kind of bordering curves for a maximal elliptic sector. On

the one hand there are the bordering curves which also border a hyperbolic
sector. On the other hand there are bordering curves separating two adjacent
elliptic sectors; their choice is not unique, as we see in the examples given in
Fig. 3.10.

In any case, for an elliptic sector, the normal forms from the Theorems 2.15
and 2.19 permit us an easy proof of the existence of a C∞ curve, transversely
cutting the bordering curves and having the exact properties as described in
the definition of “finite sectorial decomposition” (see Sect. 1.5).

In between two hyperbolic sectors one can encounter a unique maximal
parabolic sector, whose desingularization can be quite complicated; however,
based on the normal forms in the Theorems 2.15 and 2.19 one can easily
find, inside any a priori chosen neighborhood of 0, a C∞ curve, the portion
of which that lies inside the parabolic sector is everywhere transverse to the
orbits, including the bordering orbits. We again refer to the exercises for the
details of the construction.

For a minimal sectorial decomposition it is always possible to find bor-
dering curves or separatrices (see Sect. 1.5) which are images by a blow down
mapping of a C∞ curve. The ones bordering a hyperbolic sector are of finite
type in the sense that they possess a C∞ parametrization γ : [0, ε] �→ R2 with
jrγ(0) �= 0 for some r ∈ N. They can also be seen as graphs of a C∞ function
in the variable x1/n for some n ∈ N with n ≥ 1 in suitable C∞ coordinates
(x, y); see [57]. The separatrices between two elliptic sectors do not need to
have this property, which is the case for example in Fig. 3.10b if the corner
point p is a semi-hyperbolic point. For more information see [57].

3.3 Quasihomogeneous blow-up

Although the method of successive homogeneous blow-ups is sufficient for
studying isolated singularities of an analytic vector field, it turns out to be
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much more efficient to include quasihomogeneous blow-ups. In fact the algo-
rithm that we have implemented in the program P4 [9] relies on the systematic
approach presented in [124], and which is based on the use of quasihomoge-
neous blow-ups; see also [23] and [22]. We first present the technique before
describing the algorithm.

Let 0 be a singularity of a C∞ vector field X on R2. Consider the map

φ : S1 × R → R2

(θ, r) �→ (rα cos θ, rβ sin θ) ,

for some well chosen (α, β) ∈ N × N with α, β ≥ 1. Exactly as in the “homo-
geneous case,” where (α, β) = (1, 1), we can define a C∞ vector field X̂ on
S1 × R with φ∗(X̂) = X. We will divide it by rk, for some k ∈ N with k ≥ 1,
in order to get a C∞ vector field X̄ = 1

rk X̂, which is as non–degenerate as
possible along the invariant circle S1 × {0}.

In practice one again uses directional blow-ups:

positive x-direction: (x̄, ȳ) �→ (x̄α, x̄β ȳ), leading to X̂x
+,

negative x-direction: (x̄, ȳ) �→ (−x̄α, x̄β ȳ), leading to X̂x
−,

positive y-direction: (x̄, ȳ) �→ (x̄ȳα, ȳβ), leading to X̂y
+,

negative y-direction: (x̄, ȳ) �→ (x̄ȳα,−ȳβ), leading to X̂y
−,

inducing also the systems X
x

−, X
x

+, X
y

− and X
y

+ that we obtain dividing,
respectively, by xk and yk.

If α is odd (respectively, β is odd), the information found in the posi-
tive x-direction (respectively, y-direction) also covers the one in the negative
x-direction (respectively, y-direction).

To show by an example that this technique can be quite efficient, we again
study the cusp-singularity

y
∂

∂x
+ (x2 + xy)

∂

∂y
+ O(‖(x, y)‖3), (3.5)

this time using a quasihomogeneous blowing up with (α, β) = (2, 3).
In the positive x-direction we consider the transformation (x, y) = (x̄2, x̄3ȳ).

In this case we have ẋ = 2x̄ ˙̄x, hence ˙̄x = 1
2 x̄2ȳ + O(x̄3) and ˙̄y = 3x̄2ȳ ˙̄x + x̄3ȳ,

hence ˙̄y = (1 − 3
2 ȳ2)x̄ + O(x̄2). We divide by x̄ and find

˙̄x =
x̄ȳ

2
+ O(x̄2),

˙̄y = 1 − 3
2
ȳ2 + O(x̄).

We find two hyperbolic singularities of saddle type, situated at the points
(x̄, ȳ) = (0,

√
2/3).
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Fig. 3.11. Quasihomogeneous blow-up of the cusp singularity

Similar calculations in the negative x̄-direction, as well as in the ȳ-direction
show that no other singularities are present.

As such blowing up once suffices to desingularize the singularity leading
to the picture in Fig. 3.11.

Again an accurate positioning of the invariant separatrices can be obtained
by Taylor approximation of the stable and unstable manifolds.

A question one might ask is how to effectively find the coefficient (α, β)
to use in a quasihomogeneous blow-up. This can be obtained by using the so
called Newton diagram. We first define the Newton diagram.

Let X = P (x, y) ∂
∂x + Q(x, y) ∂

∂y be a polynomial vector field with an iso-
lated singularity at the origin.

Let P (x, y) =
∑

i+j≥1

aijx
iyj and Q(x, y) =

∑
i+j≥1

bijx
iyj . The support of X

is defined to be

S = {(i − 1, j) : aij �= 0} ∪ {(i, j − 1) : bij �= 0} ⊂ R2,

and the Newton polygon of X is the convex hull Γ of the set

P =
⋃

(r,s)∈S

{(r′, s′) : r′ ≥ r, s′ ≥ s}.

The Newton diagram of X is the union γ of the compact faces γk of the
Newton polygon Γ, which we enumerate from the left to the right. If there
exists a face γk which lies completely on the half-plane {r ≤ 0}, then we start
the enumeration with k = 0, otherwise we start with k = 1. Since the origin
is an isolated singularity we have that at least one of the points (−1, s) or
(0, s) is an element of S for some s, and also at least one of the points (r, 0)
or (r,−1) is an element of S for some r. Hence there always exists a face γ1

in the Newton diagram.
Suppose that γ1 has equation αr + βs = d, with gcd(α, β) = 1. As a first

step in the desingularization process we use a quasihomogeneous blow-up of
degree (α, β). As an example we calculate the Newton diagram of the vector
field (3.5), providing the best choice of coefficients (α, β).

The support of (3.5) surely contains (−1, 1), (2,−1), and (1, 0) coming,
respectively, from y ∂

∂x , x2 ∂
∂y , and xy ∂

∂y . Besides these three points it can
contain many other points, which are in fact not essential since they all lie
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r r

s s

(a) (b)

Q1

Q2

Q3

p

q

Fig. 3.12. Calculating the Newton polygon

in the convex hull Q of Q1 ∪ Q2 ∪ Q3 with Q1 = {(r, s) : r ≥ −1, s ≥ 1},
Q2 = {(r, s) : r ≥ 2, s ≥ −1}, and Q3 = {(r, s) : r ≥ 1, s ≥ 0}. In Fig. 3.12
we represent Qi for i = 1, 2, 3 in (a) as well as P = Q in (b).

We see that the Newton diagram consists of one compact face, that we
denote by γ1 and which is the line segment joining the points p = (−1, 1) to
q = (2,−1). The line segment lies on the line of equation 2r+3s = 1 inducing
the choice (α, β) = (2, 3).

In view of an efficient use of a quasihomogeneous blow-up with coefficients
(α, β) we will no longer decompose a vector field in homogeneous components,
but in adapted quasihomogeneous components. Based on this decomposition
we will now describe an algorithm for blowing up.

We write

X =
∑
j≥d

Xj , where Xj = Pj(x, y)
∂

∂x
+ Qj(x, y)

∂

∂y

is the quasihomogeneous component of X of type (α, β) and quasihomogeneous
degree j, that is to say Pj(rαx, rβy) = rj+αPj(x, y) and Qj(rαx, rβy) =
rj+βQj(x, y). After blowing up we will divide by rd. In practice we first blow-
up the vector field in the positive x-direction, yielding, after multiplying the
result with αx̄−d:

X̄x
+ :

˙̄x =
∑
δ≥d

x̄δ+1−dPδ(1, ȳ),

˙̄y =
∑
δ≥d

x̄δ−d(αQδ(1, ȳ) − βȳPδ(1, ȳ)).

We determine the singularities on the line {x̄ = 0}.
(1) If αQd(1, ȳ)−βȳPd(1, ȳ) �≡ 0, the points (0, ȳ0) satisfying the equation

αQd(1, ȳ)−βȳPd(1, ȳ) = 0 are isolated singularities of X̄ on the line {x̄ = 0},
at which

d(X̄x
+)(0,ȳ0) =

(
Pd(1, ȳ0) 0

� α∂Qd

∂ȳ (1, ȳ0) − β(Pd(1, ȳ0) + ȳ0
∂Pd

∂ȳ (1, ȳ0))

)
,
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which immediately gives the eigenvalues as the diagonal entries. If the sin-
gularity is hyperbolic, we are done. If the singularity is semi-hyperbolic, we
have to determine the behavior on the center manifold. If the singularity is
nonelementary, we introduce ỹ = ȳ − ȳ0, and blow-up this vector field again
in the positive x̄-direction as well as in the positive and negative ỹ-direction
with a certain degree (α′, β′), which we determine from the Newton diagram
associated to the vector field.

(2) If αQd(1, ȳ) − βȳPd(1, ȳ) ≡ 0, we have a line of singularities. Since

D(X̄x
+)(0,ȳ0) =

(
Pd(1, ȳ0) 0

� 0

)
,

all the singularities are semi-hyperbolic, except those singularities (0, ȳ0) for
which Pd(1, ȳ0) = 0. The latter will require further blow-up.

Next we blow-up the vector field in the negative x-direction and study this
vector field in the same way as in the previous case.

Finally we have to blow-up the vector field in the positive and the negative
y-direction, and determine whether or not (0, 0) is a singular point, since the
others have been studied in the previous charts.

It is easy to see that (0, 0) is a singularity if and only if γ1 lies completely
in the half-plane {r ≥ 0}. If this is the case then (0, 0) is elementary. Indeed,
blowing up the vector field in the positive y-direction yields, after multiplying
the result by βȳ−d:

X̄y
+ :

˙̄x =
∑
δ≥d

ȳδ−d(βPδ(x̄, 1) − αx̄Qδ(x̄, 1)),

˙̄y =
∑
δ≥d

ȳδ+1−dQδ(x̄, 1).

Hence (0, 0) is a singular point if Pd(0, 1) = 0, i.e., if Pd(x, y) = xF (x, y),
implying that γ1 lies completely in the half-plane {r ≥ 0}. Suppose now that
(0, 0) is a singular point of X̄y

+; then we have

D(X̄y
+)(0,0) =

(
β ∂Pd

∂x̄ (0, 1) − αQd(0, 1) �
0 Qd(0, 1)

)
.

Let (0, s) be the intersection of the line γ1 and the line r = 0. Then
Pd(x, y) = axys + G(x, y) and Qd(x, y) = bys+1 + H(x, y), with a2 + b2 �=
0, degx G(x, y) ≥ 2 and degx H(x, y) ≥ 1. Hence β ∂Pd

∂x̄ (0, 1) − αQd(0, 1) =
aβ − bα. So if aβ − bα �= 0 then (0, 0) is nonelementary. If aβ − bα = 0, then
Qd(0, 1) = b �= 0, and (0, 0) is elementary, too.

In [124] it has been proven that the algorithm, as presented here, leads to
a desingularization. It is also more efficient than the usual one.

In the program P4 [9] we not only perform a detailed study near the
singular points in R2, but also near singular points at infinity. In Chap. 5 we
will describe how polynomial vector fields on R2 can be extended to infinity.
We now apply the blow-up technique to study nilpotent singularities.
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3.4 Nilpotent Singularities

In this section we study singularities, positioned at the origin, at which the

linear approximation DX(0) of the vector field X is linearly conjugate to y
∂

∂x
.

As usual we take X to be at least of class C∞; we recall that such a
singularity is called a nilpotent singularity or nilpotent singular point.

Using the Formal Normal Form Theorem presented in Sect. 2.1 and, more
specifically, the example treated there, we find the following normal form for
C∞-conjugacy:

ẋ = y + A(x, y),

ẏ = f(x) + yg(x) + y2B(x, y),

where f , g, A, and B are C∞ functions, j1f(0) = g(0) = j∞A(0, 0) =
j∞B(0, 0) = 0. By introducing the new variable Y = y + A(x, y), we change
the former expression into

ẋ = y,

ẏ = f(x) + yg(x) + y2B(x, y),
(3.6)

for appropriately adapted f , g, and B with similar properties as before. If
B ≡ 0, then the system comes from the Liénard equation ẍ = f(x) + ẋg(x).
We now make a complete local topological study of all cases in which j∞f(0)
is not zero. This includes the local study of the related Liénard equations.
Either j∞g(0) �= 0 and

f(x) = axm + o(xm),
g(x) = bxn + o(xn),

(3.7)

with ab �= 0, or j∞g(0) = 0. The dual 1-form of (3.6) is given by

−ydy + (f(x) + yg(x) + y2B(x, y))dx,

which is equal to

− ydy + df(x) + ydg(x) + y2B(x, y)dx, (3.8)

for some C∞ functions f and g such that

f(x) =
axm+1

m + 1
+ o(xm+1) and

g(x) =
bxn+1

n + 1
+ o(xn+1),

provided j∞g(0) �= 0.
A linear change in x permits f to be changed into

f(x) =
δxm+1

m + 1
+ o(xm+1),
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with δ = 1 in case m is even and δ = 1 in case m is odd. Changing y by −y
if necessary we may suppose that b > 0. Instead of reducing a to δ, we could
also perform on g an operation similar to the one performed on f to reduce b
to +1, hence obtaining

g(x) =
xn+1

n + 1
+ o(xn+1),

provided j∞g(0) �= 0.
So up to linear (not necessarily orientation preserving) equivalence, we can

suppose that in expression (3.7)

either a = δ and b > 0, or b = 1, (3.9)

with δ = 1 when m is even and δ = 1 when m is odd.
If j∞g(0) �= 0, we observe that a coordinate change

y = Y +
∫ x

0

g(u)du = Y + G(x), (3.10)

permits changing an expression (3.6) with B ≡ 0 into

ẋ = Y + G(x),
ẏ = f(x).

If B �≡ 0, then (3.10) changes expression (3.6) into

ẋ = Y + G(x),

Ẏ = F (x) + Y H(x) + Y 2D(x, Y ),
(3.11)

where G, F , H, and D are C∞ functions, j∞F (0) = j∞f(0), j∞H(0) =
j∞D(0, 0) = 0. By a well chosen C∞ coordinate change Y = y + α(x) with
j∞α(0) = 0 we can even change (3.11) into

ẋ = y + G(x),

ẏ = F (x) + y2C(x, y),
(3.12)

with j∞G(0) = j∞G(0), j∞F (0) = j∞F (0) and j∞C(0, 0) = 0. Then expres-
sion (3.12) is also valid if j∞g(0) = 0.

We write (3.12) as
ẋ = y + H(x),

ẏ = F (x) + y2C(x, y),
(3.13)

with H(0) = 0. The relation between (3.12) and (3.13) is given by

j∞H ′(0) = j∞g(0),
j∞F (0) = j∞f(0).
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The study of these singularities now relies on (quasihomogeneous) blow-
up. We systematically work it out, depending on the values of m and n, where
m ≥ 2 and n ≥ 1 including n = ∞, the latter of which means that we accept
j∞g(0) = 0 in expression (3.6).

We distinguish three cases.
Hamiltonian like case: m < 2n + 1. If m is odd we use the blow-up

x = u, y = uky, (3.14)

with k = (m + 1)/2 and we divide by uk−1.
If m is even we use

x = u2, y = um+1y, (3.15)

and we divide by um−1.
Singular like case: m > 2n + 1. We use the blow-up

x = u, y = un+1y, (3.16)

and we divide by un.
Mixed case: m = 2n + 1. We use again the blow-up (3.16)

In all cases there is no need to check the directional charts {y = 1}
because of the specific expression of the linear part. We may also restrict to
{x = 1}, since the n-exponent in front of x is odd, except for blow-up (3.15).

3.4.1 Hamiltonian Like Case (m < 2n + 1)

We start with expression (3.8) for the dual 1-form and change f(x) to
δxm+1/(m+1) by a coordinate change in x. This changes expression (3.6) by
C∞ equivalence into

ẋ = y,

ẏ = δxm + y(bxn + o(xn)) + O(y2).

Case m odd: We know that δ = 1 and we use blow-up (3.14) in the
x-direction (x, y) �−→ (u, uky), with k = (m + 1)/2. After division by uk−1

we get
u̇ = uy,

ẏ = (δ − ky2) + O(u).

The blow-up and related phase portraits for this system that can be seen in
Fig. 3.13.

For δ = 1 we get a singularity of saddle-type. One can prove that it is C0-
conjugate to a hyperbolic saddle, but we will not work it out, as announced
before. The contact between the different separatrices is described by the
blowing up mapping.

For δ = −1 we get a singularity of center or focus type. It is not a simple
problem to determine whether it is a center or a focus.
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C2

C1

?

Fig. 3.13. Desingularization of Hamiltonian like case when m is odd

Case m even: In this case we can take δ = 1 and we use blow-up (3.15) in
the x-direction as well as in the −x-direction

(x, y) = (u2, um+1y), or

(x, y) = (−u2, um+1y).

After division by um−1 we get, respectively,

u̇ =
uy

2
,

ẏ =
(

1 − m + 1
2

y2

)
+ O(u),

and
u̇ = −uy

2
,

ẏ =
(

1 +
m + 1

2
y2

)
+ O(u).

The blow-up and related phase portraits for this system can be seen in
Fig. 3.14.

We get a singularity consisting of two hyperbolic sectors. It is called a cusp
point. The contact between the separatrices is described by the blowing up
mapping.

We note that in the Hamiltonian like case we can also take n = +∞,
meaning that j∞g(0) = 0 in expression (3.6).

3.4.2 Singular Like Case (m > 2n + 1)

We start with expression (3.8) for the dual 1-form and, making analogous
changes as in the Hamiltonian like case but on g instead of f , we change
expression (3.6) by C∞ equivalence, and possible time reversion, into
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x = −1−

x = 1−

Fig. 3.14. Desingularization of Hamiltonian like case when m even

(a) (b) (c) (d )

Fig. 3.15. Blow-ups of the singular like case

ẋ = y,

ẏ = axm + y(xn + o(xn)) + O(y2),

with a �= 0.
We use blow-up (3.16) in the x-direction

(x, y) = (u, un+1y).

After division by un we get

u̇ = uy,

ẏ = y(1 − (n + 1)y + O(u)) + aum−2n−1.

On {u = 0} we find two singularities, situated, respectively, at y = 1/(n + 1)
and at y = 0. The former is clearly a hyperbolic saddle. The latter is a
semi-hyperbolic point with {u = 0} as unstable manifold and having a center
manifold transverse to it. We leave it as an exercise to prove that the center
behavior is not flat, because of the presence of the term aum−2n−1. This leads
to the possible portraits for the blow-up given in Fig. 3.15.

In getting the {x = −1}–chart out of these pictures, we must take care
concerning the parity of n. Depending on the parity of n, cases (b) and (d) in
Fig. 3.15 will induce two different phase portraits (see, respectively, (a), (c)
and (e), (f) in Fig. 3.16).
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(a)

(f )(d) (e)

(b) (c)

Fig. 3.16. Phase portraits of the singular like case

The totality of phase portraits obtained is represented in Fig. 3.16. Again
the contact in between the separatrices is clear from the blow-up mapping.

The cases (d) and (f) are topologically equivalent, so we have five different
phase portraits.

Figure 3.16 may give the impression that a global attractor, similar to the
global repellor in (c), might not be possible in the singular like case, but
this is merely because of the choice of the coefficients in the normal form.
Multiplying the vector field by −1, corresponding to a time reversal, creates
the possibility of getting such an attractor. Thus there are six topologically
distinct phase portraits in all.

3.4.3 Mixed Case (m = 2n + 1)

We start with expression (3.8) for the dual 1-form and, making analogous
changes as in the previous cases, we change expression (3.6) by C∞ equiva-
lence, and possible time reversion, into

ẋ = y,

ẏ = ax2n+1 + y(xn + o(xn)) + O(y2),

with a �= 0.
We use blow-up (3.16) in the x-direction (x, y) = (u, un+1y). After division

by un we get
u̇ = uy,

ẏ = a + y − (n + 1)y2 + yO(u),

with a �= 0.
On {u = 0} the singularities are given by the solution of

a + y − (n + 1)y2 = 0.

We either have zero, one, or two solutions. No solution can be situated at the
origin, since a �= 0. The blow-ups are shown in Fig. 3.17.
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(a) (b) (c) (d)

Fig. 3.17. Blow-ups of the mixed case

(a)

(f )(d) (e)

(b) (c)

?

Fig. 3.18. Phase portraits of the mixed case

Again, depending on the parity of n, cases (b) and (c) give rise to two
different phase portraits.

The blow-ups in Fig. 3.17 hence induce the phase portraits of Fig. 3.18.
Although contacts of separatrices might differ, these phase portraits are

not topologically different from the ones we already found before. In case (f)
we are again left with a center or focus problem.

Remark 3.4 One can prove that for nilpotent singularities with j∞f(0) �= 0,
there are eight different classes for topological conjugacy. As we have seen, the
multiplicity is clearly given by the number m.

With respect to (3.6) it remains to consider the cases in which j∞f(0) = 0.
We perform this study only for analytic vector fields. We start with an

analytic vector field X given by

ẋ = y + α(x, y),
ẏ = β(x, y),

with α and β analytic, j1α(0, 0) = j1β(0, 0) = 0.
If we introduce the new variable Y = y + α(x, y), and write y instead of

Y , then we get
ẋ = y,

ẏ = δ(x) + yγ(x, y).
(3.17)
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We now prove that

j∞f(0) = 0 if and only if δ(x) ≡ 0. (3.18)

The Normal Form Theorem relies on transformations of the form

(u, v) = (x + A(x, y), y + B(x, y)), (3.19)

with A and B polynomials of a given degree n; the procedure uses an induction
on n. To prove (3.18) we need only make a formal calculation, that is simply
look at ∞-jets at (0, 0). The operation to transform (3.17) to a normal form
by means of (3.19) implies that(

1 +
∂A

∂x

)
y +

∂A

∂y
(δ(x) + yγ(x, y)) = y + B(x, y),

∂B

∂x
y +

(
1 +

∂B

∂y

)
(δ(x) + yγ(x, y)) = f(x + A(x, y))

+ (y + B(x, y))Γ(x, y),

(3.20)

for some function Γ.
If we consider the second equation at y = 0, this gives(

1 +
∂B

∂y
(x, 0)

)
δ(x) = f(x + A(x, 0)) + B(x, 0)Γ(x, 0).

Taking into account the degree of the terms, we see that jnδ(0) = jnf(0)
when jn−1δ(0) = jn−1f(0) = 0.

An induction argument hence shows that both f and δ have the same term
of lowest degree, with the same coefficient.

Therefore the condition j∞f(0) = 0 on the normal form implies that
δ(x) ≡ 0 in expression (3.17), and we get the vector field X given by

ẋ = y,

ẏ = yγ(x, y),
(3.21)

for which {y = 0} is a line of singularities.
We now prove that

j∞g(0) = 0 if and only if γ(x, 0) = 0. (3.22)

This means that, under the condition j∞f(0) = 0, j∞g(0) = 0 as well if and
only if the divergence of X is identically zero along the curve of singularities.

The proof of (3.22) is similar to the proof of (3.18). Instead of (3.20) we
now find the equations (at the ∞-jet level)(

1 +
∂A

∂x

)
y +

∂A

∂y
yγ(x, y) = y + B(x, y),

∂B

∂x
y +

(
1 +

∂B

∂y

)
yγ(x, y) = (y + B(x, y))g(x + A(x, y)).
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In the second equation we see that

B(x, 0)g(x + A(x, 0))

has to be zero. So either B(x, 0) = 0 or j∞g(0) = 0.
We first take B(x, 0) = 0. If we now divide the second equation by y, and

put y = 0 we then get(
1 +

∂B

∂y
(x, 0)

)
γ(x, 0) = g(x + A(x, 0)),

implying that the n-jet of γ(x, 0) is given by jng(0) when their (n − 1)-jets
are both zero. If however j∞g(0) = 0, then we get

∂B

∂x
(x, 0) +

(
1 +

∂B

∂y
(x, 0)

)
γ(x, 0) = 0,

implying inductively that the ∞-jet of γ(x, 0) also has to be zero.
We hence find two different situations for expressions (3.21). On the one

hand we have
ẋ = y,

ẏ = y2ϕ(x, y),
(3.23)

describing the cases whose formal normal form is zero. The phase portrait is
obtained by drawing the flow box

ẋ = 1,
ẏ = yϕ(x, y),

and multiplying it by the function y. The result is presented in Fig. 3.19.
On the other hand we have the analytic expressions

ẋ = y,

ẏ = yxn(1 + r(x)) + y2ψ(x, y),
(3.24)

for some n ≥ 1.
It is again a flow box multiplied by the function y. The flow box is

ẋ = 1,
ẏ = xn(1 + r(x)) + yψ(x, y).

(3.25)

Fig. 3.19. Phase portrait of (3.23)
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n odd n even

Fig. 3.20. Phase portrait of (3.24)

Along {y = 0} the contact of (3.25) with the x-axis is described by

ẏ = xn(1 + r(x)) ∼ xn.

This leads to the phase portraits described in Fig. 3.20.

3.5 Summary on Nilpotent Singularities

Here we give a specific and practical theorem which summarizes the previ-
ous results and which is very helpful for determining the local behavior at a
nilpotent singular point; see [2] for more details.

Theorem 3.5 (Nilpotent Singular Points Theorem) Let (0, 0) be an iso-
lated singular point of the vector field X given by

ẋ = y + A(x, y),
ẏ = B(x, y),

(3.26)

where A and B are analytic in a neighborhood of the point (0, 0) and also
j1A(0, 0) = j1B(0, 0) = 0. Let y = f(x) be the solution of the equa-
tion y + A(x, y) = 0 in a neighborhood of the point (0, 0), and consider
F (x) = B(x, f(x)) and G(x) = (∂A/∂x + ∂B/∂y)(x, f(x)). Then the fol-
lowing holds:

(1) If F (x) ≡ G(x) ≡ 0, then the phase portrait of X is given by Fig. 3.21a.
(2) If F (x) ≡ 0 and G(x) = bxn + o(xn) for n ∈ N with n ≥ 1 and b �= 0,

then the phase portrait of X is given by Fig. 3.21b or c.
(3) If G(x) ≡ 0 and F (x) = axm + o(xm) for m ∈ N with m ≥ 1 and a �= 0,

then
(i) If m is odd and a > 0, then the origin of X is a saddle (see Fig. 3.21d)

and if a < 0, then it is a center or a focus (see Fig. 3.21e–g);
(ii) If m is even then the origin of X is a cusp as in Fig. 3.21h.

(4) If F (x) = axm + o(xm) and G(x) = bxn + o(xn) with m ∈ N, m ≥ 2,
n ∈ N, n ≥ 1, a �= 0 and b �= 0, then we have
(i) If m is even, and

(i1) m < 2n + 1, then the origin of X is a cusp as in Fig. 3.21h;
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(d )

(i ) (k)

(l )

(h)

(a)

(e)

(b) (c )

(g)(f )

( j )

(m)

Fig. 3.21. Phase portraits of nilpotent singular points

(i2) m > 2n + 1, then the origin of X is a saddle-node as in Fig. 3.21i
or j;

(ii) If m is odd and a > 0 then the origin of X is a saddle as in Fig. 3.21d;
(iii) If m is odd, a < 0 and

(iii1) Either m < 2n + 1, or m = 2n + 1 and b2 + 4a(n + 1) < 0, then
the origin of X is a center or a focus (see Fig. 3.21e–g);

(iii2) n is odd and either m > 2n + 1, or m = 2n + 1 and b2 + 4a(n +
1) ≥ 0, then the phase portrait of the origin of X consists of one
hyperbolic and one elliptic sector as in Fig. 3.21k;

(iii3) n is even and either m > 2n+1, or m = 2n+1 and b2+4a(n+1) ≥
0, then the origin of X is a node as in Fig. 3.21l, m. The node is
attracting if b < 0 and repelling if b > 0.

Remark 3.6 In Fig. 3.21 we have represented all possible phase portraits of
nilpotent singularities. In the pictures we have paid attention to the fact that
the separatrices have certain contacts, but we have of course not stressed
the exact order of contact they have. This easily follows from the blow-up
procedures. We have also ignored to the exact position of the different sep-
aratrices in relation to {y = 0} in case that we change the expression of
(3.26), by means of an analytic coordinate change, to a new one in which
x = y. Such information can also be easily been obtained by the blow-up
procedure.
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Remark 3.7 Section 3.4 has not really been arranged in such a way as to
contain a systematic proof of this theorem. We have preferred to treat the
different nilpotent singularities according to the kind of blow-up that is needed
to study them. It is however clear that in order to get a precise proof of
Theorem 3.5 it is sufficient to go through the different cases and to apply the
blow-ups as indicated in Sect. 3.4. We can leave this as an exercise.

The remaining center-focus problem, on the other hand, is an open
problem.

3.6 Exercises

Exercise 3.1 Consider the vector field (y +2x3) ∂
∂x +(x2 +xy +y3) ∂

∂y . Make
an appropriate quasihomogeneous blow-up at the origin and calculate a para-
metrization γ : (R, 0) → (R2, 0) of the two separatrices, up to terms of order
5, i.e., with a remainder of order O(t5).

Exercise 3.2 Study the following vector fields by means of an appropriate
quasihomogeneous blow-up

(i) −y ∂
∂x + x3 ∂

∂y ,
(ii) (y3 + xy2) ∂

∂x + x2 ∂
∂y .

Exercise 3.3 Let X be a C∞ vector field satisfying a �Lojasiewicz inequality
at p and suppose that the C∞ vector field Y at q is C∞-conjugate to X at p.
Show that Y at q also satisfies a �Lojasiewicz inequality.

Exercise 3.4 Check that the following vector fields satisfy a �Lojasiewicz
inequality at the origin:

(i) (y + x3) ∂
∂x − x3 ∂

∂y .
(ii) (x + y) ∂

∂x + y4 ∂
∂y .

Exercise 3.5 Prove that a �Lojasiewicz inequality holds for

(i) all hyperbolic singularities.
(ii) Singularities whose 1-jet is a center.
(iii) Semi-hyperbolic singularities with nonflat center behavior.
(iv) Nilpotent singularities for which in (3.6) j∞f(0) �= 0 holds.

Exercise 3.6 Prove that a C∞ vector field X satisfies a �Lojasiewicz inequal-
ity at a singularity p if and only if there exists a finite jet jkX(p) with the
property that ||jkX(p)|| ≥ c||x||k for some c > 0.

Exercise 3.7 Prove that no �Lojasiewicz inequality holds for the vector field

X = (y + x2)2
∂

∂x
+ (y + x2)

∂

∂y
,
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but its 2-jet j2X(0) does satisfy a �Lojasiewicz inequality ||j2X(0)|| ≥ c||x||4
for some c > 0.

Exercise 3.8 Prove the existence of a finite sectorial decomposition for the
following singularities at (0, 0).

(i) y ∂
∂x + x2 ∂

∂y ,
(ii) (3x2 − 2xy) ∂

∂x + (y2 − 3xy) ∂
∂y ,

(iii) (x2 − y2) ∂
∂x + 2xy ∂

∂y ,
(iv) x2 ∂

∂x + y(2x − y) ∂
∂y

Exercise 3.9 Consider the vector field in Example 3.1, of which the local
phase portrait is represented in Fig. 3.2,

X = (x2 − 2xy)
∂

∂x
+ (y2 − xy)

∂

∂y
+ O(‖(x, y‖3).

(i) Show that for ε sufficiently small, the six separatrices of this system cut
Sε = {(x, y)|x2 + y2 = ε} transversely.

(ii) Show that for each of these systems the “finite sectorial decomposition”
property holds on some neighborhood V of the origin.

(iii) Prove that any two of the above systems are locally C0-equivalent.
(iv) Show that inside any hyperbolic sector, the time to go from the boundary

∂V to itself tends monotonically to infinity when the orbit approaches the
separatrices.

(v) Use (iv) to prove that any two of the above systems are mutually C0-
conjugate.

Exercise 3.10 Show that for any C∞ singularity of �Lojasiewicz type (sat-
isfying a �Lojasiewicz inequality) with a characteristic orbit, there is a finite
sectorial decomposition whose boundary is C∞.

Remark: The proof of the existence of a C∞ boundary relies on the use of
a “C∞-partition of the unity.” As a first step in the proof we suggest proving
the existence of a C0 boundary.

Exercise 3.11 Check that every C∞ singularity that satisfies a �Lojasiewicz
inequality but does not have a characteristic orbit is necessarily monodromic.

Hint: Provide a proof based on the theorems that are cited in the book,
even those whose proof is not incorporated.

Exercise 3.12 Use Theorem 3.5 to check the nature of the singularity at the
origin of

(−x2 + ay2 − xy − 2xy2)
∂

∂x
+ (y2 + xy + y3)

∂

∂y
,

with a �= 0 and 1 + 2a > 0.
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3.7 Bibliographical Comments

The desingularization theorem for planar vector fields has a long history. It
was first stated by Bendixson in 1901, however without proof. The paper also
included the topological classification of the elementary singular points.

In 1968, Seidenberg gave the first rigorous proof of the theorem for the
analytic case. The desingularization procedure was extended to C∞ vector
fields of �Lojasiewicz type in [52]. This paper is based on the Ph.D.–thesis of
Dumortier from 1973. In the mid seventies, van den Essen found a transformed
proof of the desingularization theorem for analytic vector fields; see [159].

In all previous papers, the desingularization was based on quadratic trans-
formations, or in the real case, on polar blow-up, hence in the terminology of
this chapter, on the homogeneous blow-up.

Quasihomogeneous blow-up was already used in the book of Lyapunov
[106] but was essentially put forward as a systematic and a more powerful
technique in the paper by Brunella and Miari [22] and especially in the book
of Bruno [23]. A proof of the desingularization theorem for C∞ vector fields of
�Lojasiewicz type, based on quasihomogeneous blow-ups, was given by Pelletier
in her thesis [124]; see also [125]. The desingularization procedure used in
the program P4 [9] is based on the algorithm presented in that thesis. The
classification of nilpotent singularities can be found in the papers of Andreev
[2] and of Arrowsmith [8]. The elaboration that we provide in this chapter
is based on quasihomogeneous blow-up and is by far the simplest that seems
possible.
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Centers and Lyapunov Constants

One of the more classical problems in the qualitative theory of planar differ-
ential equations is the problem of distinguishing between a focus and a center.
This problem is unsolved in general, but in the case that the singular point is a
linear center there are algorithms for solving it. The present chapter provides
one of the best of these algorithms.

4.1 Introduction

Suppose that P and Q are analytic functions defined in a neighborhood of the
origin, and that (x, y) = (0, 0) is a singular point, linearly a focus or a center,
for the system

ẋ = P (x, y), ẏ = Q(x, y).

Doing a suitable linear change of variables, the system can written in the
form

ẋ = λx + y + p(x, y), ẏ = −x + λy + q(x, y), (4.1)

where p and q are analytic functions without constant or linear terms. If λ �= 0
the origin is a strong focus, stable if λ < 0, and unstable if λ > 0. If λ = 0
the origin is either a weak focus or a center. The search for necessary and
sufficient conditions on p and q for the origin to be a center has a long history
and many methods have been developed. When the origin is a center there
exists an analytic first integral; this result is due to Poincaré and for a proof
see [90].

Recently, the problem of distinguishing between a weak focus and a center
has been stimulated considerably by the use of computer algebra systems. In
particular, it has been made possible to find necessary and sufficient conditions
for a singularity to be a center for many classes of systems of the form (4.1)
which had previously been intractable.

In this chapter we will provide an algorithm for distinguishing between
a focus and a center when the system is linearly a center, that is, when the
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eigenvalues at the origin are purely imaginary. In the first section of this
chapter we present the normal form for singularities having a linear center.
The rest of the chapter is dedicated to the algorithm and to its applications.

4.2 Normal Form for Linear Centers

In this section we will follow the notations and definitions introduced in
Sect. 2.1.

We calculate the normal forms for singularities having a linear center.
Although it is not necessary, we use complex coordinates, since it simplifies
the calculations.

Take z = x + iy and z = x − iy; as we know

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
and

α

(
x

∂

∂y
− y

∂

∂x

)
= iα

(
z

∂

∂z
− z

∂

∂z

)
,[

z
∂

∂z
− z

∂

∂z
, zizj ∂

∂z

]
= (i − 1 − j)zizj ∂

∂z
,[

z
∂

∂z
− z

∂

∂z
, zizj ∂

∂z

]
= (i + 1 − j)zizj ∂

∂z
.

We have that Ker ad2mA = {0}, while the kernel of ad2m+1A is spanned by{
(zz)mz

∂

∂z
, (zz)mz

∂

∂z

}
, or by

{
(zz)mi

(
z

∂

∂z
− z

∂

∂z

)
, (zz)m

(
z

∂

∂z
+ z

∂

∂z

)}
={

(x2 + y2)m

(
x

∂

∂y
− y

∂

∂x

)
, (x2 + y2)m

(
x

∂

∂x
+ y

∂

∂y

)}
.

This leads to the ∞-jet

(α + f(x2 + y2))
(

x
∂

∂y
− y

∂

∂x

)
+ g(x2 + y2)

(
x

∂

∂x
+ y

∂

∂y

)
,

with f(0) = g(0) = 0, which is the normal form for C∞ conjugacy of a linear
center. If we divide it by (α + f(x2 + y2)) we get the following normal form
for C∞ equivalence:(

x
∂

∂y
− y

∂

∂x

)
+ h(x2 + y2)

(
x

∂

∂x
+ y

∂

∂y

)
. (4.2)

Both normal forms are only formal and not C∞; it is in general not pos-
sible to remove extra flat terms, as we did in Sect. 2.7 for the elementary



4.2 Normal Form for Linear Centers 123

singularities. The formal series f , g, and h are also not convergent in general,
not even for analytic (4.1). Nevertheless we now show how to prove that an
analytic (4.1) represents a center if and only if h is identically zero.

We consider a planar analytic differential equation

ẋ = −y + P (x, y) = −y +
∞∑

k=2

Pk(x, y),

ẏ = x + Q(x, y) = x +
∞∑

k=2

Qk(x, y),
(4.3)

where Pk and Qk are homogeneous polynomials of degree k. We can also write
it in polar coordinates (r, θ):

dr

dθ
=

∞∑
k=2

Sk(θ)rk, (4.4)

where Sk(θ) are trigonometric polynomials in the variables sin(θ) and cos(θ);
or in complex coordinates (z, z̄):

ż = iz +
∞∑

k=2

Rk(z, z̄), (4.5)

where Rk are homogeneous polynomials of degree k in z, z̄.
If we denote by r(θ, r0) the solution of (4.4) such that r(0, r0) = r0 then

close to r = 0 we have

r(θ, r0) = r0 +
∞∑

k=2

uk(θ)rk
0 ,

with uk(0) = 0 for k ≥ 2. The Poincaré return map near r = 0 is expressed
by

Π(r0) = r(2π, r0) = r0 +
∞∑

k=2

uk(2π)rk
0 .

Since Π is analytic it is clear that Π(r0) ≡ r0, and hence that (4.3) rep-
resents a center, if and only if un(2π) = 0 for all n. Suppose for a moment
that this is not the case and let K be the smallest natural number such that
uK(2π) �= 0. This K clearly does not depend on the analytic coordinates cho-
sen, nor does it change when we multiply the vector field by a positive analytic
function. We can hence use the fact that (4.3) is analytically equivalent to an
analytic equation whose (2k + 1)-jet is given by(

x
∂

∂y
− y

∂

∂x

)
+

k∑
l=1

al(x2 + y2)l

(
x

∂

∂x
+ y

∂

∂y

)
, (4.6)

with k = [K/2].
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The analytic equation can be written in polar coordinates as

dr

dθ
=

k∑
l=1

alr
2l + O(r2k+2). (4.7)

It is a straightforward calculation to show that necessarily a1 = . . . =
ak−1 = 0, that K = 2k + 1, hence is odd, and that

uK(2π) = 2πak. (4.8)

Our claim follows from relation (4.8), which also gives a nice relation be-
tween the first nonzero term of h and the first nonzero term of Π−Id.

When P and Q are polynomials, by the Hilbert Basis Theorem, there exists
a m ∈ N with m ≥ 1 such that h = 0 if and only if jmh(0) = 0.

Although (4.2) is quite simple, it turns out that in many applications the
current status of computer technology does not permit its calculation, to the
required order, within a reasonable amount of time. The formulas also become
rather intractable if many parameters are involved. We therefore will now pay
attention to different techniques.

4.3 The Main Result

In several papers starting with Poincaré and Lyapunov it has been shown
how necessary conditions are obtained by calculating the “focal values.” It
is well known (see e.g., [106]) that there exists a formal series V (x, y) =
(x2 + y2)/2 + O(‖(x, y)‖3) such that V̇ (its rate of change along orbits) is of
the form

V̇ = η2r
2 + η4r

4 + . . . + η2kr2k + . . . ,

where r2 = x2 +y2. The η2k are called the focal values and are polynomials in
the coefficients of p and q. We will not prove this, since we will merely work
with the first nonzero term. So we prove the existence and uniqueness of some
η2l for which there exists V (x, y) = (x2 + y2)/2 + O(‖(x, y)‖3) with

V̇ = η2lr
2l + O(r2l+1).

Such an expression, including the value of η2l, is invariant under near-
identity transformations as well as under multiplication of the vector field
with a function f , that has the property f(0) = 1. We can hence suppose that
(4.3) has the form(

x
∂

∂y
− y

∂

∂x

)
+ ak(x2 + y2)k

(
x

∂

∂x
+ y

∂

∂y

)
+ Y, (4.9)
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where Y = O(‖(x, y)‖2k+3). We also consider

V (x, y) = (x2 + y2)/2 +
2l∑

i=3

Pi(x, y) + W (x, y),

where Pi are homogeneous polynomials of degree i and W = O(‖(x, y)‖2l+1).
The cited problem then reduces to:

2l∑
i=3

(
x

∂Pi

∂y
− y

∂Pi

∂x

)
+ak(x2+y2)k+1−η2l(x2+y2)l = O(‖(x, y)‖p), (4.10)

where p = min(2l+1, 2k +3). We now suppose that k = l−1 such that (4.10)
can be written as

2l∑
i=3

(
x

∂Pi

∂y
− y

∂Pi

∂x

)
+ (al−1 − η2l)(x2 + y2)l = O(‖(x, y)‖2l+1). (4.11)

A treatment similar to what we will do now would show that (4.10) has no
solution if k �= l − 1.

