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1 Introduction

Due to the increase of the operation frequency and the down-scaling of the on-chip size, the parasitic
effects of the electromagnetic field cannot be neglected any longer in the design of ICs. The high frequency
field modeling of on-chip passive components and interconnects was one of the topics addressed by the
FP5/IST/Codestar project [1].

The reference method for the modeling of passive structures is considered to be PEEC, based on Green
function [2, 3]. In this method, the conductors are discretized in filaments, in which constant current den-
sities flow, and their surfaces are discretized in panels having constant charge density. An equivalent RLC
circuit containing a resistance for each filament, coupling inductances between whatever two filaments and
capacitors between whatever two nodes can be conceived. The inductances and capacitances of such a cir-
cuit are described by full matrices. One of the main disadvantages of PEEC is that the accurate modeling
of the skin effect needs detailed discretization of conductors. Thus, the method is relatively expensive from
the memory requirement point of view. For instance, a 64 b bus with 10 segments per line and 6 filaments
per segment conduces to n = 6 × 10 × 64 = 3840 RL branches, n(n− 1)/2 = 7, 370, 880 couplings and
(11×64)×12 = 495, 616 C branches, yielding a total number of 7,874,176 elements. Several acceleration
techniques, such as fast multipole [4], SVD [5], hierarchical approach [6], FFT [7], etc., are proposed to
manage this difficulty.

An alternative approach for the electromagnetic field modeling is proposed in this paper. It is based on
the Finite Integration Technique (FIT), which does not use Green functions and which generates a model
having a number of degrees of freedom at least as small as PEEC.

FIT is a numerical method able to solve field problems [8], based on spatial discretization “without
shape functions”. FIT starts from the global form of electromagnetic field equations. Its degrees of freedom
(dofs) are not local field components, but the global variables i.e. voltages and fluxes assigned to grid
elements (edges and faces, respectively). Two Yee type staggered grids are used as discretization mesh.
They are usually orthogonal, but they can be non-orthogonal Delaunay/Veronoi meshes as well.

The Maxwell Grid Equations (MGE) obtained by FIT are

D · d = q, D′ · b = 0, C · e = −db
dt

, C′ · h = j +
dd
dt

, (1)

where e is the vector of emfs along the edges of the primary grid, d is the vector of electric fluxes through
the faces of the secondary grid, h is the vector of mmfs along the edges of the secondary grid, b is the
vector of magnetic fluxes through the faces of the primary grid, j is the vector of currents through the faces
of the secondary grid, q is the vector of charges in the secondary grid cells. The D operator is the discrete
divergence and the C operator is the discrete curl. The ′ notation refers to the secondary grid.

One important feature of FIT is that there are no discretization errors in the fundamental (metric-free)
MGE. The equations are sparse, mimetic and conservative. Due to this, no spurious modes arise in the
numerical solution.
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The material behavior is described by means of the Hodge’s operators

d = Mεe, b = Mµh, j = Mσe. (2)

These constitutive equations are metric-dependent and they hold the discretization error. An effective a-
priori approximation of the modelling error is given in [9].

Due to the huge size of the unknown vectors, classical FIT (MGE+Hodge) must be improved and
adapted in order to be effective for the compact model extraction in real life configurations. In this re-
spect, we conceived a new strategy called “All Levels Reduced Order Model” (ALLROM). The ASPEEC
technique detailed in this paper is part of the ALLROM strategy, developed within the CODESTAR project.

2 Magneto-Electric Equivalent Circuits (MEEC)

From (1) and (2), an equivalent circuit can be derived (actually two mutual coupled circuits, as in Fig. 1).
Thus, the discrete form of charge conservation law is similar to Kirchhoff Current Law (KCL) for the
electrical circuit (having as graph the primary grid): Ai = 0, i = i′ + i′′; the discrete form of magnetic
flux law is similar to KCL for the magnetic circuit (having as graph the secondary grid): A′ϕ = 0; the
discrete form of Faraday’s law is similar to Kirchhoff Voltage Law (KVL) for the electric circuit: Bu =
0,u = u′ + Fdϕ/d t; and the discrete form of Ampere’s law is similar to KVL for the magnetic circuit:
B′um = 0,um = u′

m + Si.
Relations (2) are conducing to the following constitutive relationships expressed in terms of circuits’

quantities: i′ = Cdu′/d t,u′
m = Rmϕ, i′′ = Gu′.

Standard SPICE does not accept voltage sources controlled in the time derivative of currents (actually
magnetic fluxes in the case of MEEC). That is why we modeled such sources by means of a “derivative
circuit” (Fig. 2) which will provide the emfs induced by the magnetic flux. The total currents which con-
trol the sources of the magnetic circuit are obtained by means of a “summation circuit” having a ladder
topology, similar to the “derivative circuit”.

