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Preface

The fifth international conference on Scientific Computing in Electrical Engineering (SCEE) was held
in Capo D’Orlando (ME), Sicily, from 5th to 9th September, 2004. It was sponsored by STMicroelec-
tronics, Italian National Group of Mathematical Physics and National Group of Scientific Computing,
Istituto Nazionale di Alta Matematica “Francesco Severi”, Philips Research Laboratories Eindhoven, In-
fineon Technologies A.G. from Munich, Istituto Tecnico Commerciale per Geometri “Francesco Paolo
Merendino” at Capo D’Orlando, Synapto from Catania, Fraunhofer Institut für Techno- und Wirtschafts-
mathematik at Kaiserslautern, Comune di Capo D’Orlando. The Program committee consisted of:

– Prof. Dr. A. Marcello Anile, Università degli Studi di Catania, Italy.
– Prof. Dr. Flavio Canavero, Politecnico di Torino, Italy.
– Prof. Dr. Ing. Daniel Ioan, “POLITEHNICA” University of Bucharest, Romania.
– Dr. Uwe Feldmann, Infineon Technologies A.G., Munich, Germany.
– Prof. Dr. Michael Günther, Bergische Universität, Wuppertal, Germany.
– Prof. Dr. Ulrich Langer, Johannes Kepler Universität, Linz, Austria.
– Dr. E. Jan W. ter Maten, Philips Research Laboratories Eindhoven, The Netherlands.
– Prof. Dr. Ursula van Rienen, Universität Rostock, Germany.
– Prof. Dr. Wil H.A. Schilders, Technische Universiteit Eindhoven and Philips Research Laboratories

Eindhoven, The Netherlands.
– Prof. Dr. Ing. Thomas Weiland, Technische Universität Darmstadt, Germany.

As on all previous occasions, there was a very important support both from industrial and academic sectors,
as traditional in this series of conferences. It is precisely the combined effort of industry and academia that
assures both the relevance of the work to practical situations and at the same time the presence of long term
basic research. For this reason, the interaction between electric or electronic engineers and mathematicians
is one of the main aims of the SCEE conferences. This attitude shows up in the areas covered at SCEE-
2004, which were: Electromagnetism, Circuit Simulation, Coupled Problems and General mathematical
and computational methods.
For each area, two invited speakers were selected by the Organizing Committee, one from industry and
one from academia, with the exception of the last area, for which there was only an invited speaker from
university. In total, there were 7 Invited Speakers:

– Dr. Augusto Benvenuti, (STMicroelectronics, Agrate Brianza, Italy): “Challenging coupled problems
in TCAD”.

– Dr. Georg Denk, (Infineon Technologies, Munich, Germany): “Circuit simulation for nanoelectronics”.
– Prof. Erion Gjonaj, (Technische Universitaet, Darmstadt, Germany): “Low noise conservative scheme

for the solution of Maxwell’s equations in PIC simulations”.
– Prof. Anne Kværno, (Norwegian Institute of Technology, Trondheim, Norway): “Time integration

methods for coupled equations”.
– Dr. Ing. Siegbert Martin, (Marconi Communications GmbH, Backnang, Germany): “Microwave issues

in EM simulation and design of RF modules, plastic filters and circulators”.
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– Prof. Giovanni Miano, (Università degli Studi di Napoli Federico II, Italy): “A unified approach for the
analysis of networks composed of distributed and lumped circuits”.

– Prof. Dave Rodger, (University of Bath, United Kingdom): “Finite element modelling of electrical
machines and actuators”.

Overall, there were 43 contributed oral presentations, including the talks of the Invited Speakers, and 29
poster presentations. As in the previous edition, there was a session dedicated to short oral introduction of
posters where each contributor was given 2 minutes to advertise his/her work.

It has always been the policy of these conferences to encourage participants from all countries, with an
emphasis on Europe. Also on this occasion this has been remarkably successful, there were more than one
hundred participants from 15 countries. Thus the series of SCEE has confirmed itself as a truly international
event.

The papers appearing in this book fall in two categories: the keynote speakers’ contributions, and contribu-
tions coming both from oral presentations and posters. Each paper was carefully refereed by two suitably
chosen referees.
The selected papers have been organized according to the scientific area. Therefore, we have four sections,
respectively devoted to Coupled Problems, Circuit Simulation, Electromagnetism and General Mathemati-
cal Computational Methods. A fifth section has been added, which comprises all contributions which refer
to work in progress, presenting preliminary results on topics of great interest for the Conference.

We would like to thank the organizers of the Conference, the referees of the selected papers, and all the peo-
ple, both named here and others, whose enthusiasm and hard work ensured the success of this conference
SCEE-2004. A special thank goes to Prof. Angelo Santoromita Villa, Headmaster of the Istituto Tecnico
Commerciale per Geometri “Francesco Paolo Merendino” at Capo D’Orlando for having offered the facil-
ities of his Institution (our thanks go also to the technical staff of the Istituto) and for his enthusiasm and
constant and precious support. Thanks also to the Mayor of the Capo d’Orlando City for having supported
the Conference in several ways, particularly with the availability of the premises where the Conference
took place.

Arcavacata di Rende, Angelo Marcello Anile
January 2006 Giuseppe Alı̀

Giovanni Mascali
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Università degli Studi di Milano,
Dipartimento di Matematica “F. Enriques”,
via Saldini 50, 20133 Milano, Italy.

M. de Magistris
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Università di Catania,
Dipartimento di Matematica e Informatica,
Viale A.Doria 6,
I-95125 Catania, Italy.
muscato@dmi.unict.it

Q. Nasir
University of Sharjah,
Department of Electrical, Electronics
and Computer Engineering,
P.O. Box 27272, Sharjah, United Arab Emirates.
nasir@sharjah.ac.ae

M. E. Oliveri
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Università della Calabria,
Dipartimento di Matematica,
Via P. Bucci, Cubo 30/B,
I-87036 Arcavacata di Rende (Cs), Italy.
piepa@unical.it

S. Pennisi
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Università della Calabria,
Dipartimento di Linguistica,
Via P. Bucci, Cubo 17/B,
87036 Arcavacata di Rende (CS), Italy.
f.stranges@unical.it

M. Striebel
Bergische Universität Wuppertal,
Department of Mathematics,
Chair of Applied Mathematics/Numerical Analysis,
D-42097 Wuppertal, Germany.
striebel@math.uni-wuppertal.de

S. Spinella
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A Unified Approach for the Analysis of Networks Composed
of Transmission Lines and Lumped Circuits∗

A. Maffucci1 and G. Miano2

1 D.A.E.I.M.I, Università di Cassino, Via G. Di Biasio 43, 03043 Cassino, Italy, maffucci@unicas.it
2 D.I.EL., Università di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy, miano@unina.it

Abstract The use of transmission line models in high-speed circuit analysis is here reviewed, by means of a unifying
approach which allows getting insight on both the numerical simulation and theoretical investigation. Starting from a
detailed analysis of the physical meanings of the transmission line models, the paper analyzes the effects of electrical
interconnects on signal propagation by using a suitable time-domain equivalent circuit representation of the lines.
Qualitative and quantitative analysis are carried out, with particular emphasys to nonlinear dynamics.

1 Introduction

Transmission line (TL) theory is a classic topic of Electromagnetics and several well-assessed analysis tech-
niques are available to study through TL models the effects of propagation in a very wide class of problems,
e.g., [1]. Many of such techniques are only suitable for linear problems or for steady-state solutions. How-
ever, there are applications such as high-speed electronic circuits where the presence of nonlinear devices
and the interest on fast transients require time-domain analysis of systems made by distributed and lumped
elements. Due to the high operating frequencies and small sizes of such circuits, a reliable design must ac-
count for the signal distortion due to the propagation along the electrical interconnects, present at various
hierarchical levels, e.g.: [2]-[6].

Under suitable hypotheses, the interconnects may be described by means of TL models. The TLs of
practical interest have losses, parameters depending on the frequency and may be spatially non-uniform. In
many cases the physical parameters of the lines are uncertain and a description of statistical type is required,
[4]. Lumped circuits may contain dynamic elements (e.g., inductors, capacitors, transformers), resistive
elements that may be nonlinear and time-varying (e.g., diodes, transistors, operational amplifiers, logic
gates, inverters) and integrated circuits. The interactions between these devices and the TLs, and between
the TLs themselves, are described by continuity conditions for voltages and currents at the ’boundaries’
between the TLs and the lumped circuit elements, and between the TLs themselves.

To analyze such systems, coupled problems of a profoundly different nature have to be studied: TLs
are described by linear and time-invariant partial differential equations, while lumped circuits are modeled
by algebraic-ordinary differential equations, eventually time-varying and nonlinear. For such reasons, TL
model has recently received renewed attention, focused on important issues concerning both the qualitative
(well-posedness of the models, convergence of numerical solutions, study of nonlinear dynamics,...) and
the quantitative point of view (efficient simulation of large systems, model-order reduction,...), e.g.: [2]-[6].

Here we present a unifying approach to get an insight on all the above questions. In Sect. 2.1 we first
focus on some important physical properties of the TL models, in order to highligth the limits of the
standard TL model and to suggest a way to generalize it. Then in Sect. 2.2 a general method is presented
to characterize the terminal behavior of TLs lines, in order to study of networks composed of TLs and

∗Invited paper at SCEE-2004
This work is supported in part by Italian Ministry of University under a Program for the development of Research

of National Interest (PRIN Grant n.2002093437).



4 A. Maffucci and G. Miano

lumped circuits by means of the Circuit Theory approach[7], [8]. To this aim, the most suitable time-
domain characterizations of a line is based on an input-state-output representation, where the traveling-
wave solutions of TL equations are chosen to represent the ‘state’. Such a representation provides a circuit
description of the TLs in terms of resistive elements, delayed sources and dynamic elements. Here we
refer, for the sake of simplicity, to two-conductor TLs. However, the method is applicable to any kind
of line: multiconductor lines, lines with frequency-dependent parameters, and lines with space-varying
parameters, [6].

After deriving such a characterization, the analysis of networks composed of TLs and lumped circuits
is reduced to the study of networks where TLs are modeled in the same way as the lumped elements:
multiports representing the TLs lines differ from multiports representing the lumped elements only in their
characteristic relations. In Sect. 3.1 the problem of the well-posedness of both analytical and numerical
models describing TLs connected to nonlinear and/or dynamic terminations is addressed. This problem
is of a great importance both from a theoretical and from a practical point of view: even if a stable and
consistent numerical scheme is adopted, the convergence of the numerical solution is assured only if the
analytical and the numerical models are both well-posed: these basic requirements cannot be taken for
granted. In Sect. 3.2 some case-studies are presented. The first is intended to highlight the effects of TL
modeling on the integrity of propagating signals. The second case-study provides an example of a class of
nonlinear circuits, where the role of TLs is crucial to provide a wide richness of nonlinear dynamics, such
as multiple steady state solutions, bifurcations and chaotic dynamics.

2 Transmission line models

2.1 Physical interpretation of the TL models

Let us consider the simple interconnect of Fig. 1, made of two perfectly conducting parallel wires of length
2l with arbitrary cross-sections, geometrically long, embedded in a homogeneous dielectric. The electro-
magnetic field can be represented, in the frequency domain, through the potentials ϕ and A, as

E = −jωA −∇ϕ,B = ∇× A, (1)

where ω is the angular frequency and the potentials ϕ and A are expressed, assuming Lorentz gauge, in
terms of the surface charge σ and current density Js by means of the integral relations

A(rP ) = µ

∫
Σ1∪Σ2

G(rPQ)Js(rQ)ds, (2)

ϕ(rP ) =
1
ε

∫
Σ1∪Σ2

G(rPQ)σ(rQ)ds, (3)

where Σ1, Σ2 are the conductor surfaces, rPQ is the distance between the field and source points, G is the
Green function for the homogeneous space G(r) = exp(−jkr)

4πr and k = ω
√
εµ. Here we assume that the

Fig. 1. (a) Schematic representation of the interconnect geometry; (b) cross-section
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characteristic dimensions of the devices are small compared to the interconnect length, hence their effects
are neglected in (2) and (3).

The unknown distributions σ and Js are determined by imposing the boundary conditions and the
charge conservation law:

E · t̂ = 0 on Σ1 and Σ2, (4)

∇ · Js = −jωσ on Σ1 and Σ2. (5)

The fundamental assumptions to derive the TL models are the following:

1. the current field density has only the longitudinal component;
2. the common mode variables are equal to zero;
3. the dependence of σ and Js on the transverse and longitudinal coordinates is of a separable type;
4. the interconnect is transversally electrically short.

Hypothesis 1 depends on the cylindrical symmetry of the structure and on the way the structure is excited.
In such a condition, the magnetic field is of transverse type (TM), hence it is possible to define uniquely at
each section the voltage between the two conductors V (z), which is related to the per-unit-length (p.u.l.)
flux Φ(z) through:

−dV (z;ω)
dz

= jωΦ(z;ω). (6)

Hypothesis 2 is well founded if there are no external sources of electromagnetic field. As a consequence of
this assumption and of the conservation equation, the differential current at each section I(z) is related to
the p.u.l. electric charge Q(z) through:

−dI(z;ω)
dz

= jωQ(z;ω). (7)

Hypothesis 3 holds if the characteristic dimensions of the conductor sections are electrically short, i.e. are
small compared to the characteristic signal wavelength. The transverse problem may be solved considering
the electrostatic potentials produced by the same conductor pair, but of infinite length. Hypotheses (1)-(3)
allow to derive a transmission line model, defined by (6), (7) and by the following two integral relations:

Φ(z;ω) = µ

∫ −l

l

H(z − z′;ω)I(z′;ω)dz′, (8)

V (z;ω) =
1
ε

∫ −l

l

H(z − z′;ω)Q(z′;ω)dz′, (9)

which could be easily derived from (2), (3), as shown in [9]. The kernel of such relations H(z) is expressed
in terms of the Green function G and become of impulsive type if hypothesis 4 holds [9]. With such an
additional condition we have Φ(z) = LI(z), V (z) = Q(z)/C, where L and C are, respectively, the
p.u.l. inductance and capacitance of the interconnect evaluated by solving the transverse 2D problem. By
combining the above results we obtain the standard TL model described by the telegrapher’s equations

−dV (z;ω)
dz

= jω LI(z;ω), −dI(z;ω)
dz

= jω CV (z;ω). (10)

From a physical point of view, it is well-known that the TL model (10) describe the propagation of a field of
transverse electromagnetic type (TEM), e.g., [1]. Instead, the TL model (6), (7), (8), and (9) is a generalized
model which could describe also the presence of continuum spectrum modes along with the fundamental
one. This allows the description of high-frequency effects like radiation losses and dispersion which are
not predicted by the standard TL model [9]. Table 1 summarizes the conditions when the lumped models,
the standard TL model (STL) and the above enhanced TL model (ETL) have to be used, expressed in
terms of operating frequency (through the wavenumber k), characteristic longitudinal (2l) and transverse
(h) dimensions, and mean radius of conductor section a. A full-wave model is required for the analysis of
all those cases not included in Table 1.
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Table 1. Interconnect models for different cases

model k · 2l k · h k · a
lumped << 1 << 1 << 1
STL ≥ 1 << 1 << 1
ETL ≥ 1 ≈ 1 << 1

Even in hypothesis 4, when considering non-ideal structures, conductor and dielectric losses have to
be taken into account: their effects destroy, in principle, the TEM structure of the field. However, in the
quasi-TEM assumption (e.g., [1]) the propagation may be still described by the TL model:

−dV (z;ω)
dz

= Z(z, ω)I(z, ω), −dI(z;ω)
dz

= Y (z, ω)V (z). (11)

where Z(z, ω) and Y (z, ω) are the line parameters, i.e. the p.u.l. impedance and admittance. The line
parameters depend on the actual physical realization of the line: they can describe the simple ideal case
(10) when Z = jωL and Y = jωC. Instead, when Z = R + jωL and Y = G + jωC, they describe the
so-called RLGC lines (lossy uniform lines with negligible frequency effects). More generally they could
describe non-uniform lines with strong frequency dependence, for instance due to conductor skin-effect and
dielectric dispersive behavior: for most cases of practical interest, they could be conveniently described by
the following Laplace domain model, e.g., [6]:

Z(s) = R∞ + sL∞ + K
√
s + Zr(s) (12)

Y (s) = G∞ + sC∞ + Yr(s) (13)

where (.)∞ stands for the high-frequency limit, which may be evaluated from the physical model of the
line or even from frequency-domain samples of the parameters provided by measurements, e.g., [10]. It is
important to stress that Zr(s) and Yr(s) tends to zero as 1/s for s → ∞.

2.2 Equivalent circuit models

There are many possible two-port equivalent representations of TLs, both in frequency and time domain:
the optimal choice strongly depends, of course, on the particular problem to be solved, e.g., [11].

When dealing with high-speed circuits, usually one has to perform time-domain transient analysis of
circuits made by linear TLs and non-linear lumped elements. In such cases, among all the possible two-
port representations, a very convenient one is provided by the input-state-output representation obtained
by assuming forward and backward waves as state-variables of the dynamic system. Such an approach
would lead in the ideal-line case to the same result obtained by Branin, [12], by applying the Method of
Characteristics. In the general case, it provides the following time domain model (e.g., [6]):

i1(t) = yc(t) ∗ i1(t) + j1(t), i2(t) = yc(t) ∗ v2(t) + j2(t), (14)

where ∗ indicates the convolution product, subscripts 1,2 indicates the two line ends and j1 and j2 are two
controlled current sources given by

j1(t) = p(t) ∗ [−2i2(t) + j2(t)], i2(t) = p(t) ∗ [−2i1(t) + j1(t)]. (15)

Such a dynamic model is characterized by two impulse responses: the characteristic admittance yc(t)
and the propagation function p(t), which can be obtained by reverse-transforming their Laplace domain
expressions:

Yc(s) =
√

Y (s)/Z(s), P (s) = exp
(
−2ls

√
Y (s)Z(s)

)
. (16)

The impulse responses may always be split into irregular and regular parts: the first contains irregular
functions like Dirac pulses, and may be evaluated analytically from the asymptotic behavior of (16).
After such asymptotic behavior is extracted, the regular parts may be easily evaluated numerically by
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Fig. 2. Norton-type equivalent circuit representation of a two-conductor line

reverse transforming the Laplace domain remainders. We obtain, in the general case, the following
decomposition:

yc(t) = Y0δ(t) + ycr(t), p(t) = exp(−µT )[δ(t− T ) + pr(t− T )], (17)

where Y0 =
√

C∞/L∞ is the ideal line characteristic admittance, T = 2l
√
C∞L∞ is the one-

way delay time, µ is a damping factor which is known analytically, ycr(t) and pr(t) are the regu-
lar parts of the impulse responses, often known only numerically. Note that such properties hold for
the general case of multiconductor lines with frequency-dependent parameters, with slight differences
in the case of pronounced skin-effect, e.g. [6]. Such a line representation provides advantages both
in the qualitative and numerical analysis, as shown in Sect. 3. Eqs. (14) and (15) describe each line
end through the time-domain equivalent circuit of Norton type shown in Fig. 2. Apart for the effect
of Y0, which is always present, the solution at each line end is due to the contribution of the dy-
namic one-port ycr(t), which describes dispersion effects due to losses and frequency-dependence of
line parameters, and of the controlled source jk(t), k = 1, 2, which takes into account the reflec-
tion at the other end, the delay and dispersion introduced by the propagation along the line. Note that
jk(t), k = 1, 2 vanishes if the line is matched at the other end. The most important property of such
a model is the fact that, at a given time instant t, j1(t) only depends on the solution history in the
time interval (0, t − T ). Therefore, it could be treated as independent source, if the problem is solved
iteratively.

3 Transmission lines and lumped circuits

3.1 Qualitative properties of the solution

Let us consider a two-conductor lossy line connecting two lumped nonlinear resistors. From the above
considerations, the adopted circuit representation is a dynamic system which introduces a state variable,
namely the current flowing into the dynamic one-port ycr(t). If we solve the problem recursively, at each
time instant t we find at the line terminations two uncoupled networks which may be simply represented
by a resistive circuit, obtained by substituting the dynamic one-port ycr(t) with a constant current source
Iy , see Fig. 3a. Note that such a procedure extends to distributed elements the concept of associated re-
sistive circuit, introduced in the past for the analysis of lumped circuits, e.g., [7]. Dynamic loads may be
easily taken into account in a similar way: their corresponding associated resistive circuits are obtained
by substituting each capacitor with a constant voltage source, and each inductor with a constant current
source.

The analytical model obtained by combining (14),(15) with the characteristics of the lumped resistors
is well-posed if it is possible to express all the non-state circuit variables as single-valued functions of the
state variables and of the source variables. In fact, in such a case it can be proven that the model may
be reduced to a well-posed system of Volterra integral equations in normal form, [6], [13]. For instance,
considering two voltage-controlled nonlinear resistors

ik(t) = gk(vk(t)), k = 1, 2, (18)
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Fig. 3. Transmission line connecting two nonlinear resistors: (a) associated resistive circuit; (b) discrete resistive circuit

the following conditions are sufficient to obtain the well-posedness of the model

1. function gk is continuous;
2. the resistor is weakly active;
3. the following inequality holds:

dgk/dv > −Y0. (19)

Inequality (19) is always satisfied if the characteristics of the resistors are monotonically increasing. In-
stead, it may be not satisfied if the characteristic has tracts with negative slopes. When this occurs, the
associated resistive circuit can have more than one solution, so a normal form Volterra integral equation
system may not exist and the solution may be not unique. The presence of a capacitor in parallel with the
nonlinear resistor (even a parasitic one) ensures uniqueness even when the above condition of the slope
of g(v) is not satisfied, [6], [13]. Note that such a result may be easily generalized to multiconductor
lines, [14].

Besides the associated resistive circuit, the line representation adopted here allows to introduce also the
so-called discrete resistive circuit, [8], which describes the problem to be solved at any discrete time-step
tn = n∆t, where ∆t is the time discretization step (let xn indicate the generic variable x(t) at t = tn).
Note that discrete circuits associated with different integration algorithms are different: Fig. 3b shows the
circuit obtained by using the trapezoidal rule to integrate the convolutions (the variables at port 2 have
analoguos definitions of those of port 1). The transient analysis reduces to the dc analysis of the resistive
circuit of Fig. 3b: we can solve the associated discrete circuit step by step, by any efficient method, such
as modified nodal analysis combined with Newton-Raphson method [8], through recursive updating of Sn

1

and Sn
2 .

We observe that the associated discrete circuit of Fig. 3b tends to the associated resistive circuit of
Fig. 3a for ∆t → 0. This implies that, if the associated resistive circuit has one and only one solution,
and hence the dynamic circuit has one and only one solution, the numerical model has one and only one
solution converging to the actual solution, [6], [15]. In fact, it is easy to show that the conditions ensuring
the well-posedness of the associated discrete circuit are the same derived above for the associated resistive
circuit, provided that Y0 is replaced with Yeff , see Fig. 3b:

dgk/dv > −Yeff . (20)

If (19) is satisfied, there exists a sufficiently small ∆t to satisfy (20) also, and vice-versa, and the numerical
model admits one and only one solution. If we consider non-linear resistors described through voltage-
controlled non-monotone characteristics, (19) could be no longer verified, hence the original equations may
admit several solutions, and condition (20) is not satisfied even if ∆t is arbitrarily small. As a consequence,
the numerical model admits several solutions, and the discrete time sequence approximating the solution is
no longer unique. In this case, a well-posed model is again obtained if we take into account the capacitive
parasitic effects, neglected during modeling, that have a strong influence on the dynamics of the network,
[6], [15].
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3.2 Numerical analysis of practical applications

Whatever is the adopted two-port representation, the main drawback of such an approach is the high com-
putational cost of transient analysis, mainly due to time convolution. Therefore, the literature proposes
many techniques to obtain convenient reduced-order models, e.g., [3]. It is known in literature that the
model adopted here is the most suitable to perform transient analysis of long transmission lines, i.e. lines
for which the propagation delay plays a significant role, e.g., [10]. This is because such a model allows
to extract analytically all the unbounded terms contained in the line impulse responses, which are then
represented by simple resistive circuits and damped delayed sources. Only the regular remainders are ap-
proximated with reduced-order models, and then represented through low-order lumped networks.

Let us now refer to the case-study 1, consisting in a two-conductor microstrip of length 20cm analyzed
in [4]. The interconnect is modeled as a TL with frequency-dependent parameters by using expressions
(12) and (13), with: C∞ = 88.25µF/m,L∞ = 0.806µH/m,R∞ = 86.206Ω/m,G∞ = 67nS/m,K =
2.4mΩs−1/2/m, while Zr(s) = Yr(s) = 0. The line presents a characteristic admittance Y0 = 10.5mS
and a delay time T = 1.69ns.

The line is synthesized by means of the equivalent circuit model of Fig. 2, by using a rational approxi-
mation for the two impulse responses remainders ycr(t) and pr(t). The near end is terminated on a driver,
modeled as a voltage source in series with a resistor R1 = 50Ω. The voltage source supplies a rectangular
pulse of amplitude 1V , that lasts 2ns, with rise and fall time tr = ts = 50ps. The far end is connected to a
pn-junction diode, modeled by

i = Is (exp(v/VT ) − 1) , (21)

with VT = 1V and Is = 40µA.
Figure 4 shows the far-end voltage obtained by using three different TL models: the complete one (skin),

an approximated one obtained by neglecting the skin-effect (RLGC) and the lossless line limit (ideal). The
simulation puts on evidence the strong effect of TL modeling on the signal shape: a correct modeling of
TLs is crucial to foresee critical effects for signal integrity, like delay in the receiver switching, and false
switching which may be caused by unwanted reflections, [16].

The second case-study analyzed here is intended to highlight the richness of behavior which could be
observed when TLs connect nonlinear devices: multiple steady state solutions, bifurcations and chaotic
dynamics. Let us consider an ideal TL connecting two nonlinear resistors: such a line is described by (17)
with ycr(t) = pr(t) = 0, µ = 0, hence the circuit state equations, obtained by combining (14) and (15)
with the resistor characteristics, are nonlinear difference equations with one delay. The dynamics of the
problem may be studied by analyzing the behavior of a nonlinear one-dimensional map, in which the time
is no longer a continuous variable but a sequence of discrete values:

Fig. 4. Far-end voltage for case-study 1 predicted by different line models
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Fig. 5. Bifurcation diagram for case-study 2

un+1 = f(un), (22)

with a proper definition of the state variable un, [6]. By studying the main properties of these maps, bifur-
cations, periodic oscillations and chaos may observed when at least one terminal resistor is active and the
other is nonlinear, e.g., [6], [17].

Let us consider an ideal line of length 1m, with the following parameters: C = 3.00pF/m,L =
3.70µH/m, leading to Y0 = 0.90mS and T = 3.33ns. Let us assume that the far-end is connected to an
active linear resistor of conductance G1, and the near-end is terminated on the diode of Eq.(21). A non-zero
initial condition is imposed, by applying a unit voltage pulse at the far-end. In such a case, the map f in
(22) reduces to the logistic map f = λun(1 − un), where the parameter λ is given by:

λ =
Y0 −G1

Y0 + G1
. (23)

and the state variable is expressed in terms of the backward voltage wave at the far-end:

un = λ
v1 − i1/Y0

2
1

(1 − β − ln(β))VT
, β =

Is

VTY0
. (24)

Figure 5 shows the bifurcation diagram of such a map. For 0 ≤ λ ≤ 1 the only fixed point is u =
0, while for increasing λ we enter a region where a non-zero asymptotically stable fixed point may be
observed. Then stable periodic orbits of period 2, 4, and so on may be observed, until λ reaches a value
such to excite chaotic dynamics. Note that the chaotic regime is interrupted by some windows where the
asymptotic behavior of the orbits is again periodic.
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Abstract Circuit simulation is a well-established and important tool for the design of integrated circuits. However,
the current challenges of today’s technology give rise to new requirements for analog simulators. This paper tries to
show some mathematical research topics necessary for future survival of circuit simulation: One of the main issues is
the coupling of the circuit equations (differential-algebraic equations) with equations originating from other domains
like thermal models, semiconductor models, wire models (partial differential equations), and noise models (stochastic
differential equations). Other topics are multi-scale problems and separation of time constants, model order reduction,
diagnosis, and finally efficiency and robustness.

Key words: circuit simulation, analog simulation, coupled domains, hierarchical modeling, multi-scale problems,
model order reduction, differential-algebraic equations (DAEs), partial differential-algebraic equations (PDAEs), sto-
chastic differential-algebraic equations (SDAEs)

1 Introduction

Since more than 100 years semiconductor devices are used in industrial applications, it started with the dis-
covery of the rectifier effect of crystalline sulfides by Ferdinand Braun in 1874. But it took till 1940, when
the first semiconductor transistor was developed at Bell Labs. In 1951 Shockley presented the first junction
transistor, and ten years later the first integrated circuit (IC) was presented by Fairchild. It contained only
a few elements, but with this IC an evolution was initiated. More and more devices were integrated on
a single chip, today more than a billion MOSFETs are on one memory chip. The increasing number of
elements was already predicted in 1965 and is now well-known as Moore’s law. It states that the number
of MOSFETs per chip doubles every 2 years.

The development of more and more complex chips was accomplished with circuit simulation. In 1967
one of the first simulation programs was written, namely BIAS by Howard. So circuit simulation is nearly
as old as the design of integrated circuits. Some years later, another simulation program, CANCER, was
developed by Nagel in the research group of Rohrer. Later the development of both programs was combined
under the guidance of Pederson, and in 1972 the first version of SPICE was released. Due to the free
availability of SPICE, it became widely used and some kind of an industry standard (see [14] for further
information about the history of SPICE). Meanwhile SPICE-like simulators are known to yield realistic
and reliable simulation results. They are universally applicable and often used for “golden” simulations.

Though SPICE is still available from Berkeley University, a variety of commercial and in-house in-
dustrial circuit simulators have been released. One of these is TITAN used at Infineon. A lot of research
was done to keep up with the increasing design sizes and technology demands. Similar to Moore’s law, we
need a corresponding development in the field of analog circuit simulators and their underlying algorithms.
This paper tries to present some of the challenges of current chip design and their implications on analog
simulators. It does not claim to be exhaustive and sometimes it is biased towards Infineon’s TITAN. We
will not go into details of the mathematical problems but try to give an idea what is needed for further
application of analog simulation. Nevertheless, we hope that these research topics will be picked up by the

∗Invited paper at SCEE-2004
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scientific community, so that the results will enable the simulators to continue to provide a reliable tool for
circuit designers.

2 Functionality challenge

Moore’s law states that the number of MOSFETs on an integrated chip doubles every two years. This
means that more and more functions are integrated onto complex chips. In most cases we have analog
functions (like sensors, actuators, converters) on a digital chip which provide the interface between the
digital part and the analog environment. As these two worlds interact, a simultaneous simulation of the
analog and digital parts is necessary. One way to achieve this is to use an analog simulator for both areas,
but complexity does not allow this as an analog simulation is usually some orders of magnitude slower than
a digital simulation due to the higher level of accuracy. Therefore, we need a mixed-signal simulation and
a hierarchical modeling of the chip.

2.1 Mixed-signal simulation

In a mixed-signal simulation the circuit is decoupled into an analog part and a digital part, and the analog
part is simulated by an analog simulator and the digital one by a digital simulator. Normally – due to the
decoupling of both parts – the simulation works quite well, but this is not guaranteed. The handling of
events plays an important role: a change of a digital signal may cause a discontinuity of an analog signal,
which may then trigger a digital event and so on. This iteration loop between analog and digital may prevent
convergence.

In analog/digital converters (ADC) or phase looked loops (PLL) the feedback loop implies a strong
coupling between the analog and the digital parts of the circuit. The high speed digital clock drives a
slowly settling analog part, and therefore a transient simulation has to follow the digital part with very
small step sizes for a long period of time. As the main interest is the locking behavior (lock-in stability,
lock-in time, lock-in solution) it would be more efficient, if envelope schemes would be available in the
analog simulator.

Another issue is finding the correct analog time point which corresponds to a digital event. Due to
the continuous time scale in the analog part, we need some kind of iterations to get the switching time
accurately enough. As a digital event may occur quite often, an efficient implementation is essential.

Research topics:
– envelope solver
– switching-point computation

2.2 Hierarchical modeling

The analog part of a mixed-signal simulation usually determines the simulation speed, as it is several orders
of magnitude slower than the digital simulation. To improve performance behavioral models are developed
(e. g. using VHDL-AMS, Matlab/Simulink) which describe possibly large analog building blocks. The
same approach can be used for parts which are not yet fully designed, while a simulation of the interaction
is already needed. Similar arguments hold for large building blocks, for which a reduced model has been
constructed by model-order reduction [9, 13, 18]. In any case we get an hierarchical modeling, where the
different models of the same building block should describe the same functionality. But this has to be
verified.

The formal verification of behavioral models is quite difficult, despite the well-established application
of formal verification in the digital design. Due to the analog nature of these building blocks continuous
input/output signal have to be checked. As the dimension of the behavioral model is in general different
from the analog model, the relevant parts of the differential-algebraic equations (DAEs) have to be matched.
First promising results can be found in [11].

The hierarchical structure of a chip – independent of whether it comes from a mixed-signal approach
or just from a bottom-up design approach – can be exploited for simulation. If the hierarchy of the circuit is
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reflected by the data structure, identical building blocks need to be saved only once. Also the evaluation has
to be done only once for identical bias conditions. This helps to speedup simulation but of course requires
new concepts in circuit evaluation. However, due to parasitics present in real circuits, the same building
blocks are not really identical, usually they differ a little bit. An even better and more general approach is to
map the hierarchy of the circuit to the numerical algorithms, namely the solver and the integration scheme.

Hierarchical structures allow for speeding-up and parallelization of the linear solver which is used
for solving the circuit equations for every time point of a transient simulation. But this requires fill-in
strategies which make a compromise between minimal fill-in and parallelization, so that large portions of
the operations can be performed in parallel [19, 20].

Also the integration scheme may benefit from the hierarchical structures: Different building blocks
usually have different activity, and this would allow different step sizes. For accuracy reason, the most
active block with the smallest step size determines the overall step size in conventional simulation. Using
a multi-rate scheme allows larger step sizes in latent blocks, while only a (hopefully) small part of the
circuit has to be computed with a small step size. For an efficient multi-rate integration we need specialized
schemes like the mixed multi-rate schemes [10, 22].

Research topics:
– automatic partitioning of circuits into hierarchical systems
– hierarchical linear-algebra solver
– multi-rate integration scheme
– formal verification of analog systems

2.3 Diagnosis

A circuit simulator should always give reasonable results for the circuit to be analyzed. But sometimes
there is an error in the design, and due to the many functions integrated on one chip, it can be quite difficult
for the designer to detect the fault. It does not help if the simulator gives “no convergence”, it should
provide hints where to look for. As the programming languages used for behavioral modeling allow much
more freedom than a SPICE-like language, it is much easier to introduce errors. On the other side, it is
more complicated to detect them. Therefore, the diagnostic part of an analog simulator gets more and more
important. In TITAN a combination of numerical methods and graph methods has been implemented [8]
which provides significant support to the designer in detecting flaws in the chip design.

Research topic:
– detailed diagnosis of numerical problems, coupled to circuit design

3 Frequency challenge

Increasing the frequency of a chip helps to speedup operations like data transfer rates, and therefore the
frequency is an often used marketing argument, especially for CPUs. On average the frequency increases
with a factor of 5 each 3 years. Voltage-controlled oscillators (VCOs) are driven up to 50GHz, typical
rise/fall times and gate delays are ≤ 50 ps. But the increase of frequency induces problems not only in the
design but also in the simulator.

3.1 Modeling

Due to the high frequency the wave character of signal propagation becomes more and more important,
we do no longer have “ideal” connections between the circuit elements. This also means that simple ap-
proximations of wires by resistance/capacitance elements do not correctly reflect the physical situation on
high-frequency chips. To get a realistic model of the interconnect, either a more complex extraction with
inductances or even the solution of the telegrapher’s equation is necessary. While the former approach
significantly increases the dimension of the circuit’s equation due to the lumped elements, the latter one
requires the coupling to a solver for partial differential equations.
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Not only the connection is affected by the high frequency but also the models for the elements. For
instance, the MOSFET model needs extensions to include non-quasi static (NQS) effects making the model
more complex.

Though these necessary extensions do not cause any problems in principle, they result in additional
modeling and simulation effort.

Research topics:
– modeling of signal propagation
– modeling of non-quasi static effects

3.2 Frequency- and time-domain simulation

In many cases a mixture of high-frequency and moderate-frequency signals is present in a circuit, which
makes both the frequency-domain and the time-domain simulation quite expensive and requires special
approaches. For a simulation in the time domain such a mixture of frequencies means that widely separated
time constants are present in the circuit, and – similar to Sect. 2.2 – the fastest one determines the rather
small step size, while the slowest one determines the rather large simulation interval. By a separation of
the time constants with multivariate functions [5, 17] it is possible to transform the DAEs of the circuit’s
system into partial differential-algebraic equations (PDAEs). Specialized integration schemes [12, 15, 16]
for this type of equation are currently being developed which will allow a very efficient simulation of
mixed-frequency circuits.

Research topics:
– efficient integration of multi-tone circuits in frequency and time domain

4 Shrinking challenge

Following Moore’s law is that the devices on a chip will get smaller and smaller while the number of devices
increases. This shrinking allows a reduction of the production costs per transistor, and due to the smaller
devices a faster switching. But shrinking has drawbacks, too: The compact modeling used for devices like
MOSFETs is no longer accurate enough, and the power density on the chip increases. Both issues have
their impact on circuit simulation. While it is possible to shrink the active devices, this is not true for inter-
connect. This means that parasitics elements get more dominant with increased shrinking and have to be
considered, see Sect. 5.1.

4.1 Modeling

With decreasing device geometry more and more effects have to be considered by the compact models used
for MOSFETs and other devices. The modeling of these effects are packed onto the existing model which
gets more and more complicated. A sign of this complexity is the number of model parameters – the BSIM4
model from Berkeley University [6], which is used as a quasi standard, has more than 800 parameters! For
simulation the parameters have to be chosen in such a way that the model reflects the current technology.
But due to the high fitting dimension this task is quite difficult and may lead to reasonable matching
characteristics with unphysical parameter settings, which cause numerical problems during simulation. In
addition, the device characteristics are heavily affected by transistor geometry and even by neighborhood
relations which can not be reflected by compact models.

A remedy for this situation is to switch back to the full set of semiconductor equations for critical
MOSFETs (like high frequency settings, MOSFETs used for electrostatic discharge (ESD) protection).
This approach allows full accuracy but it has a severe drawback: a large computational effort is needed
for the device evaluation even compared to complex compact models, there are some orders of magnitude
between compact modeling and solving the semiconductor equations. Therefore, some criteria are needed
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for the decision which MOSFETs can be simulated using the compact model and which devices require
the semiconductor equations for appropriate modeling. Currently the decision is made by the designer.

Assuming that it is known which model fits to which device, there is still an open issue: how should
the coupling be done between the circuit simulation (DAEs) and the device simulation (PDEs)? Using
both simulators as black box may work, but there is a need to analyze the interaction of them. This will
allow also a more efficient coupling, especially when transient simulations are performed. The analysis
requires the extension of the index definition of the DAE and of the computation of consistent initial values.
A theoretical foundation for this are abstract differential-algebraic systems (ADASs) [3, 23]. First results
[4, 21, 24] indicate that the integration of device simulation into circuit simulation will be successful.

Research topics:
– analysis of the coupled systems
– efficient solution of coupled semiconductor (PDEs) and

circuit equations (DAEs)

4.2 Power density challenge

A consequence of shrinking is that the power density on the chip increases as the currents, which are
necessary for charging or discharging the capacitances of a device, flow within smaller areas. Though
this is partially compensated by a decrease of the power supply voltage, the power density has exceeded
100Watt/cm2. The designer has to take care to bring the heat off the chip, and he must avoid hot spots,
i. e. chip areas which are too hot while the average temperature is still okay. In order to do so, the designer
needs simulation which regards for both the electrical and the thermal properties.

Compared with electrical changes within a circuit, the thermal interaction is 3–6 orders of magnitude
slower. A naive approach would therefore require very long transient simulation intervals leading to unac-
ceptable run times. The situation is even worse, as the power density issue is especially important for large
chips which increases the effort again. Therefore specialized methods are needed which couple the thermal
simulation (PDEs) and circuit simulation (DAEs) in an intelligent way and use multi-rate techniques to
perform the co-simulation efficiently [1].

Research topics:
– efficient simulation of thermal effects
– efficient solution of coupled thermal (PDEs) and

circuit equations (DAEs)

5 Power supply challenge

One mean to accomplish smaller devices and higher frequency is the reduction of the power-supply voltage.
While supplies of 5 V have been used in the past, the supply voltage has been reduced down to 1 V or even
below. The advantages of this approach is the avoidance of breakthrough and punch in the small devices,
and – as the voltage swing is reduced – a higher switching frequency. The lower supply voltages also help
in the field of mobile applications. But reducing the power supply has also a drawback: The signal-to-noise
ratio decreases which means that parasitic effects and noise become more and more significant and can no
longer be omitted from circuit simulation.

5.1 Parasitics

During the design phase of a chip the connections between the elements are treated as ideal, i. e. it is
assumed that the elements do not influence each other and there are no delays between devices. But this
is not true on a real chip, due to the length and the neighborhood of the wires there is interference like
crosstalk, and the elements themselves suffer from the actual placement on silicon. Therefore the circuit is
extracted from of the layout of a chip, and this post-layout circuit containing all the parasitic elements has
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to be simulated and cross-checked against the original design. Currently it is still sufficient in many cases
that only resistances and capacitances are used to model the parasitic effects. However, to get all relevant
effects due to the small structures and currents present on a chip, the accuracy of the extraction has to be
improved by extracting more elements and using additional element types like inductances.

Of course, the quantity of parasitic elements has an impact on circuit simulation: Due to the parasitics
the number of nodes present in a circuit increases significantly, which increases the dimension of the system
to be solved. This effect is amplified by the fact that due to fill-in the sparsity of the system decreases,
therefore the effort necessary for solving the underlying linear equation system becomes dominant and the
simulation’s run times are no longer acceptable. To speedup the simulation it is necessary to perform a
parasitics reduction. Several approaches are possible: One possibility is to rearrange the parasitic elements
in such a way that the influence on the circuit is unchanged but the number of nodes is reduced, possibly
at the cost of additional elements. A typical example for this is the so-called star-delta conversion. Another
way is to remove and rearrange parasitic elements which do not significantly contribute to the circuit’s
response, for example long RC trees are replaced by shorter ones. As some errors are introduced by this
reduction, a reliable error control is necessary for this approach. A third possibility which tackles the fill-in
problem is to discard some of the fill-ins. From a mathematical point of view, this resembles some kind
of incomplete LU-factorization (ILU) of the matrix. Here care must be taken so that convergence of the
non-linear equation solver is still guaranteed.

Research topics:
– error control and new approaches for parasitic reductions
– fill-in minimization strategies for post-layout circuits

5.2 Noise analysis

Reduced signal-to-noise ratio means that the difference between the wanted signal and noise is getting
smaller. A consequence of this is that the circuit simulation has to take noise into account. Usually noise
simulation is performed in the frequency domain, either as small-signal noise analysis in conjunction with
an AC analysis or as large-signal noise analysis as part of an harmonic balance or shooting method. These
noise analyses are well-established in the meantime. But noise analysis is also possible in the context of
transient noise analysis for non-oscillatory circuits. For an implementation of an efficient transient noise
analysis in an analog simulator, both an appropriate modeling and integration scheme is necessary.

Modeling of transient noise

A noisy element in transient simulation is usually modeled as an ideal, non-noisy element and a stochastic
current source which is shunt in parallel to the ideal element. As a consequence of this approach the
underlying circuit equations are extended by an additional stochastic part, which extends the DAE to a
stochastic differential-algebraic equation (SDAE) (for details refer to [26]). The current supplied by the
current source is modeled as a stochastic process.

Depending on the cause of noise there are mainly three different noise models in use: thermal noise,
shot noise and flicker noise. While the stochastic current source for thermal and shot noise can be sim-
ulated using Gaussian white noise, this is not possible for flicker noise. The memory of this process –
corresponding to the 1/fβ dependency for low frequencies f and β ≈ 1 – does not allow a white noise
modeling where the increments are stochastically independent. One possibility to represent flicker noise
for transient analysis is to use fractional Brownian motion (fBm) for 0 < β < 1. Fractional Brownian
motion is a Gaussian stochastic process, and the increments of the fBm required for a transient simulation
can be realized with normal-distributed random numbers, for details see [7].

Research topic:
– transient model for flicker noise
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Integration of stochastic differential-algebraic equations

The modeling of transient noise is only one part of a transient noise simulation, the other one is the in-
tegration of the SDAEs. Though there are some numerical schemes available for stochastic differential
equations (SDEs), they do not fit properly to the context of circuit simulation. Besides the fact that the
standard schemes are for SDEs and not for SDAEs, they mostly require high-order Itô integrals and/or
higher order derivatives of the noise densities. Both is not possible in circuit simulation, this is either too
expensive or even not available. For efficiency reasons we need specialized integration schemes which ex-
ploit the special structure of the equations. Fortunately, even in current chip designs, the noise level is still
smaller in magnitude compared to the wanted signal, which can be used for the construction of efficient
numerical schemes [25].

Most currently available numerical schemes aim at the solution of Gaussian white noise processes.
But flicker noise is not such a process, so there is the need of a calculus for fBm, which would allow
the development of an appropriate integration method. Though there are first results [2], they are not yet
applicable in circuit simulation.

Normally it is not sufficient to compute a single path of the transient noise but several paths are nec-
essary to get reliable stochastic conclusions. It would help to improve the efficiency of a transient noise
analysis, if these paths could be computed simultaneously, which requires a unique step-size control for all
paths. This is currently investigated.

Research topics:
– understanding of stochastic differential-algebraic equations
– efficient integration schemes for transient noise analysis
– step-size control for simultaneous computation of several paths
– integration schemes for flicker noise

6 Conclusion

Circuit simulation is one of the most important tools used in the design process of integrated circuits. As
the chips are getting more and more complex and advanced, the requirements for the simulation are getting
harder. We have stated some challenges of chip design and tried to conclude the corresponding challenges
for analog simulation and their mathematical foundations. Though circuit simulation is done for many
years, there still remain a lot of research topics. These can be summarized as:

Coupling of different domains gets more and more important as models from different domains have to
be used in order to get accurate enough results. These models are formulated as PDEs (thermal model,
semiconductor model, wire model) or SDEs (transient noise model). It is no longer possible to treat the
domains separately, so an analysis of how to set up and discretize the equations is necessary in order
to get favorable mathematical properties (index, stability, uniqueness, efficiency).

Hierarchical modeling is a possibility to cope with the large design complexity. To exploit this property
also in simulation it must be reflected by the algorithms like solver and integration scheme.

Multi-scale problems arise at several places. Here we have time constants which differ by some orders
of magnitude. Multi-scale problems may be tackled by multi-rate integration schemes which exploit
the latency in the slower parts, by envelope methods, or by separation of the time constants by re-
formulating the problem.

Model order reduction helps to speedup the simulation, either by reducing parasitic elements or by cre-
ating behavioral models. We need a thorough error analysis for parasitic reduction in order to maintain
the accuracy. Formal verification of analog models ensures that two models of different level match
sufficiently.

Diagnosis helps to find errors in the design which show up as numerical problems in the simulator. The
simulator must map them back to the circuit elements.

Efficiency and robustness of an analog simulation is a never-ending challenge. In order to keep simula-
tion times acceptable it is necessary to constantly think about possibilities to speedup the simulation.
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Abstract This paper presents studies of hot-phonon effects in an indium phosphide n+−n−n+ diode. A direct solver
for the system of the Boltzmann equations for electrons and polar optical phonons coupled with the Poisson equation
is applied. Remarkable differences between calculations with a hot-phonon gas and with equilibrium phonons are
discussed.
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1 Introduction

Direct numerical solutions of the Boltzmann-Poisson system are very popular approaches for simulat-
ing semiconductor devices [MP01, CGMS03]. These methods allow for the investigation of far-from-
equilibrium electron systems from a mesoscopic point of view [ES03, GS04]. Most of the kinetic models
consider a phonon background gas with a fixed temperature. However, several investigations [AS04, GS04]
prove that the phonon distributions can drastically deviate from the Bose-Einstein distribution in coupled
electron-phonon systems. Especially when electrons interact with polar optical (pop) phonons is the phonon
system strongly driven out of equilibrium.

In this paper, we present simulations of an indium phosphide (InP) n+− n − n+ diode taking into
account the hot-phonon effects. We numerically solve the coupled system consisting of the Boltzmann
equations for electrons and pop phonons and the Poisson equation. Our scheme is a suitable extension of the
multigroup model [GS04], which is able to cope with spatial inhomogeneous problems. To reconstruct the
spatial derivatives, the shock-capturing WENO method [LOC94] is applied. The obtained results show that
the non-equilibrium phonons re-affect the electron distribution and significantly changes the macroscopic
quantities of the electrons inside the channel of the diode.

2 Kinetic Equations

We consider a two-valley approximation of the conduction band of InP. The dispersion relations eν(k) for
the central Γ -valley (ν = 1) and the four equivalent L-valleys (ν = 2) satisfy

eν(k)[1 + ανeν(k)] =
�

2k2

2mν
. (1)

Here, � denotes the Planck constant, mν is the effective mass, and the positive parameters αν > 0 are the
nonparabolicity factors.

In our kinetic approach, the distribution function fν = fν(k, r, t) depending on the quasi-momentum
k, the position vector r and time t characterizes the electrons in the ν-th energy valley of the conduction
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band. For the pop phonons we introduce the phonon distribution function g = g(k, r, t). The temporal
evolution of fν and g is governed by the coupled system of Boltzmann equations

∂tf
ν + vν · ∇rf

ν − e0

�
E · ∇kf

ν = Cν({fν}, g), (2)

∂tg = Cp({fν}, g) (3)

with the electron velocities vν(k) = 1/�∇keν(k) and the elementary charge e0. In equation (2), the
electric field vector E = −∇rV (r, t) is coupled with the electron density

n(r, t) =
2∑

ν=1

∫
R

fν(k, r, t)dk (4)

via the Poisson equation

∆rV (r, t) =
e0

ε0
[n(r, t) − n0(r)], (5)

where e0n0(r) represents the fixed charge density of the donors and ε0 the dielectric constant. Temporal
changes of the electron distribution functions due to the scattering processes are determined by the colli-
sion operators Cν({fν}, g). In addition to the interaction of electrons with the pop phonons, we consider
acoustic phonon scattering, deformation potential inter- and intravalley scattering with optical phonons and
impurity scattering. It should be pointed out that the hot-phonon effects are taken into account only for the
pop mode, because the pop interaction is the most efficient one. A detailed description of all the scattering
processes and a table summarizing the material parameters used in our calculations can be found in [GS04].
The operator Cp({fν}, g) allows for the changes of the phonon distribution due to absorption and emission
by electrons as well as phonon-phonon interactions. For a discussion of the structure and the properties of
the phonon collision operators we refer to [AS04, GS04].

3 Numerical Method

We treat the simulation of the InP diode as a one-dimensional problem in the physical space. Hence, we
assume that the distribution functions fν and g, the electric field vector E as well as the densities n(r, t)
and n0(r) only depend on the space variable z = r3. Next, we consider the representation

kν(ε, µ, ϕ) =
√

2mν

�

√
ε(1 + ανε)

(√
1 − µ2 cosϕ,

√
1 − µ2 sinϕ, µ

)
(6)

of the momentum vector k in terms of the electron energy ε = eν(k), the cosine µ = k3/|k| of the angle
between k and the z-axis and the polar angle ϕ. Following the derivations in [CGMS03], we introduce the
distribution functions

φν(ε, µ, z, t) = σν(ε)fν [kν(ε, µ, ϕ), z, t], (7)

where the dependence of φν on the polar angle ϕ is omitted due to the cylindrical symmetry in the momen-
tum space. The quantity σν(ε) obeys the relation dkν = σν(ε)dεdµdϕ.

For the phonon system, we write the distribution g as

g1(k, µ, z, t) = g[k(k, µ, ϕ), z, t] − g0, (8)

with the Bose-Einstein distribution g0 and the function k(k, µ, ϕ) determining the vector k in terms of
its modulus k and the angular variables µ and ϕ. Finally, the kinetic equations for the new distribution
functions φν and g1 result in

∂tφ
ν + ∂z(aν

1φ
ν) + ∂ε(aν

2φ
ν) + ∂µ(aν

3φ
ν) = σνC

ν({φν/σν}, g1+g0), (9)

∂tg1 = Cp({φν/σν}, g1+g0) (10)
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with the coefficients

aν
1 =

�
3σνµ

m2
ν(1 + 2ανε)2

, aν
2 = −e0Eza

ν
1 , aν

3 =
−e0Ez(1 − µ2)√
2mνε(1 + ανε)

. (11)

We perform the phase-space discretization for the electrons by introducing the intervals Iz
i = [(i −

1)∆z, i∆z] for i = 1, . . . , Nz , Iε,ν
j = [(j − 1)∆ε, j∆ε] for j = 1, . . . , Nν

ε and Iµ
k = [(k − 1)∆µ −

1, k∆µ − 1] for k = 1, . . . , Nµ. Further, we define the cells Iν
ijk = Iz

i × Iε,ν
j × Iµ

k . The length of the
energy interval is defined by ∆ε = �ω0/β with β ∈ N and the pop phonon energy �ω0. This choice
of the energy discretization mainly simplifies the treatment of the collision operators. The electron cut-
off energy εmax = N1

ε ∆ε is chosen high enough to ensure that the number of electrons with ε > εmax

can be neglected. Concerning the polar optical phonons, we additionally introduce the intervals Iq
j =

[(j−1)∆q+q0, j∆q+q0] for j = 1, . . . , Nq and the cells Ip
ijk = Iz

i ×Iq
j ×Iµ

k . The minimal and maximal
moduli of the phonon momentum q0 and qmax = q0 + Nq∆q are determined so that g1(q, µ, z, t) ≈ 0 for
q < q0 and for q > qmax.

Our numerical scheme is based on the set of equations

∂tφ
ν
ijk +

h1
i+ 1

2 jk
−h1

i− 1
2 jk

∆z
+

h2
ij+ 1

2 k
−h2

ij− 1
2 k

∆ε
+

h3
ijk+ 1

2
−h3

ijk− 1
2

∆µ
= Cν

ijk, (12)

∂tg1ilk = Cp
ilk, (13)

governing the time evolution of the cell averages φν
ijk and g1ilk. In (12) the functions h1

i+ 1
2 jk

, h2
ij+ 1

2 k
and

h3
ijk+ 1

2
represent numerical fluxes. The quantities Cν

ijk and Cp
ilk are approximations of the cell-averaged

collision operators. To determine the numerical fluxes, we apply an upwind scheme combined with high-
order ENO and WENO reconstruction techniques. The third-order WENO method [LOC94] is used to
obtain h1

i+ 1
2 jk

, while the numerical fluxes in the ε- and µ-direction, h2
ij+ 1

2 k
and h3

ijk+ 1
2

, are calculated
according to the second-order ENO procedure [SO88, LOC94]. For the treatment of the collision operators
we use the ansatz

φν(ε, µ, z, t) ≈
∑
i,j,k

φν
ijk(t)χν

ijk, g1(q, µ, z, t) ≈
∑
i,l,k

g1ilk(t)χp
ilk (14)

with the characteristic functions χν
ijk =χν

ijk(z, ε, µ) and χp
ilk =χp

ilk(z, q, µ) of the domains Iν
ijk and Ip

ilk.
In (14) the summation is performed over all cells. The right-hand sides of (12) and (13) are then calculated
by inserting (14) into the cell-averaged collision operators and carrying out the integrations of the collision
kernels. In our treatment the midpoint rule is used to evaluate these integrals numerically. Concerning
a detailed description of the approximation procedure for the collision operators we refer to [GS04]. The
Poisson equation (5) is solved by inserting (14) into the integral representation [MP01] of the exact solution
for given boundary values of the electric potential. The time integration of the coupled equations (12) and
(13) is performed by applying the second-order Runge-Kutta type TVD scheme [SO88].

4 Results

The considered InP diode is 1 µm long and has a channel length of 0.4 µm. In the n+ region, i.e., in the
intervals [0, 0.3] µm and [0.7, 1.0] µm, the doping concentration is 5 × 1017 cm−3. Inside the channel,
ranging from 0.3 µm to 0.7 µm, we have a donor concentration of 2 × 1015 cm−3. The grid used for our
calculations has the dimensions Nz = 150, N1

ε = 90, N2
ε = 34, Nµ = 16 and Nq = 25. For the energy

discretization length we choose β = 4, which corresponds to ∆ε = 10.8 meV. The simulation is performed
at room temperature, T = 300 K, for an applied bias of 1 V.

In Fig. 1 we present the electron density and the electric field strength at t = 10.0 ps. Since at this
instant of time the temporal change of these quantities almost vanish, we interpret them as stationary state
results. It should be mentioned that the initial electron density coincides with the discontinuous donor
density n0(z). The right-hand plot shows a comparison of the electric field obtained under the assumption
of equilibrium and non-equilibrium pop phonons. Noticeable differences of the electric field are localized
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Fig. 1. Electron density n(z, t) and doping concentration n0(z) as functions of z at t = 10.0 ps; z-component of the
electric field E(z, t) for equilibrium pop phonons (solid line) and for hot phonons (circles)
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Fig. 2. Mean electron velocity (top-left) and mean electron energy (top-right) obtained for hot phonons (h.p.) and
equilibrium phonons (e.p.); ratios rv and re (bottom-left) and the L-valley population pL as well as ration rp (bottom-
right) as functions of z at t = 10.0 ps

near the junctions of the diode at z ≈ 0.3 µm and z ≈ 0.7 µm. In these regions, we obtain higher absolute
values of the electric field for the hot-phonon calculations.

More pronounced effects of the hot pop phonons on the electrons are found for the mean electron
velocity and the mean electron energy. The two plots on the top of Fig. 2 again show results for t = 10.0
ps. It should be noted that the non-equilibrium behavior of the phonon gas lowers the average electron
velocity and increases the average electron energy inside the channel. This effect can also be observed in
calculations for the bulk-case [GS04].
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To quantify the deviations due to the non-equilibrium phonons we plot the ratios rv(z, t) = v(z, t)/
v∗(z, t) and re(z, t) = e(z, t)/e∗(z, t) bottom left in Fig. 2. The star refers to calculations based on equilib-
rium phonons. Distinct hot-phonon effects are found in the right half of the channel. In this region, strong
electric fields and the spatial diffusion at the junction lead to hot electron distributions, which drive the
phonon system out of equilibrium. The ratios rv and re indicate deviations of more than 10 percent for the
average electron velocity and energy. Outside of the channel, the differences between the mean velocities
resulting from calculations considering hot-phonons and equilibrium phonons are smaller but still notice-
able. The mean electron energy is also strongly influenced by non-equilibrium phonons in the n+-regions
of the diode.

The right-hand plot on the bottom of Fig. 2 depicts the population of the L-valleys pL = n2(z, t)/n(z, t).
In the region where the electron energy (see top-right plot) is high, the L-valley population reaches nearly
40 percent. Since the energy difference between the minima of the L- and the Γ -valley is 0.61 eV, pL tends
to zero if the average electron energy is small. The sub-plot displays the quantity rp = pL/p

∗
L representing

the ratio between the results for pL in the case of hot phonons and equilibrium phonons. It should be noted
that the non-equilibrium phonon gas increases the L-valley population up to 60 percent.

Figure 3 shows the electron energy density ee(z, t) (left) and the change of the phonon energy
∆ep(z, t) = ep(z, t)−ep(z, 0) (right) as functions of z at different times. The electron energy strongly
increases at the right junction of the diode. Consequently, a sharp phonon energy peak appears at the same
local position. However, we realize differences in the temporal evolution of the electron and phonon ener-
gies at the hot spot. The peak of the electron energy builds up much faster than that of the phonon energy.

Our kinetic approach allows us to directly investigate the distribution functions (7) and (8). Figure 4
presents a comparison of the Γ -valley distribution functions of electrons interacting with hot phonons
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Fig. 3. Time evolution of the electron energy (left) and the change of the pop phonon energy ∆ep (right)
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(left-hand side) and equilibrium phonons (right-hand side). Both distribution functions show a far-from-
equilibrium behavior. This proves the necessity of applying a kinetic description to investigate the transport
properties of the considered InP diode. The steep decent of the Γ -valley distribution functions at ε ≈ 0.6
eV results from the strong transfer of electrons to the L-valleys. The higher maximum value of the distrib-
ution function of electrons interacting with equilibrium phonons represents the most significant difference
between the plots in Fig. 4.

5 Conclusion

The obtained results show that hot phonons lower the average electron velocity and increase the mean
electron energy inside the channel of the diode. The maximal deviations reach 10 percent. The most signi-
ficant changes are found for the population of the L-valleys. Non-equilibrium phonons increase the L-valley
population up to 60 percent. The total electron density and the electric field are only slightly influenced by
the hot phonons. Finally, our investigations prove that non-equilibrium phonon effects must be taken into
account to simulate InP devices accurately.
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Abstract In Silicon on Insulator (SOI) circuits thermal effects are of particular relevance due to restricted cooling
via the substrate. The accompanied thermal network enables to include one dimensional heat conduction effects to the
lumped electric network equations. In this framework for thermal-electric coupling, we model an industrial-like bench-
mark based on a simple ring oscillator circuit. This is to picture abstractly the on-chip behavior by simple means. After
a rough description of an applied simulation technique multirate results for this example are given. These underline the
huge saving potential according to the widely separated timescales of electric networks and heat conduction.

Key words: Electric circuit simulation, heat conduction, temperature dependence, parabolic partial differ-
ential algebraic equations.

1 Introduction

Due to miniaturization of devices and the increasing package densities, the dissipated power per chip area
increases. Since semiconducting devices and interconnects in chip technology are temperature sensitive
and even may be destroyed in hot spots, it is important to include the heat evolution into circuit analysis.
Usually, this is done by thermal networks, which include the local temperature and its cooling towards
environment. Since this cooling is limited especially in SOI (Silicon on Insulator) technologies, the heat
conduction phenomenon becomes more pronounced. And this is aggravated by decreasing spacing between
devices in higher package densities.

Therefore, an approach to include one dimensional thermal effects is introduced in the next section.
It is the so-called accompanying thermal network (AN), which completes the network equations. As a
benchmark example we then discuss a ring oscillator circuit and its thermal description using the AN. The
fourth section presents numerical results, which are computed by exploiting the multirate setting of this
system. Finally we draw some conclusions.

2 Mathematical Model

To extend the more or less standard lumped thermal approach for modeling heat conduction, a spatial
model needs to be provided. As a first step towards full 3D-modeling, the accompanied thermal network
(AN) [BaGü03, Ba03] includes heat conduction in one spatial dimension. These can be macro-structures
on chip into any preferred direction of conduction: for instance, cell arrays, interconnects, or others. Also
one can picture this model as order reduced real world, where a designer has specified macro-structures.
In power circuits with a relatively small number of power dissipators, such an order reduction can be
performed on the set of equations, see [WCSW97].

To have both lumped and spatial 1D-thermal element models, the AN needs to couple both descriptions.
The interface is established by a flux condition, which enables the use of standard schemes for setting
up equations within this formulation. For the overall thermal-electric problem, we obtain the system of



28 A. Bartel and U. Feldmann

equations in Box 1. The concurring systems are the following: first we have the common electric network
equations [Ti99] in terms of the node voltages u and branch currents jL, jV (with topology A); the second
part, the AN, is basically a coupled system of energy balance equations for both types of elements; these
use 1D and 0D temperatures T and T̂, respectively. The temperatures enter the network equations via

Box 1: COUPLED THERMAL-ELECTRIC PROBLEM.

electric network: (DAE-IVP) A = (AC , AG, AL, AS , AI , AV )

0=AC q̇(A�
Cu(t)) + AGr(A�

Gu(t), Tbr,F ) + ALjL(t)

+ ASj(A�
Cu, Tbr,F ) + AIı(t) + AV jV (t)

0= φ̇(jL(t)) − A�
Lu(t)

0=A�
V u(t) − v(t) (1a)

(IV) x(t0)= (u0, jL,0, jV,0)
� (1b)

coupling interface: (λP = λP (u, jL, jV ))(
Ptr, Plp

)�
= P = diag(KλP )A�

tpu, F = F(T), Tbr = Q�T̂ (1c)

thermal network: (PDAE-BIVP) i = 1, . . . , m

(1D) MiṪi(x, t)= ∂x(Λi∂xTi(x, t)) − γSi ·(Ti(x, t) − Tenv) + P̃i(x, t) (1d)

P̃i(x, t)=

li∑
k=ki

Ptr,k(t) · ρ̃k(x, Ti)

Rk(t, Ti)
, Rk =

∫ 1

0

ρ̃k(x, Ti(x, .)) dx (1e)

(0D) M̂
˙̂
T(t)=AAN

(
Λ(0)∂xT(0, t)

−Λ(1)∂xT(1, t)

)
−γŜ(T̂−Tenv1lk)+Q Plp(t) (1f)

(BC)

(
T(0, t)
T(1, t)

)
=A�

ANT̂(t) (1g)

(IC) T(x, 0)=T0(x) ≥ Tenv1lm T̂(0) = T̂0 ≥ Tenv1lm (1h)

parameters of the static part (using branch temperatures Tbr and functionals F – Q identifies the according
thermal 0D-unit for the thermally lumped electric elements); vice versa, the dissipated powers P of passive
electric elements (Atp) yield source terms for the AN. – The existence of solutions of this system and its
well-posedness will be the topic of [BaGJ04].

3 AN for SOI Circuits

In the following, we construct a benchmark to reflect the complex on-chip behavior of SOI circuits in a
simplified way. One main component is a standard ring oscillator, which is composed CMOS-inverters in
SOI technology as depicted in Fig. 1. In the left-hand part, several inverters are connected in feed back con-
figuration to form an autonomous oscillator. This unit drives a cascade of inverter stages in the right-hand
part. In total, this configuration may model an inner chip signal-flow (e.g. a critical path): part one provides
the logic or analog functionality, while part two serves for signal amplification or for driving output signals.
For simplicity, the involved CMOS-inverters are here described using the standard level-1 transistor model

Fig. 1. Industrial benchmark – electric network
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of Shichman-Hodges [ShHo68]. Consequently, the benchmark circuit in Fig. 1 represents a network of ba-
sic elements, where semiconducting devices are replaced by capacitances, diodes and controlled current
sources.

Here the major temperature T dependence is given by the mobility of charge carriers. It enters the
system by the scaling factor β of the controlled current source modeling the transistor channel between
drain and source

ıds(ugate, usource, udrain, ubulk, T ) = β(T ) · ı̂ds(ugate, usource, udrain, ubulk),

(with ugate, usource, udrain, ubulk : potential of gate, source, drain, bulk node)

β = µ(T ) · C ′
oxW/L,

where mobility µ strongly depends on device temperature T ; W and L refer to the transistor’s width and
length, and C ′

ox is the capacitance per unit area for the oxide layer between gate and channel (see Box 2).
Now, mobility decreases with temperature nonlinearly, which can be approximated as [MaAn93]

µ(T ) = µ(300 K)
(

T
300 K

)−1.5
.

In this example, the concurring p- and n-type devices (in CMOS technology) are electrically separated
in one-dimensional arrays. Since the thermal and electric insulation comes along with each other, we have
in first order only a thermal link for transistors of the same type. Heat transfer to the bottom of the chip
is small here due to high thermal resistance of the insulating oxide layer in SOI technology. Therefore the
AN for this example consists of two decoupled 1D-lines following the arrays of n- and p-type transistors.
The situation is sketched in Fig. 2; the dotted lines signify the electrical connection to recognize the layout
of this benchmark circuit. The devices’ main currents pass just below the gates, through the channel area.
There the main power is dissipated. Since the driver-units are scaled to amplify electric signals, we expect
a large heat production there. This will further heat the remaining circuit, and cause a signal delay in the
oscillatory part.

For simplicity, we consider a reasonably sized test circuit with only three inverter stages in the oscillator
and a cascade of five bootstrap inverters. The latter are scaled to drive the load capacitance (see Fig. 1). The
scaling is applied to the width for both n- and p-type transistors and takes the following values from left-
to-right: 1, 2, 5, 10, 25.

To form a thermal-electric coupling the geometric data of the 1D-line are necessary. Here we assume
that successive devices are spaced by a distance of 4Wn(= 2µm), where Wn is the width of n-channel
device in the oscillator (see Box 2). Oscillator and driver unit are separated by an additional spacing of
distance 8Wn.

In this setup, the driver stages exhibit a thermal 1D-extension, which excites the ring oscillator stages.
Therefore the formation of a special 0D-unit is inappropriate and we embed the driver stages to the 1D-
lines. Consequently, the two 1D-lines in the AN have attached artificial 0D-units [Ba03], which form a zero
flux condition (von-Neumann BC).

For the electric-to-thermal coupling, we equally distribute the (lumped) dissipated power on the respec-
tive transistor’s location (width): for type i ∈ {n, p} and the kth device in line, we have

line of
n-types

line of
p-types

gate channel area

Fig. 2. Thermal 1D-lines
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Box 2: TYPICAL TRANSISTOR PARAMETERS.

Geometric parameters:

width: Wn =0.5µm Wp =1.5µm
length: L =0.2µm
thickness channel-gate oxide: tox =3.0 nm
thickness buried oxide: tbox =34.5 nm

Model parameters:

mobility: µn(300) =400 cm2/(Vs) µp(300) =130 cm2/(Vs)
threshold voltage: V n

th =+250 mV V p
th =−250 mV

overlap capacitance per width: C′
ov =0.4 nF/m

junction capacitance per width: C′
j =2.0 nF/m

saturation current: IS =1.0 · 10−15A

Pi,k = ıi,kds · ui,k
ds

with the corresponding 1D-indicator function ρ̃ = χi,k (this simply locates the device in 1D-line segment).
In this way, we obtain the continuous thermal model, equation (1d), where the local power source term is
given as

P̃i(x, t) =
s∑

k=1

Pi,k(t) · χi,k(x)
Ri,k

, Ri,k(= Wi,k) =
∫ 1

0

χi,k(x) dx

for the two lines (i ∈ {n, p}) and a total number of s = 8 inverter stages. In turn, the lumped temperatures
can be obtained by averaging the temperature with the indicator function as weight (thermal-to-electric
coupling). Thus mobilities are obtained by evaluation at the derived temperature.

The second source term in (1d) is cooling. It is proportional to the local surface (perimeter) S. Here
several sides of the 1D-line are covered by oxide limiting the heat flow to environment. But there are
additional electric contacts at the devices. These metal interfaces can be treated as additional surfaces
whose transmission coefficient γ is several orders of magnitude larger.

The next step is discretization. A simple and applied choice are finite volumes; these fit to the AN-
setting: each device and each interspacing gets an own cell, cf. Fig. 2, giving a rough scale of thermal
resolution. Here the device’s total length is condensed to a point in the 1D-line, the width is represented by
the according line segment. Parameters for this benchmark circuit are summarized in Box 3.

Box 3: RING OSCILLATOR WITH THERMAL FEEDBACK.

Geometry
load capacitance: CL = 200 fF
surface: γS = 2.4µW/mK (+4.8 10−2)

1D-quantities
heat mass (Si): M= 3.5 10−8 J/m K
conductivity: Λ = 3.18 10−12 Wm/K

4 Simulation Results

To enable a simple inclusion and coupling to a circuit simulator, we consider for the semi-discretized
system a co-simulation approach. The spatially discrete system does not suffer from contraction conditions
[ArGü00] due to DAE effects [Ba03], and enables a multirate procedure, where iteration is not necessary.
To this end, an energy coupling is formed [DeTü99, Ba03]: additionally the dissipated powers are integrated
together with the network equations

Ė = ıds · uds, E(0) = 0
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over a communication step H ([0,H], for simplicity). Here temperature is kept fix (or can be extrapolated).
In a second step, this energy is transmitted to the AN and is equally distributed in time during the compu-
tation of the temperature. Due to on-chip dimensions, capacitances in the network equations are tiny and
yield small time constants. Thus the network-power equations form a multiscaled subsystem, and rescaling
is necessary.

Next, we discuss simulation. The ring oscillator begins its autonomous oscillation fast (its shape de-
pends on the parameters). With varying temperature, signals will traverse the circuit with different speed
due to the temperature dependence of mobility. – This can be seen in the output signals in Fig. 4: a lower
temperature at an early time and a higher temperature at a later time. Clearly, the two signals diverge.

For MATLAB simulations, we scaled both thermal mass (M ) and heat conduction (Λ) by a factor of
1/50 and 10, respectively. Of course, this gives unphysical parameters, but the thermal-electric system
gets tighter coupled. Therefore it is harder for a multirate scheme to work properly. On the other hand,
we need smaller simulation times to recognize thermal effects. Thus the scaling is good for demonstra-
tion purposes. Here the time window [0s, 50ns] is considered. After semi-discretization, MATLAB routine
ode15s was employed for time-integration. First, the system was integrated in a singlerate mode, i.e.
electric and thermal part were solved simultaneously using the same timestep. Figure 3 depicts the overall
temperature evolution and a startup-phase. Furthermore, Fig. 4 gives the output signal at the first inverter,
showing the temperature dependence of the electric signal. Inclusion of temperature effects is indeed neces-
sary in simulation, since their impact on signal delays is significant and may even cause malfunctions of the
chip.

In Fig. 3 (right), we see the development of the temperature in our benchmark at a very early time.
We can precisely identify the devices in our line, and we recognize the scaling and spacing of the devices.
Actually, the larger p-channel devices are depicted, here.

In a second step electric and thermal subsystem were solved in a multirate co-simulation, using different
timesteps for each subsystem, as described above. Here we have chosen a communication step of 0.2 ns.



32 A. Bartel and U. Feldmann

Table 1. Results: Singlerate vs. Multirate

steps comm.-steps

single-rate (total) 70 924 –

multi-rate (network) 71 630
125

co-simulation (heat) 129

At the final time, we obtained a very good agreement with the singlerate solution: the error is less than
0.16 K (thus the relative error is less than 10−3). Since model evaluation is the most costly part in circuit
simulation, we contrast the number of time steps for both algorithms in Table 1. Indeed multirating is
achieved. Notice, per communication step there is only about one step of the AN solver necessary; actually,
the remaining four steps are all spent in the startup phase. Therefore due to averaging an order two method
based on the mid-point rule can be constructed [Ba03]. However, recall that this multirating has its price.
Additionally to the electric network, the energy equations have to be integrated. Fortunately, there was no
iteration necessary for getting these accurate results.

For a validation of our 1D-thermal approach, numerical simulations of the thermal-electric system have
also been executed in a 3D-setting and compared to corresponding 1D-results. These tests were performed
with Infineon’s circuit simulator TITAN, using a coarse spatial discretization with an equivalent thermal
network and running TITAN in an electrothermal interaction mode. The temperature difference between
3D- and 1D-solutions was at most 10K (about 8% error in centigrade). Thus, regarding first order thermal
effects, a 1D-coupling is valuable (for this accuracy), and, of course, better than a pure 0D-thermal set-up.
Furthermore, it is also much more efficient than the full 3D simulation.

5 Conclusions

We have addressed the multirate behavior of the thermal-electric problem in our benchmark circuit. Since
the discretized coupled system with energy coupling does not suffer from additional contractivity con-
ditions in co-simulation, an adapted multirate strategy is applicable. Numerical tests for this benchmark
example verify that indeed multirate is achieved.

Acknowledgement. This work is part of the project ”Numerische Simulation von elektrischen Netzwerken mit Wärme-
leitungseffekten” (03GUM3W1) supported by the German Federal Ministry of Education and Research.
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Abstract In this paper several numerical methods for the simulation of a EFM (Electrostatic Force Micro-
scope) are presented. An approach to couple these methods is proposed in order to improve the modeling.

1 Introduction

For modeling and simulating Micro-Electro-Mechnical Systems (MEMS), multi physics aspects must be
taken into consideration. From the numerical point of view additional problems arise since frequently we
are confronted with multi-scale problems. Therefore advanced numerical methods have to be applied. An
interesting example for an MEMS is the so-called atomic force microscope (AFM) which can be used
for scanning samples with nearly atomic resolution. For a complete investigation of the AFM, quantum
mechanical and classical effects have to be considered, but in some cases the quantum mechanical effects
can be neglected. For instance the Kelvin force microscope (EFM) is used at a relatively large distance from
the sample [MWM02]. Therefore the interaction between the probe and sample is mainly determined by
the Coulomb force. Several approaches to calculate the electric field in order to model this interaction have
been made, such as in [JLHS] the author carries out a multipole expansion by using the program MMP. In
this paper we will present a concept for physical and numerical modeling of EFMs which can be extended
to other types of AFMs. This method takes into consideration the classical interaction of the cantilever tip
with the sample surface. The goal is to develop a simulation tool which can be used for the design of AFM
probes and for the interpretation of measurement results.

2 A Modeling Concept for the EFM

The EFM in non-contact mode is mainly used for scanning surfaces holding an electric potential or charge
distribution. For our investigations the distance between the probe and sample is assumed to be relatively
large. Therefore all other forces can be neglected due to the significantly larger influence of the electrostatic
force. Nevertheless, many aspects must be taken into account to develop an accurate model for the EFM.
Firstly one has to deal with the coupled nature of the problem. Any variation of the electric field will change
the forces acting on the cantilever, thereby causing the cantilever to move, and effecting a variation in the
electric field and vice versa. Secondly since the tip is very small compared to the cantilever, this multi-scale
aspect has to be considered in the model. The goal of this project is to create an algorithm that is able to
simulate the EFM and takes these aspects into account.

For modeling the EFM it is convenient to partition it to its different physical aspects and calculate them
separately. Therefore they have to be coupled to each other during the calculation.

For calculating the electrostatic field E in an uncharged region G bounded by ∂G = ∂GD ∪ ∂GN

(Fig. 1), Laplace’s equation 
ϕ = 0 has to be solved using the Dirichlet boundary conditions on ∂GD

and the Neumann boundary conditions on ∂GN [Zhou93]. The electrostatic field E is determined by E =
−gradϕ. In this paper some numerical methods for the calculation of the electric field will be presented.
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In the example given in this paper the cantilever is assumed to hold the potential 1V while the sample’s
potential is 0V. On ∂GN the normal component of the electric field is assumed to be zero. From the
definition of the uniform load using the Maxwell stress tensor the following equation can be found.

Using Eq. 1 and the Maxwell stress tensor Te [HYT00] the uniform load f which acts on the cantilever
(width = z0) can be found.

f =
∫

z0

Te dz =
∫

z0

⎛
⎜⎜⎝

ε(E2
x − 1

2‖E‖2) εEx Ey εEx Ez

εEx Ey ε(E2
y − 1

2‖E‖2) εEy Ez

εEx Ez εEy Ez ε(E2
z − 1

2‖E‖2)

⎞
⎟⎟⎠ dz (1)

For the computation of the cantilever deflection u(t) the y component of the uniform load fy can be
used in a beam model.

∂2

∂x2

(
EI

∂2u(t)
∂x2

)
+ ρA

∂2u(t)
∂t2

= fy(x), u(0, t) = ux(0, t) = 0 (2)

uxx(L, t) = uxxx(L, t) = 0

Here E is the elastic modulus, I is the moment of inertia, ρ is the mass density and A is the cross
sectional area of the cantilever.

During the treatment of the equations given in the last section one has to deal with different kinds of
problems. Therefore it is convenient to split the calculation domain into several parts each of which is
calculated using a different numerical method (Fig. 3). In region 2 a versatile method such as FEM has

Fig. 1. Electrostatic calculation domain

Fig. 2. Beam model of the cantilever

(2)

(1)

(3)

Fig. 3. 2D model including various numerical methods
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to be applied because one has to deal with different materials and charge distributions in the sample. For
modeling the high values of the electric field near the tip (region 1) more accurately the Ritz-Galerkin
method (RGM) is used while the long distance interaction (region 3) will be treated by the boundary
element method (BEM). During the calculation of the electric potential the methods mentioned above have
to be coupled to each other.

Not yet taking into account possible charge distributions in region 2 (Fig. 3) the FEM formulation of
the setup leads to the following system of equations.

∑
j

Kijϕj +
∑

n

Kinϕn = 0 (3)

Kik =
∫

Ω

[
∂ψi

∂x

(
ε

n∑
k=1

∂ψk

∂x

)
+

∂ψi

∂y

(
ε

n∑
k=1

∂ψk

∂y

)]
dΩ (4)

Where ϕj are the values of the electric potential to be calculated and ϕn are the potential values on the
nodes with Dirichlet boundary condition.

Starting from the two dimensional Laplace equation in cylindrical coordinates and using the separation
approach one can find the following term for the electric potential ϕ in region 1 [Jack75].

ϕ(ρ, φ) = ϕ0 +
∞∑

m=1

amρ
mπ
β sin(

mπφ

β
) (5)

For the derivation of Eq. 5 the whole tip was assumed to hold a constant electric potential ϕ0.