If we write

Pi(x, y) =
i∑

j=0

ajx
jyi−j ,

we see that

x
∂Pi

∂y
− y

∂Pi

∂x
= −a1y

i +
i−1∑
k=1

((i − k + 1)ak−1 − (k + 1)ak+1)xkyi−k + ai−1x
i.

(4.12)
For i odd, expression (4.12) needs to be zero, which is not possible if we take
Pi = 0.

For i even and i < 2l we also need (4.12) to be zero. This can be achieved
if we take i = 2p and

Pi(x, y) = a0(y2p +
p∑

k=1

p − (k − 1)
k

p − (k − 2)
k − 1

. . .
p − 1

2
px2ky2(p−k)). (4.13)

For i = 2l we may of course take a solution like in (4.13) that makes (4.12)
equal to zero, but we can also check that (4.12) is never of the form c(x2+y2)l

for some c �= 0. We leave this as an exercise for the reader.
In any case we see for the first nonzero focal value that

η2l = al−1. (4.14)
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Together with (4.8) this gives:

u2l−1(2π) = 2πη2l. (4.15)

It is hence clear that the origin is a center if and only if η2k = 0 for
all k. Moreover the stability of the origin is determined by the sign of the
first nonzero focal value. As η2k is relevant only when η2l = 0 for l < k, we
put η2 = η4 = . . . = η2k−2 = 0 in the expression for η2k. The quantities
obtained in this way are called the Lyapunov constants and are denoted by
L(k), for k = 1, 2, . . .. By convention, nonzero multiplicative factors can be
omitted from the expressions given for the Lyapunov constants if we are in-
terested only in knowing whether they are zero or nonzero. It turns out that
in many applications it is easier to calculate Lyapunov constants than the
normal form (4.2), although it still requires a great deal from the computer
technology.

If P and Q are polynomials, by the Hilbert basis theorem there is a con-
stant m such that L(k) = 0 for all k if and only if L(k) = 0 if k ≤ m. Therefore
it is necessary to compute only a finite number of the Lyapunov constants,
though with few exceptions for any given case it is unknown a priori how
many are required. Thus sets of necessary conditions are obtained, and the
sufficiency of each set is then considered separately.

In general, the calculation of Lyapunov constants by hand is impossible
except in the simplest cases, and several computational methods have been
developed. In what follows we present one of the best methods for computing
the Lyapunov constants.

Instead of working with the η2l we prefer to work with

V2n+1 = u2n+1(2π) = 2πη2n+2,

when u2(2π) = . . . = u2n(2π) = 0 and call it, from now on, the n-th Lyapunov
constant. Instead of using the name of Lyapunov constant other authors call
them focal values. Moreover their definition is slightly different, but in the
end the definitions only differ by a constant.

The main result of this chapter is the following.

Theorem 4.1 We consider the analytic differential system (4.3) or the as-
sociated 1-form

dH(x, y) + ω1(x, y) + ω2(x, y) + . . . = 0,

where H(x, y) = 1
2 (x2 + y2) and ωl(x, y) = −Ql+1(x, y)dx + Pl+1(x, y)dy, for

every l ∈ N. Then

Vn = − 1

2
n+1

2

1

ρ
n+1

2

∫
H=ρ

n−1∑
l=1

ωlhn−1−l,
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where h0 ≡ 1 and hm for m = 1, . . . , n− 2 are polynomials defined recursively
by the expression

d

(
m∑

l=1

ωlhm−l

)
= −d (hmdH) .

We remark that the integral that appears in the expression for V2n+1 and
in other similar formulas in this section, must be over a level curve of H
which is oriented in the direction of the Hamiltonian vector field −y∂/∂x +
x∂/∂y.

We must note that, in Theorem 4.1, the key point in obtaining the Lya-
punov constants lies in the computation of the polynomials hm. In Lemma
4.5 it will be explained how they can be computed if the system is written
either in polar coordinates, or if it is written in complex coordinates.

From Theorem 4.8 presented in Sect. 4.5, we shall deduce an algorithm
which allows the computation of the expressions for V3, V5, V7, V9, and V11 for
a general system (4.3) in an acceptable period of time; see Table 4.1.

In Sect. 4.6, Theorems 4.1 and 4.8 are used to compute Lyapunov con-
stants for some families of differential equations in the plane. More explicitly,
the speed of the method is shown in the case of systems with nonlinear homo-
geneous perturbation; see Tables 4.2–4.5. Finally, the algorithm is also applied
to study the focus-center problem for systems

ẋ = −y,

ẏ = x + Qn(x, y),
(4.16)

where Qn(x, y) is a homogeneous polynomial of degree n, for n = 2, . . . , 5.

4.4 Basic Results

This section deals with the proof of the main result, Theorem 4.1. A first step
consists in evaluating the first nonzero derivative of the return map associated
to the perturbation of the Hamiltonian system dH = 0, when H(x, y) =
(x2 + y2)/2

Theorem 4.2 Consider the solution of the analytic differential equation in
the plane

ωε = dH +
∞∑

i=1

εiωi = 0,

where ωi are polynomial 1-forms, not necessarily homogeneous, which vanish
at the origin, and H(x, y) = 1

2 (x2 + y2).
Let L(ρ, ε) = ρ+ εL1(ρ)+ . . .+ εkLk(ρ)+O(εk+1) be the map that defines

the first return associated to the transverse section Σ (we choose H = ρ > 0
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to parametrize the transverse section Σ). We assume that L1(ρ) ≡ . . . ≡
Lm−1(ρ) ≡ 0. Then there exist polynomials h0 ≡ 1, h1, . . . , hm−1 such that

d

(
m∑

i=1

ωihm−i

)
= −d(hmdH),

and the mth derivative of L with respect to ε is m!Lm(ρ), with

Lm(ρ) = −
∫

H=ρ

m∑
i=1

ωihm−i.

We must observe that the usefulness of these theorems in evaluating the
Lyapunov constants primarily depends on the way that one can calculate
the polynomials hj . In [65], the author chooses complex coordinates. In [157]
the authors use both complex and polar coordinates. The results which follow
show how the polynomials hj are found in these cases. The first is just a
reformulation of the results of [65], while the second will allow us to extend
Theorem 4.1 to other Hamiltonian different from H = 1

2 (x2 + y2), like for
instance H = 1

4 (x4 + 2y2).
We first introduce a bit of notation, and we also prove a technical lemma.

Lemma 4.3 Consider the 1-differential form ω = A(z, z̄)dz+B(z, z̄)dz̄, with
A and B polynomials in z and z̄. Then∫

H=ρ

ω = −2πi
∑

k

coef
(
− ∂

∂z̄
A +

∂

∂z
B, zkz̄k

)
(2ρ)k+1

k + 1
,

where the function coef(f, zkz̄l) gives the coefficient of the monomial zkz̄l, for
every k and l, of f .

Proof. From Stokes’ Theorem we have that∫
H=ρ

ω =
∫

H=ρ

(A(z, z̄)dz + B(z, z̄)dz̄)

=
∫

H≤ρ

d (A(z, z̄)dz + B(z, z̄)dz̄)

=
∫

H≤ρ

(
∂A

∂z̄
dz̄ ∧ dz +

∂B

∂z
dz ∧ dz̄

)
=
∫

H≤ρ

(
−∂A

∂z̄
+

∂B

∂z

)
dz ∧ dz̄.
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If the functions A and B are polynomials, then we only need to know the
value of

∫
H≤ρ

zkz̄ldz ∧ dz̄, for every k, l. With the change z = Reiθ we get∫
H≤ρ

zkz̄ldz ∧ dz̄ =

=
∫ √

2ρ

0

∫ 2π

0

Rk+lei(k−l)θ
(
eiθdR + Rieiθdθ

)
∧
(
e−iθdR − iRe−iθdθ

)
=
∫ √

2ρ

0

∫ 2π

0

Rk+lei(k−l)θ(−2iR)dR ∧ dθ

= −2i

∫ √
2ρ

0

Rk+l+1dR

∫ 2π

0

ei(k−l)θdθ

=

⎧⎪⎨⎪⎩
0 if k �= l,

−2πi (2ρ)k+1

k+1 if k = l. ��

This lemma suggests the next definition.

Definition 4.4 Let P be the set of all polynomials in the variables z, z̄ which
vanish at the origin. We denote by P0 the subset of P formed by the polyno-
mials which have no monomials of the form zkz̄k for every k > 0, and by P1

the subset of P formed by the polynomials whose derivative with respect to z
lies in P0. On these subsets of P we may consider the following operators:

(i)
G : P0 −→ P0

R =
∑
k =l

rklz
kz̄l �−→ ∑

k =l

2
k−lrklz

kz̄l,

(ii)
F : P1 −→ P0

R �−→ − Im
(
G
(

∂R(z,z̄)
∂z

))
.

Lemma 4.5 Consider the function H(x, y) = 1
2 (x2 + y2). Let ω be a polyno-

mial 1-form such that
∫

H=ρ
ω ≡ 0. Then there exists a polynomial g such that

dω = d(gdH).

(i) If ω is written in complex coordinates as

ω = A(z, z̄)dz + B(z, z̄)dz̄,

then

g(z, z̄) = G
(
−∂A(z, z̄)

∂z̄
+

∂B(z, z̄)
∂z

)
,

where G is the function given in Definition 4.4(i).
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(ii) If ω is written in polar coordinates as

ω = α(r, θ)dr + β(r, θ)dθ,

then

g(r, θ) =
1
r

∫ θ

0

(
∂α(r, ψ)

∂ψ
− ∂β(r, ψ)

∂r

)
dψ.

We must note that in the proof of item (i) of Lemma 4.5 we strongly use
the hypothesis

∫
H=ρ

ω ≡ 0, in order to define the polynomial g. On the other
hand, the construction of g in item (ii) does not depend on the hypothesis∫

H=ρ
ω ≡ 0. This hypothesis is needed only to assure that the g obtained is a

trigonometric polynomial, using that g is 2π-periodic in θ.
From Lemma 4.5 we get that g satisfies dω = d (gdH). Thus we can say

that there exists a function S such that ω = gdH + dS.

Proof of Lemma 4.5. (i) It is clear from Lemma 4.3 that
∫

H=ρ
ω ≡ 0 if and

only if the polynomial − ∂
∂z̄ A+ ∂

∂z B has no monomial of the form (zz̄)k. So the
polynomial g(z, z̄) of the statement is well defined. If we define the polynomial

D(z, z̄) = − ∂

∂z̄
A +

∂

∂z
B =

∑
k =l

dklz
kz̄l,

then

g(z, z̄)dH =

⎛⎝∑
k =l

2
k − l

dklz
kz̄l

⎞⎠ 1
2

(z̄dz + zdz̄) ,

where every monomial satisfies

d

((
dkl

k − l
zkz̄l

)
(z̄dz + zdz̄)

)
=

dkl

k − l
d
(
zkz̄l+1dz + zk+1z̄ldz̄

)
= dklz

kz̄ldz ∧ dz̄.

Therefore g(z, z̄) verifies
dω = d(g(z, z̄)dH),

because dω = D(z, z̄)dz ∧ dz̄.
(ii) From the expressions of the function H = 1

2r2 and the 1-form ω =
αdr + βdθ, we obtain that dω = (−∂α

∂θ + ∂β
∂r )dr ∧ dθ and d(g(r, θ)rdr) =

−r ∂g
∂θ dr ∧ dθ which coincide in the case that the function g is defined as in

the statement. ��
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Proof of Lemma 4.2. Let γε be the solution curve of ωε = 0 defining L(ρ, ε);
γ0 is the curve which defines H = ρ. So it is clear that over γε the 1-form ωε

vanishes, and we have ∫
γε

ωε = 0.

Integration over γε is taken in the same sense as for γ0. Substituting in this
equality the expression for ωε, we get

0 =
∫

γε

(
dH + εω1 + ε2ω2 + . . .

)
= H(L(ρ, ε)) − H(ρ) + ε

∫
γε

ω1 + ε2

∫
γε

ω2 + . . .

=
(
ρ + L1(ρ)ε + L2(ρ)ε2 + . . .

)
− ρ + ε

∫
γ0

(ω1 + O(ε))

+ ε2

∫
γ0

(ω2 + O(ε)) + . . . .

Comparing the terms in ε, we get the expression

L1(ρ) = −
∫

H=ρ

ω1.

We suppose now that L1(ρ) ≡ 0. Then from
∫

H=ρ
ω1 ≡ 0 (see Lemma 4.5)

we get that there exist polynomials h1 and S1 such that −ω1 = h1dH + dS1,
or equivalently d(ω1) = d(−h1dH). The existence of this function h1 allows
introduction of the 1-form

(1 + εh1)ωε,

which also vanishes on γε. From this form we get the following equalities:

0 =
∫

γε

(
dH + ε(ω1 + h1dH) + ε2(ω2 + ω1h1) + . . .

)
=
∫

γε

(
d(H − εS1) + ε2(ω2 + ω1h1) + . . .

)
= (H − εS1)(L(ρ, ε)) − (H − εS1)(ρ) + ε2

∫
γε

(ω2 + ω1h1) + . . .

= H(L(ρ, ε)) − εS1(L(ρ, ε)) − H(ρ) + εS1(ρ) + ε2

∫
γε

(ω2 + ω1h1) + . . .

= ρ + ε2L2(ρ) + O(ε3) − ε
(
S1(ρ + O(ε2)) − S1(ρ)

)
− ρ

+ ε2

∫
γ0

(ω2 + ω1h1) + O(ε3).
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Comparing the terms in ε2, we get the expression of L2,

L2(ρ) = −
∫

H=ρ

(ω2 + ω1h1).

We suppose now that Lk(ρ) ≡ 0 for k = 1, . . . , m − 1, and that there exist
polynomials hk and Sk satisfying the relations

−
k∑

i=1

ωihk−i = hkdH + dSk, for k = 1, . . . , m − 1.

In a manner similar to what we have done to obtain L2(ρ), we consider the
1-form (1+εh1 +ε2h2 + . . .+εm−1hm−1)ωε, which vanishes on γε. Integrating
along γε and considering the terms in εm we obtain the expression for Lm,

Lm(ρ) = −
∫

H=ρ

m∑
i=1

ωihm−i,

proving the theorem. ��
We prove now the main result.

Proof of Theorem 4.1. If we consider the rescaling

(x, y) = (εX, εY ), (4.17)

then system (4.1) becomes

Ẋ = 1
ε (−εY + P (εX, εY )) = −X +

∞∑
k=2

εk−1Pk(X,Y ),

Ẏ = 1
ε (εX + Q(εX, εY )) = Y +

∞∑
k=2

εk−1Qk(X,Y ).
(4.18)

For a point (ρ, 0) in action-angle coordinates (ρ, θ), i.e., ρ = H(X,Y ), the
return map of (4.18), L(ρ, ε), is well defined. This point, with the change
(4.17), becomes the point (ε

√
2ρ, 0) in cartesian coordinates (x, y), such that

the first return of this point, for system (4.3), is(
ε
√

2ρ + u2k+1(ε
√

2ρ)2k+1 + . . . , 0
)

.

Writing it in variables (X,Y ), we obtain the point(√
2ρ + u2k+1ε

2k(
√

2ρ)2k+1 + . . . , 0
)

,
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such that the value of H(x, y) at this point is

1
2

(√
2ρ + u2k+1ε

2k(
√

2ρ)2k+1 + . . .
)2

=
1
2

(
2ρ + 2ε2k(

√
2ρ)2k+2u2k+1 + . . .

)
= ρ + ε2k2k+1ρk+1u2k+1 + . . . ,

and this gives the first return of (ρ, 0), for system (4.18), that is to say L(ρ, ε) =
ρ + ε2kL2k(ρ) + . . .. So we get

L2k(ρ) = 2k+1ρk+1u2k+1.

Taking into account Theorem 4.2, that is the statement we wanted to
prove. ��

4.5 The Algorithm

4.5.1 A Theoretical Description

Theorem 4.1 gives the theoretical basis for calculating the Lyapunov con-
stants, V2n−1, of system (4.3). In fact we use it to obtain an expression of
these V2n−1, in terms of words. This section has two objectives: to obtain
alternative proofs of known properties about the fact that the Lyapunov con-
stants are polynomials in the coefficients of system (4.3), and to create an
effective algorithm for calculating them.

Before giving the version of Theorem 4.1 using words, we need to introduce
a little notation. We first introduce the notion of word. Given a set {p1, . . . , pn}
of continuous functions on [0, ω], we define for i = 1, . . . , n operators bi :
C[0, ω] → C[0, ω] by

(bif)(t) =
∫ t

0

pi(s)f(s)ds,

where C[0, ω] is the space of the continuous maps from the interval [0, ω] into
itself. We consider strings of these operators acting on the constant function
U(t) = 1. So, for example,

(b1b2b1U)(t))
∫ t

0

p1(s)
∫ s

0

p2(r)
∫ r

0

p1(u) du dr ds.

For convenience the function U is usually omitted. Thus we write b1b2b1 for
b1b2b1U .

These strings are regarded as words over the alphabet A = {b1, . . . , bn}.
The bi are the letters of A. The identity operator denoted by e acts as the
empty word. The set of all words over A (including the empty word) is denoted
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by A∗. It is easy to provide to A∗ with the structure of a vector space. Note
that every word is an operator on the set C[0, ω].

We recall that system (4.3) in complex coordinates is written as (4.5)

Definition 4.6 Given a polynomial R ∈ P of degree n, we can define for
every integer k ≥ 2 the functionals Fk and Hk as

Fk : P −→ P
R �−→ F(RkR),

Hk : P −→ R

R �−→ − 1

(2ρ)
n+1+k

2

∫
H=ρ

Im (RkRdz̄),

where Rk is given in (4.5) and F in Definition 4.4.

We must note that the functionals Fk and Hk are defined only on certain
subsets of P, and so we will need to check that they are well defined every
time that we use them.

In order to simplify the notation, we use the following notation:

Hm0

∏
m

Fmi
:= Hm0Fm1Fm2 . . .Fms

:= Hm0 (Fm1 (Fm2 (. . . (Fms
(1))))) ,

where m = (m1, . . . , ms), and if m = (0) it is understood that
∏

(0) Fmi
= 1.

Next lemma gathers together some properties of these operators that we
will need later on.

Lemma 4.7 The following statements hold.

(i) If we have a 1-form ω = Im(fdz̄) such that
∫

H=ρ
ω = 0, then the function

g(z, z̄) from Lemma 4.5 takes the form F(f).
(ii) The operators F , Fk, and Hk are real.
(iii) If R and Rk are polynomials of degree n and k, respectively, then the

degree of Fk(R) is n + k − 1.

Proof. If ω = Im(fdz̄) = (fdz̄− fdz)(2i), the function g given by Lemma 4.5
is

g = G

(
1
2i

(
∂f

∂z̄
+

∂f

∂z

))
=

1
2i

(
G

(
∂f

∂z̄

)
+ G

(
∂f

∂z

))
=

1
2i

(
−G

(
∂f

∂z

)
+ G

(
∂f

∂z

))
= Im

(
G

(
∂f

∂z

))
= F(f).

So statement (i) is proved. The other statements follow easily. ��
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With this notation we can write Theorem 4.1 as:

Theorem 4.8 An expression for the constant Vn for system (4.5) is

Vn =
n∑

k=2

Hk

⎛⎝ ∑
m∈Sn−k

∏
m

Fmi

⎞⎠ ,

where Hk and Fm are those of Definition 4.6, and Sl is the set

Sl =
⋃

s∈N+

{
m = (m1, . . . , ms) ∈

(
N+ \ {1}

)s :
s∑

i=1

(mi − 1) = l

}
,

for l �= 0 and S0 = {(1)}.

Proof. From the expression of system (4.5), doing the same rescaling (z → εz)
as in the proof of Theorem 4.2, we get the 1-form

dH +
∞∑

k=2

εk−1 Im(Rk(z, z̄)dz̄) = dH +
∞∑

k=1

εkωk.

From Theorem 4.2 and Definition 4.6 we know that

L1(ρ) = −
∫

H=ρ

ω1 = −
∫

H=ρ

Im(R2dz̄) = (2ρ)3/2H2(1) = (2ρ)3/2H2,

and using Theorem 4.1, we obtain

V2 =
1

(2ρ)3/2
L1(ρ) = H2.

When L1(ρ) ≡ V2 ≡ 0, from Lemma 4.7 the polynomial h1 such that
d (−ω1) = d (h1dH) is h1 = F2, and it has degree 1.

We consider now the 1-form ω2 + ω1h1. Arguing as in the previous step,
we may write:

L2 = −
∫

H=ρ

ω2 + ω1h1

= −
∫

H=ρ

(Im(R3dz̄) + Im(R2dz̄)F2)

= −
∫

H=ρ

(Im(R3dz̄) + Im(R2F2dz̄))

= (2ρ)4/2H3(1) + (2ρ)4/2H2(F2),

and
V3 =

1
(2ρ)4/2

L2 = H3 + H2F2.
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If it is true that V2 ≡ V3 ≡ 0, then Lemma 4.7 gives us that the polynomial
h2 which satisfies −d (ω2 + ω1h1) = d (h2dH) is h2 = F3 + F2F2, and it has
degree 2.

We now study the general case, that is, V2 ≡ V3 ≡ . . . ≡ Vn−1 ≡ 0. In order
to calculate Vn, we suppose that for l = 1, . . . , n − 1, there exist polynomials
hl of degree l satisfying the equalities:

(i) −d

(
l−1∑
k=0

ωl−khk

)
= d (hldH), and

(ii) hl =
∑

m∈Sl

∏
m Fmi

.

From Theorem 4.2 and Definition 4.6 we know that

Ln(ρ) = −
∫

H=ρ

(
n−1∑
k=0

ωn−khk

)

= −
∫

H=ρ

(
n−1∑
k=0

Im (Rn−k+1dz̄)
∑

m∈Sk

∏
m

Fmi

)

= −
∫

H=ρ

(
n−1∑
k=0

Im

(
Rn−k+1

( ∑
m∈Sk

∏
m

Fmi

)
dz̄

))

=
n−1∑
k=0

−
∫

H=ρ

(
Im

(
Rn−k+1

( ∑
m∈Sk

∏
m

Fmi

)
dz̄

))

=
n−1∑
k=0

(2ρ)
n−k+1+k+1

2 Hn−k+1

( ∑
m∈Sk

∏
m

Fmi

)

= (2ρ)
n+2

2

n+1∑
k=2

Hk

⎛⎝ ∑
m∈Sn−k+1

∏
m

Fmi

⎞⎠ ,

and using Theorem 4.1, we may say that

Vn+1 =
1

(2ρ)(n+2)/2
Ln(ρ) =

n+1∑
k=2

Hk

⎛⎝ ∑
m∈Sn−k+1

∏
m

Fmi

⎞⎠ ,

which is the expression of Vn+1 given in the statement.
We must also find the expression of hn in the case that Vn+1 ≡ 0. Arguing

as when we obtained Ln, and using Lemma 4.7, we get

hn =
n−1∑
k=0

Fn−k+1

( ∑
m∈Sk

∏
m

Fmi

)

=
n+1∑
k=2

Fk

⎛⎝ ∑
m∈Sn−k+1

∏
m

Fmi

⎞⎠ =
∑

m∈Sn

∏
m

Fmi
. �
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Consequently, we have a way to express the Lyapunov constants in the
case of homogeneous nonlinear perturbations of degree n, which we will use
later on.

Corollary 4.9 The nonzero Lyapunov constant of system

ż = iz + Rn(z, z̄),

are
Vn+j(n−1) = Hn(F j

n),

where j is a natural number if n is odd, and an odd natural number if n is
even.

Proof. In this case, in the expression for Vj of the previous proposition we have
only the operators Hn and Fn, so the sum

∑
m∈Sn−k

∏
m Fmi

can have only
the term F i

m. So we have from the definition of the set Sl nonzero constants
for the values i(n− 1) = j −n, and given that j = n + i(n− 1) has to be odd,
as is proved in the next corollary, i is a natural number if n is odd, and must
be odd if n is even. ��

From Corollary 4.9 it is very easy to give new proofs, shorter and unified,
for all the known algebraic properties of the Lyapunov constants.

We say that a map f is a quasihomogeneous map with weights a =
(a1, . . . , an) ∈ Nn and weighted degree d = (d1, . . . , dn) ∈ Nn if

fi(λa1x1, λ
a2x2, . . . , λ

anxn) = λdifi(x1, x2, . . . , xn)

holds for every i = 1, 2, . . . , n and any λ > 0.

Corollary 4.10 (Algebraic properties of the Lyapunov constants)
Let Vn := Vn({rk,l, r̄k,l}) be a Lyapunov constant of system (4.5), where
Rm(z, z̄) =

∑
k+l=m rk,lz

kz̄l. Then the following statements hold:

(i) V2n ≡ 0 for every n ≥ 1.
(ii) V2n+1 is a quasihomogeneous polynomial of weight 0 when we associate to

each variable rk,l (respectively, r̄k,l) the weight −k + l + 1 (respectively,
k − l − 1), i.e.,

V2n+1(λ−k+l+1rk,l, λ
k−l−1r̄k,l) = V2n+1(rk,l, r̄k,l),

for every real λ.
(iii) V2n+1 is a quasihomogeneous polynomial of weighted degree 2n when we

associate to each variable rk,l and r̄k,l the weight k + l − 1, i.e.,

V2n+1(λk+l−1rk,l, λ
k+l−1r̄k,l) = λ2nV2n+1(rk,l, r̄k,l),

for every real λ.
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(iv) V2n+1 can be written as Re
(
V o

2n+1

)
+Im

(
V e

2n+1

)
, where V e

2n+1 and V o
2n+1

are polynomials with real coefficients of degree even and odd, respectively,
in the variables rk,l and r̄k,l.

Before we prove these properties, we will prove some similar ones for the
polynomial hN =

∑
m∈SN

∏
m Fmi

, defined in the proof of Theorem 4.8.

Lemma 4.11 In the hypothesis of Corollary 4.10, the following properties
hold for the polynomial hN =

∑
m∈SN

∏
m Fmi

=
∑

k,l fk,lz
kz̄l.

(i) hN is a homogeneous polynomial of degree N in z, z̄.
(ii) fk,l is a quasihomogeneous polynomial of weight −k + l when we associate

to each variable rk,l (respectively, r̄k,l) the weight −k + l +1 (respectively,
k − l − 1).

(iii) fk,l is a quasihomogeneous polynomial of weighted degree k + l when we
associate to each variable rk,l and r̄k,l the weight k + l − 1.

(iv) hN can be written as Im (ho
N )+Re (he

N ), where he
N and ho

N are polynomials
with coefficients in Q[z, z̄] of even and odd degree, respectively, in the
variables rk,l and r̄k,l.

Proof. Given the linearity of the operators, it is enough to prove that each
element of the sum

∑
m∈SN

∏
m Fmi

, has degree
∑n

j=1(mj − 1) = N , that
they satisfy the properties of weight and weighted degree, and that they can
be written as the imaginary or real part depending on the parity of the degree
in rk,l and r̄k,l.

From the notation that we are using, if Rm1 =
∑

a+b=m1
ra,bz

az̄b, then

Fm1 = Fm1(1) = F(Rm1)

= F(
∑

a+b=m1

ra,bz
az̄b) =

∑
a+b=m1

F(ra,bz
az̄b)

= −
∑

a+b=m1

Im
(
G
(
ara,bz

a−1z̄b
))

= −
∑

a+b=m1

Im
(

2a

a − b − 1
ra,bz

a−1z̄b

)

= − 1
2i

∑
a+b=m1

(
2a

a − b − 1
ra,bz

a−1z̄b − 2a

a − b − 1
r̄a,bz̄

a−1zb

)

=
∑

a+b=m1

1
i

a

a − b − 1
(
−ra,bz

a−1z̄b + r̄a,bz̄
a−1zb

)
.

So F(Rm1) is a polynomial which has degree m1 − 1, and the monomials
ra,bz

a−1z̄b and r̄a,bz̄
a−1zb are quasihomogeneous of weight −a+b+1 = −(a−

1)+ b and a− b−1 = −b+(a−1), respectively, and weighted degree a+ b−1.
Moreover, F(Rm1) can be written as
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Im

(
−

∑
a+b=m1

(
2a

a − b − 1
ra,bz

a−1z̄b

))
,

and so all statements hold for Rm1 .
Suppose now, as an induction hypothesis, that

∏n
i=1 Fmi

=
∑

k,l fk,lz
kz̄l

satisfies the statements of the lemma. Then we have that

n+1∏
j=1

Fmj
= Fmn+1

n∏
j=1

Fmj
= F

⎛⎜⎝Rmn+1

∑
c+d=

∑n

j=1
(mj−1)

fc,dz
cz̄d

⎞⎟⎠
= F

⎛⎜⎝ ∑
a+b=mn+1

ra,bz
az̄b

∑
c+d=

∑n

j=1
(mj−1)

fc,dz
cz̄d

⎞⎟⎠
=

∑
a+b=mn+1

c+d=
∑n

j=1
(mj−1)

F(ra,bfc,dz
a+cz̄b+d)

= −
∑

a+b=mn+1

c+d=
∑n

j=1
(mj−1)

Im
(
G((a + c)ra,bfc,dz

a+c−1z̄b+d)
)

= −
∑

a+b=mn+1

c+d=
∑n

j=1
(mj−1)

Im
(

2(a + c)
a + c − 1 − b − d

ra,bfc,dz
a+c−1z̄b+d

)

=
∑

a+b=mn+1

c+d=
∑n

j=1
(mj−1)

(a + c)
a + c − 1 − b − d

1
i

(
r̄a,bfc,dz̄

a+c−1zb+d−ra,bfc,dza+c−1z̄b+d
)

,

and so
∏n+1

j=1 Fmj
is a homogeneous polynomial of degree mn+1 +

∑n
j=1(mj −

1) − 1 =
∑n+1

j=1 (mj − 1) in the variables z, z̄ as statement (i) says.
The coefficients of each monomial in z, z̄ ra,bfc,d and r̄a,bfc,d, are qua-

sihomogeneous of weight −a + b + 1 − c + d = −(a + c − 1) + (b + d) and
a − b − 1 + c − d = (a + c − 1) − (b + d), respectively, and weighted degree
a + c − 1 + b + d = (a + b − 1) + (c + d), as statements (ii) and (iii) say.

As can be seen in the set of equalities, the operator Fmn
, changes with

the parity of the degree of a polynomial in rk,l and r̄k,l, over the polynomial
which we operate. From this fact, together with the equalities

Im(A Im(B)) = Re
(
−AB − AB

2

)
,

Im(ARe(B)) = Im
(

AB + AB

2

)
,

we get statement (iv). �
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Now we are ready to prove Corollary 4.10.

Proof of Corollary 4.10. From Theorem 4.8, the nth Lyapunov constant is

Vn =
n∑

k=2

Hk

⎛⎝ ∑
m∈Sn−k

∏
m

Fmi

⎞⎠ .

So using Lemma 4.11, we only need to see how the operator Hk behaves with
respect to the properties we wanted to prove.

Given the linearity of the operator Hk, we consider only the case R =
fc,dz

cz̄d, with c + d = n − k.
From the definition of Hk, we have that

Hk(R) = − 1

(2ρ)
c+d+1+k

2

∫
H=ρ

Im (RkRdz̄)

= − 1

(2ρ)
n+1

2

∫
H=ρ

Im

( ∑
a+b=k

ra,bz
az̄bfc,dz

cz̄ddz̄

)

= − 1

(2ρ)
n+1

2

∫
H=ρ

Im

( ∑
a+b=k

ra,bfc,dz
a+cz̄b+ddz̄

)

= − 1

(2ρ)
n+1

2

∑
a+b=k

∫
H=ρ

1
2i

(
ra,bfc,dz

a+cz̄b+ddz̄−

−r̄a,bfc,dz̄
a+czb+ddz

)
= − 1

(2ρ)
n+1

2

∑
a+b=k

1
2i

(
ra,bfc,d

∫
H=ρ

za+cz̄b+ddz̄−

−r̄a,bfc,d

∫
H=ρ

z̄a+czb+ddz

)

=
π

(2ρ)
n+1

2

⎛⎜⎝ ∑
a+b=k

a+c−b−d−1=0

ra,bfc,d(2ρ)
a+c+b+d+1

2 +

+
∑

a+b=k
b+d−a−c+1=0

r̄a,bfc,d(2ρ)
b+d+a+c+1

2

⎞⎟⎠
= π

∑
a+b=k

a+c−b−d−1=0

(
ra,bfc,d + r̄a,bfc,d

)
= 2π

∑
a+b=k

a+c−b−d−1=0

Re (ra,bfc,d) .

From the relations c + d = n − k, a + b = k and a + c − b − d = 1, we get
that a+c = n+1

2 and that b+d = n−1
2 . So if n is even, as a, b, c, d are integers,

the sum of the previous expression has no terms. Therefore statement (i) is
proved.
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Using Lemma 4.11, we have that Hk(R) is a quasihomogeneous polynomial
of weight (−a+b+1)+(−c+d) = 0, and weighted degree (a+b−1)+(c+d) =
(k − 1) + (n − k) = n − 1, when the weights of statements (ii) and (iii) are
associated, respectively. This proves these two statements.

In order to prove the last statement, we only need to use the next equalities,

Re(A Im(B)) = Im
(
−AB − AB

2

)
,

Re(ARe(B)) = Re
(

AB + AB

2

)
,

which together with the operator Hk, they change the parity of the degrees
of the polynomials in the variables rk,l and r̄k,l. �

4.5.2 Practical Implementation

In this subsection we describe the algorithm based in Theorem 4.8, which
allows the computation, in a simple way, of the Lyapunov constants for the
system of differential (4.5). In order to show its speed and easiness of use, we
have evaluated the first five Lyapunov constants for the general system (4.5).
In Table 4.1, we give the measure and the computation time of the first four.
The computer we have used (a personal computer with Pentium 120 MHz
CPU and 32 Mb RAM) has been able to obtain the fifth constant in pieces,
but if we try to get the complete expression, the computer crashes.

As far as we know, only the three first constants (V3, V5, V7) for a general
system had been found up to now. Moreover, as we will see later on, this is
also an algorithm which allows us to get a new Lyapunov constant using the
computations done to calculate the previous constants.

Applying this algorithm, the first two Lyapunov constants are:

V3 = H3 + H2(F2),

V5 = H5 + H4(F2) + H3(F2F2) + H2(F4 + F3F2 + F2F3 + F2F2F2),

where, in the computation of V5 we can use the expression of F2, gotten to
compute V3.

Table 4.1. Computation time and measure of the constants of system (4.5)

constant computation time measure in bytes number of monomials

3 0.07 80 4
5 0.48 1,753 54
7 11.73 20,864 526
9 544.70 17,9897 3,800
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In order to compute V7, we need to get the elements of Sk for k = 0, . . . , 5
which are

S0 = {(1)},
S1 = {(2)},
S2 = {(2, 2), (3)},
S3 = {(2, 2, 2), (3, 2), (2, 3), (4)},
S4 = {(2, 2, 2, 2), (3, 2, 2), (2, 3, 2), (2, 2, 3), (3, 3), (4, 2), (2, 4), (5)},
S5 = {(2, 2, 2, 2, 2), (3, 2, 2, 2), (2, 3, 2, 2), (2, 2, 3, 2),

(2, 2, 2, 3), (3, 3, 2), (3, 2, 3), (2, 3, 3), (4, 2, 2), (2, 4, 2),
(2, 2, 4), (4, 3), (3, 4), (5, 2), (2, 5), (6)},

and afterwards, to compute the expressions of
∏

m Fmi
for every m ∈ Sk. We

must notice that with this method, we may use the expressions of

F2,F2F2,F3F2,F2F3,F2F2F2 and F4,

computed when we got V3 and V5. This allows us to increase the speed of
computation of the Lyapunov constants.

As we need a fast method for computing the constants, the best way to
obtain the sets Sk is to use an inductive procedure which makes use of the
previous computations. If we define the functions

op(u) := op((u1, . . . , un)) = u1, . . . , un, and

add(a, S) :=
⋃
u∈S

{(a, op(u)), (op(u), a)} ,

then we can write

S2 = {(3)}
⋃

{add(2, S1)},

S3 = {(4)}
⋃

{add(2, S2)}
⋃

{add(3, S1)}, and

Sn = {(n)}
n−1⋃
k=1

{add(n − k + 1, Sk)}.

The computations done to test this algorithm have been done with
MAPLE.

4.6 Applications

In this section we will apply the algorithm to several families of system (4.5).
First we will apply it to some families widely studied in the past: quadratic
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systems, systems with linear plus cubic homogeneous parts, and others, just to
check its efficiency. In Tables 4.2–4.5 we give the measure and the computation
time, in seconds, of the Lyapunov constants for these families obtained using a
personal computer. Finally, we will apply it to study the necessary conditions
for existence of a center for the families (4.16), given in the introduction of
this chapter. The objective for showing here these families is not to find all the
centers they produce, but using them as effective applications of Theorem 4.8.

Given a system of the form

ẋ = αx − y + p(x, y),
ẏ = x + αy + q(x, y), (4.19)

with p(x, y) and q(x, y) polynomial functions, which start with terms of order
at least two, there is a weak focus at the origin if α = 0. In this case, there
exists an analytic function V (x, y) defined in a neighborhood of the origin
such that V̇ = dV (x(t), y(t))/dt = ν2r

2 + ν4r
4 + . . . where r2 = x2 + y2.

Bautin in [14] proves that the return map of system (4.19) is analytic and can
be written as:

Π(x, α, λ) = x +
∞∑

k=1

Vk(α, λ)xk,

where the coefficients Vk are entire functions of (α, λ), the coefficients of sys-
tem (4.19). Moreover, if α = 0, these coefficients are polynomials of degree
k − 1. Using these polynomials Vk, the Bautin ideal is defined as the ideal
generated by the coefficients of the return map evaluated at α = 0,

I = 〈V1, V2, . . . , Vn, . . .〉 ⊂ R[λ],

where Vk = Vk(λ) = Vk(0, λ).
We define the cyclicity of a weak focus located at the origin as the maxi-

mum number of limit cycles that can bifurcate from the origin by means of a
degenerate Hopf bifurcation.

The study of all these examples has brought to us the thought of the
relation existing between the number of relevant Lyapunov constants, those
which generate the Bautin’s ideal, and the cyclicity of the weak focus.

4.6.1 Known Examples

The constants obtained to fill Tables 4.2 and 4.3 are enough to resolve the
center problem for these systems .

As far as we know, the characterization of the centers for the systems stud-
ied in Tables 4.4 and 4.5 is still an open problem. The manipulator MAPLE,
and the computer used to make the calculations, have allowed us to obtain
only the results shown in the following tables.

In Table 4.6 we summarize the constants obtained for a case with non
linear nonhomogeneous part.
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Table 4.2. Computation time and measure of the constants of quadratic system
ż = iz + R2(z, z̄). Obviously, we get that v9 = v11 = v13 = 0 if v3, v5, and v7 are
zero

constant computation time measure in bytes number of monomials

3 0.21 57 2
5 0.14 543 14
7 0.82 2,104 44
9 4.34 6,075 110
11 21.76 14,095 224
13 110.95 28,895 414

Table 4.3. Computation time and measure of the constants of cubic system ż =
iz + R3(z, z̄). Obviously, we get that v13 = v15 = v17 = 0 if previous constants are
also zero.

constant computation time measure in bytes number of monomials

3 0.03 21 2
5 0.03 60 2
7 0.07 281 14
9 0.33 1,214 30
11 1.25 2,895 82
13 3.92 7,540 150
15 15.15 13,555 302
17 49.93 29,979 496

Table 4.4. Computation time and measure of the constants of quartic system ż =
iz + R4(z, z̄).

constant computation time measure in bytes number of monomials

7 0.24 114 4
13 1.04 2,778 64
19 33.57 22,796 404
25 1,220.26 12,0315 1,684

Finally, we see how far we can reach when we study the system

ẋ = −y + P2(x, y) + P3(x, y),
ẏ = x + Q2(x, y) + Q3(x, y),

where the polynomials Pi(x, y) and Qi(x, y) are homogeneous; see Table 4.7.

4.6.2 Kukles-Homogeneous Family

The centers of the homogeneous family

ẋ = −y + Pn(x, y),
ẏ = x + Qn(x, y),
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Table 4.5. Computation time and measure of the constants of quintic system ż =
iz + R5(z, z̄)

constant computation time measure in bytes number of monomials

5 0.04 21 2
9 0.05 120 4
13 0.33 837 32
17 2.02 4,636 106
21 14.62 14,019 358
25 148.75 49,927 870

Table 4.6. Computation time and measure of the constants of cubic system with
degenerate infinity

Constant computation time measure in bytes number of monomials

3 0.06 71 3
5 0.33 805 22
7 3.61 4,998 112
9 47.19 20,221 382
11 899.14 65,114 1,065

Table 4.7. Computation time and measure of the constants of cubic system

constant computation time measure in bytes number of monomials

3 0.25 80 4
5 0.41 1,400 42
7 8.51 13,136 306
9 270.68 77,024 1,482
11 29,266.57 35,1832 5,694

have been widely studied. The problem of characterizing the centers of these
families is still an open problem if n ≥ 4. In order to show the difficulty of
the problem, we consider a particular case of the homogeneous family, those
named Kukles-homogeneous systems,

ẋ = −y,

ẏ = x + Qn(x, y),
(4.20)

where Qn(x, y) is a homogeneous polynomial of degree n.
The algorithm described in Sect. 4.5 has allowed us to obtain the first

Lyapunov constants, and in this way to obtain necessary conditions for (4.20)
to have a center at the origin.

With the change z = x + iy, system (4.20) can be written as

ż = iz + Rn(z, z̄) = iz +
∑

k+l=n

rk,lz
kz̄l,
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Table 4.8. Bautin’s number (Bn) and relevant constants (Sn) for system (4.20)

n parameters Bn Sn

2 3 1 1
3 4 3 3
4 5 6 5
5 6 7 5

where rk,l = rl,k. This way, we can apply Theorem 4.8 to calculate the Lya-
punov constants.