Thus, the SPICE equivalent circuit for the full-wave distributed model consists of four mutual coupled
sub-circuits: electric, magnetic, summation and derivative circuits. The SPICE equivalent circuit thus de-
rived has linear complexity (nodes and branches number versus the number of FIT grid cells), while the
PEEC model has a quadratic complexity due to their full RL matrices. However, the number of dofs is still
large, as comparing to PEEC based on Electro-Magneto-Quasi-Static field.

In order to reduce the number of dofs associated to the MEEC model, the conductive domains (metal
and poly-silicon) are modeled with magneto-quasi-static field (MQS) with frequency dependent Hodge
operators [10]. In this way, the grid on the cross section does not need to be refined in order to take into
account the frequency effect. In this case, the equivalent electric circuit has no parallel capacitances, but
three series RL cells with non-coupled inductances replacing R and Rm [10].

Fig. 1. Typical branches of electric
(top) and magnetic (bottom) cir-
cuits

Fig. 2. Typical branches of the four SPICE-like subcircuits: electric, mag-
netic, summation, derivative
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Fig. 3. Example of distributed circuit equivalent to
EMQS model

Fig. 4. The distributed circuit, with RC separated
parts

The sub-domains with low conductivity (e.g. low doped Si) can be modeled with electro-quasi-static
field (EQS) superposed with magneto-static field. Both induced emf and total current are vanished. Resis-
tance in the electric circuit can be also disregarded in order to model insulating domains (e.g. SiO2 and
low k).

The obtained EMQS model (Fig. 3) is smaller than the Full Wave model, but still larger than PEEC due
to the nodes in the insulator sub-domain.

3 Algebraic reduction of Partial Electro-magnetic Equivalent Circuit (APEEC)

To reduce the model size to that of PEEC’s, the generalized delta-star transforms of capacitors and mag-
netic reluctances in EMQS-MEEC can be carry out. In this way, all internal electric nodes in insulators
and internal magnetic nodes in non-conductors are removed.This static condensation procedure eliminates
nodes that are non-essential, i.e. nodes having no state variables associated to them. The equivalent re-
duced circuits obtained (we call them APEEC) are similar to those obtained by the VPEC technique based
on integral equations of EMQS field [11].

Each node elimination in APEEC is equivalent to one step of algebraic Gauss-elimination. After the
elimination of a node, a fill-in appears in the matrix involved. The fill-in depends very much of the elim-
ination order. In order to preserve the matrix symmetry, only diagonal permutations (equivalent to node
re-ordering) are allowed. To find optimal re-ordering (minimal fill-in) a problem with NP complexity
should be solved. Therefore, only heuristic techniques to find pseudo-optimal ordering can be used (e.g.
the Marcowitz technique). After algebraic reduction, the capacitors and magnetic reluctances in APEEC
are described by full C and Gm matrices, which are the Schur complements of the initial sparse nodal
matrices.

Let us take for instance the simple electro-quasi-static case, and assume that the distributed RC circuit
obtained by discretization has the resistive part separated from the capacitive one (Fig. 4). This case, often
encountered in practical devices incorporating metals and dielectrics, is described by a system of differen-
tial algebraic equations: Cdv/d t = −Gv+Sit, where both nodal capacitances C and nodal conductances
G are singular matrices.

Partitioning the semi-state space vector in v = [v1,v2,v3]T as in Fig. 4, the following sub-matrices
will be null: C11, C12 = C21, C13 = C31, G33, G13 = G31, G23 = G32. Consequently, the semi-
state-space equations will conduce to

0 = −G11v1 − G12v2 + S1it; (3)

C22
dv2

dt
+ C23

dv3

dt
= −G21v1 − G22v2 + S2it; (4)

C32
dv2

dt
+ C33

dv3

dt
= 0; (5)

and the terminal voltages are vt = ST
1 v1 + ST

2 v2.
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Assuming that G11 and C33 are non-singular, from (3) and (5) it follows that v1 = G−1
11 [−G12v2 +

S1it], and v3 = −C−1
33 C32v2. Therefore, from (4), the following state-space equations can be derived

(C22 − C23C−1
33 C32)

dv2

dt
= −(G22 − G21G−1

11 G12)v2 − G21G−1
11 S1it + S2it,

vt = (ST
2 − ST

1 G−1
11 G12)v2 + S1i

T G−1
11 S1it. (6)

This is the proof that, in the case of EQS field in conductor and dielectric structures (each cell is either a
perfect insulator or a conductor), the state variables are the potentials of the nodes placed on the conductor-
dielectric interfaces (v2).

The state equations of this minimal model are obtained by computing the Schur complements of the
matrices C11 (nodal capacitances of the dielectric part) and G11 (nodal conductances of the conductive
part).

In order to compute the Schur complement, the LU factorization algorithm (e.g. MUMPS [12] sparse
implementation) is applied to the C and G matrices. If this algorithm is interrupted after the internal node
elimination, then the not-yet factorized block is exactly the desired Schur complement.