To compute Eq. 5 numerically the number of coefficients am is limited by the number and arrangement
of the points at which the potential is known. In order to find the unknown coefficients am Eq. 5 is applied
to the points where the potential is known.

mmax∑
m=1

(
ρ

mπ
β

j sin(
mπφj

β
)
)
am = ϕj − ϕ0, j = 1, 2, .., N (6)

This over determined linear system of equations can be solved by standard methods.
To couple the RGM to the FEM Eq. 6 is applied to the coupling points and used in Eq. 3. This leads to

∑
j

Kijϕj +
∑

l

Kil

(
ϕ0 +

mmax∑
m=1

amρ
mπ
β

j sin(
mπφj

β
)

)
=
∑

n

Kinϕn (7)

where l are the coupling nodes and n are the nodes with Dirichlet boundary condition. The sum j includes
the nodes that are neither coupling nodes nor nodes with Dirichlet boundary conditions. Figure 4 shows the
resulting electric potential and field (mmax = 9).

The BEM formulation of the setup leads to the following set of equations

M∑
i=1

N∑
j=1

Hijϕj =
M∑
i=1

N∑
j=1

Gijqj (8)

Hij = − 1
2π

le
2

(xj − ξ
i
) · n

|xj − ξ
i
|2 (9)

Gij = − 1
2π

le
2

ln |xj − ξ
i
| (10)

where N and M are the total number of elements and nodes, respectively, ϕ is the potential, q is the
potential derivative, le is the length of the element, i and j are node indices. Each boundary node must
have either a Dirichlet or Neumann boundary condition. Applying these boundary conditions in Eq. 8 the
potential and potential derivative at the boundary nodes can be obtained. By using these values the internal
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Fig. 4. Simulated potential and electric field by coupled FEM-RGM

Fig. 5. Simulated potential and electric field by BEM

potential at all internal points i can be obtained from the following equation and the resulting simulation of
EFM is shown in Fig. 5.

E∑
i=1

ϕi =
E∑

i=1

N∑
j=1

Gijqj −
E∑

i=1

N∑
j=1

Ĥijϕj (11)

As BEM uses the fundamental solutions, it possesses improved accuracy in the calculation of electric
field and exterior problems. But when the observation point comes very near to the boundary, some errors
occur as the boundary integrals tend closer to singularity. For this reason a high potential is observed near
the tip. Such error doesn’t occur when the simulation of EFM is done by FEM. So for more accurate
simulation results the use of another numerical method near the tip would be preferable. In this way an
improved accuracy can be obtained in both regions, near the tip and far away. For this purpose the necessary
coupling equation after implying coupling conditions and matrix M is

⎡
⎢⎢⎣

[H]II [H]IB −[G]II −[G]IB 0
[H]BI [H]BB −[G]BI −[G]BB 0
[K]II 0 M 0 [K]IF

[K]FI 0 0 0 [K]FF

⎤
⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ϕ}I

{ϕ}B

{q}I

{q}B

{ϕ}F

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0
0
0
0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(12)
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where I indicates the coupling nodes, F and B indicate the nodes which are in the FEM and BEM region
respectively.

3 Numerical Calculation of the Cantilever Deflection

The application of Eq. 1 to calculate the force acting on the i-th mesh element of the cantilever leads to

Fi =

⎛
⎝ ε(E2

x − 1
2‖E‖2) εEx Ey 0

εEx Ey ε(E2
y − 1

2‖E‖2) 0
0 0 0

⎞
⎠
⎛
⎝ yi+1 − yi

−(xi+1 − xi)
0

⎞
⎠ z0 (13)

where (xi, yi, 0) is the position of the i-th node on the cantilever. The FEM approach using beam elements
results in ∑

j

Kijuj + Mij üj = Fi,y (14)

Here Kij is the stiffness matrix, Mij is the mass matrix and Fi is the load vector [Red93]. The deflec-
tions uj are calculated using the Galerkin method.

4 ALE Implementations

During the FEM calculation described in the last section the whole domain and therefore the FEM mesh
was assumed to be time independent. Since the scanning process of a EFM is dynamic, one has to deal
with a moving geometry and therefore with moving boundaries. This brings up the problem that the mesh
has to be changed during the calculation to fit the geometry. As a brute force method one could choose
to call the mesh generator in each time step. In the approach presented here the mesh update is achieved
by using the arbitrary Lagrangian Eulerian (ALE) method which means that the mesh is neither fixed
in space (Eulerian) nor are all its nodes attached to the material (Lagrangian). In this work the mesh is
modelled as a massless elastic which is deformed by the changing boundaries on ∂G (Fig. 1). Therefore
in each time step the new positions of the mesh nodes are calculated by solving a vector Laplace equation
for the mesh deflection. The solution is obtained by FEM [Red93]. In Fig. 6 the movement of the mesh
can be observed. Since the governing equation for the electrostatic potential does not include any time
derivatives, no modification of the FEM is necessary and ALE is reduced to only a mesh update method
[BKM04].

The cantilever deflection obtained by using this approach shows the same behavior as in [Witt00]
(Fig. 7).

21

Fig. 6. ALE mesh update

tt

u(x=L)
Fig. 7. Simulated cantilever deflection
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5 Conclusion

In this paper a concept of physical and numerical modeling for a 2D EFM is presented. It is assumed that
its interaction with the sample is determined by the Coulomb force. Some results obtained by using FEM
and BEM are presented. An ALE approach is used for updating the mesh. In order to improve the results
a coupling scheme for RGM and the other numerical methods mentioned above is proposed. A typical
simulation result obtained by a coupled FEM-RGM is presented.
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1 Introduction

The modelling of the EM behaviour of electronic structures nowadays involves a broad frequency range and
coupling of analog and digital behaviour. Much research and increasing computational resources enabled
the designers in the past decades to simulate complicated and large structures. One of the approaches to
make this modelling feasible is Model Order Reduction. In this approach one tries to capture the essential
features of a large model, into a smaller, a more easy to handle model. A wide range of different techniques
has been proposed and investigated in the last few decades. Especially Krylov-subspace methods have
proved themselves to be very suitable for this area of application (eg. [1], [3], [5] and [6]). Many of these
methods guarantee preservation of passivity, which makes them even more interesting.

However, implementing the methods straightforwardly is not enough to make them applicable for real-
life applications. In order to make the methods accurate, efficient and suitable for large systems, extra
attention and mathematical knowledge is needed. In this paper we will focus on the orthogonalisation of
the Krylov space, which is seen to be of importance. Special attention is paid to the orthogonalisation of
a Block Krylov space. Also some directions to cheaply avoid parts of the redundancy in the Krylov space
methods are pointed out in this paper.

2 Krylov subspace methods

Modelling of an electronic structure can lead to a Differential Algebraic Equation (DAE), which form now
on will be considered in this form:

(C
d

dt
+ G)x(t) = Biu(t)

y(t) = BT
o x(t), (1)

where C ∈ IRn×n,G ∈ IRn×n, Bi ∈ IRn×p and Bo ∈ IRn×p In the very common case that C is singular
this model is not an ODE, but a DAE. The models we consider here can be derived in several ways. It can
for instance be a transmission line model, a PEEC model or an FDTD model with spatial discretizations.
In general the matrices G and C are real and constant in time.

This system of equations can be transformed to the frequency domain with a Laplace transform:

(sC + G)X(s) = BiU(s)
Y (s) = BT

o X(s) (2)

When the state space vector in frequency domain X(s) is eliminated, a transfer function is obtained:

H(s) = BT
o (G + sC)−1Bi, (3)
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H(s) ∈ C p×p. This transfer function gives a direct relation between input and output of the system and is
therefore a compact description of the system behaviour in the frequency domain.

Model Order Reduction methods attempt to approximate the behaviour of the system with a smaller
model. A Krylov-subspace method generates a Krylov subspace based on some input matrix B and some
generating matrix A:

Kq(B,A) = [B,AB, . . . ,AqB] (4)

The actual definition of B and A depends on the method of choice. For instance, in the method Laguerre-
SVD [3] for some choice of α ∈ IR, the input matrix is defined as:

(G + αC)−1Bi (5)

and the generating matrix is:
(G + αC)−1(G − αC) (6)

In general, for the basis of the Krylov space, say V, the following basic property holds:

AVm = Vm+1H for all m, (7)

for some matrix H. Here the notation Am means the first m columns of the matrix A.
In a next step the system matrices are projected onto an orthonormal basis of the Krylov space. This

can be done explicitly; the matrices of the reduced system are then defined as:

Gq = VT GVCq = VT CV

Biq = VT BiBoq = VT Bo

If the dimensions of the space are smaller than the dimensions of the original system, an order reduction is
achieved. Some methods, like [7] make use of the matrix H as defined in (7). The projection is then implicit.
Others define two Krylov spaces [1], which are orthogonal with respect to each other. Other details about
Krylov subspace methods can be found in [3], [5] and [6] and many other papers.

3 Orthogonalisation

The columns in the Krylov space

Kq(b,A) = [b,Ab, . . . ,Aqb] (8)

gradually converge to the dominant eigenvector of the matrix A, i.e. the eigenvector of A associated to the
largest eigenvalue. This causes the Krylov space to be very ill-conditioned. Next to that, it becomes hard to
calculate an accurate orthogonal basis of this space, because the columns become similar to each other. If
the orthogonalisation is done after the generation of the space, as proposed in the Laguerre-SVD method
[3], the convergence of the method stagnates. We advocate here to orthogonalizes during the generation of
the columns. In that case more directions than only the dominant eigenvector can be calculated accurately
and severe numerical artefacts are avoided. We therefore propose to orthogonalize the newly generated
vectors immediately after generation. We have been using Modified Gram-Schmidt for this and in there
we orthogonalize against all previously generated vectors. After the newly generated columns are made
orthogonal with respect to all previously generated columns, they are normalized. This procedure costs
some computation time, but the accuracy of the method is drastically increased in all directions. Also
numerical artefacts are avoided.

Next to this, we propose to apply a second refinement on the orthogonalisation, in order to ensure or-
thogonality up to the machine precision. This is needed in some critical problems, to ensure the preservation
of stability during time domain simulations of the reduced model.



Orthogonalisation in Krylov Subspace Methods for MOR 41

4 Block Arnoldi Orthogonalisation

When a system has more than one, say p ports, Bi has more has than one column:

Bi = [b1,b2, . . . ,bp] (9)

For this system a Block Krylov space is built:

Kq(Bi,A) = [b1,b2, . . . ,bp,Ab1, . . . ,Abp, . . . ,Aqb1, . . . ,Aqbp] (10)

One can imagine that the size of the Krylov space grows with p and so the approximation will be larger if
the number of ports grows. Orthogonalisation and normalization in a Block Krylov space can be done in
several orders. For instance, one can add columns to the space one column at the time, or one can add them
in blocks. We state that in this case it is important to preserve the basic property of a Krylov space given in
(7). If this property is violated, the generated approximation can be totally wrong. In experiments we saw
that for a corrupted Krylov space, already for very small Krylov spaces of 8 columns, the transfer function
of the approximation differed dramatically from the original function. The order of orthogonalisation in
the Block Arnoldi Algorithm, as proposed in PRIMA [5] is seen as a right order to orthogonalize a Block
Krylov subspace. Here, we also applied a second orthogonalisation step, to ensure exact orthogonality up
to machine precision. The function qr() represents a QR-decompostion.

The Block Arnoldi algorithm, to generate a Block Krylov space for Laguerre-SVD, looks like this:

Solve V1 from (G + αC)V1 = B
V1R = qr(V1)
for j = 1...q − 1

Solve W from (G + αC)W = (G − αC)B
for i = 1...j

Hij = VT
i W

W = W − ViHij

end
for j = 1...j

Θ = VT
i W

W = W − ViΘ
Hij = Hij + Θ

end
Vj+1Hi+1,j = qr(W)

end
Vtot = [V1, ...,Vq]

5 Redundancy

Krylov-subspace methods are known for their redundancy. The method is relatively cheap, but it can contain
a lot of information which is not really needed for an accurate approximation. This is even worse if one
realizes that there is no known error bound for Arnoldi methods: Easily too large approximations are
generated. But even if we were able to stop in time, the Block structure of the Krylov space leads to
redundant approximation. Many authors proposed therefore a combination of a Krylov-subspace method
with another method, to form a two-step method. In that approach, first a course approximation is calculated
with a cheap Krylov-subspace method. In a second step the order of this approximation is decreased by
a more expensive but more controllable method like a Truncated Balanced Realization method [4] or by
Proper Orthogonal Decomposition [8]. An interesting approach for a two-step Krylov method is given in
[9]. In our research we discovered that a lot can already be done, very cheaply, during the first run of the
Krylov-subspace method.

If a Block Krylov-space method is to be generated, it can occur that one of the columns in a new block
is almost zero or almost completely spanned by the other columns in the block. In that case we want to stop
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iterating with this columns, while proceeding with the others. Simply removing information from the space
we project on, can lead to the same problems we saw with careless orthogonalisation. With a modified way
to calculate a QR-decomposition in the Block Arnoldi Algorithm we are now able to stop iterating with
any wanted column, at any wanted time, because still the basic property of Krylov spaces holds for this
algorithm. Details can be found in [2].

6 Results

For example, we tested the proposed algorithm on a MNA formulation of an RLC-circuit. The formulation
consisted of matrices with size 695. The system has 11 input/output ports. We generated a reduced model
with 7 iteration of the Block Arnoldi algorithm. In the standard algorithm this leads to a 77-sized system.
Columns with norm smaller than the tolerance 10−12 were removed. Then in the 2-nd and 3-th iteration a
column is removed and the total system size is eventually 66. The approximation, however, is identical to
the approximation of size 77, generated by the ordinary PRIMA algorithm. In Fig. 1, the magnitude of the
(1,2) entry of the transfer function of this system (dashed line) is compared with the transfer function of
the system of the same size, but generated by ordinary PRIMA (dotted line) and with the transfer function
of the full system (solid line). The transfer functions are plotted for values of the frequency ranging from 0
to 2 GHz. We see that the approximation of the system where the redundant columns are removed, forms a
better approximation of the original transfer function than an approximation of the same size, but without
removal of redundant columns.

Apart from the removal of columns, we also propose a way to remove unwanted poles from the system,
without distroying the Krylov space property. This can be done by an eigendecomposition. The reduced
system is reasonably small to make the calculation of a full eigendecomposition feasible. This decomposi-
tion gives us direct access to the poles of the reduced system and the associated residues.

The most important reason to implement Krylov subspace methods was their preservation of stability
and passivity. This makes stable time domain analysis of very large models of real-life electronic structures
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Fig. 1. Comparison of three transfer functions
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Fig. 2. Output response of a very steap input pulse

possible. The preservation of stability is shown by an example of a model of the printed circuit board, in
Fig. 2. The input is a very steap input pulse with a rise-time of 100 ps.

7 Conclusions

We have shown that, to be able to apply Krylov subspace methods for Model Order Reduction to large
real-life problems, extra effort is needed. Firstly, the accuracy of the method can be improved by orthog-
onalisation during the generation of the Krylov space. The Block Arnoldi algorithm is one way to do the
orthogonlisation in a correct way. This orthogonalisation is sometimes needed twice. Further, converged
columns can be removed during the orthogonalisation step. This can be done without violating the basic
Krylov subspace properties. The proposed removal makes the reduced models smaller and therefore less
redundant.

All these improvements can be implemented easily in existing methods. This all makes the application
of existing methods to large real-life problems feasible.
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1 Introduction

Due to the increase of the operation frequency and the down-scaling of the on-chip size, the parasitic
effects of the electromagnetic field cannot be neglected any longer in the design of ICs. The high frequency
field modeling of on-chip passive components and interconnects was one of the topics addressed by the
FP5/IST/Codestar project [1].

The reference method for the modeling of passive structures is considered to be PEEC, based on Green
function [2, 3]. In this method, the conductors are discretized in filaments, in which constant current den-
sities flow, and their surfaces are discretized in panels having constant charge density. An equivalent RLC
circuit containing a resistance for each filament, coupling inductances between whatever two filaments and
capacitors between whatever two nodes can be conceived. The inductances and capacitances of such a cir-
cuit are described by full matrices. One of the main disadvantages of PEEC is that the accurate modeling
of the skin effect needs detailed discretization of conductors. Thus, the method is relatively expensive from
the memory requirement point of view. For instance, a 64 b bus with 10 segments per line and 6 filaments
per segment conduces to n = 6 × 10 × 64 = 3840 RL branches, n(n− 1)/2 = 7, 370, 880 couplings and
(11×64)×12 = 495, 616 C branches, yielding a total number of 7,874,176 elements. Several acceleration
techniques, such as fast multipole [4], SVD [5], hierarchical approach [6], FFT [7], etc., are proposed to
manage this difficulty.

An alternative approach for the electromagnetic field modeling is proposed in this paper. It is based on
the Finite Integration Technique (FIT), which does not use Green functions and which generates a model
having a number of degrees of freedom at least as small as PEEC.

FIT is a numerical method able to solve field problems [8], based on spatial discretization “without
shape functions”. FIT starts from the global form of electromagnetic field equations. Its degrees of freedom
(dofs) are not local field components, but the global variables i.e. voltages and fluxes assigned to grid
elements (edges and faces, respectively). Two Yee type staggered grids are used as discretization mesh.
They are usually orthogonal, but they can be non-orthogonal Delaunay/Veronoi meshes as well.

The Maxwell Grid Equations (MGE) obtained by FIT are

D · d = q, D′ · b = 0, C · e = −db
dt

, C′ · h = j +
dd
dt

, (1)

where e is the vector of emfs along the edges of the primary grid, d is the vector of electric fluxes through
the faces of the secondary grid, h is the vector of mmfs along the edges of the secondary grid, b is the
vector of magnetic fluxes through the faces of the primary grid, j is the vector of currents through the faces
of the secondary grid, q is the vector of charges in the secondary grid cells. The D operator is the discrete
divergence and the C operator is the discrete curl. The ′ notation refers to the secondary grid.

One important feature of FIT is that there are no discretization errors in the fundamental (metric-free)
MGE. The equations are sparse, mimetic and conservative. Due to this, no spurious modes arise in the
numerical solution.
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The material behavior is described by means of the Hodge’s operators

d = Mεe, b = Mµh, j = Mσe. (2)

These constitutive equations are metric-dependent and they hold the discretization error. An effective a-
priori approximation of the modelling error is given in [9].

Due to the huge size of the unknown vectors, classical FIT (MGE+Hodge) must be improved and
adapted in order to be effective for the compact model extraction in real life configurations. In this re-
spect, we conceived a new strategy called “All Levels Reduced Order Model” (ALLROM). The ASPEEC
technique detailed in this paper is part of the ALLROM strategy, developed within the CODESTAR project.

2 Magneto-Electric Equivalent Circuits (MEEC)

From (1) and (2), an equivalent circuit can be derived (actually two mutual coupled circuits, as in Fig. 1).
Thus, the discrete form of charge conservation law is similar to Kirchhoff Current Law (KCL) for the
electrical circuit (having as graph the primary grid): Ai = 0, i = i′ + i′′; the discrete form of magnetic
flux law is similar to KCL for the magnetic circuit (having as graph the secondary grid): A′ϕ = 0; the
discrete form of Faraday’s law is similar to Kirchhoff Voltage Law (KVL) for the electric circuit: Bu =
0,u = u′ + Fdϕ/d t; and the discrete form of Ampere’s law is similar to KVL for the magnetic circuit:
B′um = 0,um = u′

m + Si.
Relations (2) are conducing to the following constitutive relationships expressed in terms of circuits’

quantities: i′ = Cdu′/d t,u′
m = Rmϕ, i′′ = Gu′.

Standard SPICE does not accept voltage sources controlled in the time derivative of currents (actually
magnetic fluxes in the case of MEEC). That is why we modeled such sources by means of a “derivative
circuit” (Fig. 2) which will provide the emfs induced by the magnetic flux. The total currents which con-
trol the sources of the magnetic circuit are obtained by means of a “summation circuit” having a ladder
topology, similar to the “derivative circuit”.

Thus, the SPICE equivalent circuit for the full-wave distributed model consists of four mutual coupled
sub-circuits: electric, magnetic, summation and derivative circuits. The SPICE equivalent circuit thus de-
rived has linear complexity (nodes and branches number versus the number of FIT grid cells), while the
PEEC model has a quadratic complexity due to their full RL matrices. However, the number of dofs is still
large, as comparing to PEEC based on Electro-Magneto-Quasi-Static field.

In order to reduce the number of dofs associated to the MEEC model, the conductive domains (metal
and poly-silicon) are modeled with magneto-quasi-static field (MQS) with frequency dependent Hodge
operators [10]. In this way, the grid on the cross section does not need to be refined in order to take into
account the frequency effect. In this case, the equivalent electric circuit has no parallel capacitances, but
three series RL cells with non-coupled inductances replacing R and Rm [10].

Fig. 1. Typical branches of electric
(top) and magnetic (bottom) cir-
cuits

Fig. 2. Typical branches of the four SPICE-like subcircuits: electric, mag-
netic, summation, derivative
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Fig. 3. Example of distributed circuit equivalent to
EMQS model

Fig. 4. The distributed circuit, with RC separated
parts

The sub-domains with low conductivity (e.g. low doped Si) can be modeled with electro-quasi-static
field (EQS) superposed with magneto-static field. Both induced emf and total current are vanished. Resis-
tance in the electric circuit can be also disregarded in order to model insulating domains (e.g. SiO2 and
low k).

The obtained EMQS model (Fig. 3) is smaller than the Full Wave model, but still larger than PEEC due
to the nodes in the insulator sub-domain.

3 Algebraic reduction of Partial Electro-magnetic Equivalent Circuit (APEEC)

To reduce the model size to that of PEEC’s, the generalized delta-star transforms of capacitors and mag-
netic reluctances in EMQS-MEEC can be carry out. In this way, all internal electric nodes in insulators
and internal magnetic nodes in non-conductors are removed.This static condensation procedure eliminates
nodes that are non-essential, i.e. nodes having no state variables associated to them. The equivalent re-
duced circuits obtained (we call them APEEC) are similar to those obtained by the VPEC technique based
on integral equations of EMQS field [11].

Each node elimination in APEEC is equivalent to one step of algebraic Gauss-elimination. After the
elimination of a node, a fill-in appears in the matrix involved. The fill-in depends very much of the elim-
ination order. In order to preserve the matrix symmetry, only diagonal permutations (equivalent to node
re-ordering) are allowed. To find optimal re-ordering (minimal fill-in) a problem with NP complexity
should be solved. Therefore, only heuristic techniques to find pseudo-optimal ordering can be used (e.g.
the Marcowitz technique). After algebraic reduction, the capacitors and magnetic reluctances in APEEC
are described by full C and Gm matrices, which are the Schur complements of the initial sparse nodal
matrices.

Let us take for instance the simple electro-quasi-static case, and assume that the distributed RC circuit
obtained by discretization has the resistive part separated from the capacitive one (Fig. 4). This case, often
encountered in practical devices incorporating metals and dielectrics, is described by a system of differen-
tial algebraic equations: Cdv/d t = −Gv+Sit, where both nodal capacitances C and nodal conductances
G are singular matrices.

Partitioning the semi-state space vector in v = [v1,v2,v3]T as in Fig. 4, the following sub-matrices
will be null: C11, C12 = C21, C13 = C31, G33, G13 = G31, G23 = G32. Consequently, the semi-
state-space equations will conduce to

0 = −G11v1 − G12v2 + S1it; (3)

C22
dv2

dt
+ C23

dv3

dt
= −G21v1 − G22v2 + S2it; (4)

C32
dv2

dt
+ C33

dv3

dt
= 0; (5)

and the terminal voltages are vt = ST
1 v1 + ST

2 v2.
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Assuming that G11 and C33 are non-singular, from (3) and (5) it follows that v1 = G−1
11 [−G12v2 +

S1it], and v3 = −C−1
33 C32v2. Therefore, from (4), the following state-space equations can be derived

(C22 − C23C−1
33 C32)

dv2

dt
= −(G22 − G21G−1

11 G12)v2 − G21G−1
11 S1it + S2it,

vt = (ST
2 − ST

1 G−1
11 G12)v2 + S1i

T G−1
11 S1it. (6)

This is the proof that, in the case of EQS field in conductor and dielectric structures (each cell is either a
perfect insulator or a conductor), the state variables are the potentials of the nodes placed on the conductor-
dielectric interfaces (v2).

The state equations of this minimal model are obtained by computing the Schur complements of the
matrices C11 (nodal capacitances of the dielectric part) and G11 (nodal conductances of the conductive
part).

In order to compute the Schur complement, the LU factorization algorithm (e.g. MUMPS [12] sparse
implementation) is applied to the C and G matrices. If this algorithm is interrupted after the internal node
elimination, then the not-yet factorized block is exactly the desired Schur complement.

4 Sparsefication of Algebraic PEEC

The nodal capacitance matrix C which describes the capacitive part of APEEC is a full, symmetric, positive
definite, diagonal dominant, M-matrix (the diagonal has positive elements and off diagonal elements are
negative). The nodal magnetic susceptance matrix Gm (Gmij = −1/Rmij) which describes the inductive
part of MEEC has similar properties as C, and therefore it can be sparsified using similar techniques. It is
similar to K - element method used to describe coupled inductors [13], having their advantages.

The problem of sparsefication is to find sparse approximations of the matrices C or Gm (or a rep-
resentation by a sparse matrix, such as SVD truncation), which keep their proprieties (e.g. if passivity is
preserved, it is called passivity-guaranteed sparsefication). It would be ideal if circuit representations will
be kept after sparsefication (if capacitive/resistive equivalent circuit having lower number of elements can
be synthesized, it is called realizable sparsefication).

Two kinds of sparsefication are known. The geometric sparsefication is based on the observation that
close interactions are stronger than far interactions, and therefore the former should be accurately de-
scribed. In this type of sparsefication, the ”distance” between nodes plays an important role. In numeric
sparsefication, the neglectable elements of the matrices are dropped-off. In both matrices, any neglectable
non-diagonal element and its symmetric can be vanished without loosing the desired properties. The prefer-
able criterion to detect if an element is neglectable or not, is to compare its value with the corresponding
diagonal element.

Any acceleration method encountered in the numerical solving of the electromagnetic field integral
equations can be considered as a sparsefication technique. However, we prefer a simpler but effective tech-
nique called hierarchical geometric sparsefication (HGS), followed by a numeric sparsefication. The idea
behind HGS is to use fine grids for close interactions and coarse grids for far interactions, as in the hierar-
chical matrices (Hlib) approach [14]. For n nodes, the number of non-zero elements after sparsefication is
of the order O(n log n).

The ASPEEC (Algebraic Sparsefied Partial Equivalent Element Circuit) model generated by the
sparsefication of the APEEC model can be further reduced, using Krylov ROM techniques [15] or by
circuit transform such as TICER [16], as aposteriori ROM.

5 Numerical results

This section holds numerical results related to the application of ASPEEC technique to one of Codestar
benchmark, the meander resistor (Fig. 5).

The computational domain has the dimensions (in µm) 48 × 43.5 × 2.937, discretized with an ini-
tial mesh having 368,200 nodes, which corresponds to 2,209,680 dofs. A macromodel with 5,940 nodes
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Fig. 5. Codestar meander resistor
benchmark - RPOLY2 ME
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(19, 510 dofs) was extracted by the ALLROM strategy. After applying the ASPEEC technique, the number
of dofs decreased to 1,882. The evaluation of the frequency characteristics was carried out in accordance
with an adaptive frequency sampling technique in 11 points. The final model order, obtained at the end of
the aposteriori ROM was q = 4. The whole ALLROM computing time on a standard PC is 145 s, and the
relative error ε = rms‖Sref − S‖F /maxf‖Sref‖F between the measurement and the simulation being 1.4
% (Fig. 6). In the error computation, the Frobenius norm is used, Sref are the reference scattering parame-
ters, and the maximum is computed with respect to the frequency range of interest (e.g. 0 < f < 20 GHz
in our case).

6 Conclusions

The paper presents a powerful technique to extract reduced order models of on-chip passive structures,
included in a new compact modeling technology. The distributed equivalent circuit we propose has a linear
complexity, it is similar to VPEC, but is based on FIT, not on the integral approach (PEEC). Using algebraic
techniques (Schur complement), APEEC method reduces the FIT equations (and the associated equivalent
circuit) to ones similar to PEEC (having the same number of dofs). To be effective in simulation, the
APEEC matrices are approximated by sparse ones, conducing to the ASPEEC model.

The proposed approach combines advantages of FIT with those of PEEC, providing

• more flexibility in the modeling of conductor/insulator/substrate non-homogeneous structures;
• Green functions are not required;
• accurate models for skin effects, without significant increase of computational effort;
• fast and accurate direct SPICE equivalent circuits with low complexity for any full-wave, EMQS, MQS

or EQS model;
• when applying the proposed method, the explicit build of equivalent circuits is not a compulsory step;

they can be used as software objects in order to represent the model of the device or for checking
purposes (however, its theoretical importance is without any doubt);

• structural passivity preservation;
• same (realizable and passivity guaranteed) sparsefication technique is applied for both capacitance and

inductance components of the extracted model.

The proposed approach proved to be suitable for the Codestar benchmarks, most of them being simu-
lated with an accuracy better than 5 %.
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Abstract Outdoor high-voltage equipment is exposed to moisture, rain and pollution. Water droplets on insulators in-
fluence negatively the material-aging process. A numerical procedure is presented which simulates the droplet behavior
in a strong electric field. It consists of an iteration over an electric and a mechanical sub-problem to solve a coupled
system of boundary value problems on the free domain of the droplet. Finally we give the resulting droplet shapes for
2D and 3D models, and we mention the behavior of a droplet in an inhomogeneous electric field.

1 Introduction to the Coupled Problem

The experimentally observed droplets [5, 12] become lengthened and flattened, they oscillate with double
the frequency of an applied alternating voltage and their changes are visible by naked eyes. A model of the
experimental set-up [5] is shown in Fig. 1. A conductive water droplet of V = 50 µl lies on a solid support
made of resin which contains two electrodes with the applied voltage of 2U between them.

The electric field and the ponderomotoric force density are dealt in [11, 12] for the case of an un-
deformable droplet and an alternating voltage U . The present paper concentrates on the simulation of
deformable droplets in an electric field which is generated by a time-constant voltage U .

The question of the behavior of deformable droplet in a stationary electric field is a feed-back problem.
The droplet shape determines the ponderomotoric force density pe caused by the electric field, and thus the
electric field changes the equilibrium of forces at the droplet surface and influences the droplet shape. The
mechanical sub-problem of the droplet shape and the electric sub-problem of finding pe are decoupled via
an iteration in Sect. 2. After evolving both sub-problems stationary 3D and 2D results are given in Sect. 5.

The paper finishes with a short remark on non-stationary droplets in inhomogeneous electric field. In
the conclusion, we give an outlook to the simulation of time-dependent deformable droplets.

2 Decoupling Strategy

The two basic sub-problems of the coupled problem are the electric sub-problem and mechanical sub-
problem. The electric sub-problem consists of finding the outer force density pe for a given upper droplet
surface Γu which is parameterized by spherical co-ordinates r(ϕ, ζ), cf. Fig. 1 (a). The mechanical sub-
problem is the search for Γu depending on pe. In Sect. 4.1 the force density pe is assigned to the unknown
Γu. The sub-problems are expressed by the operators P : Γu → pe and R : pe → Γu. In this formalism,
we search for a fixed point Γ fix

u = RPΓ fix
u described by rfix by a Banach-like iteration [1, 13] with a

relaxation ω ∈ (0, 1], i.e.

r(k+1) = ωRPr(k) + (1 − ω)r(k) with lim
k→∞

r(k) = rfix . (1)

If Eq. (1) converges, the iteration p
(k+1)
e = ωPRp

(k)
e + (1 − ω)p(k)

e converges similarly, and it holds
limk→∞ p

(k)
e = pfix

e with the ponderomotoric force density pfix
e which belongs to Γu described by rfix.
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Fig. 1. (a) Experimental set-up. The bold lines mark the quarter droplet lying on the surface OA1A2A3A4 which
coincides with the (x1, x2)-plane. (b) 2D intersection through a set-up with non-centered droplet. FE/FD discretization
scheme

3 The Electric Sub-Problem

This section deals with the boundary value problem for the stationary potential Φ, its numerics and the
determination of the force density pe.

3.1 The Stationary Electric Field Around the Droplet

The support Ω of the electric field is the resin and the air. For formal simplification we write ε(x) = εair =
1.00058 on Γu and ε(x) = εres = 4 on the ground patch Γs of the droplet on the support.

Rainwater is conductive, and the droplet is free of charge. We get the linear elliptic boundary value
problem with Dirichlet-conditions at the electrodes Γe

∇ · [ε(x)∇Φ(x)] = 0 in Ω ,
Φ(x) = ±U on Γe ,
Φ(x) = c on Γu ∪ Γs ,∫

Γu∪Γs

ε(x)
∂

∂n
Φ(x) dx = 0 .

(2)

The integral over the density of free charge in (2) determines the constant c. The potential vanishes at
infinity and has a finite energy. The boundary problem (2) is linear for fixed Ω, but Ω depends on the
searched droplet shape.

The electric field is E(x) = −∇Φ(x) and the dielectric displacement is D(x) = ε0ε(x)E(x). The
Maxwell stress tensor and the ponderomotoric surface force density are [4]

T = EDT − 1
2
(ETD)I and pe(x) = T+(x)n =

1
2
ε0ε(x)

(
∂Φ(x)
∂n

)2

n

with the unilateral limit T+(x) of the stress tensor at the droplet surface.

3.2 Numerics of the Electric Sub-Problem

The numerical solution of (2) requires some care. Finite differences or finite integration techniques [11] on
a rectangular grid like in [12] approximate well the potential Φ, but the outer force density pe depending on
∇Φ cannot be evaluated on the curved surface outside the meshes in satisfactory accuracy. The components
of the electric field E = −∇Φ oscillate numerically in the neighborhood of Γu, i. e. in the only part of Ω,
where E is really searched. Sophisticated interpolation and averaging methods would be necessary.

Boundary element methods need a domain decomposition with an unbounded skeleton due to the non-
constant ε(x). Finite elements in whole the 3D domain do not justify the costly effort to find pe on Γu

only.
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Thus, we use a combination of finite elements on an adapted tetrahedral grid refined near Γu ∪ Γs in a
parallelepiped around the droplet and finite differences remote from it. A sketch of the hybrid discretization
scheme is given in Fig. 1 (b).

The numerical errors in the finite element approximation of Φ and ∇Φ are small, and they do so for pe.
Any local disturbances caused by the finite differences outside the parallelepiped – e.g. on the curved Γe

– are levelled out in its neighborhood, and they do not perturb pe. The computational costs are restricted.
In the examples, a tetrahedral grid with 150,000 elements was used which could be handled on a standard
desktop computer.

3.3 Scattered pe-Data on the Droplet Surface

The extrapolation of the pe data found by the finite element computation onto whole the droplet surface
occurs in particular in three-dimensional models. A relatively small number of tetrahedral elements borders
on the two-dimensional Γu. Their indices are collected in J and the outer force density pe(x

(j)
Γ ) is known

in their centres x
(j)
Γ , j ∈ J .

For solving the R-problem, the outer force density pe is required at mesh-points y
(i)
Γ , i = 1, . . . , N of

a fixed (ϕ, ζ)-grid. The tetrahedral grid is adapted to the changing surface Γu in each step of the iteration
(1) and thus the points x

(j)
Γ do not have fixed (ϕ, ζ)-co-ordinates. All points x

(j)
Γ are inside Γu. An extra-

polation should continue pe reasonably to whole the surface Γu. Therefore we use the weighted average [3]

pe(y
(i)
Γ ) = pout

e (y(i)
Γ ) +

⎡
⎣∑

j∈J

γ(x(j)
Γ ,y

(i)
Γ )

⎤
⎦
−1∑

j∈J

γ(x(j)
Γ ,y

(i)
Γ )pe(x

(j)
Γ )

with a decreasing function γ of the distance between xΓ ,yΓ ∈ Γu and a corrector term pout
e (yΓ ) con-

taining the known asymptotic behavior of the outer force density near the triple line ∂Γu with ζ = 0.
A homogenization [10] near the triple line and a series expansion yields

pe(y(ϕ, ζ)) ∼ ζ2(a−1) for ζ → 0 and all ϕ (3)

with the smallest positive a ≈ 0.54 in εres tan(a(π − ϑ)) = −εair tan(aπ) [6] and the contact angle ϑ =
1.1. The relation (3) assures the non-existence of an essential concentration of free charge and thus of forces
on ∂Γu. The stationary balance between the surface tensions inside the interfaces air/water, water/resin and
resin/air is not be disturbed by the ponderomotoric force density.

4 The Mechanical Sub-Problem

4.1 The Non-Linear Boundary Value Problem on the Droplet

The force densities acting on Γu are the capillary pressure pk(x), the hydrostatic pressure ph(x) + p0 and
the outer force density pe(x) caused by the electric field. The capillary pressure is given by the Young-
Laplace equation

pk(x) = −2σκ(x)n

with the mean curvature κ(x) ≥ 0 of the droplet surface. The hydrostatic pressure ph depends on the height
of the droplet. With the mass density � and the gravitational acceleration g we get

ph(x) = g�

(
max
x′∈Γu

x′
3 − x3

)
.

The incompressibility of the water yields the constraint condition of a constant volume V and thus the
Lagrangian multiplier p0. The equilibrium of forces leads to a boundary value problem

pe(x) + pk(x) + (ph(x) + p0) n = 0 (4)
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with the boundary conditions of a constant contact angle ϑ on ∂Γu. The problem (4) is formulated on the
free Γu but the parameterization maps it to the fixed (ϕ, ζ)-domain ϕ ∈ [0, 2π) and ζ ∈ [0, π/2].

4.2 Numerics of the Mechanical Sub-Problem

The parametrization x = x(ϕ, ζ) generates a bijective map Γu ↔ Γ ′
u between variable surfaces Γu and

Γ ′
u. The given outer force pe is assigned to (ϕ, ζ). In opposite the force densities pk and phn depend on

Γu, and they can be expressed directly for every occurring surface.
Let τ be an auxiliary time. We simulate a transient process of a damped droplet deformation by the

artificial evolution problem

∂

∂τ
r(ϕ, ζ, τ) = (pe(ϕ, ζ) + pk(ϕ, ζ, τ))T

n + ph(ϕ, ζ, τ) + p0(τ) (5)

with the boundary condition of a fixed contact angle ϑ and initial conditions r(ϕ, ζ, 0) = r0(ϕ, ζ) with
‖∇(ϕ,ζ)r0‖C(Γu) ≤ C with a constant C. The limit solution rlim(ϕ, ζ) = limτ→∞ r(ϕ, ζ, τ) of the par-
abolic system (5) is the solution of the non-linear elliptic boundary value problem (4). Cause of p0(τ)
we solve a differential-algebraic system. The limit solution is found with small numerical costs within
τ < 1 ms.

If p0(τ) is replaced by a penalty force assuring an incompressible droplet volume V [8], the discretized
problem (5) becomes a system of stiff ordinary differential equations [2].

5 Results in 3D Compared with the 2D Case

For small voltages U , the iteration (1) with ω = 1 reaches a stationary droplet shape after five steps where
r(k+1) and r(k) do not differ numerically. Larger voltages require up to 20 iteration steps with the relaxation
parameter ω = 1.

Let be Umax the voltages which tears up a conductive droplet into two smaller droplets. Very large
voltages U/Umax ∈ [0.8, 1] require ω < 1, but iteration (1) converges even for U > Umax to unphysical
shapes with p0 < 0 and κ(x) < 0 for some x ∈ Γu in less than 50 steps with a fixed ω > 1/2.

The given numbers of iteration steps are independent of the number N of discretization points y
(i)
Γ , i =

1, . . . , N on Γu. This independency is proven by the existence of a constant L with ‖p(k)
e −pfix

e ‖C0,α(Γu) ≤
L‖r(k) − rfix‖C2,α(Γu) in a neighborhood of the stationary droplet shape.

Thus, the iteration (1) is much more effective than a Newton-type method to solve the coupled problem.
Only the evaluation of the Jacobian of a non-linear system for r(ϕi, ζi), i = 1, . . . , N describing the points
y

(i)
Γ needs N solutions of the electric sub-problem (2), and N ≈ 1000 in the examples.

Figure 2 (a) shows a quarter droplet in the absence of an electric field. It is axial-symmetric. After the
application of a strong electric field, it becomes lengthened and flattened, Fig. 2 (b). The width diminishes.
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Fig. 2. Quarter droplets (a) in the absence of an electric field and (b) in a strong electric field, U = 24 kV. Plots are not
true in scale, height is exaggerated
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Fig. 3. (a) Quarter ground patches of 3D droplets for U = 0, 4, . . . , 20, 24 kV from above. (b) Heights, widths and
lengths of 50 µl-droplets depending on U
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This effect is illustrated by the ground patches in Fig. 3 together with the dimensions of the droplets.
The droplet height is independent of signU . Hence a droplet in a low frequent alternating electric field
oscillates with twice the frequency [6, 12].

Figure 4 gives the respective 2D results for comparison. In addition to the calculations for deformable
rainwater droplets, analogous simulations are done for the theoretical case of 2D pure-water droplets. In
this case the domain Ω in the respective electric sub-problem (2) includes the droplet and the H2O-dipols
are oriented at the droplet surface. We get a line concentration of polarization charge, and a respective
expression for T and pe at Γu.

The difference between conductive and dielectric droplets is discussed in [7]. 2D droplet models react
more sensitive to an applied field. The 2D model lacks the second curvature term, and the incompressibility
of the fluid couples length and height of a 2D droplet model in an enforced manner [8].

The integral over the ponderomotoric force density pe is not necessarily vanishing. In general the
droplet suffers a total force F and moves leaving a water film. Without real charge and for ε(x) = 1, we
show analytically that

lim
V →0

F (x̄)
V

= ε0∇
∣∣∣∇Φ̃(x̄)

∣∣∣2 = 2ε0∇Ẽ(x̄) · Ẽ(x̄) (6)

holds with the undisturbed electric potential Φ̃ in the absence of the droplet and with the droplet’s centre
of gravity x̄ [9]. The case F = 0 is the rather extra-ordinary one, e.g. if Ẽ is perfectly homogeneous or
if the particle is dimensionless V = 0. Eq. (6) can be used to approximate the motion of whole droplets
on realistically shaped insulators with only one computation of an undisturbed electric field. Neglecting
weather conditions, we find that droplets move into the thin part of insulators and form larger droplets
there.
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6 Conclusion

An algorithm was presented which enables us to simulate the behavior of a deformable droplet in a strong
stationary electric fields. It is based on an iteration decoupling the sub-problems which can be applied to
a class of free boundary problems. Particular features of the 3D simulations are the restriction of the finite
element approximation to a domain close to the droplet and an extrapolation of the discretized ponderomo-
toric force density on the droplet surface by the use of the analytically known growth behavior.

The observation of moving droplets in non-homogeneous electric fields motivates a forthcoming hydro-
dynamical investigation of the droplet fluid including adhesion to the material of the support. The simula-
tion of time-dependent deformable droplets in an alternating electric field involves new difficulties like flux
inside the droplet fluid, inertial effects, induced currents in the fluid and so on. Such a combined solution
of the time-dependent Maxwell’s equations and the Navier-Stokes equation with boundary conditions from
the Young-Laplace equation would require enormous numerical costs.

A further challenge in the simulation of the droplet behavior is the consideration of specific surface
properties of aging insulating material.
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Abstract In this paper a novel 3-D Finite Element (FE) particle based approach is presented to investigate the ion flow
across ionic channels. This consistent model foresees direct integration of the dynamical equations of ions subject to
electromagnetic forces inside membrane channels, considering ion-ion interactions and taking into account explicitly
the effects of molecular friction and thermal noise. The simulation results presented show that the mechanism of open-
ing and closing of the membrane channels (Ca++) as a function of the membrane voltage can be correctly reproduced
by a particle model.

1 Introduction

The exchange of signals between living cells takes place mainly through the cellular membrane, which
represents a selective permeable barrier between the cell and the extracellular environment. The commu-
nication network of chemical signals between cells rules and coordinates various critical cellular functions
including differentiation, apoptosis, etc. The flow of substances across cell membranes takes place through
membrane channels, which are typical hydrophobic regions having a size of the order of few Å, where the
membrane lipid bilayer exhibits ‘openings’. Among interesting substances, ions are of paramount impor-
tance since activation of several critical signalling pathways depends on ionic concentrations (especially
Ca++ and K+) and therefore a number of cellular functions are activated by specific ion concentrations.
For these reasons, the ion transport across cell membranes and the electrolytic equilibrium between the
cells and their environment have a fundamental role in biological systems.

The simulation of the mechanism of ion flow across ionic channels is a very complicated task, for a
number of reasons including the lack of accurate descriptions of channel structure, the difficulty of mod-
eling the behavior of the proteinaceous chains constituting the channel walls, the very high number of
atoms, the very short time scale of the involved dynamical phenomena, etc. Nevertheless several attempts
have been made to build coherent representations of ion flow across ionic channels, in accordance with ex-
perimental measurements. In literature several approaches have been followed for this purpose. The most
used technique for the analysis of the interactions between ions in a biological environment is Molecular
Dynamic (MD), which is based on the atomic model of macromolecular systems, where the microscopic
forces between atoms are represented by potential functions. The motion of all the atoms and particles in
the system is obtained by the integration of Newton classical equations. In this way the macroscopic proper-
ties are deduced from microscopic observations. The link between microscopic and macroscopic properties
is supplied by statistical mechanics. The drawback of such an approach is the huge computational effort,
required as soon as more than few particles are considered and extremely short time steps are needed. This
has prevented MD application to complete simulation of ion transport across ionic channels.

The Brownian Dynamics (BD) is a computational method well suited for the analysis of the ion per-
meation process in the long time scale (ns). The BD considers integration of stochastic equations of ion
motion, where the ion-ion and ion-channel interactions are represented by potential functions. The main
hypothesis of BD is that the solvent molecules are not dealt with explicitly and are represented as a contin-
uous dielectric.
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The Poisson-Nernst-Planck (PNP) model is based on the electrodiffusion theory that describes the
average ionic flux due to gradients of ion concentrations and electric fields. This method is different from
MD and BD because ion motions are not explicitly considered.

In this paper a 3-D Finite Element (FE) particle based model is presented to investigate the ion flow
mechanism by direct integration of the dynamical equations of ions subject to electromagnetic forces inside
the ionic channels. In our approach attention is entirely focused on the moving species and their mutual
interaction (ion-ion interaction) which is believed to be dominant in the description of transport phenomena.
In our model the channel environment is represented synthetically using few quantities, summarizing all
the influencing factors by means of a continuum equation (Poisson equation). This approach has been
especially set up in order to take into account the ion-ion interaction inside ionic channels in a simple way.
This model is able to describe the behavior of ionic channels (K+, Ca++) in terms of total current carried
by ions at various membrane voltages.

The paper is structured as follows: in Section II the mathematical model and finite element discretiza-
tion is presented; in Section III simulation of the Ca++ ion flow across a simple calcium channel is illus-
trated; the authors’ conclusions follow in Section IV.

2 Mathematical Model and Finite Element Discretization

The behavior of ions inside membrane ionic channels is governed by the following system of coupled
equations (Langevin-Lorentz-Poisson), in which the effects of the spatial charge are modelled by assuming
stationary conditions and considering a Poisson problem for the scalar potential ϕ

m · dv
dt

= −h · v + q · (ET + v × BT ) + N(t) (1)

∇2ϕ +
∫∫∫

Ω

fdV = 0 (2)

ET = −∇ϕ + Eeso (3)

where m is the generic ion mass, v is its velocity, h is a viscous friction coefficient, modeling ion interac-
tions with water molecules, q is ion charge, ET and BT , if any, are the total electric and magnetic fields
respectively, N(t) is a random force which takes into account the thermal effects, f is an unknown function
describing the space charge distribution. The total electric field ET consist of two terms: the first is the
contribution due to the scalar potential, the second, Eeso, takes into account the exogenous electric forces,
if any, to which the ion is subject in the cell environment.

In our approach the numerical solution of the above coupled electromagnetic-motional problem is per-
formed according to a self-consistent scheme in which the time-domain integration of the ion motion
equations alternates with the FE solution of the 3-D Poisson problem. The resulting discretized problem
consists of two systems of equations: the first is an FE linear algebraic system regarding the spatial distrib-
ution of unknown potential values at a certain time instant t, the other regards the displacement, occurring
at a certain time step ∆t, of all the moving particles (ions) used in the modelization of the ionic channel.
The FE linear algebraic system is obtained from the minimization of the energy functional associated with
the Poisson equation, in which it is supposed that the space charge distribution at the generic time instant t
is known.

In this way the procedure allows us to determine all the ion trajectories during a certain time interval,
within which the following two steps alternate:

1. In the first step the discretized Poisson equation is solved (initially guessing an ion distribution at
time t=0).

2. In the other step an estimate for the electrical field distribution is derived by suitably post-processing
the obtained scalar potential values; this electrical field is used to determine the ion displacements by time
integrating the Langevin-Lorentz equations, subject to thermal noise. From this a new configuration for the
ion distribution is computed and then used to perform the successive Poisson-solver step.

It is worth noticing that the region where the FE analysis is performed is dielectrically homogeneous
and encloses all the moving ions involved in the flow mechanism.
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The boundary conditions for the FE problem are imposed by evaluating all the contributions due to
sources external to the selected surfaces constituting the boundary. In particular Dirichlet conditions are
used mainly to take into account membrane voltages, whereas nonhomogeneous Neumann conditions
model the effects of surface charge distributions on channel walls.

3 Simulation of ion flow across a Ca++ channel

Some simulations regarding the description of ionic flow across a typical Ca++ channel are shown in order
to illustrate the application and the advantageous features of the above 3-D FE particle model.

In the simulations a commonly used description of the channel geometry and schematization of its
environment are assumed. In particular a cylindrical geometry is considered as shown in Fig. 1 (height 10
Å and radius 5 Å respectively), the cylinder axis is coincident with the z axis.

The channel walls are made of polypeptide chains, which are assumed fixed and are represented by
nonhomogeneous Neumann conditions in the FE analysis.

Two charge reservoirs are considered, one at the beginning and the other at the end of the channel
[CHA98] . These reservoirs represent the ion populations in the close proximities of channel extremities,
ready to access or leave the channel region. The behaviour of reservoirs is approximated by resorting to
fixed point charge configurations placed in the neighborhood of the channel extremities (Fig. 1).

In the following simulations the contributions of these charges is accounted for by means of the external
field Eeso. The aim of the analysis is to investigate the influence of membrane voltage on the opening or
closing of the channel. Assuming that the typical transit time of a Ca++ ion is about 10−9s, the simulation
time interval was chosen one order of magnitude greater that this typical transit time. In order to make
the analysis compatible with the hypothized stationary conditions the integration time step was chosen
equal to 10−15s. During analysis it is also assumed that the ionic channel is always fully occupied by a
number of ions that saturates its geometrical capacity; for the presented geometry this capacity has been
estimated to be four Ca++ ions. For this reason at the beginning (t = 0) four Ca++ are placed inside the
cylindrical region in a non-interfering configuration as shown in Fig. 1. In addition, when one ion exits the
cylindrical region, another ion is added in the successive integration time step on the opposite side, in such
a way to maintain channel full occupancy during analysis. The various computations have been performed
for several values of the membrane voltage. The results are expressed in terms of number of Ca++ ions
crossing the channel during the aforementioned simulation time interval as a function of membrane voltage,
and are shown in Fig. 2. It is worth noticing the influence of the membrane voltage on the channel gating:
for membrane voltages in the range below 30 mV no ion flow is observed, and the ion trajectories are all
confined inside the cylindrical region, as shown in Fig. 3; when membrane voltages greater than 30 mV are
applied, a net charge flow is observed which increases for increasing values of membrane voltages, and the
ion trajectories are no longer confined inside the ionic channel (see Fig. 4).

Fig. 1. Schematization of the adopted channel model
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Fig. 2. Number of ions the channel versus membrane voltage

Fig. 3. Ion trajectories all confined inside the channel for a membrane voltage of 0 mV (simulation interval 10ps)

Fig. 4. Ion trajectories inside the channel for a membrane voltage of 100 mV in the event of an ion exiting the channel
(simulation interval 10ps)
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4 Conclusions

The presented 3-D FE particle model has proven effective for the simulations of the behaviour of ionic
channels. In particular gating of a Ca++ channel due to membrane voltage has been successfully described
in accordance to expected results. The results achieved are in good agreement with analogous simulations
available in literature obtained by using other techniques (PNP) [GNE02]. The main advantage of this 3-D
FE particle approach is the simplicity of treatment of moving ion interactions.
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Abstract Interest in multi-disciplinary simulations as a means of solving coupled electromagnetic-mechanical prob-
lems is increasing. The development of adapted simulation codes is an answer but these codes are often very specialized
and are not always applicable to physically similar problems. For this reason it is advisable to create coupling software
for the existing codes. The MpCCI-library is such a coupling software. In this paper we will present the results for a
coupled simulation of electromagnetic fields in an accelerating cavity and its structural deformation by Lorentz force
via the MpCCI-library.

1 Introduction

Today, numerical simulation plays a key role both in industry and research. Simulation tools and the results
they are providing are an integral part in the design and development of new and better products. Many
aspects of a system/product behavior are affected by the interaction of different physical phenomena. Two
ways are possible to realize such complex simulations. The development of one software package adapted
to the multi-physic problem is one way, a so called strong coupled calculation. It is also possible to use
existing software codes coupled via a coupling software which is called weak coupling. Such a weak
coupling is utilized for the following simulation.

The electromagnetic fields cause forces which may lead to a significant mechanical deformation of
a structure. Thus a feedback effect exists between the field distribution and the geometrical shape of the
studied device. In different cases, where highly accurate fields are needed, this deformation has to be taken
into account and a dynamic “self-consistent” calculation is required.

This paper first describes the general weak coupling procedure with the coupling code MpCCI. Then
one example calculation is explained. In this example we determine the frequency shift caused by the
deformation in a superconducting cavity. We show that the coupled calculation is applicable to our own
specific problem.

2 Coupling

Many codes for the computation of different physical problems may result in different kinds of meshes
adapted to the type of problem that they are being applied for (see Fig. 1). Using weak coupling, a primary
task of the coupling software is the transfer of data between these different meshes and hence the interpola-
tion of the quantities to be exchanged. A second important task of the coupling software is in synchronizing
the calculations produced at different stages of the coupled computational process or in synchronizing cal-
culations performed by separate processing modules (see Fig. 2).

To couple two or more mesh-based numerical codes, a library called MpCCI (Mesh-based parallel Code
Coupling Interface) [1] can be used. The MpCCI library realizes the main tasks mentioned, the interpolation
and the synchronization of the coupling.

MpCCI’s main purpose lies in sending and receiving messages to synchronize the computation process.
It performs neighborhood search and interpolation between the meshes to achieve the reliable exchange of
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Fig. 1. Coupled Simulation Meshes

Fig. 2. MpCCI Software-Layers

coupling data. The neighborhood computation determined in a setup phase is used to establish the inter-
process communication, and to assist the codes in the interpolation of coupling values between different
grids. MpCCI realizes the exchange of mesh-based data (any type of quantities) in one or more specified
coupling areas where the interactions between the specified physical properties take place.

The software MpCCI facilitates the coupling of any of the mesh based simulation software on different
softwares systems (linux, unix, windows,...) simultaneously. The different coupled codes can be run on
different computers and are coupled via the net. The coupled codes generally need an interface to MpCCI.

Here, the electromagnetic simulation is carried out with the software package MAFIA [2] based on the
Finite Integration Technique (FIT, [3, 4]). An MpCCI-interface in MAFIA has been newly implemented.

The software package ParaFep [5] is an object oriented Finite Element program to calculate stability
problems in 2D/3D structures. ParaFep is applicable to different problem types, e.g. linear and non-linear
static. The MpCCI interface is readily available in ParaFep.
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3 Example

Present fundamental research in particle physics and in nuclear physics needs high energy experimental
setups. The use of superconducting cavities with high gradients constitutes an important technological ad-
vance for such facilities. TESLA (TeV Energy Superconducting Linear Accelerator) is a proposal for a su-
perconducting linear accelerator [6]. The TESLA collaboration operates a test facility at DESY (Deutsches
Elektronen-Synchrotron) which will be utilised as a second generation test facility.

The resonant, time harmonic electromagnetic fields inside of superconducting cavities (see Figs. 3 and
4) can be calculated using the so called “curl-curl-equation” (wave equation)

curl
1
µ

curlE − ω2εE = 0, (1)

curl
1
µ

curlH − ω2εH = 0 (2)

where E = E ·eiωt is the complex electric field amplitude and H = H ·eiωt denotes the complex magnetic
field amplitude. The quantities µ and ε are the permeability and the permittivity (material parameters), ω
is the resonant circular frequency (ω = 2πf ) searched for.

The electromagnetic field excerts a Lorentz force on the currents induced in a thin surface layer. The
resulting pressure acting on the cavity wall (see Fig. 5)

Fig. 3. Electric field distribution of the fundamental mode at f = 1.3 GHz in a one-cell-cavitiy type TESLA. The
maximal field strength on axis is 25 MV/m

Fig. 4. Magnetic field distribution of the fundamental mode at f = 1.3 GHz in a one-cell-cavitiy type TESLA. The
maximal field strength on axis is 25 MV/m
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Fig. 5. Pressure distribution p obtained from the electromagnetic field of the fundamental mode at 1.3 GHz in a one-
cell-cavitiy type TESLA. The pressure p ranges between -2.2·10−12 N/m2 (black) and 1.02·10−12 N/m2 (white)
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p =
1
4
(
µ0|H|2 − ε0|E|2

)
(3)

leads to a deformation of the cells in the µm range and a change ∆V of their volume. The result is a
frequency shift ∆f according to

f − f0

f0
=

∫
∆V

(µ0H
2 − ε0E

2)dV∫
v
(ε0E2 + µ0H2)dV

.

Here, f0 is the resonant frequency of the unperturbed cavity. The parameters ε0 and µ0 are the absolute
permittivity and the absolut permeability. The cavities could be driven out of resonance by this infinitesimal
mechanical deformation, since such deformations increase in size with the square of the accelerating
gradient [7]:

∆f = −K · E2

were K is a constant called the detuning factor.
To implement reliable measures that will prevent frequency shift, knowledge of the force distribution is

necessary as well as the field distribution after the deformation. A coupled computation of the electromag-
netic field and mechanical deformation is advisable to get this informations. Calculation of the frequency
shift in a coupled simulation for one cell of a TESLA cavity were performed in the following way.

Firstly, we transformed the curl-curl-equation (1) to an analogous discrete eigenvalue problem

(C̃Mµ−1C − Mε ω
2) �e = 0

with the software package MAFIA [2, 4] (equation (2) analogously). The discretized curl-curl-equation
obtained served in the determination of the eigenmodes of our cavity. Then the distribution of the pressure
inside of the cavity in the fundamental mode of 1.3 GHz was calculated via equation (3) (see Fig. 5). The
pressure vector was converted to the force vector

f = p · dA

by multiplying the grid cell area with the normal component of the pressure.
Secondly, we opened the MpCCI interface and sent the force data at the boundary of the cavity to the

coupling software. MpCCI interpolated the force values of the FIT-grid to ParaFep-grid and sent the new
data to ParaFep. The interpolation of the quantities was established in a setup phase at the beginning of the
coupled calculation. Linear interpolation was used within MpCCI for this example.

Then ParaFep calculated the displcement u of the cavity boundary via

K · u = R

from the outer forces R and a stiffness matrix K. The displacements were given back to MAFIA via
MpCCI.

The Finite Integration Technique allocate material parameters to each grid cell. Now new material pa-
rameters were determined for grid cells with a displaced contour inside. Therefore the material parameter
utilized were averaged proportionally to their modified volume rate (see Fig. 6). This procedure was re-
flected in the change of the material matrices Mε and Mµ−1 of equation (1) and it’s done in an additional
routine outside of the participated coupled softwares. This method is also called Conformal FIT (CFIT)
which is useful for a better approximation of boundaries in Cartesian grids.

Finally, equation (1) was solved again with modified material matrices Mε and Mµ−1 . The result for
the resonant frequency was shifted relative to the first calculations.

4 Results

The cavity has been discretized in MAFIA with 21 × 51 =1071 mesh points in rz-geometry. The wave
equation (1) was solved. We got for the primary calculation a resonant frequency of
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Fig. 6. Differently used material parameters for grid cells in Mafia
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Fig. 7. Calculated deformation in r-direction of a cavity with 3 mm niobium wall thickness for the fundamental mode
of 1.3 GHz

f1 = 1 303 393 294.144Hz.

Since the geometry is axially symmetric we extrapolated the determined force values to a 3D geometry
with 120 × 21 ×51 = 128 520 mesh points. Only the 2× 51× 120 = 12240 force values of the grid points
at the boundary was sent to ParaFep.

The ParaFep geometry (only the cavity structure of niobium with 3 mm thickness, Youngs Modulus
= 105 GPa, Poisson’s ratio = 0.38) with 14 958 meshpoints received the force data. The displacements of
the geometry was calculated with fixed edges and were sent back to MAFIA. The results are shown in the
Figs. 7 and 8.

The resonant frequency calculated after changing the geometry (meshfill) was

f2 = 1 303 393 140.324Hz.

This results in a frequency shift of
∆f ≈ 145Hz.

Reference values are the frequency shift of [8] with a value of ∆f = 150 Hz given for the same dimensions
of cavity with a thickness of 4 mm and fixed edges. Another reference value is given in [6] which gives a
frequency shift of ∆f = 900 Hz for a cavity thickness of 2.5 mm and free edges. In spite of very few mesh
points we approximated the frequency shift with a relative good degree of accuracy.

5 Summary

In this paper we described a weak coupled calculation of electromagnetic fields and mechanical deforma-
tion. A simple example was used as a proof of principle. Expanded simulations which means more steps of
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one coupled calculations will be carried out. Hereby the results of different coupling algorithms like Jacobi
or Gauß-Seidel has to be compared. Additionally a mesh size convergence study will be performed.
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1 Abstract

Many challenging coupled modelling problems arise in microelectronics; this paper illustrates some exam-
ples in the so-called Technology CAD (TCAD) area, encompassing process and device modeling, and will
mention additional issues in the closely related fields of equipment and circuit modeling.

2 Introduction

On the eve of the “nano-electronics” era, the integrated circuit technology scenario is continuously evolving
along the Moore scaling rule, affecting the complexity of the physical and mathematical problems to be
addressed for numerical modelling.

The scaling of geometrical dimensions is emphasizing the importance of quantum effects, such as
charge carriers confinement in the channel of MOS transistors, and tunneling across the gate dielectric.

As some critical dimensions are approaching the nanometer range statistical fluctuations of discrete
particles can no longer be accurately described in terms of average concentrations only. As in device simu-
lation a statistical description of the behaviour of individual electrons and holes can be achieved solving the
Boltzmann Transport Equation by means of MonteCarlo techniques, a comprehension of the atomic scale
mechanisms underlying macroscopic dopants diffusion, activation and clustering phenomena requires an
insight not achievable by continuum models only.

Reduction of the elementary devices (i.e. MOS transistors) footprint allows to drastically increase their
packing density, therefore undesired interactions between adjacent transistors or memory cells, such as
proximity effects during fabrication and electrical or thermal disturbs during device operation are becoming
more important.

Furthermore as vertical dimensions (e.g. gate oxide thickness and junction depth) shrink, effects re-
lated to interfaces between different materials keep increasing, such as dopant segregation, diffusion along
interfaces and grain boundaries, and carriers scattering due to surface roughness.

On the other hand the die size is not scaling, as the increased density is typically exploited to add new
functionality for the final product, that is increasing circuit complexity and the number of transistors; the
consequence is that circuit speed is becoming limited by the delay due to global interconnect wires with
respect to the intrinsic active device delay contribution (gate and junction capacitances).

Last but not least, as pure geometrical scaling is becoming more and more difficult (since state-of-
the-art transistors are approaching fundamental scaling limits), in order to keep the same performance
improvement rate the microelectronics industry is making use of aggressive technology and elementary
devices engineering, introducing at each new generation new dopants, new materials, new architectures.
In particular non-equilibrium phenomena are often exploited, with overshoot and ballistic effects in carrier
transport in device operation, as well as the evolution towards rapid, high temperature processing in dopants
annealing technology.

∗Invited paper at SCEE-2004
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These trends can – at least for what concerns modelling – be largely interpreted as a drive towards an
increase in problems coupling:

• between different physical effects: electrical / thermal / mechanical / optical / electromagnetic in-
teractions are common, and in some cases (e.g. sensors or equipment modelling) also chemistry and
fluido-dynamics play an essential role;

• between different elementary devices, due to their direct interaction because of their spatial prox-
imity, or through the parasitic effects introduced by their non-ideal interconnection (e.g. cross-talk,
inductive effects and in general noise injection and propagation either in the substrate or through the
metal interconnect lines);

• between materials, due to cross-contamination or integration issues, through the increasing effects
related to material interfaces, or even through the influence between the bulk of two different regions
like in the case of the remote Coulomb scattering contribution to mobility degradation;

• between problems occurring on different space or time scales, like in the interaction between gas
dynamics and chemistry occurring on a reactor scale with the deposition or growth rate at the feature-
size scale, or between atoms jump attempt frequency, microscopic dopants migration and macroscopic
diffusion.

In the following we will describe shortly perceived needs, status and/or some recent advances for a few
examples of such coupled problems.

3 Examples of coupled problems

3.1 Oxidation and mechanical stress

Fully accounting for the 3D mechanical stress distribution during the whole process flow is a very tough
numerical problem still largely unsolved. In fact even 3D oxidation by itself requires the solution of a
diffusion/reaction problem with moving boundaries, which for the complex layer system corresponding to
realistic microelectronic devices is still not feasible with the required level of accuracy and stability. As
a consequence, only simplified problems can - at present - be realistically tackled in an industrial environ-
ment. A non-trivial example is the description of the planar stress distribution dependence on the active
area layout (Fig. 1). Alternatively the robustness (from a mechanical point of view) of several different
processing options can be assessed by simulating a 2D vertical cross section in a critical region of the
device and monitoring extremal quantities like the maximum or average resolved shear stress in silicon
(Fig. 2). By comparing their time evolution during the process flow the most critical technological modules
and/or recipes can be identified, and useful guidelines for reducing reliability concerns related to extended
defect formation can be obtained.

Fig. 1. Simulated final shear stress distribution on SRAM layout (planar stress approximation). Inset: SEM planar view
of active area layout after delayering
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Fig. 2. Simulated maximum and average shear stress (right Y axis) during full process flow (left Y axis: thermal budget
profile)

Fig. 3. Typical distribution of wire lengths (normalized to chip size) for a block-based design

3.2 Interconnect parasitics extraction

With continuous scaling of transistor dimensions and chip size increase, interconnect lines play a key role in
the design of modern chips. In deep submicron technologies with multi-million transistors, it is not trivial to
manage very large circuit layouts in order to extract interconnect parasitics which affects signal timing and
integrity. In a flat extraction approach, which considers the layout spread over a single level, it is difficult to
handle at the same time the whole layout description and the extracted RC values. This approach generates
large netlists composed of millions nodes impractical for an electrical Spice-like simulation. To cope with
these problems, different methods have been implemented. A hierarchical approach, which considers the
layout divided in different levels and blocks, is useful to avoid an impractical pure flat extraction and to
distinguish between global and local interconnects (Fig. 3).

Depending on the sub-problem size and according to the required level of accuracy different simulation
methodologies are applied, as detailed below.

Global interconnects link different functional blocks inside the chip, therefore details at transistor level
can be neglected, while small blocks of elementary circuits where accuracy plays an important role can be
extracted and simulated at transistor level. In this case the focus is on local interconnects, where coupling
capacitances and resistances in general constitute the dominant elements of interconnect parasitic lines.

On the other hand between different blocks signals are generally distributed with busses (global rout-
ing). According to the required data rate the model used to describe such global interconnect behavior can
range from a simple RC ladder to a distributed RLC transmission line.
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The most sensitive case is represented by so-called critical nets (for example clock distribution across a
microprocessor), for which a high accuracy is needed also for long interconnects, since their performance
deeply affect the global performance of the circuit.

A smart approach to extract the parasitic elements of critical paths with the desired precision is
the Floating Random Walk (FRW) algorithm. It is based on a Monte Carlo approach which looks for
the neighboring conductors along the critical net and evaluates the coupling capacitance by estimating the
electric field with a recursive formula applied for each “hop” of the random walk between the conductor of
interest and its neighbors [Bra03]. In this case only the RC parasitic components related to the critical net
of interest are extracted, so it is not necessary to mesh the whole layout.

In Fig. 4 a schematic of RC parasitics extraction methodology is shown. Numerical calculation engines,
i.e. field solvers and/or FRW tools, can be used directly on critical nets or to build libraries of analytical
formulas (or look-up tables) for typical structures.

A special case for extraction is represented by repetitive structures such as an array of SRAM, DRAM or
Non-Volatile (e.g. Flash EEPROMs, Fig. 5) memory cells. Due to the symmetry of the cell array and using
reflecting boundary conditions, a solution of the Laplace equation with a standard finite-element based
solver becomes feasible and attractive. Such a small structure also allows a fully 3D parasitics extraction
including vias and contacts. FRW due to its general working principle can also be used for the parasitic
extractions of this particular layout.

Fig. 4. Schematic of RC parasitics extraction methodology

Fig. 5. 3D view of interconnect lines on a portion of Flash array (10 x 16 cells). The parasitic capacitances have been
extracted both with a conventional field solver and with an efficient Floating Random Walk code [Bra03]
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Fig. 6. Comparison between parasitic capacitances simulated with a 3D Laplace equation solver, the Floating Random
Walk algorithm and on-chip measurements for geometrically regular structures

Fig. 7. Pictorial view of four adjacent Flash cells illustrating parasitic capacitive coupling between floating gates.
Dielectrics, Word Line along cutplane AA’ and one drain contact are not shown to allow better visibility of the floating
gates

In Fig. 6 capacitances extracted on regular patterns of intermediate complexity with different techniques
are compared against accurate on-chip measurements. The FRW technique compares favorably in terms of
CPU/accuracy trade-off with respect to conventional Laplace equation solvers – which become too time
consuming already for such medium-size problems – on one hand (Fig. 6), and with respect to layout
pattern-based extraction tools – which are not suitable for complex, geometrically irregular layer structures
– on the other hand.

However problems where the coupling with transport in silicon is of primary concern can be more thor-
oughly investigated by means of device simulation; an example is depicted in Fig. 7–8, where a 3D finite
element-based solution of the Drift-Diffusion model is applied to evaluate the capacitive disturbs induced
on a Flash cell by the charge stored on the floating gates of neighboring cells [Ghe05]. This approach,
although more CPU intensive, leads to a more straight-forward and realistic coupling with technology op-
tions via process simulation, and allows to take into account localized perturbation effects on the current
flowing in active devices.

3.3 Phase Change Memory modelling

The chalcogenide-based Phase-Change Memory (PCM), also called Ovonic Unified Memory (OUM), is
a promising non-volatile semiconductor memory technology for stand alone and embedded applications.
Such devices rely on reversible thermally-induced phase changes of thin-film chalcogenide materials, like
Ge-Sb-Te (GST) alloys. Design and optimization of PCM cells require numerical models accounting for
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Fig. 8. Left: electrostatic potential distribution along the cutplane AA’ of Fig. ref4celle, when the disturbed cell (left) is
erased and the disturbing cell (right) is programmed. An asymmetry in the channel potential of the disturbed cell can
be qualitatively seen. Right: corresponding electron concentration along the channel of the disturbed cell as a function
of the charge stored in the floating gate of the disturbing cell

Fig. 9. 3D temperature distribution (top) and 2D cross sections on two adjacent Phase Change Memory (PCM) cells
during “reset” operation on the left cell

carrier transport and phase change dynamics in the GST chalcogenide material. Recently, a model for GST
band structure and carrier transport for both crystalline and amorphous material was developed [Pir02],
and successfully implemented in a standard semiconductor device simulator. The electrical model has been
self-consistently coupled to heat conduction equations; thermal conductivities for the GST, SiO2 and other
materials used in such devices were taken from literature, while a Monte Carlo nucleation and growth
model [Pen97] was implemented to describe the phase transition from amorphous to crystalline GST.

Such a comprehensive electro-thermal model can describe complex phenomena such as electronic
switching to the on-state, non-equilibrium, localized self-heating, and the crystallization kinetics.

Figure 9 reports the simulated thermal profile for two adjacent “µ-trench” PCM cells (please refer
to [Pel04] for a detailed description of the cell structure). Relying on the available experimental data,
it was possible to accurately tailor the simulation parameters, to perform predictive simulations on the
PCM technology scaling capabilities [Pir03] and to investigate the impact on thermal cross-talk between
neightboor bits down to the 45 nm technological node. In Fig. 10 the programming curve of the PCM cell
is reported, showing the phase change distribution inside the cell. The amorphized (high resistivity) regions
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Fig. 10. Simulated “programming curve” for a PCM cell, showing the programmed resistance as a function of the
programming pulse voltage. On the top the corresponding self-consistently simulated amorphous region is shown in
red for each of the nine bias points

are shown in red, highlighting the existence of parallel conductive paths that cause a low resistance state
even with a not-fully crystalline cell.

3.4 Electro-Static Discharge modelling

The modelling of Electro-Static Discharge (ESD) events is a particularly challenging task, since it involves
the interaction of the protection device (e.g. a BJT transistor) with the surrounding circuit on the chip, and
with the external environment through the package.

In the protection device the high intensity transient current peaks cause strong current crowding which
in turn leads to the formation of hot spots due to localized self-heating, while external parasitic capacitances
and inductances play an important role in determining the transient current overshoot.

In particular in the case of so-called Charged Device Model (CDM) discharge events the tester-package
electro-magnetic interaction has to be taken into account. The problem can be modeled extracting for
each package type an equivalent compact circuit describing the pin-to-pin interactions in terms of their
coupling capacitances and mutual inductances, modelling the tester-package interaction with a lumped
equivalent circuit (Fig. 11), and simulating the integrated circuit by means of a mixed-mode approach where
the snapback of the pnp BJT ESD protection device is described with a thermo-electric Drift-Diffusion or
Hydrodynamic transport model.

With such an approach it is possible to investigate internal discharge current paths during CDM events,
which could not be easily achievable experimentally, and the corresponding current density and self-heating
distributions inside the protection device can be compared with those occurring during the more established
Human Body Model (HBM) discharge events (Fig. 12).

3.5 Full 2D quantum-mechanical charge confinement

Starting from the works of Stern [Ste70], many attempts have been made in the last two decades to correctly
include quantum mechanical (QM) effects in MOSFET device simulation. The investigation of the quan-
tized inversion layer has been initially addressed by one-dimensional (1D) models that take into account
QM effects in the direction normal to the silicon-oxide interface. These approaches are reliable enough as
far as a quantitative description of the threshold voltage shift and of the effective oxide thickness is con-
cerned, which are the primary effects in long channel devices. However, QM effects along the transport
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Fig. 11. Simplified schematic of equivalent circuit used in Charged Device Model ESD event simulation. The lateral
npn BJT (in red) is described numerically with a Drift-Diffusion model

Fig. 12. Maximum device temperature during ESD events for Human-Body Model (black, top inset) and Charged
Device Model (red, bottom inset) discharge event simulation

direction cannot be neglected in sub-50-nm transistors, thus requiring a fully 2D approach to solve the
Schrödinger equation in order to take into account the confinement effects near the source/drain potential
barriers.

A full-2D treatment of charge quantization in the channel of MOS transistors [Pir02b, Gus03] is
achieved by solving a classical (Drift-Diffusion) transport model self-consistently with the 2D Poisson-
Schrödinger equation. Figure 13 shows the classical and the QM charge distributions obtained in a
deca-nanometer MOS device. It is worth noting that the peak charge concentration is located at the in-
terface for a classical (CL) solution, but is shifted about 1 nm toward the bulk in the QM model. In the
latter case the strong confinement leads to a much lower value for the QM charge in the channel and in the
gate overlap regions; on the other hand, in the source/drain regions the QM confinement is removed, and
the classical distribution is exactly recovered at a slightly larger distance from the silicon-oxide interface.
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Fig. 13. Comparison between electron distribution in a MOS vertical cross section under low Vds bias condition.
Left: classic result; right: full-2D Quantum-Mechanical solution. The position of gate (G), source (S) and drain (D)
electrodes is schematically marked on both figures; the depth direction has been stretched to highlight the different
distance from the gate oxide of the peak channel concentration

4 Conclusions

We have presented a few cases of challenging problems in TCAD, emphasizing the increasing importance
of coupling between physical effects, between different devices, between different materials, and between
sub-problems occurring on different space or time scales.

In most cases further advances in modelling of such problems would require improvements in the
identification of the most suitable physical model and of their mathematical formulation, along with the
exploitation of more efficient numerical algorithms, but would also largely benefit from the availability of
more flexible and modular modelling tools.

For the future it is expected that the trends related to the fast evolving scenario of the microelectronic
industry will further enhance the complexity and lead to even stronger sub-problems coupling; to address
the resulting modelling needs a comprehensive, flexible computational modelling platform able to cope
with different physical phenomena and spatial dimensionality, and exploiting a variety of deterministic and
statistical numerical techniques will be needed.
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Abstract The paper investigates some crucial aspects in the derivation of efficient time-domain equivalent circuits
of lossy multiconductor transmission lines. We firstly highlight the possibility to achieve an exact extraction of the
delays from the propagation operators in the Multi Transmission Line model. This provides best properties for defining
regular remainders of describing operators to be identified. Secondly, we address the problem of representation of such
remainders, showing how a proper “rank” condition on the residue matrices leads directly to a minimal order circuit,
so improving the accuracy of the procedure. The proposed formulation and identification procedure are then applied to
a reference test case and results are compared to a more traditional approach.

1 Introduction

The modern design and verification of complex high-speed circuits is crucially based on simulation tools
which are required to be at the same time accurate and efficient. Usually the overall electromagnetic system
can be modeled as a network composed of distributed and lumped elements: the problem is then reduced to
the derivation of a suitable model from the electromagnetic characterization of each element, often based
on time and/or frequency-domain samples of the port variables (e.g., [1]–[5]). As long as complexity,
number of components and clock frequencies increases, the simulation of distributed elements affects the
computational burden, posing severe limitations to the complete system analysis. Therefore, accurate and
efficient tools should be characterized by: (i) a satisfactory electromagnetic description of the different
subsystems and of the coupling between them; (ii) an efficient model-order reduction procedure to allow
simulation of large systems.

There are two possible approaches to the problem (see [6] for a comprehensive review). In the first
one all the linear subsystems (lumped and distributed) are modeled together, and a “blind” model order
reduction is applied to the complete linear subsystem before simulation of the entire system. The second
approach requires the separate modeling and the model-order reduction of each distributed and lumped
element. Although this latter approach produces in the first step a more complex model, it allows exploiting
usefully valuable qualitative information on the physical properties of each element in the subsequent
process of model-order reduction. On this line there are some challenging tasks, mainly due to the coupling
between elements for which the propagation (and the related delays) plays a significant role (the electrically
long interconnects) and elements for which the propagation may be neglected (short 3D interconnects,
lumped terminal devices, . . . ).

It is known in literature that the generalized method of characteristics (MoC) provides the most suit-
able model to perform transient analysis of electrically long transmission lines, i.e. lines for which the
propagation delays play a significant role (e.g., [2]-[5]). In the frequency domain, which is the natural do-
main to take into account the frequency-dependence of the line p.u.l. parameters, the model obtained by
using MoC is described by operators characterized by a rather complicated behavior. These operators, in
particular, show a singular behavior at infinity due to the presence of irregular terms mainly arising from
the delays associated to propagation. Furthermore, the corresponding time-domain model suffers from the
drawback of costly time convolutions.
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For such reasons, an accurate and efficient model can be derived only if the delay terms are properly
extracted, and the regular remainders are approximated with reduced-order models. The most commonly
adopted approaches to extract these delays are based on an asymptotic evaluation of the behavior of the
frequency domain operators (e.g., [5]-[8]).

In this paper we will firstly show how an “exact” delay extraction procedure, based on the theory
of the perturbation of the spectrum of symmetric operators [5], can be performed in the general case of
lossy multiconductor lines with frequency dependent parameters. After the exact delays extraction, the
regular remainders, are identified with reduced order equivalent circuits by exploiting valuable qualitative
information on their smoothness properties. Moreover, a discussion on the problem of minimal order circuit
synthesis is considered, leading to a “rank” condition which is shown to improve the accuracy of the
identification. The proposed method is then applied to a test case of multiconductor transmission line and
compared to standard techniques.

2 The Mathematical Model

Let us consider a line of length d consisting of m signal conductors and a reference one. The frequency-
domain currents distributions I and voltages V along the line are solutions of the telegrapher’s equations:

−dV

dz
= Z(s)I,−dI

dz
= Y(s)V . (1)

With a suitable definition of the per-unit-length impedance matrix Z(s) and admittance matrix Y(s)
these equations describe the most general case of lossy multiconductor lines with frequency dependent
parameters. Having defined the terminal variables as V k, Ik, k = 1, 2 the following equivalent multiport
representation may be derived (e.g. [5]):

I1(s) = Yc(s)V 1(s) + J1(s), I2(s) = Yc(s)V 2(s) + J2(s), (2)

J1(s) = P(s)[−2I2(s) + J2(s)], J2(s) = P(s)[−2I1(s) + J1(s)]. (3)

Equations (2) are the network equations at the two line ends, while equations (3) describe the control
laws of two controlled current sources. The characteristic admittance matrix Yc(s) and the propagation
operator P(s) are given by

Yc(s) = (
√

Z(s)−1Y(s)−1)Y(s), P(s) = e−d
√

Y(s)Z(s). (4)

The time-domain model is obtained by reverse transforming (2) and (3), therefore involving the time con-
volution product between the voltage and current waveforms and the inverse transforms of (4), i.e. the line
impulse responses: yc(t) = L−1[Yc(s)], p(t) = L−1[P(s)].