In the case n = 2, there is only one center condition

v3 = −2ir1,1(r2,0 − r0,2).

If v3 = 0, in [14] it is proved that system (4.20) has a center at the origin.
In the case n = 3, there are three conditions for a center,

v3 = −2r2,1 − 2r1,2,

v5 = −4i(r3,0 + r0,3)r1,2,

v7 = 3r3,0r0,3(r3,0 + r0,3).

It is known that these three conditions are sufficient in order that system
(4.20) have a center at the origin.

In the cases n = 4, 5, we will not reproduce here the expressions that
we get for the Lyapunov constants because of their length. We must note
that the method given by Theorem 4.8 has allowed us to obtain the first six
constants in the case n = 4 and the first eight constants in the case n = 5.
The characterization of the centers of these families needs the resolution of
the system {v4 = v10 = . . . = 0} in the case n = 4 and {v5 = v9 = . . . = 0}
in the case n = 5. See Corollary 4.9 where the nonzero constants for the
homogeneous family are given.

With the manipulator MAGMA, we have seen that

(i) The ideal generated by the first k Lyapunov constants is different from
the one generated by the first k − 1, for k = 2, . . . , 6, when n = 4 and for
k = 2, . . . , 7 when n = 5.

(ii) For n = 5, the ideal generated by the first eight constants is the same that
the one generated by the first seven.

(iii) For n = 4, there exists a natural number k1 such that vk1
6 belongs to the

ideal generated by the first five constants.
(iv) For n = 5, there exist natural numbers k2 and k3, such that vk2

6 and vk3
7

belong to the ideal generated by the first five constants.

It is natural to think, from this list of properties, that the number of
relevant Lyapunov constants for cases n = 4 and n = 5 will be 5. These facts
are summarized in Table 4.8. In this table, Bn denotes the Bautin’s number
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of the Kukles-homogeneous family of degree n, and the number Sn is a lower
bound on the number of relevant Lyapunov constants.

Table 4.8 has led us to believe that we have enough Lyapunov constants
to obtain all centers of the family defined by system (4.20), but the computer
that we have used has not been able to solve the problem.

4.7 Bibliographical Comments

This chapter has essentially followed the exposition about a new algorithm
for computing the Lyapunov constants due to Gasull and Torregrosa; see [71]
and [157] (in catalan).

The study of the stability of a singular point of center-focus type having a
non–degenerate linear part for an analytic vector field has generated a large
number of papers during the twentieth century. As far back as 1893, Lyapunov
already published a paper [105] where a partial solution to this problem was
given. He defined the functions which determine the stability, that we now call
Lyapunov constants. The major difficulty with these functions is their high
complexity, and to find them explicitly becomes a computational problem.
Another problem which has also produced a great quantity of results has
been to determine how many limit cycles can bifurcate by perturbing the
Hamiltonian H = 1

2 (x2 +y2) using analytic functions. For a recent account on
different methods that can be used we refer to [27]. Melnikov’s theory based on
calculating the derivative with respect to ε of a return map L(ρ, ε), permits us
to give a first answer to this problem. Françoise in [65] developed a new method
in order for obtaining all Melnikov’s functions for this system of differential
equations. Later on, Gasull and Torregrosa [157] used the ideas of Françoise
in order to get a new method for calculating the Lyapunov constants of the
first problem by means of the Melnikov’s functions of the second problem.
This new method is good for obtaining both theoretical and practical results.

For a monodromic singular point of an analytic system of differential equa-
tions in the plane, there is the well known center-focus problem consisting in
determining whether the singularity is a center or a focus. When the lin-
ear part of the system at the singular point has pure imaginary eigenvalues,
the problem can be reduced to evaluation of its Lyapunov constants. Farr,
Li, Labouriau, and Langford [62] give a summary of the different ways for
finding them. Gasull, Guillamon, and Mañosa [69] and Pearson, Lloyd and
Christopher [119] contributed to the computation of the Lyapunov constants
and their application to the solution of the center-focus problem. In all these
works, it is evident that serious computational problems appear, due to the
amount of time needed to calculate and also to the fact that the complexity
and length of these constants increase largely, not only when we increase the
complexity of the differential system, but also for a simple systems when we
try to find a Lyapunov constant of large order. In order to reduce these diffi-
culties as much as possible, the method of Gasull and Torregrosa provides a
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great simplification in time and complexity, and it often allows us to give a
simpler proof of known theoretical results. Their method can be generalized
to study the center-focus problem.

One of the main ideas which has allowed the development of this algo-
rithm comes from the method given by Françoise in [65], where the successive
derivatives of the return map associated to the perturbations of some pla-
nar Hamiltonian systems are evaluated. In that paper and in the paper of
Françoise and Pons [66], the authors apply their method to solve the center-
focus problem, but only for systems having homogeneous nonlinear part, and
without computing explicitly the Lyapunov constants; see also the work of
Françoise and Yomdin [67]. This generalization has been described also by
Iliev and Perko [87] and [86].

Using Theorem 4.1, it is not difficult to obtain the expression of the con-
stant Vn in terms of words; see Theorem 4.8. For more details about this
subject, the reader may look at the works of Devlin [47] and [48], where the
author also uses words to study the Lyapunov constants of Abel’s equations;
see also Guillamon [78]. From this result, we can obtain the known algebraic
properties of the Lyapunov constants, when they are considered as polynomi-
als in the coefficients of system (4.5).

We have mentioned that Corollary 4.9 can be used to provide some new
proofs, shorter and unified, of the known algebraic properties of the Lyapunov
constants. Other proofs of these results can be found in the works of Cima,
Gasull, Guillamon, Mañosa, and Mañosas [41], [70] and Żo�la̧dek [171].

As far as we know, only the three first constants (V3, V5, V7) for a general
system had been found up to now; see [69]

More information about the Bautin ideal can be found in Yakovenko [168].
See Roussarie [137] for additional results on the cyclicity of a weak focus.
The centers described in Sect. 4.6 have been studied by many authors; see

for instance Bautin [14], Chavarriga, and Gine [28–30], Lloyd, Christopher,
Devlin, Pearson, and Yasmin [104] and Sibirskii [147].



5

Poincaré and Poincaré–Lyapunov
Compactification

In order to study the behavior of the trajectories of a planar differential sys-
tem near infinity it is possible to use a compactification. One of the possible
constructions relies on stereographic projection of the sphere onto the plane,
in which case a single “point at infinity” is adjoined to the plane; see Ben-
dixson [15]. A better approach for studying the behavior of trajectories near
infinity is to use the so called Poincaré sphere, introduced by Poincaré [132].
It has the advantage that the singular points at infinity are spread out along
the equator of the sphere and are therefore of a simpler nature than the sin-
gular points of the Bendixson sphere. However, some of the singular points at
infinity on the Poincaré sphere may still be very complicated.

In order to improve the construction, we introduce the so called Poincaré–
Lyapunov sphere, which is however based on a construction of a more ab-
stract nature than the previous ones. The singularities are also spread along
the equator but are in general simpler than for the Poincaré sphere. In
the Poincaré–Lyapunov compactification we prefer to work on a hemisphere,
calling it as the Poincaré–Lyapunov disk, and similarly talk about a Poincaré
disk, if we restrict the Poincaré sphere to one of the hemispheres separated
by the equator that represents the points at infinity.

5.1 Local Charts

In order to draw the phase portrait of a vector field, we would have to work
over the complete real plane R2, which is not very practical. If the functions
defining the vector field are polynomials, we can apply Poincaré compactifica-
tion, which will tell us how to draw it in a finite region. Even more, it controls
the orbits which tend to or come from infinity.

In this chapter we will use (x1, x2) as coordinates on the plane instead
of (x, y).
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Let X = P∂/∂x1 + Q∂/∂x2 be a polynomial vector field (the functions P
and Q are polynomials of arbitrary degree in the variables x1 and x2), or in
other words:

ẋ1 = P (x1, x2),

ẋ2 = Q(x1, x2).
(5.1)

We recall that the degree of X is d if d is the maximum of the degrees of
P and Q.

Poincaré compactification works as follows. First we consider R2 as the
plane in R3 defined by (y1, y2, y3) = (x1, x2, 1). We consider the sphere S2 =
{y ∈ R3 : y2

1 + y2
2 + y2

3 = 1} which we will call here Poincaré sphere; it is
tangent to R2 at the point (0, 0, 1). We may divide this sphere into H+ =
{y ∈ S2 : y3 > 0} (the northern hemisphere), H− = {y ∈ S2 : y3 < 0}
(the southern hemisphere) and S1 = {y ∈ S2 : y3 = 0} (the equator). Now
we consider the projection of the vector field X from R2 to S2 given by the
central projections f+ : R2 → S2 and f− : R2 → S2. More precisely, f+(x)
(respectively, f−(x)) is the intersection of the straight line passing through the
point y and the origin with the northern (respectively, southern) hemisphere
of S2:

f+(x) =
(

x1

Δ(x)
,

x2

Δ(x)
,

1
Δ(x)

)
,

f−(x) =
( −x1

Δ(x)
,
−x2

Δ(x)
,

−1
Δ(x)

)
,

where

Δ(x) =
√

x2
1 + x2

2 + 1.

In this way we obtain induced vector fields in each hemisphere. Of course,
every induced vector field is analytically conjugate to X. The induced vector
field on H+ is X(y) = Df+(x)X(x), where y = f+(x), and the one in H− is
X(y) = Df−(x)X(x), where y = f−(x). We remark that X is a vector field
on S2 \ S1 that is everywhere tangent to S2.

We notice that the points at infinity of R2 (two for each direction) are in
bijective correspondence with the points of the equator of S2. Now we would
like to extend the induced vector field X from S2 \ S1 to S2. Unfortunately it
does not in general stay bounded as we get close to S1, obstructing the exten-
sion. It turns out, however, that if we multiply the vector field by the factor
ρ(x) = xd−1

3 then as we will check in a moment, the extension becomes possi-
ble. The extended vector field on S2 is called the Poincaré compactification of
the vector field X on R2, and it is denoted by p(X). On each hemisphere H+

and H− it is no longer Cω-conjugate to X, but it remains Cω-equivalent. The
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technique hence serves well to trace phase portraits, but precautions must
be taken in making fine calculations, such as eigenvalues at singularities and
periods of closed orbits.

We now work out the construction. As is usual in working with curved
surfaces, we use charts to make calculations. For S2 we use the six local charts
given by Uk = {y ∈ S2 : yk > 0}, Vk = {y ∈ S2 : yk < 0} for k = 1, 2, 3.
The corresponding local maps φk : Uk → R2 and ψk : Vk → R2 are defined
as φk(y) = −ψk(y) = (ym/yk, yn/yk) for m < n and m,n �= k. We denote
by z = (u, v) the value of φk(y) or ψk(y) for any k, such that (u, v) will play
different roles depending on the local chart we are considering. Geometrically
the coordinates (u, v) can be expressed as in Fig. 5.1. The points of S1 in any
chart have v = 0.

In what follows we make a detailed calculation of the expression of p(X)
only in the local chart U1. We have X(x) = (P (x1, x2), Q(x1, x2)). Then
X(y) = Df+(x)X(x) with y = f+(x) and

Dφ1(y)X(y) = Dφ1(y) ◦ Df+(x)X(x) = D(φ1 ◦ f+)(x)X(x).

Let X|U1 denote the system defined as Dφ1(y)X(y). Then since

(φ1 ◦ f+)(x) =
(

x2

x1
,

1
x1

)
= (u, v),

υ

u

u

υ
υ

u

U1

U2

U3

Fig. 5.1. The local charts (Uk, φk) for k = 1, 2, 3 of the Poincaré sphere
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we have

X|U1 =

⎛⎜⎝−x2

x2
1

1
x1

− 1
x2

1

0

⎞⎟⎠ (
P (x1, x2)
Q(x1, x2)

)

=
1
x2

1

(−x2P (x1, x2) + Q (x1, x2) ,−P (x1, x2))

= v2

(
−u

v
P

(
1
v
,
u

v

)
+

1
v
Q

(
1
v
,
u

v

)
,−P

(
1
v
,
u

v

))
.

Now

ρ(y) = yd−1
3 =

1
Δ(x)d−1

=
vd−1

Δ(z)d−1
= vd−1m(z),

where m(z) = (1 + u2 + v2)(1−d)/2. Consequently it follows that

ρ(X|U1)(z) = vd+1m(z)
(
−u

v
P

(
1
v
,
u

v

)
+

1
v
Q

(
1
v
,
u

v

)
,−P

(
1
v
,
u

v

))
.

In order to prove that the extension of ρX to p(X) is defined on the whole
of S2 we notice that while X|U1 is not well defined when v = 0, p(X)|U1 =
ρX|U1 is well defined along v = 0, since the multiplying factor vd+1 cancels
any factor of v which could appear in the denominator. Similar arguments
can be applied to the rest of the local charts.

In order to simplify the extended vector field we also make a change in the
time variable and remove the factor m(z). We still keep a vector field on S2

which is Cω-equivalent to X on any of the hemispheres H+ and H−.
The expression for p(X) in local chart (U1, φ1) is given by

u̇ = vd

[
−uP

(
1
v
,
u

v

)
+ Q

(
1
v
,
u

v

)]
,

v̇ = −vd+1P

(
1
v
,
u

v

)
.

(5.2)

The expression for (U2, φ2) is

u̇ = vd

[
P

(
u

v
,
1
v

)
− uQ

(
u

v
,
1
v

)]
,

v̇ = −vd+1Q

(
u

v
,
1
v

)
,

(5.3)

and for (U3, φ3) is
u̇ = P (u, v),
v̇ = Q(u, v).

(5.4)

The expression for p(X) in the charts (Vk, ψk) is the same as for (Uk, φk)
multiplied by (−1)d−1, for k = 1, 2, 3.
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To study X in the complete plane R2, including its behavior near infinity,
it clearly suffices to work on H+ ∪ S1, which we call the Poincaré disk. All
calculation can be done in the three charts (U1, φ1), (U2, φ2), and (U3, φ3) in
which case the expressions are given by the formulas (5.2), (5.3), and (5.4).

It is clear that we do not need to go through the complete geometrical
construction, as just presented, in order to get these expressions. The expres-
sions in (5.4) clearly do not need any elaboration at all. To obtain (5.2) we
start with (5.1) and introduce coordinates (u, v) by the formulas

(x1, x2) = (
1
v
,
u

v
). (5.5)

This leads to a vector field X̄u which we multiply by vd−1. To obtain (5.3) we
start with (5.1) and introduce coordinates (u, v) by the formulas

(x1, x2) = (
u

v
,
1
v
). (5.6)

We again multiply the computed vector field X̄v by vd−1.
This more abstract way of constructing a vector field on a sphere (or

better on a half-sphere) directly by means of charts, is not only the most
practical way for precise calculations, but also will lead to a generalization
(and improvement) of the construction, called the Poincaré-Lyapunov disk,
as we will see in Sect. 5.3.

Up to Cω-equivalence, the two operations (5.5) and (5.6) can be combined
into a global construction at infinity:

(x1, x2) = (
cos θ

v
,
sin θ

v
), (5.7)

taking θ ∈ S1 and multiplying the vector field again by vd−1. If we work out
this construction we get

θ̇ = v(ẋ2 cos θ − ẋ1 sin θ),

v̇ = −v2(ẋ1 cos θ + ẋ2 sin θ).

This construction is in general preferred in cases where at infinity (on the
equator) p(X) has no singularities, implying that the set of points at infinity
becomes a closed orbit. In order to study the behavior of p(X) near that closed
orbit, a global study of a neighborhood of it is needed. No such neighborhood
is wholly contained in either chart (U1, φ1) or (U2, φ2).

We remark that in each local chart the local representative of p(X) is a
polynomial vector field.

We call finite (respectively, infinite) singular points of X or p(X) the sin-
gular points of p(X) which lie in S2 \ S1 (respectively, S1). We note that if
y ∈ S1 is an infinite singular point, then −y is also a singular point. Since the
local behavior near −y is the local behavior near y multiplied by (−1)d−1,
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it follows that the orientation of the orbits changes when the degree is even.
For example, if d is even and y ∈ S1 is a stable node of p(X), then −y is an
unstable node. Due to the fact that infinite singular points appear in pairs of
diametrally opposite points, it is enough to study half of them, and using the
degree of the vector field one can determine the other half.

As we have already observed, the integral curves of S2 are symmetric with
respect to the origin, such that it is sufficient to represent the flow of p(X)
only in the closed northern hemisphere, the so called Poincaré disk . In order
to draw this, for practical purposes, as a disk in the plane we can project
the points of the closed northern hemisphere onto the disk {(y1, y2, y3) ∈
R3 : x2

1 + x2
2 ≤ 1, x3 = 0}. This could be done by projecting each point

of the sphere onto the disk using a straight line parallel to the y3-axis; we
can however project using a family of straight lines passing through a point
(0, 0, y3) with y3 < 0. If y3 is a value close to −∞, we will get the same result,
but if y3 is close to zero then we might get a better representation of what is
happening near infinity. In doing this we lose resolution in the regions close
to the origin in (x1, x2)-plane.

5.2 Infinite Singular Points

We want to study the local phase portrait at infinite singular points. For
this we choose an infinite singular point (u, 0) and start by looking at the
expression of the linear part of the field p(X). We denote by Pi and Qi the
homogeneous polynomials of degree i for i = 0, 1, . . . , d such that P = P0 +
P1 + . . . + Pd and Q = Q0 + Q1 + . . . + Qd. Then (u, 0) ∈ S1 ∩ (U1 ∪ V1) is an
infinite singular point of p(X) if and only if

F (u) ≡ Qd(1, u) − uPd(1, u) = 0.

Similarly (u, 0) ∈ S1 ∩ (U2 ∪V2) is an infinite singular point of p(X) if and
only if

G(u) ≡ Pd(u, 1) − uQd(u, 1) = 0.

Also we have that the Jacobian of the vector field p(X) at the point (u, 0)
is (

F ′(u) Qd−1(1, u) − uPd−1(1, u)
0 −Pd(1, u)

)
,

or (
G′(u) Pd−1(u, 1) − uQd−1(u, 1)

0 −Qd(u, 1)

)
,

if (u, 0) belongs to U1 ∪ V1 or U2 ∪ V2, respectively.
We first remark that the equator of S2 can consist entirely of singularities,

but in most cases the singularities are isolated. We confine our discussion to
isolated singularities.
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Among the hyperbolic singular points at infinity only nodes and saddles
can appear. All the semi-hyperbolic singular points can appear at infinity.

From Chap. 2, we see that if one of these hyperbolic or semi-hyperbolic
singularities at infinity is a (topological) saddle, then the straight line {v = 0},
representing the equator of S2, is necessarily a stable or unstable manifold, or
a center manifold; see Fig. 5.2.

The same property also holds for semi-hyperbolic singularities of saddle-
node type. They can hence have their hyperbolic sectors split in two different
ways depending on the Jacobian of the system in the charts U1 or U2. The
Jacobian can be either (

λ ∗
0 0

)
,

or (
0 ∗
0 λ

)
,

with λ �= 0. In the first case we say that the saddle-node is of type SN1 and
in the second case of type SN2. The two cases are represented in Fig. 5.3. The
sense of the orbits can also be the opposite.

Among the nilpotent singular points at infinity all can appear with the
exception of the cusp, the focus and the center.

The nilpotent points, as well as the singularities with zero linear part, have
a behavior at infinity that is quite a bit more complicated than the hyperbolic
and elementary singular points. Blow-up is needed to study them. It is not
necessary for such singularities that the two orbits at infinity be separatrices.

Fig. 5.2. A hyperbolic or semi-hyperbolic saddle on the equator of S2

(SN 1) (SN 2)

Fig. 5.3. Saddle-nodes of type SN1 and SN2 of p(X) in the equator of S2



156 5 Poincaré and Poincaré–Lyapunov Compactification

5.3 Poincaré–Lyapunov Compactification

Sometimes, the singularities at infinity in a Poincaré compactification are
quite complicated, but there is a possibility of simplifying them by working
with a so called Poincaré–Lyapunov compactification. The construction is very
similar to the one expressed in (5.5) and (5.6) or in (5.7). We start with a
generalization of (5.7), in the sense that we no longer keep the construction
homogeneous, but make it quasihomogeneous. Thus we set

x1 = cos θ/sα,

x2 = sin θ/sβ ,
(5.8)

for some well chosen powers (α, β) ∈ N×N with α, β ≥ 1. If it is advantageous
to do so, we can even replace the periodic functions cos θ and sin θ by the
periodic functions Cs θ and Sn θ, which are the unique solutions of the initial
value problem

d
dθ

Cs θ = −Sn2α−1 θ,

d
dθ

Sn θ = Cs2β−1 θ,

Cs 0 = 1,

Sn 0 = 0,

which satisfy the relation β Sn2α θ + α Cs2β θ = α. It is possible that for a
system for which the usual Poincaré compactification has a nonelementary
singular point at infinity, for well chosen α and β, the Poincaré–Lyapunov
compactification has only elementary singular points at infinity, or even no
singular points at infinity at all. For the calculations it is again sometimes
better to work in different charts, comparable to (5.5) and (5.6), and this will
be done in Sect. 9.1.

5.4 Bendixson Compactification

Let X = P∂/∂x1 +Q∂/∂x2 be a polynomial vector field (the functions P and
Q are polynomials of maximum degree d). Its associated differential system is
given by (5.1).

The construction of the Bendixson compactification is as follows (for more
details see Chapt. 13 of [4]). We consider the sphere in R3 given by y2

1 +
y2
2 + y2

3 = 1/4, and call it the Bendixson sphere. We identify the x1x2-plane
on which X is defined with the tangent plane to the sphere at the point
S = (0, 0,−1/2) given by the equation y3 = −1/2. Let pN be the stereographic
projection from the north pole N = (0, 0, 1/2) to the plane y3 = −1/2. Thus
p−1

N defines an induced vector field XN on S2 \ N . Clearly the infinity of the
plane y3 = −1/2 is transformed by p−1

N into the north pole N .
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Now we want to extend XN to a vector field on S2. This extension is called
the Bendixson compactification and the induced vector field on S2 which has
the north pole as a singular point is denoted by b(X).

We use two local charts to study the vector field b(X), defined, respectively
on UN = S2\N and US = S2\S. The corresponding coordinate maps are
pN : UN → R2 and pS : US → R2, where pS is the stereographic projection of
S2 from the south pole to the plane y3 = 1/2.

The map pS ◦p−1
N from the plane y3 = −1/2 minus S to the plane y3 = 1/2

minus N is given by

u =
x1

x2
1 + x2

2

, v =
x2

x2
1 + x2

2

,

where (u, v) are the coordinates in the plane y3 = 1/2. Hence the infinity of
system (5.1) is transformed into the origin of the system

u̇ =
1

(u2 + v2)d
P̃ (u, v),

v̇ =
1

(u2 + v2)d
Q̃(u, v) ,

(5.9)

where P̃ (u, v) = P (x1(u, v), x2(u, v)) and Q̃(u, v) = Q(x1(u, v), x2(u, v)),
whose terms of lowest order are of degree at least d + 2. Finally we intro-
duce a change of time scale dt/dτ = (u2 + v2)d and system (5.9) becomes

u̇ = P̃ (u, v),

v̇ = Q̃(u, v),
(5.10)

where u̇ = du/dτ and v̇ = dv/dτ . Since d + 2 is the minimum of the degrees
of the homogeneous parts of P̃ (u, v) and Q̃(u, v) it is clear that (0, 0) is a
singular point of system (5.10).

5.5 Global Flow of a Planar Polynomial Vector Field

First, we determine the phase portrait on the Poincaré disk of the system

ẋ = x,

ẏ = −y.
(5.11)

This system has a unique finite singular point, the origin, which is a saddle.
Let X be the vector field associated to system (5.11). Then the expression for
p(X) in the local chart U1 is

u̇ = −2u,

v̇ = −v.
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Therefore there is a unique singular point in U1, the origin, which is a
stable node at infinity. Since the degree of X is odd, the origin of V1 is also
another stable node.

The expression for p(X) in the local chart U2 is

u̇ = 2u,

v̇ = v.

So at the origin of U2 there is an unstable node. The same is true for the
origin of V2.

If we now draw the phase portrait of system (5.11) on the Poincaré disk
we get Fig. 5.4. In this section we always project the northern hemisphere of
the Poincaré sphere onto the Poincaré disk parallel to the y3-axis. Note that
the unique separatrices of this system are those of the saddle at the origin,
which are contained in the invariant straight lines x = 0 and y = 0.

Second, we study the phase portrait on the Poincaré disk of the system

ẋ = −x − y2,

ẏ = y + x2.
(5.12)

This is a Hamiltonian system because it can be written as

ẋ = −∂H/∂y,

ẏ = ∂H/∂x,

with Hamiltonian

H(x, y) =
1
3
(x3 + y3) + xy.

Therefore H is a first integral of system (5.12); i.e., H is constant on the
solutions of (5.12), because on any solution (x(t), y(t)) of (5.12) we have

dH

dt
(x(t), y(t)) =

∂H

∂x
(−x − y2) +

∂H

∂y
(y + x2) |(x,y)=(x(t),y(t)) = 0.

Fig. 5.4. The phase portrait in the Poincaré disk of system (5.11)
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System (5.12) has two finite singular points, a saddle at (0, 0) and a linear
center at (−1,−1) with eigenvalues

√
3i. Since the first integral H is well

defined at (−1,−1), this singular point is a center.
Now we shall compute the infinite singular points. Let X be the vector

field associated to (5.12). Then the expression for p(X) in the local chart U1

is
u̇ = 1 + 2uv + u3,

v̇ = v2 + u2v.

Therefore on U1 there is a unique singular point, (−1, 0) which is an un-
stable node at infinity. Since the degree of X is 2, the diametrically opposite
point is a stable node in V1.

The expression for p(X) in the local chart U2 is

u̇ = −1 − 2uv − u3,

v̇ = −v2 − u2v.

Since the origin of U2 is not a singular point there do not exist additional
infinite singular points.

The unique separatrices of system (5.12) are the separatrices of the saddle
(0, 0). Since H(0, 0) = 0, in order to locate such separatrices it is sufficient to
draw the curve H(x, y) = 0. Hence the phase portrait of system (5.12) on the
Poincaré disk as is given in Fig. 5.5.

Finally, we analyze the phase portrait on the Poincaré disk of the system

ẋ = y,

ẏ = −(1 + y)(x + y).
(5.13)

This system has a unique finite singular point, the origin. Since this point has
eigenvalues (−1

√
3i)/2, it is a stable focus.

Let X be the vector field associated to system (5.13). Then the expression
for p(X) in the local chart U1 is

u̇ = −u − v − u2 − uv − u2v,

v̇ = −uv2.

Fig. 5.5. The phase portrait in the Poincaré disk of system (5.12)
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Therefore in U1 there are two infinite singular points, (0, 0) and (−1, 0), both
semi-hyperbolic. A computation shows that (0, 0) is a semi-hyperbolic saddle
and that (−1, 0) is a semi-hyperbolic saddle-node. Looking at the linear part
of the system at the saddle-node and checking that the eigenspace of the
nonzero eigenvalue is transverse to the equator of S2, it is easy to deduce that
the two hyperbolic sectors are in the chart V1 while the nodal or parabolic
sector is in the chart U1. Of course, two of the separatrices of the saddle-node
are on the equator of the Poincaré sphere.

The expression for p(X) in the local chart U2 is

u̇ = u + v + u2 + uv + u2v,

v̇ = v + uv + v2 + uv2.
(5.14)

So the origin of U2 is an unstable hyperbolic node. Since the degree of X is
even, the diametrically opposite point is a stable node in V2.

The fact that the straight line y = −1 is invariant under the flow of X tells
us that the phase portrait of p(X) on the Poincaré disk is the one described
in Fig. 5.6. We may check that the center-unstable manifold of the infinite
saddle-node spirals clock-wise around the focus (0, 0) since the flow on the
straight half-line {(x, y) : x = 0, y > 0} moves to the right.

We end this chapter with two examples in which it is clear that the singu-
larities at infinity in a well chosen Poincaré–Lyapunov compactification can
be much simpler than in a Poincaré compactification.

Example 5.1 We consider the system

ẋ = y,

ẏ = −x3 − xy.
(5.15)

Performing the usual Poincaré compactification for cubic systems we get on
the Poincaré disk a phase portrait like in Fig. 5.7a. On the circle at infinity
we get two degenerate singularities.

If however we use a Poincaré–Lyapunov compactification of type (1, 2)
then we get a phase portrait as in Fig. 5.7b of which the circle at infinity is a
periodic orbit.

Fig. 5.6. The phase portrait in the Poincaré disk of system (5.13)
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Fig. 5.7. Compactification of system (5.15)

(a) (b)

Fig. 5.8. Compactification of system (5.16)

Example 5.2 We consider the system

ẋ = y,

ẏ = x5 − xy.
(5.16)

Performing the Poincaré compactification for vector fields of degree 5 we get
on the Poincaré disk a phase portrait like in Fig. 5.8a. On the circle at infinity
we get two degenerate singularities.

If we use a Poincaré–Lyapunov compactification of type (1, 3) then we get
a phase portrait as in Fig. 5.8b with only hyperbolic singularities on the circle
at infinity.

In both examples we leave it as an exercise to make the necessary calcu-
lations at infinity, according to the procedures explained in this chapter.

5.6 Exercises

Exercise 5.1 Determine the phase portraits on the Poincaré disk of the fol-
lowing polynomial differential systems:

(i) ẋ = x, ẏ = −y.
(ii) ẋ = x2 + y2 − 1, ẏ = 5(xy − 1).
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(a)

(d) (e)

(f) (g)

(b) (c)

Fig. 5.9. Phase portraits of Exercise 5.2

(iii) ẋ = −y(1+x)+αx+(α+1)x2, ẏ = x(1+x), depending on the parameter
α ∈ (0, 1).

Exercise 5.2 Determine which of the global phase portraits shown in Fig. 5.9
correspond to the following quadratic systems (two of them do not correspond
to any system presented).

(i) ẋ = −4y + 2xy − 8, ẏ = 4y2 − x2.
(ii) ẋ = 2x − 2xy, ẏ = 2y − x2 + y2.
(iii) ẋ = −x2 − y2 + 1, ẏ = 2x.
(iv) ẋ = −x2 − y2 + 1, ẏ = 2xy.
(v) ẋ = x2 − y2 − 1, ẏ = 2y.

Exercise 5.3 Consider a homogeneous quadratic differential system:

ẋ = ax2 + bxy + cy2,

ẏ = dx2 + exy + fy2.

Supposing that the singular point at the origin is isolated, hence unique, show
that the phase portrait on the Poincaré disk must be one of the seven phase
portraits given in Fig. 5.10.

5.7 Bibliographical Comments

For more information on Poincaré compactification; see the book of Andronov,
Leontovich, Gordon and Maier [4], the book of Sotomayor [151] and the paper
of Gonzalez [76].
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Fig. 5.10. Phase portraits of quadratic homogenous systems

The use of a quasihomogeneous compactification of polynomial planar vec-
tor fields and the related name Poincaré–Lyapunov compactification were in-
troduced in papers of Dumortier at the end of the eighties. The inspiration
came from the strongly related quasihomogeneous blow-up of singularities, as
presented in Chap. 3. As one application among others, a systematic study by
means of the technique has been made of all polynomial Liénard equations
near infinity [55]
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Indices of Planar Singular Points

In this chapter we study the index of a singular point of a vector field on R2 or
on S2. For a given vector field X on S2 having finitely many singular points, we
shall see that the sum of their indices is equal to 2 (the Euler characteristic
of S2). This result is the famous Poincaré Index Theorem, which later on
was extended by Hopf to vector fields on compact manifolds. We also prove
the formula of Poincaré for computing the index of an isolated singularity.
Finally we briefly discuss the relation between the index and the multiplicity
of a singular point.

6.1 Index of a Closed Path Around a Point

A path in the plane R2 is a continuous map from the interval I = [0, 1] to R2

(σ : I → R2); that is, we assign to every t ∈ [0, 1] the point σ(t) = (σ1(t), σ2(t))
in the plane, such that σi : I → R are continuous maps.

The point σ(0) is called the origin of the path σ and σ(1) is called the
endpoint of the path. We must not confuse a path with its image σ(I) ⊂ R2;
σ(I) is called a curve. For example, the paths σ : σ(t) = (r cos πt, r sin πt) and
τ : τ(t) = (r(1−2t), 2r

√
t(1 − t)), are obviously different, but the curves σ(I)

and τ(I) coincide; see Fig. 6.1.
Let q be a point of R2 which does not belong to σ(I) and let r be a ray

with origin at q. For every point σ(t) we denote by ϕ̄(t) the angle formed
by the rays r and qσ(t). The angle ϕ̄(t) is an element of the circle R/2πZ.
The function ϕ̄ : I → R/2πZ is continuous with respect to the parameter t;
see Fig. 6.2. We can cover it by a continuous mapping ϕ : I → R. From now
on we shall work with such a continuous cover, with the extra condition that
ϕ(0) = 0. We call ϕ an angle function.

A closed path is a path whose endpoint coincides with its origin (i.e.,
σ(1) = σ(0)). Equivalently, a closed path can be considered as a continuous
map σ : S1 → R2. Let q be a point of R2 which does not belong to σ(I). Then
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r

τ(1/4)

σ(1/4)

Fig. 6.1. Same image, different paths

r

σ(t )

σ(I ) q

ϕ(t )−

Fig. 6.2. Definition of ϕ(t)

the difference ϕ(1) − ϕ(0) is a multiple of 2π, independent of the chosen ray
r, and independent of the chosen cover ϕ. It is then acceptable to define the
quotient

i(q, σ) =
ϕ(1) − ϕ(0)

2π
,

which is an integer called the index of the closed path σ around the point q.
The index i(q, σ) is an algebraic magnitude associated to a closed path

and a point, which are topological concepts.
We consider some examples:

Example 6.1 Let σ : I → R2 be the closed path defined by the expression
σ(t) = e2πint. We have that σ(I) ≡ S1. As the origin q = (0, 0) /∈ S1, we may
consider the index i(q, σ) using as ray r the positive x-axis. Then we have
that ϕ(t) = 2πnt, and so

i(q, σ) =
ϕ(1) − ϕ(0)

2π
= n.

�

Example 6.2 In Fig. 6.3 we have indicated the indices of different points
with respect to the closed paths drawn. �

Now we consider a method for calculating the index of a closed path around
a point q. We choose as r a ray with origin at q which cuts σ(I) in a finite
number of points. Let 0 < t1 < t2 < · · · < tn < 1 be the parameters for which
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2

3
2

1
0

−1

Fig. 6.3. Some examples of indices

σ(ti) ∈ r. We assume that for every ti there exists εi > 0 such that for every
t �= ti with |ti − t| < εi, σ(t) /∈ r, and so ϕ(t) �= ϕ(ti). We may distinguish
four cases:

(i) ϕ(t) ≤ ϕ(ti) for every t such that |ti − t| < εi;
(ii)ϕ(t) ≥ ϕ(ti) for every t such that |ti − t| < εi.

In these two cases, the ray r does not cross σ(I) at the point σ(ti).

(iii)ϕ(t) < ϕ(ti) for ti − εi < t < ti and ϕ(t) > ϕ(ti) for ti + εi > t > ti;
(iv) ϕ(t) > ϕ(ti) for ti − εi < t < ti and ϕ(t) < ϕ(ti) for ti + εi > t > ti.

In these last two cases, the ray r crosses the path σ at the point σ(ti). We
call case (iii) a positive intersection point and case (iv) a negative intersection
point.

If we denote by ψ(t) = [ϕ(t)/2π], the function representing the integer
part of ϕ(t)/2π, then ψ(ti) = ϕ(ti)/2π. When we move from a t < ti to a
t > ti (always in a neighborhood of |ti − t| < εi), the value ψ(t) increases by
one in case (iii), decreases by one in case (iv), and does not change in the
remaining cases. Then

ψ(1) − ψ(0) =
[
ϕ(1)
2π

]
−
[
ϕ(0)
2π

]
=

ϕ(1) − ϕ(0)
2π

,

because ϕ(0)/2π − [ϕ(0)/2π] = ϕ(1)/2π − [ϕ(1)/2π].
So if m represents the number of positive intersection points and n repre-

sents the number of negative intersection points, we have that i(q, σ) = m−n.
Then the index of the closed path σ around the point q is equal to the num-
ber of positive intersection points minus the number of negative intersection
points of σ with the ray r. In this construction it is possible most of the time
to work with rays whose intersection with σ(I) are all isolated crossing points.

The next two propositions give conditions in order that the index of a path
around a point does not depend on the point (Proposition 6.3), or does not
depend on the path (Proposition 6.5).

Proposition 6.3 If the segment q1q2 does not cut the closed path σ, then
i(q1, σ) = i(q2, σ).



168 6 Indices of Planar Singular Points

Proof. Let σ : I → R2 be a closed path, and q1 and q2 two points not belonging
to σ(I). Let ϕ1 and ϕ2 be angle functions with respect to q1 and q2. Then the
function

δ(t) =
ϕ1(t) − ϕ2(t)

π

is continuous for every t, and we have that

δ(1) − δ(0) =
ϕ1(1) − ϕ2(1)

π
− ϕ1(0) − ϕ2(0)

π
= 2(i(q1, σ) − i(q2, σ)).

Suppose that i(q1, σ) �= i(q2, σ). Then we have that |δ(1) − δ(0)| ≥ 2, and
by the Intermediate Value Theorem, there exists t0 ∈ I such that δ(t0) is odd,
that is ϕ1(t0) − ϕ2(t0) = nπ with n odd.

But if we choose parallel rays with origins at q1 and q2 to define ϕ1 and
ϕ2, respectively, in such a way that the ray starting at q1 passes through q2 ,
then σ(t0) ∈ q1q2, which contradicts the conditions of the proposition. �

Corollary 6.4 If q1 and q2 belong to the same connected component of R2 \
σ(I), then i(q1, σ) = i(q2, σ).

Proposition 6.5 Let σ1, σ2 : I → R2 be closed paths and q ∈ R2 such that
for every t ∈ I we have q /∈ σ1(t)σ2(t). Then i(q, σ1) = i(q, σ2).

Proof. Let ϕ1 and ϕ2 be angle functions with respect to σ1 and σ2 and the
point q. If we suppose that the indices are different, then by the same argu-
ments as in Proposition 6.3, there exists a t0 such that ϕ1(t0) − ϕ2(t0) = nπ
with n odd.

But this implies that q belongs to a segment determined by σ1(t0) and
σ2(t0), contradicting the hypothesis. �

Corollary 6.6 Let σ1, σ2 : I → R2 be closed paths and q ∈ R2 such that
q /∈ σ1(I) ∪ σ2(I). If for every t ∈ I we have ‖σ1(t) − σ2(t)‖ < ‖q − σ1(t)‖,
then i(q, σ1) = i(q, σ2).

Proof. Under the hypotheses of the corollary, q /∈ σ1(t)σ2(t) for any t ∈ I.
Then Proposition 6.5 applies. �

6.2 Deformations of Paths

Given a family of closed paths σs : I → R2, with s ∈ I, we say that we have
a deformation of closed paths if σ(s, t) = σs(t) depend continuously on the
variables t ∈ I and s ∈ I.

Two closed paths which can be deformed one into the other, as we have
described, are called homotopic closed paths; see Fig. 6.4.
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Fig. 6.4. Examples of homotopic closed paths

If the point q ∈ R2 does not belong to the image of σ, then we call it
a deformation (or homotopy) in R2 \ {q}, and we say that the closed paths
σ0 and σ1 are homotopic in R2 \ {q}. This implies that the point q does not
belong to the image of any of the paths σs for s ∈ I.

Proposition 6.7 If the closed paths σ1 and σ2 are homotopic in R2 \ {q},
then i(q, σ1) = i(q, σ2).

Proof. As σ(I × I) is compact, the distance d from the point q /∈ σ(I × I) to
σ(I × I) is positive.

Moreover, as every continuous map defined in a compact set is uniformly
continuous, there exists δ > 0 such that ‖σ(t, s) − σ(t′, s′)‖ < d for every
t, s, t′, s′ such that |s− s′| < δ and |t− t′| < δ. Let 0 < s0 < s1 < . . . < sn < 1
be such that si − si−1 < δ. Then for every t ∈ I and every i = 1, 2, . . . , n − 1
we have that

‖σ(t, si) − σ(t, si−1)‖ < d ≤ ‖q − σ(t, si)‖,

and we can apply Corollary 6.6 to prove that

i(q, σ0) = i(q, σs1) = i(q, σs2) = . . . = i(q, σsn
) = i(q, σ1).

Thus the result is proved. �

We say that a closed path σ is contractible if it is homotopic to a constant
path, that is, a path whose image consists of a single point.

Corollary 6.8 If a closed path σ is contractible in R2 \ {q}, then i(q, σ) = 0.

Corollary 6.9 If a closed path σ is homotopic in R2 \ {q} to the closed path
defined by σn(t) = q + e2πint with n an integer and t ∈ I, then i(q, σ) = n.

The paths σn(t) = q + e2πint are especially important due to the next
proposition, which is the converse of Corollary 6.9.

Proposition 6.10 If σ is a closed path in R2 such that i(q, σ) = n and
q /∈ σ(I), then σ is homotopic in R2 \{q} to the closed path σn(t) = q+e2πint.
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Proof. We choose as r the right horizontal ray passing through the point q.
Let ϕ(t) be an angle function for the path σ with respect to the point q. We
set d(t) = ‖q − σ(t)‖, and define then σ : I × I → R2 by

σ(t, s) = q + [d(t)(1 − s) + s]e(ϕ(t)(1−s)+2πnst)i.

It is clear that σ is a continuous map, that σ(t, 0) = σ(t), and that σ(t, 1) =
σn(t). Moreover, as ϕ(1) = ϕ(0) + 2πn, σ(0, s) = σ(1, s) for every s. Finally,
as q /∈ σ(I × I), σ gives the required deformation. �

This proposition can be completed to the next theorem.

Theorem 6.11 Two closed paths are homotopic in R2 \ {q} if and only if
they have the same index around q.

Corollary 6.12 If σ : I → R2 \ {q} is a path with i(q, σ) = 0, then there
exists a map f : D

2 → R2 \ {q} with f(e2πit) = σ(t).