4 Sparsefication of Algebraic PEEC

The nodal capacitance matrix C which describes the capacitive part of APEEC is a full, symmetric, positive
definite, diagonal dominant, M-matrix (the diagonal has positive elements and off diagonal elements are
negative). The nodal magnetic susceptance matrix Gm (Gmij = −1/Rmij) which describes the inductive
part of MEEC has similar properties as C, and therefore it can be sparsified using similar techniques. It is
similar to K - element method used to describe coupled inductors [13], having their advantages.

The problem of sparsefication is to find sparse approximations of the matrices C or Gm (or a rep-
resentation by a sparse matrix, such as SVD truncation), which keep their proprieties (e.g. if passivity is
preserved, it is called passivity-guaranteed sparsefication). It would be ideal if circuit representations will
be kept after sparsefication (if capacitive/resistive equivalent circuit having lower number of elements can
be synthesized, it is called realizable sparsefication).

Two kinds of sparsefication are known. The geometric sparsefication is based on the observation that
close interactions are stronger than far interactions, and therefore the former should be accurately de-
scribed. In this type of sparsefication, the ”distance” between nodes plays an important role. In numeric
sparsefication, the neglectable elements of the matrices are dropped-off. In both matrices, any neglectable
non-diagonal element and its symmetric can be vanished without loosing the desired properties. The prefer-
able criterion to detect if an element is neglectable or not, is to compare its value with the corresponding
diagonal element.

Any acceleration method encountered in the numerical solving of the electromagnetic field integral
equations can be considered as a sparsefication technique. However, we prefer a simpler but effective tech-
nique called hierarchical geometric sparsefication (HGS), followed by a numeric sparsefication. The idea
behind HGS is to use fine grids for close interactions and coarse grids for far interactions, as in the hierar-
chical matrices (Hlib) approach [14]. For n nodes, the number of non-zero elements after sparsefication is
of the order O(n log n).

The ASPEEC (Algebraic Sparsefied Partial Equivalent Element Circuit) model generated by the
sparsefication of the APEEC model can be further reduced, using Krylov ROM techniques [15] or by
circuit transform such as TICER [16], as aposteriori ROM.

5 Numerical results

This section holds numerical results related to the application of ASPEEC technique to one of Codestar
benchmark, the meander resistor (Fig. 5).

The computational domain has the dimensions (in µm) 48 × 43.5 × 2.937, discretized with an ini-
tial mesh having 368,200 nodes, which corresponds to 2,209,680 dofs. A macromodel with 5,940 nodes
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Fig. 5. Codestar meander resistor
benchmark - RPOLY2 ME
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Fig. 6. Real part of S11 versus frequency

(19, 510 dofs) was extracted by the ALLROM strategy. After applying the ASPEEC technique, the number
of dofs decreased to 1,882. The evaluation of the frequency characteristics was carried out in accordance
with an adaptive frequency sampling technique in 11 points. The final model order, obtained at the end of
the aposteriori ROM was q = 4. The whole ALLROM computing time on a standard PC is 145 s, and the
relative error ε = rms‖Sref − S‖F /maxf‖Sref‖F between the measurement and the simulation being 1.4
% (Fig. 6). In the error computation, the Frobenius norm is used, Sref are the reference scattering parame-
ters, and the maximum is computed with respect to the frequency range of interest (e.g. 0 < f < 20 GHz
in our case).

6 Conclusions

The paper presents a powerful technique to extract reduced order models of on-chip passive structures,
included in a new compact modeling technology. The distributed equivalent circuit we propose has a linear
complexity, it is similar to VPEC, but is based on FIT, not on the integral approach (PEEC). Using algebraic
techniques (Schur complement), APEEC method reduces the FIT equations (and the associated equivalent
circuit) to ones similar to PEEC (having the same number of dofs). To be effective in simulation, the
APEEC matrices are approximated by sparse ones, conducing to the ASPEEC model.

The proposed approach combines advantages of FIT with those of PEEC, providing

• more flexibility in the modeling of conductor/insulator/substrate non-homogeneous structures;
• Green functions are not required;
• accurate models for skin effects, without significant increase of computational effort;
• fast and accurate direct SPICE equivalent circuits with low complexity for any full-wave, EMQS, MQS

or EQS model;
• when applying the proposed method, the explicit build of equivalent circuits is not a compulsory step;

they can be used as software objects in order to represent the model of the device or for checking
purposes (however, its theoretical importance is without any doubt);

• structural passivity preservation;
• same (realizable and passivity guaranteed) sparsefication technique is applied for both capacitance and

inductance components of the extracted model.

The proposed approach proved to be suitable for the Codestar benchmarks, most of them being simu-
lated with an accuracy better than 5 %.
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