This model is extremely accurate since it fits naturally the propagation: for instance, when port 2 is
matched J1 = 0 and the model exactly provides the characteristic admittance as the input admittance
at port 1. Weak points of this model are the difficult evaluation of the impulse responses and the high
computational cost of the time convolutions, which lower the efficiency.

The impulse responses yc(t), p(t) cannot be evaluated analytically even when the p.u.l. parameters are
given in analytic form. On the other hand, they cannot be computed numerically because of the presence
of delayed Dirac pulses and/or highly irregular terms that are “unbounded”. Therefore the literature has
proposed a semi-analytical approach with the following steps: (i) evaluate analytically the irregular terms of
these functions; (ii) extract them; (iii) perform a numerical evaluation of the remainders, possibly associated
to a model-order reduction [5]-[8]. The key point in this approach is given by the asymptotic evaluation of
the behavior of Yc(s) and P(s) for s → ∞, which has been already proposed, for instance, in [7]. Here
we underline the possibility to extract exactly these irregular terms by applying the perturbation theory of
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symmetric matrices as described in [5]. First the operators are decomposed in a way such to highlight their
principal parts Ycp(s) and Pp(s), namely the leading parts as s → ∞:

Yc(s) = Ycp(s) + Ycr(s), P(s) = Pp(s) + Pr(s). (5)

If the principal parts are computed exactly, the remainders are low-pass functions, with the following
asymptotic behavior

Ycr(s) = O(1/s), Pr(s) = O(1/s), for s → ∞. (6)

To briefly review the main steps of the analytical evaluation of the principal parts, let us define the
matrix:

Λ(s) = Y(s)Z(s)/s2. (7)

The functions Yc(s) and P(s) may be diagonalized as

P(s) = U(s)diag
(
e−ds

√
λ1(s), . . . , e−ds

√
λn(s)

)
U−1(s), (8)

Yc(s) = U(s)diag

(
1

s
√

λ1(s)
, . . . ,

1
s
√

λn(s)

)
U−1(s), (9)

where λi(s) and the columns of U(s) are, respectively, the eigenvalues and the eigenvectors of the matrix
(7). For a large class of lines of practical interest, which include the RLGC lines and the lines with disper-
sive dielectric, the starting point is the expansion of eigenvalues and eigenvectors for s → ∞ as follows:

λi(s) = λ
(0)
i + λ

(1)
i

s + . . . , ui(s) = u
(0)
i + u

(1)
i

s + . . .

The zero-order terms λ(0)
i and u

(0)
i are, respectively, the eigenvalues and eigenvectors of

Λ∞ = lim
s→∞

Λ(s), (10)

which can be easily obtained from the high-frequency behavior of the p.u.l. parameters Z(s) and Y(s). This
information allows a straightforward extraction of the principal part of Yc(s):

Ycp(s) = Y∞. (11)

The principal part of P(s) is analytically computed as:

Pp(s) =
n∑

i=1

e−µiTiAie
−sTi , (12)

where Ti is the delay associated to the ith mode, Ai is a matrix given by the product between the ith the
right column and left row eigenvectors of matrix (10) and µi(s) is the damping coefficient of the ith mode
that could be evaluated from the knowledge of the first order term λ

(1)
i in the expansion of λi(s) [5]. Note

that the procedure is based on the possibility to know the high-frequency behavior or the p.u.l. parameters.
This information may be easily obtained in a very consistent way also in cases when the p.u.l. parameters
are not given analytically but only known in terms of frequency samples, as shown in [8]. The difference
between the delay extraction procedure presented here and those at present proposed in literature (e.g.,
[8]), is the analytical determination of the amplitude of the damping factors in equation (12), besides the
delays Ti. For instance, by applying the method proposed in [8], only the delays are analytical evaluated
and extracted, so not all the informations achievable from the knowledge of p.u.l. parameters are exploited
at the best. Finally, it is important to stress that a similar approach may be adopted also for another class of
dispersive lines, to which belong the lines with pronounced skin effect. In such a case the starting point is
the expansion in Laurent series in the neighborhood of s = ∞ by powers of 1/

√
s [5].
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3 Efficient Identification of the Reduced Lumped Equivalent

By comparing (2)-(3) with (5), (11) and (12) it is evident that the irregular terms may be exactly imple-
mented by a resistive multiport at each termination and by damped delayed sources. Therefore the com-
plete equivalent circuit could be sinthezised once the regular remainders are approximated by means of
a reduced-order model. Efficient identification of the regular parts of the responses demands some require-
ments to be fulfilled [10]:

1. extraction of irregular terms has to be performed in a way leaving the “simplest” remainder to be
identified;

2. valuable qualitative information on the properties of these reminders have to be “a-priori” exploited in
the closed form expansion;

3. the most appropriate minimization procedure have to be applied;
4. the identified expression must lead in a straight-forward way to the synthesis of passive lumped equiv-

alent circuits.

With respect to the first point, we just mention that the “exact” delay extraction as described by
eq. (11) guarantees the remainders to be regular functions, with a low-pass asymptotic behaviour. Sev-
eral expressions have been proposed as expansions for the identification of the regular remainders. We
consider a rational approximation in the classical pole-residue form as in equation (13), where for example
Ycr(s) is given as:

Ycr(jω) =
N∑

i=1

Ri

1 + jωτi
, (13)

where τi are positive time costants, Ri residue matrices, N is the order of the expansion. An important issue
to be clarified here is the order of the dynamic circuit to be synthesized after the identification procedure
has been successfully applied. Using any expansion in the form of equation (13), the number of dynamic
elements in the equivalent circuit is given by:

N∗ =
N∑

i=1

rank(Ri). (14)

It is important to understand that, since normally N∗ is fixed as degree of complexity of the equivalent
dynamic network, the case of rank(Ri) = r > 1 have to be avoided since it corresponds to constrain
r time constants τi to be equal, so limiting the performance of the identification at a fixed order. Conse-
quently, the best way to derive an N∗ order-approximated circuit model from given responses is to add, in
the identification procedure, the rank-1 constraint on residue matrices Ri. This condition cannot be explic-
itly enforced if identification procedures based on some linearization are used, such as the Model Based
Parameter Estimation method [10], the Subspace System Identification method [12], or the Vector Fitting
method [9],[13]. In fact, in the general case, using any of these methods the residues Ri come out with full
rank. Some nonlinear optimization is therefore needed if the afore mentioned condition has to be fulfilled.
In this work we combine the Vector Fitting algorithm to a Nonlinear Least Square for the identification of
the regular part of a m×m MTL characteristic admittance. Best results are in fact obtained when the non
linear procedure is launched after a good starting point has been estimated by means of Vector Fitting. The
procedure is then as follows: firstly a vector fitting algorithm with N = N∗/m poles is launched; then,
singular value decomposition of each full rank residue Ri is performed, and each residue Ri is written as
the sum of m rank-1 residues, Rij where j=1,..m. Each of them is obtained by including in the SVD decom-
position only a singular value at one time, and replacing the others with zero. At this point the nonlinear
optimization procedure gets, as inputs, N poles determined by Vector Fitting repeated m times, and as
corresponding rank-1 residues, those determined by the decomposition described above. In this way, the
equality constrains between poles determined by Vector Fitting are removed and fitting error decrease, but
the corresponding circuit order N∗ does not increase.

Synthesis of the equivalent circuit can be performed easily [10] once a state space representation has
been obtained from the Laplace domain representation.
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Fig. 1. regular part of RLGC trasmission line characteristic admittance Ycr22

Table 1. rms errors on components of Ycr

rms error VF VF + NLLS
σ11 7.60e-6 6.47e-6
σ12 3.13e-6 2.32e-6
σ13 1.46e-5 6.21e-6
σ22 1.78e-5 1.46e-6
σ23 3.13e-6 2.32e-6
σ33 7.60e-6 6.47e-6

4 A Test Case

The formulation and identification procedure proposed and discussed above have been tested with refer-
ence to a multi-conductor RLGC transmission line (m = 3) considered in reference [14]. After the exact
extraction has been applied to the describing functions, as described in Sect. 2, we simply compare the
identification results at a fixed order of the equivalent circuit (6 dynamic components), as obtained by ap-
plying the standard Vector Fitting technique and our method. The results of the identification are shown
in Fig. 1 for the Ycr22 component, and summarized in Table 1 as rms error for each component, where the
advantage in terms of accuracy ranges from 0.1 to 1 order of magnitude. Note that NLLS refinement step
leads to a more uniform distribution of rms errors, since after applying this procedure, all the errors are
in the same order of magnitude. Furthermore we underline that, in this example, both VF and NLLS steps
have been performed with all matrix components unitarily weighted.
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2. J.S. Schutt-Ainè, S.S. Kang, Guest Editors, Scanning the Issue, “Interconnections - Addressing the Next Chal-
lenge of IC Technology (part II: design, characterization, and modeling)”, IEEE Proceedings, Vol. 89, Issue
5, May 2001, pp. 583 - 585



86 M. de Magistris, L. De Tommasi, A. Maffucci, and G. Miano

3. F.G. Canavero, Foreword: special issue on “Recent Advances in EMC of Printed Circuit Boards”, IEEE Trans.
on Electromagnetic Compatibility, Vol. 43, Issue 4, Nov. 2001, pp. 414 - 415

4. M. Celik, L. Pileggi, A. Odabasioglu, IC Interconnects Analysis, Kluwer, 2002
5. G. Miano, A. Maffucci, Transmission lines and lumped circuits, Academic Press, U.S.A., 2001
6. Achar R., Nakhla M.S., “Simulation of High Speed Interconnects”, IEEE Proceedings, Vol. 89, Issue 5, May

2001, pp. 693 - 728
7. C. Gordon, T. Blazeck, R. Mittra, “Time-Domain Simulation of Multiconductor Transmission Lines with

Frequency-Dependent Losses”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
Vol.11, Issue 11, Nov. 2002, pp. 1372 - 1387

8. S. Grivet-Talocia et al., “Transient Analysis of Lossy Transmission Lines: An Efficient Approach Based on
the Method of Characteristics”, IEEE Trans. on Advanced Packaging, Vol. 27, Issue 1, Feb. 2004, pp. 45 - 56

9. B. Gustavsen, A. Semlyen, “Rational Approximation of Frequency Domain Responses by Vector Fitting”
IEEE Trans. on Power Delivery, Vol. 14, Issue 3, Jul. 1999, pp. 1052 - 1061

10. R. Neumayer, A. Stelzer, F.Haslinger, R. Weigel, “On the Syntesis of Equivalent-Circuit Models for Multiports
Characterized by Frequency Dependent Parameters”, IEEE Trans. on Microwave Theory and Techniques, Vol.
50, Issue 12, Dec. 2002, pp. 2789 - 2796

11. M. de Magistris, A. Maffucci, “Identification of a Spice Reduced-Order Model for Lossy Interconnects from
Terminal Behavior”, Proc. of EMC-Zurich 2003, Zurich, CH, Feb. 2003, pp. 443 - 448

12. S. Grivet Talocia, F. Canavero, I. Maio, I.S. Stievano, “Reduced Order Macromodeling of Complex Multiport
Interconnects”, URSI General Assembly, Maastricht, Belgium, Aug. 2002

13. B. Gustavsen, “Computer Code for Rational Approximation of Frequency Dependant Admittance Matrices”,
IEEE Trans. on Power Delivery, Vol. 17, Issue 4, Oct. 2002, pp. 1093 - 1098

14. E.C. Chang, S.M. Kang, “Transient Simulation of Lossy Coupled Transmission Lines Using Iterative Linear
Least Square Fitting and Piecewise Recursive Convolution”, IEEE Trans. on Circuits and Systems I, Vol. 43,
Issue 11, Nov. 1996, pp. 923 - 932



Symbolic Methods in Industrial Analog Circuit Design
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Abstract Industrial analog circuits are usually designed using numerical simulation tools. To obtain a deeper circuit
understanding, symbolic analysis techniques can additionally be applied. Approximation methods which reduce the
complexity of symbolic expressions are needed in order to handle industrial-sized problems. This paper describes
aspects of the field of symbolic analog circuit analysis. Some state-of-the-art simplification algorithms for linear and
nonlinear circuits are presented. The basic ideas behind the different techniques are described and two application
examples for the linear and nonlinear case will be demonstrated.

1 Introduction to Symbolic Circuit Analysis

The motivation for applying symbolic techniques to the field of analog circuit design has been to gain
insight into circuit behavior by interpreting analytic formulas instead of using traditional numerical design
and simulation tools which lack in providing deeper design understanding. However, it becomes apparent
quite quickly that exact symbolic analysis yields expressions which are too complex to be of any use.
Obviously, for industrial circuits with more than just one transistor it is impossible to obtain useful results
due to the extreme computational complexity of symbolic calculations. This contradicts the initial intention
of symbolic analysis, namely to gain insight into unknown circuit behavior. This motivated the development
of simplification algorithms which lead to a breakthrough in the field of symbolic circuit analysis.

The equation system describing the behavior of an analog circuit consists of equations originating
from Kirchhoff’s current and voltage laws as well as of the circuit element characteristics. It can be set
up automatically using standard formulation methods such as the Modified Nodal Analysis or the Sparse
Tableau Analysis. In general, the circuit equations are given by a differential-algebraic equation system
(DAE system)

F =
(
f(x(t), x′(t), y(t), u(t) ; p)

g(x(t), y(t), u(t) ; p)

)
= 0 for all t ∈ I . (1)

Here, u : IR → IRr denotes the inputs, x = (v, i) : IR → IRk denotes the vector of dependent variables,
y : IR → IRs denotes the outputs, and I ⊂ IR denotes a time interval. Since we are working with symbolic
equations, F is parameterized by symbolic element parameters p = (p1, . . . , pN ) (like a resistor value R1,
a voltage source value V0, or a transistor parameter βF ).

1.1 Symbolic Simplification Algorithms

As mentioned above, symbolic analysis of large analog circuits seems to be senseless as long as the com-
plexity problem has not been solved. Thus, in order to reduce the complexity of the symbolic expression,
one needs to simplify it.

In general, the term symbolic simplification or symbolic approximation refers to a whole family of hy-
brid symbolic/numeric algorithms for expression simplification. These techniques require more numerical
knowledge about the investigated circuit than manual simplifications but yield compact expressions with
predictable error in a fully automated way. In manual circuit analysis the decisions on which expressions to
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keep and which ones to discard are based on vague and only qualitative assumptions (e.g. R1 � R2) that
do not allow for assigning precise error figures to simplified expressions. For automating the designer’s
behavior within a computer program one needs exact figures to simplify an expression because qualitative
relations between elements are not sufficient for determining the importance of a term especially if the
expression to be simplified consists of non-trivial combinations of symbols.

The basic idea behind the simplification algorithms can be outlined as follows: starting with a symbolic
equation system F describing the circuit’s behavior, the user chooses one or more numerical reference
solutions fi as well as an error bound ε. The algorithms then apply symbolic simplifications to the system
(e.g. the deletion of an entire expression in a sum) and solve this simplified system numerically. The hereby
obtained solutions f̃i are compared to the reference solutions using an appropriate error norm: δi = ‖fi −
f̃i‖. If the error bound is exceeded, i.e. max δi > ε, the simplification is undone. This is repeated until
no more simplifications are possible without a violation of the error bound and the simplified symbolic
system F̃ is returned.

The simplification algorithms assure that the numerical behavior (with respect to the chosen refer-
ences fi) of the simplified system coincides with that of the original system within the user-given error
bound. Depending on the analysis task, the reference solutions fi can for example be a numerical transfer
function, its poles and zeros, or a time-dependent solution.

1.2 Ranking Methods

The order in which to simplify terms from the equation system is one of the crucial points: It is quite clear
that those terms should be simplified first which have only a minor influence on the output behavior. Terms
with a large influence should not be removed at all. To achieve a maximum number of simplifications and
to avoid unnecessary modifications an optimized order, the so called ranking, should be used. For this, a
ranking algorithm is needed which predicts the influence on the output a modification would cause. As
the number of possible simplifications is very large it is inconvenient to exactly compute the influence
and therefore estimation methods have to be used. The design of a good ranking algorithm is a trade off
between accurate error prediction and computational effort.

2 Linear Symbolic Analysis

The transfer function is the main object of interest in linear symbolic analysis. It allows for obtaining in-
sights into the circuit’s behavior and parameter dependencies. By post-processing the transfer function one
can for example symbolically compute its poles and zeros to investigate the circuit stability. The research
on this topic started in the early 1990’s (e.g. [GS91], [Som94]).

2.1 Linear Simplification Techniques

Basically, one distinguishes three types of linear simplification methods: Simplification Before Genera-
tion methods (SBG) simplify the matrix equations before computing the transfer function. Simplification
During Generation methods (SDG) apply simplifications during the process of transfer function calcula-
tion. Simplification After Generation methods (SAG) simplify the transfer function directly. Now, we will
describe SAG and SBG methods only.

Simplification After Generation. This technique [GS91] is based on the manipulation of the symbolic
transfer function given as a rational expression

H(s ; p) =
∑

ai(p) si /
∑

bi(p) si , (2)

where the coefficients ai =
∑

aij and bi =
∑

bij are symbolic functions of the parameter vector p given
in canonical sum-of-products form. For a given error bound, those terms aij and bij are removed from the
transfer function which cause a negligible deviation on ai and bi, respectively. By this, one can drastically
reduce the symbolic complexity of the transfer function.
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Simplification Before Generation. Even for circuits of small size it is not possible to calculate the full
symbolic transfer function (2). For example, the µA741 operational amplifier yields a transfer function
whose expanded denominator consists of more than 1034 terms [Hen00]. Thus, the linear equation system
itself has to be simplified before computing the symbolic transfer function. This can be done by rewriting
each entry of the system matrix in sum-of-products form and sequentially removing terms from the matrix.
The error is checked by computing the magnitude and phase of the (numerical) transfer function at certain
frequency points. SBG methods reduce both the complexity of the transfer function as well as its polyno-
mial order. For SBG techniques a dedicated ranking method has been developed [Hen00] which makes use
of the Sherman-Morrison formula.

Poles and Zeros. The extraction of symbolic expressions for poles and zeros is rarely possible without
simplifications. In [Hen00], a matrix-based SBG method for direct approximation of a linear system with
respect to a selected eigenvalue of a generalized eigenvalue problem was presented. By means of eigenvalue
sensitivity the symbolic parameters with negligible influence on the eigenvalue are discarded from the
linear system resulting in a simplified generalized eigenvalue problem whose determinant yields a reduced-
order approximation of the characteristic polynomial. To detect potentially false eigenvalue pairings during
approximation, the modal assurance criterion (MAC) [FM95] is applied, which constitutes a measure for
the correlation of two eigenvectors u1 and u2 and which is defined as

MAC(u1, u2) =
|uH

1 u2|
2

(uH
1 u1)(uH

2 u2)
. (3)

The value of the MAC ranges from 0 (orthogonal vectors) to 1 (parallel vectors). Hence, the MAC must
be very close to 1 for considering a valid approximation. Since in this context one is interested in a sin-
gle eigenvalue only, it is appropriate to use an iterative generalized eigenvalue problem solver like the
Jacobi orthogonal correction method [SBFV96] instead of the QZ algorithm. As an additional benefit, the
MAC can be integrated within the Jacobi correction iteration. This results in a very efficient and reliable
approximation method for the extraction of approximated symbolic poles and zeros.

2.2 Industrial Application

The application of the pole/zero extraction algorithm will be demonstrated on the CMOS folded-cascode
operational amplifier shown in Fig. 1. The frequency response of the operational amplifier’s open-loop
differential-mode voltage gain (solid curve) shows a peak near 10 MHz, caused by a parasitic complex
pole pair close to the imaginary axis. The analysis task is to extract a symbolic expression for the parasitic
pole pair which allows to determine those circuit parameters which have a dominant influence on the peak.

Using a SPICE Level 3 AC model for the MOS devices [GM93] yields a system of 29 equations. The
differential-mode voltage transfer function has 19 poles and 19 zeros and contains more than 5 × 1019

product terms. The symbolic approximation routines are applied to extract the parasitic pole pair at sp =
(−2.1 ± 8.3j) × 107 using a relative error bound ε = 0.1. The resulting simplified equation system can
be algebraically reduced to a system of dimension 4 from which the wanted pole pair s1,2

p can be easily
computed to the expression shown in Fig. 2. The overall computation time (including netlist import and
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Fig. 1. CMOS folded-cascode operational amplifier
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Fig. 2. Computed formula for the complex pole pair

equation setup) to approximate the equation system and to extract this formula is about 8 seconds running
the routines under Mathematica 4.0 on an AMD Athlon 1200 with 512 MB memory. By interpretation of
the computed formula for the complex pole pair it turns out that an increased value for the gate-source
capacitance Cgs$MP15 of the transistor MP15 allows for decreasing the imaginary parts of the pole pair.
As a consequence one could add an additional capacitor between the gate and the source terminals of the
corresponding transistor and by that remove the peak in the transfer function of the voltage gain of the
operational amplifier (dashed curve).

3 Nonlinear Symbolic Analysis

Simplification methods for linear analog circuits have been successfully applied to industrial applications
for several years. In the following, we want to describe how the presented methods can be extended to the
analysis of nonlinear circuits. Research on this topic started a few years ago and is still in progress (e.g.
[Bor98], [PHHB98], [WPHH99], [Wic01]).

3.1 Nonlinear Simplification Techniques

As opposed to the linear case, for nonlinear circuits in general we can not expect to obtain explicit formu-
las for the solution of the output variables. In contrast to linear symbolic analysis, nonlinear simplification
techniques are therefore mainly used for automated behavioral model generation. However, for small cir-
cuits it can be possible to obtain an interpretable result.

Behavioral model generation is a technique for speeding up numerical simulation of large circuits. The
idea is to replace each frequently used subblock in the circuit by a single simplified model description
and by that reducing the complexity of the whole circuit and decreasing the computation time. Nonlinear
simplifications can be used to automatically generate behavioral models from netlist descriptions of the
subblocks [NHB02].

The general outline of the nonlinear simplification algorithms is described in Sect. 1.1. The following
simplification techniques have been developed to reduce the complexity of nonlinear DAE systems:

• Elimination: Solving equations explicitly for one variable and substituting this variable in the remaining
system, thus reducing the number of equations.

• Simplification of piecewise-defined functions: Detecting and removing branches of piecewise-defined
functions which are unused for the given input-value set.

• Deletion of terms: Omitting terms of sums which do not participate a significant part to the sum.
• Substitution of terms by constant values: Substituting a constant value for terms which do not participate

a significant part to the sum.

3.2 Operational Amplifier Example

Figure 3 shows the schematic of an operational amplifier consisting of eight bipolar transistors. The input
signal is given by the pulse wave voltage source VSig, the node voltage v9 at node 9 is the output signal
(dashed curve). Using the Gummel-Poon equations for modeling the bipolar transistors, the transient be-
havior of the operational amplifier can be described by an equation system consisting of 73 equations and
variables. Nonlinear symbolic simplfications techniques are now used for generating a behavioral model of
the circuit. For this, a maximum transient error of 1V for the output variable is chosen (gray shaded area).

To automatically reduce the complexity of the equation system, symbolic simplification techniques are
applied in the following order: Elimination, simplification of piecewise-defined function, cancellation of
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Fig. 3. Bipolar operational amplifier

terms, and again elimination. This results in a system of 6 equations only with an overall computation
time of 792 s. The numerical solution of the simplifed system (solid curve) lies within the specified error
margin. Solving the original DAE system numerically on the time interval t ∈ [0 s, 0.002 s] takes about
166 s, whereas solving the reduced equation system takes about 2.3 s. Thus, the generated behavioral model
yields a simulation speed-up of more than a factor of 70.

3.3 Nonlinear Ranking Methods

In principle, nonlinear ranking methods have to be designed for each simplification method and each analy-
sis method separately. In the following we will briefly describe the one-step solver ranking, a ranking
method which measures the influence of term cancellations on the transient behaviour. Additional ranking
methods can for example be found in [PHHB98, WPHH99].

Let F denote the original DAE system with transient solution xF , let G denote the simplified system,
and let GS denote the static system which results from G by replacing differentials by finite difference
expressions according to the chosen integration scheme. An estimation x̃G of the (unknown) solution xG

of G is computed as follows: At each time instance ti a Newton iteration to solve GS is started for the
initial value xF (ti). The first Newston step

x̃
[1]
G (ti) = xF (ti) − JGS(xF (ti))

−1
GS(xF (ti)) , (4)

is then used as an estimation for the true solution xG(ti). Finally, the obtained values x̃
[1]
G (ti) are inter-

polated yielding the estimation x̃G for xG. The ranking value is then given by δG = ‖x̃G − xF ‖. In our
applications this ranking method yields very accurate error estimates with moderate computational effort.

3.4 Index Calculation

The index plays an important role in the theory of DAE systems [BCP89]. It is well known that numerical
solving of systems with an index higher than 1 is an ill-posed problem. Since during nonlinear symbolic
simplifications the index may increase, we want to compute the index in order to avoid index changes.
For this, from the wide variety of different index concepts we have chosen to control the tractability index
[GM86] and the strangeness index [KM98] during simplification. They are both defined for general non-
linear DAE systems and can be computed numerically. In our applications it turned out that the singular
value decomposition yields the best numerical results for computing both the tractability index and the
strangeness index. The Gram-Schmidt orthonormalization can also be used to calculate the tractability in-
dex symbolically, but the resulting expressions are too complex even for small circuits. For the operational
amplifier example in Sect. 3.2 a number of 11 simplifications out of 254 had to be rejected due to an invalid
increase of the index of the simplified system.

4 Conclusions

We have provided an insight into the area of symbolic techniques for the analysis and design of analog
circuits. It was motivated that due to the complexity problem simplification methods are indispensable for
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handling industrial-sized problems. The basic ideas behind these simplification methods – a combination
of symbolic and numeric algorithms – have been shown. The described techniques are integrated in the
software Analog Insydes ([HHTW01], www.analog-insydes.de) which is an add-on package to the
computer-algebra system Mathematica for the analysis, modeling, sizing, and optimization of linear and
nonlinear circuits of industrial size.

During several years of application the symbolic simplification algorithms have proven to be applicable
to industrial-sized problems and by that making symbolic analysis a powerful technique in industrial analog
circuit design.
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Abstract In radio frequency (RF) design, signals with widely separated time scales arise. To describe those circuits
efficiently, a multidimensional signal model was developed. This approach transfers the circuit’s differential-algebraic
equations (DAE) to a multirate system of partial differential-algebraic equations (MPDAE). A structural analysis, based
on the concept of underlying PDE systems and the index characterization of DAE systems, emphasises the entitlement
of MPDAE-modeling.

1 Introduction - multidimensional signal model

In electronic circuit design the classical modified nodal analysis (MNA) leads to a system of differential-
algebraic equations (DAE). Excluding controlled sources, the charge-flux oriented formulation of the net-
work equations in terms of charges q, fluxes Φ, node potentials u, currents jL and jV through inductances
and voltage sources, respectively, yields [ET98]

AC q̇ + ARr(A�
Ru(t), t) + ALjL(t) + AV jV (t) + AI ı(t) = 0, (1a)

Φ̇−A�
Lu(t) = 0, (1b)

A�
V u(t) − v(t) = 0, (1c)

q − qC(A�
Cu(t), t) = 0, (1d)

Φ− ΦL(jL(t), t) = 0. (1e)

In the following we will consider quasiperiodic input signals. To face widely separated time scales, that
occur frequently in RF application, the quasiperiodic functions are transferred to multivariate functions
(MVF), where for each time scale a corresponding variable is introduced [BWLB96]. A signal with m
fundamental frequencies ωi = 2π/Ti, i = 1, . . . ,m and X(k1, . . . , km) ∈ Cl

x(t) =
∞∑

k1=−∞
· · ·

∞∑
km=−∞

X(k1, . . . , km) exp((jk1ω1 + · · · + jkmωm) t)

is generalized to its MVF

x̂(t1, . . . , tm) =
∞∑

k1=−∞
· · ·

∞∑
km=−∞

X(k1, . . . , km) exp(jk1ω1t1 + · · · + jkmωmtm).

Now, the time scales are decoupled and the MVF is periodic in each coordinate direction. The original
signal is contained on the diagonal of the MVF and can be reconstructed by x(t) = x̂(t, . . . , t).
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We apply the multidimensional signal model to the network equations and introduce MVFs of charges,
fluxes, sources and of the state variables. Looking at the MVF of the charge function

q̂C(w, t1, . . . , tm) with
∂q̂C

∂w
=: Ĉ(w, t1, . . . , tm),

we define τm := (t, . . . , t)� ∈ IRm and get for the time derivative

d

dt
qC(A�

Cu(t), t)

=
d

dt
q̂C(A�

C û(τm), τm)

= Ĉ(A�
C û(τm), τm)A�

C ·
m∑

i=1

∂û(τm)
∂ti

+
m∑

i=1

∂

∂ti
q̂C(A�

C û(τm), τm).

Therefore, we define τ̂m := (t1, . . . , tm)� and introduce the differential operator Dm with

Dmf(x(τ̂m), τ̂m) :=
df

dτ̂m
· 1l =

m∑
i=1

(
∂f

∂x
· ∂x
∂ti

+
∂f

∂ti

)
.

Now, we are able to generalize the original DAE to the multirate system of partial differential-algebraic
equations (MPDAE)

ACDmq̂ + ARr̂(A�
Rû(τ̂m), τ̂m) + ALĵL(τ̂m) + AV ĵV (τ̂m)

+AI ı̂(τ̂m) = 0, (2a)

DmΦ̂−A�
L û(τ̂m) = 0, (2b)

A�
V û(τ̂m) − v̂(τ̂m) = 0, (2c)

q̂ − q̂C(A�
C û(τ̂m), τ̂m) = 0, (2d)

Φ̂− Φ̂L(ĵL(τ̂m), τ̂m) = 0. (2e)

As the MVF x̂ contains the original signal on its diagonal, the DAE-solution x with x = (u, jL, jV )�

can be reconstructed by x(t) = x̂(tm) via the MPDAE-solution x̂ = (û, ĵL, ĵV )�. For more details we
refer to [BWLB96].

In order to resolve structural properties for this transferred system , we apply the index concept to
extract the algebraic and differential parts of the MPDAE as it was done for the original DAE in [ET98].

2 Index-1 networks

The differential-algebraic network equations (1) have differential index 1, if the following two topological
conditions are fulfilled (see [Ti99]):

T1: There are no cutsets consisting of inductances and/or current sources only: ker(AC , AR, AV )� = {0}.
T2: There are no loops consisting of only capacitances and at least one voltage source: kerQ�

CAV = {0}.

To transfer this context to our partial differential-algebraic system, we rewrite (2) in a semi-explicit
form. We assume passivity for the network elements; in contrast to the DAE-case, we need the sharper
condition, that the capacitance, inductance and conductance matrices

C(w, τ̂m) :=
∂q̂C(w, τ̂m)

∂w
, L(w, τ̂m) :=

∂Φ̂L(w, τ̂m)
∂w

, G(w, τ̂m) :=
∂r̂(w, τ̂m)

∂w

are positive definite (but not necessarily symmetric) with a globally bounded inverse on the domain [0, T1]×
· · · × [0, Tm] defined by the time scales.
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Let QC be an orthogonal projector onto the kernel of A�
C and its complement PC such that PC =

I −QC , with the identity matrix I . Hence, equation (2a) only contains information about PC û as

A�
C û = A�

C(PC + QC)û = A�
CPC û.

Subsequently, we define two sets of network variables

ŷ =
(
ŷ1

ŷ2

)
=
(
PC û
ĵL

)
and ẑ =

(
ẑ1

ẑ2

)
=
(
QC û
ĵV

)

(to shorten notations, we skip the arguments of the multivariate functions).
We insert the charges (2d) in (2a) and multiply the equation by P�

C from the left. With adding the
orthogonal complement Q�

CQC ŷ1 = 0 (for regularity)

AC q̂C(A�
C û, τ̂m) = AC q̂C(A�

C ŷ1, τ̂m) + Q�
CQC ŷ1 =: H(ŷ1, τ̂m)

we obtain a PDE for ŷ1:

DmH(ŷ1, τ̂m) = −P�
C

(
ARr̂(A�

R[ŷ1 + ẑ1], τ̂m) + ALŷ2 + AV ẑ2 + AI ı̂
)
. (3)

The Jacobian H1 := ∂H
∂ŷ1

= ACC(A�
C [ŷ1 + ẑ1], τ̂m)A�

C + Q�
CQC is positive definite by construction.

Inserting the fluxes (2e) in (2b), we directly obtain a PDE for ŷ2:

DmΦ̂L(ŷ2, τ̂m) = A�
L [ŷ1 + ẑ1]. (4)

Besides the differential equations (3) for ŷ1 and (4) for ŷ2 we are left with equation (2a) multiplied by
Q�

C from the left and (2c). Using QC ẑ1 = ẑ1 and P�
C PC ẑ1 = 0, we have

(
Q�

C

(
ARr̂(A�

R[ŷ1 + QC ẑ1], τ̂m) + ALŷ2 + AV ẑ2 + AI ı̂
)

+ P�
C PC ẑ1

A�
V [ŷ1 + QC ẑ1] − v̂

)
= 0. (5)

The Jacobian with respect to ẑ

B :=

(
Q�

CARG(A�
R[ŷ1 + ẑ1], τ̂m)A�

RQC + P�
C PC Q�

CAV

A�
V QC 0

)

is regular, iff T1 and T2 hold, see [Ti99]. Thus, demanding the topological conditions, we are able to rewrite
(2) in a semi-explicit form:

Dmŷ = F (ŷ, ẑ, τ̂m),
0 = h(ŷ, ẑ, τ̂m),

where the algebraic equation is resolvable for ẑ = ϕ(ŷ, τ̂m). Hence, we are able to derive (in analogy to
the underlying ODE introduced in [HW96]) the underlying PDE

Dmŷ = F (ŷ, ϕ(ŷ, τ̂m), τ̂m).

3 Index-2 networks

To investigate the differences in the index-2 case, we split system (2) until it is possible to resolve it for all
the different sets of network variables.

After the first splitting û = PC û+QC û in the index-1 case, we determined the algebraic equations (5)

Q�
C

(
ARr̂(A�

R[PC û + QC û], τ̂m) + ALĵL + AV ĵV + AI ı̂
)

= 0, (5a)

A�
V [PC û + QC û] − v̂ = 0. (5b)

In the index-2 case T1 and/or T2 are violated and the Jacobian relating to QC û and ĵV is not regular
anymore. Therefore, (5a) and (5b) contain hidden constraints and further splittings of the network variables
are necessary.
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Lemma 1. If T1 and/or T2 are violated, the MPDAE (2) is equivalent to the semi-explicit system

ACDmq̂C(A�
C û, τ̂m) + P�

C

(
ARr̂(A�

Rû, τ̂m) + ALĵL + AV ĵV + AI ı̂
)

= 0,

DmΦ̂L(ĵL, τ̂m) −A�
L û = 0.

Index 1

⎧⎪⎪⎨
⎪⎪⎩

P̄�
V −C

(
A�

V û− v̂
)

= 0,

P�
R−CV Q�

V −CQ�
C

(
ARr̂(A�

Rû, τ̂m) + ALĵL + AI ı̂
)

= 0,

P�
V −CQ�

C

(
ARr̂(A�

Rû, τ̂m) + ALĵL + AV ĵV + AI ı̂
)

= 0.

Index 2

{
Q�

CRV (ALĵL + AI ı̂) = 0,

Q̄�
V −C

(
A�

V PC û− v̂
)

= 0.

Proof. The orthogonal projectors used to obtain this semi-explicit description are defined as follows (see
[ET98]):

projector QV −C Q̄V −C QR−CV QCRV

onto kerA�
V QC kerQ�

CAV kerA�
RQCQV −C ker(AC , AR, AV )�

with complements denoted by P and the corresponding subindex.
In the following, we will use the just defined projectors to filter out nontrivial information from the

algebraic equations, as the variables of interest lie in the kernel of the antecedent matrices. To make the suc-
cessive steps more comprehensible, equations extracted from (5a) and (5b) are denoted using a subindex:
(5ai) and (5bi). If the differential operator is applied to an equation (x), it is denoted by (x′).

Regarding equation (5b), we only get information about QCPV −C û as A�
V QCQV −C = 0. Further-

more, multiplying (5b) by Q̄�
V −C from the left reveals the linear combination

Q̄�
V −C

(
A�

V PC û− v̂
)

= 0, (5b1)

which does not appear in the index-1 case, as T2 implies Q̄V −C = 0. We will refer to this equation later.
To determine QCPV −C û from the part P̄�

V −C · (5b) of the equation, we have to multiply by Q�
CAV

from the left and add Q�
V −CQV −CPV −C û = 0:

(
Q�

CAV A�
V QC + Q�

V −CQV −C

)
PV −C û = Q�

CAV P̄�
V −C

(
v̂ −A�

V PC û
)
. (5b2)

With H2 := Q�
CAV A�

V QC + Q�
V −CQV −C positive definite, we can resolve for PV −C û, which leads to

QCPV −C û = QCH−1
2 Q�

CAV P̄�
V −C

(
v̂ −A�

V PC û
)
.

At the moment we have the splitting

û = [PC + QC(PV −C + QV −C)] û

and still need equations for QCQV −C û and ĵV .
To split equation (5a) in the right manner, we have a look at its derivative, as û is the argument of the

nonlinear function r̂(·). In our case, we apply the differential operator Dm, which yields

Dmû(τ̂m) =
∂û

∂t1
+ · · · + ∂û

∂tm
.

With the abbreviation G := G(A�
Rû, τ̂m), we obtain

Q�
CARGA�

R[PC + QCPV −C + QCQV −C ]Dmû + Q�
C(ALDmĵL + AIDm ı̂)

+ Q�
CAV DmĵV = 0. (5a′)
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Multiplying by Q�
V −C from the left strikes off DmĵV and we obtain an equation for PR−CV Dmû as

QCQV −CQR−CV =: QCRV and A�
RQCRV = 0. Thus, we also multiply by P�

R−CV from the left and get

Q�
V −CQ�

CARGA�
RQCQV −CPR−CV Dmû (5a′1)

= −P�
R−CV Q�

V −CQ�
C

(
ARGA�

R[PC + QCPV −C ]Dmû + ALDmĵL + AIDm ı̂
)
.

To resolve for PR−CV Dmû, we add Q�
R−CV QR−CV PR−CV Dmû = 0, which leads to

H4 := H4(A�
Rû, τ̂m) := Q�

V −CQ�
CARGA�

RQCQV −C + Q�
R−CV QR−CV

positive definite.
Now, we have to regard the splitting

û = [PC + QC(PV −C + QV −C(PR−CV + QR−CV ))] û

and have left the two equations Q�
R−CV Q�

V −C ·(5a′) as well as P�
V −C ·(5a′).

The first one is a hidden constraint, which the index-1 equations are lacking as T1 implies QCRV = 0.
Using the PDE (4) for ĵL we obtain with the abbreviation L := L(ĵL, τ̂m)

Q�
CRV

(
ALL

−1A�
L [PC + QCPV −C + QCQV −CPR−CV + QCRV ]û + AIDm ı̂

)
= 0. (5a′2)

Replacing QCRV û by QCRV QCRV û and adding P�
CRV PCRV QCRV û = 0 yields

QCRV û =

−H−1
5 Q�

CRV

(
ALL

−1A�
L [PC + QCPV −C + QCQV −CPR−CV ]û + AIDm ı̂

)

with H5 := H5(ĵL, τ̂m) := Q�
CRV ALL

−1A�
LQCRV + P�

CRV PCRV positive definite. Here, we have to
apply the differential operator Dm one more time to obtain an equation for QCRV Dmû.

As we now have determined all parts of Dmû, the second equation P�
V −C ·(5a′) yields P̄V −CDmĵV :

P�
V −CQ�

C

(
ARGA�

RDmû + ALDmĵL + AIDm ı̂
)

+ Q�
CAV [P̄V −C + Q̄V −C ]DmĵV = 0. (5a′3)

We multiply by A�
V QC from the left and add Q̄�

V −CQ̄V −C P̄V −CDmĵV = 0 to obtain the positive definite
matrix H3 := A�

V QCQ�
CAV + Q̄�

V −CQ̄V −C and

P̄V −CDmĵV = −H−1
3 A�

V QCP�
V −CQ�

C

(
ARGA�

RDmû + ALDmĵL + AIDm ı̂
)
.

Finally, we have a look at the derivative of equation (5b1):

Q̄�
V −CA�

V PCDmû− Q̄�
V −CDmv̂ = 0. (5b′1)

With PCDmû = −H−1
1 P�

C

(
ARr̂(A�

Rû) + ALĵL + AV ĵV + AI ı̂
)

from (3), we get

Q̄�
V −CA�

V H−1
1 P�

C AV [P̄V −C + Q̄V −C ]ĵV
= −Q̄�

V −C

(
Dmv̂ + A�

V H−1
1 P�

C

(
ARr̂(A�

Rû) + ALĵL + AI ı̂
))

.

Replacing Q̄V −C ĵV by Q̄V −CQ̄V −C ĵV and adding P̄�
V −C P̄V −CQ̄V −C ĵV = 0 yields

Q̄V −C ĵV =

−H−1
6 Q̄�

V −C

[
Dmv̂ + A�

V H−1
1 P�

C

(
ARr̂(A�

Rû) + ALĵL + AV P̄V −C ĵV + AI ı̂
)]

with H6 := H6(A�
C û, τ̂m) := Q̄�

V −CA�
V H−1

1 AV Q̄V −C + P̄�
V −C P̄V −C positive definite. Again, another

differentiation is needed to obtain an expression for Q̄V −CDmĵV . �
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Remark 1. The system defined in Lemma 1 can also be obtained by starting first from the semi-explicit
formulation of the original DAE network equations following [ET98] and then introducing the multidi-
mensional signal model.

Corollary 1. The system defined in Lemma 1 is equivalent to the index-2 semi-explicit (but not Hessenberg)
system

Dmŷ = f(ŷ, v̂, ŵ, τ̂m), (9a)
0 = g1(ŷ, v̂, ŵ, τ̂m), (9b)
0 = g2(ŷ, τ̂m), (9c)

with three sets of network variables

ŷ =
(
PC û
ĵL

)
, v̂ =

⎛
⎝ QCPV −C û

QCQV −CPR−CV û
P̄V −C ĵV

⎞
⎠ and ŵ =

(
QCRV û
Q̄V −C ĵV

)
.

Now applying the differential operator Dm to (9c), we are able to resolve g := (g1, g2)� for
ẑ := (v̂, ŵ)� = Ψ(ŷ, τ̂m) and to derive the underlying PDE

Dmŷ = f(ŷ, Ψ(ŷ, τ̂m), τ̂m).

Of course, when thinking of solving the MPDAE, we do not use the concept of the underlying PDE, but
it is a helpful tool to use the analogy of the MPDAE network equations to DAE-systems when transferring
the index concept.

A special characteristics index was proposed in [Wa00] for linear hyperbolic PDAEs. As our network
MPDAE is of hyperbolic type, we can proceed similarly. Defining a characteristic system leads to a con-
tinuous set of DAEs. In our special case, the characteristic curves are straight lines in the direction of the
diagonal and the DAEs have the same structure as the original system (1). Thus, it is natural to use the
index for this DAE system to characterize the MPDAE. Perturbation estimates and other suitable PDAE
index concepts proposed in [GW00] are reserved to future work.

4 Conclusions

In this paper we have analysed a system of multirate partial differential-algebraic equations, which arises
when a multidimensional signal model is applied to the MNA network equations. We showed, that the
MPDAE inherits all the characteristics of the original network DAE. In both index-1 and index-2 cases, an
underlying PDE can be found, i.e. the MPDAE can be reduced to a PDE on a manifold. Index concepts
can be transferred and therefore no additional stability problems have to be expected when solving the
network equations via the multidimensional approach. And, exploiting its special structure, the MPDAE
can be solved very efficiently, e.g. with a method of characteristics proposed in [PG02].

Acknowledgement. This work has been supported within the federal BMBF project with the grant number 03GU-
NAVN.
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Abstract The numerical simulation of electric circuits including signals with largely differing time scales demands
specific strategies. A multivariate model for signals, which exhibit amplitude as well as frequency modulation, yields
a warped multirate partial differential algebraic equation (MPDAE). Corresponding initial boundary value problems
lead to particular solution types. Two strategies for numerical simulation are discussed, which use contrary semidis-
cretisation techniques.

1 Introduction

Signals acting at widely separated time scales arise in radio frequency applications. The mathematical
model of corresponding electric circuits consists in differential algebraic equations (DAEs). Integrating
these systems demands a huge computational effort, since the fastest time scale restricts the step sizes.
Consequently, numerical methods have to incorporate the specific structure of arising solutions in order to
be efficient.

A multidimensional model yields a strategy for the simulation of amplitude and/or frequency modu-
lated signals. Narayan and Roychowdhury [5] introduced an according warped multirate partial differential
algebraic equation (MPDAE). The MPDAE solution of an initial boundary value problem reproduces a
multitone DAE solution. Solving the MPDAE demands less effort than handling the DAE directly, since
the model omits the computation of all fast oscillations. However, the warped MPDAE system includes
a local frequency function, which is a priori unspecified. The determination of appropriate local frequen-
cies is crucial for the efficiency of the model. Continuous phase conditions can be applied as additional
boundary constraints to obtain suitable solutions.

We present two approaches for the numerical simulation of the initial boundary value problem, which
both apply a semidiscretisation of the warped MPDAE system. On the one hand, we consider a method
of Rothe type, which performs a discretisation in the slow time scale. On the other hand, we arrange a
method of lines, which discretises the fast time scale. The properties of these two antipodal techniques are
analysed. In particular, we discuss the inclusion of a continuous phase condition in view of an unknown
local frequency. Finally, numerical results illustrate the performance of the two methods.

2 Warped MPDAE Model

To explicate the multidimensional model, we consider a multitone signal, which includes amplitude as well
as frequency modulation, namely

x(t) =
[
1 + α sin

(
2π
T1

t
)]

sin
(

2π
T2

t + β sin
(

2π
T1

t
))

(1)

with parameters 0 < α < 1, β > 0. Fig. 1 illustrates this signal qualitatively. Assuming T1 � T2, many
fast oscillations proceed during one slow oscillation of the modulation. Thus the number of time points
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Fig. 1. Frequency modulated signal (left) and corresponding MVF (right)

to represent this signal increases drastically. Alternatively, we introduce an own variable for each separate
time scale to model the amplitude modulation part

x̂(t1, t2) =
[
1 + α sin

(
2π
T1

t1

)]
sin (2πt2) . (2)

This representation is called the multivariate function (MVF) of the signal (1). Now the MVF is biperiodic
and exhibits a simple structure in the rectangle [0, T1] × [0, 1], which is also shown in Fig. 1. Hence we
can resolve the MVF using relatively few grid points. The frequency modulation part is modelled by an
additional time-dependent function

Ψ(t) =
t

T2
+

β

2π
sin
(

2π
T1

t
)
. (3)

The derivative ν := Ψ ′ plays the role of a local frequency belonging to the multitone signal (1). The
function ν is T1-periodic and features a simple behaviour, too. Nevertheless, we completely reconstruct the
original signal via

x(t) = x̂(t, Ψ(t)). (4)

Thereby, Ψ is called a warping function, since it stretches the second time scale. Consequently, we obtain
an efficient representation of the multitone signal by means of MVF and warping function/local frequency.

However, the multidimensional model is not unique. A family of MVFs and respective warping func-
tions can describe the same signal. An inappropriate choice of the local frequency may yield a MVF, which
exhibits many oscillations. Hence the identification of a local frequency with simple MVF determines the
benefit of this representation.

Remark: The MVF concept is also convenient, if the first time scale is aperiodic and slowly varying.
Consequently, the local frequency becomes aperiodic, too. In this case, we arrange the MVF in the domain
R

+ × [0, 1]. Thus performing a step in t1-direction already reproduces many fast oscillations.
Now we apply the multidimensional model in electric circuit simulation. A network approach yields

differential algebraic equations (DAEs), which describe the transient behaviour of all node voltages and
some branch currents, see [2]. In the following, we consider a semiexplicit DAE of index 1

dy

dt
= f(y,z) + b(t)

0 = g(y,z) + c(t)
(5)

with solutions y(t) ∈ R
d, z(t) ∈ R

a. The functions b(t) ∈ R
d, c(t) ∈ R

a represent independent input
signals. We assume that the input varies slowly the amplitude and frequency of fast oscillations in the
solution. Thus the above multivariate representation becomes feasible. A transformation with respect to
the reconstruction (4) changes the DAE model (5) into a warped multirate partial differential algebraic
equation (MPDAE)
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∂ŷ

∂t1
+ ν(t1)

∂ŷ

∂t2
= f(ŷ, ẑ) + b(t1)

0 = g(ŷ, ẑ) + c(t1).
(6)

Now we solve the MPDAE system in a domain [0, Tf ] × [0, 1] with arbitrary final time Tf > 0. Therefore
we consider the initial boundary value problem (6) together with

ŷ(0, t2) = v(t2), ẑ(0, t2) = w(t2) for all t2 ∈ R,

ŷ(t1, t2) = ŷ(t1, t2 + 1), ẑ(t1, t2) = ẑ(t1, t2 + 1) for all t1 ≥ 0, t2 ∈ R.
(7)

Thereby, the choice of the periodic initial values v,w has to be consistent with respect to the DAE (5).
An according MPDAE solution yields a complete DAE solution applying (4) with Ψ(t) =

∫ t

0
ν(τ)dτ . The

reconstructed signal is uniquely defined by the initial values y(0) = v(0), z(0) = w(0). Hence the choice
of the other values in v,w just influence the efficiency of the model, since the resulting MVF depends on
these initial functions. Using constant input b ≡ b(0), c ≡ c(0) in the DAE, a corresponding periodic
solution represents a suitable initial state in general.

Assuming T1-periodic input signals, biperiodic MPDAE solutions may exist. We can apply the problem
(6),(7) to compute a biperiodic solution, too. We solve the MPDAE proceeding in t1-direction until the
solution enters a biperiodic steady state response. This strategy represents an advancement of transient
analysis by using more information about the problem structure.

Since the local frequency ν stands for an a priori unknown function, the system (6),(7) is underde-
termined. Hence we require additional conditions to isolate special solutions. In [5], continuous phase
conditions are proposed to achieve this purpose. Thereby, the idea is to control the phase in each cross
section t1 = const of a MVF. In the following, we apply a specific phase condition to the (without loss of
generality) first component of the solution ŷ = (ŷ1, . . . , ŷd)T , namely

∂ŷ1

∂t2

∣∣∣∣
t2=0

= 0 for all t1. (8)

If the involved functions are sufficiently smooth, then differentiating (8) with respect to t1 and (6) with
respect to t2 implies

∂2ŷ1

∂t1∂t2

∣∣∣∣
t2=0

= 0 ⇒ ν(t1)
∂2ŷ1

∂t2
2

∣∣∣∣
t2=0

=
∂f1(ŷ, ẑ)

∂t2

∣∣∣∣
t2=0

for all t1. (9)

Thus to ensure that the phase condition determines the local frequency uniquely, we assume the existence
of a solution satisfying (8) and ∣∣∣∣∣

∂2ŷ1

∂t2
2

∣∣∣∣
t2=0

∣∣∣∣∣ ≥ δ for all t1 (10)

with a constant δ > 0 in the following.
Alternatively, Houben [3] introduces minimum demands, which shall reduce oscillations in MVFs.

Using these criteria, the determination of a relatively simple MVF representation is guaranteed. However,
minimum demands cause more computation work in comparison to the elementary condition (8), which
we add directly to the boundary conditions in the underlying domain.

3 Semidiscretisation Techniques

Now we examine two numerical techniques for solving the MPDAE initial boundary value problem (6),(7),
which both apply semidiscretisation.

Firstly, we perform a Rothe method (RM). For parabolic PDEs including a time and a space variable,
this means that the time derivative is discretised and thus a sequence of ODE boundary value problems in
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space arises. Accordingly, a difference scheme replaces the derivative with respect to t1 in (6). Assuming
a positive local frequency, the implicit Euler scheme, for example, yields the subsequent DAE systems

dỹj

dt2
(t2) =

1
νj

{
f(ỹj(t2), z̃j(t2)) + b(jh1) − 1

h1
[ỹj(t2) − ỹj−1(t2)]

}

0 = g(ỹj(t2), z̃j(t2)) + c(jh1)
(11)

for j = 1, 2, . . . with step size h1, where the jth part is an approximation of the MPDAE solution in the
layer t1 = jh1. The initial values correspond to j = 0. The periodicity and the phase condition (8) generate
the boundary constraints

ỹj(0) = ỹj(1), z̃j(0) = z̃j(1), dỹ1
j

dt2
(0) = 0. (12)

The local frequency νj represents an unknown parameter in each system. Hence the RM consists in the
successive handling of boundary value problems corresponding to parameter-dependent DAEs with d + a
unknown functions. The DAEs (11) inherit the index 1 from the DAE (5). Moreover, specific techniques
can be used to determine the periodic solution ỹj , z̃j and the parameter νj in view of phase conditions, see
[4].

Secondly, we apply a method of lines (ML). Now the derivative with respect to t2 is substituted by
a difference formula in the MPDAE. We employ symmetric differences and obtain a large DAE system
including the subunits

dȳi

dt1
(t1) = f(ȳi(t1), z̄i(t1)) + b(t1) − ν(t1) 1

2h2
[ȳi+1(t1) − ȳi−1(t1)]

0 = g(ȳi(t1), z̄i(t1)) + c(t1)
(13)

for i = 1, . . . , n2 with step size h2 = 1/n2. The ith component represents an approximation of the MPDAE
solution in the layer t2 = (i− 1)h2. The periodicity allows to identify ȳn2+1 = ȳ1, ȳ0 = ȳn2 and thus to
eliminate these unknown. Since the local frequency ν is unidentified, too, we have to incorporate the phase
condition (8) via a difference formula. For example,

0 = ∂ŷ1

∂t2
(t1, 0) .= 1

2h2

[
ȳ1
2(t1) − ȳ1

n2
(t1)
]

(14)

gives an additional algebraic relation. Consequently, the ML yields an initial value problem of DAEs with
dimension n2(d + a) + 1. However, if we see ν as a part of the solution, then the index of the system
(13),(14) is at least 2 even for an original DAE (5) of index 1. Furthermore, a suitable consistent choice of
a starting value ν(0) is necessary.

As mentioned in the previous section, the initial boundary value problem can be used to determine a
biperiodic solution by transient analysis. If we want to compute this steady state response directly, then a
method of characteristics becomes favourable, see [6]. Moreover, the employed information transfer gen-
erates an inherent potential for parallelism. In contrast, the solution of the initial boundary value problem
implies a sequential structure.

4 Numerical Results

We apply both semidiscretisation methods for the numerical simulation of a voltage controlled Van der Pol
oscillator. The corresponding system reads

u̇ = v
v̇ = −10(u2 − 1)v − (2πw)2u
0 = w − b(t),

(15)
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which represents a semiexplicit DAE of index 1. If the input signal b is constant, a periodic steady state
response arises. Otherwise, a time-dependent input signal produces frequency modulation. We choose the
function

b(t) = 1 + 1
2 sin

(
2π
T1

t
)

with T1 = 1000. (16)

Since the involved time scales are widely separated, we use the corresponding MPDAE model and treat
problem (6),(7). As initial values, the periodic response of (15) corresponding to b ≡ 1 is employed.
In the RM (11), we solve the periodic boundary value problems via a finite difference method including
trapezoidal rule. In the ML (13), the initial value problems are integrated by the implicit Euler scheme. The
used step sizes are equidistant, namely h1 = 20 and h2 = 0.01 in both techniques.

Figure 2 illustrates the computed local frequencies. Since both functions respond to the input signal,
the local frequencies are physically reasonable. Fig. 3 and Fig. 4 show the MPDAE solutions for u and
v, respectively. The MVF of u features a constant amplitude, whereas the MVF of v includes amplitude
modulation. The component w just reproduces the input signal. Investigating these MVFs, we recognise
that assumption (10) is satisfied with δ ≈ 80.
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Fig. 2. Local frequency computed by RM (—) and ML (- -), respectively, together with input signal (- · -)
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Fig. 3. MPDAE solution for u computed by RM (left) and ML (right)
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Fig. 5. DAE solution for u in time intervals [0, 5] (left) and [700, 705] (right) from RM (—), ML (- -) and transient
integration (- · -)

Finally, we observe the corresponding DAE solutions. The results of the RM and the ML are used in
the reconstruction (4). The outcome for u is shown in Fig. 5. Thereby, a reference solution was computed
via an initial value problem of (15) using trapezoidal rule. In the first few cycles, both semidiscretisation
methods exhibit a frequency, which is too high in comparison to the reference signal. In the RM, the local
frequency even increases incorrectly for smaller step sizes h1, whereas the frequency remains the same in
the ML. In later cycles, all signals exhibit a significant phase shift to each other, which reflects a certain
sensitivity, see [6]. Nevertheless, amplitude and shape agree in all three signals.

Other simulations, for example using a smaller value T1, indicate an even more problematical behav-
iour of the semidiscretisation methods, where also too high amplitudes may arise. Moreover, the use of
a BDF2 scheme, see [1], to proceed in t1-direction leads to less accurate results in both RM and ML.
Applying trapezoidal rule in the ML causes significant inaccuracies, which reflect the higher index of the
semidiscretised system. Thus the application of semidiscretisation techniques seems to be critical, at least
if the boundary constraint (8) is involved.

5 Conclusions

The MPDAE model provides an alternative approach for the numerical simulation of multitone signals.
Two techniques based on semidiscretisation for solving initial boundary value problems of MPDAEs have
been presented, namely a Rothe method and a method of lines. Thereby, a specific boundary constraint
is applied to identify the local frequency function. Numerical results demonstrate that both techniques
exhibit problems in computing an accurate solution. Hence further theoretical examinations with respect to
feasibility and stability of semidiscretisation methods are necessary in this context.
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Abstract We present in this communication some tools for the qualitative analysis of lumped circuits directed to
differential-algebraic MNA models. The attention is focused on equilibria, which describe operating points of the
circuit. Specifically, hyperbolicity and asymptotic stability of linearized models are analyzed in terms of the circuit
topology and device characteristics. The topological conditions arising in this qualitative study are proved independent
of those supporting the index of the differential-algebraic circuit model. An example containing a Josephson junction
circuit illustrates the discussion.

1 Introduction

Qualitative properties of nonlinear circuits have been often discussed assuming that a state-space model
describing network dynamics is available [Chu80, GW92]. However, such a state model does not always
exist or is difficult to obtain in practice; this has led to semistate formalisms based on differential-algebraic
equations (DAEs), which currently frame approaches such as Modified Nodal Analysis (MNA) or Tableau
Analysis [ET00, GF99, Tis99]. In this differential-algebraic context, we address in the present communi-
cation several qualitative properties of equilibria in MNA-modeled nonlinear circuits, using and extending
previous results from [Ria04, Tis99].

Qualitative features of circuits have been also addressed in the last decades within a geometric frame-
work. This stems from the work [BM64]; see also [DW72, HB84, HB86, Mat87, Sma72, WM97, WMT98].
This approach provides a coordinate-free point of view for the analysis of several intrinsic properties of
circuit dynamics. Our approach, in contrast, uses the natural coordinates arising in the widely-used MNA
models of electrical circuits.

We work with nonlinear RLC circuits assuming that capacitors, resistors and inductors are respectively
controlled through C1 relations of the form q = ψ(vc), ir = γ(vr), φ = ϕ(il). Denote the capacitance,
inductance, and conductance matrices as C(vc) = ψ′(vc), L(il) = ϕ′(il), G(vr) = γ′(vr). In circuit-
theoretic terms, symmetric capacitance or inductance matrices will be said to describe reciprocal devices,
whereas positive definite capacitance, inductance or conductance matrices will be said to yield strictly
locally passive elements [Chu80]; positive definiteness of an n × n matrix B means in this work that
xTBx > 0 for any x ∈ R

n − {0}, not implying that B is symmetric.
Conventional MNA equations for circuits without controlled sources read

ACC(AT
Ce)AT

Ce′ + ARγ(AT
Re) + ALil + AV iv = −AI is(t) (1a)

L(il)i′l −AT
Le = 0 (1b)

−AT
V e = −vs(t). (1c)

Here, e stands for node voltages; il, iv represent currents in inductors and voltage sources, respectively,
and is(t), vs(t) denote currents and voltages in the (independent) sources. AR (resp. AL, AC , AV , AI )
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describes the incidence between resistive (resp. inductive, capacitive, voltage source, current source)
branches and nodes in the circuit, once a reference node has been chosen. Specifically, the incidence matrix
(aij) ∈ R

(n−1)×b (n and b being the number of nodes and branches in the circuit, respectively) is given by

aij =

⎧⎪⎨
⎪⎩

1 if branch j leaves node i

−1 if branch j enters node i

0 if branch j is not incident with node i.

Note that (1) is a quasilinear DAE of the form

A(x)x′ + f(x) = s(t), (2)

where x = (e, il, iv)T, s is the excitation term (−AI is, 0, −vs)T, and

A =

⎛
⎜⎝

ACC(AT
Ce)AT

C 0 0
0 L(il) 0
0 0 0

⎞
⎟⎠ , f =

⎛
⎜⎝

ARγ(AT
Re) + ALil + AV iv

−AT
Le

−AT
V e

⎞
⎟⎠ .

Many analytical and numerical features of a semistate circuit model rely upon its index (see [ET00,
GF99, Ria04, Tis99] and references therein). We compile in Proposition 1 below Theorems 4 and 5 of
[Tis99], replacing in the first claim positive definiteness by just non-singularity on L:

Proposition 1. Assume that the capacitance and conductance matrices are positive definite, and that the
inductance matrix is non-singular.

1. If the network contains neither I-L cutsets nor V -C loops (except for C-loops), then the MNA system
(1) has index ≤ 1.

2. Assume additionally that the inductance matrix is positive definite. If the network contains an I-L
cutset or a V -C loop (with at least one voltage source), then the MNA system (1) has index 2.

Assume that a given circuit has only independent DC sources, so that s in (2) is a constant vector. We
may hence rewrite this equations as the quasilinear autonomous DAE

A(x)x′ + g(x) = 0, (3)

with g(x) = f(x) − s.
Equilibrium points of (3) are defined by the condition g(x∗) = 0, and the linearization of the DAE at

equilibrium leads to the matrix pencil λA(x∗) + g′(x∗), i.e.,

λ

⎛
⎝ACC(AT

Ce∗)AT
C 0 0

0 L(i∗l ) 0
0 0 0

⎞
⎠+

⎛
⎝ARG(AT

Re∗)AT
R AL AV

−AT
L 0 0

−AT
V 0 0

⎞
⎠ . (4)

Several qualitative properties of equilibria can be characterized in terms of the spectrum σ{A(x∗), g′(x∗)}
= {λ ∈ C / det(λA(x∗) + g′(x∗)) = 0} of the matrix pencil depicted in (4). The reader is referred
to [Ria04] and references therein for background in this regard. The purpose of the present work is to
characterize the spectrum of (4) in terms of the circuit topology.

We compile below some results coming from graph theory which will be useful in this regard. K will
represent a subset of the set of branches of a connected graph G. We denote as AK (resp. AG−K) the
submatrix of A formed by the columns corresponding to the branches in K (resp. not in K).

Lemma 1. K does not contain loops if and only if AKy = 0 ⇒ y = 0, that is, Ker AK = {0}.

The subset K is a cutset if the deletion of K results in a disconnected graph, and it is minimal with
respect to this property (i.e., removing any proper subset of K does not disconnect the graph).
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Lemma 2. K does not contain cutsets if and only if xTAG−K = 0 ⇒ x = 0 or, equivalently, AT
G−Kx =

0 ⇒ x = 0, that is, Ker AT
G−K = {0}.

The following two properties will be useful later on.

Lemma 3. Let J1, J2 be two sets of branches of a connected graph G, J1 ⊆ J2. If all loops within J2 are
contained in J1, then AJ1w1 + AJ2−J1w2 = 0 ⇒ w2 = 0. Equivalently, letting the first columns of AJ2

be those of AJ1 , Ker AJ2 = Ker AJ1 × {0}.

Lemma 4. Let K1, K2 be two sets of branches of a connected graph G, K1 ⊆ K2. If all cutsets within K2

are contained in K1, then wTAG−K2 = 0 ⇒ wTAK2−K1 = 0. Equivalently, Ker AT
G−K2

= Ker AT
G−K1

.

2 Hyperbolicity

Equilibrium points of (3) are defined by the vanishing of g(x). An equilibrium x∗ is said to be hyperbolic
if the spectrum of the linearization has no purely imaginary eigenvalues. Null eigenvalues are depicted if
and only if g′(x∗) is singular; non-singularity of g′(x∗) guarantees the isolation of this equilibrium and
follows, in circuits with definite conductance, from the topological conditions of Theorem 1 below. We
skip the proof of this result for the sake of brevity; note that it is a restatement, in a matrix pencil setting,
of a known result [HB86, MCM79]. Non-vanishing, purely imaginary eigenvalues will be ruled out by the
conditions in Theorem 2.

Theorem 1. Let x∗ = (e∗, i∗l , i
∗
v) be an equilibrium point of (3). Denote G = G(AT

Re∗), and assume that
G is (positive or negative) definite. Then x∗ is non-singular (equivalently, 0 /∈ σ{A(x∗), g′(x∗)}) if and
only if there are neither V -L loops nor I-C cutsets in the circuit.

Theorem 2. If G is (positive or negative) definite, both C = C(AT
Ce∗) and L = L(i∗l ) are symmetric and

non-singular, and any one of the conditions

a) there are no I-C-L cutsets; or
b) there are no V -C-L loops;

holds, then there are no purely imaginary eigenvalues λ = αj with α ∈ R − {0}.

Proof: λ ∈ C is an eigenvalue if and only if there exists a nonvanishing vector w = (we, wl, wv) such that
(λA(x∗) + g′(x∗))w = 0, what yields

λACCAT
Cwe + ARGAT

Rwe + ALwl + AV wv = 0 (5a)
−AT

Lwe + λLwl = 0 (5b)
−AT

V we = 0. (5c)

Multiplying (5a) by the conjugate transpose w�
e , we get

λw�
eACCAT

Cwe + w�
eARGAT

Rwe + w�
eALwl + w�

eAV wv = 0. (6)

Note that (5b) yields w�
eAL = λw�

l L, where we have used the symmetry of L. On the other hand, from
(5c), it follows that w�

eAV = 0. Some simple computations lead to

(Reλ)w�
eACCAT

Cwe + w�
eAR

G + GT

2
AT

Rwe + (Reλ)w�
l Lwl = 0. (7)

Let λ be a non-vanishing eigenvalue with Reλ = 0. Equation (7) then leads to AT
Rwe = 0, due to the

definiteness of G. Now, assume first that condition a) is satisfied. The exclusion of I-C-L cutsets, together
with AT

Rwe = 0 and AT
V we = 0 (from (5c)), implies that we = 0. From (5b), the assumption λ �= 0, and

the non-singularity of L, we get wl = 0. Then, from (5a), we get AV wv = 0, and the exclusion of V -loops
in well-posed circuits would yield wv = 0.
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Assume now that condition b) is satisfied, and write (5a) as

AC(λCAT
Cwe) + ALwl + AV wv = 0,

since AT
Rwe = 0. From the V -C-L loop exclusion property, it follows that λCAT

Cwe = 0, wl = 0, wv = 0.
From the first identity, the non-vanishing of λ, and the non-singularity of C, we get AT

Cwe = 0. On the
other hand, wl = 0 yields, in the light of (5b), AT

Lwe = 0. Together with the conditions AT
Cwe = 0,

AT
Rwe = 0, AT

V we = 0, and the exclusion of I cutsets in well-posed circuits, we would get we = 0. �

Theorems 1 and 2 together provide a sufficient condition for the hyperbolicity of the matrix pencil.
Merging the topological conditions and using Lemmas 3 and 4, we may assert hyperbolicity allowing
for the existence of V -C loops and I-L cutsets, so that the resulting topological conditions be entirely
independent of the index conditions appearing in Proposition 1. Therefore, Theorem 3 will naturally apply
to both index-1 and index-2 problems.

Theorem 3. If G is (positive or negative) definite, both C and L are symmetric and non-singular, and any
one of the two pairs of conditions

a) there are neither V -L loops nor I-C-L cutsets (except maybe I-L cutsets); or
b) there are neither I-C cutsets nor V -C-L loops (except maybe V -C loops);

is satisfied, then Reλ �= 0, ∀λ ∈ σ{A(x∗), g′(x∗)}.

Proof: Since I-C-L cutsets include in particular I-C cutsets, and so do V -C-L loops with regard to V -
L loops, the only cases which do not follow automatically from Theorem 1 and Theorem 2 are those in
which either I-L cutsets or V -C loops are present. We have to show that purely imaginary non-vanishing
eigenvalues may not exist in this situation.

Let us first consider case a). Proceeding as in the proof of Theorem 2, we get AT
Rwe = 0 and AT

V we = 0.
Denote as K1 the set of branches corresponding to inductors and current sources, and as K2 the ones
corresponding to capacitors, inductors and current sources. If G stands for the graph of the circuit, the
branches in G−K2 correspond to resistors and voltage sources, whereas those in K2−K1 are the capacitive
ones. With this notation, and in the light of Lemma 4, we get that wT

e (AR AV ) = 0 ⇒ wT
e AC = 0, that

is, AT
Cwe = 0. From this property, (5a) reads ALwl + AV wv = 0, and the exclusion of V -L loops in a)

yields wl = 0, wv = 0. Additionally, (5b) implies AT
Lwe = 0, and the absence of I cutsets in well-posed

circuits implies we = 0.
Now consider case b). Again, AT

Rwe = 0 and AT
V we = 0 hold. Using AT

Rwe = 0, equation (5a) reads
λACCAT

Cwe + ALwl + AV wv = 0. Let J1 stand for the capacitor and voltage source branches, and
assume that J2 includes these and, additionally, the inductive branches. Based upon the absence of V -C-L
loops except for V -C loops, application of Lemma 3 yields wl = 0. In virtue of (5b), it is AT

Lwe = 0, and
the properties AT

Rwe = 0, AT
V we = 0, together with the exclusion of I-C cutsets, lead to we = 0. Finally,

wv = 0 from (5a) and the absence of V -loops in well-posed circuits. �

3 Asymptotic stability

Proposition 2. If G is positive definite, and both C and L are symmetric positive definite, then Reλ ≤
0, ∀λ ∈ σ{A(x∗), g′(x∗)}.

Proof: The derivation of (7) in Theorem 2 is still valid under the current working assumptions. Let λ be
an eigenvalue with Reλ > 0. From the assumption of symmetry and positive definiteness on C and L, it
follows that

w�
eACCAT

Cwe = w�
eAR

G + GT

2
AT

Rwe = w�
l Lwl = 0, (8)

so that AT
Cwe = 0, AT

Rwe = 0, wl = 0 and (using (5b)) AT
Lwe = 0. Additionally, AT

V we = 0 as displayed
in (5c). Since current source cutsets are forbidden in well-posed circuits, it follows that we = 0. From (5a),
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we get AV wv = 0 and, since voltage source loops are also excluded in well-posed circuits, it follows that
wv = 0. This would yield the contradiction w = 0, meaning that it must be Reλ ≤ 0. �

Adding to Proposition 2 the topological conditions of Theorem 3, we get the following asymptotic
stability criterion, where the topological conditions are again independent of those characterizing the index
in Proposition 1.

Theorem 4. Assume that:

1) G is positive definite, and both C and L are symmetric positive definite.
2) At least one of the two pairs of topological conditions holds:

2a) There are neither V -L loops nor I-C-L cutsets (except maybe I-L cutsets); or
2b) There are neither I-C cutsets nor V -C-L loops (except maybe V -C loops).

Then, all eigenvalues in the spectrum σ{A(x∗), g′(x∗)} verify Reλ < 0. �

4 Example

Consider the nonlinear circuit depicted in Fig. 1. The device labeled as L2 is a Josephson junction, which
can be treated as a nonlinear inductor with a current-flux characteristic i2 = I0 sin kφ2, where I0 > 0
is a device parameter, and k is a positive physical constant. The incremental inductance of this device is
L2 = (I0k cos kφ2)−1.
The two resistors are linear with conductances G1 > 0, G2 ≥ 0, and the inductor is linear with inductance
L1 > 0. MNA equations read

L1i
′
1 = e1 (9a)

L2i
′
2 = e2 (9b)
0 = i1 + G1(e1 − e2) − I (9c)
0 = i2 −G1(e1 − e2) + G2e2. (9d)

Equilibrium points are given by e1 = e2 = 0, i1 = I, i2 = 0. The latter yields sin kφ2 = 0, i.e.,
φ2 = nπ/k, n ∈ Z, so that the incremental inductance L2 at equilibrium is ±(I0k)−1, the sign depending
on the parity of n.

Stability properties have been analyzed in [Ria04] via a DAE model of the circuit. Our present goal is
to illustrate that this qualitative analysis can be performed checking only device characteristics and circuit
topology, without making explicit use of any model. We will distinguish the two cases G2 > 0 and G2 = 0.
Note that, in both cases, the (symmetric) inductance matrix L = diag(L1, L2) is positive definite (resp.
indefinite) at equilibria for which L2 = (I0k)−1 (resp. L2 = −(I0k)−1).

G2

I i2

e1

L2

i1

e2

L1

Ref.

G1

Fig. 1. A Josephson junction circuit
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Index. In the absence of capacitors and voltage sources, according to Proposition 1 it suffices to check
for I-L cutsets in order to compute the index of (9). This yields index-1 regardless of the sign of L2 when
G2 > 0. In contrast, the case G2 = 0 yields an I-L cutset defined by the linear inductor, the current source
and the Josephson junction. In this situation, Proposition 1 only allows one to conclude that the index is 2
if L is positive definite, that is, around equilibria in which L2 = (I0k)−1 > 0. Using (9), it is not difficult
to check that, at the remaining equilibria (for which L2 = −(I0k)−1 < 0), the index is 2 if and only if the
additional condition L1 �= −L2 is satisfied.

Hyperbolicity. The absence of capacitors and voltage sources make the topological conditions in The-
orem 3 amount to the absence of L-loops, which is verified for all equilibria independently of the value of
G2, making all of them hyperbolic regardless of the sign of L2.

Asymptotic stability. Theorem 4 guarantees that equilibria with L2 = (I0k)−1 > 0 are asymptotically
stable, since for them the inductance matrix is symmetric positive definite. The case L2 = −(I0k)−1 < 0
cannot be assessed in these terms. It can be checked that, actually, when G2 > 0, these equilibria are
unstable; in contrast, if G2 = 0, these equilibria are asymptotically stable if −L2 = (I0k)−1 < L1, and
unstable if −L2 = (I0k)−1 > L1.

Acknowledgements. Work supported by Project 14583 of Universidad Politécnica de Madrid, and by the
DFG-Research Center MATHEON in Berlin.
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[ET00] Estévez-Schwarz, D., Tischendorf, C.: Structural analysis of electric circuits and consequences for MNA,

Internat. J. Circuit Theory Appl. 28, 131–162 (2000)
[GW92] Green, M.M., Willson Jr, A.N.: How to identify unstable dc operating points, IEEE Trans. Cir. Sys. I 39,

820–832 (1992)
[GF99] Günther, M., Feldmann, U.: CAD-based electric-circuit modeling in industry. I: Mathematical structure

and index of network equations, Surv. Math. Ind. 8, 97–129 (1999); ibid II: Impact of circuit configurations
and parameters, Surv. Math. Ind. 8, 131–157 (1999)

[HB84] Haggman, B.C., Bryant, P.R.: Solutions of singular constrained differential equations: A generalization of
circuits containing capacitor-only loops and inductor-only cutsets, IEEE Trans. Cir. Sys. 31, 1015–1029
(1984)

[HB86] Haggman, B.C., Bryant, P.R.: Geometric properties of nonlinear networks containing capacitor-only cut-
sets and/or inductor-only loops. Part I: Conservation laws, Cir. Sys. Signal Process. 5, 279–319 (1986)

[Mat87] Mathis, W.: Theorie Nichtlinearer Netzwerke. Springer-Verlag, 1987
[MCM79] Matsumoto, T., Chua, L.O., Makino, A.: On the implications of capacitor-only cutsets and inductor-only

loops in nonlinear networks, IEEE Trans. Cir. Sys. 26, 828–845 (1979)
[Ria04] Riaza, R.: A matrix pencil approach to the local stability analysis of nonlinear circuits, Internat. J. Circuit

Theory Appl. 32, 23–46 (2004)
[Sma72] Smale, S.: On the mathematical foundations of electrical circuit theory, J. Diff. Geometry 7, 193–210

(1972)
[Tis99] Tischendorf, C.: Topological index calculation of DAEs in circuit simulation, Surv. Math. Ind. 8, 187–199

(1999)
[WM97] Weiss, L., Mahtis, W.: A Hamiltonian formulation for complete nonlinear RLC-networks, IEEE Trans. Cir.

Sys. I 44, 843–846 (1997)
[WMT98] Weiss, L., Mahtis, W., Trajkovic, L.: A generalization of Brayton-Moser’s mixed potential function, IEEE

Trans. Cir. Sys. I 45, 423–427 (1998)



State and Semistate Models of Lumped Circuits

R. Riaza and J. Torres-Ramı́rez
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Ciudad Universitaria s/n - 28040 Madrid, Spain,
rrr@mat.upm.es, fjtr@mat.upm.es

Abstract The formulation of state equations for nonlinear circuits is tackled in this work as a reduction problem for
semistate (differential-algebraic) models. We show how the differential-algebraic approach to state-space modeling
makes it possible to give precise assumptions under which certain state reductions are feasible. Different semistate
approaches are surveyed, addressing several relations among them and letting the above-mentioned state model be an
end-point of a hierarchy of nodal analysis methods for lumped circuits. Special attention is paid to so-called augmented
node analysis (ANA) models.

1 Introduction

The derivation of state-space models for lumped circuits in terms of ordinary differential equations (ODEs)
has attracted considerable recent attention, in both linear and non-linear contexts: see [CDK87, LW02,
Nat91, Som01] and references therein. Nevertheless, state formulations have several known drawbacks,
which have driven much interest to semistate models defined by differential-algebraic equations (DAEs)
[ET00, GF99, Rei96, Ria04, Tis99].

In this semistate context, so-called augmented node analysis (ANA) models (see [LW02]) have received
much less attention in the nonlinear setting than tableau or MNA systems [ET00, GF99, Tis99]. However,
from the authors’ point of view, ANA models seem to somehow link the tableau/MNA families: on the
one hand, ANA models are obtained as a reduction of tableau systems, having index one if and only if the
corresponding tableau model does. On the other hand, MNA models can be easily obtained from ANA,
but the semiexplicit structure of augmented systems simplifies the formulation of index-1 conditions and
allows for just non-singular reactances, in contrast to MNA, where positive definiteness is required in the
index analysis [Tis99].

In this work we address several properties of ANA systems and, in particular, the state reduction prob-
lem within the ANA context. For brevity we focus on conventional models, which use capacitor voltages
and inductor currents as dynamic variables, and restrict the discussion to index-1 cases.

2 Node tableau analysis

Broadly speaking, node analysis of lumped circuits is based on the formulation of Kirchhoff current law in
the form Ai = 0, A describing the incidence between branches and nodes in the circuit. Branch currents
of voltage controlled elements are expressed as far as possible in terms of branch voltages, and these are in
turn written in terms of node voltages using Kirchhoff voltage law v = AT e.

If we assume that capacitors and inductors are locally voltage/current controlled through certain C1

relations q = ψ(vc), φ = ϕ(il), respectively, we may define the incremental capacitance and inductance
matrices as

C(vc) = ψ′(vc), L(il) = ϕ′(il). (1)
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Assume additionally that the resistors are voltage-controlled by ir = γ(vr), and split the incidence matrix
A as (AR AL AC AV AI), where AR (resp. AL, AC , AV , AI ) describes the incidence between resistive
(resp. inductive, capacitive, voltage source, current source) branches and nodes. The conventional node
tableau analysis (NTA) model can be then written as the following quasilinear DAE:

C(vc)v′c = ic (2a)
L(il)i′l = vl (2b)

0 = ij − j(t) (2c)
0 = vu − u(t) (2d)
0 = ir − γ(vr) (2e)
0 = ARir + ALil + ACic + AV iv + AI ij (2f)
0 = vr −AT

Re (2g)
0 = vl −AT

Le (2h)
0 = vc −AT

Ce (2i)
0 = vu −AT

V e (2j)
0 = vi −AT

I e. (2k)

3 Augmented node analysis (ANA)

For simplicity and comparative purposes we assume below that resistors are locally voltage-controlled by
ir = γ(vr). In Section 5 we show how to extend the results to problems without this restriction. In the
sequel we also assume that C(vc) and L(il) are non-singular, so that the conventional NTA model (2)
admits a semiexplicit form.