6.3 Continuous Maps of the Closed Disk

A closed path σ : I → R2 can also be considered as a continuous map σ̃ :
S1 → R2 and conversely by the relation σ̃(e2πit) = σ(t). If no confusion is
possible we also simply write σ instead of σ̃.

Let D
2 be the closed disk of radius one centered at the origin and let

f : D
2 → R2 be a continuous map expressed in polar coordinates as f(r, θ).

The boundary of D
2 is the circle S1. The restriction of f to S1 is the closed

path σ : S1 → R2. If q ∈ R2 does not belong to the image of f , then the map

σ : I × I −→R2

(t, s) → f(1 − s, 2πt)

provides a deformation from the closed path σ, with σ(t) = f(1, 2πt), to a
constant path. So the closed path σ is contractible due to Corollary 6.8 and
consequently i(q, σ) = 0. In short, we have proved the following result.

Theorem 6.13 Let f : D
2 → R2 be a continuous map, and let q be a point

of R2 which does not belong to f(S1), and such that i(q, σ) �= 0, with σ(t) =
f(1, 2πt) as above. Then q ∈ f(D2).

This theorem can be thought of as an extension of the Intermediate Value
Theorem from the interval I to the disk D

2.

6.4 Vector Fields Along the Unit Circle

We consider a continuous vector field X defined on the circle S1. Given a point
p = e2πit ∈ S1, we identify the vector X(p) = (X1(p), X2(p)) with the point
σ(t) ∈ R2 such that

−−−→
0σ(t) = X(p). This allows us to define a continuous map
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Fig. 6.5. Closed path associated to a vector field

σ : I →R2

t →σ(t)

such that σ(0) = σ(1); then σ is a closed path in R2. We call it the closed
path associated to the vector field X|S1 ; see Fig. 6.5.

If X(p) �= 0 for every p ∈ S1, that is, if the vector field does not vanish
at any point of the circle, then the origin cannot belong to the image of the
path σ. Then we can define the index i(0, σ) which geometrically means the
number of revolutions, taking into account their orientation, that the vector
field X makes when moving along S1. We denote it by i(X).

All that we have seen about closed paths and indices of paths can be
translated to vector fields. In particular, we talk about a deformation of a
vector field X0 into a vector field X1, when we have a continuous family of
vector fields Xs, with s ∈ I, which depends continuously on a parameter s.

Proposition 6.14 If the vector field X0 can be deformed into the vector field
X1 in such a way that Xs(p) �= 0 for every p ∈ S1 and every s ∈ I, then
i(X0) = i(X1).

Proof. In this case, the closed paths σ0 and σ1 associated to X0 and X1 can
be deformed continuously in R2 \ {0} and so, by Proposition 6.7, i(0, σ0) =
i(0, σ1). �

Proposition 6.15 Let X0 and X1 be two vector fields defined on S1 not van-
ishing at any point. If X0(p) and X1(p) never have opposite directions at any
p, then i(X0) = i(X1).

Proof. The corresponding closed paths σ0 and σ1 satisfy the hypotheses of
Proposition 6.5, so that i(0, σ0) = i(0, σ1). �

Proposition 6.16 Let X be a vector field defined on D
2 such that X(p) �= 0

for every p ∈ S1. If i(X) �= 0, then there exists a point p ∈ D
2 such that

X(p) = 0.

Proof. If σ is the closed path associated to the vector field X, then i(0, σ) �= 0.
Therefore, by Theorem 6.13, there exists a point p ∈ D

2 such that X(p) = 0.
�
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We consider some examples.

Example 6.17 Let X be a vector field on S1 which does not vanish at any
point and which is never pointing in the direction of the exterior normal. Then
applying Proposition 6.15, the index i(X) is equal to the number of turns of
the field Y = (−x,−y), and so it is 1. �

Example 6.18 Let X be a vector field on R2 which does not vanish at any
point. Then by Proposition 6.16, the number of turns of X over the circle S1

has to be 0. So by the previous example, there is at least one point p ∈ S1 in
which X(p) points in the direction of the exterior normal. �

6.5 Index of Singularities of a Vector Field

Given an isolated singularity p of a vector field X defined on an open subset
of R2, there is a neighborhood V of p on which there is no other singularity of
X. Consider now a closed path σ : S1 → V \{p}. We define ip,σ(X) = i(X ◦σ);
it is equal to the number of turns of X ◦ σ in a counter–clockwise sense.

Lemma 6.19 Let p be an isolated singularity of the vector field X, and let σ
and σ′ be two homotopic closed paths in a punctured neighborhood V \ {p} of
p, on which X has no singularities. Then ip,σ(X) = ip,σ′(X).

Proof. Let σ : I × I → V \ {p}, given by (t, s) �−→ σ(t, s), be a homotopy
between σ(t, 0) = σ(t) and σ(t, 1) = σ′(t). Then f : I × I → R2 \ {(0, 0)},
given by (t, s) �−→ X(σ(t, s)), is a homotopy between the paths X ◦ σ and
X ◦ σ′, inducing the required result. �

For a situation like the one described in Lemma 6.19, we call σ : I → V \{p}
a canonical closed path if σ is homotopic in V \{p} to σr : I → V \{p}, where
σr(t) = p + re2πit with r > 0 sufficiently small.

Let p be an isolated singularity of the vector field X. We define the index
ip = ip(X) of the singularity p of the vector field X as ip,σ(X) for a canon-
ical closed path σ. By Lemma 6.19, this definition does not depend on the
canonical closed path chosen, since they are mutually homotopic.

We now consider a method for computing the index ip(X), given a canon-
ical closed path σ for p. For t ∈ I let u(t) denote the unit tangent vec-
tor to the curve σ(I) at the point σ(t), and let v(t) denote the unit vector
defined by v(t) = X(σ(t))/‖X(σ(t))‖. We work only with canonical closed
paths σ for p having the following property: there exist finitely many values
0 < t1 < · · · < tn < 1 of the parameter t such that the vectors u(ti) and v(ti)
coincide. Then for every ti there exists εi > 0 such that for every tj �= ti we
have |tj − ti| > εi, and for every t �= ti with |t − ti| < εi the angle between
the vectors u(t) and u(ti) is smaller than π/4.
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We may distinguish four cases:

(i) u(t) ∧ v(t) ≤ 0 for every t such that |ti − t| < εi;
(ii)u(t) ∧ v(t) ≥ 0 for every t such that |ti − t| < εi.

Here, as usual we define u ∧ v as the real number |u| |v| sin θ, where θ is the
angle going in the counter-clockwise sense from the vector u to the vector v.
In these two cases the angle from the vector u(t) to the vector v(t), measured
in the counter-clockwise sense, does not change the sign when we cross the
point σ(ti) for increasing t.

(iii) u(t) ∧ v(t) < 0 for ti − εi < t < ti and u(t) ∧ v(t) > 0 for ti − εi > t > ti;
(iv) u(t) ∧ v(t) > 0 for ti − εi < t < ti and u(t) ∧ v(t) < 0 for ti − εi > t > ti.

In these last two cases the vectors u(t) and v(t) interchange their orientations
when the path σ crosses the point σ(ti). We call case (iii) a positive crossing
point and case (iv) a negative crossing point.

It is easy to check that if m represents the number of positive crossing
points and n represents the number of negative crossing points, we have that
ip(X) = 1 + m − n. Then the index of an isolated singularity p of the vector
field X with respect to a canonical closed path σ for p is equal to the number
of positive crossing points minus the number of negative crossing points of
σ(I) plus 1, provided the number of crossing points is finite.

From Chap. 3 we know that an isolated singularity of an analytic vector
field is either a center or a focus, or it has a finite sectorial decomposition
as defined in Sect. 1.5. In both cases it is easy to see that we can find in a
neighborhood of the singularity a C∞ canonical curve with a finite number of
crossing points.

Using this geometric interpretation of the index of an isolated singularity
p of the vector field X with respect to a canonical closed path σ for p, it is
now easy to prove the following interesting result:

Proposition 6.20 If X at p and Y at q are locally C1-conjugate, with p and
q isolated singular points, then ip(X) = iq(Y ).

We leave the proof as an exercise; it will suffice to mimic the argumentation
that we will use in the proof of Proposition 6.32.

As a consequence of this proposition we see that the definition of the index
ip(X) for an isolated singularity is independent of the chosen C1-coordinates
used to represent the vector field. This permits us to use this notion on sur-
faces, as we will do it in Sect. 6.6.

We consider some examples.

Example 6.21 Null index, ip = 0. In this case we call the singularity remov-
able; that is, we can modify the vector field X in the interior of a ball V of
center p in such a way that the new field Y is continuous and is not zero in V .

In order to see this, let f : V → R2 be the continuous map defined by the
vector field X, and let σ be the closed path of R2 defined by the restriction of
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X to the boundary ∂V of V . Then i(p, σ) = 0, and by Corollary 6.12, there
is a continuous map g : V → R2 which coincides with f over ∂V and whose
image does not contain p. Now the map g allows us to define a continuous
vector field Y which does not vanish at any point of V . �

Example 6.22 Index 1. Typical examples are the vector fields X = (x, y)
and X ′ = (−y, x), both having an isolated singularity of index +1 at the
origin. In the first case, the solutions are rays emanating from the origin, and
in the second the solutions are circles of radius r, r ∈ (0,∞). So in both cases,
the number of turns of the vector field over the circle S1 is 1. �

Example 6.23 Index −1. In this case the easiest example is the vector field
X = (x,−y) which has a singularity at the origin of index −1. The solutions
of this vector field are the hyperbolas xy = c with c ∈ R \ {0} and the rays in
the x- and y-axes determined by the origin.

We may calculate the index using these solutions. The index of X at p
is the number of turns of the vector field X on S1, which is the index of the
closed path σ defined by X around p. But the angle α of Fig. 6.6 is exactly
α = arctan(−y/x) = −ϕ, and now

ip = ip(X) = i(p, σ) =
α(1) − α(0)

2π
=

−2π

2π
= −1.

�

Example 6.24 Index 2. In this case we proceed differently. Instead of propos-
ing a vector field, we look for the solutions that may give us a singularity of
index 2, and afterward we give the corresponding vector field.

The variation of the angle α on the circle S1 has to be 4π. Then we take,
for example, α = 2ϕ. Then we have

dy

dx
= tan α = tan(2ϕ) =

2 tan ϕ

1 − tan2 ϕ
=

2y/x

1 − (y/x)2
=

2xy

x2 − y2
.

So a vector field that we can use is X = (x2 − y2, 2xy) and the solutions are
given by the curves x2 + y2 + 2cy = 0; see Fig. 6.7. �

Fig. 6.6. Point of index −1
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Fig. 6.7. Point of index 2
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p2

V1

V3

V2

W1

W3

W2

Fig. 6.8. Piecing of D2

Example 6.25 Index n. It is easy to see that if α = nϕ, then the index of the
vector field at the origin is n. Then dy/dx = tan α = tan(nϕ), and when we
write tan(nϕ) in terms of tan ϕ = y/x we get a vector field with a singularity
at the origin having index n. �

Now for a vector field X defined on D
2 we examine the relation between

the number of turns of X on S1 and the indices of the singularities in D
2.

Proposition 6.26 Let X be a vector field defined on D
2 such that X(p) �= 0

for all p ∈ ∂ D
2 = S1. Suppose that the number of singularities of X in D

2 is

finite, and denote them by p1, p2, . . . , pk. Then i(X|S1) =
k∑

i=1

ipi
(X).

Proof. Let V1, V2, . . . , Vk be disks with centers p1, p2, . . . , pk, respectively, and
with radius so small that each disk Vi is contained in the interior of D

2 and
that they are pairwise disjoint.

We decompose D
2 \ ∪ Vi as in Fig. 6.8, that is, we use straight segments.

We give an orientation coherent with the decomposition, as in Fig. 6.8. Each
region Wi into which we have split D

2 \(∪iVi) is homeomorphic to the disk
D

2 and so we can talk about the number of turns i(X, ∂Wi) of the vector field
X in the boundary of each Wi.
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If we now make the vector field X move over all the straight segments of
the decomposition, each straight segment is traversed twice, but in opposite
sense. So we have that

i(X, ∂W1) + . . . + i(X, ∂Wk) = i(X) − (ip1 + . . . + ipk
).

But as we know that i(X, ∂Wj) = 0 for every j, by Proposition 6.16 we
have the required result. �

6.6 Vector Fields on the Sphere S2

Let X be a vector field on the unit sphere S2 ⊂ R3, that is to say, we assign
a vector X(p) = (X1(p), X2(p), X3(p)) to every point of S2 such that the
components X1(p), X2(p), and X3(p), depend continuously on the point p.
The vector field X is called a tangent vector field to S2 if for every p ∈ S2,
X(p) belongs to the tangent plane TpS2 to S2 at the point p.

Let X be a tangent vector field on S2 and q an isolated singular point of
X; that is, X(q) = 0, and there is no other singular point of X in a sufficiently
small neighborhood of q. The stereographic projection of S2 from −q to E =
TqS2, defines an analytic diffeomorphism from an open neighborhood of q in
S2 to an open neighborhood U of q in E. This diffeomorphism transforms X
into a planar vector field X ′ on U having q as an isolated singular point. We
define the index iq of the singular point q of the tangent vector field X as
the index of q for the projected planar vector field X ′. By Proposition 6.20
it is clear that any C1 coordinate system around q can be used to define iq,
without altering the definition.

We consider some examples:

Example 6.27 For every point p ∈ S2, X(p) is a unit tangent vector to the
meridian passing through p. In this case, there are exactly two singular points,
the north and south poles, each one with index 1 because they are nodes. �
Example 6.28 For every point p ∈ S2, X(p) is a unit tangent vector to the
parallel passing through p. In this case, there are only two singular points,
again the poles, each one with index 1, but now they are centers. �
Example 6.29 Assume a vector field X ′ in the tangent plane E′ to S2 at
the south pole z′ given by a constant vector; that is, the integral lines of X ′

are a set of parallel straight lines. By stereographic projection from the north
pole z of the integral lines of X ′ onto S2 we get a family of integral lines on
S2 which define a vector field X on S2. The unique point which is singular is
the north pole z; see Fig. 6.9.

In order to evaluate the index of the vector field X at z we must project
it in a normal way onto the tangent plane E to S2 at the point z. Projecting
X onto E is just the inverse with respect to S2. It is easy to see then that the
vector field X has a singular point of index 2 at z; see Fig. 6.10. �
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Fig. 6.9. Stereographic projection for example 6.29
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Fig. 6.10. Phase portraits for example 6.29

In each one of the previous examples, the sum of the indices of all the
singular points for every vector field has been always 2. This is a general
result for every tangent vector field defined on S2.

Theorem 6.30 (Poincaré–Hopf Theorem) For every tangent vector field
on S2 with a finite number of singular points, the sum of their indices is 2.

Proof. Since the vector field X has finitely many singular points, we can
always find a great circle S1 which contains no singular points. Let E2 be the
plane containing S1. We stereographically project the vector field X restricted
to the southern hemisphere on E2 from the north pole, and we get a vector
field X ′ on E2. We do a similar projection with the northern hemisphere and
we get another projected vector field X ′′ on E2.

If q1, q2, . . . , qn are the singular points of X in the southern hemisphere
with indices i1, i2, . . . , in, and q′1, q

′
2, . . . , q

′
m are the singular points of X in

the northern hemisphere with indices i′1, i
′
2, . . . , i

′
m, then by Proposition 6.26,

the vector fields X ′ and X ′′ have on E2 a number of turns equal to i(X ′) =
i1 + . . . + in and i(X ′′) = i′1 + . . . + i′m.

We will now compute i(X ′) + i(X ′′) studying the relation between X ′

and X ′′.
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Fig. 6.11. The vector fields X ′ and X ′′ on D2

Let ϕ′ and ϕ′′ be the angle functions for X ′ and X ′′, respectively, over the
points of S1. For each point a(t) ∈ S1 by construction the vector fields X ′ and
X ′′ are symmetric with respect to the tangent line to S1 at a(t); see Fig. 6.11.

Then
ϕ′(t) + ϕ′′(t)

2
= 2πt + π/2,

consequently
ϕ′(t) + ϕ′′(t) = 4πt + π.

Therefore

i(X ′) + i(X ′′) =
ϕ′(1) − ϕ′(0) + ϕ′′(1) − ϕ′′(0)

2π

=
ϕ′(1) + ϕ′′(1) − (ϕ′(0) + ϕ′′(0))

2π

=
4π + π − π

2π
= 2,

and the result is proved. �

Corollary 6.31 Every tangent vector field X on S2 has singular points.

Proof. Considering any equator S1 ⊂ S2 and following the argumentation
of the proof of Theorem 6.30, the absence of singular points implies that
i(X ′) = i(X ′′) = 0. This contradicts the fact that i(X ′) + i(X ′′) = 2. �

The definition of index on the unit sphere S2 ⊂ R3 can be transferred to
an “abstract” sphere, meaning any two-dimensional oriented surface diffeo-
morphic to S2. As we have already observed, by Proposition 6.20, any local
parametrization near the singular point can be used to calculate the index of a
vector field near an isolated singular point. In fact, the index does not change
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even under a C0-equivalence. The notion of index can also be defined for any
C0 vector fields on an arbitrary compact oriented surface without boundary.

The Poincaré–Hopf Theorem, as well as Corollary 6.31, clearly remain true
on an “abstract” sphere. A similar theorem (with a different proof), can be
proved on an arbitrary compact oriented surface without boundary. Thus, on
a compact oriented surface without boundary S, it can be proved that the
sum of the indices of the vector field with finitely many singular points is
equal to the Euler characteristic of S. This theorem was due to Poincaré, and
its extension to compact manifolds of arbitrary dimension is due to Hopf.

6.7 Poincaré Index Formula

In Sect. 1.5 we have defined parabolic, hyperbolic, and elliptic sectors, and the
finite sectorial decomposition property for any isolated singular point different
from a center or a focus. By definition we say that a center and a focus have
neither elliptic, hyperbolic, nor parabolic sectors. It is easy to show that the
index of a focus, as well as the index of a center, is +1.

In order to study the index of any of the other singular points we have the
following result.

Proposition 6.32 (Poincaré Index Formula) Let q be an isolated singu-
lar point having the finite sectorial decomposition property. Let e, h, and p
denote the number of elliptic, hyperbolic, and parabolic sectors of q, respec-
tively, and suppose that e + h + p > 0. Then iq = (e − h)/2 + 1.

Proof. Suppose that X is a continuous vector field defined in a neighborhood
V of q and suppose that X|V has the finite sectorial decomposition property
defined in Sect. 1.5. If the sectorial decomposition is trivial, in the sense that
it consists of one parabolic sector, then iqX = 1 and (e, h) = (0, 0) which
clearly fits the statement. So we suppose that the decomposition is nontrivial,
i.e., (e, h) �= (0, 0).

By definition ∂V is the image of a permissible parametrization, the vector
field is nowhere tangent to ∂V except at e points s1, . . . , se where it has an
internal tangency (see Sect. 1.5) and h points r1, . . . , rh where it has an exter-
nal tangency (see also Sect. 1.5). We can order these e + h contact points as
q1, . . . , qn with n = e+h, using the cyclic order on ∂V , and choose intermedi-
ate points pk ∈ (qk, qk+1) for k = 0, . . . , n − 1 and with q0 = qn. We can now
choose a permissible parametrization ρ : S1 → ∂V such that ρ(e2πik/n) = pk.
We suppose that X(p0) is pointing outward. By construction, n = e + h
is even and the vectors X(pk) are pointing outward for k even and inward
for k odd.

Let N(e2πit) denote the exterior normal related to ρ. We can consider the
mapping

R : S1 × (−ε, ε) → R2

(e2πit, s) → ρ(e2πit) + sN(e2πit)
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which is a C1-diffeomorphism onto its image for ε > 0 sufficiently small. We
define the continuous vector field Y along S1 by

Y (e2πit, 0) = (dR(e2πit,0))−1(X(ρ(e2πit))).

Y along S1 is nothing else but X along ∂V written in different C1 coordinates.
As such, i(X, ∂V ) = i(Y, S1).

Moreover, the tangency points of Y along S1 correspond to the tangency
points of X along ∂V . We continue denoting them by q1, . . . , qn. We also write
pk for e2πik/n. The vectors Y (pk) are hence pointing outward for k even and
inward for k odd. Since it does not change the index i(Y, S1) we can sup-
pose that Y |S1 consists of unit vectors, which can be achieved by considering
Y (p)/‖Y (p)‖. We now fix neighborhoods (pk − ε, pk + ε) ⊂ S1, with ε > 0
small enough such that they do not contain the tangency points q1, . . . , qn. In
each Vk separately we can now easily deform the vector field Y , not chang-
ing it at {pk − ε, pk + ε} and keeping it pointing outward on Vk for k even
and inward for k odd in such a way that, after deformation and still using
the notation Y , Y (pk) = e2πik/n for k even and Y (pk) = −e2πik/n for k
odd.

We can next deform the vector field Y on each [pk, pk+1] separately, chang-
ing it into the field

Y (e2πit) = e2πi( k
n (1−s)+s( kπ

n +π)) (6.1)

if there is a (unique) internal tangency in (pk, pk+1) and

Y (e2πit) = e2πi( k
n (1−s)+s( kπ

n −π)) (6.2)

if there is a (unique) external tangency in (pk, pk+1).
In both cases we use s = n(t − k/n) and the deformation can be taken

in such a way that the beginning and ending values Y (pk) and Y (pk+1) do
not change. Thus, the different deformations on the respective [pk, pk+1] can
be joined to form a global deformation on S1. After this deformation we can
suppose that the vector field Y is exactly given by (6.1) (respectively (6.2))
on the intervals [pk, pk+1] in which there is a (unique) internal (respectively
external) tangency.

In short, by means of a continuous change, the index of a singular point
with (e, h, p) sectors is equal to the index of a singular point with exactly
those same sectors, but each one of them being a triangular sector of an-
gle 2π/m where m = e + h + p. Let σ be a circle of radius r with r small
enough.

We can now consider the contribution to the index of each sector.

(i) A triangular parabolic sector with angle 2π/m will start with an angle
ϕ(0) = α and will end with an angle ϕ(2π/m) = α + 2π/m, for a net
gain of 2π/m.
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Fig. 6.12. Index given by sectors

(ii) A triangular hyperbolic sector with angle 2π/m will start with an angle
ϕ(0) = α and will end with an angle ϕ(2π/m) = α + 2π/m− π, for a net
gain of 2π/m − π.

(iii) A triangular elliptic sector with angle 2π/m will start with an angle
ϕ(0) = α and will end with an angle ϕ(2π/m) = α + 2π/m + π, for a net
gain of π + 2π/m; see Fig. 6.12.

Now going through the entire closed curve σ we get

iq = i(q, σ) =

p∑
i=1

2π/m +
h∑

i=1

(2π/m − π) +
e∑

i=1

(π + 2π/m)

2π

=
(e − h)π

2π
+

(p + h + e)2π
2mπ

=
e − h

2
+ 1.

This completes the proof.

Corollary 6.33 Suppose that X at p and Y at q are C0-equivalent and that
both satisfy the finite sectorial decomposition property. Then ipX = iqY .

Proof. Since X at p and Y at q have the same number of elliptic, hyper-
bolic, and parabolic sectors (at least in a minimal sectorial decomposition),
Poincaré’s formula gives the required result. ��

6.8 Relation Between Index and Multiplicity

In this section we want to discuss the relation between the notions of index and
multiplicity for singular points of two-dimensional C∞ differential systems. We
shall present the results without proofs, providing references for them.

We deal with a differential system of the form

ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are C∞ functions defined in a neighborhood of the origin.
Suppose that the origin is a singular point of this system.



182 6 Indices of Planar Singular Points

Here, the germ (P0, Q0) of (P,Q) at 0 is the equivalence class of C∞

functions (F,G) defined in a neighborhood of 0 and equivalent to the function
(P,Q) under the following equivalence relation. Two C∞ functions (F,G)
and (P,Q) are equivalent if there is some open neighborhood U of 0 such
that for all (x, y) ∈ U , the identity (F,G)(x, y) = (P,Q)(x, y) holds. All local
properties of (P,Q) at 0 depend only on its germ (P0, Q0).

We consider the germ (P0, Q0) of (P,Q) at 0, and the local ring given by

C∞
0 (R2)/ < P0, Q0 >

of (P0, Q0) at 0, where C∞
0 (R2) is the ring of germs at 0 of C∞ real-valued

functions on R2, and < P0, Q0 > is the ideal generated by P0 and Q0. The
multiplicity μ0[P,Q] of (P,Q) at 0 is defined by μ0[P,Q] = dimR[C∞

0 (R2)/ <
P0, Q0 >] and we say that (P,Q) is a finite map germ if μ0[P,Q] < ∞. It is
known that μ0[P,Q] is the number of complex (P,Q)-preimages near 0 of a
regular value of (P,Q) near 0. For more details and a proof of the following
statements; see [4, 7].

Let (P,Q) : (R2, 0) → (R2, 0) be a finite map germ. Then the following
statements hold.

(i) The multiplicity of (P,Q) at 0 does not depend on the chosen coordinates.
(ii) Let P = Pk+ higher order terms and Q = Ql+ higher order terms, where

Pk (respectively Ql) denotes the homogeneous part of P (respectively Q)
of degree k (respectively l). Then μ0[P,Q] ≥ kl, and μ0[P,Q] = kl if and
only if the system Pk = Ql = 0 only has the trivial solution (0, 0) in C2.

(iii) If P = P1P2, where P1(0) = P2(0) = 0, then μ0[P,Q] = μ0[P1, Q] +
μ0[P2, Q]. A similar result holds for Q.

(iv) Let (F,G) : (R2, 0) → (R2, 0) also be a finite map germ. Then μ0[(P,Q)◦
(F,G)] = μ0[P,Q]μ0[F,G].

(v) If G = Q + AP with A : (R2, 0) → R a C∞ function, then μ0[P,Q] =
μ0[P,G]. A similar result holds for P .

(vi) If P = BF with B : (R2, 0) → R a C∞ function such that B(0) �= 0, then
μ0[P,Q] = μ0[F,Q]. A similar result holds for Q.

The next results, due to Eisenbud and Levine [60], show the relation be-
tween index and multiplicity of a singular point of a two-dimensional differ-
ential system.

Theorem 6.34 Let the origin be a singular point of the C∞ vector field X =
(P,Q). Then the following two statements hold.

(i) |i0(X)| ≤
√

μ0[X].
(ii)i0(X) ≡ μ0[X] (mod 2).

The following natural question appears: Given the multiplicity μ = μ0[X],
which values can the index i0(X) take? The next result due to Cima, Gasull,
and Torregrosa [42] shows that the index i0(X) of a two-dimensional vector
field is not subject to any restrictions other than the two conditions provided
by Theorem 6.34.
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Theorem 6.35 For each μ ∈ N with μ ≥ 1 and i ∈ Z satisfying |i| ≤ √
μ and

i ≡ μ (mod 2), there exists a function germ X = (P,Q) : (R2, 0) → (R2, 0)
such that i0(X) = i and μ0[X] = μ.

6.9 Exercises

Exercise 6.1 Prove the fundamental theorem of algebra. That is, let p(z) =
zn + an−1z

n−1 + . . . + a1z + a0 be a polynomial with n ≥ 1 and ai ∈ C for
i = 0, 1, . . . , n − 1. Then show that there exists z0 ∈ C such that p(z0) = 0.

Hint: Use Theorem 6.13 and Corollary 6.6.

Exercise 6.2 Let S2 = {x = (x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}. A

continuous map f : S2 → R is odd, if for all x ∈ S2 we have that f(x) = −f(x).
Prove the Borsuk’s Theorem: Two odd continuous maps f, g : S2 → R always
have a common zero.

Hint: Use Theorem 6.13.

Exercise 6.3 Prove the Brouwer Fixed Point Theorem: A continuous map
f : D

2 → D
2 has at least one fixed point (i.e., there exists a point p ∈ D

2 such
that f(p) = p).

Hint: Use Proposition 6.16 and Example 6.17.

Exercise 6.4 Let f : S2 → S2 be a continuous map. Show that f has a
point such that f(p) = p or f(p) = −p. Here S2 = {x = (x1, x2, x3) ∈ R3 :
x2

1 + x2
2 + x2

3 = 1}.
Hint: Use Corollary 6.31.
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Limit Cycles and Structural Stability

In the qualitative theory of differential equations, research on limit cycles
is an interesting and difficult topic. Limit cycles of planar vector fields were
defined in the famous paper Mémoire sur les courbes définies par une équation
differentielle [130,131]. At the end of the 1920s van der Pol [160], Liénard [99]
and Andronov [3] proved that a periodic orbit of a self-sustained oscillation
occurring in a vacuum tube circuit was a limit cycle as considered by Poincaré.
After this observation, the existence and nonexistence, uniqueness, and other
properties of limit cycles have been studied extensively by mathematicians and
physicists, and more recently also by chemists, biologists, and economists.

After singular points, limit cycles are the main subject of study in the
theory of two-dimensional differential systems. In this chapter we present the
most basic results on limit cycles. In particular, we show that any topological
configuration of a finite number of limit cycles is realizable by a suitable
polynomial differential system. We define the multiplicity of a limit cycle, and
we study the bifurcations of limit cycles for rotated families of vector fields.
We present some results on structural stability.

7.1 Basic Results

We consider the system of differential equations

ẋ =
dx

dt
= P (x, y), ẏ =

dy

dt
= Q(x, y), (7.1)

where x, y, and t are real variables, and P and Q are C1 functions of x and
y. Then the existence and uniqueness of its solutions is guaranteed.

We recall that if a solution x = f(t), y = g(t) of system (7.1) is a noncon-
stant periodic function of t, then γ = {(x, y) : x = f(t), y = g(t)} is called a
periodic orbit of system (7.1).
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If for some arbitrarily small outer (inner) neighborhood of the periodic
orbit γ there do not exist other periodic orbits, then γ is called an externally
(internally) limit cycle.

If there is an arbitrarily small outer (inner) neighborhood of the periodic
orbit γ filled with periodic orbits, then γ is called an externally (internally)
center-type periodic orbit. Sometimes in the literature this is simply called
an externally (internally) periodic orbit, omitting “center-type.” We prefer to
add center-type to avoid confusion.

If in any outer (inner) neighborhood of the periodic orbit γ there exist
both nonperiodic and periodic orbits different from γ, then γ is called an
externally (internally) indefinite cycle. If a periodic orbit is either externally
or internally indefinite we call it an indefinite cycle. In the literature one can
also find “compound” instead of “indefinite,” but since “compound cycle”
means something completely different in [6] we prefer to use “indefinite.”
Sometimes one can even find the word “compound limit cycles,” although on
at least one side no regular orbits tend to them, either in positive or negative
time.

By the Poincaré–Bendixson Theorem, the following three propositions and
the first theorem hold.

Proposition 7.1 If γ is a periodic orbit of system (7.1) then there exists
a sufficiently small neighborhood U of γ satisfying the following three state-
ments.

(i) U does not contain singular points.
(ii) Through any point p ∈ γ there exists a sufficiently small transverse seg-

ment Σp for the flow of system (7.1); that is, the vector field associated
to system (7.1) at the points of Σp is not tangent to it.

(iii) Any periodic orbit in U intersects Σp transversely at a unique point. Any
nonperiodic orbit in U intersects Σp at an infinite number of points, which
lie on the same side of γ.

Proposition 7.2 Any periodic orbit γ is either an external (internal) limit
cycle, an external (internal) center-type periodic orbit or an external (inter-
nal) indefinite cycle. The first case can be divided into the following two sub-
cases:

(i) There exists a sufficiently small outer (inner) neighborhood of γ such that
all the orbits in it are nonperiodic, and they have γ as ω-limit set. Then γ
is called an externally (internally) stable limit cycle. If γ is externally and
internally stable, then we say that γ is a stable limit cycle.

(ii)There exists a sufficiently small outer (inner) neighborhood of γ such that
all the orbits in it are nonperiodic, and they have γ as their α-limit set.
Then γ is called an externally (internally) unstable limit cycle. If γ is
externally and internally unstable, then we say that γ is an unstable limit
cycle.
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If γ is externally stable and internally unstable or the opposite, then we
say that γ is a semistable limit cycle.

Proposition 7.3 If γ1 and γ2 are periodic orbits which form the boundary
of an annular region A, and there are neither singular points nor other pe-
riodic orbits in A, then all the orbits in A have γ1 as their ω-limit set and
γ2 as their α-limit set, or conversely. In other words, two adjacent periodic
orbits (under the above conditions) possess different stability on the adjacent
sides.

Theorem 7.4 (Poincaré’s Annular Region Theorem) Let A be an an-
nular region not containing singular points such that ∂A does not contain
periodic orbits and such that every orbit crossing the boundary of A moves
from the exterior to the interior (interior to the exterior). Then there exists
at least one externally stable (unstable) limit cycle in A, and there exists at
least one internally stable (unstable) limit cycle in A; it is possible that both
limit cycles coincide, so as to be a single stable (unstable) limit cycle.

For analytic systems some restrictions occur in the classification of periodic
orbits.

Proposition 7.5 If P and Q are analytic functions, then system (7.1) has
no indefinite limit cycles.

The proof easily follows from Propositions 7.1 and 7.2, observing that the
Poincaré map on Σp is analytic, if we chose Σp to be an analytic regular arc
with an analytic and regular parameter. For polynomial systems (7.1) there
is a famous result, whose complicated proof has been given independently by
Ecalle [59] and Il’yashenko [88].

Theorem 7.6 When P and Q are polynomials then system (7.1) has at most
finitely many limit cycles.

The proof of the next result is straightforward.

Proposition 7.7 (Symmetry Principle) Suppose that in equations (7.1)

P (x, y) = P (−x, y), Q(−x, y) = −Q(x, y),

and the origin is the only singular point on the y-axis. If a trajectory γ starts
from the positive y-axis and returns to the negative y-axis, then γ is a periodic
orbit. If all the trajectories near the origin have this property, then the origin
is a center.

Using the Intermediate Value Theorem the next result is easy to prove.

Proposition 7.8 If the Poincaré map determined by the trajectory carries
some closed segment into itself, then the equations must have a periodic orbit.
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Proposition 7.9 (Poincaré Method of Tangential Curves) Consider a
family of curves F (x, y) = C, where F (x, y) is cont inuously differentiable. If
in a region R the quantity

dF

dt
=

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
= P

∂F

∂x
+ Q

∂F

∂y

(which represents the rate of change of the function F with respect to t along
a trajectory of system (7.1)) has constant sign, and the curve

P
∂F

∂x
+ Q

∂F

∂y
= 0

(which represents the locus of points of contact between curves in the family
and the trajectories of (7.1), and is called a tangential curve) does not contain
a whole trajectory of (7.1) or any closed branch, then system (7.1) does not
possess a periodic orbit which is entirely contained in R.

Proof. Suppose the hypotheses hold, but system (7.1) has a periodic orbit Γ
that is wholly contained in R. If we integrate P∂F/∂x + Q∂F/∂y along Γ in
the direction of increasing t, we obtain∫

Γ

(P
∂F

∂x
+ Q

∂F

∂y
)dt =

∫
Γ

dF

dt
dt.

Since Γ is periodic, we know that the right side of the equation above is
equal to zero; however, on the other hand, the integrand on the left of this
equality has a constant sign, but is not identically zero on Γ , and t monotoni-
cally increases along Γ ; hence its value is different from zero, a contradiction.

�

Theorem 7.10 (Bendixson’s Theorem) Assume that the divergence func-
tion ∂P/∂x + ∂Q/∂y of system (7.1) has constant sign in a simply connected
region R, and is not identically zero on any subregion of R. Then system (7.1)
does not have a periodic orbit which lies entirely in R. (We assume that P
and Q are C1.)

Proof. Suppose the hypotheses hold, but system (7.1) has a closed trajectory
Γ . Since R is simply connected, Γ and its interior S lie entirely in R. From
Green’s formula we have∫

Γ

Pdy − Qdx =
∫∫

S

(
∂P

∂x
+

∂Q

∂y

)
dxdy. (7.2)

But Pdy −Qdx = 0 holds everywhere along Γ , since Γ is an orbit. Hence the
left side of (7.2) is zero, while the integrand on the right side has constant sign
but is not identically zero in S; hence the double integral is not zero, giving
a contradiction. �
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Remark 7.11 By the same arguments as in Theorem 7.10, i.e., the use of
Green’s formula, it follows that on any region bounded by periodic orbits, the
integral of the divergence, as defined in (7.2) is equal to zero.

Theorem 7.12 (Dulac’s Theorem) If there exists a C1 function B(x, y)
in a simply connected region R such that ∂(BP )/∂x+∂(BQ)/∂y has constant
sign and is not identically zero in any subregion, then system (7.1) does not
have a periodic orbit lying entirely in R. (We assume that P and Q are C1.)

Proof. We follow the proof of Theorem 7.10 but use BP and BQ in place of
P and Q, respectively. �

We shall call B(x, y) a Dulac function, and the method of proving the non–
existence of a periodic orbit, as given in Theorem 7.10, is called the method
of Dulac functions.

Theorems 7.10 and 7.12 can be generalized as follows.

Theorem 7.13 (Generalized Dulac’s Theorem) If we change the region
R in Bendixson’s Theorem or in Dulac’s Theorem to be n-multiply connected
(i.e., R has one or several outer boundary curves, and n − 1 inner boundary
curves), then system (7.1) has at most n− 1 periodic orbits which lie entirely
in R.

Proof. From the proof of Theorem 7.10 we know that if there is a closed
trajectory Γ of system (7.1) in R, then Γ should contain at least one inner
boundary curve C of R in its interior. Similarly, we also know that if the
interior of Γ also contains other closed trajectories Γ1, . . . , Γk, then the region
in the interior of Γ but in the exterior of all the trajectories Γ1, . . . , Γk also
contains at least one inner boundary curve C, because of Remark 7.11. We say
that C corresponds to Γ ; we can see that for different Γ their corresponding
curves C are also different. Hence if the number of closed trajectories in G is
more than n− 1, then the connectivity number of G must be greater than n.
The theorem is proved. �

Proposition 7.14 If P and Q of system (7.1) are C1 on an open subset
U ⊂ R2, and ∂P/∂x + ∂Q/∂y ≡ 0, i.e., the 1-form

Pdy − Qdx (7.3)

is closed, then (7.1) does not have indefinite cycles in U , nor limit cycles nor
one-sided limit cycles in R.

Proof. Suppose that U contains a closed orbit Γ of system X, expressed by
(7.1) and consider a transverse section Σ consisting of a piece of orbit of the
vector field P∂/∂y−Q∂/∂x, orthogonal to X. Consider now an open segment
Σ0 ⊂ Σ, containing Σ ∩ Γ , on which a Poincaré map P : Σ0 → Σ is defined.
Take any p ∈ Σ0 \Γ , let q = P (p) and denote by A ⊂ U the annulus bounded
by Γ ∪γpq ∪Σpq where γpq is the piece of X-orbit between p and q, and Σpq is
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the segment in Σ between p and q. Since the divergence of X is equal to zero,
it follows from Green’s formula (7.2) on A that necessarily p = q (we leave
the details of the elaboration as an exercise). Hence all orbits in U sufficiently
close to Γ have to be closed, proving our claim. �

Let U be an open subset of R2. In this book we consider only C1 maps
V defined in U such that the set {(x, y) ∈ U : V (x, y) = 0} is locally a one
dimensional manifold except perhaps at finitely many points.

Let (P,Q) be a C1 vector field defined in U . A standard method for deter-
mining an explicit solution of the vector field (P,Q) is to find a C1 solution
V = V (x, y) of the linear partial differential equation

P
∂V

∂x
+ Q

∂V

∂y
= RV, (x, y) ∈ U, (7.4)

for some C1 map R = R(x, y). Thus the curve V (x, y) = 0 is formed by tra-
jectories of the vector field (P,Q), because (7.4) shows that (P,Q) is tangent
to the curve V (x, y) = 0.

In the next two results we use equation (7.4) to study the periodic solutions
of the vector field (P,Q). Both results are proved in [72].

Theorem 7.15 Let (P,Q) be a C1 vector field defined on the open subset U
of R2, let (u(t), v(t)) be a periodic solution of (P,Q) of period T , R : U → R

a C1 map such that
∫ T

o
R(u(t), v(t)) dt �= 0, and V = V (x, y) a C1 solution

of the linear partial differential equation (7.4). Then the closed trajectory γ =
{(u(t), v(t)) ∈ U : t ∈ [0, T ]} is contained in Σ = {(x, y) ∈ U : V (x, y) = 0},
and γ is not contained in a period annulus of (P,Q). Moreover, if the vector
field (P,Q) and the functions R and V are analytic, then γ is a limit cycle.

We introduce a few new notions. We consider the C1 vector field

X = P
∂

∂x
+ Q

∂

∂y

defined on the open subset U of R2. Then X is a closed vector field on U if

∂P

∂x
= −∂Q

∂y
,

for all (x, y) ∈ U . Furthermore, if U is simply connected, then there exists a
function H : U → R satisfying

P = −∂H

∂y
, Q =

∂H

∂x
.

The function H is the Hamiltonian of the Hamiltonian vector field X. Clearly
the Hamiltonian function is a first integral of X.
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A C1 function R : U → R such that

∂(RP )
∂x

= −∂(RQ)
∂y

(7.5)

is an integrating factor of the vector field X. We know that R is an integrating
factor of X in U if and only if R is a solution of the partial differential equation

P
∂R

∂x
+ Q

∂R

∂y
= −

(
∂P

∂x
+

∂Q

∂y

)
R (7.6)

in U .
A function V : U → R is an inverse integrating factor of the vector field

X if V verifies the partial differential equation

P
∂V

∂x
+ Q

∂V

∂y
=
(

∂P

∂x
+

∂Q

∂y

)
V (7.7)

in U . We note that V satisfies (7.7) in U if and only if R = 1/V satisfies (7.6)
in U \ {(x, y) ∈ U : V (x, y) = 0}.

Here we provide an easier and direct proof of the next theorem from [72].

Theorem 7.16 Let X be a C1 vector field defined on the open subset U of
R2. Let V : U → R be an inverse integrating factor of X. If γ is an indefinite
cycle, a limit cycle or an one-sided limit cycle of X, then γ is contained in
S = {(x, y) ∈ U : V (x, y) = 0}.

Proof. Due to the existence of the inverse integrating factor V defined on U ,
we see that the vector field X/V is Hamiltonian in U \S, hence its divergence
is identically zero. The result now follows from Proposition 7.14. �

Example 7.17 The system

ẋ = λx − y + λm1x
3 + (m2 − m1 + m1m2)x2y + λm1m2xy2 + m2y

3,

ẏ = x + λy − x3 + λm1x
2y + (m1m2 − m1 − 1)xy2 + λm1m2y

3,
(7.8)

has the following inverse integrating factor

V (x, y) = (x2 + y2)(1 − m1x
2 + m1m2y

2).

Since V is defined in the whole plane, by Theorem 7.16 follows that (7.8)
has at most one limit cycle, and when it exists it is algebraic and has the
equation

1 − m1x
2 + m1m2y

2 = 0. (7.9)

Note that such a limit cycle exists if and only if system (7.8) has no singular
points on the curve (7.9).
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7.2 Configuration of Limit Cycles and Algebraic
Limit Cycles

By Theorem 7.6, a theorem proved independently by Écalle [59] and by
Il’yashenko [88], we know that a polynomial planar system (7.1) can only
have a finite number of limit cycles. It is not known, however, not even for
quadratic systems, whether there exists a uniform upper bound, depending
on the degree of the system. This is an old question, put forward by Hilbert
in 1900 [82] as part of the 16th problem in his famous list of “problems for
the 20th–century.” Besides asking for such a uniform upper bound, Hilbert’s
16th problem, or more precisely the second part of it (the first part dealing
with ovals in a zero set of algebraic functions), also asks for a description
of the possible configurations of limit cycles which polynomial systems can
have.

We now deal with this problem, presenting the results obtained in [102].
A configuration of closed curves is a finite set C = {C1, . . . , Cn} of disjoint

simple closed curves of the plane such that Ci ∩ Cj = ∅ for all i �= j. We call
it a configuration of limit cycles if the closed curves Ci are limit cycles, and
a configuration of algebraic limit cycles if the closed curves Ci are algebraic
limit cycles. A closed curve is called algebraic if it is a connected component
of the zero set of some polynomial function.

Given a configuration of closed curves C = {C1, . . . , Cn} the curve Ci is
a primary curve if there is no curve Cj of C contained in the bounded region
determined by Ci.

Two configurations of closed curves C = {C1, . . . , Cn} and C ′ = {C ′
1, . . .,

C ′
m} are (topologically) equivalent if there is a homeomorphism h : R2 → R2

such that h (∪n
i=1Ci) = (∪m

i=1C
′
i). Of course, for equivalent configurations of

closed curves C and C ′ we have that n = m.
We say that the vector field X realizes the configuration of closed curves C

as a configuration of limit cycles if the set of all limit cycles of X is equivalent
to C.

Theorem 7.18 Let C = {C1, . . . , Cn} be a configuration of closed curves,
and let r be the number of its primary curves. Then the following statements
hold.

(i) The configuration C is realizable as a configuration of limit cycles by a
polynomial vector field.

(ii)The configuration C is realizable as a configuration of algebraic limit cycles
by a polynomial vector field of degree ≤ 2(n + r) − 1.

In the proof of this theorem we provide an explicit expression for the
polynomial differential system of degree at most 2(n + r)− 1 satisfying state-
ment (ii) of Theorem 7.18. Of course, statement (i) of Theorem 7.18 follows
immediately from statement (ii).
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Proof. Let C = {C1, . . . , Cn} be the configuration of closed curves given in the
statement of Theorem 7.18. For every primary curve Cj we select a point pj in
the interior of the bounded component determined by Cj . Since we can work
with an equivalent configuration of limit cycles, without loss of generality, we
can assume that

(i) each curve Ci is a circle defined by

fi(x, y) = (x − xi)2 + (y − yi)2 − r2
i = 0,

for i = 1, . . . , n; and that
(ii)the primary curves of the configuration C are the curves Cj , and the

selected points pj have coordinates (xj , yj), for j = 1, . . . , r.

For every selected point pj we define

fn+2j−1(x, y) = (x − xj) + i(y − yj),
fn+2j(x, y) = (x − xj) − i(y − yj).

Now we consider the function

H̃ = fλ1
1 · · · fλn

n f
λn+1
n+1 f

λn+2
n+2 · · · fλn+2r−1

n+2r−1 f
λn+2r

n+2r =
n+2r∏
k=1

fλk

k ,

with λ1 = · · · = λn = 1, and λn+2j−1 = 1 + i and λn+2j = 1 − i, for
j = 1, . . . , r. After an easy computation, we see that

H̃(x, y) = A(x, y)B(x, y)C(x, y),

where

A(x, y) =
n∏

i=1

[
(x − xi)2 + (y − yi)2 − r2

i

]
,

B(x, y) =
r∏

j=1

[
(x − xj)2 + (y − yj)2

]
,

C(x, y) = exp

⎛⎝−2
r∑

j=1

arg[(x − xj) + i (y − yj)]

⎞⎠.

Clearly H̃(x, y) is a real function. Therefore, the function

H = log H̃ =
n+2r∑
k=1

λk log fk

is also real.
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We claim that the vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y

= −
n+2r∑
k=1

λk

⎛⎜⎝n+2r∏
l=1
l =k

fl

⎞⎟⎠ ∂fk

∂y

∂

∂x
+

n+2r∑
k=1

λk

⎛⎜⎝n+2r∏
l=1
l =k

fl

⎞⎟⎠ ∂fk

∂x

∂

∂y
,

satisfies the conclusion of statement (ii) of Theorem 7.18. Now we shall prove
the claim.

First, we note that we have the equalities

∂H

∂x
=

Q
n+2r∏
k=1

fk

,
∂H

∂y
= − P

n+2r∏
k=1

fk

. (7.10)

Therefore, since H and
∏n+2r

k=1 fk are real functions, we get that P , Q, and
consequently X are real.

Clearly from the definition of X it follows that P and Q are polynomials
of degree at most n + 2r − 1. So X is a real polynomial vector field of degree
at most n + 2r − 1.

From (7.10) it follows that V =
∏n+2r

k=1 fk is a polynomial inverse integrat-
ing factor of X, and that H is a Hamiltonian for the Hamiltonian vector field

1
V

X =
P

V

∂

∂x
+

Q

V

∂

∂y
,

defined on R2 \ {V = 0}.
Since V is polynomial, V is defined on all of R2. Therefore, by Theorem

7.16 and since V (x, y) = 0 if and only if (x, y) ∈ (∪n
i=1Ci)∪{p1, . . . , pr}, if the

vector field X has limit cycles, these must be the circles Ci for i = 1, . . . , n.
Now we shall prove that all these circles are limit cycles. Hence the polynomial
vector field X will realize the configuration of limit cycles {C1, . . . , Cn} and
the theorem will be proved.

We note that since H̃ = exp(H) is a first integral of the vector field X on
R2 \ {V = 0}, the circles are formed by solutions because they are contained
in the level curve Ṽ = 0, where Ṽ is the associated inverse integrating factor
of the Hamiltonian H̃, and V = 0 is formed by solutions. Now we shall prove
that on every circle Ci there are no singular points of X, hence Ci will be a
periodic orbit. Assume to the contrary that (x0, y0) is a singular point of X on
the circle Ci; i.e., P (x0, y0) = Q(x0, y0) = fi(x0, y0) = 0. From the definition
of P and Q we have that

P (x0, y0) = −λi

⎛⎜⎝n+2r∏
l=1
l =i

fl(x0, y0)

⎞⎟⎠ ∂fi

∂y
(x0, y0) = 0,
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Q(x0, y0) = λi

⎛⎜⎝n+2r∏
l=1
l =i

fl(x0, y0)

⎞⎟⎠ ∂fi

∂x
(x0, y0) = 0.

Since fl(x0, y0) �= 0 for l �= i, we obtain that ∂fi

∂x (x0, y0) = 0 and also that
∂fi

∂y (x0, y0) = 0. Therefore the point (x0, y0) is the center of the circle Ci,
contradicting the fact that fi(x0, y0) = 0. Hence every circle Ci is a periodic
orbit of the vector field X. Now we shall prove that Ci is a limit cycle, and
this will complete the proof of Theorem 7.18.

We note that all circles Ci and all points pj are in the level H̃(x, y) = 0,
and that they are the unique orbits of X at this level. Now suppose that Ci

is not a limit cycle. Then there is a periodic orbit γ = {(x(t), y(t)) : t ∈ R}
different from C1, . . . , Cn and so close to Ci such that in the bounded com-
ponent B determined by γ there are the same points of {p1, . . . , pr} as in
the bounded component determined by Ci. Without loss of generality we can
assume that these points are p1, . . . , ps.

As γ is different from C1, . . . , Cn, there exists h �= 0 such that

H̃(x(t), y(t)) = A(x(t), y(t))B(x(t), y(t)) exp

⎛⎝−2
r∑

j=1

θj(t)

⎞⎠ = h, (7.11)

where θj(t) = arg[(x(t) − xj) + i (y(t) − yj)]. The function A(x(t), y(t))
B(x(t), y(t)) is bounded on γ. Clearly the angles θ1(t), . . . , θs(t) all tend si-
multaneously (due to the definition) to either +∞ or −∞ as t → +∞, while
the angles θs+1(t), . . . , θr(t) remain bounded when t → +∞. These facts are
in contradiction to equality (7.11). Consequently, we have proved that Ci is a
limit cycle. In short, Theorem 7.18 is proved. �

7.3 Multiplicity and Stability of Limit Cycles

We have already defined the stability of limit cycles for a system of equations
(7.1). In applications only a stable limit cycle has practical significance, since
every spiral sufficiently close to a limit cycle can approximately represent
the limit cycle independent of initial conditions, and an unstable limit cycle
is similar to an unstable equilibrium position in mechanics, which in reality
cannot be seen. Hence the problem of distinguishing stability of limit cycles
becomes a very important one.

From Sect. 1.6 we know that if along a closed trajectory γ of system (7.1)

∫ T

0

(
∂P

∂x
+

∂Q

∂y

)
dt < 0 (respectively > 0), (7.12)
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then γ is a stable (respectively unstable) limit cycle. From this result it follows
that for all other periodic orbits, we must have∫ T

0

(
∂P

∂x
+

∂Q

∂y

)
dt = 0. (7.13)

However, when γ is an ordinary stable or unstable limit cycle (7.13) may also
hold since (7.12) is only a sufficient condition, not a necessary condition.

When condition (7.12) holds, we say that γ is a hyperbolic limit cycle;
when condition (7.13) holds, we say that γ is a multiple periodic orbit, called
a multiple limit cycle if it is a limit cycle, both externally and internally.

Let Σ be a transverse segment (parametrized by s) to the flow of (7.1)
and let p(s) be the Poincaré map over Σ. We define by d(s) = p(s) − s the
so called displacement function. We clearly have the following result, whose
proof we leave as an exercise.

Theorem 7.19 If, for a given closed trajectory γ,

d′(0) = d′′(0) = . . . = d(k−1)(0) = 0 and d(k)(0) < 0 (respectively > 0),
(7.14)

for k odd, then γ is a stable (respectively unstable) limit cycle. If

d′(0) = d′′(0) = . . . = d(k−1)(0) = 0 and d(k)(0) �= 0, (7.15)

for k even, then γ is a semistable limit cycle.

Any γ satisfying condition (7.14) or (7.15) is called a k-multiple limit cycle.

7.4 Rotated Vector Fields

Consider the system of differential equations

dx

dt
= P (x, y, α),

dy

dt
= Q(x, y, α), (7.16)

with parameter α. Until now we have not yet considered how an orbit or
how the phase portrait changes as a parameter α varies. Such problems are
interesting but can also be very complicated. Suppose that as the parameter
α is perturbed slightly near α0, the topological structure of the phase por-
trait of (7.16)α0 is unchanged; then α0 is called a regular value of α, and the
system (7.16)α0 is called structurally stable with respect to perturbations of α.
If for arbitrarily small perturbations α near α0, the topological structure of
the phase portrait for system (7.16)α is changed, then we say that α0 is a
bifurcation value and the change in topological structure is called a bifurca-
tion. For example, as the parameter α changes, a limit cycle may appear or
disappear near a singular point, or one limit cycle may split into several ones;
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these are called bifurcation phenomena. Bifurcation theory is an active area
in differential equations; the reader is referred to [35].

In this section, we concentrate on the dependence of limit cycles on the
parameter α. The changes are very complicated for general 1-parameter fami-
lies; hence, we will restrict our attention to a special situation: rotated vector
fields. The method of rotated vector fields is important in the sense that it
provides tractable 1-parameter families of polynomial vector fields of a fixed
degree, although it is definitely useful in a much more general context. We
discuss the changes of limit cycles in rotated planar vector fields as the pa-
rameter varies. That is, we study the appearance and disappearance of limit
cycles as the parameter varies. In the special situation under consideration,
the changes are very systematic.

In this section we assume that the vector field (7.16) has only isolated
singular points, and that P (x, y, α) and Q(x, y, α) are C1 functions on R× I,
where I : 0 ≤ α ≤ T or −∞ < α < +∞ and R ⊂ R2 is an open region.

Suppose that, as α varies in [0, T ], the singular points of the vector field
(7.16) are unchanged, and at all the regular points∣∣∣∣∣ P Q

∂P

∂α

∂Q

∂α

∣∣∣∣∣ > 0; (7.17)

moreover
P (x, y, α + T ) = − P (x, y, α),

Q(x, y, α + T ) = − Q(x, y, α).
(7.18)

Then (7.16) is said to form a complete family of rotated vector fields, for
0 ≤ α ≤ T .

From (7.18), it follows that P (x, y, α) and Q(x, y, α) can be extended as
periodic functions of α with period 2T .

Let θ be the angle between the vector field (P,Q) and the x-axis; then we
have

∂θ

∂α
=

∂

∂α
Arctan

Q

P
=

1
P 2 + Q2

∣∣∣∣∣ P Q
∂P

∂α

∂Q

∂α

∣∣∣∣∣ .
From condition (7.17), it follows that at all regular points p = (x, y), when
the parameter α increases, the vector field (7.16) rotates counter-clockwise at
the point p. From condition (7.18), when the parameter changes from α to
α + T , the vector (P,Q) rotates exactly π radians counter-clockwise at the
point p, and the length of the vector remains the same. Thus, when α changes
to α + 2T , the vector field (P,Q) rotates 2π radians counter-clockwise to its
original position. This is the geometric meaning of “rotation and complete”
in Duff’s definition; see for more details [50]. As the parameter α varies, the
change on limit cycles in rotated vector fields is relatively systematic; however,
the restrictions in the definition of complete family of rotated vector fields are
quite strong. These restrictions can be substantially reduced if we retain only
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the fundamental requirements. For example, Chen Xiang–Yan introduced gen-
eralized rotated vector fields, where limit cycles vary in the same systematic
way as the parameter varies; see [165–167]. This will be our approach.

Suppose that as α varies in (a, b), the singular points of the vector fields
(7.16) remain unchanged, and for any given point p = (x, y) and any parame-
ters α1 < α2 in (a, b), we have∣∣∣∣P (x, y, α1) Q(x, y, α1)

P (x, y, α2) Q(x, y, α2)

∣∣∣∣ ≥ 0 (or ≤ 0), (7.19)

where equality cannot hold on an entire periodic orbit of (7.16)αi
, i = 1, 2.

Then (7.16) are called generalized rotated vector fields. Here, the interval (a, b)
can be either bounded or unbounded.

If for a regular point (x0, y0) and parameter α0, there exists δ(x0, y0, α0)
positive such that for all α ∈ [α0 − δ, α0 + δ], equality holds in (7.19), then α0

is called a stopping point for (x0, y0); otherwise, α0 is called a rotating point.
Stopping points are allowed in generalized rotated vector fields. Moreover,
generalized rotated vector fields do not necessarily depend on α periodically;
in particular, condition (7.18) is not required.

The geometric meaning of condition (7.19) is that, at any point p =
(x, y), the oriented angle between (P (x, y, α1), Q(x, y, α1)) and (P (x, y, α2),
Q(x, y, α2)) has the same (or opposite) sign as sgn(α2 − α1). That is, at
any point p = (x, y), as the parameter α increases, the vector (P (x, y, α),
Q(x, y, α)) can only rotate in one direction; moreover, the angle of rotation
cannot exceed π.

In the following, we describe two examples of rotated vector fields.

Example 7.20 Consider the system of differential equations

dx

dt
= P (x, y),

dy

dt
= Q(x, y)

where P,Q are of class C1. Consider the system of differential equations con-
taining parameter α

dx

dt
= P cos α − Q sin α,

dy

dt
= P sin α + Q cos α. (7.20)

It is not difficult to verify that equations (7.20) satisfy conditions (7.17)
and (7.18) and thus form a complete family of rotated vector fields. In 0 < α ≤
π (7.20) represents generalized rotated vector fields, but not in 0 < α ≤ 2π.
We remark that (7.20) is analytic when P and Q are, while the vector fields in
(7.20) are all polynomial of degree n if (P,Q) represents a polynomial vector
field of degree n.

In fact (7.20) can be regarded as a formula for axis rotation. It rotates the
original vector field by an angle of α, and keeps the vector lengths unchanged.
Thus (7.20) are called uniformly rotated vector fields.
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Example 7.21 Consider the system of differential equations

dx

dt
= −αy,

dy

dt
= αx − αyf(αx), (7.21)

where 0 < α < +∞, and f(x) is C1 and monotonically increasing as |x|
increases. It can be verified by condition (7.19) that (7.21) are generalized
rotated vector fields; however, it is not a complete family of rotated vector
fields.

In the following, we present a few important results concerning bifurcation
of limit cycles for generalized rotated vector fields. Naturally, they will also
apply to complete families of rotated vector fields. We leave the proofs to the
reader.

Theorem 7.22 (Nonintersection Theorem) Suppose that (7.16) are gen-
eralized rotated vector fields. Then for distinct α1 and α2, the periodic orbits
of system (7.16)α1 and (7.16)α2 cannot intersect each other.

In the following, we discuss the changes in the limit cycles as the parameter
α changes in system (7.16).
(i) Let (P (x, y, α), Q(x, y, α)) be generalized rotated vector fields, satisfying
inequality (7.19) with a determinant that is ≥ 0. Suppose that for α = α0,
γα0 is an externally stable limit cycle for system (7.16)α0 , turning counter-
clockwise (clockwise). Then for an arbitrarily small positive number ε, there
exists α1 < α0 (or α0 < α1) such that for any α ∈ (α1, α0) (or α ∈ (α0, α1)),
there is at least one externally stable limit cycle γα and one internally stable
limit cycle γα for system (7.16)α in an exterior ε-neighborhood of γα. (Here,
γα may coincide with γα). Moreover, there is an exterior δ-neighborhood of
γα (with δ ≤ ε), such that the neighborhood is filled with periodic orbits
{γα} of (7.16)α, for different α ∈ (α1, α0) (or α ∈ (α0, α1)). When α > α0 (or
α < α0), there is no periodic orbit of (7.16)α in the exterior δ-neighborhood
of γα0 .
(ii) Let (P (x, y, α), Q(x, y, α)) be generalized rotated vector fields, satisfying
inequality (7.19) with a determinant that is ≥ 0. Suppose that for α = α0,
γα0 is an internally stable limit cycle for system (7.16)α0 , turning counter-
clockwise (clockwise). Then for an arbitrarily small positive number ε, there
exists α2 > α0 (or α2 < α0) such that for any α ∈ (α0, α2) (or α ∈ (α2, α0)),
there is at least one externally stable limit cycle γα and one internally stable
limit cycle γα for system (7.16)α in an interior ε-neighborhood of γα0 . (Here,
γα0 may coincide with γα). Moreover, there is an interior δ–neighborhood of
γα0 (with δ ≤ ε), such that the neighborhood is filled with periodic orbits
{γα} of (7.16)α, for different α ∈ (α0, α2) (or α ∈ (α2, α0)). When α < α0 (or
α > α0), there is no periodic orbit of (7.16)α in the interior δ-neighborhood
of γα0 .

For an unstable limit cycle γα0 , there are two results analogous to (i) and
(ii). However, for a fixed orientation of γα0 , the parameter α should be taken
in the opposite direction from that in the statements above.
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From the statements above, we see that for generalized rotated vector
fields, the evolution of stable or unstable limit cycles is fairly systematic.
When the parameter changes monotonically, the limit cycle will not disappear;
it will expand or contract. When the generalized rotated vector fields satisfy
inequality (7.19) for a determinant that is positive, we now tabulate in Table
(7.1) the evolution of the stable or unstable limit cycle γα for system (7.16)α

as α increases.
As to semistable limit cycles, we have the following statement concerning

their evolution as the parameter in rotated vector fields varies.
(iii) Let (P (x, y, α), Q(x, y, α)) be generalized rotated vector fields, and let γα0

be a semistable limit cycle for system (7.16)α0 . When the parameter varies in
a suitable direction, γα0 will bifurcate into at least one stable and one unstable
limit cycle. They will lie on distinct sides of γα0 , one on the inside and one
on the outside. When α varies in the opposite direction γα0 disappears.

We represent in Table 7.2 the situation for the changes of semistable limit
cycles γα according to the direction of their movement, when the parameter
α varies.

Now when α varies monotonically in a rotated vector field, are the ex-
pansions and contractions of stable or unstable limit cycles γα monotonic?
In order to understand this, we must clarify whether γα can bifurcate into
several limit cycles
(iv) Let (P (x, y, α), Q(x, y, α)) be generalized rotated vector fields. Then a
simple limit cycle of system (7.16) cannot split nor disappear as the para-
meter α0 varies monotonically. Moreover, the cycle will expand or contract
monotonically.

Table 7.1. Behavior of γα as α varies

direction counter- counter- clockwise clockwise
clockwise clockwise

stability stable unstable stable unstable
evolution contract expand expand contract

Table 7.2. Behavior of semistable γα as α varies

direction counter- counter- clockwise clockwise
clockwise clockwise

stability externally externally externally externally
stable, unstable, stable, unstable,

internally internally internally internally
unstable stable unstable stable

α increases disappears splits into splits into disappears
two or two or

more cycles more cycles

α decreases splits into disappears disappears splits into
two or two or

more cycles more cycles
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7.5 Structural Stability

Since in Sect. 7.4 we have touched on the notion of structural stability, we
believe it is interesting to say more about it. After all, it is one of the crucial
notions in the qualitative theory of differential equations (see [118]). We first
give a precise and rather general definition. We need some space X of vector
fields on some subset U ⊂ R2 or S2 like Cr vector fields on S2, or polynomial
vector fields of some degree on R2; we endow X with some topology T and
then X ∈ X is called T -structurally stable if there exists a T -neighborhood V
of X such that for all Y ∈ V there exists a topological equivalence hY defined
on U , between Y and X.

We remark that some authors require in the definition of structural stabil-
ity that the equivalence hY depend continuously on Y and have the property
that hX =Id. In the results that we are going to state, this would not make a
difference, but in general one has to pay attention to it.

To fix ideas and to be able to state nice and simple results we will limit
our discussion to U = S2 or U = D

2, i.e., the closed northern hemisphere of
the unit sphere S2 = {(x, y, z) ∈ R3; x2 + y2 + z2 = 1}.

For S2 we consider X r(S2), with r = 1, 2, . . . ,∞, ω, the space of Cr vector
fields on S2, and we endow it with a Cs-topology Ts where s ∈ N with 1 ≤
s ≤ r. A system X ∈ X r(S2) is called s-structurally stable if it is structurally
stable for the topology Ts.

We can consider similar spaces (X r(D2), Ts) requiring for a vector field
X ∈ X r(D2) that S1 = ∂(D2) be an invariant set (i.e., consist of orbits).

Theorems 7.23 and 7.24 below follow from results of Peixoto ( [120–123])
and an adaptation for the analytic situation by Perelló ( [126]). Before stating
these theorems, we introduce the notion of a saddle-connection.

A saddle-connection is an orbit that is both a stable separatrix at a hy-
perbolic saddle p and an unstable separatrix at a hyperbolic saddle q (q = p
is permitted). If p �= q we call it a heteroclinic connection; if p = q we call it
a homoclinic connection.

Theorem 7.23 Consider (X r(S2), Ts) with r = 1, 2, . . . ,∞, ω and s ∈ N with
1 ≤ s ≤ r. Then X ∈ X r(S2) is s-structurally stable if and only if

(i) the singularities of X are hyperbolic,
(ii) the periodic orbits of X are hyperbolic limit cycles, and
(iii) there are no saddle-connections.

Moreover, the structurally stable systems form an open and dense subset of
(X r(S2), Ts).

We will not give a proof of this theorem, but will present some ingredients
in the exercises.

Theorem 7.24 Consider (X r(D2), Ts) with r = 1, 2, . . . ,∞, ω and s ∈ N

with 1 ≤ s ≤ r. Then X ∈ X r(D2) is s-structurally stable if and only if

(i) the singularities of X are hyperbolic,
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(ii) the periodic orbits of X are hyperbolic limit cycles, and
(iii) there are no saddle-connections in D

2 \S1.

Moreover, the structurally stable systems form an open and dense subset of
(X r(D2), Ts).

Remark 7.25 Structurally stable systems in (X r(D2), Ts) can of course have
stable saddle connections inside S1 since S1 is supposed invariant for all X ∈
X r(D2).

Remark 7.26 In both Theorems 7.23 and 7.24 we see that the characteriza-
tion of the structurally stable systems does not depend on the chosen topology
Ts. The openness of the subset of the structurally stable systems is a trivial
consequence of the definition. As already said, we do not prove density but
we will present some steps of the proof in the exercises.

Given our interest in polynomial systems, we say a few words about their
structural stability. To avoid complication near infinity (see e.g., [146]) we
prefer to work with their Poincaré compactification.

We denote by Pn(D2) the space of analytic vector fields on D
2 that are

obtained from polynomial vector fields of degree at most n by the Poincaré
compactification explained in Chap. 5. We denote by Pn(R2) the vector space
of polynomial vector fields of degree at most n.

It seems quite natural to consider on Pn(R2) the coefficient topology, i.e.,
such that Pn(R2) is isomorphic to RM where the isomorphism expresses a
vector field by means of the M -tuple (a00, a10, . . . , ann, b00, b10, . . . , bnn) of its
coefficients. We simply denote Pn(R2), endowed with this coefficient topology,
by (Pn(R2), T n). The topology is generated by the Euclidean metric on RM .
Using the mapping

Pc : Pn(R2) → Pn(D2)

which to each X ∈ Pn(R2) assigns its nth-degree Poincaré compactification,
we can transport the Euclidean metric to Pn(D2) and we denote the associated
topology equally by T n. We are now interested in structural stability inside
(Pn(D2), T n).

From Pugh [134] and dos Santos [49], we can state the following theorem:

Theorem 7.27 (Pn(D2), T n) contains an open and dense subset Sn in which
the vector fields X are characterized by the following properties:

(i) the singularities of X are hyperbolic,
(ii) the periodic orbits of X are hyperbolic limit cycles, and
(iii) there are no saddle connections in D

2 \S1.

The vector fields in Sn are structurally stable.

In fact, on Pn(D2) the topology T n is the same as the topology Ts for any
s ∈ N with s ≥ 1, even for s = 0. We leave it as an exercise to prove this.
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It might seem logical to expect that all the structurally stable systems of
(Pn(D2), T n) belong to Sn, but this is still an open problem, even for n = 2.

What is known is that structurally stable systems in (Pn(D2), T n) neces-
sarily only have hyperbolic singularities, have no saddle connections in D

2 \S1,
and have only isolated periodic orbits, hence limit cycles, whose multiplicity
cannot be even. Unfortunately, it is not clear how to perturb a limit cycle γ
with multiplicity 2n + 1, for n ≥ 1, in a way that there are nearby systems
which in the neighborhood of γ exhibit more than one limit cycle.

In any case, all possible phase portraits of structurally stable systems in
(Pn(D2), T n) can be realized by systems in Sn.

For the moment it is beyond the possibilities of the theory to classify all
structurally stable systems in (Pn(D2), T n), even for n = 2. The solution
of this problem would at least require a solution of Hilbert’s 16th problem.
It makes sense, however, to ask for a classification of the structurally stable
vector fields without closed curves. This has been solved in [10] for n = 2.
There are exactly 44 distinct phase portraits of such vector fields that are
structurally stable in (P2(D2), T 2). In [10] it has also been proven that the
structurally stable vector fields have the same extended skeleton as one of
the list of 44, or in other words, they can be obtained out of the 44 listed
phase portraits by changing one or two of the singularities of index 1 (also
called antisaddles) by a small disk, whose boundary is a limit cycle and inside
which one can have a finite number of other limit cycles, all surrounding a
unique strong focus.

Another problem that is yet unsolved consists in determining how many
limit cycles can exist for each one of the 44 extended skeletons presented
in [10]. For more information we refer to that paper and to [11].

A number of limit cycles surrounding a unique singularity is called a nest
of limit cycles. It is well known that a quadratic vector field can only have
two nests of limit cycles, and each nest necessarily surrounds a single focus,
which is strong if the vector field is structurally stable.

In [129] it has been proved that when two nests occur, for a quadratic
vector field, then necessarily one of the nests contains exactly one limit cycle,
which is hyperbolic.

Such results are typical for quadratic vector fields. For cubic vector fields
there can be more than two nests. And moreover there can occur limit cycles
that surround more than one singularity, and even if a nest surrounds just
one singularity it needs not be a focus; it can also be a node, for example.

In Figs. 7.1 and 7.2 we present two phase portraits that can appear in cubic
systems and that cannot be realized by a quadratic vector field. The proof of
the occurrence of such phase portraits for cubic systems can be found in [56]
for the first example and in [58] as well as in [77] for the second.

Another question that has been considered concerns the structure of
Pn(D2) \ Sn, with Sn as in Theorem 7.27. It at first seemed quite reason-
able that this set might be described by polynomial equations, as had been
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Fig. 7.1. A limit cycle with a node inside

Fig. 7.2. A limit cycle surrounding a saddle, two antisaddles, and two limit cycles
in different nests

put forward as a problem in [45] for n = 2. In fact it has been proved in [54]
that already for n = 2, the set Pn(D2) \ Sn is not even semi-analytic (see
e.g., [18] for the definition of semi-analyticity).

7.6 Exercises

Exercise 7.1 Let Xi, i = 1, 2 be C∞ vector fields, defined on open domains
Ui ⊂ R2. Suppose that γi ⊂ Ui is a periodic orbit for Xi. Take segments Σi

transversely cutting γi at pi, that are regularly parametrized by a parameter
which is 0 at pi. Consider the associated Poincaré maps PXi

with respect to
Σi. Then PX1 and PX2 are C0-conjugate at 0 if and only if X1 at γ1 is C0-
equivalent to X2 at γ2, in the sense that there exist neighborhoods V1 and V2

of γ1 and γ2, respectively, and a homeomorphism h : V1 → V2 with h(γ1) = γ2

and such that h is a C0-equivalence between X1|V1 and X2|V2 .

Exercise 7.2 Consider the family of equations

ẋ = f(x, y, λ1, . . . , λn)
ẏ = g(x, y, λ1, . . . , λn),

with f and g smooth; λ = (λ1, . . . , λn) represents an n dimensional real
parameter. Suppose that for some p0 = (x0, y0) and some λ0 = (λ0

1, . . . , λ
0
n),

we have that Xλ0(p0) = 0, and that D(Xλ0)(p0) is non–degenerate, in the
sense that detD(Xλ0)(p0) �= 0. Show that for all λ sufficiently close to λ0,
there exists p = p(λ) with Xλ(p(λ)) = 0 and p(λ0) = p0. Show also that p(λ)
is a C∞ function. If f and g are analytic, then p(λ) is analytic, too.
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Exercise 7.3 Consider the same system as in the previous exercise, but sup-
pose that D(Xλ0)(p0) is hyperbolic. Show that for λ ≈ λ0:

(i) D(Xλ)(pλ) is hyperbolic, too.
(ii)Xλ at p(λ) is C0-conjugate to Xλ0 at p0. (We say that Xλ0 at p0 is locally

structurally stable).

Exercise 7.4 Let f : U ⊂ Rm → Rn be a C∞ function with U open. Sard’s
Theorem states that almost all b ∈ Rn (with respect to Lebesgue measure)
are regular values of f , meaning that either b /∈ f(U) or at all x ∈ f−1(b) we
have that Dfx : Rm → Rn is surjective.

(i) Let b ∈ f(U) be a regular value of f ; show that f−1(b) ⊂ U is a (m − n)
dimensional submanifold of U .

(ii)Use Sard’s Theorem and point (i) to show that for any C∞ vector field X
on U ⊂ R2 with U open, and X(0) = 0, there exists a vector field having
an expression X + ε with ε ∈ R2, and ε arbitrarily close to 0, such that all
singularities of X + ε in U are non–degenerate.

Exercise 7.5 Let X : U ⊂ R2 → R2 be a C∞ vector field X = X1
∂
∂x +X2

∂
∂y

having at 0 a non–degenerate singularity. Consider the following family of
vector fields X(a, b, c, d) depending on the four parameters (a, b, c, d):

ẋ = ax + by + X1(x, y)
ẏ = cx + dy + X2(x, y).

Show that there exist (a, b, c, d) arbitrarily close to (0, 0, 0, 0) such that Xa,b,c,d

has a hyperbolic singularity at (x, y) = (0, 0).

Exercise 7.6 Let X be a C∞ vector field on some open domain U ⊂ R2 and
suppose that at p ∈ U , X has a semi-hyperbolic singularity which is a generic
saddle-node, i.e., the restriction of X to any center manifold W c starts with
quadratic terms with respect to a regular parametrization of W c. Show the
existence of a 1-parameter family Xε, a neighborhood V ⊂ U of p and an
ε0 > 0 such that for all ε ∈ (0, ε0), Xε has no singularities in V , while for all
ε ∈ (−ε0, 0), Xε has two singularities in V .

Hint: Use a normal form.

Exercise 7.7 Consider the previous exercise again, replacing the generic
saddle-node singularity by a generic nilpotent cusp point.

Exercise 7.8 Let Xλ = Xλ1,...,λn
be a smooth n-parameter family of vector

fields on some open subset U ⊂ R2 with λ ∈ B(λ0, ε). Suppose that Xλ0

has a hyperbolic limit cycle γ0. Show that there exists a 0 < δ < ε and a
neighborhood V of γ0 in U such that for all λ ∈ B(λ0, δ), Xλ has a unique
periodic orbit in V . Moreover the periodic orbit is hyperbolic and Xλ|V is
C0-equivalent to Xλ0 |V . Extra question: Can we be sure that Xλ|V is C0-
conjugate to Xλ0 |V ? If so, give a proof, if not, give a counterexample.

Hint: Use a Poincaré map.
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Exercise 7.9 Let X be a smooth vector field defined on some open subset of
R2 and let Xa, for a ∈ R and a ≈ 0 be a smooth rotated family of vector fields.
Suppose that X has γ as a limit cycle of even multiplicity (γ is semistable).
Show that for a �= 0 and a ≈ 0, Xa has either no closed curves, or at least
two.

Hint: Use the Poincaré–Bendixson Theorem.

Exercise 7.10 Consider the ε-family of smooth Liénard system Xε

ẋ = y,

ẏ = g(x) + yf(x) + εy,

such that for ε = 0 the system X0 has a hyperbolic saddle at both p1 = (x1, 0)
and p2 = (x2, 0) together with a heteroclinic connection between them. Show
that for ε �= 0, ε ≈ 0, system Xε has no heteroclinic connection between p1

and p2.
Hint: Use the property of rotated vector fields.

Exercise 7.11 Let f1, f2 be C2 functions on R2. Given a > 0 prove that a
necessary condition for the system

ẋ = y + μf1(x, y),
ẏ = − x + μf2(x, y),

(7.22)

to have a periodic solution ϕ(t, a, μ) of period τ(μ) for every μ sufficiently
small is that ϕa = ϕ(t, q, 0) = a(cos t,− sin t) and τ(μ) is differentiable with
τ(0) = 2π, and that

β(a) =
∫

ϕa

f1dy + f2dx = 0.

Prove that if β(a) = 0 and β′(a) �= 0, then (7.22) in fact has the properties
described above.

Hint: Use polar coordinates x = r cos θ, y = r sin θ transforming (7.22)
into

ṙ = μR1(r, θ, μ),

θ̇ = 1 + R2(r, θ, μ),

which is equivalent to an equation of the type

dr

dθ
= μR(r, θ, μ). (7.23)

Prove that a solution of (7.23) is of the form ρ(r, θ, μ) = r+μβ(r)+ε(r, t)μ.

Exercise 7.12 Use the previous exercise to prove that the equation of van
der Pol

x′′ = −x + εx′(1 − x2)
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has, for every ε > 0 sufficiently small, a unique limit cycle stable in a neigh-
borhood of the circle x2 + (x′)2 = 4. Prove also that as ε → 0, this limit cycle
tends to the given circle.

Exercise 7.13 Let X = (X1, X2) be a vector field on R2, where

X1 = y + x(1 − x2 − y2)

X2 = − x + y(1 − x2 − y2).

Prove that this vector field has a unique periodic orbit γ. Find a Poincaré
map π associated to γ and prove that π′ �= 1 at γ.

Hint: In polar coordinates the system above becomes

ṙ = r(1 − r2),

θ̇ = − 1.

Show that ∫
dr

r(1 − r2)
=

1
2

log
(

r2

1 − r2

)
,

and then show that π : R+ → R+ (where R+ denotes the positive x–axis) is
given by

π(r) =
reπ

√
1 − r2 + r2e2π

.

Exercise 7.14 Let γ be a stable periodic orbit of X = (X1, X2). Let

Xθ =
(

cos θ sin θ
− sin θ cos θ

)(
X1

X2

)
.

This is the vector field obtained from X after doing a rotation of angle θ.

(i) Prove that there exists ε > 0 such that Xθ with |θ| < ε has a periodic
orbit γθ such that γθ → γ when θ → 0.

(ii) Prove that the γθ are all disjoint, that is

γθ1 ∩ γθ2 = ∅ if θ1 �= θ2,

and prove that
⋃

|θ|≤ε γθ is an annular region of the plane.
(iii) If γ is an unstable periodic orbit prove an analogous version of (i) and (ii).
(iv) If γ is semistable prove that for θ with appropriate sign (positive or

negative depending on the case), there exist two periodic orbits γθ1 and
γθ2 with γθi

→ γ when θ → 0, for i = 1, 2.

Exercise 7.15 Show that the systems

x′′ + (5x4 − 9x2)x′ + x5 = 0,

x′′ + (x6 − x2)x′ + x = 0,

have a periodic orbit.
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Exercise 7.16 Prove Poincaré’s Theorem: A planar analytic system ẋ =
f(x), cannot have an infinite number of limit cycles which accumulate on
a limit cycle of the system.

Exercise 7.17 Show that γ(t) = (2 cos 2t, sin 2t) is a periodic solution of the
system

ẋ = − 4y + x

(
1 − x2

4
− y2

)
,

ẏ =x + y

(
1 − x2

4
− y2

)
,

that lies in the ellipse (x/2)2 + y2 = 1; i.e., γ(t) represents a cycle Γ of this
system. Then show that Γ is a stable limit cycle.

Exercise 7.18 Show that the system

ẋ = − y + x(1 − x2 − y2)2,

ẏ =x + y(1 − x2 − y2)2,

has a limit cycle Γ represented by γ(t) = (cos t, sin t). Show that Γ is a
multiple limit cycle. Since Γ is a semistable limit cycle, we know that the
multiplicity k of Γ is even. Can you show that k = 2?

Exercise 7.19 Use the Poincaré–Bendixson Theorem and the fact that the
planar system

ẋ =x − y − x3,

ẏ =x + y − y3,

has only a single singular point at the origin to show that this system has a
periodic orbit in the annular region A = {x ∈ R2 : 1 ≤ |x| ≤

√
2}.

Hint: Convert to polar coordinates and show that for all ε > 0, ṙ < 0 on
the circle r =

√
2 + ε and ṙ > 0 on r = 1 − ε.

Exercise 7.20 Following exercise 7.20 show that there is at least one stable
limit cycle in A (In fact this system has exactly one limit cycle in A and it is
stable.)

Exercise 7.21 Show that

ẋ = y,

ẏ = − x + (1 − x2 − y2)y,

has a unique stable limit cycle which is the ω-limit set of every trajectory
except the singular point at the origin.

Hint: Compute ṙ.
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Exercise 7.22 Use the Dulac function B(x, y) = be−2βx to show that the
system

ẋ = y,

ẏ = − ax − by + αx2 + βy2,

has no limit cycle in R2.

Exercise 7.23 Show that the system

ẋ =
y

1 + x2
,

ẏ =
−x + y(1 + x2 + x4)

1 + x2
,

has no limit cycle in R2.

Exercise 7.24 Prove that the system

ẋ = δx − y + x2 + mxy + ny2,

ẏ =x + bxy,

with b = [(1 + n)2 + δ(m + mn + δn)]/(δ2n), δn(1 + n) �= 0 and n > 0, has no
periodic orbits.

Hint: Use the fact that this system has an inverse polynomial integrating
factor of degree 2.

Exercise 7.25 Let ẋ = P (x, y) and ẏ = Q(x, y) be a quadratic polynomial
differential equation. Prove that if the pencil of conics P + λQ contains an
imaginary conic, a real conic reduced to a single point, or a double straight
line, then the system has no periodic orbits.

Hint: Use Theorem 7.15 with V = ex+λ0y, where P + λ0Q is one of the
conics mentioned.

Exercise 7.26 Consider the system

ẋ = − y + ax(x2 + y2 − 1),

ẏ =x + by(x2 + y2 − 1).

Let γ = {(x, y) ∈ R2 : x2 + y2 = 1}. Prove:

(i) if a + b = 0 and ab �= 0, then γ is the unique limit cycle of the system.
Hint: Use Theorem 7.16.

(ii)if a + b �= 0, then γ is a hyperbolic limit cycle, stable if a + b < 0 and
unstable if a + b > 0.

Exercise 7.27 Consider the system

ẋ = y − (a1x + a2x
2 + a3x

3 + x4),
ẏ = − x.
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For fixed a2, a3 ∈ R, show that this system defines a family of generalized
rotated vector fields with respect to the parameter a1.

Exercise 7.28 Consider the system

ẋ = − x + y2,

ẏ = − μx + y + μy2 − xy.

Using the fact that μ is a generalized rotation parameter for this system,
describe the phase portrait of the system in the Poincaré disk as μ varies in
R. Note that as μ is changed this system has a simultaneous Hopf bifurcation
of limit cycles at the foci (1, 1) after μ = 1/2 and that both limit cycles
end simultaneously in two homoclinic loops of the saddle (0, 0) at μ ≈ 0.52.
Note also that this system is invariant under the transformation (x, y, μ) →
(x,−y,−μ).