Let us eliminate resistive currents and voltages using (2e) and (2g). Inductive voltages will be sub-
stituted by means of (2h), and current and voltage variables in the corresponding sources can be trivially
eliminated using (2c) and (2d). Finally, (2k) will be considered as an output equation giving voltages in
current source branches and will therefore be removed from the model. This way we get

C(vc)v′c = ic (3a)
L(il)i′l = AT

Le (3b)
0 = ARγ(AT

Re) + ALil + ACic + AV iv + AIj(t) (3c)
0 = vc −AT

Ce (3d)
0 = u(t) −AT

V e. (3e)

Equations (3c)-(3e) can be understood as a time-domain analogue of [LW02, eq. (2.2)], and the method
yielding this system will be therefore called augmented node analysis (ANA), here formulated without the
need for branch replacements. The differential relations in the form (3a)-(3b) are those used in [LW02, §2,
step 4].

The additional interest of system (3) stems from the fact that it provides an intermediate formulation
between NTA and several different methods, having index-1 if and only if so it has NTA, as shown in
Theorem 1 below. It can be understood as the result of eliminating “superfluous” variables from NTA.
Using (3), the key step in the state-space formulation of Li and Woo [LW02, §2, step 3] may be seen as
an index-1 assumption on this differential-algebraic system. Such an index-1 condition can be rephrased in
circuit-theoretic terms: this will be performed in Section 4. Furthermore, MNA can be seen as a reduction
of (3), as shown at the end of this section.

Theorem 1. If the capacitance and inductance matrices C(vc), L(il) are nonsingular, the conventional
node tableau analysis (NTA) system (2) has index 1 if and only if the augmented node analysis (ANA)
system (3) has index 1.
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Proof: Let G stand for the incremental conductance γ′. The derivative of the algebraic restrictions of NTA
(2) with respect to algebraic variables (ij , vu, e, iv, ic, ir, vr, vl, vi) reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0
0 0 0 0 0 I −G 0 0
AI 0 0 AV AC AR 0 0 0
0 I −AT

V 0 0 0 0 0 0
0 0 −AT

C 0 0 0 0 0 0
0 0 −AT

R 0 0 0 I 0 0
0 0 −AT

L 0 0 0 0 I 0
0 0 −AT

I 0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

This matrix is non-singular if and only if

D =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 I −G

0 AV AC AR 0
−AT

V 0 0 0 0
−AT

C 0 0 0 0
−AT

R 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎠

and E =

⎛
⎜⎜⎜⎜⎜⎝

0 AV AC AR 0
−AT

V 0 0 0 0
−AT

C 0 0 0 0
0 0 0 I −G

−AT
R 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎠

(5)

are also non-singular. Note that E results from a row reordering in D. Writing

E11 =

⎛
⎜⎝

0 AV AC

−AT
V 0 0

−AT
C 0 0

⎞
⎟⎠ , E12 =

⎛
⎜⎝

AR 0
0 0
0 0

⎞
⎟⎠ ,

E21 =
(

0 0 0
−AT

R 0 0

)
, E22 =

(
I −G

0 I

)
,

the Schur complement [HJ85] of E22 may be easily checked to read
⎛
⎜⎝

ARGAT
R AV AC

−AT
V 0 0

−AT
C 0 0

⎞
⎟⎠ , (6)

which is the derivative of the algebraic relations in ANA (3) with respect to the algebraic variables
(e, iv, ic). Since the Schur complement of E22 is non-singular if and only if so it is E, this completes
the proof. �

3.1 MNA

Modified node analysis (MNA) [ET00, GF99, Tis99] is easily obtained from ANA by eliminating capacitive
currents and voltages. This is done via (3a) and (3d), and yields

L(il)i′l = AT
Le (7a)

ACC(AT
Ce)AT

Ce′ = −ARγ(AT
Re) −ALil −AV iv −AIj(t) (7b)

0 = u(t) −AT
V e. (7c)

This is a quasilinear system, for which the matrix ACC(AT
Ce)AT

C will typically be singular. Its analysis
requires more sophisticated techniques; specifically, index-1 and index-2 conditions have been obtained for
these systems using projector methods [ET00, Tis99].
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For later comparison, we restate here [Tis99, Th. 4], providing index-1 conditions under positive defi-
niteness assumptions on G, C and L. A square matrix F is positive definite if xTFx > 0 for all x �= 0;
we do not assume it to be symmetric. Additionally, a V -C loop (resp. an I-L cutset) is a loop (resp. cutset)
which consists only of voltage sources and/or capacitors (resp. current sources and/or inductors). Note that
index-0 cases are only displayed if there are no voltage sources and there exists a capacitive spanning tree
[Tis03]. In other cases the “index ≤ 1” condition below amounts to “index-1.”

Theorem 2. Assume that the capacitance, inductance, and conductance matrices are positive definite. If
the network contains neither V -C loops (except for C-loops) nor I-L cutsets, then the MNA system (7) has
index ≤ 1.

4 Index-1 conditions for ANA/NTA and state reduction

A result analogous to Theorem 2 can be stated for ANA systems. Note that, below, we do not need to
restrict the analysis to problems with positive definite reactances. We also emphasize that the reasoning in
this case is easier due to the semiexplicit form of the ANA system, versus the quasilinear one of MNA.

Theorem 3. Assume that the conductance matrix G is (positive or negative) definite, and that the local
capacitance and inductance matrices C, L are non-singular. Then, the ANA system (3) has index-1 if and
only if there are neither V -C loops nor I-L cutsets in the circuit.

Proof: Note that the derivative of the algebraic relations (3c)-(3e) with respect to the algebraic variables e,
ic, iv reads

J =

⎛
⎝ARGAT

R AC AV

−AT
C 0 0

−AT
V 0 0

⎞
⎠ .

Non-singularity of this matrix is equivalent to index-1 in ANA. Such non-singularity condition holds if and
only if the homogeneous linear system

ARGAT
Rx + ACy + AV z = 0 (8a)

−AT
Cx = 0 (8b)

−AT
V x = 0 (8c)

has only the zero solution. If we premultiply (8a) by xT and use (8b) and (8c), we get

xTARGAT
Rx = 0, (9)

which implies

AT
Rx = 0, (10)

because of the definiteness of G, whereas (8a) amounts to

ACy + AV z = 0. (11)

The existence of a non-vanishing solution holds simultaneously for (8) and for (8b), (8c), (10), (11) alto-
gether. It can be shown that, in turn, (8b), (8c), (10) having only the trivial solution is equivalent to the
absence of I-L cutsets, and the same holds for (11) with respect to V -C loops. This means that index-1 in
the ANA model is equivalent to the absence of V -C loops and I-L cutsets.

�

Corollary 1. If the local conductance matrix G is (positive or negative) definite, and the local capacitance
and inductance matrices C, L are non-singular, then the NTA system (2) has index-1 if and only if there
are neither V -C loops nor I-L cutsets in the circuit. �
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Corollary 2. If the local conductance matrix G is (positive or negative) definite, and there are nei-
ther V -C loops nor I-L cutsets in the circuit, then (3c)-(3e) yield ic = ψ1(il, vc, j(t), u(t)), e =
ψ2(il, vc, j(t), u(t)), and an output equation iv = ψ3(il, vc, j(t), u(t)), for locally well-defined functions
ψ1, ψ2, ψ3. Inserting these into (3a)-(3b), we get the state-space equation

C(vc)v′c = ψ1(il, vc, j(t), u(t)) (12a)

L(il)i′l = AT
Lψ2(il, vc, j(t), u(t)), (12b)

This system trivially amounts to an explicit ODE if, additionally, the local capacitance and inductance
matrices C, L are non-singular. �

Corollary 2 follows immediately from the Implicit Function Theorem, and provides precise assumptions
under which the state-space formulation of [LW02] is feasible. More precisely, the above-stated index-1
condition guarantees that the matrix Y′

n in [LW02, §2, step 3] is invertible.

5 Current-controlled and semidefinite resistors

It is of interest to extend the previous approach in order to accommodate current-controlled resistors, and
also non-definite problems. Let us assume in this regard that, instead of the voltage-controlled represen-
tation (2e), resistors are governed by a relation of the form gr(ir, vr) = 0 which splits into four differ-
ent subequations, describing four uncoupled groups (some of which might be empty) with characteristics
vr1 = ρ1(ir1), vr2 = ρ2(ir2), ir3 = γ1(vr3), ir4 = γ2(vr4). The first two are current-controlled resistors,
and both groups are distinguished by the fact that, at the operating point, we will assume that R1 = ρ′1(i

∗
r1)

is definite, and R2 = ρ′2(i
∗
r2) is symmetric and semidefinite, whereas for the last two (which are voltage-

controlled), we assume that G1 = γ′
1(v

∗
r3) is definite, and G2 = γ′

2(v
∗
r4) is symmetric and semidefinite.

All matrices are assumed simultaneously either positive or negative (semi)definite.
In this context, the conventional ANA system can be written as (3a)-(3b)-(3d)-(3e), together with

0 = AR1ir1 + AR2ir2 + AG1γ1(AT
G1

e) + AG2γ2(AT
G2

e) +

+ALil + ACic + AV iv + AIj(t) (13a)

0 = ρ1(ir1) −AT
R1

e (13b)

0 = ρ2(ir2) −AT
R2

e (13c)

instead of (3c). We have split the previous AR in an obvious manner. Note that this model includes as new
variables the currents ir1, ir2 of current-controlled resistors. The following result can be proved along the
lines defined by Theorem 3. We omit the proof for the sake of brevity.

Theorem 4. Assume that the local capacitance and inductance matrices C, L are non-singular, and that
the above-indicated assumptions on R1, R2, G1, G2 hold. Then, the ANA system (13) has index-1 if there
are neither V -C-R2 loops nor I-L-G2 cutsets in the circuit. �

6 Example

Consider the series RLC circuit displayed in Figure 1(a). The capacitor and the inductor are linear. We
assume that the nonlinear resistor is voltage-controlled through a characteristic i = γ(vr) which may
display critical points γ′(vr) = 0. Since there are neither V -C loops nor I-L cutsets in the circuit, Theorem
3 predicts that this DAE has index-1 in the regions where the conductance matrix is definite, what amounts
in this case to the condition γ′ �= 0. It can be easily checked that this is indeed the case, and that the
condition γ′ �= 0 is actually necessary for the system to have index-1.
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Fig. 1. (a) Series and (b) parallel nonlinear RLC circuits

A reader might conjecture that such critical points in the characteristic should always prevent the model
from being index-1, regardless of the topology. This is not the case, as illustrated by the circuit in Fig-
ure 1(b), where again the resistor is voltage-controlled. To consider the local behavior at critical points,
we may use Theorem 4 framing the resistor in the group G2. In Figure 1(a), there appears a pathological
L-G2 cutset, and this explains why the index-1 condition is not met at critical points. Note that, away from
critical points, the resistor can be included in the G1 group and therefore the cutset causes no problem. On
the contrary, in Figure 1(b) there are no pathological configurations and hence the model has index 1 even
at critical points. In particular, the C-G2 loop does not cause any difficulty.

Dual examples illustrating the role of current-controlled resistors can be easily constructed along the
same lines.

7 Concluding remarks

State and semistate formulations for lumped circuits have been discussed in this work. Among the latter,
augmented node analysis (ANA) models capture explicitly the circuit topology while keeping capacitive
voltages and inductor currents as variables; this allows for a direct discussion of state-space reductions in
terms of certain conditions in the ANA system, in contrast to modified node analysis (MNA) in which ca-
pacitor voltages are expressed in terms of node voltages. A drawback of ANA w.r.t. MNA is the additional
computational cost due to the capacitive branch variables in the model. Also, ANA inherits from tableau
analysis the property that C-loops yield an index greater than one; from a different perspective, ANA dis-
plays a symmetry in the topologies precluded for index-1, in contrast to MNA, what might be of theoretical
interest in the discussion of duality aspects and related issues.
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References

[CDK87] Chua, L.O., Desoer, C.A., Kuh, E.S.: Linear and Nonlinear Circuits. McGraw-Hill, 1987
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1 Introduction

Nowadays the semiconductor devices in an electrical circuit are modelled by equivalent circuits containing
basic network elements described by algebraic and ordinary differential equations. But the correct adjust-
ment of these circuits has become a very difficult task for the network design. In [2] a new model for
electrical circuits containing semiconductor devices is proposed and in [1] its well-posedness is studied.
In both articles the differential algebraic equations (DAEs) for the basic circuit’s elements are coupled to
partial differential equations (PDEs), more specifically to one-dimensional Drift-Diffusion (DD) equations,
modelling the semiconductor devices in it. Systems of this type are called Abstract Differential Algebraic
Systems (ADAS). In [9] the tractability index [5, 9] of this model is analysed and in [8] it is proved that
the DAE obtained after discretization in space of the DD equations in it has the same index as the abstract
system. In this work we study the tractability index of an abstract system where higher dimensional PDEs
describe the behavior of the semiconductor devices in the circuit. The index of the DAE obtained after
discretization in space of the PDEs in the system is also analysed.

In the next section the model is briefly described. The Sect. 3 is devoted to the study of the index of the
system, as ADAS. Finally, in Sect. 4 it is shown that the DAE that is obtained after discretization in space
of the DD equations has the same index as the abstract system.

In what follows we consider electrical circuits with only one semiconductor device, the results can
easily be generalized to circuits containing more semiconductor devices.

2 Abstract Differential Algebraic System for the simulation of electrical circuits

Suppose Ω is a bounded domain in R
d, d ∈ {1, 2, 3}, x ∈ Ω represents the space variable and t is the

time variable, t ∈ [t0, tF ]. The system proposed in [9] for the simulation of electrical circuits containing
semiconductor devices couples the Modified Nodal Analysis (MNA) equations for electrical circuits to the
DD equations for semiconductor devices.

The MNA equations for an electrical circuit have the form

AC
d qC(AT

Ce, t)
dt

+ ARg(AT
Re, t) + ALjL + AV jV + ASjS + AI iS = 0, (1a)

dφ(jL, t)
dt

−AT
Le = 0, (1b)

AT
V e− vS = 0, (1c)

where AC , AR, AL, AV , AS and AI are the element related reduced incidence matrices, vS(t), iS(t),
qC(u, t), g(u, t) and φ(j, t) are given functions and the unknowns are the node potentials, excepting the
mass node e(t) : R → R

nN and the currents through inductors, voltage sources and semiconductor devices

∗This work is supported by the DFG Research Center MATHEON “Mathematics for key technologies”, Berlin.
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jL(t) : R → R
nL , jV (t) : R → R

nV and jS : R → R
nS respectively. The DD equations are given by the

following set of PDEs for the electrostatic potential ψ(x, t) and the electrons and holes densities, n(x, t)
and p(x, t) respectively

∇(−ε∇ψ) − q(N − n + p) = 0, (1d)

−∂n

∂t
+

1
q

divJn −R = 0, Jn − qµn(UT∇n− n∇ψ) = 0, (1e)

∂p

∂t
+

1
q

divJp + R = 0, Jp + qµp(UT∇p + p∇ψ) = 0. (1f)

We consider R = R(n, p), µn = µn(x), µp = µp(x) and ε, q and UT as constants. Unlike [9], in (1d)-(1f)
we replace the Poisson equation by the energy conservation equation

∇ · (Jn + Jp − ε∂t∇ψ) = 0. (1g)

This replacement not only facilitates the theoretical analysis of the DD equations, but has also proved
advantageous in numerical simulations [4]. Nevertheless the results in the next sections remain the same
if we consider (1d)-(1f) instead of (1e)-(1g). We assume the boundary of the semiconductor device can be
divided in two disjoint parts Γ = ΓO ∪ ΓA. The boundary conditions are

n = nD(x), p = pD(x), ψ = ψbi(x) + ψD(x, e) on ΓO (1h)

and
∂ψ

∂ν
=

∂n

∂ν
=

∂p

∂ν
= 0 on ΓA, (1i)

where ψD denotes the externally applied bias, it depends on the node potentials of the circuit. The func-
tions ψbi(x), nD(x) and pD(x) are given functions of x that depend on the doping concentration of the
semiconductor.

Suppose ΓO = ∪nS+1
j=1 Γj . The current flowing through the contact Γi ⊂ ΓO of the semiconductor is

ji =
∫

Γi

Jtot · νdσ, with Jtot = Jn + Jp − ε
∂

∂t
∇ψ (1j)

Unlike [9], where the currents thorugh the semiconductor are calculated as in (1j), here we transform
the integrals over the boundary into integrals over the domain. Let us introduce the auxiliary functions
fi(x), i = 1, 2, . . . , nS that satisfy [4]

∆fi = 0 in Ω, fi|Γj
=
{

1 if i = j
0 else , j = 1, . . . , nS + 1, (∇fi · ν)|ΓA

= 0. (1k)

The current through Γi, i = 1, 2, . . . , nS can be calculated as

ji =
∫

Γi

Jtot · ν ds =
∫

Γ

Jtot · νfi ds =
∫

Ω

Jtot · ∇fidx

ji = −ε
d
dt

∫
Ω

∇ψ · ∇fidx +
∫

Ω

(Jn + Jp) · ∇fidx.

The current at ΓnS+1 is the negative sum of the currents through the other contacts†. Suppose the contact
Γi of the semiconductor device is joined to the ki-th node of the circuit for i = 1, 2, . . . , nS + 1. We set
ψD(x, e) = eki

− eknS+1 ∀x ∈ Γi, i = 1, 2, . . . , nS , and ψD(x, e) = 0, ∀x ∈ ΓnS+1. Following the

convention in [3] the vector of the branch currents of the semiconductor device jS =
(
jS1 , . . . , jSnS

)T

must be such that
†The sum of the currents at the contacts of the semiconductor is zero,

∑nS+1

i=1
ji =

∑nS+1

i=1

∫
Γi

Jtot · νds =∫
Γ
Jtot · νds =

∫
Ω
∇ · Jtotdx = 0.
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jSi
= −ji = −

∫
Ω

(Jn + Jp) · ∇fidx +
d
dt

∫
Ω

ε∇ψ · ∇fi dx, i = 1, 2, . . . , nS

jSi
= −

∫
Ω

(Jn + Jp) · ∇fidx− d
dt

jd
Si
, jd

Si
= −

∫
Ω

ε∇ψ · ∇fi dx. (1l)

With a matrix AS ∈ R
nN×nS such that

AS(k, i) =

⎧⎨
⎩

1, if Γi is joined to the node k
−1, if ΓnS+1 is joined to the node k

0, else
,

the product ASjS describes the incidence of the current at the semiconductor’s contacts in the circuit and
the potential applied to the semiconductor’s boundaries can be written as ψD(x, e) = f(x) · AT

Se where
f(x) = (f1(x) . . . fnS

(x)).
Let the following assumptions on the circuit equations be satisfied in the forthcoming sections:

1. the input functions vS(t) and iS(t), associated to the independent voltage and current sources respec-
tively, are continuous,

2. the functions qC(u, t), φ(j, t) and g(u, t) are continuously differentiable and have positive definite
partial Jacobians

C(u, t) =
∂qC(u, t)

∂u
, L(j, t) =

∂φ(j, t)
∂j

, G(u, t) =
∂g(u, t)

∂u
,

3. the circuit contains neither loops of voltage sources only nor cut sets of current sources only. These
two conditions hold if and only if the matrices AV and (AC AR AL AV AS)T have full column rank,
respectively,

4. the function R(n, p) is continuously differentiable,
5. the functions µn(x) and µp(x) are bounded.

3 Tractability index of the Abstract Differential Algebraic System

The tractability index concept for ADAS was introduced in [5] and [9]. This is a kind of time index as
the uniform differential time index in [6], but it is not restricted to time-invariant linear Partial Differential
Algebraic Equations.

We decided to study the tractability index of (1) because we are mostly interested in the transient
behaviour of the electrical circuit. Besides the tractability index concept for DAEs has proved very useful
in the analysis of electrical circuits described by algebraic and differential equations only.

As mentioned in the introduction, in [9] the index of an ADAS where one-dimensional DD equations
describe the behaviour of the semiconductor devices in the circuit was studied. There it was proved that the
index of the coupled system is always less or equal to two and it is two only if the circuit contains CVS-
loops‡ or LI-cut sets§. In this section the same results are proved, but related to an ADAS where higher
dimensional DD equations model the semiconductor devices in the circuit.

After homogenization of the electrostatic potential and the densities of electrons and holes,

ψ̃ = ψ − f(x) ·AT
Se− g1(x), ñ = n− g2, p̃ = p− g3

with functions gi, i = 1, 2, 3 such that

(∇gi · ν)|ΓA
= 0, i = 1, 2, 3, g1|ΓO

= ψbi(x), g2|ΓO
= nD, g3|ΓO

= pD

‡Loops of capacitors, voltage sources and semiconductor devices with at least one voltage source or one semicon-
ductor device.

§Cut sets of inductors and current sources.
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and if we rename the homogenized variables ψ̃, ñ and p̃ as originally, the above described model can be
written as A d

dt
D(u, t) + B(u, t) = 0 with u = (e, jL, jV , jS , jd

S , ψ(·, t), n(·, t), p(·, t)),

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AC 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D(u, t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

A+
CACqC(AT

Ce, t)
φ(jL, t)

jd
S

∇ · (−ε∇ψ)
−n
p

⎞
⎟⎟⎟⎟⎟⎟⎠

(2a)

and

B(u, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ARg(AT
Re, t) + ALjL + AV jV + ASjS + AI is(t)

−AT
Le

AT
V e− vS(t)

jd
S + ε

⎛
⎜⎝
∫

Ω
∇
(
ψ + f ·AT

Se
)
· ∇f1dx

...∫
Ω
∇
(
ψ + f ·AT

Se
)
· ∇fnS

dx

⎞
⎟⎠

jS +

⎛
⎜⎝
∫

Ω
(Jn + Jp) · ∇f1dx

...∫
Ω

(Jn + Jp) · ∇fnS
dx

⎞
⎟⎠

∇ · (Jn + Jp)
1
q∇ · Jn −R
1
q∇ · Jp + R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2b)

In (2) Jn = qµn

(
UT∇(n + g2) − (n + g2)∇

(
ψ + f ·AT

Se + g1

))
, Jp has a similar structure and A+

C

denotes the Moore-Penrose pseudo-inverse of AC . The operators A,D and B are acting on Hilbert spaces
A : Z → Y , D : X → Z and B : X → Y with

X = R
nN × R

nL × R
nV × R

nS × R
nS × V × L2(Ω) × L2(Ω),

Y = R
nN × R

nL × R
nV × R

nS × R
nS × L2(Ω) × L2(Ω) × L2(Ω),

Z = R
nC × R

nL × R
nS × L2(Ω) × L2(Ω) × L2(Ω),

where V =
{
v ∈ H2(Ω) | v|ΓO

= 0, (∇v · ν)|ΓA
= 0
}

. Note that the definition domain DB of B(u, t),

DB = R
nN × R

nL × R
nV × R

nS × R
nS × V × V × V,

is dense in X . The Fréchet derivative of D(u, t) is

D0(u, t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

A+
CACC(AT

Ce, t)AT
C 0 0 0 0 0 0 0

0 L(jL, t) 0 0 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 −ε∆ 0 0
0 0 0 0 0 0 −I 0
0 0 0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

and because the equation −ε∆u = f , completed with homogeneous Dirichlet and Neumann conditions,
has a unique solution for all f ∈ L2(Ω),

imD0(u, t) = imAT
C × R

nL × R
nS × L2(Ω) × L2(Ω) × L2(Ω),

kerD0(u, t) = kerAT
C × {0} × R

nV × R
nS × {0} × {0} × {0} × {0}

On the other hand, the operator A satisfies
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kerA = kerAC × {0} × {0} × {0} × {0} × {0},

imA = imAC × R
nL × {0} × {0} × R

nS × L2(Ω) × L2(Ω) × L2(Ω).

The operators A and D0 are well matched [5, 9], i.e., they satisfy

kerA⊕ imD0(u, t) = Z, ∀u ∈ X , ∀t ∈ [t0, tF ]

and there is a projector R ∈ L(Z) such that imR = imD0(u, t) and kerR = kerA, where L(Z) denotes
the space of linear operators L : Z → Z .

It was the introduction of the variables jd
Si

in (1l) what allowed us to write the ADAS in such a way
that A and D0 are well matched. In [9] the Poisson equation, instead of the energy conservation equation,
is considered. There it is not necessary to introduce jd

Si
in order to have well matched operators A and D0.

Remark The functions f1, . . . , fnS
defined above are a basis of the linear space

F =
{
v ∈ H2(Ω) | ∆v = 0 in Ω, (∇v · ν)|ΓA

= 0, v|Γj
= aj , v|ΓnS+1 = 0

}
,

where j = 1, 2, . . . , nS and aj ∈ R ∀j. Because (u, v)F =
∫

Ω
∇u · ∇v dx is a scalar product in F , the

matrix

J =

⎛
⎜⎝
∫

Ω
∇f1·∇f1 dx ...

∫
Ω

∇f1·∇fnS
dx

...
...

...∫
Ω

∇fnS
·∇f1 dx ...

∫
Ω

∇fnS
·∇fnS

dx

⎞
⎟⎠ , (3)

is positive definite.
Note that the fourth equation of the abstract system is

jd
S + εJAT

S e + ε

⎛
⎜⎝
∫

Ω
∇ψ · ∇f1 dx

...∫
Ω
∇ψ · ∇fnS

dx

⎞
⎟⎠ = 0, (4)

with the matrix J in (3). The positive definitness of J is very important in the proofs below.

Theorem 1. If the conditions on the circuit mentioned in Sect. 2 are satisfied and the circuit contains neither
LI-cut sets nor CVS-loops, the abstract system has tractability index one.

Proof: Let G0(u, t) = AD0(u, t) and B0(u, t) denote the Fréchet-derivative of B. Under the conditions in
Sect. 2 the operator B0(u, t) exists. The system has tractability index one if there is a projection operator
Q0 ∈ L(X ) onto kerG0(u, t) such that G1(u, t) = G0(u, t) + B0(u, t)Q0 is injective and imG1(u, t) = Y
for all u ∈ X and t ∈ [t0, tF ].

Because the system has a properly stated leading term, kerG0(u, t) = kerD0(u, t) and Q0 =⎛
⎜⎜⎝

QC 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎠ is a projection operator onto kerG0(u, t) if QC is a projector onto kerAT

C . The oper-

ator G1 can easily be calculated. Let w =
(
we, wL, wV , wS , w

d
S , wψ, wn, wp

)
∈ kerG1(u, t). The fourth

equation of G1(u, t)w = 0 is εJAT
SQCwe = 0 where J is the matrix in (3), then εJAT

SQCwe = 0 iff
AT

SQCwe = 0. The sixth equation of G1(u, t)w = 0 is −ε∆wψ = 0, it implies that wψ = 0. The rest of
the proof is very similar to the one in [9]. We arrive to

kerG1(u, t) =
{
w | wψ = 0, wn = 0, wp = 0, QCwe ∈ ker (AC AR AV AS)T

,

PCwe = −HC(·)−1 (AV AS) ( wV
wS

) , wL = L(·)−1AT
LQCwe,

( wV
wS

) ∈ ker
(
QT

CAV QT
CAS

)
, wd

S = − (0 I) ( wV
wS

)
}
,
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where HC(AT
Ce, t) = ACC(AT

Ce, t)AT
C + QT

CQC is positive definite. If the circuit contains neither LI-
cut sets ((AC AR AV AS)T has full column rank) nor CVS-loops with at least one voltage source or one
semiconductor device (

(
QT

CAV QT
CAS

)
has full column rank), then kerG1(u, t) = {0}, i.e. G1(u, t) is

injective. The dense solvability of G1(u, t) (imG1(u, t) = Y) can be shown using similar arguments as
those in [9] and taking into account that J is nonsingular �.

Suppose the circuit contains LI-cut sets or CVS-loops with at least one voltage source or one semi-
conductor device. Let QCRV S be a projector onto ker (AC AR AV AS)T and QC−V S , a projector onto
ker
(
QT

CAV QT
CAS

)
. Because imQCRV S ⊂ imQC , QCRV S can be constructed so that kerQC ⊂

kerQCRV S . A projector Q1(u, t) onto kerG1(u, t) is then

Q1(u, t) =

⎛
⎜⎜⎝

QCRV S 0 −HC(·)−1(AV AS)QC−V S 0 0 0 0

L(·)−1AT
LQCRV S 0 0 0 0 0 0
0 0 QC−V S 0 0 0 0
0 0 −(0 I)QC−V S 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎠ .

Theorem 2. Under the conditions mentioned in Sect. 2 and if the circuit contains LI-cut sets or CVS-loops,
the coupled system has tractability index two.

Proof: The ADAS has index two if the operator G2(u, t) = G1(u, t)+B0(u, t)(I−Q0)Q1(u, t) is injective
and densely solvable for all u ∈ X and t ∈ [t0, tF ] .

The operator G2(u, t) can easily be calculated. Let w be an element in kerG2(u, t). The third and fourth
equations of G2(u, t)w = 0, pre-multiplied by QT

C−V S , can be written as

−QT
C−V S

{(
AT

V

mathAT
S

)
HC(·)−1 (AV AS) +

(
0 0
0 1

ε J−1

)}
QC−V S ( wV

wS
) = 0. (5)

Because
(

0 0
0 1

ε J−1

)
is positive semidefinite and H−1

C (·) is positive definite, equation (5) is satisfied iff
QC−V S ( wV

wS
) = 0. The rest of the proof is very similar to the one in [9]. We arrive to kerG2(u, t) = {0}.

The dense solvability of G2(u, t) can be proved following the lines in [9] �.

4 Index of the Discrete System

Suppose that the coupled system, after discretization in space of the Drift-Diffusion equations has the
following form

AC
d qC(AT

Ce, t)
dt

+ ARg(AT
Re, t) + ALjL + AV jV + ASjS + AI iS = 0, (6a)

dφ(jL, t)
dt

−AT
Le = 0, (6b)

AT
V e− vS = 0, (6c)

jd
S + JhA

T
Se + g(y) = 0, (6d)

jS + jc
S(AT

Se, y) +
d jd

S

dt
= 0, (6e)

A
d y

dt
+ b(AT

Se, y) = 0, (6f)

where A is a nonsingular matrix, Jh is positive definite and b(u, y), jc
S(u, y) and g(y) are continuously

differentiable functions. The vector y is y = (Ψ, N, P )T and Ψ , N and P define the approximations to
ψ(x, t), n(x, t) and p(x, t) by the discretization method. Then, in a similar way as in the previous section
it can be shown that its index is always less or equal to two and it is two only if the circuit contains LI-cut
sets or CVS-loops.
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4.1 The Scharfetter-Gummel discretization of the Drift-Diffusion equations

If the so-called Scharfetter-Gummel Discretization is applied to the DD equations in (2) the resulting DAE
has the same structure as (6). The Scharfetter-Gummel scheme can be described as a Finite Element Method
(FEM) for the discretization of the Drift-Diffusion equations that is based on the assumption that the current
densities Jn and Jp are constant on each element (triangles, tetrahedrons, etc) of the spatial mesh. For
a detailed description of this method we refer to [7].

Suppose T = {T1, T2, . . . , TK} is a conforming triangulation of Ω and P= {P1, P2, . . . , PM , . . . , PN}
denotes the set of vertices of elements in T , where Pi ∈ Ω∪ΓA for i = 1, 2, . . . ,M . Let {ϕ1, ϕ2, . . . , ϕN}
be continuous functions that are linear on each Ti ∈ T and satisfy ϕi(Pj) =

{
1, if i = j
0, else . The coefficients

that define the approximation ψh(x, t) =
∑N

j=1 Ψj(t)ϕj(x) are given by

ε
d
dt

N∑
j=1

Ψj

∫
Ω

∇ϕj · ∇ϕi dx−
∫

Ω

(Jn + Jp) · ∇ϕi dx = 0, (7)

where i = 1, 2, . . . ,M . The last N − M values of Ψj are Ψj = ψbi(Pj) + fh(Pj) · AT
Se where fh =

(f1,h, f2,h, . . . , fnS ,h) are approximations to the functions fi defined in (1k). Suppose the functions fi,h

are calculated as
∑N

j=1 fi,h(Pj)ϕj(x). If we substitute Ψj , j = M + 1, M + 2, . . . , N in (7) by their
values and introduce the change of variables Ψ̃j = Ψj − fh(Pj) · AT

Se, j = 1, 2, . . . ,M (the tractability
index of a DAE is invariant under regular variable transformations) the following equations are obtained

ε
d
dt

M∑
j=1

Ψ̃j

∫
Ω

∇ϕj · ∇ϕi dx−
∫

Ω

(Jn + Jp) · ∇ϕi dx = 0. (8a)

The discretized continuity equations are

− d
dt

M∑
j=1

Nj

∫
Ω

ϕjϕi dx− 1
q

∫
Ω

Jn · ∇ϕi dx−
∫

Ω

Rϕi dx = 0, (8b)

d
dt

M∑
j=1

Pj

∫
Ω

ϕjϕi dx− 1
q

∫
Ω

Jp · ∇ϕi dx +
∫

Ω

Rϕi dx = 0, (8c)

where i = 1, 2, . . . ,M and Nj and Pj define the approximations nh(x, t) =
∑N

j=1 Nj(t)ϕj(x), ph(x, t) =∑N
j=1 Pj(t)ϕj(x) to n(x, t) and p(x, t) respectively. Equations (8) were derived applying a FEM to the

DD equations. The difference between this discretization and the Scharfetter-Gummel discretization is in
the way the integrals involving Jn and Jp are approximated. In both cases the resulting system has the form

Ady

dt
+ b(AT

Se, y) = 0 where A is nonsingular and b(u, y) is continuous and differentiable. The equations
for the current are as in (6d)-(6e). The matrix Jh has the same form as (3) but with the functions fi,h(x)
instead of fi(x).

5 Conclusions

In this work we have studied the tractability index of a coupled system for the simulation of electrical
circuits. The results in this paper generalize those presented in [9] where one dimensional Drift-Diffusion
(DD) equations model the behaviour of the semiconductor devices in the circuit, here DD equations in
higher space dimensions were considered. It was proved that the ADAS has always index smaller or equal
to two and it can be determined by topological conditions on the circuit only. The DAE that is obtained
after spatial discretization of the DD equations in the system has also index smaller or equal to two and
under the same topological conditions on the circuit as the ADAS assuming that the semi-discretized DD
equations have a certain structure. After the Scharfetter-Gummel discretization of the DD-equations a DAE
with the required structure is obtained.
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Multirate Methods in Chip Design: Interface Treatment and Multi
Domain Extension ∗

M. Striebel and M. Günther

Bergische Universität Wuppertal, Departement of Mathematics, Chair of Applied Mathematics/Numerical Analysis,
D-42097 Wuppertal, Germany,{striebel,guenther}@math.uni-wuppertal.de

Abstract Multirate methods make use of latency that occurs in electrical circuits to simulate more efficiently the
transient behaviour of networks: different stepsizes are used for subcircuits according to the different levels of activity.
As modelling is usually done by applying modified nodal analysis (MNA), the network equations are given by coupled
systems of stiff differential-algebraic equations. Following the idea of 2-level mixed multirate for ordinary differential
equations, a hierarchical ROW-based multirate method that can deal with an arbitrary amount subsystems is developed.

1 Introduction

Large integrated electrical networks are usually build up by numerous coupled subcircuits of different func-
tionality. These subcircuits are modelled independently and composed to one macro system by connecting
them at the respective terminals, i. e. each pair of connected terminal nodes merge to one node (see Fig. 1,
left).

From a modelling point of view, this procedure can be described by introducing virtual voltage sources
at the boundary nodes (see Fig. 1, right). This approach preserves the macro circuits block structure and
produces additional variables: branch currents w through the coupling voltage sources. These currents are
determined by the property, that the node potentials of each pair of connected boundary nodes have to
coincide.

Regarding r subcircuits, r systems of differential-algebraic equations (DAE), coupled by algebraic
equations arise:

Fλ(xλ,
d

dt
qλ(xλ), w, t) = 0, (λ = 1, . . . , r) (1a)

G(x1, . . . , xr) = 0, (1b)

where xλ describes the node potentials and currents and qλ the charges and fluxes of the λ−th subcircuit
and w the coupling currents.

As the subcircuits constitute different functional units, the macro system often shows multirate be-
haviour, i. e. the subcircuits behave on different timescales. Thus multirate methods can be applied, that
integrate subsystems showing different transient behaviour with different stepsizes adjusted to each subcir-
cuits activity level.

∗This work is part of the project “Partielle Differential-Algebraische Multiskalensysteme für die Numerische Sim-
ulation von Hochfrequenz-Schaltungen” (No. 03GUNAVN), which is founded by the BMBF program “Multiskalen-
systeme in Mikro- und Optoelektronik ”.

∗The author is indebted to Infineon Technologies München, and especially to Drs. Feldmann and Schultz, for
supporting his PhD project.
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1 2

43

1 2

43

Fig. 1. Coupling: technical and modelling point of view

2 Partitioned Network

Coupled problems that can be described by the abstract model (1a, 1b) also occur in other applications
(e. g. multi-body physics). To set up numerical methods that are adapted to simulating electrical networks,
a closer look at their special properties is required.

2.1 Network Equations

For circuits that are designed in the described manner, charge oriented modified nodal analysis (MNA)
yields network equations of the following form (see also [1]):

0 = ACλ
q̇λ + ARλ

rλ(At
Rλ

eλ, t) + ALλ
jLλ

+ AVλ
jVλ

+

+AIλ
ıλ(t) + Awλ

w , (2a)

0 = φ̇λ −At
Lλ

eλ, (2b)

0 = At
Vλ

eλ − vλ(t), (2c)

0 = qλ − qCλ
(At

Cλ
eλ, t), (2d)

0 = φλ − ϕLλ
(jLλ

, t) (2e)

for the λ−th subcircuit (λ = 1, . . . , r) and the overall coupling equation

0 =
r∑

λ=1

At
wλ

· eλ. (3)

The unknowns this DAE-system has to be solved for are the node potentials eλ, the currents jLλ
and jVλ

through inductances and voltage sources respectively, the charges qλ and magnetic fluxes Φλ for each
subcircuit and the overall coupling currents w.
(2a) constitutes the current balance for each node that belongs to the λ-th subcircuit. The incidence ma-
trices ACλ

, ARλ
, ALλ

, AVλ
, AIλ

assemble the element related currents qλ, rλ(·, ·), jLλ
, jVλ

, ıλ(·) through
capacitances, resistances, inductances, voltage and current sources respectively. The additional (boxed)
term Awλ

w reflects the coupling currents to adjoined subcircuits, i. e. through the virtual voltage sources.
The appropriate incidence matrix Awλ

filters out the adequate boundary nodes.
The flux–node potential correlation (2b),the node potential – voltage source dependency (2c) and the

charge and flux defining equations (2d,2e) are not affected by coupling to other subcircuits, as the informa-
tion exchange is done solely via coupling currents.

Also controlled current and voltage sources can be included in (2a-2e) by replacing ıλ(t) and vλ(t) by
ıλ(At

λeλ, q̇λ, jLλ
, jVλ

, t) and vλ(At
λeλ, q̇λ, jLλ

, jVλ
, t) with At

λeλ describing the controlling branch volt-
ages.

The linear coupling equation (3) states, that the potentials at the boundary nodes of connected subcir-
cuits have to coincide.

Remark 1. The decomposition of large electrical circuits into subcircuits in the above described manner
introduces artifical voltage sources (shorts). Hence additional unknowns w (the terminal currents) emerge.
This may not be wanted in general but it yields several benefits:
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• The terminal currents are explicitly available and have not to be collected by running through big parts
of the hierarchie. This allows to decouple the time domain analysis ([2]). In multirate methods the latent
part has to be bypassed when performing integration of the active part ([3]). This can easily be done by
interpolation of the terminal currents.

• The coupling equation (3) that is needed to determine the additional unknowns can be helpful for error
control.

2.2 Index properties

The overall system (1a,1b) is made up of r subsystems – each with inner variables xλ (λ = 1, . . . , r) –
that are coupled by one equation and one variable w respectively. Hence, several index-1 conditions are
assumed to be fulfilled, according to the subsystems and the overall system:

(C1) The overall system (1a,1b) has index 1 (with respect to x1, . . . , xr, w).
(C2) All systems (1a) define index-1 systems with respect to xλ (and w given as

input).
(C3) For all λ ∈ {1, . . . , r}, the system [Fλ = 0,G = 0] has index-1 with respect

to xλ and w (and xi,∀i �= λ given as input).

Topological Conditions

In analogy to the procedure described in [8] and [9], topological conditions to guarantee the index con-
ditions (C1)-(C3) can be derived. Therefore (1a,1b) is transformed into the semi-explicit systems for
λ = 1, . . . , r

ẏλ(t) = fλ(zλ, w, t),
0 = hλ(yλ, zλ, w, t)

(4a)

coupled by the algebraic equation

0 = g(z1, . . . , zr). (4b)

With fixed projectors QCλ
, QV −Cλ

, QR−CVλ
onto kerAt

Cλ
, kerAt

Vλ
QCλ

, kerAt
Rλ

QCλ
QV −Cλ

and their
complementary projectors P� = I−Q�, zλ identifies the node potentials and inner currents and yλ defines
the charges and fluxes (see also [4]):

zλ = ν̂λ((et
λ, j

t
Lλ

, jtVλ
)t), yλ =

(
ACλ

qλ

Φλ

)

with ϑ̂λ((et
λ, j

t
Lλ

, jtVλ
)t) =

⎛
⎜⎜⎜⎜⎝

PCλ
0 0

0 IjLλ
0

PV −Cλ
0 0

PR−CVλ
0 0

0 0 IjVλ

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎝ eλ

jLλ

jVλ

⎞
⎠ (5)

The topological conditions read: (C2) holds, if the λ-th subcircuit neither contains CV-loops nor LI-
cutsets ([8, 9]). In addition (C1) and (C3) hold, if the according composition of subcircuits does not contain
loops of only capacitors, voltage sources and at least one virtual voltage source.

3 Multirate Methods

The basic idea of multirate methods is to prevent parts to be integrated with smaller stepsizes than neces-
sary to guarantee given error tolerances. This is done by using different stepsizes that are suitable for the
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...
t0 t0 + HA,1 t0 + HL

Fig. 2. Macro- and microsteps

different levels of activity at each time. In the case of problems that are already given in the form of cou-
pled subsystems like (1a,1b) it is convenient to assume, that these subsystems have no intrinsic multirate
potential (but they may show multitone behaviour)

Remark 2. Multirate methods have to interweave approximations working on different time grids. This
causes an overhead that has to be outbalanced by the reduction of computational costs for the discretisation
of the less active (latent) parts. Hence systems showing multirate behaviour are said to have multirate
potential if the different timescales are widley seperated, the latent parts are larger than the active ones and
the coupling amongst subsystems representing different activity levels is weak.

3.1 Multirate schemes for ODE systems

The concept of onestep multirate methods can be described with a system of two coupled ODEs:

ẏL = fL(yL, yA), yL(t0) = yL,0, (6a)
ẏA = fA(yL, yA), yA(t0) = yA,0. (6b)

The idea is to compute one macrostep of the latent† part (subscript L) with the stepsize HL, i. e. get
an approximation yL,1 ≈ yL(t0 + Hl) and to perform q microsteps with stepsizes HA,µ (with Hl =
Ha,1 + . . . + Ha,q) for the active∗ part (see Fig. 2). In its most general way this procedure can be defined
as follows:

yL,1 = yL,0 +
sL∑
i=1

bL
i · kL

i ,

yA,µ = yA,µ−1 +
sA∑
i=1

bA
i · kA,µ

i (µ = 1, . . . , q),

kL
i = ΦL(HL; yL,0, Y

A
i , kL

1 , . . . , k
L
sL

) (i = 1, . . . , sL),

kA,µ
i = ΦA(HA,µ; yA,µ−1, Y

L,µ
i , kA,µ

1 , . . . , kA,µ
sA

) (i = 1, . . . , sA),

where Φ∗ denotes an s∗ stage IRK or ROW scheme with coefficients α∗, β∗, γ∗, ν∗ (* ∈ {L,A}).
As the subsystems are coupled, the computation of the weights for each part depends on information

on the other one at some supporting timepoints:

Y A
i ≈ yA(t0 + αL

i HL) (i = 1, . . . , sL), (7a)

Y L,µ
i ≈ yL(t0 +

µ−1∑
ν=1

HA,ν + αA
i HA,µ) (i = 1, . . . , sA;µ = 1, . . . , q). (7b)

There are different strategies to compute these values. Explicitly done extra-/interpolation [6] destroyes
the onestep character of the method. Generalised multirate [7], a RK-based method, calculates Y L,µ

i and

†Subsystems for which the actual step is computed with a large optimal stepsize a called latent, subsystems that
need small stepsizes are denoted active.



Multirate methods in Chip Design 133

Y A
i in RK-like manner using the stage increments kL

i , k
A,µ
i . Mixed multirate [3], ROW-based, builds up

on generalised multirate. It decomposes the computation of one macrostep with its inner microstep to a
so-called “compound step” and “later microsteps” and therefore is a slowest first approach ([6]). For the
former the incremental formulation of generalise multirate is used. In the latter dense-output is used for the
coupling.

3.2 Mixed multirate scheme for coupled index-1 DAE systems

First consider a system of two (r = 2) coupled index-1 DAEs of semi-explicit form (4a,4b):

ẏL = fL(zL, w)
0 = hL(yL, zL, w)

ẏA = fA(zA, w)
0 = hA(yA, zA, w)

0 = g(zL, zA).

(8)

As the coupling current affects both subsytems it is natural to assume that the according variable w behaves
like the latent part with yL, zl. If there are more than two subsystems w may also contain couplings amongst
active parts and may be decomposed to latent and active parts itself.
Due to the index assumptions (C3) and (C2) [ẏL = fL, 0 = hL, 0 = g] and [ẏA = fA, 0 = hA] are index-1
problems with respect to zL, w and zA respectively.

The mixed multirate ansatz for ODEs can be brought forward to the coupled semi-explicit problem (8).
The compound step regulations read :

⎛
⎝ yL,1

zL,1

w1

⎞
⎠ =

⎛
⎝ yL,0

zL,0

w0

⎞
⎠+ bt

L

⎛
⎝ lL

kL

p

⎞
⎠,

(
yA,1

zA,1

)
=
(
yA,0

zA,0

)
+ bt

A

(
lA
kA

)
. (9a)

with bλ := (bλ,1, . . . , bλ,s)t denoting the weights and lλ := (ltλ,1, . . . , l
t
λ,s)

t, kλ := (kt
λ,1, . . . , k

t
λ,s)

t and
pλ := (pt

λ,1, . . . , p
t
λ,s)

t denoting the increments to yλ, zλ and w.
The incremtents for the i-th stage are defined by the linear equation

M� ·

⎛
⎜⎜⎜⎜⎜⎝

lL,i

kL,i

lA,i

kA,i

pi

⎞
⎟⎟⎟⎟⎟⎠

= RHSi, (9b)

with M� = ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IyL
−HLγ

(L) ∂fL

∂zL
−HLγ

(L) ∂fL

∂w

−γ(L) ∂hL

∂yL
−γ(L) ∂hL

∂zL
−γ(L) ∂hL

∂w

IyA
−HAγ(A) ∂fA

∂zA
− 1

m · HAν(A,L) ∂fA

∂w

−γ(A) ∂hA

∂ya
−γ(A) ∂hA

∂zA
− 1

m · ν(A,L) ∂hA

∂w

−γ(L) ∂g
∂zL

−m · ν(L,A) ∂g
∂zA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and a right-hand side RHSi depending on both stepsizes HL,HA,1, the stepsizeratio m := HL

HA
, the

incremtents lL,j , kL,j , lA,j , kA,j , pj of the former steps j = 1, . . . , i − 1 and a set of coefficients that
includes γ(L), ν(L,A), . . ..

Remark 3. In the later microsteps it remains, to solve the system [ẏA = fa, 0 = ha] with respect to yA, zA

and w(t) entering the right-hand-side via dense output: w(t0 + ξ · HL) ≈ w0 +
∑s

i=1 bL,i(ξ) · pi with ξ ∈
(0, 1)

In circuit simulation methods are wanted that directly operate on the network equations. The semi-
explicit formulation (4a,4b) is just introduced to do analytical studies.



134 M. Striebel and M. Günther

3.3 Mixed multirate for coupled network (2a-e,3)

The coupled network equations (2a-e,3) are transfered to the semi-explicit formulation (4a,4b).
According to (5) the network equations’ variables eλ, jLλ

, jVλ
identify the semi-explicit formulation’s

one zλ via the linear operator ϑ̂λ.

With ϑλ(zλ) =

⎛
⎝ Ieλ

0 QCλ
QCλ

QV −Cλ
0

0 IjLλ
0 0 0

0 0 0 0 IjVλ

⎞
⎠ · zλ

also the network equation’s variables can be reconstructed from the “semi-explicit” ones. Hence

zλ = ϑ̂λ((et
λ, j

t
Lλ

, jtVλ
)t)

= ϑ̂λ ◦ ϑλ(zλ)

(et
λ, j

t
Lλ

, jtVλ
)t = ϑλ(zλ)

= ϑλ ◦ ϑ̂λ((et
λ, j

t
Lλ

, jtVλ
)t).

(10)

The semi-explicit problem (4a,4b) and its associated method (9a,9b) is suitable to derive order conditions
to get adequate coefficients, such that ‖err(se)λ ‖ = O(Hp+1

λ )§

As the transformation between the two formulations is not invertible, it is not possible to carry forward
the attained method to a method that draws directly on the coupled network. To obtain such “network-
regulations” with demanded accuracy (‖err(mna)

λ ‖ = O(Hp+1
λ ))§ in terms of node voltages and currents

(e, jL, jV ) however, there is another way:

• Based upon the idea of (9a,9b) regulations with an (undefined) coefficient set can be deduced from the
network formulation (2a-e,3).

• The same transformation that carries over the network formulation to the semi-explicit one, applied to
the above regulations yields instructions that coincide with (9a,9b).

• Regarding (10), it holds that ‖err(mna)
λ ‖ ≤ ‖ϑ‖ · ‖err(se)λ ‖ for the same coefficientset. Hence, if a

coefficientset is chosen properly for the semi-explicit formulation, it is also suitable for the network
formulation.

• Finally a Block-Gaussian elimination and some linear transformation allow to eliminate the charges
and fluxes qλ, φλ. This guarantees charge- and flux-conservation and enables error-check and stepsize
control based directly on the node potentials and currents (eλ, jLλ

, jVλ
) (see also [5]).

4 Hierarchical mixed multirate

The already known multirate schemes deal with two different levels of activity. However coupled problems
like (1a,1b) need n-level-multirate schemes¶ with stepsizes H1 > . . . > Hn. Transfering the 2-level-
mixed multirate to n-level-schemes in a straight forward way produces a bunch of coupling coefficients.
Hierarchical mixed multirate is a new approach in dealing with an arbitrary amount of activity levels and
still limits the amount of coupling-factors. The main idea is to nest compound steps and later micro-steps
in a way, that at each time merely a two-level multirate scheme is engaged: (see Fig. 3)

(i) Group remaining subsystems in terms of activity level. This yields ki virtual blocks consisting of
subsystems showing similar behaviour. If ki = 1 employ later micro steps – the coupling to other
subsystems/blocks is given by dense output – until endpoint is reached, skip to (iv).

(ii) Build up a sorted stack (top down, decreasing stepsizes). Apply a compound step with the stacks top
as latent block and its associated stepsize and all the other blocks combined to one as active block with
the stepsize associated to the stacks bottom. The coupling to already integrated subsystems is given by
dense output.

(iii) Remove the stacks top. The new endpoint is the one reached by the macrostep. Skip to (i).
(iv) Enlarge the set of remainig subsystems by the ones that produced the last endpoint. If the endpoint is

the endpoint of integration as demanded it is finished. Else forget the endpoint and skip to (i).

§err�
λ denotes the local error after one step for the λ-th subsystem, with “se” short form for semi-explicit formula-

tion, “mna” short form for network’s equation formulation
¶n ≤ r as some subsystems may show the same activity level.
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({1}+{2,3}) ({2}+{3})←[1] ({3})←[1,2]

({2}+{3})←[1] ({3})←[1,2]

Fig. 3. Hierarchical mixed multirate for three blocks

Table 1. accepted (refused) steps, time intervall [0, 2π]

Multirate Singlerate

Block I (≈ sin(t)) 255(9)

Block II (≈ sin(10t)) 1391(22) 7801(150)

Block III (≈ sin(100t)) 8322(150)

Numerical Tests

A first hierarchical multirate-method of order 2 has recently been implemented in MATLAB. It can deal
with an arbitrary amount of subcircuits with grouping them in terms of activity levels.

First testruns were done with a three-block circuit (with 3/5/3 nodes) “behaving like” sin(ωt) with
ω = 1, 10, 100 respectively. This yields promising results (see Table 1) as the mid-latent and latent block
are calculated about 30 and 6 times less than in a corresponding singlerate.

5 Conclusions

A multirate scheme for circuit simulation that can deal with an arbitrary amount of subsystems has been
derived. Domain decomposition of large electrical circuits has been reached by introducing extra variables.
Now numerical tests have to be done with industry related examples to demonstrate the qualities of the
method.

Stepsize controll for multirate schemes has to be improved using the additional unknowns and the order
of the method has to be enlarged to at least order three.
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Abstract In transient analysis of electrical circuits the solution is computed by means of numerical integration meth-
ods. Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes
smoother stepsize controllers can ensure that the errors and stepsizes also behave smoothly. For onestep methods, the
stepsize control process can be viewed as a digital (i.e. discrete) linear control system for the logarithms of the errors
and steps. For the multistep BDF-method this control process can be approximated by such a linear control system.

1 Introduction

Electrical circuits can be modelled by the following Differential-Algebraic Equation

d

dt
[q(t, x)] + j(t, x) = 0, (1)

where q, j : R × R
n → R

n represent the charges on capacitors and currents through resistors and sources
in the circuit and x is the state vector. In transient analysis an Initial Value Problem has to be solved for this
DAE, which is done by implicit integration methods (usually BDF methods).

The accuracy of integration methods depends on the magnitude of the stepsizes. Adaptive stepsize
control is used to handle the trade-off between the computational work load and the accuracy. Therefore,
each step the magnitude of the local error must be estimated. If this estimate r̂n is larger than a given
tolerance level TOL, the current step is rejected. Otherwise, the numerical solution can be computed at
a next timepoint tn+1 = tn + hn.

The following stepsize controller is very commonly used for integration methods of order p:

hn =
(

ε

r̂n−1

) 1
p+1

hn−1. (2)

This controller tries to keep the error r̂n close to a reference level ε by means of the stepsize hn. The
reference level ε is equal to θ TOL, where 0 < θ < 1 is a safety factor, which reduces the number of
rejections.

The stepsize controller is based on the assumption that the error estimate satisfies the model

r̂n = ϕ̂nh
p+1
n , (3)

where ϕn is an unknown variable which is independent of hn. This model is a good description for onestep
methods and also a first order approximation for the multistep BDF-methods. In practice some bounds and
limiters are always added to this controller in order to avoid numerical problems.

Important properties of a good simulator are speed, accuracy and robustness. It appears that the con-
troller (2) produces rather irregular error and stepsize sequences, which will decrease the robustness.
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2 Application of control theory

It seems attractive to use control-theoretic techniques for error control. In [1, 5] this idea has been applied
to onestep methods where we have the simple model (3). Figure 1 shows the block diagram of this feed-
back control system. The process model G(q) and the controller model C(q) are described in the next
subsections.

2.1 Process model G(q)

The logarithmic version of the onestep error model (3) is

log r̂n = (p + 1) log hn + log ϕ̂n. (4)

Writing log r̂ = {log r̂n}n∈N, log h = {log hn}n∈N and log ϕ̂ = {log ϕ̂n}n∈N, this implies that the se-
quence log r̂ can be viewed as the output of a digital (i.e. discrete) linear control system, where log h is the
input signal and log ϕ̂ is an unknown output disturbance. In general, we can denote all linear models with
finite recursions for log r̂ by

log r̂ = G(q) log h + log ϕ̂, (5)

where q is the shift-operator, with q(log hn) = log hn+1 and where G(q) is a rational function of q:

G(q) =
L(q)
K(q)

=
λ0q

M + · · · + λM

qM + κ1qM−1 + · · · + κM
. (6)

For the onestep model, we just have that G(q) = p + 1. However, it is not possible to derive a linear
model of this form for the multistep BDF methods. In this case for a p-step method, we have the following
nonlinear model for log r̂ [6]

log r̂n = 2 log hn + log(hn−1 + hn) + · · · + log(hn−p+1 + · · · + hn) + log ϕ̂n − log p!. (7)

Note that log r̂n also depends on the previous stepsizes, because it is a multistep method. In [8] it is tried
to approximate this model by the previous model for onestep methods. Another possibility is to use an
adaptive process model which is based on parameter identification [3].

If the stepsizes only have small variations, also linearization can be used [4]. In [6] it is proved that the
linearized model is equal to

log r̂n = (1 + γp) log hn + (γp − γ1) log hn−1 + · · · + (γp − γp−1) log hn−p+1 + log ϕ̂n, (8)

where γm =
∑m

n=1
1
n for m ∈ N.

This model can also be cast in (5), where

G(q) =
(1 + γp)qp−1 + (γp − γ1)qp−2 + · · · + (γp − γp−1)

qp−1
. (9)

Fig. 1. Diagram of adaptive stepsize control viewed as a feedback control system
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2.2 Controller model C(q)

The logarithmic version of the controller in eqn. (2) is

log hn − log hn−1 =
1

p + 1
(log ε− log r̂n−1). (10)

So, also the control action can be viewed as a linear feedback controller for the same linear system. The
input log h is computed based on the previous values of the output log r̂ and the reference log ε. All linear
controllers can be denoted by

log h = C(q)(log ε− log r̂), (11)

where C(q) is a rational function of q:

C(q) =
B(q)
A(q)

=
β0q

N−1 + · · · + βN−1

qN + α1qN−1 + · · · + αN
. (12)

For the controller of eqn. (2) we just have that C(q) = 1
p+1

1
q−1 .

3 Design of finite order digital linear stepsize controller

Consider the error model (5), which is controlled by the linear controller (11). It is assumed that the error
model is already available, while the controller still must be designed. This means that K,L are known,
while A,B are unknown. Now, the closed loop dynamics are described by the following equations:{

log h = Ur(q) log ε + Uw(q) log ϕ̂,
log r̂ = Yr(q) log ε + Yw(q) log ϕ̂.

(13)

The transfer functions satisfy

Ur(q) = B(q)K(q)
R(q) , Uw(q) = −B(q)K(q)

R(q) ,

Yr(q) = B(q)L(q)
R(q) , Yw(q) = A(q)K(q)

R(q) ,
(14)

where R(q) = A(q)K(q) + B(q)L(q). In this section we will derive conditions for A,B such that the
closed loop dynamics have some preferred properties.

3.1 Adaptivity and filter properties

The output log r̂ depends on the reference signal log ε and the disturbance log ϕ̂. This means that in general
the control error log ε − log r̂ deviates from zero. However, there is no control error if Yw(q) log ϕ̂ = 0
and Yr(1) = 1 [6]. If log ϕ̂ is a polynomial of degree pA − 1 and Yw(q) log ϕ̂ = 0, we call the order of
adaptivity pA. It is always required that pA ≥ 1 in order to have no control error for a constant disturbance.
For higher order adaptivity the controller is capable to follow linear or other polynomial trends of the
disturbance log ϕ̂. It can be proved that the controller is adaptive with adaptivity order pA if (q − 1)pA is
a divisor of A(q).

A(q) = (q − 1)pAÂ(q)
Because of numerical errors, the disturbance log ϕ̂ can contain alternating noise with frequency near π.

The controller acts like a filter for the stepsizes or the errors if

|Uw(eiω)| = O(|ω − π|pF ), ω → π

or
|Yw(eiω)| = O(|ω − π|pR), ω → π.

Here pF and pR are the orders of the stepsize filter and the error filter. It is not possible to combine an error
filter with a stepsize filter. The controller is a stepsize filter of order pF if (q + 1)pF is a divisor of B(q).

B(q) = (q + 1)pF B̂(q)

The controller is an error filter of order pR if (q + 1)pR is a divisor of A(q).

A(q) = (q + 1)pRǍ(q)
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3.2 Position of the poles

The poles of the system are determined by the N + M roots of the characteristic equation

A(q)K(q) + B(q)L(q) = 0.

If the poles lie inside the complex unity circle, the closed loop system is stable. The absolute values de-
termine the reaction speed of the controllers, while the angles determine the eigenfrequencies. This means
that real positive poles will produce smoother behaviour.

If the controller is adaptive, we know that the error always will be equal to the reference level if the
disturbance is a low degree polynomial. However, this will never be the case in practice. Thus it is still
possible that the next error will be larger than the tolerance level TOL.

Let R,S be polynomials of degree N + M , such that

S(q) = A(q)K(q) = qN+M + σ1q
N+M−1 + · · · + σN+M

R(q) = A(q)K(q) + B(q)L(q) = qN+M + ρ1q
N+M−1 + · · · + ρN+M

In [6] it is proved that there are no rejections, such that r̂n ≥TOL if

• The disturbance ϕ̂ satisfies the inequality:

θR(1)ϕ̂nϕ̂
σ1
n−1 · · · ϕ̂

σN+M

n−N−M ≤ 1. (15)

• The coefficients of R(q) satisfy: ρi ≤ 0, i ∈ {1, . . . , N + M}, e.g. R(q) = qN+M − rN+M .
• The previous N + M stepsizes have been accepted.

The first condition for the disturbance also depends on θ. Note that a small θ will indeed decrease the
number of future rejections. The second condition is not true if all poles are real positive.

3.3 Computation of the control parameters

In order to get the optimal control parameters, in [1, 5] a systemetic investigation is done for a large
range of possible control parameters. Below we propose a theoretical approach which is only based on
the closed loop dynamics. Assume that A,B can be factorized like A(q) = (q − 1)pA(q + 1)pRÃ(q)
and B(q) = (q + 1)pF B̃(q). Then the order of adaptivity is equal to pA, while the filter orders are pR

and pF . Because q = 1 and q = −1 are not stable poles, it is not allowed that A(1) = B(1) = 0 or
A(−1) = B(−1) = 0. Thus it follows that pR = 0∨ pF = 0. Let R(q) be the polynomial whose roots are
equal to the wanted poles, then the polynomials A,B are determined by

(q − 1)pA(q + 1)pRÃ(q)K(q) + (q + 1)pF B̃(q)L(q) = R(q). (16)

The coefficients of A,B are the control parameters, which can be computed from (16). Instead of this theo-
retical approach, in [1, 4] a systemetic investigation is done for a large range of possible control parameters.

Fig. 2. Diagram of adaptive stepsize control viewed as a feedback control system
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4 Numerical experiments

Consider the initial value problem (van der Pol equation) for the following electrical circuit:
This IVP is solved on [0, 100] by means of the BDF2 method (order p = 2) with tolerance level TOL

= 1e-4 and reference level ε = 0.3TOL. A frequently used controller is (2) with pA = 1 and having a pole
equal to zero.

I: hn =
(

ε

r̂n−1

) 1
p+1

hn−1 (pA = 1)

Often, this controller is used in combination with a buffer, e.g.

hn

hn−1
∈ [0.8, 2] ⇒ hn = hn−1.

Consider the next second order adaptive stepsize controller, whose closed loop poles are equal to 0.2. This
means that it is able to predict linear trends of the disturbance log φ̂.

II:
hn

hn−1
=
(

ε

r̂n−1

) 16
25

1
p+1
(
r̂n−2

r̂n−1

) 24
25

1
p+1 hn−1

hn−2
(pA = 2)

The IVP has been solved by controller I with buffer (case 1) and Controller II (case 2). These cases
require 1000, 1080 stepsizes and 1686, 2054 Newton iterations, respectively. Figure 3 shows the resulting
stepsize and error sequences. The best results are obtained in case 2, because of the better adaptivity at
the cost of an increase of Newton iterations. Because of the higher smoothness of case 2, the safety factor
could be increased for case 2. Indeed, for ε = 0.6TOL, the cases need 1847 and 1667 Newton iterations,
respectively.

An important question is whether the new designed controllers also have a better performance for a real
circuit simulator. Therefore, in the next three cases a real circuit is simulated, while a variable integration
order is used [6]. In case 1 the default stepsize controller of the simulator is used. In the other cases, the
stepsize controllers are based on digital linear control theory applied to the onestep model and the multistep
model (9) respectively. The closed loop poles are equal to 0.5 while pA = 1 and pF = pR = 0. For all
three cases, the safety factor is variable. The smoothness of the stepsize and error sequences is quantified by

means of the number s(x) =
√∑N

m=1(xm − xm−1)2/‖x‖2. Table 1 shows the results of these three cases.
Note that for the cases 2 and 3 the smoothness of the error sequence is improved, while the computational
work is about the same. Furthermore the performance is even better (8%) than for case 1. Case 3 leads to
the least smooth stepsize sequence which can be improved by a more expensive stepsize filter.
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Fig. 3. Stepsize and error sequences for the two tested controllers
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Table 1. Numerical results for perf mos7 qubic 6953 (pA = 1,pF = pR = 0)

Case # stepsizes # rejections
# Newton
iterations

s(r̂) s(h)

1 6465 947 43232 0.85 0.58
2 6934 777 40234 0.79 0.48
3 6423 714 39619 0.74 0.85

5 Conclusions

It has been tried to derive a linear model for the behaviour of the local error. For onestep methods this is
less complex, because then the local error only depends on the last stepsize. But because circuit simulators
use the multistep BDF-methods, also the application for BDF-methods has been studied. In that case, a
linearized linear model can be derived, which is only correct for small variations of the stepsizes.

From the experiments it seems not always attractive to use higher order adaptive controllers. However,
filtering appears to be attractive because it reduces the high-frequent noise, which makes the behaviour of
the stepsizes and the errors much smoother.

Because the described method is only developed for a fixed order of integration, the theoretical results
for a variable integration order are not known yet. Clearly the local error also depends on the integration
order and this affects the process model. It seems not possible to describe this behaviour by means of a
linear model. Despite this application in the variable integration order case works satisfactorily.

To deal with the trade-off between the smoothness and the speed, optimal control could be applied.
In this case, a cost function should be defined which is dependent on the stepsize sequence and the error
sequence.
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Abstract The “General Compound” multirate methods are attractive integration methods for the transient analysis of
mixed analog-digital circuits. From a stability analysis, it follows that they have good stability properties.

1 Introduction

Electrical circuits consist of analog and digital sub-circuits. In analog circuits, the exact values of the
voltages and currents are important, but in digital circuits only the logical state is important.

If the mixed analog-digital circuits have to be simulated in high accuracy, it is necessary to simulate the
complete circuit on electrical level. In this case, the complete electrical circuit is modeled by the following
differential-algebraic equation

d

dt
[q(t, x)] + j(t, x) = 0, j(0, x(0)) = 0, (1)

where x consists of nodal voltages and some currents in the circuit.
Commonly, this IVP is solved by means of implicit integration methods, like BDF-methods. In each

iteration all equations are discretized with the same step hn. Often, parts of electrical circuits have latency
or multirate behaviour. Latency means that parts of the circuit are constant during a certain time interval.
Multirate behaviour means that some variables are slowly-varying, compared to other variables. In both
cases, it would be attractive to integrate the latent or slowly-varying sub-circuit with a larger step.

In Sect. 2 we will show an attractive class of multirate methods for electrical circuits. Next we will
study the stability for a two-dimensional linear test equation.

2 Multirate methods for circuits

2.1 Partitioning of variables and equations

For a multirate method it is necessary to partition the variables and equations into an active (A) and a latent
(L) part. This can be done by the user or automatically. Then the DAE (1) is equivalent to the coupled
system

d

dt
[qA(t, xA, xL)] + jA(t, xA, xL) = 0, (2)

d

dt
[qL(t, xA, xL)] + jL(t, xA, xL) = 0. (3)

It is necessary that the equations (2) and (3) are uniquely solvable. The partitioning is very important,
because it affects the stability and the accuracy of the multirate method. Decomposing the DAE (1) into
two nearly decoupled parts requires too much effort and hence approximation methods should be used.



144 A. Verhoeven, A. El Guennouni, E. J. W. ter Maten and R. M. M. Mattheij

2.2 Different multirate algorithms

There are many multirate methods for the system of equations (2),(3) [2, 6]. We will restrict our attention to
multirate versions of the Euler Backward method. The time interval [0, T ] is discretized into the multirate
time-grid {tn = nh = nH

q : n = 0, . . . , N} where the number q is called the multirate factor. The latent
equations are integrated with one large step H , but the active equations are integrated with a much smaller
step h = H

q on a refinement of [tn, tn+q].
The “Slowest First” (SF) method (algorithm 1) first integrates (3) with one large step H , while xA is

approximated by means of extrapolation. Then equation (2) is integrated with the small step h, while xL is
approximated by linear interpolation.

ALGORITHM 1 The Slowest First (SF) method

Solve for xn+q
L :

qL(x̂n+q
A , xn+q

L ) − qL(xn
A, xn

L) + HjL(x̂n+q
A , xn+q

L ) = 0 (4)

x̂n+q
A − xn

A = 0 (5)

Solve for xn+j+1
A (j = 0, . . . , q − 1):

qA(xn+j+1
A , x̂n+j+1

L ) − qA(xn+j
A , x̂n+j

L ) + hjA(xn+j+1
A , x̂n+j+1

L ) = 0 (6)

x̂n+j
L − xn

L − j

q
(xn+q

L − xn
L) = 0 (7)

To improve the stability, the latent part can be integrated by an implicit compound step [4]. This “Com-
pound Step” (CS) method first integrates (2) and (3) together with one large step H , which results in xn+q

A

and xn+q
L . Then only equation (2) is integrated with the small step h, while xn+j

L is found by linear interpo-
lation. Note that xn+q

A is twice computed by the “Compound Step” method, which could be used to estimate
the error. Another possibility is the “Mixed Compound Step” (MCS) method, which computes xn+1

A and
xn+q

L simultaneously. This method corresponds to the multirate method for the Rosenbrock-Wanner meth-
ods described in [1]. The “Compound Step” has the advantage that it is easier to implement, while the
“Mixed Compound Step” method is better scaled.

A generalized version is the “General Compound” (GC) method (algorithm 2) with α ∈ R. This GC
method contains the CS method (α = 1) and the MCS method (α = 1

q ).

ALGORITHM 2 The General Compound (GC) method

Solve for xn+q
L and xn+αq

A :

qA(xn+αq
A , x̂n+αq

L ) − qA(xn
A, xn

L) + αHjA(xn+αq
A , x̂n+αq

L ) = 0 (8)

x̂n+αq
L − xn

L − α(xn+q
L − xn

L) = 0 (9)

qL(x̂n+q
A , xn+q

L ) − qL(xn
A, xn

L) + HjL(x̂n+q
A , xn+q

L ) = 0 (10)

x̂n+q
A − xn

A − 1

α
(xn+αq

A − xn
A) = 0 (11)

Solve for xn+j+1
A (j = 0, . . . , q − 1):

qA(xn+j+1
A , x̂n+j+1

L ) − qA(xn+j
A , x̂n+j

L ) + hjA(xn+j+1
A , x̂n+j+1

L ) = 0 (12)

x̂n+j
L − xn

L − j

q
(xn+q

L − xn
L) = 0 (13)
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3 Stability analysis of the SF and GC methods

Multirate methods have less good stability properties than ordinary integration methods. Therefore this
section contains a stability analysis of the SF and GC methods.

3.1 A test equation

For ordinary integration methods absolute stability can be studied by looking at the scalar test equation
ẋ = λx with λ ∈ C. For multirate methods with two time-steps h and H , the following (real) linear test
equation is studied [5, 6], where xA and xL are the active and latent variable respectively.

(
ẋA

ẋL

)
=
(
a11 a12

a21 a22

)

︸ ︷︷ ︸
A

(
xA

xL

)
(14)

Let xn
A and xn

L be the numerical approximations at the time-point tn = nh = n
q H . The multirate method

is absolutely stable when xn
A and xn

L tend to zero for n → ∞ if A is a stable matrix.
For q = 1, the stability behaviour of the multirate methods is independent of the used coordinate sys-

tem. However, for q > 1 the stability does not only depend on the eigenvalues but also on the eigenvectors
of the matrix A.

3.2 Analysis of the compound step

In both the SF and the GC methods the latent variable is first integrated. Using constant extrapolation of
xn

A for the SF method we obtain the system

xn+q
L − xn

L

H
= a21x

n
A + a22x

n+q
L . (15)

From the equations (15), it follows that

xn+q
L = ρxn

A + σxn
L, (16)

where
ρ = a21H

1−a22H , σ = 1
1−a22H . (17)

For the GC method, we get another complete system of equations for x̄n+αq
A and xn+q

L :

{
x̄n+αq

A
−xn

A

αH = a11x̄
n+αq
A + a12(xn

L + α(xn+q
L − xn

L)),
xn+q

L
−xn

L

H = a21(xn
A + 1

α (x̄n+αq
A − xn

A)) + a22x
n+q
L .

(18)

The solution satisfies again equation (16) with different values for ρ and σ:

ρ = a21H+a11a21(1−α)H2

1−(αa11+a22)H+(a11a22−a12a21)αH2 , σ = 1−αa11H+a12a21(1−α)H2

1−(αa11+a22)H+(a11a22−a12a21)αH2 . (19)

3.3 Stability conditions

For both methods xn+j
L is estimated for j ∈ {1, . . . , q − 1} employing xn

L and xn+q
L .

x̂n+j
L = xn

L +
j

q
(xn+q

L − xn
L) =

q − j

q
xn

L +
j

q
xn+q

L . (20)
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Finally, the active part is integrated along the time window [tn, tn + H] with q steps h.

xn+j+1
A − xn+j

A

h
= a11x

n+j+1
A + a12x̂

n+j+1
L . (21)

Equation (21) is equivalent to

xn+j+1
A =

1
h

1
h − a11

xn+j
A +

a12
1
h − a11

x̂n+j+1
L = γxn+j

A + δx̂n+j+1
L , (22)

where
γ = 1

1−a11h , δ = a12h
1−a11h . (23)

For j ∈ {0, . . . , q − 1} we have

xn+j+1
A = γxn+j

A + δ(1 − j+1
q )xn

L + δ j+1
q xn+q

L

= γj+1xn
A +

∑j
k=0 γ

j−k
(
δ(1 − k+1

q )xn
L + δ k+1

q xn+q
L

)
.

(24)

Inserting (16) into (24) for j = q − 1 results in

xn+q
A = γqxn

A +
(∑q−1

k=0 γ
q−1−kδ(1 − k+1

q )
)
xn

L+(∑q−1
k=0 γ

q−1−kδ k+1
q

)
(ρxn

A + σxn
L)

= νxn
A + τxn

L,

(25)

where
ν = γq +

∑q−1
l=0 γlρδ(1 − l

q ), τ =
∑q−1

l=0 γlδ( l
q (1 − σ) + σ). (26)

From equations (16) and (25) it follows that
(
xn+q

L

xn+q
A

)
=
(
σ ρ
τ ν

)

︸ ︷︷ ︸
M

(
xn

L

xn
A

)
. (27)

The methods are A-stable if ρ(M) < 1 for all H, q > 0 and stable matrices A [6]. Let φ(λ) =
det(M − λI) = λ2 − tr(M)λ + det(M), where M ∈ R

2×2. Using the Routh-Hurwitz criterion one can
easily show that [3]

ρ(M) < 1 ⇔

⎧⎨
⎩

φ(−1) = 1 + tr(M) + det(M) > 0,
φ(0) = det(M) < 1,

φ(1) = 1 − tr(M) + det(M) > 0.
(28)

Because
tr(M) = σ + γq +

∑q−1
l=0 γlρδ(1 − l

q ),

det(M) = σγq + σ
∑q−1

l=0 γlρδ(1 − l
q ) − ρ

∑q−1
l=0 γlδ( l

q (1 − σ) + σ)

= σγq − ρδ
q

∑q−1
l=0 γll,

(29)

we obtain the following three constraints which ensure absolutely stability

1 + tr(M) + det(M) = 1 + (1 + σ)γq + σ − ρδ
∑q−1

l=0 γl( 2l
q − 1) > 0,

det(M) = σγq − ρδ
q

∑q−1
l=0 γll < 1,

1 − tr(M) + det(M) = 1 + (σ − 1)γq − σ − ρδ
∑q−1

l=0 γl > 0.

(30)

Thus we get the following stability conditions for the investigated multirate methods

(1 + σ)(1 + γq) − ρδ
∑q−1

l=0 γl( 2l
q − 1) > 0,

ρδ
q

∑q−1
l=0 γll − σγq + 1 > 0,

(1 − σ)(1 − γq) − ρδ
∑q−1

l=0 γl > 0.

(31)
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3.4 Asymptotic stability conditions

Because the stability conditions (31) are rather complex, we will derive more compact stability conditions
by means of asymptotical analysis.

Stability for H → 0 (fixed q)

The multirate methods are conditionally stable if the stability conditions are valid for H → 0. Therefore we
will derive asymptotic approximations of these conditions. It easily follows that ρδ = a12a21

q H2 +O(H3),
γ = 1+ a11

q H+O(H2), σ = 1+a22H+O(H2) and γq = 1+a11H+O(H2). Using these approximations,
we obtain

(1 + σ)(1 + γq) − ρδ
∑q−1

l=0 γl( 2l
q − 1) = 4 + O(H),

ρδ
q

∑q−1
l=0 γll − σγq + 1 = −(a11 + a22)H + O(H2),

(1 − σ)(1 − γq) − ρδ
∑q−1

l=0 γl = (a11a22 − a12a21)H2 + O(H3).

(32)

After inserting these asymptotic expressions into (31), we obtain the following asymptotic stability condi-
tions for (27), which coincide with the ones for (14).

tr(A) = a11 + a22 < 0,
det(A) = a11a22 − a12a21 > 0.

(33)

Thus the SF method and the GC methods are stable for H → 0 if A is a stable matrix.

Stability for q → ∞ (fixed H)

If the multirate factor q → ∞, it is necessary that |γ| < 1 such that γq → 0. This means that the Euler
Backward method is stable for the active part, which is the case if a11 < 0. Taking the limit q → ∞, we
obtain

(1 + σ)(1 + γq) − ρδ
∑q−1

l=0 γl( 2l
q − 1) → 1 + σ + ρδ 1

1−γ ,
ρδ
q

∑q−1
l=0 γll − σγq + 1 → 1,

(1 − σ)(1 − γq) − ρδ
∑q−1

l=0 γl → 1 − σ − ρδ 1
1−γ .

(34)

This means that for q → ∞ we have the following stability conditions{
1 + σ + ρδ 1

1−γ > 0,
1 − σ − ρδ 1

1−γ > 0.
⇔ | ρδ

1 − γ
+ σ| < 1. (35)

Because δ
1−γ = −a12

a11
we get

| − a12

a11
ρ + σ| < 1. (36)

Using (17) for the SF method, condition (36) is equivalent to

|PSF (H)| = | − a12

a11
ρ + σ| =

|1 − a12a21
a11

H|
|1 − a22H| < 1.

If this rational function PSF (H) has a negative pole and limH→∞ |PSF (H)| = |a12a21|
|a11a22| < 1, the method

is unconditionally stable. Thus, if a11 < 0, a22 < 0 and |a12a21| < |a11a22|, the SF method is uncondi-
tionally stable for q → ∞.

Using (19) for the GC methods, condition (36) is equivalent to

|PGC(H)| = | − a12

a11
ρ + σ| =

|1 − (a12a21
a11

+ αa11)H|
|1 − (αa11 + a22)H + α(a11a22 − a12a21)H2| < 1.
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Table 1. Sufficient stability conditions for the SF method and the GC method

SF GC GC (α = 1)

a11 < 0 a11 < 0 a11 < 0
a22 < 0 αa11 + a22 < 0 a11 + a22 < 0

|a12a21| < |a11a22| −a11a22 − 2αa2
11 < a12a21 −a11a22 − 2a2

11 < a12a21

a12a21 < a11a22 a12a21 < a11a22

Table 2. Stability of multirate methods (H = 0.1, q = 10)

µ SF GC (α = 1
q

) GC (α = 1)

−10
√ √ √

−100 -
√ √

−1000 - -
√

It can be shown that this is the case if |a12a21
a11

+ αa11| < |αa11 + a22|, αa11 + a22 < 0 and α(a11a22 −
a12a21) > 0. Because αa11 + a22 < 0, we find

αa11 + a22 <
a12a21

a11
+ αa11 < −αa11 − a22. (37)

From the left inequality in (37) we can derive a22 − a12a21
a11

< 0 or

1
a11

(a11a22 − a12a21) < 0.

The other inequality in (37) gives a12a21
a11

< −a22 − 2αa11 or

a12a21 > −a11a22 − 2αa2
11.

Because α > 0, the GC method is always stable if

|a12a21| < |a11a22|. (38)

4 Numerical example

Consider for 0 ≥ t ≥ 10
(
ẋA

ẋL

)
=
(
−1 µ
1 −1

)(
xA

xL

)
,

(
xA(0)
xL(0)

)
=
(

1
1

)
. (39)

For µ < 0 it is a stable system with eigenvalues −1 ± i
√
−µ. The system is solved by the SF method and

the GC method for α = 1 and α = 1
q . Table 2 shows the stability of the numerical results for the different

cases. A sufficient stability condition is |µ| < 1, but for the GC methods µ > −1 − 2α suffices.

5 Conclusions

We have derived stability conditions (Table 1) for the SF and GC methods if H → 0 or q → ∞. These
results are presently be generalized to the general multi-dimensional case. The GC methods have the ad-
vantage that they do not require that a22 < 0, but only αa11 + a22 < 0. If A is stable, this condition is
always satisfied for α = 1. Because for the GC methods it is sufficient if a12a21 > −a11a22−2αa2

11, large
values for α are preferable.



Compound Multirate Method 149

References

1. A. Bartel, M. Günther: A multirate W-method for electrical networks in state-space formulation, J. of Comput. and
Applied Maths., Vol. 147, pp. 411-425, 2002

2. C.W. Gear, D.R. Wells: Multirate linear multistep methods, BIT, 24 (1984), 484-502
3. G.R. G’omez: Absolute stability analysis of semi-implicit multirate linear multistep methods, PhD-thesis, Instituto

Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Pue, Mexico, 2002
4. A. El Guennouni, A. Verhoeven, E.J.W. ter Maten, T.G.J. Beelen: Aspects of Multirate Time Integration Methods in

Circuit Simulation Problems, Presented at ECMI-2004, Eindhoven, The Netherlands, 21-25 June 2004
5. A. Kværnø: Stability of multirate Runge-Kutta schemes, The tenth Int. Conf. on Diff. Equ., Plovdiv, Bulgaria,

Aug. 1999
6. S. Skelboe, P.U. Andersen: Stability properties of backward Euler multirate formulas, SIAM J. Sci. Stat. Comput.,

Vol.10-5, pp. 1000-1009, 1989



Stochastic Differential Algebraic Equations in Transient Noise
Analysis

R. Winkler

Humboldt–Universität zu Berlin, Institut für Mathematik, 10099 Berlin,
winkler@mathematik.hu-berlin.de

Abstract In this paper we describe how stochastic differential-algebraic equations (SDAEs) arise as a mathematical
model for network equations that are influenced by additional sources of Gaussian white noise. We discuss the concepts
of weak and strong solutions of SDAEs and give the necessary analytical theory for the existence and uniqueness
of strong solutions, provided that the systems have noise-free constraints and are uniformly of index 1. Further, we
analyze discretization methods using the concept of strong convergence. Due to the differential-algebraic structure,
implicit methods will be necessary. We present adaptations of known schemes for stochastic differential equations
(SDEs) that are implicit in the deterministic and explicit in the stochastic part to SDAEs of index 1, in particular we
discuss stochastic analogies to the the drift-implicit Euler scheme and the two-step backward differentiation formula
(BDF).

1 Problem Formulation

The increasing scale of integration, high tact frequencies and low supply voltages cause smaller signal-
to-noise-ratios. In several applications the noise influences the system behavior in an essentially nonlinear
way such that linear noise analysis is no longer satisfactory. A possible way out is given by transient noise
analysis. Here a circuit model that includes also noisy elements has to be considered and to be simulated
in time-domain.

We deal with the thermal noise of resistors as well as the shot noise of semiconductors that are modeled
by additional sources of additive or multiplicative Gaussian white noise currents that are shunt in parallel to
the ideal, noise-free elements (see Fig. 1). Note, that modeling the internal noise of the elements as external
noise sources was originally justified only for linear elements and reciprocal networks.

Nyquist’s theorem (see e.g. [B96, DS98, WM98]) states that the current through an arbitrary linear
resistor having a resistance R, maintained in thermal equilibrium at a temperature T , can be described as
the sum of the deterministic current and a Gaussian white noise process with spectral density Sth := 2kT

R ,
where k is Boltzmann’s constant. Hence, the additional current is modeled as

Ith = σth · ξ(t) =
√

2kT
R · ξ(t) ,

IR th Ig(u)
shot

Fig. 1. Thermal noise of a resistor and shot noise of a pn-junction
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where ξ(t) is a standard Gaussian white noise process. In [WM98] a thermo-dynamical foundation to apply
this model to mildly nonlinear resistors and reciprocal networks is given.
Shot noise of pn-junctions, caused by the discrete nature of current due to the elementary charge, is also
modeled by a Gaussian white noise process. Here the spectral density is proportional to the current I
through the pn-junction: Sshot := qe|I|, where qe is the elementary charge. If the current through the pn-
junction is described by a characteristic I = g(u) in dependence on a voltage u, the additional current is
modeled by

Ishot = σshot(u) · ξ(t) =
√

qe|g(u)| · ξ(t),
where ξ(t) is a standard Gaussian white noise process. For a discussion of the model assumptions we refer
to [B96, DS98, WM98].

Using the charge-oriented modified nodal analysis (MNA) one formally obtains specially structured
differential-algebraic equations with stochastic perturbation terms (see [W03, W02], and for the determin-
istic case [ET00, GF99]):

A
d

dt
q̄(x(t)) + f(t, x(t)) +

m∑
r=1

gr(t, x(t))ξr(t) = 0, (1)

where x is the vector of unknowns consisting of the nodal potentials and the branch currents of current-
controlled elements (inductances and voltage sources). The vector q̄(x) consists of the charges of capaci-
tances and the fluxes of inductances. The leading constant matrix A is a singular incidence matrix which
is determined by the topology of the network, f(t, x) describes the impact of the static elements, gr(t, x)
denotes the vector of noise intensities for the r-th noise source, and ξ(t) is an m-dimensional vector of
independent Gaussian white noise processes. One has to deal with a large number of equations as well as
of noise sources. Compared to the other quantities the noise intensities gr(t, x) are small.

2 Solutions of SDAEs

In established numerical integrations the terms q̄(x) are treated as extra variables (cf. [GF99]) to guarantee
charge-conservation. One can view equation (1) as a compact formulation of the larger system

A d
dtq(t) + f(t, x(t)) +

m∑
r=1

gr(t, x(t))ξr(t) = 0,

q(t) = q̄(x(t)),
(2)

with unknowns (q, x). We understand (1) resp. (2) as a stochastic integral equation

AQ(s)|tt0 +
t∫

t0

f(s,X(s))ds +
m∑

r=1

t∫
t0

gr(s,X(s))dBr(s) = 0 ,

Q(t) = q̄(X(t)),
(3)

where the second integral is an Itô-integral, and B denotes an m-dimensional Wiener process (or Brownian
motion) given on the probability space (Ω,F , P ) with a filtration (Ft)t≥t0 . Due to the singularity of the
incidence matrix A and the special structure of the system (3), it involves constraints. We call the system (3)
a stochastic differential-algebraic equation (SDAE). The solution is a stochastic process X(t, ω) depending
on the time t and on the random sample ω. The value of the solution process at fixed time t is a random
variable X(t, ·) = X(t) whose argument ω is usually not written. For a fixed sample ω representing a fixed
realization of the driving Wiener noise, the function X(·, ω) is called a realization or a path of the solution.
Due to the influence of the Gaussian white noise, typical paths of the solution are nowhere differentiable.
A process is called a strong solution of (3) if it is adapted to the filtration (i.e., it does not depend on future
information), and if, with probability 1, its sample paths are continuous, the integrals in (3) exist and (3) is
fulfilled.

The theory of stochastic differential equations distinguishes between the concepts of weak and strong
solutions. The concept of weak solutions is applied if one is interested only in the time-evaluation of
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Fig. 2. Thermal noise sources in a MOSFET ring-oscillator model
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Fig. 3. Statistical parameters and solution paths for the nodal potential at node 1

the distribution of the solution. One then computes moments of the solution process like expectation and
variance. The strong solution concept is applied if one is interested in solution paths.

We illustrate the output of both concepts by simulation results for a noisy MOSFET-ring-oscillator (cf.
[KRS92, P00]). Only thermal noise in the MOSFETs and in the resistors is considered. The corresponding
circuit diagram is given in Fig. 2. To make the differences between the solutions of the noisy and the noise-
free model for this simple example more visible, we dealt with a system where the diffusion coefficients
had been scaled by a factor of 1000.
We plotted values of the nodal potential at node 1 versus the time. The solution of the noise-free system is
given by the dashed line. In the left of Fig. 3 we present quantities obtained from moments of the solution:
the mean µ (black solid line) and the boundaries of the confidence interval [µ−3σ, µ+3σ] (lightblue solid
lines), where σ is the estimate for the standard deviation. The mean appears damped and differs consider-
ably from the noiseless, deterministic solution. In the right we present two sample paths (dark solid lines)
together with the mean µ (lightblue solid line). They indicate that the large deviations from the mean seen
in the left picture are mainly due to phase noise.
Transient noise analysis computes paths of the solution. It allows the computation of moments in a post-

processing step. The necessary numerical analysis therefore uses the concept of strong solutions and of
strong convergence of approximations. Combining knowledge from the theory of stochastic differential
equations and the theory of differential-algebraic equations the existence and uniqueness of a strong solu-
tion of the SDAE (3) is proved in [W03] under the following conditions, which we suppose also in the next
chapter: First, assume that the deterministic MNA-system

A d
dtq(t) + f(t, x(t)) = 0,

q(t) = q̄(x(t)),
(4)

is globally an index 1 differential algebraic equation (DAE) in the sense that the constraints are reg-
ularly and globally uniquely solvable for the algebraic variables. Second, assume that the functions
f,G = (g1, . . . , gr), q̄ describing the SDAE (3) are globally Lipschitz-continuous with respect to x and
continuous with respect to t, and, third, assume that the SDAE (3) possesses noise-free constraints. This
guarantees a solution process that is not directly affected by the white noise process, which is true for the
MNA system if there are always capacitances in parallel to a noise source. This is quite restrictive in the
actual noise modeling. Nevertheless, one can also handle many situations where this condition is violated.
Often noisy constraints are only needed for the determination of algebraic solution components that do not
interact with the dynamical ones. Future work should be dedicated to the classification of such situations.
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3 Integration schemes for index 1 SDAEs

We present adaptations of known schemes for stochastic differential equations (SDEs) (cf. e.g. [Hi01]) that
are implicit in the deterministic and explicit in the stochastic part to the SDAE (3). Designing the methods
such that the iterates have to fulfill the constraints of the SDAE at the current time-point is the key idea to
adapt known methods for SDEs to (3). This is realized by an implicit Euler or BDF-discretization of the
deterministic part.

The noise densities given in Sec. 1 contain small parameters, in fact the square root of Boltzmann’s
constant k = 1.3806 × 10−23 for thermal noise and of the elementary charge qe = 1.602 × 10−19 for shot
noise. To exploit the smallness of the noise in the analysis of the discretization errors we express the noise
densities in the form

G(t, x) := εG̃(t, x), ε � 1. (5)

3.1 Drift-Implicit Euler-Maruyama Scheme

On the deterministic grid 0 = t0 < t1 < . . . < tN = tend the drift-implicit Euler Maruyama scheme for
(3) is given by

A
q̄(X�) − q̄(X�−1)

h�
+ f(t�,X�) + G(t�−1,X�−1)

∆B�

h�
= 0, ! = 1, . . . , N, (6)

where h� = t� − t�−1, ∆B� = B(t�)−B(t�−1), and X� denotes the approximation to X(t�). Realizations
of ∆B� are simulated as N(0, h�I)-distributed random variables. The Jacobian of (6) is the same as in
the deterministic setting. In general, the Jacobian is solution-dependent and differs from path to path.
The scheme (6) for the SDAE (3) possesses the same convergence properties as the drift-implicit Euler-
Maruyama scheme for SDEs (see [DW03, SD98, W03, W02]). In general, its order of strong convergence
is only 1/2, i. e.,

‖X(t�) −X�‖L2(Ω) := (E|X(t�) −X�|2)1/2 ≤ c · h1/2, h := max
�=1,...,N

h�,

holds for the mean square norm of the global errors. For additive noise, i. e. G(t, x) = G(t), the order
of strong convergence is 1, for small noise (5) the error is bounded by O(h + ε2h1/2) (see [RW03b], or
[MT97] for related results).

The smallness of the noise also allows special estimates of local error terms, which can be used to
control the step-size. The local error for the Euler- Maruyama scheme applied to SDEs with small noise is
analyzed in [RW03b]. As long as step-sizes with

h� � ε2

are used, the dominating local error (per unit step) term of (6) is

η� :=
1
2
‖A−(f(t�,X�) − f(t�−1,X�−1))‖L2(Ω) = O(h� + εh

1/2
� ), (7)

where A− denotes a suitable pseudo-inverse of A. For ε → 0 it approaches the known error estimate in the
deterministic setting. If an ensemble of solution paths is computed simultaneously, the estimate η� can be
approximated and may be used to control the local error corresponding to a given tolerance. This results in
an adaptive step-size sequence that is uniform for all solution paths.

3.2 Higher order schemes for small noise SDAEs

Improving the (asymptotic) order of strong convergence of numerical schemes for SDEs or SDAEs would
require to include more information on the driving noise process than only the increments of the Wiener
process. The so-called Milstein-schemes (see [RW03a, P00]) which possess strong order 1 require deriva-
tives of the noise densities and double stochastic integrals. In an application with a large number of small
noise sources one has to pay much for a merely theoretical gain in accuracy.
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Fig. 4. Global error vs. step-size in logarithmic scale

When the noise is small, one can believe that the stochastic system, though of a completely different
analytical character, has a solution that is somehow ‘close’ to a deterministic one. Then one can hope that
for step-sizes that are not asymptotically small the error behavior is still dominated by the deterministic
terms. In addition, one might expect that the stochastic scheme inherits some of the qualitative properties
of the deterministic methods. Thus motivated, linear two-step Maruyama methods for SDEs have been
analyzed in [BW03, BW04]. Here we present the two-step BDF-Maruyama scheme for the SDAE (3):

0 = A
q̄(X�) − 4

3 q̄(X�−1) + 1
3 q̄(X�−2)

h
+

2
3
f(t�,X�)

+ G(t�−1,X�−1)
∆B�

h
− 1

3
G(t�−2,X�−2)

∆B�−1

h
.

For small noise the global errors of this scheme are bounded by O(h2 + εh+ ε2h1/2). Below we illustrate
this by simulation results for the scalar linear SDE

X(t) = 1 +
∫ t

0

αXτdτ +
∫ t

0

εXτdBτ , t ∈ [0, 1]

with the geometric Brownian motion X(t) = exp ((α − 1
2ε

2)t + εW (t)) as exact solution. We have
chosen the parameters α = −1, ε = 10−3. This example is rather simple, but shows the potential of
two-step schemes for small noise SDEs and SDAEs very well. The same errors can be observed for an
index 1 SDAE whose inherent dynamics is described by this SDE. More experimental results are reported
in [BW03, BW04]. In Fig. 4 we show the mean-square of the global errors vs. the step-size for the implicit
Euler scheme, the stochastic trapezoidal rule and the two-step BDF-Maruyama-scheme for 100 computed
paths in logarithmic scale with base 10. The slopes of the lines indicate the observed order of convergence
of the schemes. For comparison a line with slope 1 is given. The error of the Euler scheme shows order
1 behavior in the considered range of step-sizes. The two schemes with deterministic order 2 show two
different regions. For larger step-sizes the deterministic part of the error of the form O(h2) dominates and
leads to order 2 behavior, whereas for smaller step-sizes the error is dominated by a term O(εh). In both
regions the errors are considerably smaller than those of the Euler-scheme. The theoretical order 1/2 of the
schemes would be observed only for much smaller step-sizes.
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Abstract Numerical models of electrical machines and actuators are becoming increasingly sophisticated. Many elec-
trical machines move and this is taken into account using a Lagrange sliding interface. In addition to this, electrical
machines are increasingly being modelled using coupled systems of equations, for example thermal and circuit effects
are considered as well as the electromagnetic field equations governing the machine. In this presentation some of the
methods and some case studies are described.

1 Introduction

Increasingly, electrical machines are modelled using a set of coupled equations. A familiar example may be the time
transient start up of a squirrel cage induction machine connected to a non linear, speed dependent load. The machine
runs at a slip which depends on the load. The efficiency of a given induction machine depends on the slip. Efficiency
is important as about 50% of generated electricity in an industrialised economy is used in electric motors.

Many machines are thermally limited, so the solution of coupled electromagnetic-thermal systems of equations
are required. These systems may be strongly or weakly coupled. They are said to be strongly coupled if each field has
an influence on the other, for instance heating may affect the electrical resistivity and this can affect the eddy current
paths and hence different parts of the device can become heated. If the heating is not sufficient to change the electrical
conductivity in a significant way, the fields could be thought to be weakly coupled.

Many electrical machines are also connected to an electrical circuit, this may include non linear components. In
nearly all cases, the electromagnetic-circuit system would be strongly coupled.

If a problem is weakly coupled then, as a last resort, separate codes can be used to solve each problem at each time
step of, for instance, a time transient problem. If necessary, input data can be swopped between codes at the end of a
time step. However, it seems unlikely that this strategy will be of much use in the case of strongly coupled problems,
in which each code will have some influence on the other(s). In this case it is probable that one code should be used,
solving all equations simultaneously and satisfying all the different field equations at each time step. We now present
some formulations and examples.

2 3D Finite Element Formulations

2.1 Electromagnetic Equations

The non-conducting and conducting regions are often modelled using the magnetic scalar potential, ψ, and the magnetic
vector potential, A, respectively.

Non Conducting Regions

Non conducting regions are modelled using magnetic scalar potentials, either the total scalar ψ, defined as HT =
−∇ψ, or the reduced scalar φ, defined as HT = −∇φ + HS . Here HT is the total magnetic field intensity and HS

is the field defined as ∇×HS = JS , where JS is the source current density.

∗Invited paper at SCEE-2004
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Both scalars give rise to a Laplacian type equation which has to be solved.

∇·µ∇ψ = 0 (1)

Voltage forced conditions can be modelled using this technique [1].

Conducting Regions

Fields in conductors can be modelled using A, the magnetic vector potential, and V , the electric scalar potential.
If movement is involved, the formulations are different depending on whether the moving member is smooth in the
direction of motion, ie on whether the moving media cross section normal to the direction of motion is invariant as
described below.

Smooth Moving Conductor Regions

If the moving conductors are smooth and the region moves at a constant velocity, the induced motional emf effect can
be taken into account by including a velocity term u × B, where u is the velocity (the Minkowski transformation).
Using B = ∇×A and E = − ∂A

∂t
− ∇V + u × ∇×A, where u is the material velocity, Ampère’s law and the

divergenceless J condition we have:

∇× 1

µ
∇×A = σ

(
−∂A

∂t
+ u ×∇×A −∇V

)
(2)

∇·σ
(
∂A

∂t
− u ×∇×A + ∇V

)
= 0 (3)

Where appropriate [2], it is possible to dispense with V from the above set of equations. Substituting V = A · u in
Ampère’s law yields

∇×1

µ
∇×A=σ

(
−∂A

∂t
−(u·∇)A−(A·∇)u−A×(∇×u)

)
(4)

Now a solution of (4) involving only A is required, as V is specified in terms of A.

Non Smooth Moving Conductor Regions

If the cross section of the moving object is not invariant in the direction of motion a time transient solution must be
carried out. The moving object is modelled by a mesh which slides relative to the stationary parts. The independent
meshes can then be coupled at their common interface using Lagrange Multipliers. Stationary and moving parts can
be meshed up independently and then brought together. The distribution and density of nodes on the interface need not
be the same.

If we are required to make a functional Π(φ) stationary subject to the constraints C(φ) = 0 on a surface Γλ, we
can introduce this constraint by forming a new functional

Π
′
= Π +

∫

Γλ

λC(φ)dS (5)

where λ is a set of Lagrange Multipliers. [3],[4] Care must be taken when a nodal finite element (FE) scheme is used
to solve a rotating system [5].

2.2 Coupled Equations

In addition to the above electromagnetic equations, often it is necessary to couple in the effects of other fields and
external effects.

Electrical circuits:

We would usually solve coupled electrical circuits within the finite element matrix as a fully coupled problem [1]. It
may in some circumstances be sufficient to run the finite element program under different conditions to build ‘look
up’ tables which would then be used by a separate circuit solver. This strategy would become intractible if there were
many separate coils, non linear effects etc.
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The transient heat diffusion equation:

Here we must solve
∇ · κ∇T + q̇ = ρC(

∂T

∂t
+ u · ∇T ) (6)

where T , u, κ, ρ,C and q̇ are the unknown temperature, velocity vector, thermal conductivity, material density, specific
heat capacity and heat source respectively.

In electrical problems the heat source is typically the ohmic losses. A coupled problem involves the simultaneous
solution of the electromagnetic equations and (6). These must both be satisfied at each time step of a transient solution.
[6],[7] Usually convection and/or radiation effects are important and these can be included as surface terms in (6).

During the iterative process, the electromagnetic problem can be solved again if there are significant changes in
the media electrical conductivity due to temperature rise. The temperature dependent convection coefficient can be
calculated from empirical correlations such as can be found listed in [8],[9] and [10].

The electrical conductivity can also be temperature dependent and the resistivity ρ can be approximated linearly as

ρ(T ) = ρo(T )[1 + α(∆T )] (7)

Rigid body motion:

The differential equation representing the mechanical components of a typical rotating system takes the following
form,

dωr

dt
=

1

J
(Te − Tl − Tf ) (8)

where J is the combined inertia of the machine rotor and connected load. Te is the developed electromagnetic torque,
Tl the load torque and Tf the friction torque. The torques Tl and Tf would usually be non linear functions.

3 Meshless Formulations

The finite element method has been successfully used to model electromagnetic systems, but its application to complex
geometries still presents some difficulties often related with mesh generation. In recent years, meshless methods, a new
numerical technique, have became popular in engineering systems modelling.

This technique eliminates the use of a mesh structure. Instead it uses only a random distribution of nodes to
model the fields. Meshless methods have been applied successfully to computational mechanics, where the mesh-free
characteristic has proved to be very useful, especially for modelling discontinuities and moving boundaries. Some
of the most widely used methods are the Smooth Particle Hydrodynamics (SPH) method, the Element Free Galerkin
(EFG) method, the Meshless Local Petrov-Galerkin (MLPG) method, the Point Interpolation Method (PIM), and the
Reproducing Kernel Particle method (RKPM).

Owing to its attractive mesh-free characteristic the application of meshless methods to electromagnetic systems has
been investigated [11]. In the following section a brief introduction to the Meshless Local Petrov-Galerkin (MLPG)
method is presented and its main characteristics outlined.

3.1 Meshless Local Petrov Galerkin (MLPG)

Even though all meshless methods found in the literature claim to be mesh free, some of them employ a background
grid in the integration process [12]. In contrast, the MLPG can be described as a truly meshless method, as it does not
require any kind of mesh [13].

Consider the simple 2D magnetostatic problem described in Fig. 3.1, where a set of uniform points, x = [x, y],
was used to discretise the domain. This problem can be represented by the following equation:

∇· 1
µ
∇A = 0 (9)

The boundary conditions are given by A = 0 at x = 0 and A = 1 at x = 0.1 and ∂A
∂n

= 0 at y = 0 and y = 0.1. Here
A is the z component of the magnetic vector potential.

The Meshless Local Petrov Galerkin builds the approximation by defining a small local domain around each one
of the nodes and then satisfying the weak form locally. The integration points or Gauss points are then created inside
this local domain and also along its boundaries. Because there is no mesh structure the relationship between the
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nodes is determined by the influence that each node imposes on each of the other local domains, attributed by the
integration points.

The Petrov-Galerkin method makes it possible to use different functions in the weak form, such as Radial Basis
functions, Gaussian weight functions, Shepard functions, the Dirac Delta function and the Heaviside step function. In
this work a combination of the first and the last functions was used. This results in a local system of boundary equations
which simplifies the integration process, due to the fact that only the Gauss points along the local boundary are required
in the process.

Finally the global system is obtained by simply evaluating the contribution of each one of the nodes. The boundary
conditions are easily imposed in this method and the implementation is similar to that used in the finite element method.

The numerical procedure for implementing the method is given as:

(i) Define a finite number of nodes to describe the physical problem
(ii) Determine the local domain and its boundaries

(iii) Loop over all the nodes
a) Create the Gauss points along the node’s local boundaries
b) Loop over the Gauss points

• Define the influence that each of the nodes imposes on the Gauss point
• Determine the shape function and its derivatives for those nodes
• Evaluate the numerical boundary integral in the global system

c) End of the Gauss points loop
(iv) End of the node loop
(v) Solve the final system

Figure 2 shows the magnetic flux density B and its components (Bx and By) observed along a straight line of 16
nodes crossing the material interface at y = 0.06m with x = 0 → x = 0.1m). The results are similar to those found
by a conventional finite element system.

4 Examples of Coupled Problems

The examples below display either strong or weak coupling.

4.1 Rigid Body Motion in a Linear Actuator

It is often difficult to model the common type of solenoidal moving plunger actuators in which the air gap varies from
maximum stroke down to zero (Fig. 3). The difficulty is that the air gap is constantly varying down to zero. While
remeshing techniques can be used to solve this problem, difficulties can arise and it is usually more convenient to
use the method described here. The FE scheme allows two topologically unconnected 2D finite element meshes to
slide over and overlap each other, whilst still coupled together in a consistent manner. Lagrange multipliers are used
to connect the meshes on the sliding surfaces, while the ‘shrinking air gap’ region is handled using an overlapping
element scheme.
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The overlapping FE scheme [14] is briefly described here. In 2D, fields can be modelled using the magnetic vector
potential, A.

If the armature of the actuator in Fig. 3 is represented by one FE mesh while the core and the surrounding air is
represented by another FE mesh, then applying the usual finite element and Galerkin procedure will result in two sets of
equations. There is no coupling between these two sets of equations and therefore the two meshes are still unconnected
electromagnetically.

The two sets of equations can be coupled together by using the Lagrange sliding interface technique as before. It is
also necessary to ensure that only elements of the armature mesh are used to model the overlapping area of the meshes.
This can be achieved by using the concept of master and slave elements. In this scheme, master elements always take
precedence over slave elements. The armature mesh is assigned the master mesh while the core-air mesh the slave
mesh. Referring to Fig. 4, slave elements such as S1 which do not overlap with any master elements are treated in the
usual manner. That is, the contribution to the system matrix from these elements are calculated over the whole element.

When a slave element, such as S2, overlaps partially with the master mesh, its contribution to the matrix will only
be calculated over the portion of the element which does not overlap with the master mesh. For S2, this portion is the
shaded area abcd. Slave elements, such as S3, that overlap totally with the master mesh become null elements. A null
element makes no contribution to the system and is effectively decoupled from the model.

The equations of dynamic motion (8) are used to estimate the displacement of the armature during each time step.
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The experimental actuator

An actuator was built to verify the FE results. It has rotational symmetry and consists of a solid steel core and a moving
armature. A solenoidal type coil is fitted into the core. The dimensions of the solid core and moving armature are
shown in Fig. 3. The material B-H curve is shown in Fig. 5. Force and current for the stationary actuator at a step 2V
input voltage is shown in Figs. 6 and 7 respectively. Figs. 8 and 9 show the measured and calculated dynamic position
and current as the device closes from three different initial air gaps.

4.2 Heating in an Induction Machine

A disk induction machine is shown in Fig. 10, dimensions are given in Table(1). The convection coefficients �ω used
for the rotor are listed below [10]:

• rotating cylindrical drum

�ω =
κ(T )

D
[0.11(0.5Re2 + GrPr)0.35] (10)

• rotating disk in laminar flow

�ω =
κ(T )

D
[0.36(

ωr2

ν
)0.5] (11)

valid for
ωr2

ν
< 2 × 105
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Fig. 10. Disk induction machine

Table 1. Dimensions of the disk induction machine
Machine Parameters Dimensions

1 Stator Height 39.0 mm
2 Stator Inner Diameter 71.0 mm
3 Stator Outer Diameter 128.0 mm
4 Tooth Height 27.0 mm
5 Slot Width 14.0 mm
6 Slot Opening Width 3.0 mm
7 Air Gap 1.0 mm
8 Aluminium Disk Diameter 184.0 mm
9 Shaft Diameter 32.0 mm

• rotating disk in turbulent flow

�ω =
κ(T )

D
[0.015(

ωr2

ν
)0.8] (12)

In the above D is the diameter of the cylinder/disk, r is the radius of the cylinder/disk, ω is the angular velocity and ν
is the kinematic viscosity.

The induction machine is run with the aluminium disk rotating at 300 rpm at a load supplied by a DC brushless
machine. The excitation current fed into the armature winding is 2.0 A and the resistance of each coil is 12.468 ohms.
The main losses in the induction disk machine are the induced eddy currents in the rotating aluminium disk, the copper
I2R loss in the windings and the iron losses. The iron losses could be calculated very approximately using the following
empirical formula:

Ph = khB̂
mf for hysteresis losses

Pe = keB̂
2f2 for eddy current losses (13)

where kh and ke are the empirical constants, B̂ is the peak magnetic field with m = 1.76 and f is the applied excitation
frequency.
The simulated and measured results for the windings and rotating aluminium disk are shown in Figs. 11 and 12.
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S. Burger1,2, R. Klose1, A. Schädle1, F. Schmidt1,2, and L. Zschiedrich1,2

1 Konrad-Zuse-Zentrum Berlin, Takustr. 7, D-14195 Berlin, Germany, burger@zib.de
2 JCMwave GmbH, Haarer Str.14 a, D-85640 Putzbrunn, Germany

1 Introduction

Photonic crystals (PhCs) are structures composed of different optical transparent materials with a spatially periodic
arrangement of the refractive index [Joa95, Sak01]. Propagating light with a wavelength of the order of the periodicity
length of the photonic crystal is significantly influenced by multiple interference effects. The most prominent effect is
the opening of photonic bandgaps, in analogy to electronic bandgaps in semiconductor physics or atomic bandgaps in
atom optics. Due to the fast progress in nano-fabrication technologies PhCs can be manufactured with high accuracy
and with designed materials and geometrical properties. This allows for the miniaturization of optical components
and a broad range of technological applications, like, e.g., in telecommunications [MBG04]. The properties of light
propagating in PhCs are in general critically dependent on different system parameters, like the geometry of the device
and the refractive indices of the present materials. Therefore, the design of photonic crystal devices calls for simulation
tools with high accuracy, speed and reliability. In this paper we present a fast and flexible finite-element-solver for the
calculation of Bloch-type eigenmodes of PhCs.

2 Light Propagation in Photonic Crystals

Light propagation in a photonic crystal is governed by Maxwell’s equations with vanishing densities of free charges and
currents. The dielectric coefficient ε(x) and the permeablity µ(x) are real, positive and periodic, ε (x) = ε (x + a),
µ (x) = µ (x + a). Here a is any elementary vector of the crystal lattice [Sak01]. For given primitive lattice vectors
a1, a2 and a3 the elementary cell Ω ⊂ R

3 is defined as
Ω = {x ∈ R

3 |x = α1a1 + α2a2 + α3a3; 0 ≤ α1, α2, α3 < 1}. A time-harmonic ansatz with frequency ω and
magnetic field H(x, t) = e−iωtH(x) leads to an eigenvalue equation for H ; additionally, the condition that H(x)
is divergence-free applies:

∇× 1

ε(x)
∇× H(x) = ω2µ(x)H(x), ∇ · µ(x)H(x) = 0, x ∈ Ω. (1)

Similar equations are found for the electric field E(x, t) = e−iωtE(x):

∇× 1

µ(x)
∇× E(x) = ω2ε(x)E(x), ∇ · ε(x)E(x) = 0, x ∈ Ω. (2)

The Bloch theorem applies for wave propagation in a periodic medium. Therefore we aim to find Bloch-type
eigenmodes [Sak01] to Equations (1), defined as

H(x) = eik·xu(x), u(x) = u(x + a). (3)

where the Bloch wavevector k ∈ R
3 is chosen from the first Brillouin zone. A similar procedure yields the Bloch-type

eigenmodes to Equations (2), however, in what follows we will concentrate on Equations (1).
In order to reformulate Equations (1) and (3) we define the following functional spaces and sesquilinear forms:

(a) The set of Bloch periodic smooth functions is defined as

C∞
k

(
Ω,Cd

)
=
{
w ∈ C∞(Ω,Cd) | w (x + a) = eik·aw (x)

}
.
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Fig. 1. Unit cell in the geometry of the scaffold structure. Bars with quadratic cross-sections intersect and form a 3D
structure, periodic boundary conditions apply to all pairs of opposing faces

The Sobolev space Hk (curl) is the closure of C∞
k (Ω,C3) with respect to the H (curl)-norm. The space H1

k is defined
accordingly.
(b) The sesquilinear forms a : Hk (curl) ×Hk (curl) → C and b : Hk (curl) ×Hk (curl) → C are defined as

a (w, v) =

∫
Ω

1

ε
(∇× w) · (∇× v)dx, (4)

b(w, v) =

∫
Ω

µw · v dx. (5)

With λ ≡ ω2 we get a weak formulation of Equations (1) and (3):

Problem 1. Find λ ∈ R and w ∈ Hk (curl) such that

a (w, v) = λ b(w, v) ∀ v ∈ Hk (curl) , (6)

under the condition that
b (w,∇p) = 0 ∀p ∈ H1

k . (7)

3 Finite Element Discretization

In order to numerically solve Problem 1 we need to discretize the corresponding functional spaces and expand the
approximation of the solution in ansatz functions from these spaces [Jin93].

The Bloch periodic spaces Hk (curl) and H1
k are discretized such that the corresponding edge element space

Wh,k ⊂ Hk (curl) and the Lagrange element space Vh,k ⊂ H1
k are of the same order. The finite element basis

functions for Vh,k and Wh,k are denoted by ϕj , 1 ≤ j ≤ Np and φj′ , 1 ≤ j′ ≤ Nc. Bloch periodicity is enforced by
a multiplication of basis functions associated with one of two corresponding periodic boundaries of the unit cell by the
Bloch factor exp (ik · ai) (see Equation 3). Interior edge element functions remain unchanged.

The discretized problem corresponding to Problem 1 reads as follows:

Problem 2. Find λ ∈ R and w ∈ Wh,k such that

a (w,φi) = λ b(w,φi) for i = 1, ..., Nc , (8)

under the condition that
b (w,∇ϕj) = 0 for j = 1, ..., Np . (9)

An alternative approach is discussed in [Dob01]. By expanding w in φi’s and inserting into Equation (8) we obtain
the algebraic eigenvalue problem

Au = λBu, (10)
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Fig. 2. (a) Band diagram for Bloch eigenmodes propagating in the scaffold structure. (b) Convergence of the first four
eigenvalues at the X-point towards the eigenvalues of the quasi-exact solutions

with Ai,j := a (φi,φj) and Bi,j = b (φi,φj). The matrix A is hermitian, positive semidefinite and B is hermitian,
positive definite.

The main advantage of the finite element method is that the matrices in Equation (10) are sparse, which is due to
the locality of the chosen finite element basis functions. This allows the use of very efficient solvers.

In our realization [BKS05] we use a subspace iteration scheme similar to a method proposed by Döhler [Doe82].
This yields a solution to Equation (8) in Problem 2. In order to guarantee that Equation (9) in Problem 2 is fulfilled
we add a step within the iteration scheme, which projects the iterates onto the divergence-free subspace. This is done
as follows: To compute the projected, divergence-free field wp from the (not divergence-free) iterate w we use the
Helmholtz decomposition,

wp = w + ∇χh , (11)

with the correction potential χh ∈ Vh,k . This leads to the following system of equations:

b (w + ∇χh,∇ϕj) = 0 for j = 1, ..., Np , (12)

or
b (∇χh,∇ϕj) = −b (w,∇ϕj) for j = 1, ..., Np . (13)

We solve these equations by standard multi-grid algorithms [DFZ03].
For preconditioning of the algebraic problem we have implemented a multi-grid preconditioner [DFZ03] similar

to the implementation in [HN02]. With this, the computational time and the memory requirements grow linearly with
the number of unknowns. Furthermore, we have implemented a residuum-based error estimator [HR01] and adaptive
mesh refinement for the precise determination of localized modes. As finite element (FE) ansatz functions, we typically
choose edge elements (Whitney elements) of quadratic order.

4 Numerical Examples

4.1 3D scaffold structure

We illustrate the performance of our eigensolver by analyzing the convergence of the eigenvalues for an example from
the literature, where the lowest eigenmodes in a 3D periodic structure (scaffold structure [Dob00]) are calculated. The
geometry of a cubic unit cell (sidelength a) is shown in Fig. 1, it consists of bars (width d = 0.25 a) of a transparent
material with relative permittivity εr = 13 and a background with εr = 1 (ε = εrε0, ε0: free space permittivity).
For the calculation of the band structure the Bloch wave vector k is varied along symmetry lines of the Brillouin
zone (cf. [Dob00]). The band structure which exhibits a complete bandgap around the reduced frequency of ω̃ =
ω a/(2π c) = 0.4 is shown in Fig. 2a. Table 1 shows the four lowest eigenvalues at the X-point(k = (π/a, 0, 0))
calculated on grids generated in 0, 1, resp. 2, uniform refinement steps from a coarse grid. Displayed are also the
numbers of unknowns in the problem (number of ansatz functions in the finite element discretiztation) and typical
computation times on a PC (intel Pentium IV, 2.5 GHz). It can be seen that the computational effort rises linearly
with the number of unknowns. This behaviour is a major advantage compared to other simulation methods like plane-
wave expansion methods or finite-difference time-domain methods. The convergence of the four eigenvalues towards
a quasi-exact solution (obtained from a calculation on a finite-element grid with N = 1764048 unknowns) is shown
in Fig. 2 (b).
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Step No DOF CPU time [min] ω̃1 ω̃2 ω̃3 ω̃4

0 3450 00:09.23 2.736e-01 2.740e-01 4.279e-01 4.288e-01
1 27572 01:46.33 2.730e-01 2.731e-01 4.266e-01 4.267e-01
2 220520 13:50.81 2.728e-01 2.728e-01 4.260e-01 4.260e-01

Table 1. First eigenvalues of k = X-eigenmodes of the scaffold structure. Displayed are the step number, the number
of degrees of freedom of the problem, the CPU time (run on a standard PC), and the reduced frequencies of the four
lowest eigenmodes

(a) (b)

Fig. 3. Geometry (a) and coarse FE mesh (b) of a 2D photonic crystal structure with a central point defect
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Fig. 4. (a) Distribution of the magnetic field intensity (|H(x)|) for the lowest-frequency bound state at the point defect.
(b) Comparison of the convergence of the eigenfrequency of the lowest frequency bound state towards a quasi-exact
solution for adaptive and uniform refinement of the finite element mesh

4.2 Defect mode

Light at a frequency inside the bandgap of a photonic crystal can be “trapped” inside defects of the structure [Joa95].
This enables the construction of, e.g., waveguides (by line defects) and micro-cavities (point defects).

Figure 3 (a) shows the geometry of a 2D photonic crystal with a point defect (a missing pore in the center). It
consists of a hexagonal lattice of air holes with a radius of r = 0.4 a in a material with a relative electric permittivity
of εr = 13. The corresponding coarse triangular FE grid is shown in Fig. 3 (b). Fig. 4 (a) shows the modulus of
the magnetic field for the lowest-frequency trapped eigenmode, computed with adaptive refinement of the FE mesh.
Figure 4 (b) shows the convergence of the eigenvalue of the discrete solution, ω̃d, towards the eigenvalue of a quasi-
exact solution, ω̃ ≈ 0.28272, for adaptive grid refinement and for uniform grid refinement. Plotted is the relative error
of the reduced eigenfrequency, ∆ω̃/ω̃, where ∆ω̃ = |ω̃− ω̃d|. Obviously, adaptive grid refinement is especially useful
when the sought solutions are geometrically localized, or when the geometry exhibits sharp features, like discontinuities
in the refractive index distribution. In this example, the use of the error estimator and adaptive refinement yields an
order of magnitude in the accuracy of the error for a number of unknowns of N ∼ 105.
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5 Conclusion

In this paper we have presented an adaptive solver for the computation of electromagnetic eigenmodes. The conver-
gence analysis of solutions for model problems shows the efficency of the methods. Currently we are working on the
implementation of transparent boundaries in our finite element code. For this we are using a new Laplace domain
method which allows the treatment of inhomogeneities in the exterior domain [Sch02].
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COLLGUN: a 3D FE Simulator for the Design of TWTs Electron
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Abstract In this paper a new simulator for the design of Traveling Wave Tubes (TWT) electron guns and multistage
collectors is presented. The simulator is based on the 3-D FE discretization of the Poisson equation combined with a
particle model for the solution of the Vlasov equation in the space charge limited regime.

1 Introduction

Traveling Wave Tube (TWT) are electronic vacuum devices used for high-power amplification of RF signals. Three
main regions are usually individuated in a TWT, as shown in Fig. 1 from [ALMP01]: the electron gun, where the
electron beam is generated, consisting of a cathode, a focusing electrode, one or two grids and an anode; a slow
wave helicoidal structure, where the beam interacts with the low-level input RF signal; and a depressed collector,
consisting of several electrodes suitably voltaged in such a way to slow down the electrons after their interaction with
the RF signal [Gil94]. In this way the spent beam residual energy is recovered and overall efficiency is increased.
Periodic permanent magnets (PPM) structures are also employed to keep the electron beam laminar. Electron guns and
collectors are also used in a wide variety of vacuum devices including klystrons and particle accelerators. In the TWT
design process the geometries of electron guns and collectors are critical issues in order to achieve optimal overall
efficiency. In fact, usage of more complex geometries and insertion of control grids allow the designer to obtain a
better performance. For this reason dedicated tools are required to test innovative geometries for collectors and guns
addressing optimal placement of control grids and electrodes [SWKR99, Pet02, KSCP95]. Numerical analysis tools
based on the Finite Element Method (FE) are widely used for general electromagnetic analysis, since they possess
several advantages in comparison with other numerical techniques; such advantages include flexibility in the treatment
of realistic geometries, easy utilization of irregular meshes and/or mesh adaptation in the discretization process and
capability to easily manage material non-homogeneities [CEL01, CoL02].

In this paper we present an innovative dedicated 3-D FE simulator (COLLGUN) expressly conceived for the
design of TWT electron guns and multistage collectors, developed at the University of Catania in collaboration with
Galileo Avionica. The complete simulator consists of three main modules: a fully 3-D FE mesh generator, a 3-D FE
Vlasov solver, including space-charge effects with an integrated electron trajectory tracer, and a graphic post-processing
module for result restitution.

In COLLGUN the electromagnetic analysis of the TWT device is aimed at the tracing of electron trajectories
and is based on the iterative solution of a 3-D steady-state Vlasov-Poisson electromechanical problem. In the iterative
scheme three main phases are followed: the solution of the electromagnetic problem, the integration of the mechanical
equations for the tracing of the electron trajectories and the computation of space charge distribution. The above steps
are repeated until the “distance” between two consecutive solutions is less than a prescribed end-iteration tolerance.

Some results concerning the analysis of an electron gun and a multistage depressed collector are presented, showing
good agreement with available experimental data.

The paper is structured as follows. In Sect. 2 the architecture of the COLLGUN simulator is described. In Sect. 3
some examples of simulations are given.

2 The COLLGUN simulator

The COLLGUN simulator is written in C++ and has been developed under the MS-WINDOWS OS environment. The
COLLGUN structure follows the classical scheme of FE simulators in which three main modules are present. The
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Fig. 1. Helix TWT schematic

Fig. 2. GUI main window

first one groups preprocessing functions (such as the construction of the geometrical model and FE mesh generation).
The second module is devoted to the processing functions (solution of the mathematical model). The last module is
devoted to post-processing (such as further elaboration of results, analysis plots, etc.). The tool has been specifically
conceived to provide the TWT designer with an easy-to-use environment through a friendly CAD-based Graphical
User Interface (GUI). Differently from other interfaces dedicated only to post-processing, the GUI of COLLGUN aims
at facilitating the management of all the various aspects of a simulation session. In fact all the simulator functions
are interactively executed by using the GUI window, where several menus foresee all the actions necessary to create,
modify and simulate the device. The COLLGUN GUI is based on a window presentation supported by suitable pop-up
menus. The main window, see Fig. 2, contains a toolbar displaying the accelerator buttons and a main view visualizing
the device geometry structure in 2-D space. The GUI also includes visualization tools, together with some specific
pre/post-processing functions related to TWT design.

2.1 Preprocessing: Construction of the FE Model

The developed preprocessor has been especially tailored in order to facilitate the input of geometrical data and boundary
conditions. The philosophy followed in COLLGUN for the construction of the geometrical and functional model
considers the device (collector/gun) as the union of blocks of simpler shape (primitives) representing the various
regions such as electrodes, cathode, grids, etc. These primitive are quite common shapes (cylinders, cones, spikes, cut
off cone, etc.), which cover a large number of geometries and other nonaxisymmetrical blocks like the gridded cathode
shown in Fig. 3, etc. The specification of the primitives includes assignment of boundary conditions. It is worth noticing
that during the creation of a new gun (or collector) the designer is assisted by input validation functions. When this
formal description is complete, the specified primitives are automatically assembled together and the whole FE mesh
is generated.
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Fig. 3. Example of discretization of the shadow and control grids

2.2 Processing 3D FE Steady-State Electron Beam Analysis

Starting from an available FE geometrical and functional device model, the COLLGUN processor module performs
a fully 3-D steady-state solution of the coupled electromechanical problem inside the device region, assuming a macro-
particle model for the electron beam. In this approach, the steady-state spatial distribution of electric charge in the
collector is governed by the following 3-D Vlasov equation for the scalar potential φ, associated with the relativistic
dynamic equations of electrons:

∇2φ +

∫ ∫ ∫
Ω

fP dΩ = 0 (1)

dp
dt

= e · (E + v × B) (2)

where fP is an unknown function describing the space charge distribution, and e, p and v are the electron charge,
impulse and velocity respectively. In the 3-D FE numerical solution of the above coupled problem, the unknown
potential is approximated by using Lagrangian interpolating polynomials at nodal points (vertices of tetrahedra). The
resulting discretized problem consists of two systems of equations: the first is an FE linear algebraic system, concerning
the spatial distribution of the unknown potential values, the other regards the positions at a certain time of all the discrete
particles used in the model. The strategy adopted for the solution of the complete set of equations is based on an iterative
scheme, which alternates the solution of the FE algebraic system with the integration of the dynamical equation in time.
At each step, from the computed trajectories a new estimate of the space charge distribution is evaluated and then used
to perform a new Poisson-solver step. These two steps are iteratively repeated until convergence is reached, when the
distance between two consecutive solutions is less than a user-specified end-iteration tolerance. It is worth noticing that
the presence of an externally assigned focusing magnetic field can also be considered in the integration of the dynamical
equation. Two aspects are fundamental for the convergence of the iterative procedure: a congruent redistribution of the
3-D space charge density and an accurate representation of the input beam. This second aspect plays a more relevant
role in the simulation of electron guns, since in this case, an appropriate model must be considered for the electron
emission, differently from collector analysis, for which the spatial and energetic distribution of the spent beam is
assumed known. The model of cathodic emission adopted is based on the Child’s law, suitably modified in order to
take into account the cathode geometry. In fact, the developed model includes corrections for cathode geometric shape
(spherical), relativistic beams and allows an accurate prediction of emission currents from the knowledge of the field
distribution near the cathode.

2.3 Postprocessing

The post-processing functions presently implemented allow computation and visualization of all the global and local
quantities commonly needed to perform accurate 3-D collector and electron gun design. The GUI allows an easy
management of postprocessing functions including graphical output. The device geometries and discretization can be
viewed and printed in 2-D sections and in 3-D axonometric views from any angle. Zoom in/out and rotation functions
are available to facilitate detail visualization. Upon completion of the simulation task, the COLLGUN GUI allows
the user to visualize and print several results useful to the designer such as trajectories in a 3-D space (showing also
only the trajectories pertaining to each electrode), contour lines and color maps in any plane selected by the user,
V-I diagrams, on axis magnetic field profiles, cathode emission densities, etc. In addition all the global quantities of
interest for the designer (total current, current and power recovered for each stage, power globally recovered, collector
efficiency, cathode loading, perveance, etc.) are also available in a text output file.
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Fig. 4. 3-D plot of emitted electron trajectories

Fig. 5. 2-D projection of trajectories and on-axis profile of the focusing magnetic field

3 Examples of TWT simulations

Several examples of 3-D simulations of electron guns and multistage depressed collectors have been performed to
check the COLLGUN functions; the results of the tests based on geometries available from Galileo Avionica are in
excellent agreement with measured data. Hereafter some results concerning a sample grid electron gun and a two-stage
depressed collector are reported.

3.1 Analysis of a gridded electron gun

In this paragraph the analysis of a grid electron gun for which measured data are available from Galileo Avionica
is illustrated. The 2-D longitudinal section view of the electron gun is shown in Fig. 2. This gun has a grid with the
complex geometry shown in Fig. 3. An axisymmetric magnetic field is applied in order to focalize and to maintain the
generated beam laminar. The cathode, control grid and anode voltages were settled to 0V, 304V and 15kV respectively.
For the analysis an irregular mesh consisting of 79952 first order tetrahedra and 18337 nodes was generated by the
preprocessing module; a more refined mesh was used in the discretization of the inter-grid region. For this discretization
five iteration were needed to solve the Vlasov-Poisson system, using an end-iteration tolerance of 0.1%. Figure 4
shows a 3-D plot of the emitted beam consisting of the 976 macro-electron trajectories generated by COLLGUN. In
Fig. 5 the trajectories in the yz plane with an applied focusing magnetic field are shown. The comparison between
simulation results and measured parameters are reported in Table 1. Total cathode current is accurately represented in
the simulation. As far as intercepted current is considered, simulation results exhibit an absolute error of the same order
of the cathode current, even if they are referred to a vanishing quantity (approching to zero). Neverthless this result is
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Table 1. Comparison between experimental values and simulated results

Experimental Simulated

Cathode current [A] 2.504 2.509
Intercepted current [A] 0.002 0.005

Fig. 6. 2-D projection of trajectories and on-axis profile of the focusing magnetic field

Fig. 7. 3-D plot of electron trajectories

reported because it is significant to ascertain correct operation of the device (very low intercepted current). The CPU
time required for the whole simulation was about 10 min, using a PC Pentium IV at 2.4 GHz with 1GB RAM.

3.2 Analysis of a multistage depressed collector

In this paragraph the computation of electron trajectories inside a TWT collector is presented. The analyzed collec-
tor is an axisymmetric two-stage depressed for which geometrical data are available from Galileo Avionica. For the
considered collector a focusing magnetic field is applied in order to reduce backstreaming current. For this simulation
an irregular mesh of 28528 tetrahedra and 6257 nodes was generated, using a more refined mesh in the inter-electrode
regions. The beam entering the collector has a reference voltage of 15 kV, a current of 1.93 A and a radius of 1.33
mm. The cross section of the electron beam was modelled assuming that the beam total current is radially distributed
into 80 concetrical rings, each one carrying 10 macro-electrons. Figure 6 shows the trajectories landing on the first
electrode (first stage), carrying a total current of 180 mA, and those landing on the second electrode, carrying 1.74 A.
The on-axis profile of the focusing magnetic field applied is also shown. In Fig. 7 all the trajectories are shown in a 3D
space. Table 2 summarizes the simulation results for the considered collector. In this case the CPU time required for
the whole simulation was about 8 minutes. Other collector geometries, not reported here, have been analysed, all of
which showed results in excellent agreement (within a few percent) with measurement data from Galileo Avionica.
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Table 2. Results of the simulation of the two stages collectors

Spent Beam current [A] 1.93
Spent beam power [W] 24165
Recovered Power [W] 11474
Efficiency [%] 47.48
Backstreaming current [mA] 9.64
Drift Current [mA] 2.41
1st stage current [A] 0.18075
2nd stage current [A] 1.74
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Abstract In this paper an iterative procedure is presented for the computation of equivalent source representations of
focusing axisymmetric magnetic fields inside Traveling Wave Tubes (TWT). The procedure uses thin solenoid pairs
as equivalent sources and solves iteratively a sequence of inverse problems until user defined end-iteration tolerance
is achieved. The adopted approach is accurate, robust and allows us to obtain a very accurate representation of real
complicated shape fields by using few thin solenoid pairs. In order to illustrate the effectiveness and the advantages of
the procedure, several examples of representation of field profiles are also given.

1 Introduction

Travelling Wave Tubes (TWTs) are vacuum electronic devices used as high-power high-frequency amplifiers for vari-
ous applications such as telecommunication and radar systems. A TWT consists of an electron gun, where the electron
beam is generated, a slow wave structure (SWS), where the RF signal is amplified, and a collector region, where the
spent beam energy is recovered by slowing down the electrons. TWTs signal amplification is based on the interaction
between the relativistic electron beam and the input RF signal, taking place in the aforementioned helicoidal slow
wave structure. In order to improve TWTs performance, avoiding the spreading of the electron beam, magnetic focus-
ing systems are used both in the electron gun region and in the SWS and collector regions. The focusing field is usually
generated by means of permanent magnets suitably positioned along the axisymmetry axis. In the numerical analysis
of TWTs accurate three-dimensional (3-D) representations of the focusing axisymmetric magnetic field are required in
order to precisely compute electron trajectories [CEL01]. In literature 3-D magnetic field representations are generally
built from experimentally measured 1-D axis values [Vau72, Vau74, Sta79, Jac99, CL02]. Various models are then
used in order to obtain an approximate 3-D field representation by minimizing the error with respect to experimental
on-axis values. Equivalent ideal loop sources are commonly used for this purpose but a single loop source is intrinsi-
cally different from a permanent magnet source (PMS) and consequently a non-realistic high number of loops often
results from ideal loop procedures, when accurate representations are required. Furthermore the off-axis components
of the magnetic field representations based on ideal loop models may not be close to those coming out from real PMS.
In literature [Vau72] it has been pointed out that considerable errors may arise in off-axis values when models not
adherent with real sources are used, even if on-axis approximations are satisfactory. In this paper the authors present
a new 3-D magnetic field representation procedure based on thin solenoid pairs (TSP) sources (Fig. 1), more adherent
to the real behaviour of permanent magnets. In this way the model allows us to calculate very accurate representations.
From this model an iterative procedure based on the minimization of the representation error is derived to calculate
the parameters of the TSP model. In the procedure local and global inverse problems are iteratively solved in sequence
until the error in the representation is lower than a prescribed tolerance. The adopted approach allows us to achieve
a very accurate representation of complicated shape fields by using only few equivalent sources, so reducing the overall
computational effort. In addition the procedure is robust and convergence has been observed in all the cases examined.
The paper is structured as follows: in Section II the TSP model is illustrated; in Section III the developed procedure for
the calculation of TSP model representation is presented; in Section IV several examples of application are shown; the
authors’ conclusions follow in Section V.
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Fig. 1. Model of a permanent magnet by using a couple of thin solenoids

2 The thin solenoid pair model

The geometrical and physical configuration of a thin solenoid pair is represented in Fig. 1. The on-axis magnetic field
component Bz of a single thin solenoid pair is given by the following formulas

Bz(z) = M ·
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where M = µ0·J
2

, and J is the linear current density of each thin solenoid, zC is the z coordinate of thin solenoid pair
center, R1 and R2 are the radii of the inner and outer thin solenoid respectively. The above model is usually used to
represent a cylindrical permanent magnet of length L, inner radius R1 and outer radius R2 [Jac99]. The overall on-axis
magnetic field due to a set of N thin solenoid pairs is expressed by adding all the TSP contributions as follows
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where Mi, zCi , Ri1 and Ri2 refer to the ith TSP in the summation.

3 The TSP iterative procedure for the 3-D magnetic field representation

The input data of the TSP procedure are the measured magnetic field values along the z-directed symmetry axis in the
interval (zi, zf ). The outputs of the TSP procedure are the parameters of the thin solenoids: that is the final number of
the pairs, their axial positions, their geometrical data (radii and length) and the currents carried by each solenoid. At
the beginning the procedure builds a tentative 3-D representation of the magnetic field by using a minimum number
of TSP (even a single pair) positioned on the z-directed symmetry axis in correspondence with the maximum value of
the experimentally known axial magnetic field. This follows a general rule also adopted for determining the position
of successively added pairs, which corresponds to the z-axis point where the difference between the experimental and
computed profiles (differential profile) exhibits its maximum value. The initial tentative value of the parameters of each
inserted TSP are individually computed and assigned by solving a local inverse problem according to the formula:

R = |z1 − z2| ·
√

S + 3
√

S · (1 + S)2 + 3
√

S2 · (1 + S) (3)

where
S =

1
B2

1
B2

2
− 1

(4)
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and B1 and B2 are the measured values of the magnetic field at points z1 (where an extremal value occurs) and z2

separated from z1 by a user chosen z-axis discretization interval. In particular the inner radius is chosen equal to R,
the outer twice R, while the length is assigned equal to four time R.
At this point all the parameters of the tentative representation are adjusted by following a constrained minimization of
the overall representation error e(B) evaluated according to the expression:

e(B) =
‖ ∆B ‖
‖ B ‖ (5)

where

‖ ∆B ‖=
∫ zf

zi

| Bmeasured −Bcomputed |2 dz (6)

‖ B ‖=
∫ zf

zi

| Bmeasured |2 dz (7)

and zi and zf are the extremes of the z-axis interval.
In particular the error minimization procedure tries to find iteratively better estimates for both the radii and length

of the last inserted TSP in order to reduce the representation error. For this purpose only a set of K points (typically
12-16) around the axial position of the last inserted sources are used in a least square minimization algorithm. Diversely
from the radii, which are determined for each TSP independently of the others, the currents to be assigned to each
equivalent source are obtained all together as solutions of a global inverse problem for the on axis magnetic field. In
fact the field B along the z-axis is related to the thin solenoid pairs parameters by expression 2. When this expression
is evaluated at N points zj on the z-axis, coincident with the positions of the center of the N TSPs, the following linear
system is obtained, where the only unknowns are the coefficient Mi, directly related to currents.

Bj =

N∑
i=1

Cij ·Mi (8)

where Mi = µ·J
2

and the coefficients Cij are
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The unknown coefficients Mi are easily found by solving the above linear problem.
After this phase, if the error still exceeds the predetermined tolerance, the procedure restarts building a more com-

plex tentative TSP representation, obtained by adding one more TSP, positioned according to the previously discussed
rule. If even the modified representation is not adequate other TSP are added one at a time in a similar way until the
prescribed tolerance is reached.

It is worth noticing that for a desired target accuracy the minimization process allows us to achieve an optimal
solution with respect to the number of TSPs used. In addition, direct calculation of the source currents makes the
procedure very robust allowing a solution to be obtained in all the analyzed cases.

4 Examples of application

The TSP procedure has been tested by using several on-axis experimental magnetic field data available by TWT man-
ufacturers. Hereafter three examples of application are illustrated in order to show the achievable degree of accuracy.
The first example regards the 3-D representation of an on-axis measured magnetic field curve which exhibits empha-
sized slope variations. The z-axis total length l=0.08 m has been subdivided into 800 discretization intervals and the
target tolerance was fixed to 0.1% as specified in [CL02]. The experiments have shown that the procedure is able to
achieve the target representation error by using only 4 thin solenoid pairs, a lower number with respect to ideal loop
source models (10 ideal coils)[CL02], thus obtaining a remarkable reduction of computational effort. Figure 2 shows
the simulated and measured on-axis magnetic fields and their difference. The TSP parameters (zC , R1, R2, L and M )
for this representation are summarized in table 1.
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Fig. 2. On-axis profile of the magnetic field for the first example

Table 1. TSP parameters for the first example

zC [m] R1[m] R2[m] L[m] M [H ·A/m2]

1.0000e-02 3.3136048e-003 5.9969731e-003 1.7169790e-03 -1.1642526
3.8000e-02 8.2584476e-003 1.6735344e-002 6.6755083e-03 -0.10463623
2.4300e-02 5.7789974e-003 2.2482202e-002 6.6118100e-03 0.042748410
5.3600e-02 8.9701603e-003 1.9385739e-002 7.3357048e-03 0.26056058
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Fig. 3. On-axis profile of the magnetic field for the second example

Table 2. TSP parameters for the second example

zC [m] R1[m] R2[m] L[m] M [H ·A/m2]

2.2540e-02 2.7133626e-03 5.4060805e-03 4.2544959e-03 0.35228756
3.3670e-02 2.9002675e-03 4.9427654e-03 4.3723550e-03 0.45541084
1.6660e-02 2.5553433e-03 8.2093684e-03 3.4851959e-03 -0.20566813
2.8210e-02 3.3791592e-03 4.2215791e-03 3.5500570e-03 -0.80645423

The second example regards a typical magnetic field profile adopted in the focalization of the beam of an electron
gun. The z-axis total length l = 0.035 m has been subdivided into 500 discretization intervals. The target tolerance was
chosen as 0.5% and the number of equivalent sources coming out from the iterative procedure for this example is 4.
Figure 3 shows the simulated and measured on-axis magnetic fields. Table 2 summarizes the resulting thin solenoid
pairs parameters (zC , R1, R2, L and M ) for this example.
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Fig. 4. On-axis profile of the magnetic field for the 3rd example
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Fig. 5. Monotonic behavior of the representation error

Table 3. TSP parameters for the third example

zC [m] R1[m] R2[m] L[m] M [H ·A/m2]

2.30e-02 2.4667401e-03 2.5073321e-03 3.4908720e-03 -17.708462
1.84e-02 2.3315473e-03 2.5022015e-03 3.0303974e-03 3.9044845
2.76e-02 1.9167791e-03 3.9493502e-03 3.0508228e-03 0.39466338
3.20e-02 1.6986424e-03 4.4763201e-03 2.8323448e-03 -0.21892332
1.38e-02 1.8448416e-03 3.3865365e-03 2.8589395e-03 -0.32496537

The last example shows the performance of the algorithm in the representation of a magnetic field profile due to
a short regular PPM (Periodic Permanent Magnets) structure. Even for this example the total length of the z-axis l =
0.058 m has been divided in 500 intervals and the target tolerance was chosen as 0.5%. The number of thin solenoid
pairs coming out from procedure was 5 exactly as the numbers of PPM sources; their parameters are summarized in
table 3. Furthermore in order to assess the robustness of the TSP procedure with respect to convergence a second test
was performed assigning an end tolerance of 0.001%. In Fig. 5 the log10(Error) (the representation error) is plotted
in order to demonstrate the monotonic decreasing behaviour of the representation error. Figure 4 shows the perfect
matching between the measured and simulated magnetic profile achieved for this example as expected.

5 Conclusions

The iterative procedure presented gives accurate representations of the 3-D focusing axisymmetric magnetic field in
TWTs devices by using a minimum number of TSP sources. The parameters of the TSP model (axial position, radii,
length and currents) are obtained by minimizing the representation error, assigning a reasonable end iteration tolerance
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(in the range 0.1-1%). The resulting number of TSP sources gives a realistic estimate of the number of permanent
magnets to be used for the focalization system. Furthermore the 3-D field direct computation by using analytical
formulae of source model more adherent to PPM gives advantages of high accuracy even for off-axis values and
consistent reduction of computational effort with respect to the case of numerical calculations performed by means of
dedicated FE tools.
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Hybridised PTD/AWE for Modelling Wide-Band Electromagnetic
Wave Scattering

M. Condon, C. Brennan and E. Dautbegovic
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Abstract A hybridised Physical Theory of Diffraction (PTD) / Asymptotic Waveform Evaluation (AWE) technique
is presented for the efficient solution of electromagnetic wave scattering problems over a wide frequency band. The
scatterer is discretised using Rao Wilton Glisson (RWG) basis functions. Regions of the scatterer where the PTD
solution is deemed accurate are identified and the corresponding basis coefficient amplitudes are computed using this
asymptotic technique. A revised matrix equation is then formed for the surface currents over the remainder of the
structure. The AWE technique is used to efficiently solve this matrix equation over a wide frequency band.

1 Introduction

Many practical electromagnetics problems require the solution of a large-scale linear system over a wide frequency
band. Some examples include the analysis of antennas, the computation of radar cross sections, and the calculation
of scattering from perfectly and imperfectly conducting objects. There exist several candidate formulations for such
problems. The integral equation is a compact formulation offering a full-wave solution. It proceeds by expressing the
scattered field in terms of an integral involving surface currents and an appropriate Green’s function and then enforcing
an appropriate boundary condition to yield an integral equation. The Method of Moments (MoM) [1] is frequently em-
ployed to solve such an integral equation formulation. A major drawback of the MoM is the necessity to employ large
numbers of basis functions to adequately capture the oscillatory nature of the unknown surface currents. As a conse-
quence, the sequential specification and solution of the associated matrix equations over a wide band of frequencies is a
computationally intensive process. An alternative is to use Asymptotic Waveform Evaluation (AWE)[2]. AWE involves
expanding the unknown basis function coefficient vector in a Taylor series around a central frequency. Derivatives (with
respect to the wave-number) of the impedance matrix and incident field vector are used to evaluate the coefficients of
this expansion. From this Taylor expansion a more accurate rational function expression can be computed.

For large scatterers the necessity to compute and store the inverse and derivatives of the impedance matrix at the
expansion frequency places onerous computational requirements on the AWE. In this paper, a hybridised approach is
proposed. For a smooth scatterer it is possible to get a reliable estimate of the surface current in regions away from
edges and corners by employing an asymptotic solution. The PTD solution that we employ supplements the Physical
Optics current with edge waves based on Sommerfeld’s solution for a perfectly conducting half-plane excited by a
plane wave. For a flat polygon we employ this solution in the central portion of the scatterer, restricting the MoM
description to the currents at the edges and corners where the asymptotic solution is less valid. In this fashion we can
reduce the storage requirements of the AWE as the problem size grows.

2 Method of moments

The MoM proceeds by expanding the unknown surface current at each point on the scatterer surface r in terms of a set
of N basis functions.

J (k, r) =

N∑
i=1

Ii(k)fi(r) (1)

We have made explicit the dependence on both wave-number and position of the surface currents. The basis functions
fi are frequency independent, assuming that we have sufficient quantity of them to adequately capture the oscillatory
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nature of the surface current. Typically one needs on the order of 10 basis functions per wavelength. In this paper we
choose the sub-domain basis functions described in [3]. Inserting (1) into the Electric Field Integral Equation (EFIE)
and testing with suitably chosen testing functions yields a matrix equation

Z(k)I(k) = V(k) (2)

Z contains information about the interaction between pairs of basis functions and is referred to as the impedance matrix.
V is a vector containing information about the incident field while the vector I holds the unknown basis coefficients
Ii(k). Reference [3] gives explicit formulae for the quantities in equation (2). The solution of (2) yields the unknown
amplitudes Ii at the specified frequency from which can be calculated the scattered and total electromagnetic fields at
any point. Repeated formation and solution of equation (2) over a range of frequencies is a time-consuming process.

Instead AWE prescribes solving equation (2) at a central frequency f0 as well as computing derivatives of Z(k)
and V(k) with respect to the wave-number k at this frequency. These vectors and matrices can be used to form rational
approximations to I(k) at many frequencies.

Ī(k) =

∑m

j=0
aj (k − k0)

j

∑n

j=0
bj (k − k0)

j
(3)

k0 is the wave-number at the frequency f0 while aj and bj are vectors of size N representing the coefficients of the
rational expansion. These coefficients are determined by equating the expression in equation (3) with a Taylor series
expansion of the form

Ī(k) =

n+m+1∑
j=0

mj (k − k0)
j (4)

where

mj = Z−1(k0)

(
V(j)(k0)

j!
−

j∑
q=0

(1 − δq0)Z
(q)(k0)mj−q

q!

)
(5)

Explicit expressions for the derivatives of the impedance matrix can be found in [4]. However, implementation of AWE
requires the explicit computation and storage of the inverse of the impedance matrix as well as several derivatives.
These requirements grow as the scatterer size increases, placing a natural limit on the size of problem that can be thus
analysed.

3 Physical Theory of Diffraction

An alternative approach is to use approximate surface currents predicted by a high frequency solution. For scattering
from a large polygon a suitable asymptotic solution is the Physical Optics current along with fringe waves produced
by the diffracting edges. Referring to Fig. (1) the Physical Optics current is given by

JPO (r) = 2n̂× Hi (r) (6)

In addition each edge produces a fringe or edge wave. The total fringe current due to an edge is given by

Jedge = Jedge
l l̂ + Jedge

m m̂ (7)

The l coefficient is given by

Jedge
l = − 4√

π
êi‖ · Hi (rd)F

(
ψ cos

φi

2

)
exp (jκ) sinαi (8)

while the m coefficient is given by

Jedge
m = 4√

π

(
cosαi cosφêi

‖ + sinφiê
i
⊥
)
· Hi (rd)F

(
ψ cos φi

2

)
exp (jκ)

− 4√
π

(
sin φi

2
êi
⊥ + cos φi

2
cosαiê

i
‖
)
· Hi (rd) e−j(ks+π/4)

ψ

(9)

In both the equations above we have used the expressions

ψ =
√

2ks sinαi (10)

κ = ks
(
sin2 αi cosφi − cos2 αi

)
+ π/4 (11)
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Fig. 1. Geometry for problem

The Fresnel function is defined by

F(x) =

∫ ∞

x

exp
(
−jt2

)
dt (12)

while the unit vectors ei
‖ and ei

⊥ are given by

ei
⊥ = − βi × m̂

|βi × m̂|
ei
‖ = βi × ei

⊥

The diffracting point rd can be determined by observing that it must satisfy the Keller condition and s is the distance
from this diffracting point to r. For a polygon with Ne edges there is a diffraction contribution from each edge and the
current is given by

JPTD (r) = JPO (r) +

Ne∑
n=1

Jedge,n (r) (13)

The principal drawback of such an asymptotic solution is the failure to rigorously include higher order scattering
effects, such as corner diffraction or repeated edge diffraction. Such effects can only be rigorously accounted for using
a full-wave technique. However for a smooth scatterer we expect it to yield reasonable results away from the corners
and edges.

4 Hybrid Method

We have investigated a hybrid method which proposes to use each formulation in the region for which it is best suited.
To achieve this we split the scatter into two regions (See Fig. (1)). Region 1 is called the method of moments region,
where we will use a matrix equation to compute the currents. It contains NMOM basis functions. Region 2 is the
asymptotic region where we shall approximate the surface current using the Physical Optics and fringe wave currents.
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Fig. 2. Geometry for computing current coefficient values for region 2

It contains NPTD basis functions. Obviously NMOM and NPTD sum to give us N the total number of basis functions.
By re-arranging the ordering of our basis functions if necessary we can express the matrix equation (2) as

Z =

[
Z(1,1) Z(1,2)

Z(2,1) Z(2,2)

]
(14)

where Z(1,1) is a matrix of order NMOM containing interactions between the basis functions in region 1 while while
Z(2,2) is a matrix of order NPTD containing interactions between basis functions in region 2. Z(1,2) and Z(2,1) are
matrices representing coupling interactions between the regions. In addition we split the incident vector

V =

[
V(1)

V(2)

]
(15)

and the current amplitude vector

I =

[
I(1)

I(2)

]
(16)

If a solution for I(2) is available one can write

Z(1,1)I(1) = V(1) − Z(1,2)I(2) (17)

= V̂(1) (18)

We compute an estimate for I2 using the technique outlined in [5]. We note that for a point in region 2 the PTD solution
can be expressed in terms of basis functions as

JPTD (r) =

NP T D∑
n=1

Infn (r) (19)

We introduce the unit vectors t̂±n as indicated in Fig. (2). These unit vectors are perpendicular to the nth edge and the
point rmid

n which is the centre of the nth edge. Using the fact that fn has a normal component of unity across the nth

edge and that the normal component vanishes across other edges it is possible to write expressions for the coefficients
of the basis functions in region 2 as

In =
1

2

(
t̂+n + t̂−n

)
· JPTD

(
rmid

n

)
(20)

Employing this approximation leaves the lower order matrix equation (18) to be solved numerically. One can employ
AWE to efficiently solve this equation over a range of frequencies.
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Fig. 3. Total fields 1 wavelength behind 3 wavelength metallic plate

5 Results

The first example involves scattering from a square metallic plate of side length 3cm (or 3λ at the expansion frequency
30GHz) lying in the xy plane with z = 0. The southwest corner of the plate is at (−0.015,−0.015, 0) while the north-
west corner is at (0.015, 0.015, 0). The incident wave is normally incident from the +z direction and the incident E
field is in the x direction. The plate was divided initially into a coarse grid of 8 by 8 squares. The outer 28 squares were
deemed to be region 1, while the inner 36 squares were region 2. These coarse squares were then further discretised and
a total of 1680 basis functions defined. Of these 708 were in region 1, with 972 in region 2. Region 2 coefficients were
computed using PTD while the currents in region 1 were computed using a 7th order AWE. The AWE solution was
thus confined to a strip of width 0.375cm around the edge of the plate, where we expect the PTD solution to perform
poorly. Obviously a trade off exists between the size of the AWE region and the computational resource required by
it. Numerical experimentation showed that, for this problem, this was the minimum size for region 1 such the resultant
average error along a test line was less than 1dB (see below). Unfortunately it is hard to state any general rules that can
inform the choice of the physical extent of these regions. The expansion frequency was 30GHz and a Pade expansion
was used over the range 25GHz to 35Ghz. Total fields were computed computed along a line in the shadow region
directly behind the scatterer. The line ran in the x direction from (−0.045, 0,−0.01) to (0.045, 0,−0.01). The average
error in dB ranged from 0.2dB at the expansion frequency to the worst value of 0.9dB at 35GHz. Figure (3) show the
total fields at 35GHz along the trial line. The computation time using a 3.2GHz processor was 32954 seconds to make
and store the AWE matrices for the exact solution. In contrast the hybrid solution required 5853 seconds.

6 Conclusions

A hybridised Physical Theory of Diffraction (PTD) / Asymptotic Waveform Evaluation (AWE) technique has been
presented for the efficient solution of electromagnetic wave scattering problems over a wide frequency band. The
scatterer is discretised using Rao Wilton Glisson basis functions. Regions of the scatterer where the PTD solution is
deemed accurate are identified and the corresponding basis coefficient amplitudes are computed using the asymptotic
solution. A method of moments technique is used to compute the surface currents over the remainder of the structure.
The AWE technique is used to efficiently solve this matrix equation over a wide frequency band.
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Abstract An analytic solution to the problem of a TE polarized plane electromagnetic wave scattering by two infinitely
long conducting elliptic cylinders is presented using an iterative procedure to account for the multiple scattered field
between the cylinders. To compute the higher order terms of the scattered fields, the translation addition theorem
for Mathieu functions is implemented to express the field scattered by one cylinder in terms of the elliptic coordinate
system of the other cylinder in order to impose the boundary conditions. Scattered field coefficients of various scattered
orders are obtained and written in matrix form. Numerical results are obtained for the scattered field in the far zone for
different axial ratio, electrical separation distance and angles of incidence.

Key words: TE scattering, Conducting elliptic cylinders, Iterative solutions, Mathieu functions

1 Introduction

The multiple scattering of a TE polarized plane electromagnetic wave by a system of infinitely long conducting elliptic
cylinders is important in a variety of practical applications. For example, the solution may be used to study the scattering
by complex bodies modeled by a collection of cylinders, prediction of radiation from elliptical reflector antennas, and
to check the accuracy of the results of numerical and approximate methods. Exact analytic solutions of the problem of
scattering by a system of N conducting elliptic cylinders have been formulated using the translation addition theorem
for Mathieu functions to enforce the boundary conditions [1, 2]. The required computer time and memory to invert
the resulting system of matrix increase rapidly with the number of cylinders. In addition, numerical results for certain
cylinder dimensions, electrical separations and angles of incidence are difficult to obtain by this analytical method may
be due to the associated ill-condition system matrices.

In the present paper an iterative procedure which was employed for the TM case [3] is extended to the TE scattering
by an arbitrary oriented two infinitely long conducting elliptic cylinders. This approach requires the solution of the
scattered field by each cylinder, assumed to be alone in the incident field that acts as an incident field on the other
cylinder. Therefore, the first order scattered field results from the excitation of each cylinder by the incident field
only, while the second order scattered field results from the excitation of each cylinder by the first order scattered
field. Hence, this iterative procedure continues until the solution convergence. One of the advantages of the iterative
procedure is that the proposed solution does not require matrix inversion and therefore the desired scattered field
coefficients are obtained after each iteration and used in the subsequent iteration.

The solution of the electromagnetic scattering by a system of N infinitely long conducting cylinders has received
little attention in the literature due to the complexity of computing Mathieu functions of higher orders and its associ-
ated translation addition theorem. Recently, there have been many studies on the multiple scattering elliptic cylinders
[1]-[4], and circular cylinders [5]-[7] using different techniques. Numerical results showing the number of scattered
fields are plotted for the normalized echo pattern width with various electrical separations, sizes, angles of incidence,
and also compared with published results to demonstrate the efficiency of the method [2].
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Fig. 1. Scattering geometry of two conducting elliptic cylinders

2 Formulation

Figure 1 shows the scattering geometry of two infinitely long conducting elliptic cylinders with different cross section
and arbitrary orientation. The center axes of the two cylinders are assumed to be parallel to the z-axes. The first cylinder
is located at the origin o1 while the second cylinder is located at the polar coordinate point (d,γ) with respect to the
global coordinate system (x,y,z). The major axes of the cylinders are a1 and a2 while the minor axes are b1 and b2
respectively, and each cylinder’s local coordinate system makes angle for the first cylinders and for the second cylinder
with its global coordinate system.

Consider elliptic coordinate systems u,ν, and z such that

x = F coshu cos ν, y = F sinhh sin ν, z = z (1)

where F is the semifocal length,0 ≤ u < ∞ ,0 ≤ ν < 2π and −∞ ≤ z < ∞. It is usually convenient to introduce

ζ = coshu, η = cos ν (2)

with 1 ≤ ζ ≤ ∞ and −1 ≤ η ≤ 1.
Consider the case of a linearly polarized electromagnetic plane wave incident on the two infinitely long conducting

elliptic cylinders at an angle φi with respect to the positive axis x , as shown in Fig. 1, with ejwt time dependence
suppressed. The magnetic field component of the TE polarized plane wave of amplitude H0 is given by

Hi
z = H0e

jkρ cos(φ−φi) (3)

where k is the wave number in free space. The incident magnetic field may be expressed in terms of Mathieu functions
about the origins o1 and o2 as follows:

Hi
1z =

∞∑
m=0

A1emR(1)
em(c1, ζ1)Sem(c1, η1) +

∞∑
m=1

A1omR(1)
om(c1, ζ1)Som(c1, η1) (4)

Hi
2z =

∞∑
m=0

A2emR(1)
em(c2, ζ2)Sem(c2, η2) +

∞∑
m=1

A2omR(1)
om(c2, ζ2)Som(c2, η2) (5)

where

A
1em
om

= H0j
m

√
8π

N
em
om

(c1)
S
em
om

(c1, cosφ1
i ) (6)
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A
2em
om

= H0j
m

√
8π

N
em
om

(c2)
S
em
om

(c2, cosφ2
i )e

jkd cos(γ−φi) (7)

N
em
om

(c1) =

∫ 2π

0

[S
em
om

(c1, η1)]
2dv (8)

N
em
om

(c2) =

∫ 2π

0

[S
em
om

(c2, η2)]
2dv (9)

φ1
i = φi − α1 , φ2

i = φi − α2 (10)

and c1 = kF1 ,c2 = kF2 ,Sem and Som are the even and odd angular Mathieu functions of order m, respectively,R(1)
em

and R
(1)
om are the even and odd radial Mathieu functions of the first kind, and Nemand Nom are the even and odd

normalized functions.
The scattered magnetic field from the conducting elliptic cylinders can also be expressed in terms of Mathieu

functions as

Hs
1z =

∞∑
m=0

BemR(4)
em(c1, ζ1)Sem(c1, η1) +

∞∑
m=1

BomR(4)
om(c1, ζ1)Som(c1, η1) (11)

Hs
2z =

∞∑
m=0

CemR(4)
em(c2, ζ2)Sem(c2, η2) +

∞∑
m=1

ComR(4)
om(c2, ζ2)Som(c2, η2) (12)

where Bem , Cem , Bom, and Com are the unknown even and odd scattered field expansion coefficients and R
(4)
em and

R
(4)
om are the even and odd Mathieu functions of the fourth kind.

3 First Order Scattered Fields by Cylinders

The first order scattered field results from the separate excitation of each cylinder by the incident plane wave alone.
The boundary condition at the surface of first cylinder requires the tangential components of the total electric field to
vanish (Ei

1η + Es
1η = 0 ), i.e.,

∞∑
m=0

A1emR(1)′
em (c1, ζ1)Sem(c1, η1)

+

∞∑
m=1

A1omR(1)′
om (c1, ζ1)Som(c1, η1)

+

∞∑
m=0

B1
emR(4)′

em (c1, ζ1)Sem(c1, η1)

+

∞∑
m=1

B1
omR(4)′

om (c1, ζ1)Som(c1, η1) = 0 (13)

where B1
em and B1

omare the first order scattered field expansion coefficients of the first cylinder. A similar equation
may be written corresponds to the second cylinder. Using the orthogonality properties of the angular Mathieu function
yields the first order scattered field coefficients, which may be written for each cylinder in matrix form as

[
B1

em

B1
om

]
=

[
Q11

enm 0
0 Q11

onm

][
A1em

A1om

]
(14)

[
C1

em

C1
om

]
=

[
Q22

enm 0
0 Q22

onm

][
A2em

A2om

]
(15)
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where C1
em and C1

om are the first order scattered field coefficients of the second cylinder, and

Q11
enm =

R
(1)′
en (c1, ζ1)

R
(4)′
en (c1, ζ1)

, Q11
onm =

R
(1)′
on (c1, ζ1)

R
(4)′
on (c1, ζ1)

, (16)

= 0, n �= m, = 0, n �= m

Similar equations may be written correspond to Q22
enm and Q22

onm .