7.7 Bibliographical Comments

This chapter follows partly the book of Ye Yan Qian et al. (see [135]). Sect. 7.2
follows the paper [102]. In 1900 Hilbert [82], in the second part of his 16th
problem, proposed finding an uniform upper bound on the number of limit
cycles of all polynomial vector fields of a given degree, and also studying their
distribution or configuration in the plane. This has been one of the main
problems in the qualitative theory of planar differential equations in the 20th
century. The contributions of Bamon [13], Golitsina [73] and Kotova [97] for
the particular case of quadratic vector fields, and mainly of Écalle [59] and
Il’yashenko [88] in proving that any polynomial vector field has but finitely
many limit cycles have been the best results in this area. But until now it has
not been proved that there exists an uniform upper bound depending only on
the degree. This problem remains open even for quadratic polynomial vector
fields.

People interested in 16th Hilbert’s problem, concerning the maximum
number of limit cycles which polynomial vector fields of a given degree can
have, can also have a look at [89].

The problem of the realization of a given configuration of closed curves
by a polynomial differential system has been studied by several authors. For
Cr vector fields the problem was solved by Al’mukhamedov [1], Balibrea and
Jimenez [12] and Valeeva [158]. Statement (i) of Theorem 7.18 was solved
by Schecter and Singer [140] and Sverdlove [155], but they did not provide
an explicit polynomial vector field satisfying the given configuration of limit
cycles. The result presented in statement (ii) of Theorem 7.18 appears in
[102], and its proof provides simultaneously the shortest and easiest proof of
statement (i) of Theorem 7.18.

There are relatively complete results on the rotated vector field theory. The
earliest work can be found in the paper [50] of Duff in 1953. Later, Seifert [145],
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Perko [127] and Chen Xiang-Yan [165–167], successively improved the work of
Duff. We should especially note that Chen Xiang-Yan introduced the concept
of generalized rotated vector fields, which greatly weakens the conditions of
Duff, and leads to important applications of rotated vector fields.

For additional information about general results on limit cycles in planar
polynomial differential systems see [169].
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Integrability and Algebraic Solutions
in Polynomial Vector Fields

In contrast to earlier chapters, throughout this chapter we will work with
complex two-dimensional differential systems, although our main aim still
remains in the study of real planar differential equations.

For a two-dimensional vector field the existence of a first integral com-
pletely determines its phase portrait. The simplest planar vector fields having
a first integral are the Hamiltonian ones. The integrable planar vector fields
which are not Hamiltonian are, in general, very difficult to detect. In this
chapter we study the existence of first integrals for planar polynomial vector
fields through the Darbouxian theory of integrability. This kind of integrabi-
lity provides a link between the integrability of polynomial vector fields and
the number of invariant algebraic curves that they have.

8.1 Introduction

By definition a two-dimensional complex planar polynomial differential system
or simply a polynomial system will be a differential system of the form

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y), (8.1)

where the dependent variables x and y, and the independent one (the time)
t are complex, and P and Q are polynomials in the variables x and y with
complex coefficients. Throughout this chapter m = max{deg P,deg Q} de-
notes the degree of the polynomial system, and we always assume that the
polynomials P and Q are relatively prime in the ring of complex polynomials
in the variables x and y.

We want to show the fascinating relationships between integrability (a
topological phenomenon) and the existence of exact algebraic solutions for a
polynomial system.
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8.2 First Integrals and Invariants

We denote by F either the real field R or the complex field C; and by an
F-polynomial system the polynomial system (8.1) with the variables x, y and
the coefficients of the polynomials P and Q in F. We also denote by F[x, y]
the ring of polynomials in the variables x and y and coefficients in F.

The vector field X associated to system (8.1) is defined by

X = P
∂

∂x
+ Q

∂

∂y
.

The F-polynomial system (8.1) is integrable on an open subset U of F2 if
there exists a nonconstant analytic function H : U → F, called a first integral
of the system on U , which is constant on all solution curves (x(t), y(t)) of
system (8.1) contained in U ; i.e., H(x(t), y(t)) = constant for all values of t
for which the solution (x(t), y(t)) is defined and contained in U . Clearly H is
a first integral of system (8.1) on U if and only if XH = PHx + QHy ≡ 0
on U .

Let U ⊂ F2 be an open set. We say that an analytic function H(x, y, t) :
U×F → F is an invariant of the polynomial vector field X on U if H(x, y, t) =
constant for all values of t for which the solution (x(t), y(t)) is defined and
contained in U . If an invariant H is independent of t then of course it is a
first integral.

The knowledge provided by an invariant is weaker than the one provided
by a first integral. The invariant, in general, gives information only about
either the α- or the ω-limit set of the orbits of the system.

8.3 Integrating Factors

Let U be an open subset of F2 and let R : U → F be an analytic function
which is not identically zero on U . The function R is an integrating factor of
the F-polynomial system (8.1) on U if one of the following three equivalent
conditions holds on U :

∂(RP )
∂x

= −∂(RQ)
∂y

, div(RP,RQ) = 0, XR = −R div(P,Q).

As usual the divergence of the vector field X is defined by

div(X) = div(P,Q) =
∂P

∂x
+

∂Q

∂y
.

The first integral H associated to the integrating factor R is given by

H(x, y) =
∫

R(x, y)P (x, y) dy + h(x), (8.2)
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where h is chosen such that ∂H
∂x

= −RQ. Then

ẋ = RP =
∂H

∂y
, ẏ = RQ = −∂H

∂x
. (8.3)

In (8.2) we suppose that the domain of integration U is well adapted to
the specific expression.

Conversely, given a first integral H of system (8.1) we always can find an
integrating factor R for which (8.3) holds.

Proposition 8.1 If the F-polynomial system (8.1) has two integrating factors
R1 and R2 on the open subset U of F2, then in the open set U \ {R2 = 0} the
function R1/R2 is a first integral, provided R1/R2 is non-constant.

Proof. Since Ri is an integrating factor, it satisfies XRi = −Ridiv(P,Q) for
i = 1, 2. Therefore the proposition follows immediately from the computation

X

(
R1

R2

)
=

(XR1)R2 − R1(XR2)
R2

2

= 0. �

8.4 Invariant Algebraic Curves

Let f ∈ C[x, y], f not identically zero. The algebraic curve f(x, y) = 0 is
an invariant algebraic curve of the F-polynomial system (8.1) if for some
polynomial K ∈ C[x, y] we have

Xf = P
∂f

∂x
+ Q

∂f

∂y
= Kf. (8.4)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0.
We note that, since the polynomial system has degree m, any cofactor has
degree at most m − 1.

On the points of the algebraic curve f = 0 the gradient (∂f/∂x, ∂f/∂y)
of f is orthogonal to the vector field X = (P,Q) (see (8.4)). Hence at every
point of f = 0 the vector field X is tangent to the curve f = 0, so the curve
f = 0 is formed by trajectories of the vector field X. This justifies the name
“invariant algebraic curve” since it is invariant under the flow defined by X.

We remark that in the definition of invariant algebraic curve f = 0 we
always allow this curve to be complex; that is f ∈ C[x, y] even in the case of a
real polynomial system. As we will see this is due to the fact that sometimes
for real polynomial systems the existence of a real first integral can be forced
by the existence of complex invariant algebraic curves. Of course when we
look for a complex invariant algebraic curve of a real polynomial system we
are thinking of the real polynomial system as a complex one.

In the next proposition and throughout the whole chapter (complex) con-
jugation stands for conjugation of the coefficients of the polynomials only.
This amounts of course to generic conjugation if we restrict the variables to
(x, y) ∈ R2
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Proposition 8.2 For a real polynomial system (8.1), f = 0 is an invariant
algebraic curve with cofactor K if and only if f̄ = 0 is an invariant algebraic
curve with cofactor K̄.

Proof. We assume that f = 0 is an invariant algebraic curve with cofactor K
of the real polynomial system (8.1). Then equality (8.4) holds. Since P and
Q are real polynomials conjugating equality (8.4) we obtain

P
∂f̄

∂x
+ Q

∂f̄

∂y
= K̄f̄ .

Consequently, f̄ = 0 is an invariant algebraic curve with cofactor K̄ of system
(8.1). The proof in the converse is similar. �

Lemma 8.3 Let f, g ∈ C[x, y]. We assume that f and g are relatively prime
in the ring C[x, y]. Then for a polynomial system (8.1), fg = 0 is an invariant
algebraic curve with cofactor Kfg if and only if f = 0 and g = 0 are invariant
algebraic curves with cofactors Kf and Kg, respectively. Moreover, Kfg =
Kf + Kg.

Proof. It is clear that

X(fg) = (Xf)g + f(Xg). (8.5)

We assume that fg = 0 is an invariant algebraic curve of system (8.1) with
cofactor Kfg. Then X(fg) = Kfgfg and from equality (8.5) we get Kfgfg =
(Xf)g + fXg. Therefore, since f and g are relatively prime, we obtain that f
divides Xf , and g divides Xg. If we denote by Kf the quotient Xf/f and by
Kg the quotient Xg/g, then f = 0 and g = 0 are invariant algebraic curves of
system (8.1) with cofactors Kf and Kg, respectively, and Kfg = Kf + Kg.

The proof of the converse follows in a similar way, again using equality
(8.5). ��

Proposition 8.4 Suppose f ∈ C[x, y] and let f = fn1
1 . . . fnr

r be its factoriza-
tion into irreducible factors over C[x, y]. Then for a polynomial system (8.1),
f = 0 is an invariant algebraic curve with cofactor Kf if and only if fi = 0 is
an invariant algebraic curve for each i = 1, . . . , r with cofactor Kfi

. Moreover
Kf = n1Kf1 + . . . + nrKfr

.

Proof. From Lemma 8.3, we know that f = 0 is an invariant algebraic curve
with cofactor Kf if and only if fni

i = 0 is an invariant algebraic curve for each
i = 1, . . . , r with cofactor Kf

ni
i

; furthermore Kf = Kf
n1
1

+ . . . + Kfnr
r

.
Now to prove the proposition it is sufficient to show, for each i = 1, . . . , r,

that fni
i = 0 is an invariant algebraic curve with cofactor Kf

ni
i

if and only
if fi = 0 is an invariant algebraic curve with cofactor Kfi

, and that Kf
ni
i

=
niKfi

. We assume that fni
i = 0 is an invariant algebraic curve with cofactor

Kf
ni
i

. Then
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Kf
ni
i

fni
i = X (fni

i ) = nif
ni−1
i X(fi),

or equivalently

X(fi) =
1
ni

Kf
ni
i

fi.

So defining Kfi
= Kf

ni
i

/ni we obtain that fi = 0 is an invariant algebraic
curve with cofactor Kfi

such that Kf
ni
i

= niKfi
. The proof of the converse

follows in a similar way. �

An irreducible invariant algebraic curve f = 0 will be an invariant algebraic
curve such that f is an irreducible polynomial in the ring C[x, y].

8.5 Exponential Factors

There is another object, the so-called exponential factor, that plays the
same role as the invariant algebraic curves in obtaining a first integral of
the polynomial system (8.1). Before defining it formally, we explain how
the notation arises naturally. Suppose we have invariant algebraic curves
hε = h + εg + O(ε2) = 0 with cofactors Khε

for ε ∈ [0, ε0] with ε0 suffi-
ciently small. Using the fact that X(hε) = Khε

hε, if we expand the cofactor
Khε

as a power series in ε we obtain that Khε
= Kh + εK + O(ε2), where K

is some polynomial of degree at most m − 1. We can now make a local study
near a point where h is not zero.

Since

X

(
hε

h

)
=

X(hε)h − (hε)Xh

h2

=
Khε

(hε)h − (hε)Khh

h2

=
(Kh + εK + O(ε2))(h + εg + O(ε2))h − (h + εg + O(ε2))Khh

h2

= εK + O(ε2),

we have

X

((
hε

h

) 1
ε

)
=

1
ε

(
hε

h

) 1
ε
(

hε

h

)−1

X

(
hε

h

)

=
1
ε

(
hε

h

) 1
ε

(1 + O(ε))
(
εK + O(ε2)

)
(8.6)

= (K + O(ε))
(

hε

h

) 1
ε

.

Therefore the function (
h + εg + O(ε2)

h

) 1
ε
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has cofactor K + O(ε). As ε tends to zero, the expression above tends to

exp
( g

h

)
, (8.7)

and from (8.6) we obtain that

X
(
exp

( g

h

))
= K exp

( g

h

)
. (8.8)

Therefore, function (8.7) satisfies the same equation (8.4) as do the invariant
algebraic curves, with a cofactor of degree at most m − 1.

Let h, g ∈ C[x, y] and assume that h and g are relatively prime in the ring
C[x, y] or that h ≡ 1. Then the function exp(g/h) is called an exponential
factor of the F-polynomial system (8.1) if for some polynomial K ∈ C[x, y] of
degree at most m − 1 it satisfies equation (8.8). As before we say that K is
the cofactor of the exponential factor exp(g/h).

As we will see, from the point of view of the integrability of polynomial
systems (8.1) the importance of the exponential factors is twofold. On the
one hand, they satisfy equation (8.8), and on the other hand, their cofactors
are polynomials of degree at most m − 1. These two facts mean that they
play the same role as the invariant algebraic curves in the integrability of a
polynomial system (8.1). We note that the exponential factors do not define
invariant curves for the flow of system (8.1), because they are never zero.

We remark that in the definition of exponential factor exp(g/h) we always
allow that this function be complex; that is h, g ∈ C[x, y] even in the case of
a real polynomial system. The reason is the same as in the case of invariant
algebraic curves. That is, sometimes for real polynomial systems the existence
of a real first integral can be forced by the existence of complex exponential
factors. Again, in looking for a complex exponential factor of a real polynomial
system, we consider the real polynomial system as being on C2.

Proposition 8.5 For a real polynomial system (8.1) the function exp(g/h)
is an exponential factor with cofactor K if and only if the function exp(ḡ/h̄)
is an exponential factor with cofactor K̄.

Proof. We assume that exp(g/h) is an exponential factor of the real polyno-
mial system (8.1) with cofactor K. Then equality (8.8) holds. Since P and Q
are real polynomials, conjugating equality (8.8) we obtain that

P
∂ exp(ḡ/h̄)

∂x
+ Q

∂ exp(ḡ/h̄)
∂y

= K̄ exp(ḡ/h̄).

Consequently, exp(ḡ/h̄) is an exponential factor of system (8.1) with cofactor
K̄. The proof of the converse is similar. �
Proposition 8.6 If F = exp(g/h) is an exponential factor for the polynomial
system (8.1), then h = 0 is an invariant algebraic curve, and g satisfies the
equation

Xg = gKh + hKF ,

where Kh and KF are the cofactors of h and F , respectively.
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Proof. Since F = exp(g/h) is an exponential factor with cofactor KF , we have

KF exp
( g

h

)
= X

(
exp

( g

h

))
= exp

( g

h

)
X
( g

h

)
= exp

( g

h

) (Xg)h − g(Xh)
h2

,

or equivalently
(Xg)h − g(Xh) = h2KF .

Hence since h and g are relatively prime, we obtain that h divides Xh. So
h = 0 is an invariant algebraic curve with cofactor Kh = Xh/h. Now replacing
Xh by Khh in the last equality, we have that Xg = gKh + hKF . �

In fact, the way that the exponential factor exp(g/h) has been introduced
at the beginning of this section implies that it appears when the invariant
algebraic curve h = 0 has geometric multiplicity higher than 1.

8.6 The Method of Darboux

Before stating the main results of the Darboux theory we need some defini-
tions. If S(x, y) =

∑m−1
i+j=0 aijx

iyj is a polynomial of degree at most m − 1
with m(m + 1)/2 coefficients in F, then we write S ∈ Fm−1[x, y]. We identify
the linear vector space Fm−1[x, y] with Fm(m+1)/2 through the isomorphism

S → (a00, a10, a01, . . . , am−1,0, am−2,1, . . . , a0,m−1).

We say that r points (xk, yk) ∈ F2, k = 1, . . . , r, are independent with
respect to Fm−1[x, y] if the intersection of the r hyperplanes

m−1∑
i+j=0

xi
kyj

kaij = 0, k = 1, . . . , r,

in Fm(m+1)/2 is a linear subspace of dimension [m(m + 1)/2] − r.
We remark that the maximum number of isolated singular points of the

polynomial system (8.1) is m2 (by Bézout’s Theorem), that the maximum
number of independent isolated singular points of the system is m(m + 1)/2,
and that m(m + 1)/2 < m2 for m ≥ 2.

A singular point (x0, y0) of system (8.1) is called weak if the divergence,
div(P,Q), of system (8.1) at (x0, y0) is zero.

Theorem 8.7 [Darboux Theory of integrability for complex polynomial sys-
tems] Suppose that a C-polynomial system (8.1) of degree m admits p irre-
ducible invariant algebraic curves fi = 0 with cofactors Ki for i = 1, . . . , p, q
exponential factors exp(gj/hj) with cofactors Lj for j = 1, . . . , q, and r inde-
pendent singular points (xk, yk) ∈ C2 such that fi(xk, yk) �= 0 for i = 1, . . . , p
and for k = 1, . . . , r.
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(i) There exist λi, μj ∈ C not all zero such that
∑p

i=1 λiKi +
∑q

j=1 μjLj = 0,
if and only if the (multivalued) function

fλ1
1 . . . fλp

p

(
exp

(
g1

h1

))μ1

. . .

(
exp

(
gq

hq

))μq

(8.9)

is a first integral of system (8.1).
(ii) If p + q + r ≥ [m(m + 1)/2] + 1, then there exist λi, μj ∈ C not all zero

such that
∑p

i=1 λiKi +
∑q

j=1 μjLj = 0.
(iii) If p + q + r ≥ [m(m + 1)/2] + 2, then system (8.1) has a rational first

integral, and consequently all trajectories of the system are contained in
invariant algebraic curves.

(iv) There exist λi, μj ∈ C not all zero such that
∑p

i=1 λiKi +
∑q

j=1 μjLj =
−div(P,Q), if and only if function (8.9) is an integrating factor of system
(8.1).

(v) If p+q+r = m(m+1)/2 and the r independent singular points are weak,
then function (8.9) is a first integral if

∑p
i=1 λiKi +

∑q
j=1 μjLj = 0, or

an integrating factor if
∑p

i=1 λiKi +
∑q

j=1 μjLj = −div (P,Q), under the
condition that not all λi, μj ∈ C are zero.

(vi) If there exist λi, μj ∈ C not all zero such that
∑p

i=1 λiKi +
∑q

j=1 μjLj =
−s for some s ∈ C \ {0}, then the (multivalued) function

fλ1
1 . . . fλp

p

(
exp

(
g1

h1

))μ1

. . .

(
exp

(
gq

hq

))μq

exp(st)

is an invariant of system (8.1).

Of course, each irreducible factors of each hj is one of the fi’s.

Proof of Theorem 8.7: We write Fj = exp(gj/hj). By hypothesis we have p
invariant algebraic curves fi = 0 with cofactors Ki, and q exponential factors
Fj with cofactors Lj . That is, the fis satisfy Xfi = Kifi, and the Fjs satisfy
XFj = LjFj .
(i) Clearly statement (i) follows from the fact that

X
(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)
=

(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)⎛⎝ p∑
i=1

λi
Xfi

fi
+

q∑
j=1

μj
XFj

Fj

⎞⎠ =

(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)
,

⎛⎝ p∑
i=1

λiKi +
q∑

j=1

μjLj

⎞⎠ = 0.

(ii) Since the cofactors Ki and Lj are polynomials of degree m − 1, we have
that Ki, Lj ∈ Cm−1[x, y]. We note that the dimension of Cm−1[x, y] as a
vector space over C is m(m + 1)/2.
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Since (xk, yk) is a singular point of system (8.1), P (xk, yk) = Q(xk, yk) =
0. Then from Dfi = P (∂fi/∂x) + Q(∂fi/∂y) = Kifi, it follows that
Ki(xk, yk)fi(xk, yk) = 0. As we have assumed that fi(xk, yk) �= 0, therefore
Ki(xk, yk) = 0 for i = 1, . . . , p. Again, from DFj = P (∂Fj/∂x)+Q(∂Fj/∂y) =
LjFj , it follows that Lj(xk, yk)Fj(xk, yk) = 0. Since Fj = exp(gj/hj) does
not vanish, Lj(xk, yk) = 0 for j = 1, . . . , q. Consequently, since the r singu-
lar points are independent, all the polynomials Ki and Lj belong to a linear
subspace S of Cm−1[x, y] of dimension [m(m+1)/2]−r. We have p+q polyno-
mials Ki and Lj and since from the assumptions p+ q > [m(m+1)/2]− r, we
obtain that the p + q polynomials must be linearly dependent in S. So there
are λi, μj ∈ C not all zero such that

∑p
i=1 λiKi +

∑q
j=1 μjLj = 0. Hence

statement (ii) is proved.
(iii) Since the number of independent singular points r ≤ m(m + 1)/2, it
follows that p + q ≥ 2. Under the assumptions of statement (iii) we apply
statement (ii) to two subsets of p + q − 1 > 0 functions defining invariant
algebraic curves or exponential factors. Thus we get two linear dependencies
between the corresponding cofactors, which after some linear algebra and
relabeling, we can write in the following form

M1+α3M3+ . . .+αp+q−1Mp+q−1 = 0, M2+β3M3+ . . .+βp+q−1Mp+q−1 = 0,

where Ml are the cofactors Ki and Lj , and the αl and βl are complex numbers.
Then by statement (i), it follows that the two functions

G1G
α3
3 . . . G

αp+q−1
p+q−1 , G2G

β3
3 . . . G

βp+q−1
p+q−1 ,

are first integrals of system (8.1), where Gl is the polynomial defining an
invariant algebraic curve or the exponential factor having cofactor Ml for
l = 1, . . . , p + q − 1. Then taking logarithms of the two first integrals above,
we obtain that

H1 = log(G1) + α3 log(G3) + . . . + αp+q−1 log(Gp+q−1),
H2 = log(G2) + β3 log(G3) + . . . + βp+q−1 log(Gp+q−1),

are first integrals of system (8.1) on their domain of definition. Each provides
an integrating factor Ri such that

P = Ri
∂Hi

∂y
, Q = −Ri

∂Hi

∂x
.

Therefore, we obtain that

R1

R2
=

∂H2

∂x
/
∂H1

∂x
.

Since the functions Gl are polynomials or exponentials of a quotient of
polynomials, it follows that the functions ∂Hi/∂x are rational for i = 1, 2. So
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from the last equality, we get that the quotient of the two integrating factors
R1/R2 is a rational function. Proposition 8.1 implies statement (iii).
(iv) Since the equality

∑p
i=1 λiKi +

∑q
j=1 μjLj = −div(P,Q) is equivalent to

the equality

X
(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)
=

(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)⎛⎝ p∑
i=1

λiKi +
q∑

j=1

μjLj

⎞⎠ =

−
(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)
div(P,Q) ,

statement (iv) follows.
(v) Let K = div(P,Q); clearly K ∈ Cm−1[x, y]. By assumption the r singular
points (xk, yk) are weak, therefore K(xk, yk) = 0 for k = 1, . . . , r. So K
belongs to the linear subspace S of the proof of statement (ii).

On the other hand, since dim S = p + q = [m(m + 1)/2] − r ≥ 0 and
we have p + q + 1 polynomials K1, . . . , Kp, L1, . . . , Lq, K in S (we are using
the same arguments as in the proof of statement (ii)), it follows that these
polynomials are linearly dependent in S. Therefore, we obtain λi, μj , α ∈ C

not all zero such that(
p∑

i=1

λiKi

)
+

⎛⎝ q∑
j=1

μjLj

⎞⎠+ αK = 0. (8.10)

If α = 0 then as in the proof of statement (i), we obtain that function
(8.9) is a first integral of system (8.1).

We assume now that α �= 0. Dividing the equality (8.10) by α (if nec-
essary), we can assume without loss of generality that α = 1. So we have
that

K = −
(

p∑
i=1

λiKi

)
−

⎛⎝ q∑
j=1

μjLj

⎞⎠ .

Therefore, statement (v) follows from:

X
(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)
=

(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)⎛⎝ p∑
i=1

λiKi +
q∑

j=1

μjLj

⎞⎠ =

−
(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)
K =

−
(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q

)
div(P,Q) .
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(vi) We have λi, μj ∈ C not all zero such that
∑p

i=1 λiKi +
∑q

j=1 μjLj = −s.
Then from

X
(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q est
)

=

(
fλ1
1 . . . fλp

p Fμ1
1 . . . Fμq

q est
)⎛⎝ p∑

i=1

λiKi +
q∑

j=1

μjLj + s

⎞⎠ = 0 ,

statement (iv) follows.
A (multivalued) function of the form (8.9) is called a Darbouxian function.
Now we shall see that if the polynomial differential system is real, then

the first integral provided by the Darboux theory of integrability is also real.
This follows from the following fact. Since the polynomial differential system
(8.1) is real, it is well known that if a complex invariant algebraic curve or
exponential factor appears, then its conjugate must appear simultaneously
(see Propositions 8.2 and 8.5). If among the invariant algebraic curves of the
real system (8.1) a complex conjugate pair f = 0 and f = 0 occurs, the
function (8.9) has a real factor of the form fλf̄ λ̄, which is the multivalued
real function[

(Re f)2 + (Im f)2
]Reλ

exp (−2 Im λ arg (Re f + i Im f)) ,

if Imλ Im f �≡ 0. If among the exponential factors of the real system (8.1)
a complex conjugate pair F = exp(h/g) and F = exp(h/g) occurs, the first
integral (8.9) has a real factor of the form(

exp
(

h

g

))μ(
exp

(
h

g

))μ

= exp
(

2Re
(

μ
h

g

))
.

In short, the function (8.9) is real when the polynomial differential system
(8.1) is real.

8.7 Some Applications of the Darboux Theory

In what follows we present applications of each statement of Darboux’s theo-
rem to quadratic systems. For quadratic systems m(m + 1)/2 = 3

Example 8.8 If a �= 0 the quadratic system

ẋ = −y(ay + b) − (x2 + y2 − 1), ẏ = x(ay + b), (8.11)

has the algebraic solutions f1 = ay + b = 0 with cofactor K1 = ax, and
f2 = x2 + y2 − 1 = 0 with cofactor K2 = −2x. Since 2K1 + aK2 = 0, by
Theorem 8.7(i) we have that H = (ay + b)2(x2 + y2 − 1)a is a first integral of
system (8.11).
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Example 8.9 If abc �= 0 then the real quadratic system

ẋ = x(ax + c), ẏ = y(2ax + by + c), (8.12)

has exactly the following five invariant straight lines (i.e. algebraic solutions
of degree 1): f1 = x = 0, f2 = ax + c = 0, f3 = y = 0, f4 = ax + by = 0,
f5 = ax + by + c = 0. Then by Theorem 8.7(ii) we know that system (8.5)
must have a first integral of the form H = fλ1

1 fλ2
2 fλ3

3 fλ4
4 fλ5

5 with λi ∈ F

satisfying
∑5

i=1 λiKi = 0, where Ki is the cofactor of fi. An easy computation
shows that K1 = ax + c, K2 = ax, K3 = 2ax + by + c, K4 = ax + by + c
and K5 = ax + by. Then a solution of

∑5
i=1 λiKi = 0 is λ1 = λ5 = −1,

λ2 = λ4 = 1 and λ3 = 0. Therefore a first integral of system (8.12) is

H =
(ax + c)(ax + by)
x(ax + by + c)

.

We note that since this system has 5 invariant algebraic curves, by Theorem
8.7(iii) it must have a rational first integral, as we have found.

Example 8.10 The real quadratic system

ẋ = −y − b(x2 + y2) = P, ẏ = x = Q, (8.13)

has the invariant algebraic curve f1 = x2 +y2 with cofactor K1 = −2bx. Since
K1 = div(P,Q), from Theorem 8.7(iv), it follows that f−1

1 is an integrating
factor. Then an easy computation shows that H = exp(2by)(x2 + y2) is a first
integral of system (8.13).

Example 8.11 If a02 �= 0 then the real quadratic system

ẋ = x2 − 1 = P, ẏ = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2 = Q,

with a00 = (2a11 + a2
01 − 1)/(4a02), a10 = a01a11/(2a02) and a20 = a11(a11 −

2)/(4a02), has the following three algebraic solutions: two straight lines f1 =
x + 1, f2 = x − 1, and one hyperbola

f3 =
a11(a11 − 2)

4a02
x2+(a11−1)xy+a02y

2+
a01(a11 − 1)

2a02
x+a01y+

a2
01 + 1
4a02

= 0.

Their cofactors are K1 = x − 1, K2 = x + 1 and K3 = (a11 + 1)x + 2a02y +
a01, respectively. Since

∑3
i=1 λiKi = −div(P,Q) for λ1 = λ2 = −1/2, and

λ3 = −1, from Theorem 8.7(iv) it follows that fλ1
1 fλ2

2 fλ3
3 is a Darbouxian

integrating factor. By computing its associated first integral we obtain

H = −2arctanh
[
(a11 − 1)x + 2a02y + a01

(x2 − 1)1/2

]
− ln

∣∣∣x + (x2 − 1)1/2
∣∣∣ .
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An interesting application of the Darboux theory of integrability allow us
to present a shorter proof of the classification theorem of centers of quadratic
systems. First we need some preliminary results.

Let L be a straight line, and let q be a point of L. We say that q is a
contact point of the straight line L with a vector field X, if the vector X(q)
is parallel to L.

Lemma 8.12 If X is a quadratic vector field and L is a straight line, then
either L is invariant under X, or X has at most two contact points (including
the singularities) along L.

Proof. Let X = P∂/∂x+Q∂/∂y, and let L = {(x, y) : ax+ by + c = 0}. Then
the contact points of X and L must satisfy the system

aP (x, y) + bQ(x, y) = 0,
ax + by + c = 0.

From this system the lemma follows easily. �

Lemma 8.12 is used for proving the next result.

Proposition 8.13 Let X be a quadratic system and let C be a closed orbit
of X.

(i) The interior of C is a convex set.
(ii)There is at most one singularity in the interior of C. This singularity has

index 1, is non–degenerate and has complex conjugate eigenvalues.

Proof. Suppose that we have a segment with endpoints in the interior of
C, but the segment is not completely contained in this interior. Then the
straight line containing this segment will have at least three contact points,
in contradiction to Lemma 8.12. Hence statement (i) is proved.

If C had at least two singularities in its interior, then the straight line
through them would have at least three contact points with X, contradicting
Lemma 8.12.

Without loss of generality we may assume that the unique singularity in
the interior of C is at the origin. Its linear part cannot be zero, because a
homogeneous quadratic system always has an invariant straight line through
the origin.

Using the Poincaré–Hopf Theorem it follows immediately that the index
of the unique singularity in the interior of C must be 1.

To prove that the linear part cannot be nilpotent, we use the Jordan
normal form theorem and we write X as

ẋ = y + Bx2 + Cxy + Dy2, ẏ = Ex2 + Fxy + Gy2.

Along {y = 0} the y-component of this vector field is given by ẏ = Ex2.
Clearly this prevents the existence of closed orbits around the origin.
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Since the index of the unique singularity in the interior of C is 1, and
this singularity is elementary, if the eigenvalues of DX(0, 0) were not complex
conjugate, we would be able to write X as

ẋ = λx + Bx2 + Cxy + Dy2, ẏ = δx + μy + Ex2 + Fxy + Gy2,

with δ = 0, unless λ = μ in which case δ = 1. Along {x = 0} the x–component
of this vector field is given by ẋ = Dy2, which again prevents the existence of
a closed orbit around the origin. �

Proposition 8.13 allows us to prove the following lemma, which will be
used for the characterization of quadratic centers.

Lemma 8.14 If a quadratic vector field X has a center, then up to a trans-
lation, a linear transformation and a time rescaling, it can be written as

ẋ = −y − bx2 − Cxy − dy2, ẏ = x + ax2 + Axy − ay2. (8.14)

Proof. We position the center at the origin. Since it is a center, by Proposition
8.13, we know that X can be written as

ẋ = −y + αx2 + βxy + γy2, ẏ = x + αx2 + βxy + γy2,

If α + γ = 0, then the lemma follows. So we suppose that α + γ �= 0 and show
that by a well chosen rotation(

x
y

)
=
(

cos θ − sin θ
sin θ cos θ

)(
X
Y

)
,

we obtain expression (8.14). We write c = cos θ, s = sin θ and make a straight-
forward computation of the X2 and Y 2 terms in the expression of Ẏ . The
equality of these terms with opposite signs is given by the equation

(α + γ)c3 − (α + γ)c2s + (α + γ)cs2 − (α + γ)s3 = 0.

Since c2 + s2 = 1, this is equivalent to (α + γ)c − (α + γ)s = 0, which clearly
provides two solutions for θ. �

In the next theorem we characterize the quadratic centers.

Theorem 8.15 (Kapteyn–Bautin Theorem) A quadratic system that has
a center at the origin can be written in the form

ẋ = −y − bx2 − Cxy − dy2, ẏ = x + ax2 + Axy − ay2. (8.15)

This system has a center at the origin if and only if at least one of the following
conditions holds

(i) A − 2b = C + 2a = 0,
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(ii) C = a = 0,
(iii) b + d = 0,
(iv) C + 2a = A + 3b + 5d = a2 + bd + 2d2 = 0.

Proof. By Lemma 8.14 a quadratic system can have a center only if it can be
placed in the form (8.15).

Using the algorithm for computing the Lyapunov constants described at
the end of Chap. 4, we can compute them for the origin of system (8.15). We
obtain

V3 = c3(2a + C)(b + d),
V5 = c5a(A − 2b)(b + d)(A + 3b + 5d),

V7 = c7a(A − 2b)(b + d)2(a2 + bd + 2d2),

where c3, c5, and c7 are nonzero real numbers. From Chap. 4 we know that it
is necessary that V3 = V5 = V7 = 0 in order that the origin of system (8.15)
be a center. This shows that the conditions (i)–(iv) are necessary. Now we
shall prove that they are sufficient.

Since system (8.15) has a linear center at the origin, to prove that system
(8.15) satisfying one of the four conditions of the Kapteyn–Bautin Theorem
has a center at the origin, it is sufficient to show that it has a first integral in
a neighborhood of the origin.

Assume that system (8.15) satisfies condition (i). Then it is easy to check
that the system is Hamiltonian, i.e., ẋ = −∂H/∂y, ẏ = ∂H/∂x with H =
1
2

(
x2 + y2

)
+ a

3x3 + bx2y− axy2 + d
3y3. Therefore H is a first integral defined

in a neighborhood of the origin.
Suppose that system (8.15) satisfies condition (ii). Then the system can

be written in the form

ẋ = −y − bx2 − dy2, ẏ = x + Axy.

Since it is invariant under (x, y, t) → (−x, y, t), hence time-reversible, the
origin necessarily is a center.

Assume that system (8.15) satisfies condition (iii). The form of system
(8.15) with b + d = 0 is preserved under a rotation about the origin. After
performing a rotation of angle θ, the new coefficient a′ of x2 in the second equa-
tion of system (8.15) is of the form a′ = a cos3 θ+α cos2 θ sin θ+β cos θ sin2 θ+
d sin3 θ. Therefore, if a �= 0 we can find θ such that a′ = 0. So we can assume
that a = 0, and consequently C �= 0; otherwise we would be under the as-
sumptions of condition (ii).

The system ẋ = −y − bx2 − Cxy + by2, ẏ = x + Axy, has the algebraic
solutions f1 = 1 + Ay = 0 if A �= 0 with cofactor K1 = Ax, and f2 =
(1− by)2 + C(1− by)x− b(A + b)x2 = 0 with cofactor K2 = −2bx−Cy. Since
the divergence of the system is equal to K1 +K2, by Darboux’s Theorem (iii)
we obtain that f−1

1 f−1
2 is an integrating factor. Hence again the first integral

associated to the integrating factor is defined at the origin, and consequently
the origin is a center.



228 8 Integrability and Algebraic Solutions in Polynomial Vector Fields

We remark that if A = 0 then f1 is not an algebraic solution of the system,
but then the divergence of the system is equal to K2 and the integrating factor
of the system is f−1

2 ; using the same arguments we obtain that the origin is a
center.

Suppose that system (8.15) satisfies condition (iv). Then if d �= 0 the
system becomes

ẋ = −y +
a2 + 2d2

d
x2 + 2axy − dy2, ẏ = x + ax2 +

3a2 + d2

d
xy − ay2.

We note that if d = 0 then we are under the assumptions of condition
(ii), so we take d �= 0. The system has the algebraic solution f1 = (a2 +
d2)

[
(dy − ax)2 + 2dy

]
+ d2 = 0 with cofactor K1 = 2(a2 + d2)x/d. Therefore

the divergence of the system is equal to 5
2K1. Hence by Darboux’s Theorem

(iii) the function f
−5/2
1 is an integrating factor of the system. Since d �= 0,

its associated first integral is defined in a neighborhood of the origin, and
consequently the origin is a center. �

8.8 Prelle–Singer and Singer Results

In this last section we want to mention the excellent results of Prelle–Singer
and Singer related with the Darboux method.

Roughly speaking an elementary first integral is a first integral expressible
in terms of exponentials, logarithms and algebraic functions. The notion of
elementary function of one variable is due to Liouville who, between 1833 and
1841, used it in the theory of integration. Elementary functions of two variables
are defined by starting with the field of rational functions in two variables
C(x, y) and using extension fields but with two commuting differentiations ∂

∂x

and ∂
∂y .

Theorem 8.16 If a polynomial system has an elementary first integral, then
it has an integrating factor of the form fn1

1 . . . f
np
p with fi ∈ C[x, y], ni ∈ Z,

and each fi = 0 is an invariant algebraic curve.

We remark that this theorem says that if a polynomial system (8.1) has
an elementary first integral, then this integral can be computed by using the
invariant algebraic curves of the system.

Roughly speaking the Liouvillian functions are those functions which can
be obtained “by quadratures” of elementary functions; see for instance Singer
[150]. Of course the class of elementary functions is a subclass of the Liouvillian
one.

Theorem 8.17 If a polynomial system has a Liouvillian first integral, then
the system has a Darbouxian integrating factor.

Theorem 8.17 says that the method of Darboux finds all Liouvillian first
integrals.
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8.9 Exercises

Exercise 8.1 Show that the rational function

H =
a00 + a10x + a01y + a20x

2 + a11xy + a02y
2

b00 + b10x + b01y + b20x2 + b11xy + b02y2

is a first integral of a quadratic polynomial differential system if and only if

a20b11 − a11b20 = a20b02 − a02b20 = a11b02 − a02b11 = 0.

Exercise 8.2 Consider the polynomial differential system

ẋ =x(−Bx + (C − 1)y + 1),
ẏ = y((1 − B)x − y + A).

Prove that

(i) f = x − Cy + AC = 0 is an invariant straight line if ABC = −1.
(ii) f = A2(Bx−1)2−2A(Bx+1)y+y2 = 0 is an invariant conic if ABC = 1

and A(1 + C) = −1.
(iii) For A = −6, B = C = 1/2 find an invariant algebraic curve of degree 3.
(iv) For A = −10/3, B = 3, C = −7/10 find an invariant algebraic curve of

degree 6.

Exercise 8.3 Compute a first integral of the system

ẋ = cx,

ẏ = y(Ax + By + C).

Hint: Use the fact that x = 0 and y = 0 are invariant straight lines and
that ex is an exponential factor.

Exercise 8.4 Find an integrating factor for the system

ẋ = xy,

ẏ = y(x + By + 1).

Exercise 8.5 Find a first integral of the system

ẋ =x(ax + by + c),

ẏ =By2.

using the fact that e−y is an exponential factor.

Exercise 8.6 Show that the system

ẋ = 1,

ẏ = 2n + 2xy + y2,
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has the invariant algebraic curve

h(x, y) = Hn(x)y + 2nHn−1(x) = 0,

where Hn(x) is the Hermite polynomial of degree n, defined by

Hn+1(x) = 2xHn(x) − 2nHn−1(x),
H0(x) = 1,
H1(x) = 2x.

Hint: H ′
n(x) = 2nHn−1(x).

8.10 Bibliographical Comments

In 1878 Darboux [46] showed how to construct the first integrals of polyno-
mial systems possessing a sufficient number of invariant algebraic curves. In
particular, he proved that if a polynomial system of degree m has at least
m(m + 1)/2 invariant algebraic curves, then it has a first integral. The best
improvements to Darboux’s results in the context of planar polynomial sys-
tems are due to Jouanolou [92] in 1979, to Prelle and Singer [133] in 1983, and
to Singer [150] in 1992. Jouanolou shows that if the number of invariant alge-
braic curves of a polynomial system of degree m is at least [m(m + 1)/2] + 2,
then the system has a rational first integral, and consequently all its solutions
are invariant algebraic curves. The proof presented here of statement (iii) of
the Theorem on the Darboux Theory of integrability is due to Christopher
and Llibre [39]. Prelle and Singer prove that if a polynomial system has an
elementary first integral, then this integral can be computed by using the
invariant algebraic curves of the system. Singer proves that if a polynomial
system has a Liouvillian first integral, then it can be computed by using the
invariant algebraic curves and the exponential factors of the system.

Recently there have appeared several partial expositions of the Darboux
theory of integration for planar polynomial systems. One may find the results
of Cairo, Christopher, Feix, Llibre, and Schlomiuk in [24, 25, 37–39, 141–144].
This chapter heavily uses the paper [39]. People interested in some applications
of the Darboux theory that are not considered here should see [39].

In another context we must mention the excellent extensions of the Dar-
boux method to dimension greater than 2 for differential polynomial systems
on kn, where k is a differential field of characteristic zero; see for instance the
paper of Weil [163] and the references quoted there; or extensions to algebraic
Pfaff equations done by Jouanolou [92]. For extensions to algebraic surfaces
see the works of Gutierrez, Llibre, Rodŕıguez, and Zhang [79,100,101,103].

The first part of the chapter is a survey on the Darboux integrability the-
ory for planar complex and real polynomial systems. As far as we know, the
problem of integrating a polynomial system by using its invariant algebraic
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curves was first considered by Darboux in [46]. The version that we present
improves Darboux’s result substantially because we also take into account
exponential factors (see [38]), independent singular points (see [31]), and in-
variants (see [25]). Exponential factors appear when an invariant algebraic
curve has geometric multiplicity greater than 1; see [37, 40]. For additional
information about invariants; see [25].