4 Higher Order Scattered Fields by Cylinders

The second order scattered field results from the excitation of each cylinder by the scattered field from the other
cylinder due to the initial incident field. The boundary condition at the surface of first cylinder requires the tangential
components of the total electric field to be zero, i.e.,

∞∑
m=0

C1
enmR(4)′

em (c2, ζ2)Sem(c2, η2)

+

∞∑
m=0

C1
onmR(4)′

om (c2, ζ2)Som(c2, η2)

+

∞∑
m=0

B2
emR(4)′

em (c1, ζ1)Sem(c1, η1)

+

∞∑
m=0

B2
omR(4)′

om (c1, ζ1)Som(c1, η1) = 0 (17)

where B2
em and B2

om are the second order scattered field expansion coefficients of the first cylinder. To enforce the
boundary condition, the first order scattered field from the second cylinder must be expressed in terms of the coordinate
systems of the first cylinder by using the addition theorem of the Mathieu functions [1]-[3]. Thus, the second order
scattered field coefficients which may be written for each cylinder in matrix form as

[
B2

em

B2
om

]
=

[
Q11

enm 0

0 Q11
onm

][
Q12

eenm Q12
eonm

Q12
oenm Q12

oonm

][
C1

1em

C1
1om

]
(18)

[
C2

em

C2
om

]
=

[
Q22

enm 0

0 Q22
onm

][
Q21

eenm Q21
eonm

Q21
oenm Q21

oonm

][
B1

1em

B1
1om

]
(19)

where C2
em and C2

om are the second order scattered field expansion coefficients of the second cylinder, and

Q12
eenm = WE2→1

enm , Q12
eonm = WE2→1

onm , Q12
oenm = WE2→1

enm , Q12
oonm = WE2→1

onm (20)

are defined in [1]-[3]. Similar equations may be written correspond to Q21
eenm,Q21

eonm,Q21
oenm, and Q21

oonm.
To obtain a general solution, we solve for the higher order scattered field which are sensitive to the electrical

size , separation distance between the cylindrers and the angles of incidence. The general expression for the kth order
scattered field coefficients may be written as

[
Bk

em

Bk
om

]
=

[
Q11

enm 0
0 Q11

onm

][
Q12

eenm Q12
eonm

Q12
oenm Q12

oonm

][
Ck−1

1em

Ck−1
1om

]
, k = 2, 3 · · · (21)

[
Ck

em

Ck
om

]
=

[
Q22

enm 0

0 Q22
onm

][
Q21

eenm Q21
eonm

Q21
oenm Q21

oonm

][
Bk−1

1em

Bk−1
1om

]
, k = 2, 3 · · · (22)

It should be noted that the matrices in equations 21 and 22 are computed once (i.e. k=2) for the electrical size and
electrical separations considered and used for the subsequent iterations (i.e. k = 3, 4, . . .).
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Fig. 2. Normalized echo pattern width versus the scattering angle φ for two identical elliptic cylinders with ka =
5.0, kb = 2.5, kd = 10, α1 = α2 = 0o, φi = 0o, γ = 0o

Once the scattered field coefficients are determined, the total scattered field from the cylinderss due to the kth order
scattered field can be written as

Hs
z =

(
j

kρ

)0.5

e−jkρ

{ ∑
k=1,2,···

{
∞∑

m=0

jmBk
emSem(c1, cos(φ− α1)) +

∞∑
m=1

jmBk
omSom(c1, cos(φ− α1)) +

ejkd cos(γ−φ)

{
∞∑

m=0

jmCk
emSem(c2, cos(φ− α2))+

∞∑
m=1

jmCk
omSom(c2, cos(φ− α2))

}}}
(23)

Far field data are usually expressed in terms of the scattering cross section per unit length, i.e., the echo width. For the
TE polarization case it is defined as

σTE = 2πρ lim
ρ→∞

|Hs
z |2

|Hi
z|2

(24)

5 Numerical Results

In order to solve for the unknown scattered field coefficients, the infinite series are first truncated to include only
the first N terms, where N in general, is a suitable truncation number proportional to the cylinders electrical size. In
the computation, the value of N has been chosen to impose a convergence condition that provides solution accuracy
with at least four significant figures. To check the accuracy of our computer program, we recomputed first the results
given in references [2] and we obtained complete agreement between both methods ,by only implementing in some
cases the first order scattered field using the iterative solution. Figure 2 shows the numerical result of the normalized
echo width pattern

√
σ/λ versus the scattering angle φ for two identical conducting elliptic cylinders with electrical

major axes ka = 5 and electrical minor axes kb = 2.5. The electrical separation distance between the center of the
cylinders is assumed to be kd = 10 (touching) and at an angle of incidence φi = 0o (endfire incidence). It can be
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Fig. 3. Normalized echo pattern width versus the scattering angle φ for two identical elliptic cylinders with ka =
5.0, kb = 2.5, kd = 10, α1 = α2 = 0o, φi = 90o, γ = 0o
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Fig. 4. Normalized echo pattern width versus the scattering angle φ for two identical strips with ka = 5.0, kb =
0.0, kd = 10, α1 = α2 = 0o, φi = 90o, γ = 0o

seen that the results of the first order field scattered order (k=1) presented by solid line is not satisfactory since kd is
not large when it is compared with cylinders dimensions [2]. This is because the first order scattered field does not
take into account the interaction between the cylinders and hence k=1 represents the sum of the scattered field due
to the incident field only.The significance of the multiple scattered fields can be seen in the second order scattered
term (k=2) which includes the scattered fields due to the plane wave incidence plus the scattered fields due to the first
order scattered field due to the incident field on each cylinder. However, the results show that three scattered field
orders are needed to obtain convergent solution. The results also show that only k ≈ 2 is needed for scattering angles
higher than 140 degrees and less than 240 degrees. Figure 3 has the same electrical dimensions of Fig. 2 except with
φi = 90o(broadside incidence).
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Fig. 5. Normalized echo pattern width versus the scattering angle φ for two identical strips with ka = 5.0, kb =
0.0, kd = 40, α1 = α2 = 0o, φi = 90o, γ = 0o
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Fig. 6. Normalized backscattering cross section versus the electrical length kd for two identical elliptic cylinders with
ka = π, kb = π/4, α1 = α2 = 0o, φi = 0o, γ = 0o

It can be seen that the shape of the echo pattern changes significantly by changing the incident angle and the
location of peak values is shifted from 180 degrees to 90 degrees.

Figure 4 shows the numerical result of the normalized echo width pattern versus the scattering angle φ for two
identical identical strips with electrical major axes ka = 5 and electrical minor axes kb = 0. The electrical separation
between the center of the strips is assumed to be kd = 10 and at an angle of incidence φi = 90o. Figure 5 has the
same electrical dimensions of Fig. 4 except more interaction between cylinders in case of kd = 40. It can be noticed
that there is an abrupt change in the echo pattern as the scattering angles varies if incidence angle is φi = 0o while
the change is smoother if the incidence angle of is changed to φi = 90o
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Fig. 7. Normalized backscattering cross section versus the electrical length kd for two identical elliptic cylinders with
ka = π, kb = π/4, α1 = α2 = 0o, φi = 90o, γ = 0o
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Fig. 8. Normalized backscattering cross section versus the incident angleφi for two identical elliptic cylinders with
ka = π, kb = π/2, kd = 3π, α1 = α2 = 0o, φi = 0o, γ = 0o

Figure 6 shows the numerical result of the normalized backscattering cross section versus kd for an elliptic cylinder
with ka = π, kb = π/4 and at an angle of incidence φi = 0o. It can be seen that three orders scattered fields required
to obtain satisfactory solutions. Figure 7 is similar to Fig. 6 except φi = 90o. Figure 8 shows the numerical result of
the normalized backscattering cross section versus versus the incident angle φi for two identical elliptic cylinders with
ka = π, kb = π/2,and kd = 3π. Again scattering order k = 3 is needed to have convergent operation especially
at incident angles less than 60o. It is noticed that the normalized backscattering behaviour is sinusodialy when the
incident angle φi > 45o with decreasing maximum peaks.
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6 Conclusions

We have investigated the problem of multiply field scattered due to a TE polarized plane electromagnetic wave incident
on arbitrary oriented two perfectly conducting elliptic cylinders. An iterative procedure was presented for the first
time, for TE case, in elliptic coordinate systems and the boundary conditions were implemented using the translation
addition theorem. The numerical results indicated that the number of multiple scattered fields depends on the shape and
electrical size of the scatterers, electrical separations and incident angles. A potential advangane of using the iterative
solution is that of saving computer time and memory by avoiding the inversion of system matrix.
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1 Introduction

Today, electromagnetic simulation forms an indispensable part in the development of microwave circuits as well as
in diode laser design. Since the simulation methods are computationally too expensive to handle complete microwave
circuits, analysis has to concentrate on critical parts, such as transmission-line discontinuities and junctions. These ele-
ments can be represented by the basic description shown in Fig. 1: a structure of arbitrary geometry which is connected
to the remaining circuit by transmission lines. The passive structure (e.g. coplanar waveguide, coupled spiral inductors,
via hole, impedance step) forms the central part of the problem. Short transmission line sections are attached to it in
order to describe its interaction with other circuit elements.

2 Scattering Matrix

The aim consists in the computation of the scattering matrix, which describes the structure in terms of the wave modes
on the transmission line sections at the ports. The wave-mode quantities are derived by assuming the transmission-line
sections to be infinitely long and longitudinally homogeneous. The generalized scattering matrix is defined as follows:

S = (Sρ,σ), ρ, σ = 1(1)ms, with ms =

p∑
p=1

m(p), ρ = l +

p−1∑
q=1

m(q). (1)

m(p) denotes the number of modes which have to be taken into account at the port p. p is the number of ports. The
modes on a port p are numbered with l, l = 1(1)m(p). That means, the dimension ms of this matrix is determined by
the total number of modes at all ports.

The computation of the scattering matrix is outlined as follows. The scattering matrix can be extracted from the
orthogonal decomposition of the electric field into a sum of mode fields [4]. This has to be done at a pair of neighboring
cross-sectional planes zp and zp+∆p on each waveguide for a number of linearly independent excitations. The electric
fields at the planes zp and zp+∆p are calculated solving an eigenvalue problem for the infinitely long waveguide (see
section 5) and a boundary value problem for the 3D structure (see section 3), respectively.

The computation of the scattering matrix is based on the orthogonality relation for the electric and magnetic fields
of different modes ∫

Ω

(Et,l(z) × H t,m(z)) · dΩ = ηmδl,m, (2)

where δl,m is the Kronecker symbol. H t,m denotes the transverse magnetic mode fields.
In the case of degenerate modes, i.e., the algebraic multiplicity of the corresponding eigenvalues is larger than

unity, we have to use first (2) in order to orthogonalize the modes (see [12]).
For sake of simplicity we assume the cross section is located on the left-handed (x, y)-plane of the enclosure

(see Fig. 1). We consider all exciting modes with amplitudes al in positive z-direction and all outgoing modes with
amplitudes bl in negative z-direction. Then the transverse mode field at a cross-sectional plane z is given by
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Fig. 1. The basic structure under investigation

Et(z) =

m(p)∑
l=1

alEt,le
−jkzl

z +

m(p)∑
l=1

blEt,le
+jkzl

z =

m(p)∑
l=1

wl(z)Et,l (3)

with
wl(z) = ale

−jkzl
z + ble

+jkzl
z = ãl(z) + b̃l(z), (4)

where kzl is the propagation constant. The application of (3) with (4) at a pair of neighboring cross-sectional planes zp

and zp+∆p gives because of H t,m(zp+∆p) = H t,m(zp):

1
ηm

∫
Ω

(Et(zp) × H t,m(zp) · dΩ = ã
(p)
m + b̃

(p)
m = w

(p)
m ,

1
ηm

∫
Ω

(Et(zp+∆p) × H t,m(zp) · dΩ = ã
(p+∆p)
m + b̃

(p+∆p)
m = w

(p+∆p)
m .

(5)

We get Et(zp) solving eigenvalue problems for the transmission lines (see section 5). Ht,m(zp) can be computed from
the known electric field Et,m of mode m (see [12]). The values of the weighted mode amplitude sums w

(p)
m are given

(see the discussion to follow). Thus, the normalization constant ηm can be computed by evaluating the orthogonality
relation in the first equation of (5). Et(zp+∆p) is computed solving boundary value problems for the discontinuity (see
section 3). Thus, the weighted mode amplitude sums w

(p+∆p)
m can be calculated by using the second equation of (5).

By using (see (4))

ã(p+∆p)
m = ã(p)

m e−jk
(p)
zl

∆zp , b̃(p+∆p)
m = b̃(p)

m e+jk
(p)
zl

∆zp , (6)

we eliminate ã
(p+∆p)
m and b̃

(p+∆p)
m in (5), and obtain

ã(p)
m =

w
(p)
m e+jk

(p)
zm

∆zp − w
(p+∆p)
m

e+jk
(p)
zm

∆zp − e−jk
(p)
zm

∆zp

, b̃(p)
m =

w
(p+∆p)
m − w

(p)
m e−jk

(p)
zm

∆zp

e+jk
(p)
zm

∆zp − e−jk
(p)
zm

∆zp

. (7)

By using (7) reflection coefficients

r(p)
m =

b̃
(p)
m

ã
(p)
m

=
e−jk

(p)
zm

∆zp − w
(p+∆p)
m

w
(p)
m

w
(p+∆p)
m

w
(p)
m

− e+jk
(p)
zm

∆zp

(8)

are computed for all modes ρ = 1(1)ms and all excitations ν = 1(1)ms.
The values w

(p)
m are given, and than we form the vectors

w̄ν = (w̄1,ν , . . . , w̄ρ,ν , . . . , w̄ms,ν)T , ν = 1(1)ms. (9)

The vectors (9) have to be linear independent. That is achieved here by choosing the components of w̄ν in the following
way:

w̄ρ,ν =

{
|w(p)

m | for 1 ≤ ρ ≤ ms + 1 − ν

−|w(p)
m | for ms + 2 − ν ≤ ρ ≤ ms

, ρ = m +

p−1∑
q=1

m(q), (10)

with
w(p)

m = 1.0, m = 1(1)m(p), p = 1(1)p. (11)

With this choice of w̄ν (see (9), (10), and (11)) the vectors r̄ν , āν and b̄ν are built up analogously (see (7) and (8)):
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r̄ν = (r̄1,ν , . . . , r̄ρ,ν , . . . , r̄ms,ν)T , r̄ρ,ν = r
(p)
m ,

āν = (ā1,ν , . . . , āρ,ν , . . . , āms,ν)T , āρ,ν = ã
(p)
m ,

b̄ν = (b̄1,ν , . . . , b̄ρ,ν , . . . , b̄ms,ν)T , b̄ρ,ν = b̃
(p)
m .

(12)

The relation between (ρ, ν) on the one hand and (m, (p)) on the other hand is given by (10) and (11). The choice of
w̄ν and the relations between the indices are demonstrated by a small example in [12].

That means, we have to solve ms boundary value problems with the boundary conditions (see sections 3 and 6)

Et,ν =

ms∑
ρ=1

w̄ρ,νEt,l(zp), ρ = l +

p−1∑
q=1

m(q), p = 1(1)p, ν = 1(1)ms, (13)

in order to compute w
(p+∆p)
m .

The scattering matrix S (see (1)) is defined by

b̄ν = Sāν , ν = 1(1)ms, (14)

or (see (12))

b̄ρ,ν =

ms∑
σ=1

Sρ,σ · āσ,ν , ρ, ν = 1(1)ms. (15)

Because of (5) and (8) we have

w̄ρ,ν = āρ,ν + b̄ρ,ν ,
0 = r̄ρ,ν āρ,ν − b̄ρ,ν ,

or
āρ,ν(1 + r̄ρ,ν) = w̄ρ,ν ,
b̄ρ,ν(1 + r̄ρ,ν) = r̄ρ,νw̄ρ,ν ,

ρ, ν = 1(1)ms. (16)

Multiplying Eq. (15) with the product
∏ms

µ=1
(1 + r̄µ,ν) gives

b̄ρ,ν

ms∏
µ=1

(1 + r̄µ,ν) =

ms∑
σ=1

Sρ,σāσ,ν

ms∏
µ=1

(1 + r̄µ,ν), ρ, ν = 1(1)ms. (17)

Substitution of (16) into the relation (17) gives

Rρ,ν =

ms∑
σ=1

Sρ,σWσ,ν or R = SW (18)

with

Wρ,ν = w̄ρ,ν

ms∏
µ=1,µ	=ρ

(1 + r̄µ,ν), Rρ,ν = r̄ρ,νWρ,ν . (19)

That means, we have to solve ms linear algebraic equations in order to compute the (ms)
2 coefficients of S:

WT (Sρ,1, . . . , Sρ,ms)T = (Rρ,1, . . . , Rρ,ms)T , ρ = 1(1)ms. (20)

3 Boundary Value Problem

A three-dimensional boundary value problem can be formulated using the integral form of Maxwell’s equations in the
frequency domain [1] in order to compute the electromagnetic field within the structure of interest:

∮
∂Ω

H · ds =

∫
Ω

jω[ε]E · dΩ,

∮
∪Ω

([ε]E) · dΩ = 0, (21)
∮

∂Ω

E · ds = −
∫

Ω

jω[µ]H · dΩ,

∮
∪Ω

([µ]H) · dΩ = 0, (22)

D = [ε]E, B = [µ]H . (23)

The electric and magnetic flux densities D and B are complex functions of the spatial coordinates. ω = 2πf is the
angular frequency of the sinusoidal excitation, and j2 = −1. f denotes the frequency. In the left-hand sides of formulae
(21) and (22) Ω is an open surface surrounded by a closed contour ∂Ω. The direction of the element ds of the contour
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∂Ω is determined according to a right-hand system. In the right-hand sides of (21) and (22) ∪Ω is a closed surface
with an interior volume. The complex electric permittivity [ε] and the magnetic permeability [µ] are diagonal tensors.

At the ports p the transverse electric field Et(zp) is given by superposing weighted transmission line modes
Et,l(zp) (see (3)):

Et(zp) =

m(p)∑
l=1

wl(zp)Et,l(zp). (24)

The transverse electric mode fields have to be computed solving an eigenvalue problem for the transmission lines (see
section 5). All other parts of the surface of the computation domain are assumed to be an electric or a magnetic wall:

E × n = 0 or H × n = 0. (25)

The simulation of open-region problems usually requires absorbing boundary conditions to properly truncate the com-
putational domain. Perfectly matched layers (PML) are absorption layers. The PML was introduced by Berenger [2]
using artificial electric and magnetic conductivities κe and κm, respectively, and splitting the electromagnetic field
components (split-field formulation). The PML was later shown to be equivalent to a complex coordinate stretching of
the coordinate space (coordinate stretching formulation, [3]) and to the uniaxial Maxwellian PML formulation [15].

Using the uniaxial PML formulation the original form of Maxwell’s equations is retained. That means, we could
easily implement the PML into an existing code. A complex permittivity [ε] and a complex permeability [µ] diagonal
tensor are introduced (see (23), (28), and (29)), resulting in a reflection-free interface between the computational area
and the lossy PML region:

[ε] = (ε)[Λ(ε)], [µ] = (µ)[Λ(µ)] (26)

with
(ε) = diag(εx, εy, εz), (µ) = diag(µx, µy, µz). (27)

[Λ(ε)] and [Λ(µ)] are defined for a PML in x-, y-, or z-direction in the following way (ν ∈ {ε, µ}):

[Λ(ν)] =

⎧⎨
⎩

[Λ(ν)]x = diag( 1
λν

, λν , λν)

[Λ(ν)]y = diag(λν ,
1

λν
, λν)

[Λ(ν)]z = diag(λν , λν ,
1

λν
)

⎫⎬
⎭ with λν = 1 − j

κν

ν0ω
. (28)

That means, we get for an overlapping region in x-, y-, and z-direction:

[ε] = (ε)[Λ(ε)]x[Λ(ε)]y[Λ(ε)]z and [µ] = (µ)[Λ(µ)]x[Λ(µ)]y[Λ(µ)]z. (29)

The quantities ε0 and µ0 denote the permittivity and the permeability for a vacuum, κε and κµ the electric and magnetic
(introduced for PML) conductivity, respectively. The lossfree and the lossy case are special variants of (28).

The conductivities have to fulfill the relation

κε

ε0
=

κµ

µ0
. (30)

There is always an electric or magnetic wall (see (25)) behind the PML. On the one hand, the PML allows computing
the leakage due to radiation effects, on the other hand, the PML can be used to suppress the influence of the boundary
on the electric behavior of the structure.

4 Maxwellian Grid Equations

Maxwellian grid equations are formulated for staggered nonequidistant rectangular grids [1, 20, 9] and for tetrahe-
dral nets with corresponding dual Voronoi cells using the Finite Integration Technique with lowest order integration
formulae: ∮

∂Ω

f · ds ≈
∑

(±fisi),

∫
Ω

f · dΩ ≈ fΩ. (31)
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4.1 Staggered Nonequidistant Rectangular Grids

The use of rectangular grids is the standard approach. In general, it is very well adapted to planar microwave structures,
since most circuits have a basically rectangular geometry. Using (31) Eqs. (21,22) are transformed into a set of grid
equations:

ATDs/µb = jωε0µ0DAεe, BDAεe = 0, (32)

ADse = −jωDAb, B̃DAb = 0. (33)

The vectors e and b contain the components of the electric field intensity and the magnetic flux density of the elemen-
tary cells, respectively. The diagonal matrices Ds/µ, DAε , Ds, and DA contain the information on cell dimension and
material. A, B, and B̃ represent the integrals. A is a singular matrix. B and B̃ are rectangular matrices. A, B, and B̃
are sparse and contain the values 1,−1, and 0 only. An explicit derivation and a discussion of the properties of (32)
and (33) can be found in [10].

By eliminating the components of the magnetic flux density from the two equations on the left-hand sides of (32)
and (33), we obtain the system of linear algebraic equations

(ATDs/µD
−1
A ADs − k2

0DAε)e = 0, k0 = ω
√
ε0µ0, (34)

which have to be solved using the boundary conditions (13) and (25), possibly supplemented by PML. k0 denotes the
wavenumber in vacuum.

4.2 Tetrahedral Grids and Voronoi Cells

Using rectangular grids a mesh refinement in one point results in an accumulation of small elementary cells in all
coordinate directions, although the refinement is needed only in inner regions. In addition, rectangular grids are not well
suited for treatment of curved and non-rectangular structures. A finite-volume method, which uses tetrahedral nets with
corresponding Voronoi cells for the three-dimensional boundary value problem, reduces the number of elementary cells
by local grid refinement and improves the description of curved structures. The primary grid is formed by tetrahedra
and the dual grid by the corresponding Voronoi cells [13].

We consider a tetrahedron ABCD with the internal edge AB (see Fig. 2) and the neighbouring elements, which
share the edge AB with it. The electric field intensity components are located at the centers of the edges of the tetra-
hedra, and the magnetic flux density components are normal to the circumcenters of the triangular faces. The Voronoi
cells are polytopes. We use the notations given in Table 1 with X,Y, Z,W ∈ {A,B,C,D}, where X,Y, Z,W are
different from each other, in order to develop the grid equations for tetrahedral nets. EXY and BXY Z satisfy

EXY = −EY X ,
BXY Z = BY ZX = BZXY = −BY XZ = −BXZY = −BZY X ,

(35)
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Fig. 2. Tetrahedron with partial areas of the Voronoi cell faces related to node A
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Table 1. Notations

X,Y, Z,W nodes lXY distance of X to Y
XY edge between X and Y lWXY Z distance of TXY ZW to XY Z
XY Z triangle dZ

XY distance of SXY Z to XY
XY ZW tetrahedron aXY Z area of XY Z
SXY center of XY µXY ZW permeability in XY ZW
SXY Z circumcenter of XY Z εXY ZW permittivity in XY ZW
TXY ZW circumcenter of XY ZW

EXY magnitude of the electric field on SXY

BXY Z magnitude of the magnetic flux density on SXY Z

respectively. The PML boundary conditions are not implemented for tetrahedral grids, i.e. one has (see (26)-(28)),

µx = µy = µz = µXY ZW , εx = εy = εz = εXY ZW . (36)

Using a finite volume approach with the lowest-order integration formulae (31), Eqs. (21) and (22) are transformed
into a set of grid equations.

Taking into account the constitutive relations (23) the first equation of (21) is discretized on the dual grid. The
internal edge AB is orthogonal to the corresponding Voronoi cell face over which we have to integrate (see Fig. 2).
The closed integration path ∂Ω (see (21) and (31)) consists of the edges with length si = lWXY Z , and is the polygon
around the periphery of the mentioned Voronoi cell face. The vertices of the polygon are the circumcenters of the
tetrahedra which share the edge AB with the tetrahedron ABCD. fi = BXY Z denotes the function values on SXY Z .
Ω is the area of the Voronoi cell face. f = EAB denotes the function value on the center SAB . Thus, the discretized
equation takes the form: ∑

CD
1

µABCD

[
lDABC BABC + lCABD BABD

]
= jω

[∑
CD

1
2
εABCD

(
dC

AB lDABC + dD
AB lCABD

)]
EAB

(37)

where the sum is over those tetrahedra ABCD which share the edge AB.
The first equation of (22) is discretized using (31) on the primary grid. We have to integrate over the triangle ABC.

This yields the following form:

lAB EAB + lBC EBC + lCA ECA = −jωaABC BABC . (38)

Now we address the first of the surface integrals (second equation of (21)) reverting to the dual grid. Here, ∪Ω is a
closed surface with an interior volume. The discretization formula (39), with a form similar to the right-hand side of
(37) is obtained, except for the additional outer summation taken over all the nodes B neighboring A (in the primary
grid). For our final integral equation (second equation of (22)) the primary grid is used again, but now the integration
is over the surface of the tetrahedron ABCD. As a consequence, the discretized form (40) can be deduced:

∑
B

([∑
CD

1

2
εABCD

(
dC

AB lDABC + dD
AB lCABD

)]
EAB

)
= 0, (39)

−aABC BABC − aACD BACD + aABD BABD + aBCD BBCD = 0. (40)

Substituting the components of the magnetic flux density in (37), (38) the number of unknowns in this system can be
reduced by a factor of two:

∑
CD

1
µABCD

[(
lDABC
aABC

+
lCABD
aABD

)
lAB EAB +

lDABC lBC

aABC
EBC

+
lD
ABC

lCA

aABC
ECA +

lC
ABD

lBD

aABD
EBD +

lC
ABD

lDA

aABD
EDA

]

= ω2

2

[∑
CD

εABCD

(
dC

AB lDABC + dD
AB lCABD

)]
EAB .

(41)

Here, summation is taken over these tetrahedra ABCD, which possess the common edge AB.
The method requires a triangulation of the domain in tetrahedra. Thus, triangulation algorithms and grid manage-

ment are of major importance in the numerical simulation.
Using the grid management interface of the software package pdelib [6], the meshing algorithm COG [17], [18]

has been applied.
Based on the octree decomposition technique the software package COG for grid generation and geometry descrip-

tion allows to generate tetrahedral Delaunay meshes [8] with local and anisotropic refinement for arbitrary geometries.



Microwave and Semiconductor Laser Structures Including PML 209

A tetrahedral triangulation is roughly spoken a Delaunay triangulation if the circumsphere of each tetrahedron does
not contain any vertices of the grid. COG generates - regardless rounding errors - accurate representations of vertices,
edges and planar areas at the inner material interfaces and the boundaries of the structures for triangular and rectangular
geometries and for geometries which results from its by coordinate transformations. Near curved boundaries special
coordinate systems are used which are adapted at a sufficiently large distance to the usual cartesian coordinate system.

Especially, if the circumcenter of a tetrahedron is located within the tetrahedron, we have a clear physical interpre-
tation. The restriction that the circumcenter of a tetrahedron is located within the tetrahedron can not fulfilled in general
by a mesh generator. Thus, it can be that the circumcenter of any tetrahedron of the generated Delaunay triangulation
is located outside of the tetrahedron, but COG avoids the case that this will be for tetrahedra which are located at inner
material interfaces and boundaries. There are no negative distances between two circumcenters. Thus, apart from the
physical interpretation the deduced grid equations can be applied using the mentioned properties of COG.

As an example we have simulated a junction of a microstrip line with a coaxial line (see Figs. 3, 4, 5). The structure
is symmetric. Thus, only the right half is discretized.

For comparison the structure is subdivided in nonequidistant rectangular three-dimensional elementary cells on the
one hand and in tetrahedra on the other hand. In case of rectangular grids, the order of the system of linear algebraic

Fig. 3. xy-plane

Fig. 4. xz-plane
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Fig. 5. yz-plane

equations (see section 6), which corresponds to the boundary value problem (see section 3), is n = 3nxnynz =
163 944. nxnynz is the number of cells of the structure which is assumed to be a parallelepiped. We need a high
mesh refinement near the microstrip and the coaxial line which results in an accumulation of elementary cells in all
coordinate directions even though the refinement is not necessary in order to approximate the solution with the required
accuracy.

The tetrahedral grid consists of nn = 11 368 nodes, nt = 58 742 tetrahedra, and np = 11 446 peripheral cell
faces. The order of the corresponding system of linear algebraic equations is less than the number of edges:

n = nn + nt + np/2 − 1 = 75 832. (42)

The disadvantage of rectangular grids, the accumulation of elementary cells in all coordinate directions, is avoided
here. Curved boundaries are better approximated.

5 Eigenvalue Problem Including PML

For the eigenvalue problem, we refer to the rectangular grid [4].
The transverse electric mode fields (see (24)) at the ports of the three-dimensional structure, which is discretized

by means of tetrahedral grids, are computed interpolating the results of the rectangular discretization.
The field distribution at the ports is computed assuming longitudinal homogeneity for the transmission line struc-

ture. Thus, any field can be expanded into a sum of so-called modal fields which vary exponentially in the longitudinal
direction:

E(x, y, z ± 2h) = E(x, y, z)e∓jkz2h. (43)

kz is the propagation constant. 2h is the length of an elementary cell in z-direction. We consider the field components
in three consecutive elementary cells. The electric field components of the vector e (see (34)) Exi,j,k+1 , Exi,j,k−1 ,
Eyi,j,k+1 , Eyi,j,k−1 , Ezi,j,k−1 , Ezi+1,j,k−1 , and Ezi,j+1,k−1 are expressed by the values of cell k using ansatz (43).
The longitudinal electric field components Ez can be eliminated by means of the electric-field divergence equation
BDAεe = 0 (see (32)). Thus, we get an eigenvalue problem for the transverse electric fields y = Et,l(zp), l =
1(1)m(p), (see (24)) on the transmission line region:

Gy = γy, γ = e−jkz2h + e+jkz2h − 2 = −4 sin2(hkz). (44)



Microwave and Semiconductor Laser Structures Including PML 211

The problem of the transmission line region is reduced to a two-dimensional problem. A detailed derivation of the
eigenvalue problem can be found in [10], [11]. The eigenvalue problem has to be solved for each port zp, p = 1(1)p̄,
(see (1)). The sparse matrix G is general complex. The order of G is n = 2nxny − nb. nxny is the number of
elementary cells at the port. The size nb depends on the number of cells with perfectly conducting material. The
solutions of the eigenvalue problem correspond to the propagation constants of the modes. Using a conformal mapping
it can be shown that the eigenvalues corresponding to the few interesting modes of smallest attenuation are located
in a region bounded by two parabolas. The modes are found solving a controlled sequence of eigenvalue problems of
modified matrices [12] applying the invert mode of the Arnoldi iteration with shifts.

The ms (see (1)) eigenvectors (see (13)) determine the number of right-hand sides of the system of linear algebraic
equations (see (48)).

The PML influences the mode spectrum. The absorption inside the PML operates through conductive losses, so
that an exponential decay of the fields inside the PML is obtained. The PML achieves a refectionless absorption if the
mesh discretization size goes to zero. Caused by the finite mesh size in the finite simulation domain spurious modes
are generated due to the electric and magnetic walls behind the absorbing layers. The PML shifts these modes inside
the region of propagating modes. We want to distinguish the spurious modes from the desired ones. As a result of
our numerical calculations we found that examination of the eigenfunctions provides a useful criterion to select the
modes of interest. While the field of guided modes is concentrated around the waveguide structure, the parasitic box
modes exhibit a strong field accumulation inside the PML area. Thus, modes that are related to the PML boundary
can be detected, using the PPP criterion (Power Part in PML) which is based on the comparison between the power
concentration inside the PML region to the whole computational domain [19].

This method, developed initially for a reliable calculation of all interesting complex eigenvalues of microwave
structures, was expanded then to meet the special requirements of optoelectronic structure calculations. Relatively large
cross sections and highest frequencies (i.e., small wavelengths) yield increased dimensions for the eigenvalue problems.
Using the results of a coarse grid calculation within the final fine grid reduces the numerical efforts significantly. A laser
application can be found in [12]. A self aligned stripe (SAS) laser with a discretized large cross section of (4050×7750)
nm is investigated there. Thin layers of 100 nm with complex material properties have to be taken into account. The
frequency is fixed to 300 ∗ 1012 Hz, which corresponds to a vacuum wavelengths of 1000 nm. A graded mesh of 121
times 127 elementary cells, including 10-cell PML regions, is used as a coarse grid in order to find approximately the
location of the guided mode. A sequence of 84 eigenvalue problems have been used to cover the long small region in
the complex plane. The circle that contains the guided mode is known after this step. A graded mesh of 283 times 345
elementary cells, including including 10-cell PML regions, is used as a fine grid in order to find the accurate value of
the guided mode in the reduced region. The computational time is reduced by a factor of 10 using a coarse and a fine
grid.

The use of two levels of parallelization results in an additional speedup in terms of computation time.

6 Systems of Linear Algebraic Equations Including PML

All boundary conditions are known after the computation of the eigen mode problem, and the systems of linear alge-
braic equations can be solved.

Besides the locations and values of the entries, the matrix representations of (37) - (41) have the same structure as
(32) - (34). Thus, we refer to (34) for the solution of the linear algebraic equations.

Multiplying (34) by D
1/2
s yields a symmetric form of linear algebraic equations:

Āx = 0, Ā = (D1/2
s ATDs/µ̃D

−1
A AD1/2

s − k2
0DAε̃) (45)

with x = D
1/2
s e. Moreover, the gradient of the electric field divergence

[ε]∇([ε]−2∇ · [ε]E) = 0 (46)

is used. It can be written as matrix equation

B̄x = 0, B̄ = D−1/2
s DAε̃B

TD−1
Vε̃ε̃

BDAε̃D
−1/2
s . (47)

The diagonal matrix DVε̃ε̃ is a volume matrix for the 8 partial volumes of the dual elementary cell. In case of tetrahedral
grids, the gradient of the divergence at an internal point is obtained considering the partial volumes of the appropriate
Voronoi cell.
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Taking into account the boundary conditions (13) and (25), Eqs. (45) and (47) yield the form Âx = b and B̂x = 0,
respectively, and

(Â + B̂)x = b, Â + B̂ complex indefinite symmetric, (48)

can be solved faster than Âx = b.
Independent set orderings [14], Jacobi and SSOR preconditioning using Eisenstat’s trick [5] are applied to accel-

erate the speed of convergence of the used block Krylov subspace method [7, 16] for the system of linear algebraic
equations (48) that has to be solved with the same coefficient matrix, but ms (see (1)) right-hand sides.

The permutations Pi transform the matrices Ai with A0 = Â + B̂ in the form

Ai −→ PiAiP
T
i =

(
Di ET

i

Ei Hi

)
, (49)

where Di is a diagonal, Ei, and Hi are sparse matrices. Using the factorized form of (49) we get a system of linear
equations (

Ii 0
EiD

−1
i Ii

)(
Di ET

i

0 Hi − EiD
−1
i ET

i

)(
yi,1

yi,2

)
=

(
ci,1

ci,2

)
(50)

with yi = Pixi = (yi,1,yi,2)
T and ci = Pibi = (ci,1, ci,2)

T . The algorithm for solving Eq. (48) is described in the
following:

(i) Set A0 = Â + B̂, x0 = x, b0 = b
(ii) Forward substitution: i = 0, . . . , lev − 1

a) Compute Pi: PiAiP
T
i , yi = Pixi, ci = Pibi

b) Compute xi+1 = yi,2, bi+1 = ci,2 − EiD
−1
i ci,1

c) Compute Ai+1 = Hi − EiD
−1
i ET

i

(iii) Solve Alevxlev = blev for xlev

(iv) Backward substitution: i = lev − 1, . . . , 0
a) Compute yi,2 = xi+1, yi,1 = D−1

i (ci,1 − ET
i yi,2)

b) Compute xi = PT
i yi

In comparison to the simple lossy case the number of iterations of Krylov subspace methods increases significantly
if the structure contains a PML. In this case, among others, the speed of convergence depends on the relations of the
edge lengths in an elementary cell of the nonequidistant rectangular. The best results can be obtained using nearly
cubic cells. Moreover, overlapping conditions at the corner regions of the computational domain cause an increase of
the magnitude of the corresponding off-diagonal elements in comparison to the diagonal of the coefficient matrix. This
deteriorates the properties of the matrix. Thus, overlapping PML should be avoided.

The PML layers, which form the absorbing boundary condition, have a significant influence on computational
efforts, which is demonstrated in Table 2 for a quasi-TEM waveguide (in Table 2, ω denotes the relaxation parameter
of the Krylov subspace method). A nonequidistant mesh of 27 ∗ 24 ∗ 21 elementary cells including graded PML
regions is used, that means the order of the system of linear algebraic equations is 40 824. The structure is symmetric
with respect to the (x, z)-plane. Here, a magnetic wall is used, all other parts of the surface are assumed to be electric
walls covered by PML. The longitudinal z-PML region consists of 10 layers, the lateral (x, y)-PML’s of 5 layers. The
number of iterations also depends on the frequency f and the relaxation parameter ω.

Table 2. Influence of the PML layers on computational efforts

Number of Iteration

ω = 1.00 ω = 1.30 ω = 1.58

f /GHz
Structure

10 50 100 10 50 100 10 50 100

no PML 63 72 127 51 58 104 45 53 91
z-PML 649 647 716 501 518 591 431 452 543
yz-PML 13 912 27 924 32 298 13 501 29 077 45 371 16 457 44 824 104 642
xyz-PML 12 307 44 723 213 358 11 475 55 221 322 155 15 983 111 965 >106

xyz-PML
(nonov.)

628 591 742 527 479 609 493 436 624
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Abstract The paper describes using of the numerical modeling for solving of problems related to design and optimal-
ization of electric apparatus, in this case of the vacuum interrupter. The method of simplified numerical model creation
is described and also obtained results, voltage drop on interrupter, distribution of current density, electromagnetic
induction and deformation of the electric arc, are presented.

1 Introduction

The vacuum interrupter is one of the main switching elements in a high voltage distribution networks today. Main
advantages of vacuum interrupter are very easy construction, long working life and operational reliability. An idea of
vacuum breaking is relatively old. The first experiments have started about 80 years ago, but there were problems with
joining tight and contact materials degradation mainly. So the first types of vacuum interrupters have been able to work
since 6th decade of 20th century.

Generally, the vacuum interrupter consists of two contacts pairs inside of ceramic vacuum container, see Fig. 1. The
pressure of internal space (1) is 0,001 Pa approximately. One of the contacts (2) is stable and fixed to the insulating
ceramic enclosure (6) by the metal cap. Due to elastic bellows (4) the second contact (3) is able to move without
vacuum lost. In ordinary conditions of circuit the interrupter is switch-on and there is a frontal coupling of contacts. An
electric arc begins to burn inside of interrupter by movement of moving contact and the electric arc is formed by small
amount of metal vapors. The metal vapors leave gradually the inner contacts space and condensate on the contacts and
on an inner shielding cover (5). So the shielding cover (5) prevents condensation of arc particles on the inner areas of
insulating enclosure (6). In switch-off situation of interrupter the dielectric strength is secured by the contacts distance
and insulating enclosure. The electric arc in vacuum occurs, from simplifying view, in two forms. The first form is a
diffuse mode; the second form is a constricted mode. The diffuse mode exists in value of electric current up to a few
kA. The cathode spot is a main source of arc particles. There is only one cathode spot but there may be several cathode
spots with irregular motion on the cathode surface. The cathode spot is a very small section capable of emitting a
current about hundred amperes. There is a high rate of current density too, about 1000 A/m2. Globally neutral plasma
has usually a conical shape and arc particles are diffused on the large surface of the opposite contact (anode), Fig. 2
left. With the increasing of electric current value (over 10kA) cathode spots begin to become one together by the acting
of electromagnetic forces. The original conical shape of plasma arc is transformed to a cylindrical. This situation leads
to the formation of a positive anode voltage. The energy received by the anode increases and tends to be concentrated
on a reduced area. The anode heats up and starts to emit neutral particles that are ionized by the incident electrons,
anode spot comes into existence. There is a high pressure electric arc between electrodes (contacts). In this case is very
hard to break of flowing electric current without other steps, Fig. 2 right.

2 Breaking techniques of the arc in vacuum

The main problem of vacuum interrupter design is protection against the overheating of contact surfaces in area of arc
root or beginning of anode spot. During a long time of vacuum breaker designing were developed the two techniques
of interrupting where operation of electromagnetic fields is used.

The first technique uses a fast circular movement of constricted arc. The energy of arc is distributed onto large parts
of contacts in this case and the overheating of contact surfaces is limited. The circular movement is obtained through
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Fig. 1. Longitudinal section of vacuum interrupter (ABB construction)

Fig. 2. (left) Diffuse mode of the arc, (right) Contracted mode of the arc

RMF Breaking Testing

G

AMF Breaking Testing

Fig. 3. The techniques of RMF - radial mag. field and of AMF - axial mag. field breaking

application of radial magnetic field (RMF) in the arc zone. Contact has got a special spiral or cup shape, Fig. 3 left. The
second technique prevents the arc transformation into constricted mode by the help of axial acting of magnetic field
(AMF) in the arc zone. The electric arc is immobile and during its burning is extended on the large surfaces of contacts.
The contact shape is more complex and looks like, mostly, a parallel combination of one-turn coils, Fig. 3 right.

3 Creating of the interrupter model

We would like to present one of the possibilities how to solve force interaction between electric arc and current conduct-
ing way of vacuum interrupter contacts by the help of Finite Element Method (ANSYS). There was chosen interrupter
with radial magnetic field breaking technique (RMF) for solution. Generally, the electric arc (plasma) is described by
equations summarized on Fig. 4.
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Fig. 4. Equations defining the electric arc
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Fig. 5. (left) FEM model of vacuum interrupter, (right) Time history of the current

As you can see, without any simplification of input conditions is very hard to obtain any analytical solution of
these equations. Therefore, in the first point of the arc movement analysis the thermal or fluid dynamic relationships
are fully neglected. The electric arc burns in a constricted form with rapid circular movement around contact surfaces
in this type of interrupter. So, the first approximation the constricted arc can be compared to a cylindrical conductor
through which a current flows, the direction of which is parallel to the axis of the contacts.

Simplified numerical model of vacuum interrupter, Fig. 5 left, with RMF breaking technique contains the one pair
of contacts and the electric arc model. This picture does not show surrounded air but the main interrupter geometry
only. However, the model has got relative accurate geometry with a sufficient number of elements.

4 Analysis and Results

For the solution of force interaction is used advantage of coupled field analysis. The beginning of contact moving was
neglected, the contacts are fixed. Solution cycle started with choosing of the arc position and applying the first value
of electric current from the Fig. 5 right (LS1). After that there was solved electrical model of interrupter. The current
density is provided by solution of the electric model and it serves as an initial condition of electromagnetic model
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Fig. 6. Weight decreasing of contact material in dependence of time and flowing current

Fig. 7. (left) Voltage drop on interrupter, (right) Distribution of current density

solution. It means we need to load the distribution of current density for the further electromagnetic solution. After
finding out the value of radial electromagnetic force in arc, we used the graphical dependence of weight decreasing of
contact material, Fig. 6, and general equation of uniformly slowed-down motion for the next prediction of the electric
arc position.

Of course, we know that the arc make about one and half turn around contact boundary during breaking process
from laboratory breaking test. Solving cycle continues with a new position of the electric arc as long time as the electric
current falls to zero (LS6).

There is a uniform voltage drop on the Fig. 7 left, and vector display of flowing current on the Fig. 7 right. As we can
see, the current lines come out from massive part of contact and they are pointed on the little area of contacts. Current
lines flow through volume of arc model and there is the maximal value of current density. Arc volume represents the
smallest cross-section part of current conducting way of interrupter.

There is result of electromagnetic model solution in the first load step (LS1) on the Fig. 8 left. As we must have
guessed from the distribution of current density, we can find there a maximal value of electromagnetic induction in area
of the electric arc, which is about B=3T. As a source of arc movement the radial force effect is created by interaction
between flowing current through electric arc and magnetic field excited by current conducting way of interrupter. There
is solution of structural model of the electric arc on the Fig. 8 right, too. We are not able to describe structural material
constant of arc correctly, so the results of the arc deformation is not absolutely correct. But we can use it for complex
view in the course of arc breaking process.
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Fig. 8. (left) Electromagnetic induction, (right) Deformation of the electric arc

5 Conclusion

The results of this analysis show the next FEM using for the electromagnetic field solution in construction and electrical
apparatus optimalization. Performed analysis and selected method is not able to respect all processes running in a
breaking cycle of vacuum interrupter. It is able to reply for a question of optimal shape configuration of the vacuum
interrupter current conducting way and optimal slant angle of contacts cup shape.
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Abstract To model the z-coil of an MRI-scanner, a set of circular loops of strips is shown in [4] to be a good ap-
proximation. This ring model yields a current distribution that only depends on the axial direction. In order to take
the dependence of the tangential direction into account, we introduce rectangular pieces of copper (called islands) in
between the rings. In this paper the current distribution in a set of rings and islands, driven by an external applied
source current is investigated. The source, and all excited fields, are time harmonic, and the frequency is low enough
to allow for a quasi-static approximation. Due to induction eddy currents occur which form the so-called edge-effect.
The edge-effect depends on the applied frequency and the distances between the strips, and causes higher impedances.
From the Maxwell equations, an integral equation for the current distribution in the strips is derived. The Galerkin
method is applied, using global basis functions to solve this integral equation. Using Legendre polynomials for the
axial direction turns out to be an appropriate choice. It provides a fast convergence, so only a very small number of
Legendre polynomials is needed.

1 Introduction

Magnetic Resonance Imaging (MRI) is an imaging technique that plays an important role in the medical community.
It provides images of cross-sections of a body, taken from any angle [1]. The selection of a slice is realized by the
so-called gradient coils. A gradient coil consists of copper strips wrapped around a cylinder. Due to mutual magnetic
coupling, the current is not uniformly distributed and eddy currents arise which affect the quality of the image. For
analysis and design of gradient coils, finite element packages are used. However, these packages cannot sufficiently
describe the characteristics that give insight in the qualitative behaviour of the distribution of the currents, relating the
geometry to typical parameters like edge effects, mutual coupling and heat dissipation. One of the reasons is that the
coils are large, but very thin, such that numerical simulations become inaccurate and inefficient.

In this paper we focus on the z-coil, which has the function to create a gradient in the magnetic field in the axial (z-)
direction of the scanner. In [2] and [3], a parallel set of conducting strips is used to model the z-coil. In [4], the z-coil
has been modelled as a set of rings. The current distribution is in that case independent of the tangential direction (i.e.
an axi-symmetric solution). However, in a z-coil embedded in a system of more coils and magnets, extra eddy currents
are present, making the distribution of the current in the z-coil non-symmetric. In order to obtain a dependence of the
tangential direction, we make use of so-called islands. These islands are thin pieces of (copper) strips situated between
the rings on the same cylindrical surface. The current through the rings now induces eddy currents in the islands and
vice versa.

The overall aim is the calculation of the electric current distribution in a set of rings and islands. The system is
driven by a source current, which changes harmonically in time, with a low frequency (in the order of kHz). In the
mathematical analysis an integral equation is derived for the current distribution and the Galerkin method is used to
solve this equation. The most important issue is the choice of the basis functions. Numerical implementation is needed
to determine the coefficients for the basis functions.

2 Model definition

For the model, we consider a set of Nr coaxial circular strips, or rings, and Ni rectangular pieces of strips, called
islands. All these conductors are on the same imaginary cylinder Sc, defined as

Sc = {(r, ϕ, z) ∈ R
3|r = R}. (1)
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Fig. 1. The geometry of the model

The geometry is depicted in Fig. 1. We use cylindrical coordinates (r, ϕ, z), where the z-axis coincides with the central
axis of the cylinder. All rings and islands have thickness h and are of uniform width.

A source current is applied to the rings, which is time-harmonic at frequency ω. The total current has a distribution
J(r, ϕ, z, t) = Re(J(r, ϕ, z)e−iωt). The penetration depth δ, defined as δ =

√
2/µσω, is much larger than the

thickness of the conductor, for frequencies ω < 103 rad/s. So, the current density is almost distributed uniformly
throughout the thickness of the conductor. Consequently, we can assume that the conductors are infinitely thin, and
replace the current density J (in A/m2) by the current per unit of length j (in A/m), such that j = hJ. From now on,
the current distribution in the conductors is independent of r, j = j(ϕ, z), and has no component in the r-direction.

The strips occupy the surface S∪ = Sr + Si in space, described in cylindrical coordinates by (see Fig. 1)

Sr =

Nr∑
n=1

S(r)
n , S(r)

n = {(r, ϕ, z) ∈ R
3|r = R, z ∈ [z

(n)
0 , z

(n)
1 ]}, (2)

Si =

Ni∑
n=1

S(i)
n,p, S(i)

n,p = {(r, ϕ, z) ∈ R
3|r = R,ϕ ∈ [ϕ

(n,p)
0 , ϕ

(n,p)
1 ], z ∈ [z

(n)
0 , z

(n)
1 ]}, (3)

such that Sr is the unified surface of the rings, Si is the unified surface of the islands, and S∪ ⊂ Sc. By G−, we
indicate the inner region of the cylinder, and by G+ the outer region:

G− = {(r, ϕ, z) ∈ R
3|0 ≤ r < R}, (4)

G+ = {(r, ϕ, z) ∈ R
3|r > R}. (5)

To obtain the mathematical description of the problem, we use the Maxwell’s theory applied to the geometry of the
model. The set of equations is reduced by using the following assumptions:

(i) The strips are isotropic homogeneous non-polarizable and non-magnetizable conductors (copper).
(ii) The current distribution is time-harmonic and with that also the magnetic field and the electric field are.

(iii) The frequency is low (in the order of kHz), such that we can neglect the displacement current in Ampère’s law,
i.e. we may use a quasi-static approach.

(iv) The strips are negligibly thin.
(v) The conductors are rigid; magneto-mechanical influences (vibrations) are not considered.

The set of equations, valid in both G− and G+, become

∇× E = iωµH , ∇× H = 0 , ∇ · E = ∇ · H = 0 . (6)

Denoting the jump across S∪ by [[ ]], we can write the boundary conditions as

[[E × n]] = 0 , [[H · n]] = 0 , [[E · n]] = Qs , [[H × n]] = −j , (7)

where n = er , j is the surface current and Qs is the surface charge. For our purposes Qs = 0, because a jump over a
negligibly thin conductor experiences no surface charge. In the sheets, we have

∇ · j = 0, j = js + σhE, (8)
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where js is the prescribed source current. The total current consists of the source current js and the induced eddy current
je, so j = js + je. Furthermore, the normal component of the current on the edges has to be zero, i.e. jϕ(ϕe, z) =
jz(ϕ, ze) = 0, where ϕe and ze are the values of ϕ and z on the edges, respectively. Finally, at infinity, we require
|H| → 0.

Using a vector potential A, defined by B = ∇× A, and a scalar potential Φ, we can write

E = −∂A

∂t
−∇Φ = iωA −∇Φ. (9)

The scalar potential Φ must satisfy the Laplace equation (which follows from Gauss’ law and the Coulomb gauge) and
must vanish at infinity. It will therefore be identical to zero.

For the dimension analysis, the distances are scaled by the radius of the cylinder, and the current is scaled by the
average current through all rings. The Ohm’s law (see (8)) in dimensionless form then becomes

iκAϕ(1, ϕ, z) = jϕ(ϕ, z) − js
ϕ(ϕ, z), (10)

iκAz(1, ϕ, z) = jz(ϕ, z) − js
z(ϕ, z), (11)

where
κ = hσµωR. (12)

The vector potential A can be written in an integral form, which follows from the Maxwell equations (6) and the
boundary conditions (7). We obtain

Aϕ(1, ϕ, z) =
1

4π

∫
S∪

cos(ϕ− θ)jϕ(θ, ζ)√
(z − ζ)2 + 4 sin2(ϕ−θ

2
)

dθ dζ, (13)

Az(1, ϕ, z) =
1

4π

∫
S∪

jz(θ, ζ)√
(z − ζ)2 + 4 sin2(ϕ−θ

2
)

dθ dζ. (14)

3 Solution procedure

In this section, we explain how we solve jϕ(ϕ, z) from (10) and (13). Note that jz(ϕ, z) follows automatically, because
the current is divergence free. The Galerkin method is applied, for which we have to choose appropriate basis functions.
Therefore, we first investigate the behaviour of the kernel function in (13). This function has a singularity in the point
(ϕ, z) = (0, 0). In abstract form, (10) is written as Kjϕ − iεjϕ = −iεjs

ϕ, where

Kjϕ(ϕ, z) =

∫
S∪

Kϕ(ϕ− θ, z − ζ)jϕ(θ, ζ) dθ dζ, ε =
1

κ
, (15)

and the kernel function Kϕ(ϕ, z) can be expressed by a Fourier series [5]

Kϕ(ϕ, z) = − cos(ϕ)

4π
√

z2 + 4 sin2(ϕ
2
)

= − 1

4π2
(Q 1

2
(χ) +

∞∑
k=1

cos(kϕ)(Qk− 3
2
(χ) + Qk+ 1

2
(χ))). (16)

Here, Qk−1/2 is the Legendre function of the second kind of half-integer degree [6], and χ = (2+ z2)/2. We can now
determine the behaviour of each term in the series of (16) around the point z = 0. We find

Qm− 1
2
(χ) ≈ 1

2
(−2γ + ln 4 − 2Ψ (0)(

2m + 1

2
) − 2 ln |z|) + O(z), (17)

for m ≥ 0, establishing that the singularity is logarithmic in the z-direction. Here, γ is Euler’s constant and Ψ (0) is the
polygamma function.

The basis functions we use, are global, i.e. they are valid on the complete rings/islands. Due to the logarithmic
singularity of the kernel function, we choose Legendre polynomials of the first kind in the z-direction. We then obtain
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analytical solutions for the integrals as demonstrated in (28). In ϕ-direction, we need to use 2π-periodic functions. For
the inner products to be computed in the Galerkin method [7], we distinguish the following situations:

(i) Inner products of basis functions of rings mutually.
(ii) Inner products of basis functions of a ring and an island.

(iii) Inner products of basis functions of islands mutually.

Every situation starts with the same basic idea: We consider the current distribution on each ring and each island as
a Fourier series in the ϕ-direction, after which we can focus on the projections on the basis functions cos(nϕ) and
sin(nϕ), and use the fact that these functions are orthogonal. The current distribution can be expressed as

jϕ = Π0jϕ +

∞∑
n=1

Π(1)
n jϕ cos(nϕ) +

∞∑
n=1

Π(2)
n jϕ sin(nϕ)

= j0(z) +

∞∑
n=1

j(1)
n (z) cos(nϕ) +

∞∑
n=1

j(2)
n (z) sin(nϕ), (18)

where Π0 is the projection operator on the constant function, Π(1)
n is the projection operator on cos(nϕ), and Π

(2)
n

is the projection operator on sin(nϕ). For the functions in the z-direction we can read the Legendre polynomials Pn.
The operator K is bounded, so we can write

Kjϕ = Π0Kjϕ +

∞∑
n=1

Π(1)
n Kjϕ cos(nϕ) +

∞∑
n=1

Π(2)
n Kjϕ sin(nϕ). (19)

If we use the Fourier cosine series of (16), and define

k0(z) =
1

2π

∫ π

−π

K(ϕ, z) dϕ =
1

4π2
Q 1

2
(χ), (20)

kn(z) =
1

π

∫ π

−π

K(ϕ, z) cos(nϕ) dϕ =
1

4π2
(Qn− 3

2
(χ) + Qn+ 1

2
(χ)), (21)

then (19) yields

Kjϕ = (k0 ∗ j0) +

∞∑
n=1

(kn ∗ j(1)
n ) cos(nϕ) +

∞∑
n=1

(kn ∗ j(2)
n ) sin(nϕ), (22)

with

(k0 ∗ j0) =

∫
S∪

K(ϕ, z − ζ)j0(ζ) dϕ dζ,

(kn ∗ j(1)
n ) =

∫
S∪

K(ϕ, z − ζ)j(1)
n (ζ) cos(nϕ) dϕ dζ,

(kn ∗ j(2)
n ) =

∫
S∪

K(ϕ, z − ζ)j(2)
n (ζ) cos(nϕ) dϕ dζ. (23)

Now consider two rings, r1 and r2, situated at [z
(r1)
0 , z

(r1)
1 ] and [z

(r2)
0 , z

(r2)
1 ], respectively. Define B

(r1)
nk as a basis

function on r1 and B
(r2)

n′k′ as a basis function on r2, where n, n′ > 0 correspond with the order of the cosine function
in the ϕ-direction and k, k′ correspond with the order of the Legendre polynomial in the z-direction. We remark that
results for n, n′ = 0 and for the sine function follow analogously. The inner product to be computed in the Galerkin
method becomes

(KB
(r1)
nk , B

(r2)

n′k′) = πδn′n

∫ z
(r2)
1

z
(r2)
0

(kn ∗ Pk)Pk′ dz. (24)

On the island i1, positioned at [z
(i1)
0 , z

(i1)
1 ], we denote a basis function as B(i1)

nk , where n is the order in the ϕ-direction
and k is the order in the z-direction. Each separate basis function satisfies the condition that the normal component is
zero at the edges. In order to get 2π periodic functions, we expand B

(i1)
nk as follows:

B
(i1)
nk = (αn0 +

∞∑
m=1

αnm cos(mϕ) +

∞∑
m=1

βnm sin(mϕ))Pk, (25)
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in which the coefficients are known. The inner products (KB
(r1)
nk , B

(i1)

n′k′) become

(KB
(r1)
nk , B

(i1)

n′k′) = παn′n

∫ z
(i1)
1

z
(i1)
0

(kn ∗ Pk)Pk′ dz. (26)

For two islands i1 and i2 we obtain

(KB
(i1)
nk , B

(i2)

n′k′) = 2παn0αn′0

∫ z
(i2)
1

z
(i2)
0

(k0 ∗ Pk)Pk′ dz

+π

∞∑
m=1

(αnmαn′m + βnmβn′m)

∫ z
(i2)
1

z
(i2)
0

(km ∗ Pk)Pk′ dz. (27)

In numerical computations, we can truncate the series at m = M , with M sufficiently large. The integrals in (24)
and (27) have a singular integrand when the two rings/islands coincide. In that case, we split off the logarithmic part,
and use ∫ 1

−1

∫ 1

−1

Pk(z)Pk′(z) log |z − ζ| dζ dz (28)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8

(k + k′)(k + k′ + 2)[(k − k′)2 − 1]
, if k + k′ > 0 even ,

0, if k + k′ odd ,

4 log 2 − 6, if k = k′ = 0 .

The remaining part is regular and can therefore be solved numerically.

4 Results

Considered are two rings and one island, placed on a cylinder with radius R = 0.35m. The rings have a width of 4 cm
and carry a source current of 600 A. The island is placed in between the two rings, has a width of 2 cm, a length of 55
cm, and its center is defined at (ϕ, z) = (0, 0).

If the current through the rings is in phase, then we observe two eddies in the island and an edge-effect in the rings
towards the outside of the system. This is visualized in Fig. 2 (a), where the amplitude of the tangential component of
the current density |jϕ| is plotted along the line ϕ = 0. Note that the edge-effects become stronger if the frequency is
increased.

If the current through the rings is in anti-phase, then we observe one eddy in the island and an edge-effect in the
rings towards the center of the system. This is visualized in Fig. 2 (b). Note that the current density in the island is
stronger than in the previous case.

The consistency of the method is checked by comparison with a configuration of two rings only. The method for
a coil modeled as circular loops of strips is described in [4]. In Fig. 2 (c), the current distribution is shown for the
configuration similar to the first example, but without island. In Fig. 2 (d), the current distribution is shown for the
configuration similar to the second example, but without island. We observe that in both cases, the eddies in the island
hardly affect the current in the rings.

5 Conclusions

In this paper, we have modeled a z-coil of an MRI-scanner by a set of rings and islands. The model is an extension of
the existing model for rings only, in order to take into account the currents in axial direction. The resulting program is a
handy tool for the design of gradient coils. The simulations are used for instance to investigate the presence of islands
in a coil.

An appropriate choice for the basis functions in the axial direction is the use of Legendre polynomials. Integrals
containing Legendre polynomials and a logarithmic function can be computed analytically and show a fast conver-
gence; less than ten polynomials are needed only for an accurate approximation. The results are consistent with the
ones for rings only.
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Fig. 2. Amplitude of the current density along the line ϕ = 0, at frequencies f = 100 Hz (∗), f = 400 Hz (◦),
f = 700 Hz (+), f = 1000 Hz (�). (a) Two rings, one island, sources in phase; (b) Two rings, one island, sources in
anti-phase; (c) Two rings, sources in phase; (d) Two rings, sources in anti-phase
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Abstract Topology optimization searches for an optimal distribution of material and void without any restrictions on
the structure of the design geometry. Shape optimization tunes the shape of the geometry, while the topology is fixed.
In this paper we proceed sequentially with the optimal topology and shape design so that a coarsely optimized topology
is the initial guess for the following shape optimization. In between we identify the topology by hand and approximate
it by piecewise Bézier shapes by means of the least square method. For the topology optimization we use the steepest
descent method, while a quasi–Newton method and multilevel techniques are used for the shape optimization. We apply
the machinery to optimal design of a direct electric current electromagnet. The resulting optimal design corresponds to
physical experiments.

1 Introduction

In the process of development of industrial components one looks for the parameters to be optimal subject to a proper
criterion. The geometry is usually crucial as far as the design of electromagnetic components is concerned. We can
employ topology optimization, cf. [Ben95], to find an optimal distribution of the material without any preliminary
knowledge. Shape optimization, cf. [HN97, Luk04], is used to tune shapes of a known initial design. While in the
structural mechanics topology optimization results in rather complicated structures the shapes of which are not needed
to be then optimized, in magnetostatics we end up with simple topologies which, however, serve as very good initial
points for the further shape optimization. The idea here is to couple them sequentially.

In [Cea00] a connection between topological and shape gradient is shown and applied in structural mechanics.
They proceed shape and topology optimization simultaneously so that at one optimization step both the shape and
topology gradient are calculated. Then shapes are displaced and the elements with great values of the topology gradient
are removed, while introducing the natural boundary condition along the new parts, e.g. a hole. Here we are rather
motivated by the approach in [OBR91, TCh01], where they apply a similar algorithm as we do to structural mechanics,
however, using re-meshing in a CAD software environment, which was computationally very expensive. Our aim here
is to make the algorithm fast. Therefore, we additionally employ semianalytical sensitivity analysis and a multilevel
method.

2 Topology Optimization for Magnetostatics

Let us consider a fixed computational domain Ω ⊂ Rd, where d = 2, 3. Let Ωd ⊂ Ω be the subdomain where the
designed structure can arise. The set of admissible material distributions is denoted by Q := {ρ ∈ L2(Ωd) | 0 ≤ ρ ≤
1}. We penalize the intermediate values by

ρ̃p(ρ) :=
1

2

(
1 +

1

arctan(p)
arctan(p(2ρ− 1))

)
,

∗This research has been supported by the Austrian Science Fund FWF within the SFB “Numerical and Symbolic
Scientific Computing” under the grant SFB F013, subproject F1309.
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where p := 100 is typically good enough. Further, we consider the following linear magnetic reluctivity:

ν(ρ̃) :=

{
ν0 + (ν1 − ν0)ρ̃, in Ωd

ν0, otherwise ,

where ν0, ν1 are the reluctivities of the air and ferromagnetics, respectively. Finally, let I : L2(Ω) → R be a
cost functional, possibly involving penalization of state constraints. Given a maximal volume Vmax of the designed
structure, the 3D topology optimization problem governed by the linear magnetostatics then reads as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
ρ∈Q

I(curl(u))

w.r.t. ∫
Ωd

ρ̃(ρ) dx ≤ Vmax∫
Ω

ν (ρ̃(ρ)) curl(u) · curl(v) dx =
∫
Ω

J · v dx in H0,⊥(curl;Ω),

(1)

where J ∈ L2(Ω) is a divergence–free current density and where

H0,⊥(curl;Ω) := {v ∈ H0(curl;Ω) | ∀p ∈ H1
0 (Ω) :

∫
Ω

grad(p) · v dx = 0},

H0(curl;Ω) := {v ∈ L2(Ω) | curl(v) ∈ L2(Ω)}.
Note that the 2-dimensional (2D) reduced magnetostatic problem leads to the Poisson equation.

Concerning the numerical solution, the 3-dimensional (3D) problem is discretized by the finite element method
using the lowest order edge Nédélec elements on tetrahedra, while we use the lowest order nodal Langrange elements
on triangles in case of the 2D reduced problem. The design material distribution is elementwise constant. Note that in
the 3D case we do not solve the mixed formulation in H0,⊥(curl;Ω) but rather a non-mixed one in H0(curl;Ω)
while we add the regularization term ε

∫
Ω

u · v dx to the bilinear form. In the optimization process we always choose
the initial value of ρ to be 0.5.

3 Piecewise Smooth Approximation of Shapes

We will use the optimal topology design as the initial guess for the shape optimization. The first step towards a fully
automatic procedure is a shape identification, which we are doing by hand for the moment. The second step we are treat-
ing now is a piecewise smooth approximation of the shapes by Bézier curves or patches. Let ρopt ∈ Q be an optimized
discretized material distribution. Recall that it is not a strictly 0-1 function. Let p1, . . . ,pn denote vectors of Bézier
parameters of the shapes α1(p1), . . . , αn(pn) which form the air and ferromagnetic subdomains Ω0(α1, . . . , αn) and
Ω1(α1, . . . , αn), respectively, i.e. Ω1 ⊂ Ωd, Ω = Ω0 ∪ Ω1 and Ω0 ∩ Ω1 = ∅. Let further pi and pi denote the
lower and upper bounds, respectively, and let P :=

{
(p1, . . . ,pn) | pi ≤ pi ≤ pi for i = 1, . . . , n

}
be the set of

admissible Bézier parameters. We solve the following least square fitting problem:

min
(p1,...,pn)∈P

∫
Ωd

(
ρopt − χ(Ω1 (α1(p1), . . . , αn(pn)))

)2
dx, (2)

where χ(Ω1) is the characteristic function of Ω1.
When solving (2) numerically, one encounters the problem of intersection of the Bézier shapes with the mesh on

which ρopt is elementwise constant. In order to avoid it we use the property that the Bézier control polygon converges
quite fast to the shape under the refinement procedure, which is in 2D as follows:

[
pk+1

i

]
0

:=
[
pk

i

]
0[

pk+1
i

]
j

:= j−1
mi+1

[
pk

i

]
j−1

+ n−j
mi+1

[
pk

i

]
j
, j = 2, . . . ,mi[

pk+1
i

]
mi+1

:=
[
pk

i

]
mi

(3)

where p0
i := pi, see also Fig. 1. Note that in 3D one uses a similar procedure provided a tensor-product grid of Bézier

control nodes. Then the integration in (2) is replaced by a sum over the elements and we deal with intersecting the
mesh with a polygon. Note that our least square functional is not twice differentiable whenever a shape touches the
grid. This is still acceptable for the quasi-Newton optimization method that we apply.
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Fig. 1. Approximation of Bézier shapes by the refined control polygon

4 Multilevel Shape Optimization for Magnetostatics

With the notation of Sect. 2, the shape optimization problem under consideration is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
(p1,...,pn)∈P

I(curl(u))

w.r.t. ∫
Ω1(α1(p1),...,αn(pn))

dx ≤ Vmax

1∑
i=0

∫
Ωi(α1(p1),...,αn(pn))

νicurl(u) · curl(v) dx =
∫
Ω

J · v dx in H0,⊥(curl;Ω).

(4)

Again, we use the regularization and the 2D reduction as in Sect. 2
Concerning the discretization, we have to take special care of how the shape enters the bilinear form in order

not to change the topology of the mesh. We use two approaches here. First, the control design nodes interpolate
the Bézier shape and the remaining grid nodes displacements are given by solving an auxiliary discretized linear
elasticity problem with the nonzero Dirichlet boundary condition along the design shape. The drawback is that on
fine meshes some elements may flip whenever the shape changes significantly. Another approach is to use (3) again
and intersect the refined Bézier control polygon with the mesh so that the design interface goes across some elements.
This brings a little nonsmoothness, which is still acceptable for a quasi-Newton optimization method we use. Moreover,
assembling the bilinear form takes much longer. On the other hand, the design change is not limited by the finesty of the
grid.

Perhaps, the main reason for solving the coarse topology optimization as a preprocessing is that we get rid of a large
number of design variables in cases of fine discretized topology optimization. Once we have a good initial shape design,
we will proceed the shape optimization in a multilevel way in order to speed up the algorithm as much as possible.
We propose to couple the outer quasi-Newton method with the nested conjugate gradient method preconditioned by
a geometric multigrid (PCG), as depicted in Algorithm 1, in which Al(p1, . . . ,pn) denotes the reluctivity matrix
assembled at the l-th level.

Algorithm 1 Newton iterations coupled with nested multigrid PCG
Given pinit

1 , . . . ,pinit
n

Discretize at the first level −→ h1,A1(pinit
1 , . . . ,pinit

n )
Solve by a quasi-Newton method and the nested direct solver −→ p1

1, . . . ,p
1
n

Store the first level preconditioner C1 :=
[
A1(p1

1, . . . ,p
1
n)
]−1

for l = 2, . . . do
Refine hl−1 −→ hl

Prolong pl−1
1 , . . . ,pl−1

n −→ pl,init
1 , . . . ,pl,init

n

Solve by a quasi-Newton method and the nested multigrid solver −→ pl
1, . . . ,p

l
n

Store the l–th level preconditioner Cl

end for
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5 An Application

We consider a direct electric current (DC) electromagnet, see Fig. 2. The electromagnets are used for measurements
of Kerr magnetooptic effects, cf. [ZK97]. They require the magnetic field among the pole heads as homogeneous, i.e.
as constant as possible. Let us note that the magnetooptic effects are investigated for applications in high capacity data
storage media, like development of new media materials for magnetic or compact discs recording. Let us also note that
the electromagnets have been developed at the Institute of Physics, Technical University of Ostrava, Czech Republic,
see [Pos02]. A number of instances have been delivered to laboratories in France, Canada or Japan.

Our aim is to improve the current geometries of the electromagnets in order to be better suited for measurements
of the Kerr effect. The generated magnetic field should be strong and homogeneous enough. Unfortunately, these
assumptions are contradictory and we have to balance them. The cost functional reads as follows:

I(curl(u)) :=

∫
Ωm

‖curl(u) −Bavg
m nm‖2 + 106

(
min{0, Bavg

m −Bmin}
)2

,

where Ωm ⊂ Ω is the subdomain where the magnetic field should be homogeneous, Bavg
m is the mean value over Ωm

of the magnetic flux density component in the direction nm := (0, 1) and Bmin := 0.12 [T] is the minimal required
magnitude. There are 600 turns pumped by the current of 5 [A]. We use the linearized value of the relative permeability
of the ferromagnetics, which is 5100. Some results were already presented in [Luk01].

6 Numerical Results

We present numerical results for our application in 2D. For simplicity we consider only two coils to be active and take,
due to the symmetry, a quarter of the domain, see Fig. 3 (a). Given the initial design ρinit := 0.5 in Ωd we start with the
topology optimization. Concerning (1), we choose Vmax := 0.0155 [m2] and p := 100. A coarse optimized topology
design is depicted in Fig. 3 (b). There are 861 design, 1105 state variables and the optimization was done in 7 steepest
descent iterations which took 2.5 seconds, when using the adjoint method for the sensitivity analysis.

Fig. 2. An electromagnet of the Maltese Cross geometry

Fig. 3. Topology optimization: (a) initial design; (b) coarsely optimized design ρopt



An Integration of Optimal Topology and Shape Design for Magnetostatics 231

The second part of the computation is the shape approximation. Here we refer to Fig. 4. We are looking for three
Bézier curves that fit the optimized topology. Here we have 19 design parameters in total and solving the least square
problem (2) was finished in 8 quasi-Newton iterations which took 26 seconds, when using the numerical differentiation.

Finally, we used the smooth shape design as the initial guess for the shape optimization (4). In Tables 1 and 2
there are parameters of the computation when using the mesh deformation and the so-called shape-across-elements
approach, respectively. In the first case the multigrid acts very efficiently, however, on the finest level we end up with
the design almost the same as the very initial one p1,init

1 , . . . , p1,init
n . This is due to that the mesh deformation is very

limited at the finest mesh. In the second approach we observed a significant improvement of the shape in terms of the
cost functional, however, the multigrid preconditioner is by far not efficient, see Table 2, due to the reluctivity being
jumping within some elements. The final optimized geometry calculated by the second approach is depicted in Fig. 5

Table 1. Multilevel shape optimization using the mesh deformation approach

level design outer Newton state nested CG total time
variables iterations variables iterations

1 19 7 1098 27s
2 40 8 4240 3 3min 9s
3 82 8 16659 4–5 29min 14s
4 166 8 66037 4–5 3h 37min 42s

Table 2. Multilevel shape optimization using the shape-across-elements approach

level design outer Newton state nested CG total time
variables iterations variables iterations

1 19 14 1098 4min 32s
2 40 6 4240 11–14 26min 37s
3 82 8 16659 21–26 3h 20min 15s
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Fig. 4. Shape approximation: dashed line – lower bound; dash-and-dot line – upper bound; solid line – optimal shape
approximation; crosses – mid-points of the elements with ρopt ≥ 0.5
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Fig. 5. Multilevel shape optimization: (a) optimized geometry; (b) the O-Ring electromagnet
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(a). We can see that the result is in a good correspondance with the so-called O-Ring electromagnet which was already
designed and manufactured by physicists.

7 Conclusion

This paper presented a method which sequentially combines topology and shape optimization. First, we solved a
coarsely discretized topology optimization problem. Then we approximated some chosen interfaces by Bézier shapes.
Finally, we proceeded with shape optimization in a multilevel way. We also discussed two different shape-to-state map-
pings. We applied the method to a 2D optimal shape design of a DC electromagnet. Without the multilevel procedure,
we can get already fine optimized geometries in minutes. However, as we aim at large-scale discretizations, it still
remains to analyze and improve the multigrid convergence.
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Abstract In this paper introduced electromagnetic analysis presents just a part of all analyses which have been per-
formed within the solving of plasmatron power system project. This system is the significant part of plasma technology
which is designed for coal-energy blocks smelting and their stabilization. In recent years is this technology developed
and realized with the firm ORGREZ Corp in conjunction with VSB - Technical University of Ostrava. To get the com-
plex view about the solving problem it is necessary to describe basic principles and some parts of plasma technology.

1 Plasma technology

The mentioned plasma technology is designed for classical energy blocks containing boilers for coal fuel burning
(power station, heat station). At the present time for energy blocks smelting and stabilization is mostly used the sec-
ondary fuel (gas, black oil). Prices of these raw materials are continually on the rise and the ultimate reserves are
continually less. On this account the plasma technology deriving benefit from the fourth state of substance can bring
the significant economic profit. The structural element of this technology is the power generator of low-temperature
plasma plasmatron GNP320. By generator produced plasma effects in the thermochemical chamber on the dust coal-
air mixture. The mixture input into the chamber is realized by the help of powder-conduit. Thanks to the acting plasma
high temperature on the mixture come to the forcefully thermochemical break up of coal elements, to thermochemical
reaction and subsequently to the aero-mixture burning in the area of burner mouth into the burning chamber. The fun-
damental process schema of coal powder burning initialization is shown on the figure 1. The more detailed description
of burning technology can be found in the literature [1], [2].

The main benefit of this technology - unlike other smelting methods and stabilization methods of coal energy-
blocks which are nowadays used, is to eliminate the use and consumption of others secondary fuels (gas, black oil).
The plasma acts here as a starting heat source and is extracted directly from electrical energy and compressed air.
By plasmatron GNP320 generated plasma is shown on the figure 2 (left), the working principle of this generator is
demonstrated on the right part of the figure 2. The d.c. arc acts here as plasma source and is high stabilized by the
loaded compressed air which is burning between two cylindrical electrodes. One part of so burning arc is carried away
out of plasmatron through the positive electrode. The total plasma power is adequate to the arc-drop voltage size and
to the size of arc flowing current. For the plasmatron GNP320 is this power regulable in the range of 150-320kW by
the operating current extent of 370-750A.

1.1 Power electric supply of plasmatron GNP320

The basic requirement on the power supply system for plasmatrons GNP320 (electrical element with the d.c. arc
character) is to ensure the supply of stabilized direct current with a little wave. This requirement is the fundamental
prerequisite for right working of plasma generator and for the stable burning process of above mentioned voltaic
arc inside the plasmatron. At the plasmatron use is various plasma power mode required. This power mode depends
on combustion burner working mode. On this account it is important to ensure the above mentioned fundamental
prerequisite by the whole working power range. For this need has been the power supply system developed. The
simplified scheme of this system is shown on the fig. 3. Basic elements of the circuit are supply power transformer (VN
side selectable, NN side 3×400V), controlled three-phase rectifier, starting resistor, smoothing inductor, plasmatron,
HV-hf ionizing ignition unit.
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Fig. 1. Initialization principle of coal mixture burning by the help of plasma

Fig. 2. Generator of low-temperature plasma plasmatron GNP320

Fig. 3. Block diagram of plasmatron GNP320 power supply system

On the ground of the next description and electrotechnical analyses it is important to mention that the plasmatron
is a non-linear electrical element with the own VA characteristic. This characteristic is given by the general VA char-
acteristic with specific parameters and depends on the setting size of loading air pressure. For the clearness are these
characteristics shown on the figure 4. Pursuant to this picture it is evident that the plasmatron power regulation is not
possible through the voltage regulation.
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Fig. 4. VA characteristics of plasmatron GNP320 (various pressure relations)

Fig. 5. (left) Required percent inductivity size in dependence on working current, (right) Designed inductor
construction

1.2 Smoothing inductor

The power smoothing inductor is as electrical element in the power supply circuit which ensures the needed stabiliza-
tion and current extermination. This element has to ensure the adequate current smoothing in the whole range of plas-
matrons working current (In=350-750A) by the correspondent arc-drop voltage (Upl=400-460V). For the own power
smoothing inductor project and for the determination of needed parameters is important to take into account mentioned
VA characteristics and the defined supply voltage. The supply voltage is given by the secondary side of transformer and
by the rectifier design. By the analysis of these data we get the minimal needed inductance size depending on work-
ing current size (for set specific acceptable value of current waviness). The given inductivity dependence on working
current is shown on the figure 5 (left) in percentage. The nominal inductivity value of inductor is shown on the figure
5. in the form of 100 (%)Ln and it has been determined for minimal working current of 350A. For these parameters
the inductor with copper winding and with split magnetic core which includes air gaps has been projected. The basic
concept of inductor design is shown on the figure 5 (right). Particular parameters have been determined and optimized
pursuant to empirical relations by the use of BH and magnetization characteristics of electrical sheets metal. These
sheets have been chosen for magnetic core construction and their characteristics have been discovered by measuring.

1.3 Magnetic characteristics measuring of sheets metal of magnetic core

Magnetic characteristics of electrotechnical sheets metal chosen type, which are designed for core production, have
been determined on belt samples made of this material - electrical sheet metal 0,35mm thick. Magnetic characteristics
measuring has been performed by the help of gauging system REMACOMP, which is designed for BH characteristics
measuring and magnetization characteristics measuring of magnetically soft materials in dynamically magnetic fields
with frequency range of 1 Hz 10 kHz. Following gauging extenders have been used for measuring a small Epstein
frame and SST yoke. Sizes of the set of sheets metal samples satisfied the standard size of this frame (280×30mm).
The design of gauging system REMACOMP and of gauging extenders is shown on figure 6. Magnetic characteristics
measuring of sheets metal has been made for various frequency 1-150Hz and for various parameters setting of exciting
magnetic field. Some of measuring results are shown on figure 7. In this way have been determined real magnetic
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Fig. 6. REMACOMP Gauging system for magnetic characteristics measuring of constructional materials in dynamic
fields 1Hz 10 kHz. Epstein frame (in the middle). SST yoke (right)

Fig. 7. Chosen BH and magnetization characteristics measured onto electrotechnical sheets metal samples of core
material for the frequency of 1,10,50,100 Hz

characteristics of chosen core material and have been guaranteed exact input data for the inductor design and also for
next computations.

2 Numerical computation of electromagnetic field of inductor

The aim of this computation part has been the check on exactness of made empirical inductor design. By this empirical
design were used the exact material characteristics but the own computation resulted from empirical founded relations.
On this account this computation had to be loaded in error. This error is given by the inaccurate determination of
magnetic flux lay-out in the area of working air gaps, by the no homogeneity of magnetic field lay-out in the core,
by leakage flux, etc. On this account has been produced 3D FEM inductor model, whose geometry has complied
with in empirical design given parameters. In this model has been thought also existing magnetic characteristics of
electrotechnics sheets metal of core material which have been determined by measuring (magnetization characteristic
f=150Hz). With in this way produced 3D FEM model have been performed two types of analyses: a) Computation of
magnetic field lay-out of inductor. b) Computation of inductor inductivity.

2.1 Computation of magnetic field lay-out of inductor

The main aim of this computation has been the check on magnetic field lay-out of inductor to the whole extent of
working current. The check has been target on the magnetic saturation of sheets metal which are forming the magnetic
core and then on the magnetic field lay-out in the operating air gap. The own check computation has been realized on
the produced model (see figure 8) where have been performed a number of stationary electromagnetic analyses. For
every partial analysis has been set the specific value of load current (see figure 8 right). The set value of operating
current, which is vector-distributed by the volume winding, made load conditions for one computational step. For in
this way loaded model has been searched for final magnetic field lay-out by the help of the scalar potential.

The mathematical calculations procedure of scheduled task results from Maxwells equations and from material
equation. In this case it applies to the computation of magnetic field lay-out which is excited by the load current. The
computing procedure is here the 3D static magnetic analysis by the use of scalar potential and GSP method (General
scalar potential). Reduced Maxwells equations for magnetic field:

∇×{ } = { }H s

∇.{B} = 0
J

(1)
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Fig. 8. FEM inductor model and Load characteristic

Fig. 9. Computed magnetic field lay-out in the core (I=800A)

Constitutive relation:

B H M{ } = [ ] { } + { }µ µ. .0 0 (2)
The solving region includes subregions: Ω0 is free space region (vacuum) and Ω1 is non-conducting permeable

region. A solution is sought which satisfies equations eg.1 and eg.2 in the following form:

(3)

Where {Hg} is preliminary or guess magnetic field and φg is generalized potential. Solution of Hg relates to the
field development depending on Biot-Savart field which is a function of current source. The main part of the numerical
computation of magnetic field lay-out is then the development of Biot-Savart field. For this field is valid:

(4)

Where {Js} is current source density vector at d(volc), r is position vector from current source to node point and (volc)
is volume of current source.

The own computing strategy by the GSP method includes three steps:
The fist step: The fields solution procedure in the iron region: {Hg} = {Hs} in region Ω1 subject to: {n} · [µ] ·
({Hg} − ∇ · φg) = 0 on boundary S1 (where S1 is the surface on the iron air interface). The resulting field in this
region is: {H1} = {Hs} − ∇ · φg

The second step: The fields solution procedure in the air region: {Hg} = {Hs} in region Ω0 subject to: {n} ×
{Hg} = {n} × {H1} on boundary S1. The resulting field in this region is: {H0} = {Hs} − ∇ · φg in region Ω0.
The third step: Uses the fields calculated on the first two steps at the preliminary field for equations (eg.3). {Hg} =
{H1} in region Ω1, {Hg} = {H0} in region Ω0. The total field in all regions: {H} = {Hb} − ∇ · φg in region Ω.

The detailed description of this static analysis is explained in the literature see [4, 5]. The practical implementation
of this static analysis has been made by the help of the software ANSYS. The next part of this entry describes some
results of the performed analysis for one load step which corresponds to the operating current of I=800A.
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Fig. 10. Computed magnetic field lay-out in the core and in the air gap (I=800A)

Fig. 11. (left) Computed inductance, (middle) Comparing of inductance computed values with required percent values
(right) The real inductor design

2.2 Inductance computation of inductor

The inductance computation of an inductor closely connects with the foregoing chapter with calculations. The main aim
of these calculations is to determine the self inductance of an inductor for the definite current value which is flowing
through the winding. The inductance value of the inductor, which has been calculated on the model in dependence on
the operating current size, has been compared with the required inductance procedure. The empirical design has been
taken as correct provided that the by model computed inductance was higher then the required inductance. Therefore
this calculation has been thought as the main check computation of inductors design accuracy. The self inductance
computation has been made for identical load steps as by the magnetic field computation, what means for the identical
operating current value. The inductance for the given load step has been computed from already computed database
of electromagnetic calculation for the same load step. The inductance computation results from the definition of total
flux linkage with coil winding with N turns and current size I. The relationship between flux linkage and current can
be described by secant inductance matrix [Ls] in the basic form:

(5)

Where {Φ} is vector of coil flux linkages, {I}- vector of coil currents, {Φ0} is vector of flux linkages for zero coil
currents. In the time invariant non-linear case:

U
d L

d I
I L

t
I L I

t
IS

S d{ } =
[ ]
{ } { } + [ ]⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂
∂

{ } = { }⎡⎣ ⎤⎦
∂
∂

{ }
(6)

Where [Ld] is differential inductance matrix. On the figure 11 you can see the size progression of inductor in-
ductivity Ln in dependence on the operating current size. The operating current has been obtained in single steps by
the help of individual electromagnetic analyses. On the figure is further shown the comparing of inductance computed
values with required values.
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Conclusion

The content of this entry presents the practically made design way of electromagnetic apparatus. By this project solution
have been used two elements which assure the high accuracy of the design, magnetic measuring and magnetic fields lay-
out computation by the help of FEM methods. Performed analyses and calculations which are just partially presented
in this entry markedly achieved a development of the whole plasmatrons GNP320 supply system and also achieved the
real plasmatron practical use (fig. 2). The advantage of these computation ways (magnetic fields lay-out computation
and inductance computation) is the possibility of subsequent results use for example for the dynamic power analysis
of signals.
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Abstract The fast calculation of space-charge fields of bunches of charged particles in three dimensional space is a
demanding problem in accelerator design. Since particles of equal charge repel each other due to space-charge forces,
it is difficult to pack a high charge in a small volume. For this reason, the calculation of space-charge forces is an
important part of the simulation of the behaviour of charged particles in these machines. As the quality of the charged
particle bunches increases, so do the requirements for the numerical space-charge calculations.

In this paper we develop a new fast summation algorithm for the determination of the electric field generated by
N charged particles. Applying the nonequidistant Fast Fourier Transform (NFFT) the fast summation requires only
O(N logN) operations. The numerical test cases confirm this behaviour.

1 Introduction

Recent developments in the field of charged particle accelerator research make high demands on numerical simulations.
Among the simulation problems of particle dynamics is the three dimensional calculation of Coulomb repulsion, so-
called space-charge fields, of bunches containing millions of particles.

Widely used methods for the calculation of these space-charge fields are the particle-mesh method and the particle-
particle method [6]. The particle-mesh method, based on solving Poisson’s equation for the electrostatic potential, is
typically much faster than the particle-particle method. Furthermore, it provides better numerical results for sufficiently
“smooth” distributed particles. Progress in the particle-mesh method has been achieved with the construction of non-
equispaced adaptive grids and the development of multigrid Poisson solvers for grids with large aspect ratio [8, 9]. The
computational effort of the resulting algorithm scales linearly with the number of particles for a wide range of particle
distributions (see [15] for numerical tests).

Although the particle-mesh method provides good results for most real life simulations [8], it is on the edge of the
requirements for the simulation of very short bunches present in rf-photoguns based on femtosecond excitation lasers.
Also problematic are simulations of high peak current bunches with a long tail as present after the compression stage
(first bunch compressor) of the Tesla Test Facility (TTF), a novel linear accelerator recently under development and
construction at DESY in Hamburg [1]. In both cases, the main difficulty is the fact that to keep computational costs
and memory consumption at an acceptable level, a very high aspect-ratio mesh needs to be constructed resulting in the
degradation of the convergence behaviour of the Poisson solver [9].

Motivated by the above-mentioned problems with the particle-mesh method we deal in this paper with the devel-
opment of a new fast calculation technique for the particle-particle model. The particle-particle method calculates the
self-induced field E generated by N charged particles with the superposition principal. Let the �-th particle have the
charge q� and the position r� (� = 1, . . . , N ) and let ε0 denote the dielectric constant and ‖ · ‖ the Euclidean norm in
R

3, then

E(r) =
1

4πε0

N∑
�=1

q�
r − r�

‖r − r�‖3
, r, r� ∈ R

3, r �= r�, � = 1, . . . , N. (1)

The direct summation which requires O(N2) operations is either very time consuming or causes large simulation
errors due to the restricted number of particles. This essentially eliminates its applicability to real life simulations,
unless the computation is the restriction to 2 D models [14]. In order to make large scale problems tractable it is
essential to compute these interactions efficiently. A number of algorithms have been proposed for this purpose. The

∗supported by a research grant from DESY, Hamburg
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fast multipole method (FMM) has been one of the most successful, especially for nonuniform particle distributions
(see [16] and references therein). Our new method is fully 3 D and based on the nonequidistant Fast Fourier Transform
(NFFT) [7], hereby reducing the computational from O(N2) to O(N logN). Although this is still slower compared
to the best particle-mesh methods, it could prove to be advantageous for ultra-short and ’TTF’-like bunches because
no mesh needs to be constructed.

In the next chapter we develop the main principles of the fast summation by NFFT and present an algorithm for the
computation of (1). Finally the numerical experiments in section 3 show that the fast summation technique provides
the values for the field with an acceptable numerical error in much shorter simulation time compared to direct methods.

2 Fast Summation at Nonequispaced Knots by NFFTs

The fast computation of special structured discrete sums similar to (1) is a frequently appearing task in the study of
particle models [3, 4, 16]. The new fast summation technique we develop in this paper is based on a method first
presented in [10].

The fast computation of E at the positions rj (j = 1, . . . , N ) is performed for the two sums

E(rj) =
1

4πε0

⎛
⎜⎝rj

N∑
=1
j �=

q�

‖rj − r�‖3
−

N∑
=1
j �=

q�
r�

‖rj − r�‖3

⎞
⎟⎠ (2)

in the following way: As suggested in [10] we use a separation of the knots rj and r� by Fourier expansions. More
precisely, we split the function 1/‖x‖3 into the sum 1/‖x‖3 ≈ KNE + KR. Thereby the function KNE is supposed
to have small support with suppKNE = {x ∈ R

3; ‖x‖ ≤ εI}. It can be considered as the near field approximation
of 1/‖x‖3. Further the function KR is chosen as a smooth 1–periodic function also referred to as the regularisation of
1/‖x‖3. The construction of KR is somewhat technical so we don’t give it at this place. It is needed for the computation
of the discrete Fourier coefficients bk defined by

bk :=
1

n3

∑
j∈In

KR(j/n) e−2πijk/n (3)

where k runs over the finite index set In := {−n/2, . . . , n/2 − 1}3. A detailed description can be found in [10] for
the one dimensional case which can be straightforward applied to the three dimensional problem.

Next, we approximate the smooth function KR by the discrete finite Fourier sum KRF given by

KR ≈ KRF =
∑
k∈In

bk e2πik· . (4)

Then, 1/‖x‖3 is replaced by 1/‖x‖3 ≈ KRF +KNE. Using the outstanding property e2πi(rj−r) = e2πirj e−2πir ,
we obtain the desired separation of rj and r� by

1

‖rj − r�‖3
≈
∑
k∈In

bk e2πikrj e−2πikr + KNE(rj − r�)

and finally

α̂j :=

N∑
=1
j �=

α�

‖rj − r�‖3
(5)

≈
∑
k∈In

bk

(
N∑

�=1

α� e−2πikr

)
e2πikrj +

N∑
=1
j �=

α�KNE(rj − r�) − αj

∑
k∈In

bk .

The expression in the inner brackets can be computed by a multivariate NFFTT(n), where NFFTT denotes the trans-
posed version of the NFFT [7]. This is followed by n3 multiplications with bk and completed by a multivariate
NFFT(n) to compute the outer sum with the complex exponentials. By construction the function KNE has a small
support such that the summation can be done very efficiently. The approximation of (5) is used in (2) with α� = q� and
α� = q�r�, respectively. Applying the recently developed fast Fourier transform for nonequispaced data (NFFT) (see
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[12] and references therein), we come up with a fast summation algorithm. This NFFT summation requires for “suffi-
ciently uniformly distributed” points r� only O(N logN) arithmetic operations and can be simply implemented using
the public domain NFFT toolbox (see e.g. [7]). Note that the NFFT itself is based on the approximation of functions
by translates of one function, which is taken as a Kaiser–Bessel function in our numerical computations. In summary
we obtain the following

Algorithm:

Precomputation:
i) Computation of (bk)k∈In

by (3).
ii) Computation of KNE(rj − r�) for all (j = 1, . . . , N) and � ∈ INE

εI (j), where INE
εI (j) := {� ∈ {1, . . . , N} :

‖rj − r�‖ < εI}.
1. For k ∈ In compute by four multivariate NFFTT(n)s

q̂k :=

N∑
�=1

q� e−2πikr , r̂k :=

N∑
�=1

q�r� e−2πikr .

2. For k ∈ In compute the products dk := q̂kbk ∈ C .
3. For j = 1, . . . , N compute by a multivariate NFFT(n)

fRF(rj) := rj

∑
k∈In

dk e2πikrj .

4. For k ∈ In compute the products dk := r̂kbk ∈ C
3 .

5. For j = 1, . . . , N compute by three multivariate NFFTs(n)

fRF(rj) := fRF(rj) −
∑
k∈In

dk e2πikrj .

6. For j = 1, . . . , N compute the near field sums

fNE(rj) = rj

∑
�∈INE

εI
(j)

q�KNE(rj − r�) −
∑

�∈INE
εI

(j)

q�r�KNE(rj − r�).

7. For j = 1, . . . , N compute the near field corrections

Ẽ(rj) =
1

4πε0
(fNE(rj) + fRF(rj)) .

Note, that usually the field values are requested at same the locations as the location of the particles. But the algorithm
can also evaluate field values at other points the number of which has not to be in coincidence with the number of
particles (see [10]).

3 Numerical Results

The algorithms for the fast summation have been implemented in C and tested on an AMD Atlon xp1800+ 512MB
RAM, SuSe-Linux 8.0 using double precision arithmetic. Throughout our experiments we have applied the NFFT/
NFFTT package [7] with Kaiser–Bessel functions, oversampling factor ρ = 2 and several bandwidth parameters n
which will be specified in the examples. Further the NFFT/NFFTT algorithms require the parameters p (guarantees the
smoothness of KR up to the derivative of order p − 1 ) and m (controls the accuracy of interpolation by the Kaiser–
Bessel functions) which are for the fast summation chosen as p = 2 and m = 2. Note, that the fast summation method
suggested in (5) was first proposed for the univariate case in [10] and for the bivariate case in [11] (see also [2]). There
error estimates are proved to obtain clues about the choice of the involved parameters. For a numerical comparison
with the fast multipole method in 2D see [11]. With the algorithm for the calculation of the electric field we extend
these methods to R

3.
As numerical test we used a spherical bunch uniformly filled with charged particles. The total charge of the sphere

has been kept with Q = −1 nC. Thus the particles are assumed to posses the charge qi = q = −1/N nC (i =
1, . . . , N), where N denotes the number of particles in the sphere. These particles are also regarded as macro-particles
representing the distribution of all particles (for instance electrons) in a bunch. The uniform particle distributions have
been generated with the tracking code GPT (General Particle Tracer) [13] by means of Hammersley sequences [5].
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Fig. 1. The error E2(theo,fast)) (see equation (3)) of the electric field for particle distributions generated by Hammersley
sequences and by straightforward computed random numbers, respectively

These sequences provide pseudo random numbers such that distance between two particles does not become too small.
The advantage of such generated distributions is represented in Fig. 1 where the numerical error is compared to particle
distributions generated with straightforward computed random numbers.

The fast summation technique is not restricted to the calculation of the discrete sum (1) but can be applied to a
great variety of discrete sums appearing in the study of particle models. In order to demonstrate the efficiency of our
new method with a more simple discrete sum we start with the calculation of the potential ϕ caused by N charged
particles with charge q given by

ϕ(rj) =
1

4πε0

N∑
=1
j �=

q

‖rj − r�‖
, (rj ∈ R

3).

The fast summation strategy described in section 2 can be easily adapted to the above discrete sum. Since a sphere
uniformly filled with an increasing number of particles of equal charge gets more and more close to a sphere with
charge Q =

∑N

i=1
q, we compare the results of the summation to the analytically known potential given by

ϕtheo(rj) =
Q

4πε0

(
3

2
− ‖rj‖

2R2

)
, ‖rj‖ ≤ R,

where R denotes the radius of the sphere.
We have investigated the numerical error

E2(a,b) =

(
N∑

k=1

|ϕa(rk) − ϕb(rk)|2
)1/2( N∑

k=1

|ϕa(rk)|2
)−1/2

,

where a and b represent the different techniques for the computation either of the potential or the electric field (slow:
straightforward summation, fast: fast summation, theo: analytical solutions). Similarly the computational time for the
straightforward summation and for the fast summation based on (5) is denoted by tslow and tfast, respectively.

The numerical experiments documented in Table 1 show that we obtain with our fast algorithm the same errors as
with the straightforward (slow) summation but with an numerical effort of only O(N logN). Hereby the parameters
of the NFFT are chosen such that the approximation error is less than the simulation error. Depending on the number
of particles the Fourier sum (4) has been computed as NFFT(n) with n = 32, n = 64 and n = 128, respectively (see
Tables 1 and 2). The star ∗ means that the running time of the direct evaluation is obtained by extrapolation. Note that
the straightforward evaluation of the potential ϕ with N = 5 · 106 requires more that 10 days (see Fig. 2). Finally we
test the algorithm for the computation of the electrostatic field suggested in section 2. It is well known that the field of
a charged sphere is given by

E theo(rj) =
Q

4πε0

(
rj

R3

)
, ‖rj‖ ≤ R.
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N n tslow tfast E2(theo,slow) E2(theo,fast) E2(slow,fast)
10000 64 6.680e+00 2.310e+00 2.586e-03 2.544e-03 1.206e-04
50000 64 1.777e+02 7.140e+00 1.018e-03 9.755e-04 9.654e-05
100000 64 7.092e+02 1.770e+01 5.630e-04 5.283e-04 1.002e-04
250000 128 4.470e+03 4.821e+01 2.952e-04 2.584e-04 1.125e-04
500000 128 1.756e+04 8.951e+01 2.043e-04 1.647e-04 1.103e-04
1000000 128 7.024e+04∗ 2.257e+02 1.079e-04

Table 1. Computational time and the error E2 for the potential ϕ, *estimated

N n tslow tfast Ẽ2(theo,slow) Ẽ2(theo,fast) Ẽ2(slow,fast)
10000 32 7.580e+00 3.680e+00 1.232e-01 1.232e-01 1.068e-03
50000 64 1.930e+02 2.185e+01 3.204e-02 3.205e-02 5.765e-04
100000 64 7.710e+02 4.810e+01 2.393e-02 2.394e-02 4.662e-04
250000 128 5.781e+03 1.635e+02 1.716e-02 1.718e-02 5.462e-04
500000 128 2.312e+04∗ 2.699e+02 1.446e-02
1000000 128 9.245e+04∗ 6.031e+02 1.468e-02

Table 2. Computational time and the error Ẽ2 for the electric field E, *estimated
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Fig. 2. Performance of the fast NFFT-algorithm compared to the direct summation: computation of ϕ (left), computa-
tion of E (right)

Here we consider the error

Ẽ2(a,b) =

(
N∑

k=1

‖Ea(rk) − Eb(rk)‖2

)1/2( N∑
k=1

‖Ea(rk)‖2

)−1/2

.

Table 2 represents the results of the related numerical simulations. Figure 2 compares the performance of the fast
summation algorithm with NFFT to the direct slow summation. It shows that the NFFT summation scales with
O(N logN). The numerical errors are acceptable (see Table 1 and Table 2). Hence this new summation technique
enables the computation of fully 3 D particle-particle interactions in real life applications.
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1 Introduction

In the numerical analysis of three dimensional electric and magnetic field problems, the finite element method (FEM) is
very common. In the electrostatic case nodal finite elements are used, while for magnetostatic or eddy-current problems
edge elements proved their worth. The basis functions of these edge elements introduced by Nédélec in [5] are vector
functions. One of their advantages is that edge elements enforce the tangential continuity of the vector fields only, but
not that of the normal component. Because of this, only the essential continuity properties of the electric field intensity
E are fulfilled when using edge elements.

To describe the eddy current problem, various formulations have been introduced. The Maxwell equations are
used as the starting point. From this one can derive differential equations for e.g. the electric field intensity E or the
magnetic field intensity H . Nevertheless the use of scalar or vector potential functions are more common to describe
electric and magnetic fields [2].

However, different formulations of the problem lead to different systems of equations. For time harmonic eddy
current problems, the resulting sparse system matrices are complex symmetric. In this paper two different formulations,
namely the A∗-formulation and the A, V -formulation are used.

A main field of computational electromagnetics is the fast solution of the resulting system of equations. One of the
fastest solvers is the multigrid (MG) algorithm (e.g. [7]). While multigrid is straightforward for nodal elements, more
difficulties arise when using edge elements. This is due to the non trivial kernel of the curl operator. Two common
approaches to solve this problem are the hybrid smoother of Hiptmair [4] and the block smoother of Arnold, Falk
and Winther [1]. It should be mentioned that these smoothers can also be used very effectively as preconditioners for
Krylov subspace methods ([6], [9]).

Instead of these more sophisticated smoothers, a standard Gauss-Seidel (GS) smoother can be used with a for-
mulation combining the vector potential, A, with the scalar potential, V [9]. The aim of this paper is to compare
the multigrid algorithm of an A, V -formulation to the multigrid algorithm of a vector formulation with the hybride
smoother. It will be shown, that these two methods are mathematically identical.

The paper is structured as follows: In the next section, the A∗-formulation and the A, V -formulation are presented.
The different properties of these formulations will be discussed. Section 3 describes the multigrid smoothers and shows
the similarities of the hybrid smoother and the A, V -formulation. In section 4, numerical examples will show the
properties of the different methods. Finally, the conclusions are presented in section 5.

2 Finite Element Formulations

An eddy current problem involves two regions: a conducting region Ωc with an unknown current density distribution
and a nonconducting region Ωn with a given source current density J0.

In the nonconducting region, the magnetic vector potential A is defined as usual by B = curlA. Neglecting the
dielectric displacement leads to the differential equation curl(νcurlA) = J0 inΩn, where ν = ν(x) is the reluctivity
of the material.

Since the resulting system of equations is singular, it is essential to ensure that the right hand side is in the range of
the system matrix. This can be done by introducing an electric vector potential T 0 instead of using J0 [2]. Since the
divergence of the given source current density J0 is zero J0, can be described as curlT 0 = J0, leading to following
differential equation:
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curl(νcurlA) = curlT 0 inΩn . (1)

In the conducting region, two main formulations will be presented.

2.1 The A∗-formulation

One possibility to describe the eddy current field is by means of a modified vector potential A∗ where B = curlA∗

and E = −jωA∗. This formulation leads to the following complex differential equation

curl(νcurlA∗) + jωσA∗ = 0 inΩc (2)

where σ = σ(x) is the conductivity in the conducting region. The modified vector potential will be approximated by
edge basis functions N i. Using the boundary conditions A∗ × n = 0 or νcurlA∗ = T 0 × n and applying Galerkin
techniques to (2) results in the system of equations:

(curlN i, νcurlA∗
h) + jω (N i, σA∗

h) = (curlN i,T 0) (3)

for i = 1, 2, . . . , ne with A∗
h =

ne∑
i=1

a∗
i N i being the edge element discretization of A∗ , ne the number of edges and

(a, b) =
∫

Ωc
a · bdΩ. For the term on right hand side use hase been made of the fact that the basis functions N i

satisfy the homogeneous Dirichlet boundary conditions as well as of the given source current density J0 being zero in
ΩC . This regular system of equations can be written as Ka∗ = f where

kij =

∫
Ωc

curlN i · νcurlN j dΩ + jω

∫
Ωc

N i · σN j dΩ (4)

are the entries of the matrix K and f is the right hand side:

fi =

∫
Ωc

curlN i · T 0 dΩ . (5)

2.2 The A, V -formulation

Another formulation for eddy current fields is the A, V -formulation. In this case an additional modified electric scalar
potential V is introduced as

E = −jωA − jωgradV . (6)

Since there are four unknowns, A and V , an additional equation has to be used. A common way is to use the divergence
free property of the current density, divJ = 0. This leads to the following system of differential equations:

curl(νcurlA) + jωσA + jωσgradV = 0 in Ωc , (7)

−div (jωσA + jωσgradV ) = 0 in Ωc . (8)

In addition to the boundary conditions in section 2.1, the boundary conditions on the scalar potential are introduce
as n · (−jωσA − jωσgradV ) = 0 or V = V0 = constant. Using edge basis functions N i1 for the vector potential
with i1 = 1, 2, . . . , ne, and the nodal basis functions Ni2 with i2 = 1, 2, . . . , nn for the scalar potential where nn is
the number of nodes, the Galerkin equations can be written as

(curlN i1, νcurlAh) + jω (N i1, σAh) + jω (N i1, σgradVh) = r.h.s. (9)

jω (gradNi2, σAh) + jω (gradNi2, σgradVh) = 0 (10)

where r.h.s. = (curlN i1,T 0) and Vh is the approximation of the scalar potential. The resulting system of equations
is singular since the gradient of the nodal finite element space is included in the edge element space. Using matrices
the equation system can be written as [

K C
CT B

]{
a
v

}
=

{
f
0

}
(11)

where the matrix K and f have already been described in section 2.1. Writing bij for the entries in matrix B and cij

for the entries of C, these matrices can be calculated as

bij = jω

∫
Ωc

gradNi · σgradNj dΩ and (12)

cij = jω

∫
Ωc

N i · σgradNj dΩ . (13)
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3 Multigrid Smoothers

A fast method for solving the resulting systems of complex equations is the multigrid method. In this work, a geometric
multigrid is used. The two main parts which influence the convergence are the smoothing operator as well as the
restriction and prolongation operators.

For the discretization of the scalar Laplace-Poisson equation with nodal elements, the smoothing iterations are
usually carried out by methods like Jacobi or Gauss-Seidel. Using edge elements, the smoothing operator has to be
adjusted to the finite element formulation.

In case of the A∗-formulation attention must be paid to the kernel of the curl operator. To solve this problem,
Hiptmair suggested a hybrid smoother. The idea is based on a Helmholtz decomposition and from this follows that
a second smoothing step has to be carried out in the space of scalar functions corresponding to the nodes. For more
details see [4].

Here we want to emphasize the properties of the edge basis functions N j and the scalar basis functions Ni. It is
well known that the gradient of a scalar basis function can be described as the weighted sum of edge basis functions:

gradNi =

ne∑
j=1

gijN j . (14)

The weighting values gij are −1 for edges j with the starting node i, 1 for edges j with the ending node i and elsewhere
0. The nn by ne matrix G with the entries gij is the incidence matrix multiplied by −1.

Using this notation and denoting the iteration matrix of a matrix X as WX , one iteration step of the hybrid smoother
can be written as:

ã∗
m+1 = a∗

m + W−1
K (f −Ka∗

m) (15)

d = f −Kã∗
m+1 (16)

vm+1 = W−1

GKGT (Gd) (17)

a∗
m+1 = ã∗

m+1 + GT vm+1 (18)

On the other hand, a simple Gauss-Seidel smoother can be used for the A, V -formulation [8]. Splitting up the two
systems of equations of (11) one iteration step can be written as

am+1 = am + W−1
K (f −Kam − Cvm) (19)

vm+1 = vm + W−1
B

(
−CT am+1 −Bvm

)
. (20)

The discrete version of (6) can now be written as e = jω(−a − GT v) = −jωa∗ with e being the discretization of
the electric field intensity E. From this follows that a∗ = a + GT v.

3.1 Comparison

First of all, to analyze these two previous algorithms, the multiplication of the system matrix K with the incidence
matrix G will be carried out. Thereby, the properties (14) will be used. One entry c̃ij of the resulting matrix C̃ = KGT

can be written as

c̃ij =

ne∑
k=1

(∫
Ωc

curlN i · νcurlN k dΩ + jω

∫
Ωc

N i · σN k dΩ

)
gjk

=

∫
Ωc

curlN i · νcurl

ne∑
k=1

(N kgjk) dΩ + jω

∫
Ωc

N i · σ
ne∑

k=1

(N kgjk) dΩ

=

∫
Ωc

curlN i · νcurl(gradNj) dΩ + jω

∫
Ωc

N i · σgradNj dΩ . (21)

Since the curl of a gradient function equals zero, c̃ij can now be written as

c̃ij = jω

∫
Ωc

N i · σgradNj dΩ . (22)

Comparing this result with (13) it can be seen that KGT = C.
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Hence the multiplication of the incidence matrix with the system matrix results in GK = CT . Using the previous
steps, the product GKGT can be seen to satisfy B = GKGT . With these results and substituting a +GT v for a∗ the
hybrid smoother (15) can now be written as

ã∗
m+1= am + GT vm + W−1

K

(
f −Kam −KGT︸ ︷︷ ︸

C

vm

)
(23)

= am + W−1
K (f −Kam − Cvm) + GT vm (24)

= am+1 + GT vm (25)

vm+1= W−1

GKGT

⎛
⎝Gf − GK︸︷︷︸

CT

am+1 −GKGT︸ ︷︷ ︸
B

vm

⎞
⎠ (26)

= W−1
B

(
−CT am+1 −Bvm

)
(27)

a∗
m+1= ã∗

m+1 + GT vm+1 . (28)

It should be mentioned that Gf = 0 has been assumed in (26). This of course is only true for a right hand side
which is described as the curl of a vector field as written in section 2.

Since a∗ = a +GT v, the Gauss-Seidel smoother for the A, V -formulation (19) produces the same results as the
hybrid smoother in (23). It can hence be seen that the two algorithms are equivalent.

To sum it up, the pros and cons of the different algorithms can be described as follows: In case of the hybrid
smoother, only edge basis functions are used. Less memory is used since the matrix C is not stored. On the other hand
the incidence matrix has to be constructed. But the more time consuming task is the calculation of B = GKGT which
increases with n2

e.
For the GS-smoother with the A, V -formulation, additional nodal basis functions have to be introduced and more

memory is used because of the additional C-matrix. The advantage of this algorithm is the short assembly time for the
matrices B and C.

Though the equivalence of the hybrid smoother applied to the A∗-formulation and the classical Gauss-Seidel
smoother for the A, V -formulation has been shown only for the conducting region, it is also true for problems con-
taining both conducting and non conducting regions. The incidence matrix has to cover the conducting region and
at least the finite elements in the non conducting regions which border on the interface between conducting and non
conducting region. This has to be done to ensure (14) also for nodes on the interface.

4 Numerical example

To show the properties of these different formulations and MG-smoothers, TEAM problem No. 7 has been analyzed.
It consists of a conducting plate with a hole [3]. The geometry of the conducting region with its discretization on the
coarse grid and the coil can be seen in Fig. 1. For the discretization, hexahedral elements of second order are used.
They consist of 20 nodes and 36 edges.

Fig. 1. Geometry of TEAM Problem No. 7
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Table 1. Multigrid iterations

No. of MG iterations
Degrees of Hybrid smoother SGS smoother
freedom Multigrid levels (A∗-formulation) (A, V -formulation)

94102 3 111 111
325830 4 117 117
465246 4 142 142
782432 5 151 151

Table 2. Multigrid iterations and iteration time with 6 smoothing steps

Degrees of No. of MG iterations Iteration time in sec
freedom Hybrid smoother SGS smoother Hybrid smoother SGS smoother

extern intern extern intern

94102 21 21 21 344.1 244.4 225.1
325830 23 23 23 1601 1032 998
465246 27 28 28 2269 1487 1450
782432 27 29 29 4171 2798 2659

The problem has been calculated for different discretizations with the coarse grid remaining the same. The fine
grid is achieved by subdividing individually the coarse grid elements. All calculations where done on a Windows 2000
PC with 1100MHz and 1.5GB RAM.

For the MG algorithm a standard V-cycle has been chosen. Instead of a GS iteration step, a symmetric Gauss-Seidel
(SGS) iteration has been used in the algorithm of the hybrid smoother and as a smoother for the A, V -formulation.
Even though the comparison in section 3.1 is only true for a forward Gauss-Seidel algorithm, experiences have shown
that the properties are similar even for SGS iterations. In addition, the number of MG iterations is lower when using
smoothers with SGS iterations. In Table 1, the numbers of MG iterations for different discretizations and different
smoothers are shown. It can be seen that even if the number of degrees of freedom is increasing rapidly, the number of
iterations is only slightly changing. Furthermore, the number of iterations is the same for both smoothers.

By increasing the number of smoothing iterations, the number of MG cycles can be reduced. From experience
it can be said that using about 6-8 SGS smoothing steps results in an optimal iteration time. If more iteration steps
are used, the iteration time will not decrease any more because the gain of the iteration time will be overrun by the -
especially on the finest grid - time consuming smoothing steps. In case of the hybrid smoother more smoothing steps
can be implemented in two different ways: On the one hand, the whole algorithm (15) can be repeated several times,
on the other hand only the internal GS (or SGS)-iterations (15) and (17) can be repeated. The first one will be denoted
as external, the latter one as internal.

More significant than the number of iterations is the iteration time, since the problem should be solved as fast as
possible. In Table 2, the properties of the different algorithms for 6 smoothing steps can be seen. Even though the
number of iterations is lower for the external hybrid smoother, the iteration time is much higher. This is due to the fact
that Gd and (18) have to be carried out 6 times for the external smoother, while for the internal algorithm it has to be
done only once.

5 Conclusion

In this paper we have compared two different smoothers for different formulations of time harmonic eddy current
problems. It turned out that the hybrid smoother for the A∗-formulation is equivalent to the Gauss-Seidel smoother for
the A, V -formulation. The only difference is in the implementation. In one case, the incidence matrix and the matrix
product B = GKGT has to be calculated and in the other, nodal basis functions have to be introduced.

A numerical example has illustrated the properties of these smoothers. Finally, the use of several smoothing steps
has been discussed.
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Abstract In this paper, linear field problems with a varying physical parameter are solved with the conjugate gradient
method and a dedicated extrapolation procedure for generating the initial estimate. The scheme is formulated in detail,
and its application to three-dimensional scattering problems for a rectangular conducting plate and an inhomogeneous,
dispersive dielectric body are discussed.

1 Introduction

In modern society different trends are recognized in the usage of the available electromagnetic spectrum. One can think
of wireless communication or transport of (digital) information. The density of such applications is increasing rapidly.
Obtaining electromagnetic compatibility and/or reducing electromagnetic interference sometimes seems to be an im-
possible task. Another trend is found in electromagnetic inverse scattering and profiling. For example, this development
is used in the detection and classification of land mines and other unexploded ordnance. Regarding electromagnetic
inversion, one can also think of medical applications such as tomography or the detection of defects in metallic heart
valves. Finally, we would like to mention the problem of electromagnetic coupling into humans in the area of clinical
hyperthermia or non-ionizing radiation hazards analysis. In these applications, a rigorous electromagnetic analysis is
indispensable.

The focus of this chapter is found in computational tools in the field of electromagnetic analysis and design.
One can identify the roadmap “going from engineering electromagnetics to electromagnetic engineering”. One of the
extensively used and most versatile methods is the integral equation technique. It takes into account that the irradiated
object is present in free space and that it manifests itself through the presence of secondary sources or contrast sources.
Integral equations can be solved by the method of moments [1]. This leads to a system of linear algebraic equations.

To solve this system, one can use direct discrete numerical solution methods, such as Gaussian Elimination or Sin-
gular Value Decomposition, or suitable iterative techniques such as a conjugate gradient (CG) method. An overview of
numerical solution methods for linear systems of equations can be found in the book by Golub and Van Loan [2].
In electromagnetic scattering and coupling problems, integral equations are often solved by using a Fast Fourier
Transform to compute the spatial convolution of the integral operator and a conjugate gradient iterative scheme. This
so-called CGFFT method has been used successfully for many electromagnetic scattering and coupling problems
[3, 4, 5, 6, 7, 8, 9].

In analysis or design procedures, the engineer has the freedom to change one or more parameters to obtain an
optimal design with respect to performance and costs. This means that he or she will need to consider the determination
of electromagnetic fields for a (large) number of values of a physical parameter. In this chapter we present a strong
approach for this type of problem, which utilizes the iterative schemes mentioned above. We restrict ourselves to the
case where the linear system originates from one or more integral equations. We apply an iterative procedure based
on the minimization of an integrated squared error, and start this procedure from an initial estimate that is a linear
combination of the last few “final” results. When the coefficients in this extrapolation are determined by minimizing the
integrated squared error for the actual value of the parameter, the built-in orthogonality in this type of scheme ensures
that only a few iteration steps are required to obtain the solution. The success of this strategy has been demonstrated
before [10, 11, 12]. However, it has not been applied to 3-D problems.

The outline of the chapter is as follows. In Sect. 2, the method of solution is discussed. Special attention is given
to the iterative procedure and the implementation of a relevant initial estimate based on the previous solutions. Explicit
examples are discussed in Sect. 4 and Sect. 5 presents the conclusions.
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2 Method of Solution

In the computational modeling of electromagnetic fields for practical applications, typically a large system of lin-
ear equations must be solved. This system originates from spatially discretizing Maxwell’s differential equations (in
“finite” or “local” techniques) or equivalent integral equations (in “global” techniques). In formal notation, such a
system can be written as

L(p)u(p) = f(p), (1)

where

L(p) = a linear operator,

u(p) = the unknown field,

f(p) = the forcing function,

p = a physical parameter.

The operator L(p) originates from discretizing its counterpart in the continuous equation, u(p) is a discretized field
and f(p) corresponds to an impressed source or an incident field. We are interested in the situation where this problem
must be solved for a large number of sampled values of the parameter p, e.g., pm = p0+m∆p, with m = 0, 1, . . . ,M .

To solve the system of equations (1), we use the conjugate gradient method. This algorithm is described in detail by
Van den Berg [3, 4]. Further, we organize the space discretization such that the convolution structure of the continous
equation is preserved. In that case, the matrix-vector products in the CG algorithm can be evaluated by FFT operations,
which considerably improves the speed of the so-called CGFFT algorithm [3, 4, 5, 6, 7, 8, 9].

In many applications of the conjugate gradient method, a simple initial estimate is used. Typically, the scheme is
started from an initial vector u(0) = 0. Depending on the nature of the problem at hand, we can also start from an
incident field or from the Kirchhoff approximation to an unknown surface current.

Our choice of the initial estimate is inspired by the fact that u(p) depends in a well-behaved manner on the
parameter p. Therefore, it should be possible to extrapolate, by choosing

u(0)(pm) =

K∑
k=1

γk u(pm−k). (2)

The interpretation of the conjugate gradient scheme given above suggested that the values {γk | k = 1, . . . ,K} should
be found by minimizing the squared error

< L(pm)u(0)(pm) − f(pm) | L(pm)u(0)(pm) − f(pm) > . (3)

where we have defined the inner product as

< g | h >=
∑

j

g∗j hj , (4)

where gj and hj denote the components of g and h, and where the asterisk denotes complex conjugation.
Because of the built-in orthogonality of the conjugate gradient method, we are then certain that this procedure must

start its search for components of f(pm) outside the space spanned by the “previous” functions {Lu(pm−k) | k =
1, . . . ,K}.

The coefficients γk that minimize the squared error in (3) can be found from the system of linear equations

K∑
k′=1

< L(pm)u(pm−k) | L(pm)u(pm−k′) > γk′

=< L(pm)u(pm−k) | f(pm) >, (5)

with k = 1, . . . ,K. Typically, we choose K = 2 (linear extrapolation) or K = 3 (quadratic extrapolation). For larger
values of K, the basis vectors L(pm)u(pm−n) with n = 1, . . . ,K become almost linearly dependent, and therefore
the coefficients {γk} can no longer be resolved from (5).

3 Scattering by Three-Dimensional Objects

To illustrate our approach, we have extended existing implementations of the CGFFT procedure for two three-
dimensional objects that have become standards in the literature. In both cases, no special precautions were taken
to enhance the discretization, which is first-order accurate as a function of the mesh size.
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Fig. 1. Marching-on-in-angle version of the CGFFT method for a flat plate. (a) Number of iterations required to reach
a relative error of 10−3 versus angle of incidence using zero (gray line) and two previous results (black line) as an
initial estimate. (b) Monostatic radar cross section versus angle of incidence

3.1 Scattering by a Flat Plate

The first example is a flat, rectangular plate in free space located at 0 < x < a, 0 < y < b and z = 0. For this
problem, we solve the well-known electric-field integral equation

[
∇T∇T · −s2

c20

]∫ a

0

dx′
∫ b

0

dy′ exp(−sR/c0)

4πR
JS(r′

T, s)

= −sε0 E i
T(rT, s), (6)

where s is a complex frequency, R = |rT − r′
T|, and where the subscript T stands for a transverse component.

The unknown surface current JS(rT, s) is approximated by rooftop functions, and we use a weak formulation of (6),
weighted by the same rooftop functions [13]. In the resulting discretized form, the convolution symmetry is preserved,
so that the matrix-vector products in the conjugate gradient procedure can be evaluated with the aid of two-dimensional
FFT operations.

In particular, we have computed the monostatic radar cross section of a λ × λ plate for the special case s = jω.
A plane wave is incident on the plate at an angle ϑ with respect to the z-axis and an angle φ = 90◦ with respect to the
x-axis. The incident plane wave is x-polarized. The discretized plate has a mesh of 31 × 31 points. Figure 1(a) shows
the number of iterations for increasing ϑ. In the generic formulation of Section 2, this means that p = ϑ. The gray line
represents starting from a zero initial estimate, and the black line is for two previous results in the initial estimate, i.e.
K = 2. Figure 1 presents the monostatic radar cross section of the λ× λ plate in the plane φ = 90◦.

Another result for the plate concerns marching on in length. Now, the parameter p represents the length of the plate
in the x-direction. The idea was inspired by the shape sensitivity analysis in [14, 15]. Here, we start from a λ×λ plate
and we increase the length of the plate in 100 steps to a 2λ× λ plate. We used a fixed spatial discretization of 62× 31
mesh points. The number of iterations required to reach a relative error of 10−3 versus the length of the plate is shown
in Fig. 2. In the computations leading to Figs. 1 and 2, it turned out that extrapolation with K = 2 was in fact more
efficient than extrapolation with K = 3.

3.2 Scattering by an Inhomogeneous Dielectric Cube

The second example is an inhomogeneous dielectric cube, again in free space. We formulate the scattering problem as
a domain integral equation over the object domain D as

Ei(r, s) =
D(r, s)

ε(r, s)
+

(
s2

c0
−∇∇·

)
A(r, s), (7)

where s is a complex frequency and where the vector potential A(r, s) is given by

A(r, s) =
1

ε0

∫∫

D

∫
exp(−sR/c0)

4πR

ε(r, s) − ε0

ε(r, s)
D(r, s) dV ′, (8)

where R = |r − r′|. We take the contrast function in (8) constant in each rectangular subdomain in the space dis-
cretization. Like the current in the plate problem, the dielectric displacement D(r, s) is approximated by an expansion
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Fig. 2. Number of iterations required to reach a relative error of 10−3 versus length of the plate for the marching-
on-in-length version of the CGFFT method for a flat plate using zero (gray line) and two previous results (black line)
as an initial estimate
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Fig. 3. Marching-on-in-frequency version of the CGFFT method for an inhomogeneous dielectric cube. (a) Number of
iterations required to reach a relative error of 10−3 versus frequency for the using zero (gray line) and two previous
results (black line) as an initial estimate. (b) Time domain signal at the center of the muscle cube for an incident
x-polarized wave of 1 V/m

that is piecewise linear in the longitudinal direction and constant in the transverse directions. The Green’s function is
replaced by a weak form, and the result is weighted by testing functions that are identical to the expansion functions.
Again, the space discretization preserves the convolution symmetry of the continuous form of the integral equation
given in (7) and (8). More details can be found in the papers by Zwamborn and Van den Berg [16, 17].

As an illustration, we have modeled a cube of muscle tissue centered inside a cube of fat tissue. The incident field
is x-polarized with propagation vector parallel to the z-axis and a strength of 1 V/m. The dispersive tissues are modeled
using a Debye model [18] and the dimensions of the inner and outer cubes are 0.14 m and 0.30 m, respectively. The
discretized object has 30×30×30 mesh points. The field is computed in the middle of the muscle cube for real-valued
frequencies f = ω/2π = −js/2π of 100 to 600 MHz and then converted to a time domain signal. In this case, we
vary p = ω. The number of iterations needed is shown in Fig. 3(a), where the gray line is for a zero initial estimate,
and the black line for minimization using two previous results. Again, using K = 2 in the extrapolation procedure
led to the most rapid convergence. The time signal, shown in Fig. 3(b), is computed by an FFT using the waveform
exp
[
−(t− τ)2/(2T 2)

]
sin(ω0t), where τ = 14 ns, T = 2.75 ns and ω0/2π = 450 MHz.

4 Conclusions

In this chapter, we have extended the conventional conjugate gradient method with a dedicated extrapolation procedure
that considerably enhances the speed of convergence. Although the procedure has already been demonstrated success-
fully for a range of applications, including transient scattering, radar cross section computations and inverse profiling,
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until now no applications to three-dimensional configurations have been reported. In the present chapter, this gap has
been filled.
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Time Integration Methods for Coupled Equations∗
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Abstract In this paper we discuss time integration methods designed for solving stiff-nonstiff problems. A tool for
analysing the effect of using stepsizes larger than the time scale of the stiff subsystem is presented.

1 Introduction

In many applications we have to deal with time integration of coupled systems, with subsystems of different time
scales. Over the years, several approaches have been developed to exploit the particular properties of each subsystem,
like multirate methods, implicit-explicit methods and splitting methods. More recently, also exponential integrators are
enjoying a renaissance. Most of these methods are well understood in terms of classical local error / order analysis.
However, the desired modus operandi often gives stepsizes larger than the time scales of the rapid subsystems. In this
case, the classical order analysis is of limited, although important, relevance.

The problem can be illustrated by the following simple example: Consider the equation

y′ = λy + y + et, y(0) = 1, Re(λ) << 0.

The linear term λy represents the fast subsystem, while y + et is the slow one. The problem is solved by two different
explicit exponential integrators, both of order 3. Exponential integrators work such that the fast linear part is integrated
exactly. Figure 1 shows the relative error after one step, using different stepsizes. The local error is measured for two
values of t, at t = 0 where the solution is dominated by its transient, and at t = 0.5, in which the transient is completely
damped.

From these pictures, we can draw several conclusions. First, even if the two methods are both of classical order 3,
they behave quite differently, in the nonstiff regime (for which λh is small) as well as in the stiff. We also observe that
the error depends not only on the stepsize h, but also of the stiffness parameter λ and of the initial values. Unfortunately,
this behaviour can not be completely understood by a classical local error analysis, neither by a standard stability
analysis.

In this paper, we will first describe two different strategies for solving stiff-nonstiff problems. In Sect. 3 an alterna-
tive local error analysis is presented, although details are only given for the linear problems. A simple numerical test
verifies the theoretical results.

2 Stiff-nonstiff problems

Given the problem
y′ = fS(t, y) + fN (t, y), y(t0) = y0, (1)

where fS corresponds to the stiff term and fN to the nonstiff. Such problems arise frequently from discretization
of partial differential equations (PDEs) of advection-diffusion-reaction type, see e.g. [7]. In this paper we will put
emphasis on semilinear problems

y′ = Ly + fN (t, y) y(t0) = y0, (2)

coming from e.g. the discretization of semilinear parabolic equations or the Schrödinger equation. In the following, we
will present two different strategies for solving such problems.

∗Invited paper at SCEE-2004
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Table 1. IMEX3: A third order, L-stable IMEX-RK method

0 0 0 0 0 0
1
2

0 1
2

0 0 0
2
3

0 1
6

1
2

0 0
1
2

0 − 1
2

1
2

1
2

0

1 0 3
2

− 3
2

1
2

1
2

1 0 3
2

− 3
2

1
2

1
2

,

0 0 0 0 0 0
1
2

1
2

0 0 0 0
2
3

11
18

1
18

0 0 0
1
2

5
6

− 5
6

1
2

0 0

1 1
4

7
4

3
4
− 7

4
0

1 1
4

7
4

3
4
− 7

4
0

2.1 Implicit-explicit Runge-Kutta methods

The strategy of applying an implicit scheme for fS and an explicit one for fN is the idea behind implicit-explicit
(IMEX) methods. Multistep methods as well as one-step methods have been constructed this way. In this paper, we
restrict ourself to IMEX Runge-Kutta (IMEX-RK) schemes as defined in [1, 10]. One step of an s-stage IMEX-RK
scheme applied to (1) is given by

Y1 = y0,

Yi = y0 + h

i∑
j=1

aijfS(t0 + cjh, Yj) + h

i−1∑
j=1

âijfN (t0 + cjh, Yj), i = 2, · · · , s,

y1 = y0 + h

s∑
i=1

bifS(t0 + cih, Yi) + h

s∑
i=1

b̂ifN (t0 + cih, Yi), (3)

where the coefficients are given in the following tableaux

0 0 0 0 · · · 0

c2 a21 a22 0 · · · 0

c3 a31 a32 a33 · · · 0
...

...
...

...
. . .

...
cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs

,

0 0 0 0 · · · 0

c2 â21 0 0 · · · 0

c3 â31 â32 0 · · · 0
...

...
...

...
. . .

...
cs âs1 âs2 âs3 · · · 0

b̂1 b̂2 b̂3 · · · b̂s

,

or in short form as
c A

bT
,

c Â

b̂T
.

A third order, L-stable scheme, proposed in [1] is given in Table 1. Sometimes it might be useful to write IMEX-RK
methods applied to the semilinear problem (2) as
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Y = (Ims − hA⊗ L)−1(�s ⊗ y0) + (Ims − hA⊗ L)−1fN (t0 + ch, Y ),

y1 = r(hL)y0 + h(b̂T ⊗ Im + (bT ⊗ L)(Ims − hA⊗ L)−1)fN (t0 + ch, Y ), (4)

where Y = [Y T
1 , · · · , Y T

s ]T , fN (t0 + ch, Y ) = [f(t0 + c1h, Y1)
T , · · · , f(t0 + csh, Ys)

T ]T , � = [1, 1, · · · , 1]T , s
refers to the number of stages and m to the dimension of the problem (1). Further, r(z) = 1 + zbT (Is − zA)−1�s is
the stability function for the implicit method.

2.2 Exponential integrators

Exponential integrators are mostly constructed to solve problems of the form (2). The idea behind these integrators
dates back to the sixties, but has not been considered practical since the schemes involve computation of matrix expo-
nential functions. Using modern techniques, such functions can now be computed quite efficiently, see [13] and [9].
The latter pays particular attention to stable computations of the exponential function of which exponential integrators
are composed. Today exponential integrators are enjoying a renaissance, numerical comparisons reveal several exam-
ples where they outperform standard integrators. A nice introduction to the idea of exponential integrators can be found
in [3, 6], see also the review paper [12].

In the presentation of exponential integrators, we will frequently use the following function

φq(hL) =
1

(q − 1)!

1

hq
ehL

∫ h

0

e−τLτ q−1dτ,

or

φq(z) =
1

zq

(
ez −

q−1∑
j=0

zj

j!

)
, q = 1, 2, · · · . (5)

Note that φq is an analytic function of z and φq(0) = 1
q!

.
Exponential integrators can be considered as approximations of the variation-of-constants formula, which gives

the exact solution of (2) as

y(t0 + h) = ehLy0 + ehL

∫ h

0

e−τLfN (t0 + τ, y(t0 + τ))dτ. (6)

A first order method can be derived by using fN ≈ fN (t0, y0). Inserting this into (6) gives an exponential forward
Euler method

yfe
1 = ehLy0 + hφ1(hL)f(t0, y0). (7)

This result can be improved by using

fN ≈ fN (t0, y0) +
t− t0

h
(fN (t0 + h, yfe

1 ) − fN (t0, y0))

which, when inserted into (6) gives

yimp
1 = ehLy0 + hφ1(hL)fN (t0, y0)

+ hφ2(hL)(fN (t0 + h, yfe
1 ) − fN (t0, y0)). (8)

In general, explicit exponential Runge-Kutta integrators are given by

Yi = ecihLy0 + h

i−1∑
j=1

aij(hL)fN (t0 + cjh, Yj), i = 1, 2, · · · , s,

y1 = ehLy0 + h

s∑
i=1

bi(hL)fN (t0 + cih, Yi). (9)

where the method coefficients are exponential functions evaluated at hL. Table 2 presents two third order exponential
RK methods. The first, called CM3, was proposed by Cox and Matthew in [3]. The second, HO3C, was presented in a
talk by Hochbruck and Ostermann, [5].

By comparing (4) and (9) we observe that both IMEX-RK and explicit exponential RK methods can be written in
the general form
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Table 2. Exponential Runge-Kutta methods of order 3

Cox and Matthew: CM3

0 1 0
1
2

ez/2 1
2
φ1(

z
2
)

1 ez −φ1(z) 2φ1(z)

0 ez φ1(z) − 3φ2(z) + 4φ3(z) 4φ2(z) − 8φ3(z) −φ2(z) + 4φ3(z)

Hochbruck and Ostermann: HO3C

0 1 0
1
3

ez/3 1
3
φ1(

z
3
)

2
3

e2z/3 0 2
3
φ1(

2z
3

)

ez φ1(z) − 3
2
φ2(z) 0 3

2
φ2(z)

Yi = χi(hL)y0 + h

i−1∑
j=1

αij(hL)fN (t0 + cjh, Yj), i = 1, 2, · · · , s,

y1 = r(hL)y0 + h

s∑
i=1

βi(hL)fN (t0 + cih, Yi). (10)

where the coefficients are given in the tableau

0 χ1(z)

c2 χ2(z) α21(z)

c3 χ3(z) α31(z) a32(z)
...

...
...

...
. . .

cs χs(z) αs1(z) αs2(z) · · · αs,s−1(z)

r(z) β1(z) β2(z) · · · βs−1(z) βs(z)

or short as
c χ(z) A(z)

r(z) βT (z)
.

The coefficients are either exponential or rational functions evaluated in hL. Other methods might fit into this formu-
lation as well. For the two schemes in question, the coefficients are given by

IMEX

χ(z) = (Is − zA)−1
�s

r(z) = 1 + zbT (Is − zA)−1
�s

A(z) = (Is − zA)−1Â

βT (z) = zbT (Is − zA)−1Â + b̂T ,

ExpRK

χ(z) = ecz

r(z) = ez

A(z) = A(z)

βT (z) = b(z)T .

This general formulation will be used in the local error analysis of the next section.

3 Local error analysis

In this section, we illustrate the error behaviour of the methods by studying a single Fourier component of a linear
problem, represented by

y′ = λy + f(t), y(t0) = y0, λ ∈ C
−, |λ| >> 1. (11)

The exact solution of (11) is given by

y(t0 + h) = eλhy0 + eλh

∫ h

0

e−λτf(t0 + τ)dτ.
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Table 3. Weight functions for the linear problem

q φq(z) ψq(z)

IMEX3 CM3 HO3C

0 ez 8(z3−6z+6)

3(z−2)4
ez ez

1 ez−1
z

−3z3+32z2−72z+48
3(z−2)4

ez−1
z

ez−1
z

2 ez−1−z
z2

−25z2+84z−72
18(z−2)3

ez−1−z
z2

ez−1−z
z2

3
ez−1−z− z2

2
z3

−27z2+100z−96
72(z−2)3

ez−1−z− z2
2

z3
ez−1−z

3z2

4
ez−1−z− z2

2 − z3
6

z4
−89z2+364z−384

1296(z−2)3
(6−z)ez−6−5z−2z2

12z3
2(ez−1−z)

27z2

Taking the Taylor expansion of f(t0 + τ) around τ = 0 and integrating each term separately gives

y(t0 + h) = ezy0 +

∞∑
q=1

φq(z)h
qf (q−1)(t0), z = λh, (12)

and φq(z) is given by (5). In the case of Re(λ) << 0, the solution will be attracted to a slow solution manifold, given
by

ys(t) = −
∞∑

q=1

f (q−1)(t)

λq
. (13)

A series similar to (12) can be derived for the numerical solution. Applying (10) on (11) and replacing f by its Taylor
expansion gives

y1 = r(z)y0 + h

s∑
i=1

βi(z)f(t0 + cih) = r(z)y0 +

∞∑
q=1

ψq(z)h
qf (q−1)(t0), (14)

where

ψq(z) =
1

(q − 1)!

s∑
i=1

βi(z)c
q−1
i .

For convenience we will use the notation φ0(z) = ez and ψ0(z) = r(z). Table 3 lists the functions φq as well as ψq

for the methods given in Table 1 and 2.
The local truncation error is given by

y(t0 + h) − y1 = E0y0 +

∞∑
q=1

Eq(z)h
qf (q−1)(t0), (15)

where the error functions Eq are given by
Eq(z) = φq(z) − ψq(z).

Obviously, the error is of order p + 1 independent of the stiffness parameter λ if

Eq(z) = 0, q = 1, 2, · · · p,

and for the three methods under consideration

pIMEX3 = 0, pCM3 = 3 and pHO3C = 2.

Only the IMEX method has a local error depending on the initial value y0. IMEX methods approximate the exponential
ez by a rational function r(z), thus E0 ∼ λρ+1hρ+1 for some ρ. This term usually dominates the error when λ is large.
However, if the initial value is on the smooth manifold, then y0 in (15) can be replaced by ys(t0) given in (13), thus

y(t0 + h) − y1 =

∞∑
q=1

Ẽq(z)h
qf (q−1)(t0),

with Ẽq = Eq − E0/z
q . For IMEX3 these terms are
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Ẽ1 = 0, Ẽ2 =
7z3 − 8z2

18(z − 2)4
, Ẽ3 =

−9z3 + 62z2 − 64z

72(z − 2)4
, · · ·

giving p̃IMEX3 = 2. In the following, we will use the term IMEX3(s) to denote the situation when the initial value is on
the slow manifold.

Examination of the error functions in the extreme cases, like the nonstiff, the strongly damped and the highly
oscillatory case, gives further insight into the behaviour of the local error.

The nonstiff case

This situation is characterised by |z| small and the error functions can be studied in terms of their series expansions.
For the methods in question, the dominant terms of Eq are given by

q IMEX3 IMEX3(s) CM3 HO3C

0 1
48

z4 + O(z5) 0 0 0

1 1
48

z3 + O(z4) 0 0 0

2 − 1
144

z2 + O(z3) − 1
36

z2 + O(z3) 0 0

3 − 5
144

z + O(z2) − 1
18

z + O(z2) 0 − 1
72

z + O(z2)

4 1
216

+ O(z) − 7
432

+ O(z) 1
720

+ O(z) 1
216

+ O(z)

.

By inserting this into (15), keeping in mind that z = λh, we obtain the following expressions for the local error:

y(x0 + h) − y1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λ4

48
y0 + λ3

48
f − λ2

144
f ′ − 5λ

144
f ′′ + 1

216
f ′′′)h4 + O(h5) for IMEX3

(−λ2

36
f ′ − λ

18
f ′′ − 7

432
f ′′′)h4 + O(h5) for IMEX3(s)

( λ
720

f ′′′ − 1
2880

f (4)(t0))h
5 + O(h6) for CM3

(− λ
72

f ′′ + 1
216

f ′′′)h4 + O(h5) for HO3C

.

The error terms all depend on some power of λ. Since |λ| >> 1 by assumption, we will prefer this power to be as
small as possible. In this sense the exponential integrators outperform the IMEX method in the transient case. The
situation improves significantly in the slow case, but still the error is ∼ λ2 for the IMEX method while it is ∼ λ for
the exponential methods. The order of the local error of CM3 is one more than expected, and the error constants are
about 1/10 of those for HO3C. However, the higher order only occurs in the linear case, for a nonlinear problem the
order reduces to 4.

Rapid decay

In this case we assume Re(z) << 0, such that all transients represented by exponential functions are completely
damped. In this case it makes sense to write the error functions as inverse power series of z. The dominant terms of Eq

are given by
q IMEX3 IMEX3 (s) CM3 HO3C

0 − 8
3z

+ O( 1
z2 ) 0 0 0

1 − 8
3z2 + O( 1

z3 ) 0 0 0

2 7
18z

+ O( 1
z2 ) 7

18z
+ O( 1

z2 ) 0 0

3 − 1
8z

+ O( 1
z2 ) − 1

8z
+ O( 1

z2 ) 0 − 1
6z

+ O( 1
z2 )

4 − 127
1296z

+ O( 1
z2 ) − 127

1296z
+ O( 1

z2 ) − 1
12z2 + O( 1

z3 ) − 5
54z

+ O( 1
z2 )

.

The local truncation error behaves as

y(t0 + h) − y1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(− 8
3λ

y0 − 8
3λ2 f) 1

h
+ O( 1

λ2h2 + h
λ
) for IMEX3

7
8λ

hf ′ + O( 1
λ2 + h2

λ
) for IMEX3 (s)

− 1
12λ2 h

2f ′′′ + O( h
λ3 + h3

λ2 ) for CM3

− 1
6λ

h2f ′′ + O(h3

λ
+ h

λ2 ) for HO3C

.

In the transient case the error of IMEX3 goes as ∼ 1/h. The error increases as the stepsize decreases! This phenomenon
is known from the literature as “the hump”. The situation is improved in the slow case, but still the IMEX method has a
local error of one order less than the two exponential RK-methods. For very stiff problem, the 1/λ2 behaviour of CM3
is an advantage.
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Fig. 2. Local error in the rapid decay case

Rapid oscillations

In this situation, we assume |z| large and λ purely imaginary. The IMEX3 method is not constructed for solving
oscillatory problems, so its behaviour is not considered here. For the two exponential RK-methods, the exponentials
will represent rapid oscillations in the error functions which are dominated by the terms:

q CM3 HO3C

3 0 − 1
6z

+ O( 1
z2 )

4 ez−1
12z2 + O( 1

z3 ) − 5
54z

+ O( 1
z2 )

.

The absolute value of the local truncation error is

|y(t0 + h) − y1| =

⎧⎪⎨
⎪⎩

1
12|λ|2 Mh2f ′′′(t0) + O( h3

|λ|2 + h
|λ|3 ), M ∈ [0, 2] for CM3

1
6|λ|h

2f ′′(t0) + O( h3

|λ| + h
|λ|2 ) for HO3C

.

Both methods have local errors of order 2. But again, the 1/λ2 term for the CM3 method results in very small errors
for stiff systems.

The theoretical results can be verified by the following example:

Example 1. Consider the equation
y′ = λy + et, y(0) = y0,

with exact solution

y(t) = eλty0 +
eλt − et

λ− 1
.
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Fig. 3. Local error in the rapid oscillation case

Figure 2 shows the local error in the rapid decay case, both in the transient and the slow case. Figure 3 shows the local
error in the highly oscillatory case. Both verify the theoretical results.

A analysis of the error behaviour of exponential RK methods applied to the nonlinear equation

y′ = λy + f(t, y), y(t0) = y0

can be found in [11], using B-series and rooted trees. These results can be extended to the IMEX-RK methods. As ex-
pected from the example in the introduction and Fig. 1 the error depends on the initial value y0 also for the exponential
RK methods, and we get a completely different error behaviour depending on whether the initial value is on the smooth
manifold or not. The results for the present methods are shortly summarised in the following, where we have used the
notation METHOD(s) for the case of initial value on the smooth manifold:

For the nonstiff case get

y(t0 + h) − y1 =

⎧⎨
⎩

O(λ4h4) / O(λ2h4) for IMEX / IMEX(s),

O(h4 + λ4h5) / O(h4 + λ2h5) for CM3 / CM3(s),

O(λ3h4) / O(λh4) for HO3C / HO3C(s),

and in the rapid decay case the results become

y(t0 + h) − y1 =

⎧⎪⎨
⎪⎩

O( 1
λh

) / O(h
λ
) for IMEX / IMEX(s),

O( 1
λ2h

) / O( 1
λ3 + h2

λ2 ) for CM3 / CM3(s),

O( 1
λ
) / O(h2

λ
) for HO3C / HO3C(s).

The investigation of a single Fourier mode, linear or nonlinear, will certainly not necessarily give a representative
solution of more complex equations. But it is a quite straightforward tool to reveal certain characteristic properties of
a method. Different approaches to error analysis can be found in [6, 2].

4 Remarks

The main practical question will probably be how the exponential RK methods compare when applied to space dis-
cretized partial differential equations, like (2). Several papers have appeared recently, comparing different exponential
integrators applied to certain test problems. But to my knowledge, no direct efficiency comparisons between exponen-
tial RK methods and IMEX-RK methods has so far been published. However, Kassam [8] has in his thesis performed
numerous experiments comparing different methods for time-stepping of partial differential equations, among them an
exponential RK method and a multistep IMEX method, both of order 4. Kassam observe that among these methods,
the exponential RK methods is far the most stable and is able to solve problems for which the IMEX method fails.
What efficiency concerns, the picture is less clear. For problems in 1D or in the case for which L is diagonal, gener-
ally the result of a Fourier spectral discretization, the exponential RK method seems to be superior both in accuracy
and efficiency. When L is a full matrix, this is no longer necessarily the case. Most exponential integrators are imple-
mented in a fixed stepsize regime, this allows for an explicit implementation once the appropriate preprocessing has
been done. Kassam reports that the startup time for the exponential integrators can be up to 10 times larger than that of
the multistep IMEX method. It is then an open question whether exponential integrators will be efficient when variable
stepsizes are allowed when L is a full matrix. However, the efficiency might be improved by Krylov approximations
for the exponential functions as proposed by [4].

As a conclusion, carefully constructed exponential RK methods can be a promising candidate for time-stepping
of some PDEs, due to their improved error behaviour and stability properties. But to be efficient on a broad range of
problems, there are still unsolved implementation issues.
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1 Introduction

In the recent past, the interest in quantum hydrodynamic models for semiconductors has increased considerably. In fact,
classical fluid dynamical models fail to be adequate for new generations of semiconductor devices, where quantum
effects tend to become not negligible or even dominant (see [6] and the references therein). This paper is particularly
devoted to multi-band quantum models, introduced to describe the Resonant Interband Tunneling Diode (RITD) [5, 11].
In section 2 we review briefly two-band quantum models for semiconductors arising from the Bloch envelope theory
[7, 10]. In section 3 we present a new Madelung-like hydrodynamical formulation for the previous models, based on
a suitable definition of osmotic and current velocities. This method has been applied in [1] to the Kane model. We
conclude this paper with a thorough physical discussion of the models, with some numerical experiments showing the
different description of the interband resonant tunneling of the previous models.

2 The envelope function models

In quantum mechanics the motion of an electron is described by a quantum Hamiltonian operator, which governs the
evolution of a wave function Ψ , whose modulus n(x, t) := |Ψ(x, t)|2 represents the probability density of finding the
electron at the position x and time t. Since we are interested in modeling multi-band quantum effects, it is necessary
to introduce quantum densities for each band, with a possibly clear physical meaning. Then, the tunneling process will
be described by an operator which is non-diagonal with respect to the band index. In view of this, the effective mass
formalism, and in particular the k ·p envelope function method, seems to be the natural framework for multi-band
analysis [12].

The basic idea behind k ·p theory is that we do not need to calculate the evolution of the full wave function to
obtain the trajectory of an electron through the crystal but it is sufficient to calculate the evolution of the so-called
envelope function, a smooth function which is obtained by replacing Ψ by its average in each primitive cell. So, the
microscopic structure of the full wave function is not relevant.

The application of the k ·p theory gives rise to models which differ both by the choice of the set of basis functions,
and by the approximation procedure. Generally speaking, k ·p models arise from perturbative methods where the
crystal momentum k is considered a “small” quantity. Typically, this analysis applies when k = 0 is a stationary point
(the Γ point) for the dispersion relation of the band, since the momentum of the electron is localized around this point.
Different sets of basis functions are generated by using suitable projection operators on the Bloch basis in such a way
that the new basis elements “approach” the original Bloch waves as |k| tends to zero. The most common choice of k ·p
basis was proposed by Kane (in its pioneering paper of 1956 [7]) with the aim of approximating the periodic part of
each Bloch function by its value at the Γ point. In spite of its simplicity, this choice fails to give an adequate physical
interpretation of tunneling phenomena. To overcome this difficulty, other choices have been proposed in literature [9].
In particular, in this paper, we refer to the Multi-band Envelope Function (MEF) model [10].

Since every k ·p model involves a full coupling among all unperturbed bands, to retain only those terms which
are well localized into the bands of interest, a cutoff is employed in the expansion of the solution Ψ . In semiconductor
devices, the current is mainly generated by transport of electrons in conduction band and in light hole valence band,
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thus it is customary to approximate the wave function Ψ solely by its conduction and valence components, denoted
here ψc and ψv , respectively.

Irrespectively of the choice of the basis, the conduction and valence components are determined by solving a
Schrödinger-like equation of the form

i�
d

dt

(
ψc

ψv

)
= H

(
ψc

ψv

)
, (1)

where H is an approximation of a full-band Hamiltonian. Its diagonal components correspond to uncoupled bands, and
the off-diagonal terms account for interband effects. This type of approximation can be performed in different ways
[4], and the method of approximating the Bloch basis affects the specific form of H deeply, not only from a formal
point of view, but also from a physical one.

Using the classical Kane basis, Ψ can be approximated by

Ψ(x, t) � ψK
c (x, t)uK

c (x) + ψK
v (x, t)uK

v (x). (2)

Here, uK
a is the periodic part of the Bloch function ba(k, x), a = c, v, evaluated at k = 0. Instead, the MEF model

uses an expansion in the Wannier basis, approximating the conduction and valence components up to the first order in
|k| [10]. Then, Ψ can be approximated by

Ψ(x, t) � ψM
c (x, t)uM

c (x) + ψM
v (x, t)uM

v (x). (3)

It is well known that each Wannier basis element arises from applying the Fourier transform to the Bloch functions
related to the same band index n. The envelope functions ψM

c and ψM
v are the projections of Ψ on the Wannier basis,

and therefore the corresponding multi-band densities represent the (cell-averaged) probability amplitude of finding an
electron on the conduction or valence bands, respectively.

This simple picture does not apply to the Kane model. In fact, in the Kane approach, the periodic part un(k, x) of
each element of the Bloch basis, bn(k, x) = eikxun(k, x), is projected on the same basis but calculated for k = 0.
Thus, the generic element of the Kane basis, defined by bK

n (k, x) = eikxuK
n (0, x), is no more linked to the Bloch

basis by a diagonal transformation. This fact can be simply verified by introducing a unitary operator Θn,n′ such that
un(k, x) =

∑
n′ Θn,n′(k)uK

n′(0, x). Then, we have

bn(k, x) = eikxun(k, x) =
∑
n′

eikxΘn,n′(k)uk
n′(0, x) =

∑
n′

Θn,n′(k)bK
n′(k, x).

Θn,n′ written for two bands and approximated up to the first order in |k| is

Θn,n′(k) = δn,n′ +
�

2

m0

∑
n	=n′

Pn,n′

En − En′
k. (4)

At the envelope function level, (4) implies that Kane envelope functions and MEF envelope functions are connected
by the relation ψK

a =
∑

b
Θb,aψ

M
b . Using transformation (4) at the first order in |k|, we can write explicitly [10]

ψK
a = ψM

a + i
�

2

m0

∑
b	=a

Pa,b

Ea − Eb
∇ψM

b . (5)

Going back to (1), for the Kane model the Hamiltonian takes the form

H = HK :=

⎛
⎜⎜⎜⎝

− �
2

2m0
∆ + Ec + V − �

2

m0
P · ∇

�
2

m0
P · ∇ − �

2

2m0
∆ + Ev + V

⎞
⎟⎟⎟⎠ , (6)

where Ec is the minimum of the conduction band energy, Ev is the maximum of the valence band energy, m0 is the
bare electron mass and P := Pc,v is the coupling coefficient between the two bands given by the matrix element of the
gradient operator between uK

c and uK
v [7, 3].

For the MEF model in a semiconductor with isotropic effective mass tensor, the Hamiltonian is

H = HM :=

⎛
⎜⎜⎜⎝

− �
2

2m∗
c
∆ + Ec + V −�

2P · ∇V

m0Eg

−�
2P · ∇V

m0Eg

�
2

2m∗
v
∆ + Ev + V

⎞
⎟⎟⎟⎠ , (7)

where Eg = Ec − Ev and m∗
c , m∗

v are the effective masses for the conduction and valence bands, respectively. In the
following we will assume m∗

c = m∗
v = m∗ and, for simplicity, we will focus on one-dimensional systems.
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3 Hydrodynamic models

In this section, following the technical procedure proposed in [1], we compare the hydrodynamic formulations of the
Kane and MEF models.

In general, we expect a straightforward extension of the hydrodynamical formalism for a single-band semicon-
ductor to multi-band framework, provided that each component of the wave function behaves like the electron wave
function in a single-band whenever no interband effects are present.

In this work we apply the WKB method, which is a standard way to write the Schrödinger equation in hydrody-
namic form [6]. Extending this approach to two-band models, we look for solutions to the system (1), written with
H = HA, A = K,M (see (6) and (7)), of the form

ψA
a (x, t) :=

√
nA

a (x, t) exp

(
imA

�
SA

a (x, t)

)
, a = c, v , (8)

with mK = m0, mM = m∗. In the following, we will not specify the attributions of the indices a and A. The squared
amplitude nA

a can be immediately regarded as a probability density of the electron in the band a, and the gradient of the
phase corresponds to the velocity of the electron in the same band. We remark that both nM

c + nM
v = |ψM

c |2 + |ψM
v |2

and nK
c + nK

v = |ψK
c |2 + |ψK

v |2 can be interpreted as approximations of the true total density number of electrons,
which in principle are different, due to the different type of expansion used in the Kane and MEF approaches. Using
(8), we can transform system (1), written with H = HA, for the variables ψA

a , to a formally equivalent system for
the variables nA

a , SA
a . To derive a hydrodynamical formulation of (1), we introduce the complex velocities uA

a :=
�

mA ∇ logψA
a , and write

uA
a = uA

os,a + iuA
el,a :=

�

mA

∇
√

nA
a√

nA
a

+ i∇SA
a . (9)

The real and imaginary parts of uA
a are named osmotic velocities and current velocities, respectively. Also, we

introduce the electron current densities JA
a := �

mA Im (ψA
a ∇ψA

a ) = nA
a uA

el,a and the interband particle densities

nA
cv = nA

vc = ψA
c ψA

v =
√

nA
c

√
nA

v eiσA

, with σA := mA

�
(SA

v − SA
c ).

Using the above definitions in (1), we can derive equations for the particle densities nA
c , nA

v , and the currents JA
c ,

JA
v ,

∂nA
c

∂t
+ ∇·JA

c = SA
cv ,

∂nA
v

∂t
+ α∇·JA

v = SA
vc , (10)

∂JA
c

∂t
+ div

(
JA

c ⊗ JA
c

nA
c

)
+

nA
c

mA
∇
(
Ec + V + V A

c + V A
cv

)
= SA

cv
JA

c

nA
c

, (11)

∂JA
v

∂t
+ α div

(
JA

v ⊗ JA
v

nA
v

)
+

nA
v

mA
∇
(
Ev + V + αV A

v + V A
vc

)
= SA

vc
JA

v

nA
v

, (12)

with α = 1 for the Kane model and −1 for the MEF model. Here, V A
a = − �

2∆
√

nA
a

2mA
√

nA
a

are the Bohm potentials for

each band, the interband potentials V A
ab are given by

V K
cv = −� Re

(
nK

cvP ·uK
v

nK
c

)
, V K

vc = � Re

(
nK

vcP ·uK
c

nK
v

)
,

V M
cv = V M

vc = − �
2P ·∇V

m0EgnM
c

Re nM
cv ,

and we have introduced

SK
cv = −2 Im

(
nK

cvP ·uK
v

)
, SK

vc = 2 Im
(
nK

vcP ·uK
c

)
,

SM
cv = −SM

vc = −2�P ·∇V

m0Eg
Im nM

cv .

In order to close the system and obtain an extension of the classical Madelung fluid equations, we need to add an
equation for σA,

�

mA
∇σA =

JA
v

nA
v

− JA
c

nA
c
. (13)
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Fig. 1. Band diagram of the simulated heterostructure.
The dotted line denotes the energy of the resonant state
in the valence quantum well

Fig. 2. Plot of the transmission coefficient of the het-
erostructure as a function of the Einc

Summing the equations for the densities, we obtain the balance law for the total density (continuity equation). We
see that for the MEF model, the total current is the sum of the currents for valence and conduction band. In the Kane
model, the continuity equation reads

∂

∂t
(nK

c + nK
v ) + ∇·(JK

c + JK
v + 2

�

m0
P ImnK

cv) = 0.

The appearance of an additional interband term for the current is an indication of the inadequacy of the Kane-based
hydrodynamical model. This topic will be discussed in details in the following section.

4 Numerical results

In this section we show some numerical results arising from the two proposed approaches. Our aim is to show that a
more direct physical meaning can be ascribed to the hydrodynamical variables derived from the MEF approach.

We consider a heterostructure which consists of two homogeneous regions separated by a potential barrier and
which realizes a single quantum well in valence band. In Fig. 1 we have marked the energy of resonant state Eris =
0.066 eV , which is given by the solution of an eigenvalue problem for the Hamiltonian operator. In our simulation, we
have used the following parameters: Eg = Ec − Ev = 0.16 eV , m∗ = 0.023 m0, P = 5 · 109m−1.

A conduction electron beam (i.e. a plane wave envelope function with positive momentum k and energy �
2k2/2m∗

+Ec) is injected in the heterostructure from the left. Then, the analytical solution for eq. (1) in the regions x < 0 and
x > L is explicitly given by ψ = e−iEinct/�ψA were

ψA =

⎧⎨
⎩

eA
c

{
eikx + rc e−ikx

}
+ eA

v rv eikrvx, x ∈ (−∞, 0]

A = M,K

eA
c tc eikx + eA

v tv e−ikrvx, x ∈ [L,∞)

where ψA =

(
ψA

c

ψA
v

)
, krv = − i

�

√
2m∗(Einc − Ev), and eA

c , eA
v are unitary vectors defined as follows:

eM
c =

(
1

0

)
, eM

v =

(
0

1

)
for the MEF model, and eK

c =

⎛
⎝
√√

η+Eg

2
√

η

i
√√

η−Eg

2
√

η

⎞
⎠, eK

v =

⎛
⎝
√√

η−Eg

2
√

η

−i
√√

η+Eg

2
√

η

⎞
⎠, with

η = E2
g + 4

�
2k2P 2

m2
0

, for the Kane model. Furthermore, rc(tc) and rv(tv) are the reflection (transmission) coeffi-

cients in the conduction and valence bands, respectively. They depend on the detailed shape of the heterostructure, and
are numerically evaluated by a Runge-Kutta scheme which solves directly the eigenvalue problem related to eq. (1),
obtained, as usual, by formally replacing i� d

dt
with E [8] .

We calculate the envelope function solution in the region 0 < x < L for incremental values of the electron beam
energy. The results are plotted in Fig. 3-8 (left-hand side for the MEF model, and right-hand side for the Kane model).

When the electron energy is well below of the resonant energy Eris (Fig. 3-4) the incident conduction plane wave
is reflected: rc approaches 1 and, consequently, the transmission coefficient tc tends to 0. In this case the valence states
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are almost unexcited and a small amount of charge cumulates in the valence quantum well. Instead, when the electron
energy approaches the resonant level, the transmission coefficient enhances and the electron can travel from the left to
the right of the heterostructure by using the bounded valence resonant state as a “bridge” state. Identifying ψM

c and
ψM

v with the components of the electron wave function in conduction and valence band, it is immediate to verify how
their behaviour reflects the previous considerations.

Further, since in the MEF model the coupling coefficient of conduction and valence band is proportional to ∇V ,
interband current flow arises only in proximity of the interfaces, when both ψM

c and ψM
v are not vanishing.

On the other hand, even in absence of an external potential, when no interband transition can occur, the Kane
model exhibits a coupling of all the envelope functions. Then, the naive interpretation of the envelope functions which
we have ascertained for the MEF model, cannot be directly extended to the Kane model.
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Mixed Finite Element Numerical Simulation of a 2D Silicon
MOSFET with the Non-Parabolic MEP Energy-Transport Model
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Abstract The Mixed Finite Element scheme presented in [Raviart et al. (1997), Marrocco et al. (1996)] is used to sim-
ulate a 2D silicon MOSFET with a consistent energy-transport model for electron in semiconductors, free of any fitting
parameters, formulated on the basis of the maximum entropy principle (MEP) in [Anile et al. (1999), Romano (2000),
Romano (2001), Anile et al. (2003)]. Comparison with MC data shows the superiority of the model with respect to the
standard models known in literature.