One of the natural questions in this subject is whether or not a polyno-
mial system (8.1) can have invariant algebraic curves. The answer is not easy.
See the large section in Jouanolou’s book [92] or the long paper of Moulin,
Nowicki, and Strelcyn [112] devoted to showing that one particular polyno-
mial system has no invariant algebraic solutions. Even for one of the most
frequently studied limit cycles, the limit cycle of the van der Pol system, it
was unknown until 1995 that it is not algebraic [117].

The original works of Kapteyn and Bautin are [93,94] and [14], respectively.
The proof of the sufficient part of Theorem 8.15 comes from [24].

Other approaches and more information on the classification of quadratic
centers can be found in [142] and in [170].
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Polynomial Planar Phase Portraits

In this chapter we present a computer program based on the tools introduced
in the previous chapters. This program is prepared to draw the phase por-
trait of any polynomial differential system on the compactified plane obtained
given by Poincaré or Poincaré–Lyapunov compatification. Of course, there are
always some computational limitations which we shall describe in this chapter
and in the next one.

9.1 The Program P4

P4 [9] is a tool which can be used in the study of a polynomial planar differ-
ential system. Depending on the user’s choice it draws the phase portraits on
the Poincaré disk, or on a Poincaré–Lyapunov disk, near a singular point or
on any rectangle in the finite plane, or at infinity in one of the four traditional
charts used in the compactification process. The first version of P4 was partly
written in C and partly written in REDUCE [81]. It ran only under a UNIX
or LINUX system and its developer was mainly C. Herssens. The new version
of P4 has changed the symbolic language from REDUCE to MAPLE, and can
now be implemented more easily in any system, either WINDOWS, UNIX,
or MACINTOSH OS-X, as long as MAPLE is available. When running it on
UNIX, the user can toggle between MAPLE or REDUCE. The new version
has been developed by De Maesschalck.

It is possible to work in numerical mode or in mixed mode, i.e., if possi-
ble, the calculations are done in algebraic mode. We shall now describe the
structure and possibilities of P4.

First P4 checks whether or not the vector field has a continuous set of
singular points in the plane, that is, whether or not the two polynomial com-
ponents of the vector field have a common factor. If they have a common
factor, we divide the vector field by this common factor and study the new
vector field. Sometimes, if the vector field is too big or complex, the computer
algebra package used (i.e., REDUCE or MAPLE) cannot find this common
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factor. In such cases P4 will work incorrectly. If the user knows the common
factor (e.g., by means of another computer algebra package such as Mathe-
matica, Axiom, ...), or simply because this comes from an already prepared
system with a certain common factor, he can avoid this problem by giving
this factor, together with the complete vector field (i.e., the vector field after
division by the common factor), to P4.

In what follows let X = P (x, y)∂/∂x + Q(x, y)∂/∂y with gcd(P,Q) = 1.
Now we will determine the finite isolated singular points. This can be done in
algebraic or numeric mode. In both cases P4 will ask the symbolic language
to solve the problem. If the degree of the vector field is high, determining
these singularities can take a lot of time. In such cases it is better working
numerically. In general, we recommend to work numerically when the expected
finite singular points do not have rational coordinates or simple radical ones.
For example, quadratic vector fields with rational coefficients can normally be
studied in algebraic mode (with some exceptions), but higher degree systems
may normally need numeric mode, unless they are very simple or many of the
coefficients are zero.

For each singular point (x0, y0), P4 determines the local phase portrait
in the following way. First it computes the Jacobian matrix at each singular
point, i.e.,

dX(x0,y0) =

⎛⎜⎜⎜⎝
∂P

∂x
(x0, y0)

∂P

∂y
(x0, y0)

∂Q

∂x
(x0, y0)

∂Q

∂y
(x0, y0)

⎞⎟⎟⎟⎠ ,

and evaluates its eigenvalues λ1 and λ2. We have to distinguish different cases,
depending on whether both eigenvalues are real, purely imaginary, or complex.

1. λ1 and λ2 are real. If λ1 and λ2 have the same sign then (x0, y0) is
a stable (unstable) node and we are done. If they have different sign, then
(x0, y0) is a saddle, and we compute a Taylor approximation of some order n,
to be specified later, of the stable and unstable manifold as follows.

Consider the transformations

x̄ = x − x0, ȳ = y − y0,

and

x̄ = w11u + w21v, ȳ = w12u + w22v,

with (w11, w12) (respectively, (w21, w22)) an eigenvector associated to the
eigenvalue λ1 (respectively, λ2).

Use of these transformations yields the vector field

u̇ = λ1u + p(u, v),

v̇ = λ2v + q(u, v),
(9.1)
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with deg(p) ≥ 2 and deg(q) ≥ 2. Writing the invariant manifold as a graph
(u, f(u)) and using the invariance of the flow, we have that

f(u) =
n∑

i=2

aiu
i + o(un),

with
ai =

bi

(iλ1 − λ2)
, i = 2, . . . , n,

where bi is the coefficient of ui in the expression q(u, f(u)) − f ′(u)p(u, f(u)).
The manifold (v, g(v)) is computed in the same way.

If λ1 = 0 and λ2 �= 0 then the singularity (x0, y0) is semi-hyperbolic. In this
case there is a center manifold which is tangent to the line v2(x−x0)−v1(y−
y0) = 0, where (v1, v2) is an eigenvector associated to the zero eigenvalue. To
compute the center manifold, we simplify the vector field in the same way as
in the saddle case. Hence the new vector field satisfies

u̇ = p(u, v),
v̇ = λ2v + q(u, v),

(9.2)

with deg(p) ≥ 2 and deg(q) ≥ 2. Writing the center manifold as a graph
(u, f(u)), and using the invariance of the flow, we have

f(u) =
n∑

i=2

aiu
i + o(un),

where ai is the coefficient of ui in the expression

−[q(u, f(u)) − f ′(u)p(u, f(u))]/λ2.

This results in the behavior

u̇ = cmum + o(um).

Using this information we find that the origin is:

1. A stable node if cm < 0,m odd, and λ2 < 0
2. An unstable node if cm > 0,m odd, and λ2 > 0
3. A saddle–node if m is even
4. A saddle if cm > 0,m odd, and λ2 < 0 or cm < 0,m odd, and λ2 > 0

If the singularity is a saddle–node or a saddle, then we also compute a Taylor
approximation for the unstable or stable manifold.

If the two eigenvalues are zero, the point (x0, y0) is nonelementary. To
study the vector field near the singularity, we desingularize the singularity by
means of quasihomogeneous blow-up as described in Chap. 3.
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2. If the eigenvalues are purely imaginary, then the point (x0, y0) is a weak
focus or a center. The program first checks if the system is Hamiltonian or not
and if it is, then it states that for certain the singular point is a center since
a Hamiltonian system cannot have focus. If it is not Hamiltonian, then to
determine its type, we compute the Lyapunov constants using the technique
developed in Chap. 4. In the case of a quadratic vector field or a linear plus
homogeneous cubic vector field, P4 is able to determine whether or not the
point is a center, or an unstable or a stable weak focus of a certain order. In
all other cases P4 evaluates by default the first four Lyapunov constants. If
they are all zero we have an undetermined weak focus; in the other case we
have a stable or an unstable weak focus. The algorithm is written in C and
hence the computations are done numerically. Thus the Lyapunov constants
are calculated up to a certain precision. By default we say that a Lyapunov
constant V is zero if |V | < 10−8, since this is the default value given to the
variable Precision (which can be modified by the user as we will describe later).

3. If the eigenvalues are complex but not purely imaginary, the singular
point (x0, y0) is a strong stable (respectively, unstable) focus if Tr(DX(x0,y0)) <
/break0 (respectively, > 0).

Now we determine the singularities at infinity. By default we study the
vector field on the Poincaré disk; see Chap. 5. First we transform the vector
field using the transformation

x =
1
z2

, y =
z1

z2
.

This yields the vector field (after multiplying the result by zd−1
2 )

ż1 = zd
2

(
−z1P

(
1
z2

,
z1

z2

)
+ Q

(
1
z2

,
z1

z2

))
,

ż2 = −zd+1
2 P

(
1
z2

,
z1

z2

)
,

with d the degree of the vector field. Suppose that Qd(1, z1)−z1Pd(1, z1) �≡ 0.
The points (z1, 0) which satisfy Qd(1, z1) − z1Pd(1, z1) = 0 are the infinite
singular points of X. These points are studied in the same way as the finite
ones. In the case that Qd(1, z1) − z1Pd(1, z1) ≡ 0, the line at infinity is a line
of singularities. To study the behavior near infinity we divide the vector field
by z2, and study this vector field near the line {z2 = 0}.

Second we transform the vector field using the transformation

x =
z1

z2
, y =

1
z2

.

This yields the vector field (after multiplying the result by zd−1
2 )

ż1 = zd
2

(
P

(
z1

z2
,

1
z2

)
− z1Q

(
z1

z2
,

1
z2

))
,

ż2 = −zd+1
2 Q

(
z1

z2
,

1
z2

)
.
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We only have to determine whether or not the point (0, 0) is a singular
point, since the others have been studied in the first chart.

If there is a singularity at infinity which is nonelementary, it is sometimes
better to study the vector field on a Poincaré–Lyapunov disk (see Sect. 5.3)
of some degree (α, β), i.e., we use a transformation of the form

x =
cos θ

rα
, y =

sin θ

rβ
,

for the study near infinity, which yields the vector field (after multiplying the
result by rc)

ṙ = −rc+1
∑
δ≤c

r−δ(cos θPδ(cos θ, sin θ) + sin θQδ(cos θ, sin θ)),

θ̇ = rc
∑
δ≤c

r−δ(−β sin θPδ(cos θ, sin θ) + α cos θQδ(cos θ, sin θ)),
(9.3)

with Pδ(x, y) ∂
∂x +Qδ(x, y) ∂

∂y the quasi homogeneous component of type (α, β)
and quasi homogeneous degree δ; c is chosen to be the maximal δ.

With an appropriate choice of (α, β) we will often only encounter elemen-
tary singularities at infinity. To simplify the calculations we prefer to work
with charts.

First we transform the vector field using the transformation

x =
1
zα
2

, y =
z1

zβ
2

.

This yields the vector field (after multiplying the result by αzc
2)

ż1 = zc
2

∑
δ≤c

z−δ
2 (αQδ(1, z1) − βz1Pδ(1, z1)),

ż2 = −zc+1
2

∑
δ≤c

z−δ
2 Pδ(1, z1).

If αQc(1, z1)−βz1Pc(1, z1) �≡ 0, then the singular points (z1, 0) that satisfy
αQc(1, z1) − βz1Pc(1, z1) = 0 are the infinite singular points of X. These
points are studied in the same way as the finite ones. In those cases in which
αQc(1, z1) − βz1Pc(1, z1) ≡ 0, the line at infinity is a line of singularities. To
study the behavior near infinity we divide the vector field by z2 and study
this vector field near the line {z2 = 0}.

Next we transform the vector field using the transformation

x =
−1
zα
2

, y =
z1

zβ
2

.

This yields the vector field (after multiplying the result by αzc
2)

ż1 = zc
2

∑
δ≤c

z−δ
2 (αQδ(−1, z1) + βz1Pδ(−1, z1)),

ż2 = zc+1
2

∑
δ≤c

z−δ
2 Pδ(−1, z1).
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This vector field can be studied in the same way as the previous one.
Finally we consider the two transformations

x =
z1

zα
2

, y =
1

zβ
2

,

and
x =

z1

zα
2

, y =
−1

zβ
2

.

For these two vector fields we only have to determine whether or not the point
(0, 0) is a singular point, since the others have been studied in the first two
charts.

At this stage P4 is ready to draw a large part of the phase portrait of the
vector field. First it draws the invariant separatrices, in the following way. In
the case that the singularity is a saddle or a saddle–node, we use the Taylor
approximation of the invariant manifold until it meets the boundary of a circle
of radius ε, for a certain choice of ε ≥ 0. From this point on we integrate
the separatrices with the multistep Runge–Kutta method of orders 7 and 8.
To prevent numeric overflow in the Taylor approximation, we normalize the
vector fields (9.1) and (9.2), before we compute the Taylor approximation,
as follows. Let a be the coefficient in the vector field that maximize |a|. We
rescale the time such that this coefficient becomes equal to 1, 000 · sign(a). At
the beginning of the numerical integration of the separatrices we have an error
that comes from the Taylor approximation. By default we take ε = 0.01 and
as order of approximation n = 6. So we have an error of order 10−14. To make
sure that this error is not too large, we do a test to decide whether or not
the Taylor approximation “fits” the real invariant manifold. Let f(t) be the
Taylor approximation of the invariant manifold, which is tangent to the line
v = 0. Suppose that t21 + f(t1)2 = ε2 and consider the points (ih, f(ih)), i =
1, . . . , 100, with h = t1/100. Consider the angles αi = arctan (f ′(ih)) and
βi = arctan (v̇(ih, f(ih))/u̇(ih, f(ih))), i = 1, . . . , 100. If |αi − βi| < 10−8, for
i = 1, . . . , 100, we accept the Taylor approximation, otherwise we compute
the Taylor approximation to the next higher order and do the test again.
By default we take as maximum order n = 20. In this case the error is of
order 10−42. This test works very well for the stable and unstable manifolds
of vector fields which are not close to structurally unstable systems, but for
the center manifolds or stable and unstable manifolds of vector fields that
are close to structurally unstable systems it sometimes fails, especially if the
nonzero eigenvalue is large in absolute value, or both eigenvalues are of very
different magnitudes.

If the singularity is nonelementary, we split the point into several singu-
larities which are elementary. For each of these points we draw the invariant
manifold (which correspond to a separatrix of the nonelementary singularity)
as follows. First we use the Taylor approximation in the blow-up chart that
corresponds to the elementary singularity, up to distance ε from the singular-
ity. Then we extend the separatrix in this chart by numeric integration, up to
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distance 1 from the singularity. Next we extend by numeric integration in the
real plane. The number of steps has to be decided in an interactive way by
the user.

To prevent numerical overflow when integrating the vector field, we do
not always integrate the vector field on the real plane and project it on the
Poincaré sphere, but we use different charts which cover the Poincaré sphere
as follows. Let (X,Y, Z) be a point on the Poincaré sphere with Z > 0, and
let (θ, ϕ) be the sphere coordinates of the point, i.e., X = cos θ sin ϕ, Y =
sin θ sin ϕ, and Z = cos ϕ.

If 0 ≤ ϕ ≤ π/4 we transform the point to the real plane, i.e., we consider
the point (X/Z, Y/Z) and integrate the original vector field. If ϕ > π/4 then
we consider the following four cases.

1. If −π/4 ≤ θ ≤ π/4, we consider the point (z1, z2) = (Y/X,Z/X) and
integrate the vector field

ż1 = zd
2

(
−z1P

(
1
z2

,
z1

z2

)
+ Q

(
1
z2

,
z1

z2

))
,

ż2 = −zd+1
2 P

(
1
z2

,
z1

z2

)
.

2. If π/4 < θ < 3π/4, we consider the point (z1, z2) = (X/Y,Z/Y ) and
integrate the vector field

ż1 = zd
2

(
P

(
z1

z2
,

1
z2

)
− z1Q

(
z1

z2
,

1
z2

))
,

ż2 = −zd+1
2 Q

(
z1

z2
,

1
z2

)
.

3. If 3π/4 ≤ θ ≤ 5π/4, we consider the point (z1, z2) = (Y/X,Z/X) and
integrate the vector field

ż1 = (−1)d−1zd
2

(
−z1P

(
1
z2

,
z1

z2

)
+ Q

(
1
z2

,
z1

z2

))
,

ż2 = (−1)dzd+1
2 P

(
1
z2

,
z1

z2

)
.

4. If 5π/4 < θ < 7π/4, we consider the point (z1, z2) = (X/Y,Z/Y ) and
integrate the vector field

ż1 = (−1)d−1zd
2

(
P

(
z1

z2
,

1
z2

)
− z1Q

(
z1

z2
,

1
z2

))
,

ż2 = (−1)dzd+1
2 Q

(
z1

z2
,

1
z2

)
.
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The pattern of singularities, the infinite as well as the finite ones, together
with their separatrices constitute the separatrix skeleton and already give a
very good idea of the global phase portrait; see Sect. 1.9. We of course do not
see the exact number and location of the closed orbits, but we have confined
the regions in which limit cycles or annuli of closed orbits can occur. If one
has the impression that closed orbits and especially limit cycles will occur,
one can ask P4 to find these limit cycles as follows. First one has to select
two points x and y. The two points should be close to the region where one
expects to find a limit cycle, and the segment L joining both points should
cut the expected limit cycle transversely. P4 tries to determine the limit cycle
as follows. First it divides the segment into segments [pi, pi+1] of length h
and starts integrating from one end of the subsegment L to the other. Every
orbit close to the limit cycle is supposed to cut the segment L again. From
this we detect the existence of the limit cycle when we find a change in the
Poincaré Return Map. P4 detects such change as follows. Suppose that we
start integrating from a point pi on L, and that the orbit cuts the segment L
again at a point qi with pi < qi. P4 takes now the point pj nearest to qi with
pj > qi and starts integrating in the same direction. If this orbit cuts L at a
point qj with qj < pj , then there is a limit cycle between the points qi and
qj . By default we take h = 10−4. Of course in this way we can say only that
in a region of length 10−4 there exists at least one limit cycle. Sometimes it
is possible that P4 finds nonexistent limit cycles. The reason is that in these
cases the Poincaré Return Map is very close to the identity. One can solve
this by decreasing the value of h or increasing the precision with which we
use the Runge–Kutta method, but these modifications will also increase the
amount of time needed to check if there are closed orbits or not. The only
way to reduce the time without losing precision is to reduce the length of the
segment L, but then the user must be certain that he gives it on the region
where limit cycles are expected.

In no case will P4 be able to detect semistable limit cycles. Indeed, detec-
tion of semistable limit cycles for a specific vector field seems to be beyond
the capabilities of any numeric tool.

In case we study the vector field on a Poincaré–Lyapunov disk of degree
(α, β), P4 draws the orbits of the vector field as follows; see Fig. 9.1.

Let (x, y) ∈ R2. If x2 + y2 ≤ 1 then (x, y) will be plotted in the interior
of the unit circle around the origin, by integrating the original vector field
(of course making the detailed analysis of the finite singularities as presented
in the case of Poincaré compactification). If x2 + y2 > 1, P4 makes a trans-
formation of the form x = cos θ/rα and y = sin θ/rβ in order to plot in the
annulus limited by the finite circle of radius 1 and the infinite one, integrating
the vector field (9.3), to extend the information near the singularities. Unfor-
tunately orbits crossing the circle of radius 1 give the impression of having a
discontinuous derivative. This is due to the fact that we are using two different
transformations which do not match in a differentiable way on the unit circle.
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Fig. 9.1. Representation of the Poincaré–Lyapunov disk of degree (α, β)

9.2 Technical Overview

Following algorithms are written in symbolic language (REDUCE or MAPLE):

– The determination of the finite and infinite singularities.
– The local phase portrait of each singularity.
– The desingularization of a nonelementary singularity.
– The Taylor approximation of the invariant manifolds.
– Drawing the lines of singularities.

Following algorithms are written in C:

– The graphical interface. This interface is written using Trolltech’s Qt
(www.trolltech.com) library, which is platform independent, and hence
works for WINDOWS, MacOSX, and most versions of UNIX.

– The test whether or not the Taylor approximation is a sufficiently good
approximation of the real manifold.

– The calculations of the Lyapunov constants.
– The integration of the orbits and invariant separatrices. We use the Runge–

Kutta 7/8 method for the integration [63].
– The search for limit cycles.

In order to run P4, one needs either a UNIX system with a C compiler,
Xview 3.2 libraries and the computer algebra package REDUCE or MAPLE,
or a WINDOWS system XP1 with MAPLE. A compiler is not needed unless
you need to recompile it. If so you will need a C++ compiler.

In Sect. 9.3 we will describe the graphical interface, and in the next chapter
we will give a short guideline of the program based on examples. We will show

1 Its performance has not been checked on other WINDOWS systems, on which it
may run equally well.
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and describe the windows as they appear in the WINDOWS system. The ones
in UNIX are very similar. There are no exercises in this chapter but you will
find them at the end of the next chapter.

9.3 Attributes of Interface Windows

9.3.1 The Planar Polynomial Phase Portraits Window

Function: The Planar Polynomial Phase Portraits window is the main control
panel for the tool P4. We may call it also the main window.

Description: The Planar Polynomial Phase Portraits window is opened at
start-up. The main function of this window is to introduce the system to
be studied and to modify some of the working parameters.

Top section:
Quit button: Allows the user to stop the program. This will close all the

related windows.
View menu button: Shows the description of the singular points of the

system which the user is studying.
Finite... Gives information about the finite singular points.
Infinite... Gives information about the infinite singular points.

Plot button: Opens and brings to the foreground the Phase Portrait
window.

Fig. 9.2. The Planar Polynomial Phase Portraits window
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Help button: Opens and brings to the foreground the Help window. The
help files are written in HTML format.

Up arrow button: This toggles to a reduced version of the Planar Poly-
nomial Phase Portraits window when the user has already introduced
initial data. Clicking it again returns to the large window.

Name: Allows the user to enter the name of the file which contains a valid
input for the polynomial vector field he wants to study, or the name
of the file where he wants to store the system under examination. If
loading a previous file, the user has to enter a name (e.g., file1) and
immediately after click the Load button before pressing the Evaluate,
the View, or the Plot button. By default all the input files have the
extension .inp. If the loaded vector field has been already evaluated,
you do not need to evaluate it again, and you can View or Plot it
directly.

Browse: Allows the user to enter the WINDOWS system to look for a
previously stored file.

About P4: Gives the logo of the program, the authors, and gives access to
a window where one can change the main settings of the program.

Find and examine singular points section:
Symbolic package: In the case of a UNIX system, this allows the user to

toggle between the two symbolic languages. In WINDOWS it is forced
to MAPLE.

File action: Allows the user to choose between Run File or Prepare File.
The default option is Run File.
Run file... Once the Evaluate button is clicked, the program will start

studying the system. The singular points and the Taylor approxi-
mations of the invariant manifolds are determined and this infor-
mation is stored in several files, namely file1 fin.res, file1 inf.res,
file1 vec.tab, file1 fin.tab and file1 inf.tab.

Fig. 9.3. The Main settings window
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Prepare file ... If the Prepare File option is chosen, the Evaluate but-
ton is renamed to Prepare and by clicking it the program will
generate a MAPLE or REDUCE file (file1.txt) or (file1.red) with
the algebraic study of the system. The user can run this file di-
rectly with MAPLE/REDUCE for a further algebraic manipula-
tion of the problem. He may be interested in this option if the
amount of computations is very large and he prefers to run a
MAPLE/REDUCE program in batch mode. The MAPLE file is
in fact a text file with instructions in MAPLE that can be trans-
ferred to it.

Singular points: Allows the user to choose between the following options.
All... Determines all the finite and infinite singular points.
Finite... Determines the finite singular points.
Infinite... Determines the infinite singular points.
One... With this option the user can study the polynomial vector field

near a singular point (x0, y0). The user has to enter the coordi-
nates x0 and y0 in the Find Singular Points Parameters section.
This option is useful if one wants to study the behavior near a
nonelementary singularity.

Save all:
Yes... Gives an exhaustive description of every step executed by the

program.
No... Reduces the amount of information that the user will get.

Parameters: The right side of the Planar Polynomial Phase Portraits win-
dow is closed. By default it appears and contains some parameters that
may be changed by the user regarding the study of the problem. It
can be reopened by clicking the same button again.

Vector field: The bottom side of the Planar Polynomial Phase Portraits
window is closed. By default it appears and contains the polynomial
vector field to be studied. It can be reopened by clicking the same
button again.

Load button: Loads the file file1.inp.
Save button: Saves the polynomial vector field and the parameters to the

file file1.inp.
Evaluate/Prepare button: The program will make the study of the system

and you may see some computations in the Output window.
Find singular points parameters Section:

Calculations: With this option the user can toggle between Algebraic or
Numeric mode.
Algebraic... Some computations are done in algebraic mode. These

computations are the determination of all the singular points, the
calculation of the lowest order terms of the Taylor approximation
of the separatrices and the blow-up procedure.

Numeric... Everything is done in numeric mode. This option (default)
is recommended if the degree of the polynomial vector field is high
and if it has many coefficients.
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Fig. 9.4. The Output window

Test separatrices: With this option the user can decide whether or not P4
has to test every Taylor approximation of the separatrices. In general
it is recommended to set this option to Yes, but if the user has a
specific system from which he knows it has a separatrix which is hard
to deal with, he may deactivate this option.

Precision: Here the user needs to define a precision to avoid rounding
errors. It tells the program to set a number a equal to zero if |a| < 10−δ

where δ is the Precision parameter. Of course, this means that it
is possible that a nonzero number be considered equal to zero. In
such cases the Precision has to be modified. The program makes all
computations with 16 digits, so it is recommended that the value for
Precision be kept between 7 and 12.

Epsilon: In order to start integrating the separatrices we take an initial
point at a certain distance Epsilon away from the singularity. This
value is the default one we will use for every separatrix.

Level of approximation: Allows the user to set the order of the Taylor
approximation for the separatrices. If the option Test Separatrices is
activated, then P4 will test whether or not the Taylor approximation is
a sufficiency good approximation of the real manifold (or separatrix).
In case it is not, P4 computes the Taylor approximation one order
higher and repeats the test again until the maximum degree is reached
or until the Taylor approximation is a sufficiency good approximation
of the real manifold.

Numeric level: If the option Calculations is set to Algebraic, then the com-
putation of the coefficients of the Taylor approximation will be done
in Algebraic mode until the value in Numeric level is reached. From
this stage the computation will be done in Numeric mode.

Maximum level: Gives the maximum order of the Taylor approximation.
If the test fails up to this level, then this will be explained in the
report that P4 will produce.
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Maximum level of weakness: Sets the number of Lyapunov constants that
P4 has to calculate, in case the singularity is a non–degenerate weak
focus. If all these values are zero then the program concludes that
we have a center-focus (expect for Hamiltonian, quadratic systems,
or linear plus homogeneous cubic systems). Sometimes the user is
interested in getting a large number of Lyapunov constants, but he
must realize that the time for computing them increases exponentially.
The algorithm is written in C and hence the calculations are done in
numeric mode.

p and q: Gives the degree of the Poincaré–Lyapunov compactification. If
(P,Q) = (1, 1), then we use the Poincaré compactification.

x0 and y0: Gives the coordinates of the singularity. The user will see this
if he has selected One singular point in the Singular Points option and
thus we will have to set it at will.

Vector field section:
x′ and y′: Defines the equation of the system in the variables x and y. The

user can use the symbols +,-,*,/,^, ( and ) and any function that is
valid in MAPLE/REDUCE, like sqrt(),sin(),cos(),. . . . Notice that
if MAPLE is used, you must add a multiplicative * between numbers
and letters. If REDUCE is used, this is not needed. The multiplicative
* is always compulsory between letters (whether they are variables or
parameters). On the contrary, REDUCE does not allow leaving any
blank space inside the formulas, but MAPLE does. If one wants his
files to be compatible with both systems, one should always insert the
∗ denoting multiplication and leave no blank spaces.

Gcf: States the Greatest Common Factor between the two polynomials
which define the system. If the user gives the greatest common factor,
the program will believe the user and will skip computing it. It is also
possible to ask the program to determine the GCF. In this case the
value for GCF has to be set to zero. If the user says that there is
no common factor (or the program cannot find it) when there is a
nontrivial one, then the program will work incorrectly. To speed up
the program when the user knows that there is no common factor, one
can set this parameter to 1.

Number of parameters: Gives the number of parameters of the system. Af-
ter the user has entered this number, the window will enlarge showing
pairs of boxes to give room for them. Put in the left box the name of
the parameter and in the right box the value. These names are not
case sensitive in REDUCE, but they are case sensitive in MAPLE.

9.3.2 The Phase Portrait Window

Function: In this window the user will be able to draw the phase portrait of
the polynomial vector field.
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Fig. 9.5. The Poincaré Disc window

Description: This window is opened by selecting the Plot button in the Pla-
nar Polynomial Phase Portraits window. The user will see the window as
in Fig. 9.5. In this window there is a circle representing infinity and some
symbols representing the finite and infinite singular points of the system.
If one presses the Legend button, the explanation of these symbols will
appear.
If (P,Q) �= (1, 1), then the Poincaré–Lyapunov compactification is shown.
In this case the user will see two circles. In the inner circle all the finite
singular points with modulus less than one are plotted. If the modulus of
a certain singular point is greater than one, then this point is plotted in
the annulus limited by the circle of radius one and the circle at infinity.
If the option Singular Points is set to One, then the user will see a planar
representation of the neighborhood of such a point.
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If the user moves the mouse in the drawing canvas, the current coordinates
of the mouse position are displayed in the window’s panel. If he studies
the system on a Poincaré or Poincaré–Lyapunov disk, this region is blank
when the mouse does not point to a region within the disk.
The user can always enlarge or reduce this window as usual and an As-
pect Ratio value will be shown on the bottom line to remind the user if
proportion holds (Aspect Ratio= 1) or not (Aspect Ratio �= 1).
Mouse events in the main drawing canvas have the following effects:
– Clicking the LEFT button in the drawing canvas will select that point

and opens the Orbits window.
– Clicking the LEFT button while holding down the SHIFT key will

select the nearest singular point having separatrices (finite or infinite)
and opens the Plot Separatrices window. You will see flashes around
the selected singular point.

– Clicking the LEFT button while holding down the CONTROL key
creates a rectangle used to make a zoom of a portion of the picture.
You must move from one corner of the rectangular region to the oppo-
site while holding both the LEFT button and the CONTROL KEY.
Now the Phase Portrait - Zoom window will appear. At any time it is
possible to cancel the zoom by clicking on the RIGHT button.

Panel items:
Close button: Closes this window and all the related windows.
Refresh button: Clears the window and redraws the drawing canvas. This

is useful if all the separatrices are drawn, because the redraw will bring
up the singularities which may have be shadowed by the lines.

Legend button: Opens and brings up to the foreground the Legend window.
Orbits button: Opens and brings up to the foreground the Orbits window.

Fig. 9.6. The Legend window
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Integration Parameters button: Opens and brings up to the foreground
the Parameters of Integration window

GCF button: Opens and brings up to the foreground the GCF window.
This button will be active if the system has a nontrivial greatest com-
mon factor.

Plot Separatrices button: Opens and brings up to the foreground the Plot
Separatrices window.

Plot All Separatrices button: Will plot every separatrix. It is often pos-
sible that some separatrices are not completely plotted or even not
plotted at all. In this case the user has to modify the # Points option
in the Parameters of Integration window before he presses the button
Plot All Separatrices again. Another possibility for dealing with these
“slow” separatrices is to go to the Plot Separatrices window to plot
them individually. We highly recommend this option.

Limit Cycles button: Opens and brings to the foreground the Limit Cycles
window.

Print button: Opens and brings to the foreground the Print window.
View button: This button opens the View Parameters window that allows

the user to change the way of viewing the phase portrait.
Type of view: If you have done the study for all the singular points,

you can toggle between the complete phase portrait on the Poincaré
disk, or a reduced planar drawing on a certain rectangle. You
may also choose to view the traditional U1, U2, V1, and V2 local
charts which show the phase portrait from an infinite point of
view. When using these local charts, take into account that the
positive direction is always toward the inner disk, and the image
we show maintains the usual standard of “right” and “up” being

Fig. 9.7. The View Parameters window
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Fig. 9.8. A planar plot

positive while “left” and “down” are negative. So looking to the
U1 chart (right side) or to the U2 chart (up side) may look differ-
ent (symmetrical) from what we see on the disk. However, looking
to the V1 chart (left side) or to the V2 chart (down side) gives
the equivalent image as on the disk. Moreover, these images on
the infinite local charts are not restricted to the upper half of the
Poincaré disk, but are completed also with the lower part, that is,
what happens in the opposite local chart.

Projection: This option is activated if the system is studied on a
Poincaré disk. It represents the z coordinate of the projection
point (0, 0, z) from which we project the points from the Poincaré
sphere to the Poincaré disk. This value has to be negative. If the
user wants a parallel projection then he has to set this value to
zero. The drawing canvas is refreshed after the user selects the
Refresh button.



9.3 Attributes of Interface Windows 251

x0, y0, x1, y1, and square: This option is activated if the system is
studied on a planar rectangle. One can either give the four coordi-
nates of the lower-left (x0, y0) and upper-right corner (x1, y1), or
set simply x0 and Square to set the square centered at the origin
of side 2x0.

9.3.3 The Plot Orbits Window

Function: Allows the user to draw any orbit of the system.
Description: The Plot Orbits window is opened by selecting the Orbits button

in the Phase Portrait window or by selecting a point in the drawing canvas.
In this window the user can integrate and delete orbits.

Panel items:
x0 and y0: Defines the starting point of the orbit to integrate. One can

either do this by typing the precise point where integration must start,
or by clicking on the canvas.

Select: If one has typed the specific coordinates of a point, it is not stored
and ready for computation until this button is clicked.

Forwards button: Integrates the selected point in the positive direction.
This button will be active when the user has selected a point in the
drawing canvas or if the user has selected the Select button. After the
integration the button will be inactive.

Continue button: Continues the integration in the current direction. This
button will be active if the user has pressed the Forwards or Backwards
button.

Backwards button: Integrates the selected point in the negative direction.
This button will be active when the user has selected a point in the
drawing canvas or if the user has selected the Select button. After the
integration the button will be inactive.

Delete last orbit button: Erases the last orbit which has been drawn.
Delete all orbits button: Erases all the orbits which have been drawn.
Shortcuts: Once a point is selected, and the Phase Portrait window ac-

tive, one can ask to integrate Forward, Backward, to Continue, to
Delete last orbit, or to delete All orbits by pressing F, B, C, D, or A,
respectively.

Fig. 9.9. The Orbits window
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9.3.4 The Parameters of Integration Window

Function: Allows the user to modify the parameters which affect the integra-
tion of separatrices and orbits through the Runge–Kutta 7/8 method and
the parameters which are used in the graphical representation.

Description: The Parameters of Integration window is opened by selecting the
Integration Parameters button in the Phase Portrait window. In this win-
dow the user can change the parameters of integration. These parameters
should be modified if the user is not satisfied with the results obtained.
The default values are shown in Fig. 9.10.

Panel items:
Vector field: This option is activated if the system has a nontrivial great-

est common factor or if the line at infinity is a line of singularities.
Original... Uses the original system for integration of the separatrices

and orbits. Thus all trajectories stop when reaching the line of
singularities.

Reduced... Uses the system which is obtained by dividing out the
greatest common factor for integrating the separatrices and or-
bits. Thus, the trajectories seem to continue across the line of
singularities.

Type: Sets the line style in which the separatrices and orbits are drawn.
Dots... Draws the separatrices and orbits as a sequence of dots.
Dashes... Connects the integration points of the separatrices and or-

bits with a line.
Step size: Defines the step size. This value is used if we start integrating

a separatrix or orbit.
Current step size: Gives the current step size. This is just an output to

show how integration is working.
Max step size: Defines the maximum step size that we allow in the Runge–

Kutta 7/8 method.

Fig. 9.10. The Parameter of Integration window
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Min step size: Defines the minimum step size that we allow in the Runge–
Kutta 7/8 method.

Tolerance: Defines the required accuracy for the Runge–Kutta 7/8 method.
# Points: This parameter indicates to the Runge–Kutta 7/8 method how

many steps it has to do each time we want to integrate a separatrix
or orbit.

Reset: This button resets all parameters in this window to their default
values. Useful when changing from one problem to another.

9.3.5 The Greatest Common Factor Window

Function: This window deals with the drawing of the greatest common factor
between the two polynomials which define the system.

Description: The Greatest Common Factor window is opened by selecting
the GCF button in the Phase Portrait window. In this window we call
MAPLE/REDUCE to plot the greatest common factor. Note that this
plot is a two-dimensional implicit plot which in the case of MAPLE has
needed some improvement, since it yielded very poor results when implic-
itly plotting reducible functions.

Panel items:
Appearance: Sets the line style in which the lines of singularities are

drawn. If the user already asked P4 to plot the lines and wants to
change the line style, he has to press the Refresh button in the Phase
Portrait window after he has changed this style.
Dots... Draws the lines as a sequence of dots.
Dashes... Connects the dots of each line.

Points: Denotes the number of unconditional data points. Note that a
high value may increase the computer time significantly. If the user
wants more information about this item, then he can check the “Re-
duce: Gnuplot interface Version 4” guide [109] or the help of MAPLE,
whichever applies.

Precision: Defines the maximum error which we will allow, expressed as
the negative exponent of a power of ten. This parameter is irrele-
vant when MAPLE is used. If the user wants more precision, simply
increase the number of points.

Fig. 9.11. The Greatest Common Factor window
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Memory: Sets the maximum size of working space which we will allow
to REDUCE. If the user increases the Points or Precision item, then
he also has to increase this item. This parameter is irrelevant when
MAPLE is used.

Evaluate button: Asks P4 to plot the lines of singularities. This may take
some time, especially if the Points or Precision item is high.

9.3.6 The Plot Separatrices Window

Function: Allows the user to select the separatrices one by one.
Description: The Plot Separatrices window is opened by selecting the Plot

Separatrices button in the Phase Portrait window or by selecting a singular
point which has separatrices in the drawing canvas. If the user selects a
point in the drawing canvas while holding down the SHIFT key, then P4
will select the closest singular point which has separatrices. A flash will
show the selected point. The user will see in the Plot Separatrices window
the type and the coordinates of this singularity. These coordinates are
real in case the singularity is finite. If the user has selected a singularity
at infinity, he gets the coordinates on the Poincaré sphere (i.e., (X,Y, 0),
where X2 + Y 2 = 1), or on the Poincaré–Lyapunov sphere of degree
(p, q) (i.e. (0, θ)). If there are already some separatrices of this singular
point drawn, the color of one of them is changed to gold. This is the first
separatrix which will be studied.

Panel items:
Epsilon: This is the distance we move away from a singular point in order

to start the integration of the separatrices. This value is equal to the
one which is set in the Find Singular Points Parameters section of the
Planar Polynomial Phase Portraits window. For some separatrices this
value may be too small or too large. In this case the user has to modify
this value, but should never allow it to be greater to 10−1, to avoid

Fig. 9.12. The Plot Separatrices window
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large errors when choosing the initial integration point. Do not forget
to press the RETURN button after changing this value.

Start Integrating Sep button: Starts the integration of the chosen separa-
trix.

Cont Integrating Sep button: Continues the integration of the selected
separatrix.

Integrate Next Sep button: Selects another separatrix of the same singular
point and starts with the integration.

Select Next Sep button: It selects another separatrix of the same singular
point.

9.3.7 The Limit Cycles Window

Function: Allows the user to search for non semistable limit cycles up to a
certain degree of precision.

Description: The Limit Cycles window is opened by selecting the Limit Cycles
button from the Phase Portrait window. In this window the user has to
give two points forming a segment which he suspects is cut by at least one
limit cycle.

Panel items:
x0, y0: Defines the first point of the line segment.
x1, y1: Defines the last point of the line segment. The user can select

these two points by clicking the left button of the mouse on the first
point, and while holding the button down, moving the mouse to the
second point and releasing the button.

Grid: Determines the precision up to which the limit cycles will be deter-
mined. That is, if two consecutive limit cycles cut the selected segment
in two points at distance greater than the Grid value, then P4 will de-
tect them. Otherwise, it is possible that not both limit cycles are
detected or that a continuum of limit cycles may be detected because
of lack of precision.

# Points: This parameter equals the number of steps the Runge–Kutta
7/8 method has to do each time we want to integrate an orbit with
initial condition a point of the segment. If the orbit does not cross the

Fig. 9.13. The Limit Cycles window
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Fig. 9.14. The LC Progress window

line defined by the segment at this time, the program will presume
that the orbit does not cut the segment again. The user may note
that this value is greater than the # Points value in the Parameters
of Integration window. We suggest keeping it around the default value
or even greater, since there may be very slow limit cycles which would
remain undetected with low values. The user may get an approximate
idea of which number he should enter by studying the integration of
an orbit close to the limit cycle.

Start: This initiates the search for limit cycles. The window LC Progress
showing a time bar is given, also including a button to abort the
computation if something goes wrong, or becomes too time consuming.
If so maybe a larger grid may help then.

Reset setpoints: Allows redefinition of the transverse section.
Delete Last LC: Deletes the last limit cycle found.
Delete All LC: Deletes all limit cycles found.

9.3.8 The Print Window

Function: Allows the user to output the phase portrait of the system to a file
or a printing device.

Description: The Print window is opened by selecting the Print button in the
Phase Portrait window.

Panel items:
EPS Image: Translates the picture into EPS format and saves it to a file.
XFIG Image: Translates the picture into FIG format and saves it to a file.

This option is useful if the user wants to add arrows to the picture.
One can use XFIG under UNIX to do it, or a JAVA tool for XFIG in
WINDOWS.

JPEG image: Translates the picture into JPEG format and saves it to a
file. The default saving name is always the name of the input file with
the proper extension. The file is also saved by default in the same
directory of the input file.

Black & White printing: Allows the user to choose between a full color image
or a black and white image. In case of color printing, the black background
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Fig. 9.15. The Print window

is turned into white, while the white line at infinity and the yellow orbits
are turned into black and other colors are left unchanged. In case of Black
& White, background is white and all drawing is in black.

Cancel button: Cancels everything and closes the window.
Output resolution (in DPI): All images are produced 15 cm wide, so if the

user needs a bigger picture, it is suggested that he increases the Output
resolution so as to maintain quality after rescaling the picture with some
other tool.

Line with (in mm): The higher, the wider.
Symbol size (in mm): The higher, the larger.
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Examples for Running P4

In this chapter we are going to provide several examples about the use of P4
[9], moving from easy examples to more complex ones, and trying to produce
all the different situations and the most tricky problems that we have met up
to now. Of course, we cannot pretend to cover all possible situations that may
appear, since we are not aware of the complexity of the problem the reader
may try to study, but at least we hope to give enough clues about how to
solve them, or to show the impossibility of getting the complete study.

For these examples we will use the program running on a WINDOWS
system, and using MAPLE as symbolic language. Where something different
is expected for REDUCE’s users, it will be described.

10.1 Some Basic Examples

Example 10.1 Consider the cubic vector field

ẋ = y − x3,

ẏ = x + y + y3.
(10.1)

The first thing to do after starting P4 is to introduce system (10.1) to the
program. First you provide a name for the system such as, e.g., example1.

At the bottom of the window you see two fields where you can introduce
the equation of the vector field. In the x’ field you type y-x^3 and in the
y’ field x+y+y^3. Since there is no line of singularities, you can leave the
Gcf field equal to 1. Now you are ready to study the system. Simply press
the Evaluate button. The program now calls MAPLE (or REDUCE) which
determines the singular points. You have to wait until you see in the Output
window a message as in Fig. 10.1, or simply check that the button Evaluate
has become active again.

Go to the top of the window and press the View menu button with the
left button of the mouse. This will open a menu where you can choose to see
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Fig. 10.1. The end of the calculations

Fig. 10.2. Stable and unstable separatrices of system (10.1)

either information about the finite plane or about the points at infinity. Click
for the finite plane. In this window you see that the system has only one finite
singular point, namely (0, 0) which is a saddle. If you click again on the View
menu button and choose for the infinite, you will be informed that the origin
of each infinite local chart in the Poincaré compactification is also a singular
point (in fact, each is a node).

Now you are ready to plot the phase portrait. Go to the top of the window
and press the Plot button. This will open the Phase Portrait window. It may
be necessary to press the Refresh button. In this window you see one green box,
which represents the finite saddle. On the circle you see two blue boxes which
represent the stable nodes at infinity, and two red boxes, which represent the
unstable nodes at infinity. Pressing the Legend button will open the Legend
window. In this window you get all the information about the symbols that
you have in the drawing canvas. Now if you press the Plot All Separatrices
button, some lines in red and blue will appear. These lines are the unstable
and stable separatrices of the saddle; see Fig. 10.2. Red means unstable and
blue means stable, and when referring to separatrices this means with respect
to the point where you have started their integration. In any case, all curves
are drawn in black in this book.

This vector field has only hyperbolic singular points and shows no com-
plication. Thus, one single click to the Plot All Separatrices button has been
enough to see everything interesting on it. But you may be interested in seeing
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Fig. 10.3. Some more orbits of system (10.1)

how orbits flow and so you can left-click anywhere inside the Poincaré disk
and the Orbit window will appear which will ask you if you want to integrate
time-forwards or time-backwards from that point. You press the Forward but-
ton and you see a yellow orbit going to infinity. You may press the Continue
button to make it longer if wished. Once you are satisfied with it, you may
press also the Backwards button. You can also use the letters “F” for For-
ward, “B” for Backwards, and “C” for Continue after clicking the starting
point, provided the Phase Portrait window is active.

You may also have noticed that there is a two-dimensional number in
the bottom-left corner of the Phase Portrait window that changes while you
move the mouse. This gives you the exact point in planar coordinates, i.e.,
with the Poincaré compactification undone, at which the mouse is located at
that moment. This can be very useful for getting an approximate idea of the
coordinate points in this compactification. If you need to draw an orbit passing
through a certain point, there is no need to play with the mouse to look for
it. You can always specify it exactly on the Orbit window. See Fig. 10.3. ��

Example 10.2 Consider the quadratic vector field

ẋ = x − x2 − y2,

ẏ = x2 − 2 ∗ x ∗ y + 2 ∗ y2.
(10.2)

We will not repeat the explanation of steps already described but will
concentrate on new options. So you introduce the vector field as described in
Example 10.1, and evaluate it. Just notice that since you are using MAPLE
now, you must introduce the system according to the conditions of this pro-
gram, that is, you must include a multiplying symbol ∗ between letters, but
also between letters and numbers. If you are using REDUCE on a LINUX
system, then the second would not be needed (but is permissible). However,
REDUCE does not allow any blank spaces within formulas, as MAPLE does.
If you want your files to be compatible with both systems, then always put
the ∗’s and leave no blanks.
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Fig. 10.4. Stable and unstable separatrices of system (10.2)

By pressing View button of the main window you see that the system
has only one finite singular point, namely (0, 0), which is a semi-hyperbolic
saddle-node and a pair of infinite singular points, which are nodes.

When plotting the phase portrait you see one purple triangle which repre-
sents the finite saddle-node. On the circle you see one blue box which repre-
sents the stable node at infinity, and a red box, which represents the unstable
node at infinity. Now if you press the Plot All Separatrices button, there will
appear two lines in red, the two unstable separatices which have one of the
infinite singular points as their ω-limit. But there is one separatrix missing. If
you look carefully, you may see a very small blue slash on the purple triangle.
Nonelementary points usually have “slow” separatrices and the default num-
ber of iterations might not be enough to draw them satisfactorily. In this case
you must again press the Plot All Separatrices button to begin to see the blue
(stable) separatrix. To get this separatrix two clicks are enough to display it
completely. Other cases may require more clicks or deeper study. You may
also like to see one orbit in each connected component, for which it is enough
to click once in each region and command the plot of the orbit through the
point selected; see Fig. 10.4. ��

Example 10.3 Consider the quadratic vector field

ẋ = −y + l ∗ x2 + 5 ∗ a ∗ x ∗ y + y2,

ẏ = x + a ∗ x2 + (3 ∗ l + 5) ∗ x ∗ y.
(10.3)

Introduce system (10.3) using the parameters and formulation given. As
you can see, you may use parameters, which may help you to modify the
vector field and test several vector fields belonging to a certain family. But
these parameters must have a fixed value. Now you must click on the Number
of parameters option and set how many parameters you are using. Fix it to
just two parameters. You will see that two lines of boxes are opened below.
Introduce the name of the parameter (i.e., a and l) in the left column and
a fixed number in the second column, for example a = 1 and l = −0.5. The
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fixed number may be also a formula depending on other parameters, but you
must avoid cyclic recursions. There is no limit to the number of parameters
you may use. You can use parameters with several letters, or even parameters
with letters and numbers, just remembering that they may not start with
numbers. It is generally preferable to set the computing mode to numeric
by switching the Algebraic/Numeric option in the Parameters Find Singular
Points window if it is not. This must be done when the complexity of the
vector field is high or when you detect computing problems which slow down
the study in algebraic mode. Now make the program work with the Evaluate
button. With the View button you see that the system has four finite singular
points, which are three saddles and one weak focus. For this last point, the
program also computes its Lyapunov constants and detects that the first two
are zero (or simply smaller than the Precision you are allowing) and the third
is different from zero (negative), so the point is a stable weak focus of third-
order. There are also three pairs of infinite singular points, all of them nodes.

By pressing the Plot button of the main window you see three green boxes,
which represent the finite saddles, and one dark blue diamond, which repre-
sents the stable weak focus. On the circle you see red and blue boxes for the
nodes. Now if you press the Plot All Separatrices button, there will appear
some lines in red and blue. These lines are the unstable and stable separatrices
of the finite saddles; see Fig. 10.5.

For system (10.3) put now a = 1, l = 0 and evaluate again. The only
interesting change is that now the singular point at (0, 0) has its three Lya-
punov constants equal to zero. The vector field is quadratic and the program
knows it. It knows that when a quadratic system has a singular point whose
first three Lyapunov constants are zero, then the point must be a center.
The program also knows that cubic systems with no quadratic part (and no
constant part) have five independent Lyapunov constants that allow one to
decide if the singular point is a weak focus or a center; in the latter case,
the first five Lyapunov constants must be equal to zero. Finally, the program
also knows that all finite antisaddles of a Hamiltonian vector field must be
centers.

Fig. 10.5. Stable and unstable separatrices of system (10.3) for a = 1 and l = −0.5
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Fig. 10.6. Separatrix skeleton of the system (10.3) for a = 1 and l = 0

In this case (0, 0) is plotted now with a green diamond to show it is a
center, and some separatrices from saddles coincide, so you may see the final
result in red with some pixels in blue (or the opposite), and if you plot an
orbit inside the canonical region where the center is situated, you will see it
as periodic; see Fig. 10.6. ��

10.2 Modifying Parameters

Example 10.4 Consider the quadratic vector field

ẋ = (y − x) ∗ (1/2 − y),
ẏ = (a − y) ∗ (1 − a − x).

(10.4)

Introduce system (10.4) using the parameter and formulation given. As
you can see, you are not limited to writing the vector field coefficient after
coefficient. You may give it using symbolic formulas. Set the parameter a =
0.6. Now make the program work with the Evaluate button. With the View
button you see that the system has three finite singular points which are one
saddle, one unstable node, and one strong stable focus. There is also one pair
of infinite singular points, which are saddle–nodes.

By pressing the Plot button of the main window you see one green box,
which represents the finite saddle, one red box, which represents the unstable
node and one blue diamond for the stable focus. On the circle you see two
purple triangles, which represent a pair of saddle–nodes at infinity. Now if
you press the Plot All Separatrices button, there will appear some lines in
red and blue. These lines are the unstable and stable separatrices of the finite
saddle; see Fig. 10.7. Some additional clicks may be needed to prolong the
separatrices.

Your study is not yet complete since one separatrix is still missing. Near
the point (1, 0, 0) (that is, the saddle–node at infinity) you see a small dark
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Fig. 10.7. Stable and unstable separatrices of system (10.4)

blue line. This line represents the center stable separatrix of that point. You
can use the same method as described in Example 10.2 of pressing the Plot
All Separatrices button but you must consider that this will integrate again
all other separatrices, and this may take longer than if you only integrate the
separatrix you need. You can concentrate your efforts on this separatrix by se-
lecting this point. Go with the mouse near that point and press the left button
while holding down the shift key. This opens the Plot Separatrices window.
Notice also that a flash can be seen around the saddle–node, which confirms
that you have selected it. By pressing the Start Integrating Sep button the
center separatrix will be integrated. You see that this separatrix is very slow,
so you have to press the Cont Integrating Sep button several times. Another
possibility is changing the default number of integrations done for each click.
You can press the Integration Parameters button in the Phase Portrait win-
dow and change the # Points option to a higher number, for example 2,000.
This value affects all integrations that you do from now on, so it can slow
down the procedure if you press the Plot All Separatrices button in a system
with many separatrices, but it can be very useful when studying one single
slow separatrix. You may also do the same with the finite saddle since one of
its separatrices has not yet reached its ω-limit. By clicking close to it (with
the shift key pressed) you select the closest singular point with separatrices,
in your case, the finite saddle. You will see as one of the separatrices turns
into orange color. This is the currently selected separatrix. You may move
from one to another by clicking the Select Next Sep button until you get the
one you want to prolong; see Fig. 10.8. ��

Example 10.5 Consider the quadratic vector field

ẋ =
1
25

− 9
100

∗ x +
3
10

∗ y +
9
2
∗ x2,

ẏ = − 3
125

+ x − 9
50

∗ y +
15
2

∗ x ∗ y.

(10.5)
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Fig. 10.8. Separatrix skeleton of the system (10.4)

Enter this system into P4 and ask the program to determine all the sin-
gularities. If you now press the Plot button then you see near the origin some
singularities that are very close to each other. In fact there are three points,
namely the points (3/125,−2527/18750), (1/50,−2/15), and (0,−2/15). So
you have to zoom in to see these three singularities. In order to zoom in you
must left-click in a corner of a rectangle you want to amplify while you hold
down the Control key. Do not release either the Control key or the left button
of the mouse while you move the mouse. You will see a white rectangle which
changes as you move the mouse. You then release the left button at the op-
posite corner of the region to magnify and you will get a new window which
shows only that rectangle. Be aware that the unit of measure for the coordi-
nates x and y may have changed during the zoom if you have selected a very
narrow or a very flat rectangle. The program will try to make a rectangular
box that approximates as closely as possible your selection. However, because
the plane has been compactified to form the Poincaré disk, you might have
specified very large coordinate corners, in which case, the narrowness of the
box would imply an almost invisible window. After you zoom in and press
the Plot All Separatrices button, you get in the zoom window a plot as in
Fig. 10.9.

As you see there are strange lines in the picture. This is because the epsilon
value with which P4 has started to integrate the separatrices of the saddle
point is too large. The epsilon value corresponds to the distance that you
move away from the separatrix along its Taylor approximation when starting
to integrate. Therefore, you have to change the epsilon parameter. Select this
saddle point by pressing the left button of the mouse while holding down
the shift key. Now the Plot separatrices window appears. In this window you
change the value of epsilon to 0.001 and press the return key. Now you select
the Refresh button in the Zoom window and press the Start Integrating Sep
button followed by the Cont Integrating Sep button several times. You do the
same for the other separatrices. After drawing all the separatrices you get
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Fig. 10.9. Epsilon value too great

Fig. 10.10. Good epsilon value

Fig. 10.11. Phase portrait of system (10.5)

the picture of Fig. 10.10. To obtain a global vision of the phase portrait more
orbits have to be drawn; see Fig. 10.11.

There is also a global epsilon value which can be set in the Find Singular
Points Parameters section of the main window and that is used by default
in all singular points with separatrices. This number is set by default to 0.01
since lower values are needed only for very special cases and they would delay
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most other systems. Also, sometimes, and for some specific cases, it may be
necessary to set epsilon to higher values, such as 0.05 or even 0.1, to help the
program and start integrating further from the singular point, avoiding the
low start of some central manifolds. ��
Example 10.6 Consider the cubic vector field

ẋ = y,

ẏ = −x2 ∗ (x + 1) + d ∗ (a + b ∗ x + x2) ∗ y.
(10.6)

Introduce system (10.6) using the parameters and formulation given. You
test first the case d = 0.1, a = b = 0 and evaluate it in Numeric mode.
With the View button you see that the system has two finite singular points,
one strong unstable focus and one degenerate point at (0, 0). This point is
studied in detail and you see that the program informs you that it has a stable
separatrix arriving in the direction (x(t), y(t)) = (−t2, 0.8165t3 + . . .) and an
unstable separatrix departing in the direction (x(t), y(t)) = (−t2,−0.8165t3 +
. . .). It also tells you that the sector between the first and second separatrix
is hyperbolic, and the sector between the last (second) and first separatrix is
also hyperbolic. It also gives you the index of the singular point, which is 0.
Thus the point is a cusp. There are also two pairs of infinite singular points,
one a semi-hyperbolic saddle and the other a degenerate point. For this last
point, the program has found four sectors but it happens that they are all
parabolic. So the four separatrices described by the program are just orbits
which arrive to that point but are not separatrices, even though it says so.
In fact, the degenerate point is nothing more than a degenerate stable node.
Only separatrices which coincide with separatrices of hyperbolic sectors are
real ones. Those which limit with parabolic or elliptic sectors are just local
separatrices in the blowing up system which may not maintain their character
in the global system.

By pressing the Plot button of the main window you see one red diamond,
which represent the finite focus, and one cross which represents the cusp
(in general any degenerate singular point). On the circle you see two green
triangles and two more crosses, which represent a pair of semi-hyperbolic
saddles and the degenerate singular points at infinity, respectively. Now if you
press the Plot All Separatrices button, there will appear some lines in red and
blue starting at the cusp. Two more clicks on the same button give you a
better idea of what those separatrices do; see Fig. 10.12.

Your study is not yet complete since two separatrices are still missing. The
infinite semi-hyperbolic saddles must have one separatrix each moving to the
finite plane, but the most that you can see are some unclear blue dashes at
the top and the bottom. If you zoom in on the topmost region as described
in Example 10.4, you will realize that the blue dash does not correspond to
the saddle, but it is one of the orbits of the degenerate node in which you are
not interested at all. So you must select the semi-hyperbolic saddle by left-
clicking close to it while holding the shift key. This time, you must modify the
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Fig. 10.12. Stable and unstable separatrices of system (10.6) with d = 0.1 and
a = b = 0

Fig. 10.13. Stepping too fast

epsilon to a greater value (like 0.1), but you must also modify the maximum
integration step size allowed in Phase Portrait–Integration Parameters window
given by Max Step Size. Try setting it to 10 and also setting # Points to 2,000.
After pressing the Cont Integrating Sep two times you see it drawing, but what
appears does not seem to be a differentiable curve, but a dashed one, which
becomes even worse if you continue integrating; see Fig. 10.13. The integration
speed needed to get away from the singular point is too fast when you are far
from it.

You need to play with the parameters in order to get a nice phase portrait.
For example, click on the Epsilon box of the Separatrices window and press re-
turn to redraw this orbit, make two integrations with the previous conditions
(with 2,000 integration steps) and then move back to 200. After nine inte-
grations more you will see the separatrix already departing from the infinite
singular point. At that moment, again change the maximum time to 0.1 and
# Points to 2,000 , and continue integrating. Now it appears differentiable,
but when moving close to the other semi-hyperbolic saddle, it slows down
again. As it takes too long to cross this region, it is convenient to set again
the maximum integration step to 1 and once the separatrix starts leaving the
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Fig. 10.14. Separatrix skeleton of the system (10.6) with d = 0.1 and a = b = 0

slow region to change it again to 0.1 to avoid the dashes. New crosses close to
both semi-hyperbolic points will mean new slow downs, but since new crosses
will take place further and further away, the effect is not so severe. You may
do the same with the semi-hyperbolic saddle on the bottom of the screen, but
it will not add much information.

You will finally see that both separatrices from the semi-hyperbolic saddles
have the same α-limit as the stable separatrix of the cusp; see Fig. 10.14.

Now if you set the parameters d = a = b = 0.1 and evaluate it in Numeric
mode you see that the system now has a saddle–node at (0, 0). You may notice
that the program takes a bit of time when computing and that it often shows
a line saying test failed for i=xx. The reason is that the separatrices of
some singular point twist very fast just upon leaving the point and thus it
becomes quite complicated to find the correct Taylor approximation for the
separatrices. It may happen sometimes that a program collapses during that
procedure, in which case you are advised to disconnect the Test Separatrices
option in the Parameters Find Singular Points section of the main window.
Be aware then that you cannot completely trust the separatrices drawn, since
tests have not been passed. The infinite configuration has not changed.

By pressing the Plot button of the main window you see one red diamond,
which represents the finite focus, and one purple triangle which represents the
saddle-node. On the circle you see two green triangles and two more crosses.
Now if you press the Plot All Separatrices button, there will appear some lines
in red and blue starting at the saddle-node. Two more clicks on the same
button give you a better idea of what those separatrices do; see Fig. 10.15.
However, all that you see greatly resembles the previous case and the behavior
of the saddle-node seems to be a cusp. In fact, what happens is that there
are two unstable separatrices and a stable one (central manifold). But both
unstable separatrices are very close to each other and even though they start
in different directions from the singular point, one of them twists very fast and
is impossible to distinguish one from the other. You can nevertheless check
that there are two by integrating the separatrices of this point one by one
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Fig. 10.15. Stable and unstable separatrices of system (10.6) with d = a = b = 0.1

Fig. 10.16. Stable and unstable separatrices of system (10.6) with d = 0

with the Plot Separatrices window, a very small Epsilon value (try it with
10−4, 10−5, and up to 10−6), and a very deep zoom.

Now if you set the parameter d = 0 (a and b become irrelevant) and
evaluate it in any mode you prefer, you see that the system has a cusp at
(0, 0) and a center at (−1, 0). The program knows that it is a center because
the system is Hamiltonian. The infinite configuration has only one degenerate
point which has only two separatrices (the ones corresponding to infinity), and
two hyperbolic sectors. Thus, this infinite singular point has a kind of box flow
around it. If you integrate all separatrices, you see that the separatrices from
the cusp seem to coincide. Since the antisaddle is a center, you can be sure
that they coincide. Any other orbit you integrate will resemble a periodic
orbit, which is what in fact they are, although the program cannot assure it;
see Fig. 10.16. ��

Example 10.7 Consider the cubic vector field

ẋ = (x − 3) ∗ (−x + x2 − 3 ∗ x ∗ y + 2 ∗ y2),

ẏ = (x − 3) ∗ (y + 4 ∗ x2 − 5 ∗ x ∗ y − 2 ∗ y2).
(10.7)
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Fig. 10.17. Stable and unstable separatrices of system (10.7)

Introduce system (10.7). It is clear that this vector field has a common
factor and thus it will have an infinite number of finite singular points. So the
first thing to do is set the Gcf option to 0. Now you are saying to the computer
that you are not sure if there is a common factor and that it must look for it.
When you wrote 1 for this option in all previous examples, you were saying to
the program that there was no greatest common factor between the equations,
and that it did not need to spend its time looking for it. In fact, this task can
be quite time-consuming and it is advisable to avoid it if possible. Another
possibility is to say to the computer that the greatest common factor is x− 3
and that taking that, it may skip its computation also. Of course, if you cheat,
the program will fail.

Now the study of the system says that it has a common factor, and that it
will study the reduced system which has some singular points. When plotting
the phase portrait you will see a button called GCF which is normally inactive.
By clicking it you enter a window where the Evaluate button will draw for
you the curve defined by the common factor. The parameters there do not
normally need to be changed, but since the complexity of the common factor
can be great, they may help in some cases.

Now you see a green line in the Poincaré disk. Although it seems a curve
it corresponds to a straight line due to the compactification. You may plot
all separatrices (one of them may be plotted better with a smaller time step
since dashes appear); see Fig. 10.17.

You are interested in what happens close to the line of singularities.
You may notice that the separatrix coming from the infinite saddle on the

right-hand side has stopped on that line. Also, if you click on a point close to
the upper end of the line of singularities, and ask to integrate it Backwards you
will see that it stops on the line of singularities. But you may wish to see those
separatices and orbits continued across the line of singularities. You can do
that by changing the Original/Reduced option in the Integration Parameters
window. Now when you ask to integrate all separatrices, you will see that the
separatrix coming from the right infinite saddle crosses the line of singularities,
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Fig. 10.18. Portrait in the reduced mode of system (10.7)

and moreover, it changes its color when doing so. The reason is that the right
part of it is unstable with respect to the infinite saddle, but the other part
must be seen as stable with respect to that singular point. Notice also that
the speed of the flow has changed when integrating the reduced system and
that even the separatrix that looked dashed in the previous sample now looks
nicer; see Fig. 10.18. ��

10.3 Systems with Weak Foci or Limit Cycles

The presence of limit cycles (or even just their possible presence) greatly com-
plicates the realization of the phase portrait of a vector field. Most times you
will just be able to assure the existence of an odd number of limit cycles
(most probably one); an example is when you see a stable orbit (stable from
the point of view of the saddle or more degenerate point from which it comes)
that spirals around a stable focus (or exactly the opposite situation). In some
examples you will see a fast transition from a focus to a limit cycle which will
clearly detect the limit cycle, but other systems will either have an infinitesi-
mal limit cycle or a very slow transition which will make it almost impossible
to detect the cycle numerically. In cases having more than one limit cycle,
these problems may become worse. Nevertheless, with a bit of patience and
experience, you may be able to detect several limit cycles in some examples.

Also the detection of a weak focus is important since once you have it,
by small perturbations you can produce as many limit cycles as the order of
weakness of the focus.

P4 is ready to detect any order of weakness of a focus, but by default this
order is set to 4, that is, if the proposed system has a weak focus it will start
checking its order of weakness until 4th degree. If it is even weaker, that is, if
all previous Lyapunov constants are zero, you may adjust a parameter in the
main window. Be careful that the amount of time needed to compute each
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Lyapunov constant grows exponentially, and thus it is not advisable to set
this parameter to high values without good reason.

You must also remember that when studying a quadratic system, if a
singular point has its first three Lyapunov constants equal to zero, then it is a
center. The same happens when in a linear plus cubic system a singular point
has its first five Lyapunov constants equal to zero. The program knows that
and in those cases it will note that fact. Also if a system is Hamiltonian it will
know that an elementary point that is not a saddle must be a center. But for
any other polynomial system not included in these cases, the program cannot
know that a point is a center when even all computed Lyapunov constants
are zero.

Example 10.8 Consider the quadratic vector field

ẋ = −y + (b − v)/3 ∗ x2 + (2 ∗ a + l) ∗ x ∗ y + n ∗ y2,

ẏ = x + a ∗ x2 + (2 ∗ v + b)/3 ∗ x ∗ y − a ∗ y2.
(10.8)

Introduce system (10.8) using the parameters and formulation given. You
first test the case b = a = l = v = n = 1 and evaluate it in Numeric mode.
With the View button you see that the system has four finite singular points
which are three saddles and one weak focus. The computer automatically
evaluates the first Lyapunov constant, detects that it is 0.25, clearly different
from zero, and determines that it is an unstable weak focus of first-order.

By pressing the Plot button of the main window you see one dark red
diamond, which represents the finite focus, and three green squares for the
saddles. Now if you press the Plot All Separatrices button, there will appear
some lines in red and blue. You see one blue separatrix coming from one of
the saddles spiralling around the weak red focus. That is, a stable separatrix
which has the saddle as ω-limit is spiralling out from an unstable focus. This
is consistent with either the complete absence of limit cycles, the presence
of an even number of hyperbolic limit cycles, or the presence of any number
of semistable limit cycles. If you want to prolong this separatrix, you may
click several more times on the Plot All Separatrices button or use the Plot
Separatrix button specifically for this particular separatrix alone, and you will
see that the blue separatrix seems to actually spiral out from the focus, which
indicates that either there are no limit cycles, or that all limit cycles that
exist are infinitesimal at this scale; see Fig. 10.19. You could use the zoom
techniques explained before to improve the picture.

Now change the parameter l to l = 0 and evaluate the system again.
The first Lyapunov constant of the singularity at the origin is now zero,
and since by default P4 computes up to four Lyapunov constants automat-
ically, it determines both this and the fact that the second Lyapunov con-
stant is 0.25. Thus it determines that the origin is now an unstable weak
focus of second-order. The phase portrait is very similar to the previous
one.
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Fig. 10.19. Phase portrait of system (10.8) with a = b = l = n = v = 1

Now set also b = −5 and evaluate again. The first two Lyapunov constants
are zero and the computer finds the third one to be −1.5625; thus you have
a stable weak focus of third-order.

Finally set b = −10 and v = −1 and evaluate again. Now you see
that the first two Lyapunov constants are zero, so the third is required.
The computed value is 1.818989 × 10−12 (this number may vary slightly
depending on the CPU used, due to numerical rounding). Since we set the
precision parameter to 10−8 by default, the program will take this num-
ber as zero, assuming that some numerical perturbations have occurred.
Since the system is quadratic and the first three Lyapunov constants of the
singularity are zero, the program concludes that the singularity is a cen-
ter.

If you set b = 0 and v = 3 the program does not even start computing
Lyapunov constants since it detects from the beginning that the system is
Hamiltonian, and automatically determines that all elementary points that
are not saddles are centers. ��

Example 10.9 You consider the quadratic vector field

ẋ = −x2 − 0.4 ∗ x ∗ y + 1.5 ∗ x + 0.27 ∗ y2 − 0.88 ∗ y − 0.89,

ẏ = 1.2 ∗ x2 + 0.15 ∗ x ∗ y − 1.5 ∗ x + 0.12 ∗ y2 + 1.6 ∗ y + 0.15.
(10.9)

Introduce system (10.9) and evaluate it in Numeric mode. With the View
button you see that the system has two finite singular points which are one
saddle and one strong stable focus. Now if you press the Plot All Separatrices
button a couple of times you will see that one of the stable separatrices of
the saddle spirals out from a neighborhood of the strong focus which is also
stable; see Fig. 10.20. This is conclusive proof of the existence of at least one
limit cycle. You may easily remember that if a red separatrix spirals around
a red point (or blue around blue) you have a limit cycle.

You can confirm the relative position of the limit cycle by clicking inside
the region apparently enclosed by the separatrix and asking the program to
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Fig. 10.20. Phase portrait of system (10.9)

Fig. 10.21. One orbit inside the limit cycle

integrate one orbit backward. After several more clicks on the Continue button
you can determine that the limit cycle must be very close to where the blue
separatrix has stopped its advance toward the focus; see Fig. 10.21.

But you can also detect the limit cycle using the Limit Cycles button.
Click on it and a new window will open. Once it is opened you must sim-
ply left-click on the Phase Portrait window and move the mouse a little
while holding the left button down to generate a transverse section where
the limit cycle is supposed to be, that is, close to the region where the
blue separatrix is spiralling. We suggest that you simply make a short seg-
ment which crosses it. Once you have specified the section just press the
Start button in the Limit Cycles window and in a few seconds you will see
a purple closed orbit portrayed. That is the limit cycle; see Fig. 10.22. A
Searching for limit cycles window appears with a time bar which should
show the time left for computing but whose most useful application is to
stop searching, since it may easily delay a lot before or after finding a limit
cycle.

You may change the parameter Grid at will. The smaller you set it, the
more precisely the limit cycle will be found (and more time will be needed).
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Fig. 10.22. The limit cycle

The greater you set it, the faster you will find the limit cycle (with some loss
of precision). ��

Example 10.10 Consider the quadratic vector field

ẋ = 1 + x ∗ y,

ẏ = a00 + a10 ∗ x + a01 ∗ y + a20 ∗ x2 + a11 ∗ x ∗ y + a02 ∗ y2.
(10.10)

Introduce system (10.10) using the parameters and formulation given. Set
a00 = a01 + a11− a10− a20− a02. You test the case a10 = 15.28, a01 = 8.4,
a20 = −12, a11 = −1.398, and a02 = 3. Evaluate it in Numeric mode. With
the View button you see that the system has two finite singular points which
are a node and a strong focus, both unstable. Now if you press the Plot All
Separatrices button you will immediately see that the default parameters for
integration are not the proper ones, especially in reference to the unstable
infinite separatrix that spirals around the strong focus, since it goes too fast
and appears in dashes. Nevertheless, it is enough to make you infer of the
existence of at least one limit cycle.

Press the Plot button in the main window again, and before clicking the
Plot All Separatrices button modify the Max Step Size to 0.01 in the Integra-
tion Parameters window. Now you may again click the Plot All Separatrices
button. You must do it several times since the integration is much slower, and
you get the main phase portrait; see Fig. 10.23.

But in fact, this is an example of quadratic system with three limit cy-
cles, luckily of visible size, which were found in [32]. Set the # Points in
the Integration Parameters windows to 2,000 to compensate for the smaller
integration step. Click in the Phase Portrait window approximately on the
point with coordinates (3 0.1,−3 0.1) (or set it directly on the Plot Orbits
window). You do not need strict precision in clicking. It is just to be sure
that you follow the example as it is described. Integrate from this point in
the forward sense and continue it a bit. You will see a yellow orbit which is
clearly increasing turn after turn. Since the red separatrix was also moving in
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Fig. 10.23. Phase portrait of system (10.10) with given conditions

Fig. 10.24. Outer limit cycle

positive time, you already have a limit cycle located in the apparent annulus
formed by this separatrix and the orbit drawn. You may use the Limit cycles
button to try to draw it. We suggest checking that the Grid parameter is set
to 0.01 before starting since the Poincaré return map for this system is quite
close to the identity and it may take a lot of time to compute the limit cycle
with a smaller grid. Once the grid is set, the section across the annulus is
specified and the procedure is started, you will see the limit cycle portrayed
in purple; see Fig. 10.24.

Now click on the Phase Portrait window approximately on the point with
coordinates (1.5 0.1,−1 0.1) and integrate forward. It may need some clicks
on the Continue button before you can observe that the orbit is moving inside;
see Fig. 10.25. You need to pay attention to the pixels which turn yellow in the
inner border of the orbit already drawn. This fact, together with all you know
already of the phase portrait, confirms the existence of two more limit cycles,
one in the apparent annulus generated by both orbits drawn, and another
around the strong focus and inside the inner orbit.

In short, the program has helped you to prove numerically the existence
of at least 3 limit cycles. However, trying to draw the two inner limit cycles
as you have done with the outer one is not so easy. The reason is that the
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Fig. 10.25. Looking for more limit cycles

Fig. 10.26. When limit cycles are hard to find

Poincaré return map near these limit cycles is too close to the identity. If you
set the grid to 0.01 as before what you will get will be that the program will
detect a continuum of periodic orbits; see Fig. 10.26. So you might need a bit
of patience, work on a zoomed screen, and use a lower grid with very precise
transverse sections to detect the other two limit cycles. Once done, you can
clear all drawn orbits and even separatrices to have a clean image of the limit
cycles. A Refresh click may be needed. ��

10.4 Exercises

Exercise 10.1 Construct the phase portraits of all topologically different
linear phase portraits on the Poincaré disk. Determine which of them are
topologically equivalent on the plane but nonequivalent on the disk.

(i) ẋ = x, ẏ = y,
(ii) ẋ = x, ẏ = 2y,
(iii) ẋ = x, ẏ = −y,
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(iv) ẋ = x + y, ẏ = −3x + 2y,
(v) ẋ = −y, ẏ = x,
(vi) ẋ = y, ẏ = 1,
(vii) ẋ = x, ẏ = 1,
(viii)ẋ = x, ẏ = 0,
(ix) ẋ = y, ẏ = 0.
(x) ẋ = x + y, ẏ = y.

Exercise 10.2 Prove that the following system forms a rotated vector field
family with rotation parameter α, and has a semistable limit cycle x2 +y2−1
of multiplicity two for α = 0, using the tools given in Chap. 7.

ẋ = − y + x(x2 + y2 − 1)2,

ẏ =x + y(x2 + y2 − 1)2 + α(−y + x(x2 + y2 − 1)2).

Also prove for which sign of α (either positive or negative) you have two
hyperbolic limit cycles, and check it numerically with P4.

Exercise 10.3 Construct the phase portrait of system

ẋ = y + x2 − x2y + 2y3,

ẏ = x + y2 − x3 − xy2,

check that there is a finite limit cycle, and show that the circle at infinity (the
equator of the Poincaré sphere) behaves like a semistable limit cycle. Now you
perturb the infinite limit cycle by adding some higher order terms, trying to
produce a finite limit cycle. Determine a value of ε for which there are two
finite limit cycles for

ẋ = y + x2 − x2y + 2y3 + ε(x3y + y4),

ẏ =x + y2 − x3 − xy2 + εx2y2.

Then use a rotated vector field family

ẋ = y + x2 − x2y + 2y3 + ε(x3y + y4),

ẏ = x + y2 − x3 − xy2 + εx2y2 + α(y + x2 − x2y + 2y3 + ε(x3y + y4)),

so as to reduce the distance that separates the limit cycles, and get an approx-
imation of the value of the rotation parameter for which a finite semistable
limit cycle occurs. You will see that it is impossible to be certain of the value
for which the semistable limit cycle exists. At most, you can be sure that
for a certain value of α there are two limit cycle, and for another, there is
none.
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Hint: It may be necessary to play with the Projection parameter a little
since there may be interesting information to view close to infinity which is
not clear with the default value.

Exercise 10.4 Construct the phase portrait of

ẋ = x + 4x4y − 12x2y3,

ẏ = y + 12x3y2 − 4xy4,

and describe it.
Hint: This time, the separatrices do not seem conclusive enough to deter-

mine a complete qualitative and quantitative phase portrait since the existence
of several infinite singular points may raise the doubt that some important
separatrices are still undrawn. Depending on which orbits the user draws to
see it more clearly, the draft of the picture may even look erroneous; the
user needs to extract detailed information about the infinite singular points
in order to understand it.

Exercise 10.5 Change the linear part of the previous exercise. Construct the
phase portrait of

ẋ = − y + 4x4y − 12x2y3,

ẏ =x + 12x3y2 − 4xy4.

It shows a nice set of apparently periodic orbits but the program is not con-
clusive regarding the center-focus problem. Anyway, it induces to search for
an algebraic proof of it. Which?

Exercise 10.6 Construct the phase portrait of

ẋ = (x2 − 1)(x2 − (2k − 1)2)(x +
√

5y),

ẏ = (y2 − 1)(y2 − (2k − 1)2)(
√

5x + y),

for k = (
√

5 − 1)/2 and check graphically how many invariant straight lines
appear.

Hint: This a good time to change the picture from Poincaré disk to the
plane.

Exercise 10.7 Construct the phase portrait of

ẋ = 2x(x2 − 3)(4x2 − 3)(x2 + 21y2 − 12),

ẏ = y(−216 + 378x2 + 378y2 − 315x4 − 189y4

+ 35x6 + 105x4y2 − 63x2y4 + 27y6),

and check graphically how many invariant straight lines appear.
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Exercise 10.8 Prove numerically that the system

ẋ = 1 + xy,

ẏ = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2,

a00 = a01 + a11 − a10 − a20 − a02

a10 = − 26.5
a01 = 67/220
a20 = − 12
a11 = 2.1502
a02 = 8/11

has a (3, 1) limit cycle configuration and determine the annuli which contain
those limit cycles one by one.

Exercise 10.9 Determine the behavior of the degenerate singular point of
the system

ẋ = (x2 − y2)x + 2xy2 + x4 − 6x2y2 + y4,

ẏ = 2x2y − (x2 − y2)y − 4x3y + 4xy3.

How many invariant straight lines does it seem to have? Check it algebraically.

Exercise 10.10 Construct the phase portrait of the system

ẋ = 1 + x + x2 + x3 + 2y + 2x2y,

ẏ = − y + 2xy + x2y + 2xy2.

Check the curious behavior of the orbits when they are drawn using the re-
duced option in the Parameters of Integration window. Find out why the
program cannot be sure of the center-focus problem regarding the finite lin-
ear center, and is certain that the reduced system has a center at infinity.

Make a small perturbation of the linear coefficient of y in the first equation
and enjoy the curious new behavior around the infinite singular point in the
reduced system.

How can one force the program to draw orbits that do not seem to end
before reaching infinity?

Exercise 10.11 Study the system

ẋ = − 70 − 100x + 70x2 + 100x3 − 200y + 200x2y,

ẏ = 146x + 100y + 140xy + 100x2y + 200xy2,

using different values for the Precision parameter and observe the numerical
instability of the Lyapunov constants.
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Exercise 10.12 Study the system

ẋ = y − 3 + (x2 − 1)2(x + 3) − ax,

ẏ = − 0.01x.

for values of a ∈ [0, 0.2].
Hint: This system has a very fast transition from a phase portrait with two

limit cycles to one without any cycles, which makes it impossible to determine
numerically the value of a for which a semistable limit cycle occurs. It also
shows an odd behavior of the orbits with fast regions followed by terribly slow
ones. You will need to play with the integration parameters a little.

Exercise 10.13 Study the system

ẋ = − y + axy(x2 − y2),

ẏ =x + bxy(x2 − y2),

for parameters ab �= 0. We suggest you to set them to random numbers be-
tween −5 and 5 and not close to zero. Would you say that the origin is a
center?

Hint: Try plotting an orbit far from the origin. Is it a periodic orbit? Then
try to compute more than the default number of Lyapunov constants, but do
not set a high number directly. It is better to test the speed of your computer
by increasing the number of constants by two at a time.

Exercise 10.14 Study the system

ẋ = y,

ẏ = x5 − xy.

First use Poincaré compactification. Then try it with a Poincaré–Lyapunov
compactification, first looking for a couple of well chosen powers.

Exercise 10.15 Construct the phase portrait of the homogeneous systems:

ẋ = − 42x7 + 68x6y − 23x5y2 + 86x4y3 + 39x3y4 + 10x2y5 + 20xy6 − 8y7,

ẏ = y(1110x6 − 220x5y − 1591x4y2 + 478x3y3 + 487x2y4 − 102xy5 − 12y6),

ẋ = 315x7 + 477x6y − 113x5y2 + 301x4y3 − 300x3y4−
− 192x2y5 + 128xy6 − 16y7,

ẏ = y(2619x6 − 99x5y − 3249x4y2 + 1085x3y3 + 596x2y4 − 416xy5 + 64y6),
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A B C

Fig. 10.27. Exercise 10.16

ẋ = 6x7 + 4x6y − 15x5y2 − 10x4y3 − 33x3y4 − 22x2y5 − 12xy6 − 8y7,

ẏ = y(−90x6 − 28x5y + 201x4y2 + 62x3y3 − 177x2y4 − 70xy5 + 12y6),

ẋ = − 45x7 − 9x6y + 155x5y2 + 31x4y3 + 120x3y4+

+ 24x2y5 − 80xy6 − 16y7,

ẏ = y(2619x6 − 99x5y − 3249x4y2 + 1085x3y3 + 596x2y4 − 416xy5 + 64y6),

ẋ = y2(25x5 + 20x4y + 18x3y2 + 18x2y3 − 7xy4 − 2y5),

ẏ = y(288x6 − 72x5y − 367x4y2 + 118x3y3 + 130x2y4 − 10xy5 − 15y6).

Exercise 10.16 Consider the system

x′ = y + 4x(x + y), y′ = x2 + 4xy + 3y2. (10.11)

The finite singularities of system (10.11) are P0(0, 0) which is a second-order
cusp and P1(1/8,−1/24), an unstable hyperbolic node. At infinity there is
a stable node at (1, 0) of local chart U1, a saddle at the origin of U2 and a
saddle–node coming from the collision of a finite singularity with an infinite
one located at (−1, 0) of U1. The phase portrait of system (10.11) is given in
Fig. 10.27a.

Make some linear and constant small perturbations to system (10.11) such
that you split the cusp into an elementary saddle and an elementary stable or
unstable node, in a way that yields the phase portraits given in Fig. 10.27b, c.

Hint: The perturbations may be very small and thus the quantitative image
that you get with P4 at normal zoom appear different, or simply difficult to
grasp.
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29. J. Chavarriga and J. Giné. Integrability of a linear center perturbed by fifth de-
gree homogeneous polynomial. Publicacions Matemàtiques, 41:335–356, 1997.
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126. C. Perelló. A note on analytic structural stability in compact m2. Bol. Soc.
Math. Mexicana, 15:40–41, 1970.

127. L. Perko. Rotated vector fields and the global behavior of limit cycles for a
class of quadratic systems in the plane. J. Differ. Equat. 18:63–86, 1975.

128. L. Perko. Differential equations and dynamical systems, volume 7 of Texts in
applied mathematics. Springer, Berlin Heidelberg New York, 2nd edition, 1996.

129. Zhang Pingguang. Quadratic systems with a 3rd–order (or 2nd–order) weak
focus. Ann. Differ. Equat. 17:287–294, 2001.
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J. Maths. Pures Appl. 7:375–422, 1881. Ouvre (1880–1890), Gauthier–Villar,
Paris.
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de Matemática Pura e Aplicada, Rio de Janeiro, 1979.

152. J. Sotomayor. Liçoes de equaçoes diferenciais ordinárias, volume 11 of [Euclid
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Poincaré disk, 154
Poincaré Index Formula, 179
Poincaré map, 21
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