Key words: semiconductors, energy-transport model, mixed finite elements, MOSFET

1 The MEP energy-transport model in the Kane dipersion relation case

In this section we give a cursory presentation of the Energy-Transport model based on MEP. For more details the
interested reader is referred to [Anile et al. (1999), Romano (2000), Romano (2001)].

One assumes that the conduction band is described around each minimum (valley) by the Kane dispersion relation
approximation

E(k)[1 + αE(k)] =
�

2k2

2m∗ , k ∈ R
3 (1)

where E is the electron energy, m∗ is the effective electron mass (which is 0.32 me in Silicon, with me the electron
mass in the vacuum), �k is the crystal momentum, � is the Planck constant divided by 2π and α is the non-parabolicity
factor (α=0.5 eV−1 for Silicon).

The energy-transport model, obtained for silicon semiconductor in [Romano (2001)] starting from the hydrody-
namical model based on the maximum entropy principle [Anile et al. (1999), Romano (2000)], is given by the follow-
ing set of balance equations for the electron density n and energy W , coupled to the Poisson equation for the electric
potential φ

∂n

∂t
+ div(nV) = 0,

∂(nW )

∂t
+ div(nS) − neV · ∇φ = nCW , (2)

ε∆φ = −e(ND −NA − n). (3)

where ND and NA are the donor and acceptor densities respectively, e is the elementary charge, ε is the dielectric
constant while div, ∇ and ∆ are the divergence, gradient and laplacian operators. The generation-recombination terms
are neglected because they are of the order of 10−9 sec while we will consider devices with characteristic time of
about few picoseconds. The evolution equations are closed with the constitutive relations for the velocity V and the
energy-flux S

V = D11(W )∇ logn + D12(W )∇W + D13(W )∇φ, (4)

S = D21(W )∇ logn + D22(W )∇W + D23(W )∇φ. (5)
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The elements of the diffusion matrix D = (Dij) read

D11 =
c22U − c12F

c11c22 − c12c21
, D12 =

c22U
′ − c12F

′

c11c22 − c12c21
, D13 = −e

c22 − c12G

c11c22 − c12c21
,

D21 =
c11F − c21U

c11c22 − c12c21
, D22 =

c11F
′ − c21U

′

c11c22 − c12c21
, D23 = e

c21 − c11G
(0)

c11c22 − c12c21
.

All the coefficients cij and the functions U , F , G depend on the energy W . The prime denotes derivative with respect
to W .

The energy production term has a relaxation form CW = −W−W0
τW

where τW is the energy relaxation time, which
depends also on W , and W0 = 3/2kBTL is the energy at equilibrium, with TL the lattice temperature, here assumed
to be constant.

The expressions of U , F , G, CW , cij , Dij have been obtained in [Anile et al. (1999), Romano (2000)] both
for parabolic band and Kane’s dispersion relation. In the case that the conduction energy bands of electrons are
described by the Kane dispersion relation, the expressions of U , F , G, CW , cij , Dij require a numerical evalua-
tion of some integrals and for them an analytical expression is not available. These computations have been done in
[Anile et al. (1999), Romano (2000)] and, in order to improve the efficiency of the simulation code, discrete data have
been approached by splines. For the details one can see [Anile et al. (2004)].

In our simulations the holes will be considered at equilibrium.
In order to use the numerical method we shown in section 2, the MEP Energy-Transport model must be formu-

lated in an equivalent form in the framework of linear irreversible thermodynamics in terms of the so-called entropic
variables. We skip all the details. The interested reader is referred to [Anile et al. (2004)].

First we introduce the quantities

Nc = 2(
2πkBm∗Tn

�2
)

3
2 , n = Nc(Tn) exp (e

φ + ϕn

kBTn
)

where ϕn is the so-called electron Fermi quasi-level and Tn is the absolute electron temperature, which outside of
equilibrium is assumed to be related to the energy lagrangian multiplier λW through the relation 1

Tn
= λW kB .

We want to transform, in the stationary case, the system (2)-(3) in the following form (the generation-recombination
effects have been neglected)

−div Jn = 0, −div JT
n + n

W −W0

τW
= 0, (6)

div D = e(ND −NA − n + p), Jn = A11∇
(
ϕn

Tn

)
+ A12∇

(−1

Tn

)
, (7)

JT
n = A21∇

(
ϕn

Tn

)
+ A22∇

(−1

Tn

)
(8)

where Jn is the electron current −eJn, D is the electric displacement vector and JT
n = −J u

n − φJn, with J u
n

energy-flux density.
By noting that

Jn = −enV = −en [D11∇ log n + D12∇W + D13∇φ] (9)

∇ logn =
1

n
∇n =

1

n
∇
[
Nc(Tn) exp

(
e
ϕn + φ

kBTn

)]
(10)

and comparing equations (9)-(10) with equations (7), we get

A11 = e2L11, A12 = −e2L11φ− en

kB

{
D11W − D12

dλW

dW

}
(11)

A21 = e2L11ϕn + eL21, A22 = e2L11ϕ
2
n + e(L21 + L12)ϕn + L22, (12)

where

L11 = −nD11

kB
, L12 = +

nD12

kB
dλW

dW

+
nD11

kB
(νn −W ) , L21 = −nD21

kB
+

nD11

kB
νn,

L22 = +
nD22

kB
dλW

dW

+
nD11

kB
νn (νn −W ) − L12 [(νn −W ) + νn] .

Here νn is a sort of chemical potential and it is given by νn = kBTn log n + kBTnF (W ), after introducing the
primitive (defined up to a constant) F (W ) =

∫
W dλW

dW
dW. Note that the matrix A is not symmetric, unless the

parabolic band approximation is adopted. However it is possible to prove that A is positive definite [Romano (2001)].
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0.4

Fig. 1. Schematic representation of a bidimensional MOSFET

Fig. 2. Stationary solution for the electron density in cm−3

2 Sketch of the numerical scheme

Let us recall some key features of such a numerical scheme. For more details see [Anile et al. (2004)].

• As mixed finite element approximation the classical Raviart-Thomas RT0 is used for space discretization (see
[Montarnal (1997), Marrocco et al. (1996), Brezzi et al. (1991)] for more details).

• Operator-splitting techniques for solving saddle point problems arising from mixed finite elements formulation
[Glowinski et al. (1989)].

• Implicit scheme (backward Euler) for time discretization of the artificial transient problems generated by operator
splitting techniques.

• A block-relaxation technique, at each time step, is implemented in order to reduce as much as possible the size of
the successive problems we have to solve, by keeping at the same time a large amount of the implicit character of
the scheme.

• Each non-linear problem coming from relaxation technique is solved via the Newton-Raphson method.

Concerning the block relaxation technique, three main steps have to be considered
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Fig. 4. The drain current ID versus the gate applied voltage VG) at VS = 0. The notation is as figure 3

• A step related to the Poisson equation for the computation of ϕk+1 and Dk+1 with the other unknowns, frozen at
the last known values, i.e. ϕk

p ,Jk
p ,ϕk

n,Jk
n,T k

n ,Jk
Tn

).
• A second step related to the hole continuity equation (if needed) for the computation of ϕk+1

p and Jk+1
p .

• A third step in which the variables ϕk+1
n ,Jk+1

n ,T k+1
n , Jk+1

Tn
are computed simultaneously.

The reasons of such a procedure are explained in [Montarnal (1997)] and are essentially the strong coupling between
the equations.
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3 Simulation of a 2D silicon MOSFET

In this section we check the validity of our energy-transport model and the efficiency of the numerical method by
simulating a bidimensional Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The shape of the device
is pictured in Fig. 1. The axes of reference frame are chosen parallel to the edges of the device. The silicon part of the
MOSFET is represented by the numerical domain [0, 0.4] × [0, 0.4] and at the top of the silicon part the silicon oxide
domain is [0.125, 0.275] × [0.4, 0.406] where the unit is the micron. The regions of high-doping n+ are the subset
[0, 0.1] × [0.35, 0.4] ∪ [0.3, 0.4] × [0.35, 0.4]. The contacts at the source and drain are 0.1µm wide and the contact
at the gate is 0.15µm wide. The distance between the gate and the other two contacts is 0.025µm. A grid of 4644
elements has been used: 3344 in the bulk zone, 343 in the n+ source zone, 357 in the n+ drain zone and 600 in the
oxide zone. The doping concentration, with abrupt junctions, is

nD(x) − nA(x) =

{
1018cm−3in the n+ regions
−1014cm−3in the p region

We assume ohmic contacts on the source, drain, gate and base while Neumann conditions are imposed on the remaining
part of the boundary. In order to reach the desired bias, Vd = 1.0 Vs = 0 and Vg = 0.5, we first compute the
equilibrium state and then use a continuation method on the applied potential. First, we go to Vd = 1.0 by steps of 0.1
Volt and after we go to Vg = 0.5 within two steps of 0.25 Volt. The total amount of computational time to reach the
desired bias for the simulation reported in the figures was about 18 minutes on a laptop computer IBM ThinkPad A31.

In Fig. (2) the stationary electron density is plotted. In Figs. (3)-(4) the characteristic curves obtained with the
MEP model are compared with those given by a MC simulation [Archimedes code] and by the standard energy
transport models known in literature: that derived by the spherical harmonic expansion [Ben Abdallah et al. (1996a),
Ben Abdallah et al. (1996b)], the Stratton one [Stratton et el. (1962)], that proposed by Chen et al [Chen et el. (1992)]
and by Lyumkis et al [Lyumkis et al. (1992)], the energy-transport limit of the hydrodynamical model of Blotekjaer-
Baccarani-Wordeman [Blotekjaer (1970), Baccarani et al. (1982)]. For the details the interested reader is referred to
[Anile et al. (2004)]. It is evident that the MEP model is the most accurate since it gives the results closest to the MC
data.
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Abstract This preliminary work concerns parameter extraction for electronic device circuit models. The reliability
of electronic circuit design simulators depends crucially on the validity of the parameters which appear in the circuit
models. These parameters must fit the measurements of a real device and measured data not be to sensitive to small
data perturbation (robustness). We compare standard fitting techniques and possible alternatives in order to investigate
the connection between fitting and robustness in parameter extraction.

1 Introduction

The reliability of electronic circuit design simulators depends crucially on the validity of the mathematical models
which are implemented in the simulators and on the accurate knowledge of the parameters which appear in the mathe-
matical models. The best values for the model parameters are found by fitting the measured data as closely as possible
to the simulated data in the sense of a suitable weighted l2 metric and this process is usually performed as a sequence
of optimizations, usually based on the Levenberg-Marquard algorithm, which require a good initial guess and yield
only local minima (corresponding to different set of parameters).
In this context two problems arise:

• When there several measurement curves (e.g. different components of the Y matrix for small signal analysis)
whether more accurate results could be obtained by applying the concepts of multi-objective optimization to the
different measurement curves instead of lumping them together in a single objective function.This seems to be the
case when fitting compact models to MOS devices DC measurements

• When several optima are obtained how to choose the most convenient set of parameter values.

We surmise that the criterion to use in order to choose among the several local minima must be related to the robustness
of the extracted parameters. In fact since the experimental data are subjected to measurement uncertainties, the para-
meters of choice must be the least sensitive to the data variations, a concept related to the Taguchi quality concept
[6]. In this paper we investigate both problems in the case of parameter extraction for a 3-cell inductor model. For two
algorithms (the third and the fourth), instead of the weighted l2 metric we use the multiobjective goal attainment metric
[3], which reflects better the multi-objective nature of the problem in this case (comparison of the elements of the Y
or S matrix of the circuit with the corresponding experimental data) For all algorithms we compute the variance of the
obtained minima in order to assess the robustness of the results.

2 The circuit

Inductor devices hold a fundamental role in the radiofrequency field and it is important to develop models which
represent the intrinsic characteristics correctly at every working frequencies.
In STMicroelectronics a new method was implemented which models a distributed integrated inductor on a buried
layer as a Spice model with its parameters determined by a suitable optimization algorithm [1].
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The inductor has the following structure:

Shape Number of turns Outer dim. (µm)
Octag. 2.5 200.0

Width (µm) Spacing (µm)
16.0 8.0

SiO2 Thick. (µm) Al Thick. (µm)
1.8 3.0

Table 1 - Test inductor dimensions
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Fig. 2. This figure shows the distributed circuit schema of the inductor

Figure 1 shows the base cell circuit of the inductor. The base cell considers the buried layer contribution through
the parallel between the resistor Rb and the capacity Cb. This split contribution is justified for the effects of the field
oxide and the epitaxy resistance. Likewise the sublayer contribution is split as showed in Fig. 1. It is also possible take
into account the skin effect with the equation

RL(f) = R0(1 + K1f
K2) (1)

where the coefficients K1 and K2 are referred to the physical characteristics of the material.
The cell is the base module of the distributed model showed in Fig. 2, where the inductor is represented through

a series of cells in order to characterize the high frequency behavior. The linking of these elementary cells is made by
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TMG initial estimation ADS Opsim

RL (Ω) 0.1548 1.47 0.21
LL (10−9H) 0.21 1.79 0.25
Rox1 (ohm) 20.41 10.27 4.60

Cox1 (10−12F ) 5.19 0.78 0.05
Rox2 (ohm) 17.67 8.87 0.0

Cox2 (10−12F ) 5.37 0.27 0.04
Rb1 (ohm) 16.49 0.56 6.57

Cb1 (10−12F ) 0.002 2.33 1.77
Rb2 (ohm) 0.6 0.58 0.03

Cb2 (10−12F ) 0.51 0.25 0.07
K1 0.6 0.3 0.3
K2 0.87 1.44 1.42

Table 2. Preliminary results of parameter extraction

a coupled net resulting from the contribution of the RL and L series. Finally Rin and Rout represent the contribution
due to the contact resistance.

Preliminary investigations have been carried out with commercial tools and in-house (STMicroelectronics) opti-
mization software and they have yielded different sets of parameters [2]. These results are summarized in Table 2. The
first column shows the initial estimation computed by the TMG fitting [5]. This fitting is based on a initial estimation
of the parameter. For instance we consider the inductor of the Fig. 1. This device is constructed on a silicon sublayer
without buried layer, thus the contribution of the parallel between Rb and Cb can be removed. This choice makes the
computation easier.

The parameter extraction for this device concerns the fitting estimation of 12 parameters that are shown in the
circuits Fig. 1. A set of Y -parameters are given in the range of frequency between 100 Mhz and 20 Ghz. These data
can be real measurements or given by an automatic simulation flow.

Notice that the capacitance effects represented by the CL parallel are negligible with respect to the device length
and to the frequencies taken into account.

Comparison of previous data (table 2) shows large variations of the extracted parameter. Causes of these behaviours
could be due to the non-homogeneous kind of variables (variables can converge with different speed rates) and to the
different merit functions of optimization in l2 which can find different balancing among errors.

Previous remarks compel us to consider the quality of results in the sense of robustness.

3 The algorithms

In order to test the robustness of the sets of parameters and also to investigate the performance of multi-objective
approaches the following four methods have been considered

• The function lsqnonlin of MATLAB (LSQ) [7] with the default option of large scale optimization, which uses the
subspace trust method based on the interior-reflective Newton method. The structure of the nonlinear least-squares
problem f(x) = 1

2
‖F (x)‖2

2 is exploited to enhance efficiency. In particular, an approximate Gauss-Newton di-
rection, i.e., a solution s to min ‖Js + F‖ (where J is the Jacobian of F ) is used to help to define the subspace
S. Second derivatives of the component function are not used (see Matlab documentation). This is a sophisticated
routine and similar algorithms are implemented in the commercial simulators used in the microelectronics industry.

• The DIRECT method (DIR), which is a global search method described in [4] and applies to Lipschitz continuous
functions and, after an initial implicit estimate of the Lipschitz constant chooses the potentially optimal rectangles
and resamples them along their axis. Afterward it divides these rectangles and proceed by sampling and dividing
until a stop criterion is met. This method exploits the estimation of Lipschitz constant to balance global and local
search and reaches a quasi-global solution in large domain.

• the fgoalattain function of MATLAB (MUL) [7] which is a multiobjective goal optimization algorithm and uses
sequential quadratric programming (SQP). The goal programming problem claims a set F ∗ = {F ∗

1 , F
∗
2 , . . . , F

∗
n}

of targets for the vector function
F (x) = {F1(x), F2(x), . . . , Fn(x)}.
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The relative degree of under- or overachievement of the goals is controlled by a vector of weighting coefficients,
w = {w1, w2, . . . , wn}, and is expressed as a standard optimization problem using the following formulation

min
γ∈R,x∈Ω

γ

such that Fi(x) − wiγ ≤ F ∗
i , i = 1, . . . , n

• The heuristic (HYB) combining few initial steps of DIRECT in order to obtain a reasonable initial guess and
subsequently fgoalattain. The first step detects a suitable region to start the fgoalattain method, which can use this
initial information to set up good constraint systems.

These algorithms were set up with a maximum number of 6500 function evaluations allowed and a termination
tolerance on the function value of 10−8. Generally the optimization process finished when reaching a small gradient
for the target function in advance. The mean error reached on each of these points is of the order of 10−3.

4 Results

A Montecarlo simulation tests are performed for each algorithm in order to compare the reliability of the methods.
Through the Montecarlo simulation it is possible to repeat virtually an experiment and to get a quality measure of
fitting robustness. The simulation starts with a initial fitting in order to identify a possible set of parameters x̃. This set
of parameter is used to synthesize a new surrogated set of data D

x̃
which are perturbed by a white noise. In this study

the noise is a gaussian error with µ = 0 and σ = 1
10

of data magnitude. This process mimics artificially the statistical
properties of real data. Then the fitting is processed on the surrogated data to get a new set of parameters. This kind of
artificial process is repeated many times to get a large class of parameters. Finally, classical statistics are performed on
this class of parameter set and confidence limits on parameters are calculated from these simulations.

Table 3 shows the results for each variable of 100 montecarlo simulations. Mean and standard deviation are shown
for each methods: LSQ stands for nonlinear least squares methods, DIR stands for global search DIRECT, MUL stands
for multiobjective goal programming and HYB stands for the combination of DIR and MUL. The column of standard
deviation shows the best results for DIRECT methods, which seems insensitive to the data variations.

It is apparent that the DIRECT algorithm selects the most robust set of parameters. It is well known that genetic
algorithms for global optimization are robust but the are much more computationally intensive than DIRECT.

The reasons of this result can be found in the interpretation of this kind of global search. DIRECT leads the
optimization towards a basin of convergence for the objective function. In this basin DIRECT can find good solutions
rather than optimal solutions but in this subregion there will be small variations of the objective function because the
Lipschitz constant will be small.

Table 3. Montecarlo simulation of the extraction parameter process. Synthetic sets has an additive Normal Error with
mean 0 and standard deviation of 1

10
of the range for each variables

Mean STD

LSQ DIR MUL HYB LSQ DIR MUL HYB

RL 4.88 1.51 8.86 1.03 2.50 0.15 2.33 0.16
LL (10−9) 2.41 1.53 3.34 1.72 2.04 0.09 3.29 0.73

Rox1 8.24 8.54 7.02 8.67 2.22 0.76 3.33 1.08
Cox1 (10−12) 0.38 0.25 0.82 0.96 0.23 0.05 0.35 0.15

Rox2 8.92 7.54 6.92 6.23 1.78 0.38 3.33 3.63
Cox2 (10−12) 0.42 0.06 0.92 0.003 0.25 0.004 0.2 0.02

Rb1 2 0.66 3.39 2.39 2.61 0.54 3.55 1.63
Cb1 (10−12) 0.76 0.92 0.38 0.26 0.24 0.04 0.37 0.26

Rb2 1.15 2.73 3.54 2.85 2.01 0.42 3.67 2.15
Cb2 (10−12) 5.3 0.93 0.34 0.68 0.27 0.42 0.36 0.23

K1 4.96 0.35 8.89 0.21 2.52 0.14 2.26 0.99
K2 4.93 1.44 6.98 1 2.47 0.13 2.14 0.0002
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These results bring forth the hypothesis that good solution must be found with a tradeoff between best fitting and
robustness of the solution. In this sense optimization methods must take into account these two aspects in order to find
solutions which are stable.

5 Conclusion

Previous tests show that:

• In this case the multi-objective approach in the sense of considering separately the various components of the Y
matrix, does not lead to improved performance over the case when the components are lumped together in a l2

metric.
• The DIRECT global optimization algorithm seems to be the most robust among those we have considered. It is

well known that genetic a algorithms are robust optimizers but they are also very demanding on the computational
resources. The DIRECT optimization algorithm seems to combine the required robustness with a limited demand
on the computational resources, at least for the type of problems we have considered here.

Since robustness is a major issue, a different multi-objective approach could be considerd, one in which the two
main objectives are the average and the variance of the l2 metric. These concepts are under current investigation and
the results will be reported elsewhere.
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Abstract Chua’s oscillator is a dynamical system by which it is possible to investigate chaos both from the theoretical
and the experimental point of view. Studying this system, many strange attractors have been observed and many routes
to chaos have been discovered. Furthermore generalizations of Chua’s oscillator have been found which present n-scroll
attractors. In this paper we propose a methodology for reading the complexity of such systems. We have analyzed the
bifurcation map of a system with a 4-scroll attractor and we have been able to perform sound analysis and synthesis of
its solutions and to construct 3D images and musical pieces which follow the relevant changes in the behavior of this
dynamical system.

1 Chua’s oscillator

Chua’s Oscillator has been widely investigated at experimental [ZA85] and numerical [Mat85] levels and, since in this
circuit the presence of chaos, strange attractors and bifurcations has been proved, it has become a paradigm for the
study of chaos [Mad93]. The dimensionless equations for Chua’s oscillator can be written as follows [CWHZ93]

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= kα(y − x− f(x))

dy

dt
= k(x− y + z)

dz

dt
= k(−βy − γz)

(1)

where
f(x) = bx +

1

2
(a− b){|x + 1| − |x− 1|}. (2)

This dynamical system has three degrees of freedom, and six control parameters: a, b, α, β, γ and k ∈ {−1, 1}.
Chua’s oscillator has been recently generalized in many directions. For example:

• Introducing additional break points in the piecewise linear function of Chua’s oscillator, dynamical systems have
been obtained which present many strange attractors called n-double scroll attractors [SV91, SV93, SHC97]. An
experimental confirmation of n-double scroll attractors has been given in [ABFM96, YSV00]. In Aziz-Alaoui’s
paper [Azi00] a method for generating a 10-scroll multispiral attractor has been proposed.

• Chua’s circuits with smooth nonlinearities (e.g. cubic nonlinearity) have been studied [Alt93, KRC93].
• Systems with hyperchaotic attractors have been obtained by means of three coupled Chua’s circuits with sine-type

functions as nonlinearities [CG03].
• In Yang’s et al. paper [YC00], a new class of piecewise-linear three-dimensional autonomous systems has been

studied. These systems present a three-segment piecewise-linear function and a single equilibrium point.

In a recent paper [BGP05], some of the authors of the present work realized an extensive tutorial on Chua’s attractors,
where a new methodology is presented, which makes use of sound and music in order to understand some of the main
features of chaos. The authors have developed many software packages for creating 3D images of Chua’s attractors
(Figure 1), for listening to the sound, by using sound synthesis (Figure 2) and producing musical pieces (Figure 3) on
the basis of the x, y and z curves of these dynamical systems.
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Fig. 1. These images show some Chua’s attractors

Fig. 2. Sound synthesis of one Chua’s attractor

Fig. 3. Staff of the generated piece of music

The main aims of this paper are:

• to visualize, by means of 3D software tools, Chua’s n-scroll attractors and to study the qualitative changes of their
behavior, realizing bifurcation maps;

• to read the complexity of these systems by using sound and music.
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(a) (b)

(c) (d)

Fig. 4. n-scroll attractors: (a) 2-scroll; (b) 3-scroll; (c) 4-scroll; (d) 5-scroll

2 n-scroll attractors

Chua’s oscillators which exhibit even or odd numbers of scroll attractors are described by the following evolution
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= α(y − h(x))

dy

dt
= (x− y + z)

dz

dt
= −βy − γz

(3)

where h(x) is given by:

h(x) = m2q−1x +
1

2

2q−1∑
i=1

(mi−1−mi){|x + ci| − |x− ci|}, (4)

q being a natural number and m and c 2q and (2q − 1)−dimensional vectors, respectively. As well known [SHC97,
YSV00], using the following values of the parameters: α = 9, β = 14.286, γ = 0, one obtains systems with a different
number of scroll attractors according to the choice of q, m = [m0;m1; . . . ;m2q−1] and c = [c1; c2; . . . ;m2q−1]. In
particular

• 2-scroll attractor: q = 1, m = [−1/7; 2/7], c = 1 (Figure 4.a);
• 3-scroll attractor: q = 2, m = [0.9/7;−3/7; 3.5/7;−2.4/7], c = [1; 2.15; 4] (Figure 4.b);
• 4-scroll attractor: q = 2, m = [−1/7; 2/7;−4/7; 2/7], c = [1; 2.15; 3.6] (Figure 4.c);
• 5-scroll attractor: q = 3, m = [0.9/7;−3/7; 3.5/7;−2.7/7; 4/7;−2.4/7] , c = [1; 2.15; 3.6; 6.2; 9] (Figure 4.d);

We have introduced a new parameter ρ in order to study the qualitative changes of (3), by considering a vector m′ =
ρm. In this way the slope of the function h is changed, thus creating bifurcation maps at the varying of the parameter
ρ.

In this work, we have considered the case of a system with a 4-scroll attractor, varying the parameter ρ in the
interval [0.5, 3.5]. Figure 5 shows the bifurcation diagram. We have analyzed this diagram in order to detect qualitative
changes in the system under consideration. In particular it presents: a period 1-limit cycle for ρ = 0.51; a period



292 E. Bilotta et al.

10

8

6

4

2

0

−2

−4

−6
0.5 1 1.5 ρ 2 2.5 3 3.5

X

Fig. 5. Bifurcation map for a system with a 4-scroll attractor

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 6. Phases portraits in the x-y-z space of a system with a 4-scroll attractor: (a) ρ = 0.51; (b) ρ = 0.61; (c)
ρ = 0.75; (d) ρ = 0.808; (e) ρ = 1; (f) ρ = 2.16; (g) ρ = 2.17; (h) ρ = 2.71; (i) ρ = 2.84

2-limit cycle for ρ = 0.61; a “spiral Chua’s attractor” for 0.72 ≤ ρ ≤ 0.8; a 4-scroll attractor for 0.808 ≤ ρ ≤ 2.16.
The 4-scroll attractor gives its way to a 2-scroll attractor for 2.17 ≤ ρ ≤ 2.80. The 2-scroll attractor disappears and a
periodic orbit continues to exist for ρ ≥ 2.81. The changes at the varying of the parameter ρ are reported in Figure 6.
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Fig. 7. Staff of the piece of music generated by a system with a 4-scroll attractor, ρ = 1

Fig. 8. Spectrogram for x(t), ρ = 1

3 Sounds and music

We have translated the behavior of the above-considered system into music and sounds. Figure 7 shows a musical piece
realized in correspondence of ρ = 1. Figure 8 and Fig. 9 present the spectrograms for ρ = 1 (4-scroll) and ρ = 2.71
(2-scroll). Sounds, music and images are available at the following web site:
http://galileo.cincom.unical.it/Esg/PlayChaos/index.htm.

The methodology, which we have used in this paper, can also be applied in cultural industry [BFP04]. In conclusion,
we have introduced bifurcation maps for Chua’s systems with n-scroll attractors, this gives us the possibility of studying
the morphogenesis of these dynamical systems at a deeper level.
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Fig. 9. Spectrogram for x(t), ρ = 2.71
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Abstract An elegant formulation of thermodynamics in electromagnetic fields has been provided by Liu and Müller
and is based upon the conservation laws of mass, momentum and energy as well as on Maxwell’s equations. However,
in other physical context it has been shown the opportunity of considering an extended set of independent variables.
Therefore, it is fitting to follow an extended approach also for charged fluids in electromagnetic fields; in literature
this methodology has already been used, but only for the case of negligible effects of polarization and magnetization;
here this restriction is removed and the general case treated. The entropy principle and the principle of material frame
indifference are imposed; by using the methods of Extended Thermodynamics, we can see that they give very strong
restrictions on the constitutive functions appearing in these balance laws.

1 Introduction.

In ordinary Thermodynamics, the conservation laws of mass (with density F ), momentum (with density Fi) and energy
(with density 1

2
Fll) are used as field equations; in these equations, also the momentum flux density Fij and the energy

flux density 1
2
Fill occur, and they are linked to the independent variables F , Fi, 1

2
Fll and to their gradients through the

state equations and the Navier-Stokes and Fourier laws. But in this way parabolic equations are obtained which yield
infinite speeds of shocks propagation. In extended thermodynamics (see [1] and subsequent papers summarized in [2])
the aim has been realized to obtain an iperbolic set of field equations (and symmetric too) in the following way

• Consider as independent variables F , Fi, Fij , Fill ( in other words, also the above fluxes have been included); for
this increased number of independent variables, consider also a corresponding increased number of field equations.

• Link the new fluxes, which appear in these equations, only to the independent variables and not to their gradients.
Restrict the generality of these links, or constitutive equations, by imposing the principle of entropy and that of
Galilean invariance.

In this way a symmetric hyperbolic set of field equations are obtained, consequently yielding finite speeds of shocks
propagation and continuous dependence on the initial conditions; therefore, they are more physically significant than
those of ordinary Thermodynamics. This last one can also be recovered from those of Extended Thermodynamics as
first approximation of a particular iterative procedure.
However, in [1], the flux appearing in a field equation is the independent variable of the subsequent equation; it follows
that the original model describes only mono-atomic gases. We have verified that, also from the mathematical point of
view, this structure leads to results which are too much restrictive for polarizable and magnetizable fluids; for example,
also at equilibrium we obtain polarization effects without magnetization, which fact is physically unacceptable. This
shows that the theory knows how polarization and magnetization cannot occur in mono-atomic gases! The reason is
that in this case the model doesn’t take into account the interactions between atoms and molecules.
In [3] it is shown how, also in Extended Thermodynamics, field equations can be considered which overcome this
problem, and the fluxes are called Fk, Gik, Gijk, Gikll (the first of these is still the momentum density, obviously);
however, in [3] such constitutive functions have not been found by imposing the principles of entropy and that of
Galilean invariance. This result has been recently achieved by some of us in [4] with a method akin to that of the
kinetic theory, so that it has been called “A kinetic type extended model ...”.
Here we want furtherly improve the model so that it may well describe also polarizable and magnetizable fluids. To
this end we have in literature only models in the framework of ordinary Thermodynamics, such us [5]; here we want to
obtain a model in the framework of Extended Thermodynamics, because it leads to more physically significant results
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as seen above. We consider the following extended set of field equations. The first four of these have been found by
applying the general guidelines of ref. [3]; note the contribution of the Lorentz force in the right-hand sides, and that
of a term (in third and fourth equation) which takes into account external supplies other than body forces, according to
the note on page 129 of ref. [3]. The eqs. (1)1,2, (2), (3) and the trace of eq. (1)3 are those studied by Liu and Müller
[5] in the non extended approach.
The subsequent four equations are the Maxwell equations with electric field Ei and density of magnetic flux Bi, while
the last two are definitions of the current Ji and of the charge density q in terms of the Polarization Pk, Magnetization
Mj , the free current jF

i and the free charge density qF .

∂tF + ∂kFk = 0 , ∂tFi + ∂kGik = qEi + εiqpJqBp , (1)

∂tFij + ∂kGijk =
2

F
F(i(qEj) + εj)qpJqBp) +

+
2

3
(Er + εrqpvqBp)(Jr − qvr)δij + P<ij> ,

∂tFill + ∂kGikll =
3

F
F(il(qEl) + εl)qpJqBp) +

+
10

3F
(Er + εrqpvqBp)(Jr − qvr)Fi + Pill ,

∂tBi + εijk∂jEk = 0 , −µ0ε0∂tEi + εijk∂jBk = µ0Ji , (2)

∂kBk = 0 , ε0∂kEk = q ,

∂tPi + ∂k(εijkMj + 2P[ivk]) = Ji − JF
i , ∂kPk = qF − q , (3)

where vk = Fk
F

is the velocity, εijk is the Levi-Civita symbol, µ0 the vacuum permeability, ε0 the dielectric constant.
The conservation of charge ∂t(q − qF ) + ∂k(Jk − JF

k ) = 0 is a consequence of (3). We note that another possible
approach is to consider (3) not as field equations, but as definitions of Ji and q; the remaining eqs. (1), (2) are still a
system of first order partial differential equations, even if the time and space derivatives occur also in the right-hand
sides, through Ji and q. But in this way the divergence form is lost; for this reason we have chosen a different approach.
We stress, once again, that in this set of equations the independent variables are F , Fi, Fij , Fill, Bi, Ei and Pi; but
also the quantities Gik, Gijk, Gikll, P<ij>, Pill, Mi, J∗

i = JF
i − qF vi occur in this system, so that they are unknown

quantities for which closure relations are needed. The main result of this work are the expressions of these constitutive
functions. They can be found by eliminating the parameters λ, λi, λij , λill, βi, εi, πi between the subsequent eqs. (6),
(7)2−4, (8)3 which are expressed in terms of the functions h′ and φ′

k, whose expressions are reported in the subsequent
eqs. (16) and (17).
The arguments which allows us to find them are usual in Extended Thermodynamics, i.e., to impose that every solution
of our system (1), (2), (3) satisfies a supplementary conservation law ∂th+∂kφk = σ ≥ 0. This amounts in assuming
the existence of Lagrange multipliers λ, λi, λij , λill, βi, εi, πi, b, ε, π such that

dh = λdF + λidFi + λijdF
ij + λilldF

ill + βidBi + εidEi(−µ0ε0) + πidPi ,

dφk = λdFk + λidGik + λijdGijk + λilldGillk + βiεikjdEj + (4)

+εiεikjdBj + πid(εikjMj + 2P[ivk]) + bdBk + εε0dEk + πdPk ,

besides a residual inequality which we leave out for the sake of brevity.
By taking λ, λi, λij , λill, βi, εi, πi as independent variables, and by defining

h′ = λF + λiF
i + λijF

ij + λillF
ill + βiBi − µ0ε0εiEi + πiPi − h , (5)

φ′
k = λFk + λiGik + λijGijk + λillGillk

+βiεikjEj + εiεikjBj + πi(εikjMj + 2P[ivk]) − φk , they become

F =
∂h′

∂λ
, F i =

∂h′

∂λi
, F ij =

∂h′

∂λij
, F ill =

∂h′

∂λill
, (6)

Bi =
∂h′

∂βi
, −µ0ε0Ei =

∂h′

∂εi
, Pi =

∂h′

∂πi
;

∂φ′
k

∂λ
=

∂h′

∂λk
− b

∂2h′

∂λ∂βk
+

ε

µ0

∂2h′

∂λ∂εk
− π

∂2h′

∂λ∂πk
, (7)

Gik =
∂φ′

k

∂λi
+ b

∂2h′

∂λi∂βk
− ε

µ0

∂2h′

∂λi∂εk
+ π

∂2h′

∂λi∂πk
,

Gijk =
∂φ′

k

∂λij
+ b

∂2h′

∂λij∂βk
− ε

µ0

∂2h′

∂λij∂εk
+ π

∂2h′

∂λij∂πk
,

Gillk =
∂φ′

k

∂λill
+ b

∂2h′

∂λill∂βk
− ε

µ0

∂2h′

∂λill∂εk
+ π

∂2h′

∂λill∂πk
,
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εikj

−µ0ε0

∂h′

∂εj
=

∂φ′
k

∂βi
+ b

∂2h′

∂βi∂βk
− ε

µ0

∂2h′

∂βi∂εk
+ π

∂2h′

∂βi∂πk
, (8)

εikj
∂h′

∂βj
=

∂φ′
k

∂εi
+ b

∂2h′

∂εi∂βk
− ε

µ0

∂2h′

∂εi∂εk
+ π

∂2h′

∂εi∂πk
,

εikjMj + 2P[ivk] =
∂φ′

k

∂πi
+ b

∂2h′

∂πi∂βk
− ε

µ0

∂2h′

∂πi∂εk
+ π

∂2h′

∂πi∂πk
,

0 =
∂φ′

(k

∂πi)

+ b
∂2h′

∂π(i∂βk)

− ε

µ0

∂2h′

∂π(i∂εk)

+ π
∂2h′

∂πi∂πk
.

The eq. (8)4 is the symmetric part of (8)3, after that (8)3 remains simply the definition of magnetization Mi. We note
that, by dropping eqs. (6)5,6,7, (8) and calculating the remaining ones in βi = 0, εi = 0, πi = 0, b = 0, ε = 0, π = 0,
we obtain an important subsystem, i.e., the equation of the extended approach to dense gases and macromolecular
fluids. These have been studied in [4] and we can use here the results. Similarly, by dropping eqs, (6)1−4,7, (7), (8)3,4

and calculating the remaining ones in λ = 0, λi = 0, λij = 0, λill = 0, π = 0, πi = 0, we obtain the Maxwell
equations. In the next section we will exploit their implications to eqs. (6), (7) and (8). At last, in section 3, we will
consider the general case.

2 A supplementary conservation law for Maxwell equations

We have to consider the eq. (6)5,6 and (8)1,2 with π = 0 i.e.

Bi =
∂h′

∂βi
; −µ0ε0Ei =

∂h′

∂εi
, (9)

1

−µ0ε0
εikj

∂h′

∂εi
=

∂φ′
k

∂βi
+ b

∂2h′

∂βi∂βk
− ε0

µ0

∂2h′

∂βi∂εk
,

εikj
∂h′

∂βj
=

∂φ′
k

∂εi
+ b

∂2h′

∂εi∂βk
− ε0

µ0

∂2h′

∂εi∂εk
;

clearly, here we haven’ t to impose the Galilean invariance principle, with decomposition in velocity dependent and
independent parts; in fact, the velocity doesn’t occur in this equations. For this reason we have assumed a supplementary
conservation law and not an entropy principle. From the representation theorems [6], [7] and [8] we know that φ′

k =
ϕ1εk +ϕ2βk +ϕ3εkrsβrεs with ϕ1, ϕ2, ϕ3, h′, b and ε functions of G11 = εiεi, G12 = εiβi, G22 = βiβi. After that
the symmetric parts with respect to i and k of (9)3,4 give 2 linear combinations of εiεk, ε(iβk), βiβk, δik, ε(iεk)rsεrβs

and β(iεk)rsεrβs which must be zero; by setting equal to zero the coefficients of the last 2 of the above tensors, we
find that ϕ3 is a constant. The skew-symmetric parts, with respect to i and k, of eqs. (9)3,4 are linear combinations of
ε[iβk], εikjεj , εikjβj ; putting equal to zero the coefficients of these last 2 tensors, we find

∂h′

∂G11
=

µ0ε0
2

ϕ3;
∂h′

∂G12
= 0;

∂h′

G22
=

1

2
ϕ3 i.e. ,

h′ =
1

2
ϕ3(G22 + µ0ε0G11) + const =

1

2
ϕ3(βiβi + µ0ε0εiεi) + const

After that, what remains of eq. (9)3 shows that

∂ϕ1

∂G12
= 0,

∂ϕ1

∂G22
= 0,

∂ϕ2

∂G12
= 0,

∂ϕ2

∂G22
= 0, ϕ2 = −bϕ3

and what remains of (11)4 gives
∂ϕ1

∂G11
= 0,

∂ϕ2

∂G11
= 0; ϕ1 = εε0ϕ3;

in other words ε, b, ϕ1, ϕ2 and ϕ3 are constant and ϕ1 = εε0ϕ3, ϕ2 = −bϕ3.

3 The case with polarization and magnetization

Consider now the general case, the problem of finding the functions

h′(λ, λi, λij , λill, βi, εi, πi) and φ′
k(λ, λi, λij , λill, βi, εi, πi) satisfying

eqs. (6), (7) and (8). We have already determined, in ref. [4] , their expressions in βi = 0, εi = 0, πi = 0. Let us
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define now the functions ∆h′ and ∆φ′
k from

h′(λ, λi, λij , λill, βi, εi, πi) = h′(λ, λi, λij , λill, 0, 0, 0) + ∆h′ (10)

φ′
k(λ, λi, λij , λill, βi, εi, πi) = φ′

k(λ, λi, λij , λill, 0, 0, 0) + ∆φ′
k ,

and note that they become zero when calculated in βi = 0, εi = 0, πi = 0. Substitute eqs. (10) in the conditions
emerging from (6), (7) and (8), i.e., (7)1, (8)1,2,4 thus obtaining

∂∆φ′
k

∂λ
=

∂∆h′

∂λk
− b

∂2∆h′

∂λ∂βk
+

ε

µ0

∂2∆h′

∂λ∂εk
− π

∂2∆h′

∂λ∂πk
, (11)

εikj

−µ0ε0

∂∆h′

∂εj
=

∂∆φ′
k

∂βi
+ b

∂2∆h′

∂βi∂βk
− ε

µ0

∂2∆h′

∂βi∂εk
+ π

∂2∆h′

∂βi∂πk
,

εikj
∂∆h′

∂βj
=

∂∆φ′
k

∂εi
+ b

∂2∆h′

∂εi∂βk
− ε

µ0

∂2∆h′

∂εi∂εk
+ π

∂2∆h′

∂εi∂πk
,

0 =
∂∆φ′

(k

∂πi)
+ b

∂2∆h′

∂π(i∂βk)
− ε

µ0

∂2∆h′

∂π(i∂εk)
+ π

∂2∆h′

∂πi∂πk
.

When considering only the Maxwell equations, we have obtained that b and ε are constants; this suggests to restrict
ourselves, also in this general case, to the solutions with b, ε and π not depending on λ, βi, εi, πi, for the sake of

simplicity. By defining φ′′
k = ∆φ′

k + b
∂∆h′

∂βk
− ε

µ0

∂∆h′

∂εk
+ π

∂∆h′

∂πk
(12)

the eqs. (11) become
∂∆h′

∂λk
=

∂φ′′
k

∂λ
;

−εikj

µ0ε0

∂∆h′

∂εj
=

∂φ′′
k

∂βi
; (13)

εikj
∂∆h′

∂βj
=

∂φ′′
k

∂εi
; 0 =

∂φ′′
(k

∂πi)
.

The symmetric parts with respect to i and k of (13)2−4 show (with the same proof which deduces a rigid motion if the
deformation tensor is zero) that φ′′

k is linear both in εi that in βi and in πi ,i.e.,

φ′′
k = φkabcβaεbπc + φ3

kabβaεb + φ2
kabπaεb + φ1

kabπaβb+, (14)

+ φ1
kaεa + φ2

kaβa + φ3
kaπa + φ

′′0
k

where φkabc, φi
kab, φi

ka, φ
′′0
k doesn’t depend on βi, εi and πi; moreover, still the symmetric parts of (13)2−4 show that

φkabc, φi
kab, φi

ka change sign when we exchange the index k with whatever of the other indices. But we can exchange
whatever couple of indices trough 3 changes of indices involving the first one; it follows that φkabc, φi

kab, φi
ka are

skew-symmetric tensors for every couple of indices. But in φkabc at least one of the indices 1 2 3 occurs 2 times;
therefore, we have φkabc = 0. Moreover, φi

kab is not zero only when k a b is 1 2 3 or anyone of its permutations;
therefore, it is proportional to εkab. In other words, the scalars ϕi(λ, λr, λrs, λrll) and the vectors vi

b(λ, λr, λrs, λrll)
exist, such that

φi
kab = ϕiεkab; φi

ka = εkabv
i
b . (15)

These partial results simplify very much the exploitation of conditions (13), although the passages remain long and
tedious, so that we report simply the final results, i.e., the expressions for the functions ∆h′ and ∆φ′

k; they are the
first three rows of the following eq. (16) and the first five rows of the eq. (17), respectively. The remaining rows are
the expressions of h′(λ, λi, λij , λill, 0, 0, 0) and φ′

k(λ, λi, λij , λill, 0, 0, 0) found in ref. [4] (up to second order in the
variables λi, λ<ij>, λill); their sum, according to eq. (10), gives the functions h′ and φ′

k, i.e.,

h′ =
1

2
ϕ3(µ0ε0εjεj + βjβj) − µ0ε0ϕ

1εjπj + ϕ2βjπj + εrjbλrεjv
11
b + (16)

+εrjbλrβjv
21
b + µ0ε0εj(v

20
j + v21

j λ) − βj(v
10
j + v11

j λ) +

+
∂v3

b0

∂λ
εkabλkπa + πrHr(λ, λia, λill, πk) +

− 8

27 · 35
G′(λ)λ

−3/2
ll − 2

21
G′(λ)λ

−7/2
ll λiλill +

2

9 · 35
G′′(λ)λ

−5/2
ll λiλ

i − 2

105
G′(λ)λ

−7/2
ll λ<ij>λ<ij> +

1

2
G(λ)λ

−9/2
ll λillλill ,
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φ′
k = ϕ3(εkabβaεb − bβk + εε0εk) + ϕ2(εkabπaεb − bπk − πβk) + (17)

+ϕ1(εkabπaβb − εε0πk + ε0µ0πεk) + v10
b εkabεa + v20

b εkabβa +

+v21
b (εkabβaλ + εbλk − δkbεrλr) +

+v11
b

(
εkabεaλ− βbλk

1

ε0µ0
+ δkbβrλr

1

ε0µ0

)
+

−π
[
πr

∂Hr

∂πk
+ Hk − (Hk)πr=0

]
+ εkabπa[v3

b1 + v3
b0] +

4

9 · 35
G′(λ)λ

−5/2
ll λk +

[
− 2

21
G(λ)λ

−7/2
ll + f1(λll)

]
λkll +

[
2

5
G(λ)λ

−3/2
ll + f2(λll)

]
λ<kr>λrll −

4

105
G′(λ)λ

−7/2
ll λ<kr>λr .

Here, ϕi, v11
b , v21

b , v10
b , v20

b are functions of λrs , λrll,
b, ε, π, v3

b1 are functions of λr , λrs , λrll,
v3

b0 is function of λ, λrs , λrll,
Hr is function of λ, λrs , λrll, πr ;

G(λ) is function of λ, f1(λll) and f2(λll) are functions of λll;
they are arbitrary functions restricted only by

π
∂2v3

b0

∂λ2
= 0 and π

(
Hk

)
πr=0

= (bv11
k + εε0v

21
k )λ + πH∗

k (λia, λill), (18)

with H∗
k another arbitrary function of its variables.

The first terms of eq. (16) and the first one of eq. (17) are the same of the corresponding ones in sect 2, for the Maxwell
equations. The only difference is that here ϕ3 may depend on λij , λill , while in sect 2 it was a constant. It is easy to
verify that, in this way, eqs. (11) are satisfied.
The expressions (16) and (17) can now be inserted in eqs. (6), (7)2−4, (8)3 and give F , Fi, Fij , Fill, Bi, Ei, Pi, Gik,
Gijk, Gikll, Mi as functions of the parameters λ, λi, λij , λill, βi, εi, πi. The first ones of these functions can be used
to obtain the parameters as functions of F , Fi, Fij , Fill, Bi, Ei, Pi; by inserting these in the remaining ones, we obtain
the constitutive functions Gik, Gijk, Gikll, Mi as functions of the independent variables F , Fi, Fij , Fill, Bi, Ei, Pi.
In this way the requested closure has been obtained. We apologize because we cannot report these passages in the only
8 pages allowed for these proceedings; the interested reader may do them by himself, because they are straightforward,
or may ask us to send them privately. The same thing we have to say for the other constitutive functions P<ij>, Pill,
J∗

i = JF
i − qF vi.

Conclusions
We retain the results of the present paper very satisfactory, because they allow to study also polarizable and magneti-
zable fluids in the framework of the well established theory of Extended Thermodynamics. The field equations to be
solved are (1), (2) and (3) closed in the above mentioned way; although apparently complicate they can be put in the
symmetric hyperbolic form by simply changing the independent variables, so predicting finite speeds of wave prop-
agations. There remains to understand the physical meaning of the arbitrary functions still remaining in our closure.
Some of them depend upon the particular fluid treated, and are related to the state functions; and the others? are zero,
perhaps? This will be argument of further investigation.

Thanks: We thank anonymous referees; they helped us in improving the presentation of this article.
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2 Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, via Saldini 50, 20133 Milano, Italy

Abstract In this communication, we deal with the numerical approximation of a Quantum Drift–Diffusion model
capable of describing tunneling effects through the thin oxide barrier in nanoscale semiconductor devices. We propose
a novel formulation of the mathematical model, based on a spatially heterogeneous approach, and a generalization
of the Gummel decoupled algorithm, widely adopted in the case of the Drift-Diffusion system. Then, we address
the finite element discretization of the linearized problems obtained after decoupling, proving well-posedness and a
discrete maximum principle for each of them. Finally, we validate the physical accuracy and numerical stability of the
proposed algorithms on the numerical simulation of a real-life nanoscale device.

1 Introduction and Motivation

In this work, we propose a novel mathematical formulation and numerical approximation of the Quantum Drift–
Diffusion model with Tunneling (QDDT). This model was introduced in [1, 2], and is a suitable generalization of
the Quantum Drift–Diffusion system (QDD) including a macroscopic description of tunneling through a thin oxide
barrier. A possible approach to this latter problem is shown in [3], where a fitting parameter is introduced in the consti-
tutive relation for the quantum correction to the electric potential. Another modeling approach was recently proposed in
[2] and applied in [1] to Gate–Oxide tunneling in a MOS structure. The model in [1] handles the different phenomena
which govern transport in the different regions of the device, distinguishing between the semiconductor and polysili-
con regions, where the scattering mechanisms are more relevant (viscous flow), and the oxide region where transport is
essentially inertia dominated (ballistic flow). In the present article, we focus on a novel mathematical reformulation of
the model of [1] and on its proper numerical discretization. With this aim, we devise an efficient and stable simulation
procedure based on a suitable generalization of Gummel’s decoupled algorithm, which has several advantages:

• the solution of the full nonlinear QDDT system (that could be faced, for instance, by resorting to Newton’s method,
as done in [1]) is reduced into the successive solution of linearized differential subproblems of smaller size;

• each subproblem can be properly treated by adopting a suitable mathematical and numerical formulation, in order
to easily enforce some prescribed constraint on the solution (in particular the strict positivity of the computed
carrier densities).

The physical accuracy of the novel formulation is successfully validated in the simulation of a realistic nanoscale
device, for which experimental measurements are available for comparison.

2 Quantum Drift–Diffusion Model Including Tunneling

In this section, we present the QDDT model as proposed in [1] for computing the tunneling current through the ultra–
thin gate oxide of a MOSFET device. Considering the device represented in Fig. 1 (left), we are interested in simulating
the 1–d cross–section B–B. The computational domain Ω is composed of three parts: Ωpoly = (0, α) representing the
polysilicon gate contact, Ωox = (α, β), representing the silicon–dioxide gate insulator and ΩSi = (β, L), representing
the silicon bulk of the device.
The QDDT model consists of the following set of equations to be solved in ΩSi and Ωpoly
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Fig. 1. Left: two–dimensional cross–section of a MOS transistor. The B–B section indicates the heterostructure. Right:
one–dimensional scheme of the heterostructure and convention chosen to describe charge transport

⎧⎪⎪⎪⎪⎪⎪⎨
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− (εϕx)x = q
(
r2 − s2 + D

)
−
(
s2µn (ϕn)x

)
x

= U(
r2µp (ϕp)x

)
x
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)
+ ϕs

)
= 0

−αpr,xx + r
(
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√
nint

)
− ϕr

)
= 0

(1)

and the following set of equations to be solved in Ωox
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√
nint

)
+ ϕs

)
= 0

−αpr,xx + r
(
ϕ + 2Vth ln

(
r2

√
nint

)
− ϕr

)
= 0

−αnz,xx + z
(
−ϕ + 2Vth ln

(
z2

√
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)
+ ϕs

)
= 0

−αpv,xx + v
(
ϕ + 2Vth ln

(
v2

√
nint

)
− ϕr

)
= 0,

(2)

where the notation f,x, f,xx, etc., has been used to indicate the derivative(s) of a function f = f(x) with respect to the
spatial coordinate x.

We notice that (1)1 and (2)1 are the Poisson equations relating the electric potential ϕ to the charge density in the
device. We also set

s =
√
n, r =

√
p, v =

√
b, z =

√
u, (3)

where n, p, b and u are the charge densities shown in Fig. 1 (right). As a matter of fact, the physical description of
charge transport in the oxide requires to introduce two kinds of carriers flowing throughout the device, electrons and
holes, as divided into two distinct populations, each associated with the device contact from which it is emitted and
mathematically described by an individual statistics. As a consequence, we can define: a) backward tunneling electrons
u and backward tunneling holes b; b) forward tunneling electrons n and forward tunneling holes p.

Moreover, ϕn, ϕp, ϕs, ϕr , ϕz and ϕv are the quasi–Fermi potentials associated with n, p, s, r, z and v. The
function U is the net recombination rate (see [1] for its physical modeling)

U =
np− neqpeq

τp(n +
√
neqpeq) + τn(p +

√
neqpeq)

, (4)

where the (non spatially constant) equilibrium electron and hole concentrations neq and peq are such that U vanishes
at thermal equilibrium, as physically expected. The given function D is the net doping profile of the device. The
constants q and Vth, are the electron charge and the thermal voltage, αn = �

2/(6 q m∗
n) and αp = �

2/(6 q m∗
p),

where �, m∗
n and m∗

p represent the modified Planck constant and the effective masses for electrons and holes, while
ε is the permittivity of each material in the heterostructure and is a piecewise constant function over Ω. Finally µn
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and µp are the electron and hole mobilities. A Dirichlet boundary condition is imposed for the electric potential ϕ at
the device boundaries x = 0 and x = L, while at the material interfaces x = α and x = β continuity of the electric
displacement εϕ,x is enforced. Analogously, both carrier densities and quasi-Fermi levels satisfy a Dirichlet condition
at the device boundaries.

To properly describe tunneling effects, in [1] it was assumed that particles coming through the oxide interface do
not interact with the upstream barrier (at x = α for s electrons and v holes, at x = β for z electrons and r holes).
This amounts to stating that carriers do not experience electric forces able to modify their energy, during their travel
across the potential barrier arising at the silicon and polysilicon dioxide interfaces. Therefore, a reasonable approach
to account for the presence of an energy discontinuity (the barrier) is to enforce suitable conditions at the downstream
interface (at x = β for s electrons and v holes, at x = α for z electrons and r holes), where the particles enter
the semiconductor and the polysilicon regions, respectively. These upstream conditions for densities and quasi-Fermi
potentials read

s(α−) = s(α+), αn
polys,x(α−) = αn

oxs,x(α+),

r(β−) = r(β+), αp
oxr,x(β−) = αp

Sir,x(β+),

r(α−) = v(α+), αp
polyr,x(α−) = αp

oxv,x(α+),

z(β−) = s(β+), αn
oxz,x(β−) = αn

Sis,x(β+),

(5)

and
ϕs(α

−) = ϕs(α
+), ϕs(β

+) = ϕv(β−),

ϕr(β
−) = ϕr(β

+), ϕr(α
+) = ϕv(α−).

(6)

In a similar way, the downstream conditions for the carrier densities read

s,x(β−) = 0, z,x(α+) = 0

r,x(α+) = 0, v,x(β−) = 0,
(7)

while the corresponding expressions for the current densities are

−µn s2 ϕs,x(α−) = γzz
2(α+) − γss

2(β−),

−µp r2 ϕr,x(α−) = γrr
2(α+) − γvv

2(β−),

−µn s2 ϕs,x(β+) = γzz
2(α+) − γss

2(β−),

−µp r2 ϕr,x(β+) = γrr
2(α+) − γvv

2(β−),

(8)

γs, γz , γr and γv being the tunneling velocities associated with each carrier type that are in general used as fitting para-
meters in the numerical simulation. According to the model described in this section, transport is scattering dominated
in polysilicon and silicon, while it is inertia dominated in the gate–oxide. One remarkable feature of this model is that
the inertia dominated transport in the oxide region is accounted for by imposing the non-local interface conditions
(7) and (8).

3 Mathematical Reformulation and Functional Iteration Technique

In this section we provide a suitable mathematical reformulation of the QDDT model presented in Sect. 2. The main
novelty compared to [1] is that the present approach lends itself in a very natural way towards a fully decoupled iterative
solution of the whole system. A flow–chart of the modified Gummel iteration scheme (which is described in more detail
in [4]) is presented in Fig. 2.
In what follows we briefly describe the subproblems that constitute each block of the iteration procedure. For sake
of simplicity, we consider only the equations for the electrons, upon a suitable scaling is performed (see [4]), as a
completely similar treatment holds for the holes.

The first step in the decoupled scheme consists of the solution of the nonlinear Poisson equation in the whole
device domain Ω, supplied with Dirichlet boundary conditions

⎧⎨
⎩

−(λ2(x)ϕ,x),x = ρ(ϕ) in Ω = (0, L)

ϕ(0) = ϕ0, ϕ(L) = ϕL

(9)

where ρ is the net charge density including the electron and hole concentrations (which nonlinearly depend on ϕ) and
the doping concentration. For the solution of (9) we adopt a standard Newton linerization and a piecewise linear finite
element discretization.
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Fig. 2. Flow–chart of the modified Gummel iteration scheme

For the solution of the Bohm equation, which constitutes the second step in the iteration procedure, we define the
new variables w and ϕw as follows

w =

{
z in ΩOx

s in ΩSi

ϕw =

{
ϕz in ΩOx

ϕs in ΩSi

(10)

and we denote by s and ϕs the restrictions of s and ϕs (as previously defined) to ΩPoly ∪ΩOx. After the above change
of variables, the Bohm problem for electrons reduces to the successive solution of the following nonlinear boundary
value problems supplied with Dirichlet–Neumann boundary conditions⎧⎨

⎩
−δ2

s s,xx + s (−ϕ + 2 ln (s) + ϕs) = 0 in ΩPoly ∪ΩOx ≡ (0, β)

s(0) = s0, s,x(β) = 0⎧⎨
⎩

−δ2
w w,xx + w (−ϕ + 2 ln (w) + ϕw) = 0 in ΩOx ∪ΩSi ≡ (α,L)

w,x(α) = 0, w(L) = wL.

(11)

For the solution of (11) we adopted the modified Newton iteration described in [4] to preserve the positivity of s and
w at each step, and a piecewise linear finite element discretization.

To describe the last step of the iteration scheme, which consists of the solution of the continuity equations, let us
now introduce the following new variables

n =

{
s2 in ΩPoly

w2 in ΩSi,
Gn =

{
Gs = −ϕ + ϕs + 2 ln s in ΩPoly

Gw = −ϕ + ϕw + 2 lnw in ΩSi,

where Gs and Gw are the quantum corrections to the electric potential (Bohm potentials). Then, the electron continuity
equations reduce into the following one⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−(Jn),x = −U in ΩPoly ∪ΩSi

Jn = µn (n,x − (ϕ + Gn),x)

n(0) = s2
0, n(L) = w2

L,

Jn(α) = Jn(β) =
(
γzw

2(α) − γss
2(β)
)
.

(12)
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Fig. 3. Structure of the Matrix deriving from the FEM discretization of continuity equation
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Fig. 4. Left: gate doping. Right: I-V characteristics

Let V ≡ ϕ + Gn. Then, since the quasi–Fermi levels are constant in ΩOx, we have

w2(α) = w2(β)eV (α)−V (β) = n(β)eV (α)−V (β)

s2(β) = s2(α)eV (β)−V (α) = n(α)eV (β)−V (α),

from which
Jn(α) = Jn(β) =

(
γzn(β)eV (α)−V (β) − γsn(α)eV (β)−V (α)

)
.

Note that the above reformulation of the interface condition yields a maximum principle in the discrete version of the
continuity equation provided that a Scharfetter–Gummel finite element scheme is adopted [5, 6]. As a matter of fact,
denoting by M the number of internal nodes in the polysilicon mesh and by N the number of internal nodes in the
silicon mesh, then the matrix stemming from the discretization of (12) is of the form

A =

[
A1 A2

A3 A4

]
(13)

where the diagonal bloks A1 (of size M + 1) and A4 (of size N + 1) are the same as produced by the discretization of
(12)1 in Ωpoly and ΩSi respectively, and the coupling between the two subdomains is expressed by rows M + 1 and
M + 2 which read

0 −µM
hM

B−
M

µM
hM

B+
M + γM+1 − γM+2 0 . . .

. . . 0 − γM+1
µM+1
hM+1

B+
M+1 + γM+2 −µM+1

hM+1
B+

M+1 0

where B±
M denotes the inverse of the Bernoulli function evaluated at ±(ϕM+1 − ϕM ). It is easy to check that the

complete matrix A is strictly diagonally dominant by columns, that the diagonal entries are positive and that the off–
diagonal ones are negative. This implies that A is an M–matrix, and that a discrete maximum principle holds for the
computed electron density, provided that the standard splitting of the generation/recombination term is adopted [5].
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Fig. 5. Electron concentration at thermal equilibrium
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Fig. 6. Electric potential, Bohm potentials and quasi–Fermi potentials

4 Numerical Results

As a benchmark for the physical assessment of the model described above we performed a simulation of a 1–d MOS
structure similar to that discussed in [1] for which experimental data are available. This structure represents a cross
section in the Bulk–Gate direction of a MOS transistor with Source and Drain contacts floating. The sizes of the
subregions of the simulated device are as follows:

• tPoly = 500nm
• tox = 1.25, 1.5, 1.82nm
• tSi = 2µm,

and the doping profile (of n+-type, with N+
D = 3 · 1025 m−3) is shown in Fig. 4 (left). Notice the ability of the formu-

lation in capturing the extremely steep layers arising in the electron density at material interfaces (Fig. 5). Moreover,
the very high value attained by the quantum correction inside the oxide region is comparable to the height of the oxide
barrier (Fig. 6, right). Finally, it is remarkable to point out that the computed I-V curves shown in Fig. 4 (right) are in
very good agreement with the measurement results reported in [1].
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Reverse Statistical Modeling for Analog Integrated Circuits
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Abstract As the IC manufacturing process becomes more complex, circuit performance becomes more sensitive to
statistical process variations. Therefore, it is essential to be able to statistically characterize IC manufacturing process
fluctuations and to reliably predict circuit performance spreads at the design stage. A full statistical modeling flow for
integrated circuits, which uses the information related to the measurements of device performance and which the aim
is to extract a Spice like statistical model, is presented. The technique shown, innovative compared to the existent ones,
is based on several Monte Carlo simulation steps, in order to estimate the second order moments for every statistical
model parameter; afterwards, an optimization phase follows, with the aim to identify the cross-correlation among the
Spice parameters. The operations flow has been validated on a diode and IGBT device.

Key words: Statistical modeling, integrated circuits, parameters extraction, optimization.

1 Introduction

Analog integrated circuits are characterized by a series of performances that are measured at the end of their production
in order to test whether their values satisfy the design constraints. A device, usually, is replied on several dies of a wafer
and on several wafers but every retort does not result in compliance with the others, in terms of electrical performance,
because the fabrication steps are affected by various factors that make aleatory the outcome. Some of these factors are:
imperfections that characterize the masks and tolerances in their positioning, various effects of the ionic implantation,
variation of the temperature during the production, tolerances in the dimensions, etc.

Generally the process fluctuations produce fluctuations in the electrical performances; consequently, during circuit
design the device statistical modeling is fundamental in order to estimate and to take into account the fluctuations that
would characterize the electrical behavior.

In order to check the device fabrication process, each wafer contains few sites with special test structures, which
enable the measurement of device performances and constitute a statistical database for the electrical behavior of
the device in issue ([CC01]). The statistical database of electrical measurements is named, in this paper, T84, or
experimental statistics T84, from the testing machine name used in STMicroelectronics.

The aim of the proposed flow is the following: on the base of this information, that constitutes the experimental
statistics, we want to map the performances space T = {T1, . . . , Tt} such as gain and bandwidth, to circuit parameters
space P = {P1, . . . , Pn} e.g. Spice parameters or circuit components values (see Fig. 1). Variations in the fabrications
process cause random fluctuations in T space, which in turn cause P to fluctuate ([KC93],[MD02]).

In other words, we want to extract a Spice model whose parameters are aleatory variables; each variable is charac-
terized by a probability distribution function supposed Gaussian, in agreement with Central Limit Theorem; therefore,
for the model parameters which have to be statistically described, it is necessary to identify the medium value, the stan-
dard deviation and the correlation coefficients. In order to carry out the statistical modeling, we have thought a flow of
operations more innovative than those currently well-known in literature. The classical approach can be summarized
as following:

• It has N measures which constitute the experimental statistics;
• It makes for N times the M model parameters extraction;
• Following the N parameters extraction steps, it has, for each parameter Pi, i = 1, . . . , n of the M model, N values

which allow to estimate the statistical distribution;
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Fig. 1. Proposed flow: from the experimental statistics we determine a statistical Spice model for the device

The previous approach is theoretically valid but it is unproposable from a practical point of view; in fact, this
technique repeats the parameters extraction phase for N times, already very heavy from the computational point of
view.

2 Statistical Modeling Flow

The flow described below allows to obtain accurate results in less time and with a clearly inferior computational cost
compared to the classical approach. The proposed method uses the experimental statistics as a target to be satisfied
and, above all, as a selectivity factor for device model: a device model will be accepted only if it is characterized by
parameters values that allow to obtain, through electrical simulations, some performances which are included in the
experimental statistics. The flow of statistical modeling is based on several Monte Carlo simulation steps, in order to
estimate the second order moments for every statistical model parameter; afterwards an optimization phase follows with
the aim to identify the cross-correlation coefficients among the parameters. The statistical modeling flow is described
in detail as follows:
• Step 1: Start up

We have a typical (nominal) model of the device, M0, where {v0,1, . . . , v0,n} are the values of the parameters
{P1, . . . , Pn}; we consider the device statistical model M, that is a model whose parameters are random variables;
during this start up step, each parameter Pi ∈ P is modelled with a normal distribution with the medium value
equal to the nominal value, that is µi = v0,i, and a very big standard deviation σi (for example, equal to the double
of the medium value); a null cross-correlation among the parameters {P1, . . . , Pn} is bond.

• Step 2: Instances Generation
We generate m instances of the statistical model: so, we have m models {Mi}m

i=1, with the parameters values
extracted according to the distribution imposed and to the grade of cross-correlation established.

• Step 3: Performances Target Calculation
Through circuit simulations, for each m model {Mi}m

i=1 we calculate the performances considered in the experi-
mental statistics T84.

• Step 4: Selection (Filtering)
We will accept only the models which among {Mi}m

i=1, have such parameters values to reproduce statistically
accceptable performances; a model Mi satisfies the experimental statistics, that is, it generates performance targets
acceptable according to this statistics, only if it reproduces some performances that have values included in the
range [µ± 3σ] (probability of 99%) considered by the experimental statistics. On the base of this criterion we will
select S, S < m, models among the m {Mi}m

i=1.
• Step 5: Standard Deviations Calculation

For each Pj , j = 1, . . . , n, parameter we consider the S values obtained in the S selected models ({vi,j}S
i=1) and

on the base of them we estimate the standard deviation from its normal distribution:

σj =

√√√√ 1

(S − 1)

S∑
i=1

(vi,j − µj)2 j = 1, . . . , n (1)
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So, we will generate the statistical model M̃ with the statistical distribution of the parameters calculated on the
base of the S selected values, that is, the M̃ model parameters statistically described have medium value equal to
the nominal M0 model values, standard deviation updated with the (1) and null cross-correlation.

• Step 6: Stop or Reiteration
If the S number of selected instances, which have generated the M̃ model calculated in the step 5, were sufficiently
high, that is, for example, if the 99% of the m instances would have been accepted, the flow would stop and the
statistical model in output would be the M̃ calculated in the step 5, if S does not reach the acceptance threshold
we will have to repeat the flow starting from step 2.

• Step 7: Correlation Coefficients Determination
After obtaining the model M̃ , that is having estimated the parameters standard deviations, we will make an op-
timization process to determine the cross-correlation coefficients which were null until now; taking as target the
cross-correlation coefficients among the T84 electrical performances, we will optimize the value of the Spice
model parameters cross-correlation coefficients. The optimization method used is the Direct in the Jones et al.
version described in [JPS93].

3 Validation of the proposed statistical modeling method

The aim of this section is to validate the operative flow, described in the section 2, which extracts the statistical model
of a device of which we have performances that derive from the T84 experimental statistics.
As this flow output is a circuit model whose parameters are described by a probability distribution estimated starting
from a certain experimental statistics, to test the flow convergence, we have generated a fictitious experimental statistics,
using a well-known Spice Mtarget statistical model; we call it fictitious statistics because it is obtained through Monte
Carlo simulations and not through a device measures. If the proposed statistical modeling method was valid, in that
case the statistical distribution of the Spice parameters, obtained through our flow, it would converge on the statistical
distribution of the starting Mtarget model parameters. The operations flow used to validate the statistical modeling
method is described in detail as follows:

(i) Choice of a Mtarget Statistical Model
We consider a Mtarget statistical model with the parameters {P1, . . . , Pn} statistically described by a normal
distribution with µitarget and σitarget mean value and standard deviations respectively; we impose a determinate
cross-correlation among these parameters.

(ii) Generation of the Fictitious Experimental Statistics
Through N Monte Carlo simulations, using the Mtarget model, we generate N value of the performances target
Tj , j = 1, . . . , t. For each t performance target, on the base of its simulated N values, we estimate the mean
value µTj and the standard deviation σTj of the normal relative distribution; moreover, we collect the correlation
coefficients among these electrical performances. After that, for each considered electrical performance we will
have a fictitious experimental statistics (fictitious as it has been collected from a simulation data and not from the
real device measures trough the T84 machine).

(iii) Statistical Model Extraction using the Proposed Flow
The fictitious experimental statistics will be given in input, as a target of T84, to the proposed statistical modeling
flow, which will extract the statistical model M̃ having the parameters Pi, i = 1, . . . , n with normal distribution,
that is with mean value µ̃i (which represent the nominal value of Mtarget model parameters), σ̃i standard deviation
and a determinate cross-correlation.

(iv) Comparison
If the extraction flow of the statistical model is convergent, so for each Pi, i = 1, . . . , n of the model, the probabil-
ity distribution estimated with µ̃i and σ̃i, will have to converge on the target distribution with µitarget and σitarget ;
furthermore, the estimated cross-correlation grade among the parameters has to converge on that imposed for the
Mtarget model.

4 Validation Tests

Firstly, we have done several tests on a simple device, such as a diode, and, secondly, we have tested the flow on an
IGBT.
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4.1 Diode test

In this section, we consider a validation test related to a diode to be statistically characterized. To generate the fictitious
experimental statistics, we have done a Monte Carlo simulation through a Spice like circuit simulator using a well
known statistical diode model. The Spice parameters of this model, described with a normal statistical distribution, are
shown in table 1.

We have fixed the cross-correlation coefficient ρ(Is,Rs)target = 0.5. We speak about target values because,
through the proposed flow, we want to obtain them. As electrical measures, we have considered Vth and Gm: in
Table 2 we show the experimental statistics related to them, obtained through simulation.

The cross-correlation coefficient calculted among the electrical performances is ρ(Vth, Gm) = −0.0253. After
11 iterations of the proposed flow we have reached the estimation of the standard deviations of the Spice parameters,
sufficiently accurate, as we reached the 98% of the selected instances (take in mind that µ̃i = µitarget ). The result has
been reported in the 3-th column of Table 1.

After we have done the final optimization phase, with the aim to optimize the value of the correlation coefficient
among the Spice parameters Is and Rs, (until now null), comparing the current value of ρ(Vth, Gm) with its target
value equal to ρ(Vth, Gm) = −0.0253: for each iteration of the optimization process we have done a Monte Carlo
simulation of N steps.

We have performed the optimization process many times with different Monte Carlo steps and different model
parameter standard deviations in order to understand the result accuracy.

The optimized ρ(Is,Rs) is shown in table 3, related to different optimization process setting: taking into account
that ρ(Is,Rs)target is equal to 0.5, we can notice that a small Monte Carlo steps such as N=150 does not lead to an
accurate ρ(Is,Rs) estimation, even if we have performed the optimization process take into account the ideal σitarget

of Spice model parameters, i.e null error on them standard deviations. The optimization process performed with a
greater Mote Carlo steps, such as N=500, even if we use the extracted model parameter standard deviations, leads to
a good ρ(Is,Rs) estimation, as we have obtained optimized ρ(Is,Rs) = 0.4223 vs 0.5 target value; considering
N=500, we have repeated the optimization with a null error on the model parameter standard deviations, i.e. taking into
account the ideal σitarget , and the correlation coefficient estimation has been 0.4935, very close to the target value 0.5.
Looking at table 3, it is clear that the estimate accuracy of the correlation coefficient among the Spice parameters,
through the optimization process, depends on the accuracy with which we have estimated the standard deviations,
through the filtering step, and the N steps number which characterizes the Monte Carlo simulations in the optimization
phase.

Table 1. Diode Spice parameters statistically described

Parameters µitarget σitarget σ̃i

Is[A] 1E-13 2E-14 2.1582E-14
Rs[Ω] 2 0.3 0.2853

Table 2. Fictitious experimental statistics calculated for the diode

Performances target Measure conditions µ σ

Vth[V] ID=0.01A 0.675587 0.488877E-02
Gm[Ω−1] ID=1A 0.505821 0.812661E-01

Table 3. Summary of the Optimization process performed many times with different Monte Carlo steps and different
model parameter standard deviations

MC steps N Consider Extracted σ̃i Consider Target σi Optimized ρ(Is,Rs)

N=150 × 0.3807
N=150 × 0.4572
N=500 × 0.4223
N=500 × 0.4935
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4.2 IGBT test

In this section we consider a validation test related to an IGBT to be statistically characterized. To generate a fictitious
experimental statistics we have done a Monte Carlo simulation through a Spice like circuit simulator. The Spice pa-
rameters of the IGBT model, to which we have assigned a normal statistical distribution, are shown in Table 4. We
established the target cross-correlation among the parameters showed in Table 5.

We speak about target values because, through the proposed flow, we want to obtain them. The circuit simulation,
in the statistical model instances generation, will generate the parameters values, statistically described, according to
the imposed distribution and to the cross-correlation grade.

In table 6, we show the fictitious experimental statistics calculated for the electrical performances Bvdss, V dson,
Gmp and V th. The cross-correlation coefficients among these electrical performances are shown in Table 7. We have
applied the flow described in section 2 and, after 6 iterations, by executing the filtering with 3σ threshold, we have
selected the 98% of the instances. On the base of these instances we have estimated the standard deviations of the Spice
parameters showed in the last column of Table 4. Using the statistical model with the updated standard deviations, we
have done the final optimization phase to optimize the correlation coefficients values among the Spice parameters
(until now null), taking as a target the correlation coefficients of the experimental statistics related to the electrical
performances (see Table 7). For each iteration of the optimization process we have done a Monte Carlo simulation of
N=500 steps. The best values found for the cross-correlation coefficients among the Spice parameters are shown in last
column of Table 5.

Table 4. IGBT Spice parameters statistically described

Parameters µitarget σitarget σ̃i

Vz[V] 7.75 0.8 0.8800
Ron[ Ω] 1e-3 1e-4 1.8121E-04
K0[AV −2] 7.925 0.8 0.7023
VT0[V] 1.81 0.2 0.2146

Table 5. Cross-correlation coefficients among the Spice parameters of the IGBT

Cross-correlation Target values Extracted values

ρ(Ron, V z) 0.6 0.5974
ρ(K0, V z) 0.4 0.3711
ρ(K0, Ron) 0.5 0.5562
ρ(V T0, V z) 0.6 0.6674
ρ(V T0, Ron) 0.8 0.5123
ρ(V T0,K0) 0.3 0.2737

Table 6. Fictitious experimental statistics calculated for the IGBT

Target Performances Measure conditions µ σ

Bvdss[V] ID=250µA 381.883 38.6796
Vdson[V] ID=5A , VGE=5V 1.04981 0.7401E-02
Gmp[AV −1] VDE=15V 16.9108 0.920343
Vth[V] ID=250µA , VDG=0V 1.61821 0.200153

Table 7. Cross-correlation coefficients for electrical performances considered for IGBT device

Cross-correlation Target values

ρ(V dson,Bvdss) -0.1013
ρ(Gmp,Bvdss) 0.2554
ρ(Gmp, V dson) -0.9634
ρ(V th,Bvdss) 0.5936
ρ(V th, V dson) 0.1995
ρ(V th,Gmp) 0.0419
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Fig. 2. Distribution of electrical performances of IGBT device: Bvdss, Vdson, Vth, Gmp. The extracted distributions
(red line), result of our flow, are compared to their target distributions (blue triangles)

As example of the statistical modeling flow convergence, in Fig. 2 are showed the electrical performances (Bvdss,
Vdson, Vth, Gmp) distributions considered for the IGBT test, very close to their target distributions: our technique
allows to obtain a statistical Spice model which reproduces the electrical experimental performances distributions.

5 Conclusion

We have shown a statistical modeling technique which extracts a statistical model for a given device, by using the
information included in the experimental statistics on electrical performances, called T84, corresponding to the device
in issue. The technique shown is innovative compared to the existent ones; the latter, valid from a theoretical point of
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view, are practically unacceptable, as they need to repeat the parameters extraction phase for a thousand times, which
is already very heavy from a computational point of view.

The new method is based on the use of the experimental statistics T84, as a target to be satisfied, and, above all, as
a selectivity factor of the device models; the latter will be accepted if the parameters values are such to characterize a
model which can supply simulated performances which are included in the experimental statistics. In the end, we do an
optimization phase to estimate the correlation coefficients among the Spice model parameters, taking as a target those
among the electrical performances. The operations flow has been validated on a diode and IGBT device.
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Abstract At present, a practicable way to design IC custom inductors involves EM simulators that are able, for fre-
quencies below 10GHz, to reproduce quite faithfully the behaviour of RF IC structures. The extracted model is based on
lumped elements in a SPICE subcircuit format or S-parameter representation and requires no adjustment after fabrica-
tion and measurement. To help designers developing their projects, an automatic simulation flow has been implemented
for the modelling of planar and multi-layer polygonal integrated inductors on silicon substrates based on the Cadence
(Virtuoso) - Agilent (Momentum) environment.

A computer program which extracts a physical-based model of inductor components that is suitable for circuit
(ELDO) simulation has been used to evaluate the effect of variations in metallization, layout geometry, and substrate
parameters upon monolithic inductor performance. Planar (2.5-D) numerical simulations (MOMENTUM) have been
used to extract the S-Parameter based model. Square, octagonal, hexagonal and circular inductors could be designed
and simulated. Experimental results confirm the accuracy of the flow. This flow is based on HSB3 technology developed
by ST Microelectronics.

Key words: Integrated inductor, EM simulation, Simulation flow

1 Introduction

Smaller and smaller integrated RF circuits are going to replace discrete and hybrid components in wireless portable
communication applications where high levels of integration are, nowadays, more requested . The silicon technologies,
till now have provided only integrated transistors, resistors, and capacitors for RF IC designers and adding planar
inductors to the list would allow designers to implement fully integrated solutions for all that RF circuits which include
inductance, but the lack of an accurate and generic model of a monolithic inductor on silicon substrate has often
prevented designers from employing them.

Using large pre-characterized inductor libraries, in RF IC design flows, often could represent a very useful solution
because the designer can choose the more appropriate inductors amongst those available in the library but often, for
reasons tied to very restricted design requirements, the designer can not find the useful one amongst them. For this
reason, the necessity to make custom inductors, whose characteristics can be determined in synthesis phase, often
arises.

A practicable way to design IC custom inductors, at present, involves using EM simulators that, for frequency
below 10GHz are able to reproduce the behaviour of RF IC structures quite faithfully. The extracted model comprises
lumped elements in a SPICE subcircuit format or a S-parameter representation and requires no further adjustment after
fabrication and measurements. An automatic simulation flow has been implanted in order to help our designers to build
their inductors easily. The flow is based both on commercial and custom tool developed in STMicroelectronics and it
is available for the RF technology HSB3. The tools involved in the flow are the commercial drawing software Virtuso,
developed by Cadence and the EM 2.5D simulator Momentum, developed by Agilent Technologies while the custom
tools developed in STMicroelectronics are the estimation tool Pcell Parametric Inductor, the optimisation program
ToolsMG and the graphic processor tool Imago. In the figure below the proposed simulation flow is shown.

In the next chapters we will see some details about the flow steps.
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Fig. 1. Simulation Flow

Fig. 2. Spiral inductor and main parameters used in the estimation formulas

2 Drawing the inductor and having the initial inductance estimation

Using a parametric cell developed in STMicroelectronics and implemented in Cadence Skill Languages, the designer
can easily draw the desired inductor obtaining a preliminary estimation of the inductance. This estimation come out
from an implementation of the Modified Wheeler Formula and Geometric Mean Distance [1] equation.

Wheeler presented several formulas for planar spiral inductors, which were intended for discrete inductors but
simple modification of the original formulas allows obtaining an expression that is valid for planar spiral integrated
inductors. The user can choose the inductor topology and possible shape choices are: square, octagonal, hexagonal and
circular.

L0 = K1 · µ0
n2 · davg

1 + K2 · ρ
(1)

where din is the inner diameter of coil, dout is the outer diameter of the coil

davg =
din + dout

2
(2)

is the average diameter,

ρ =
dout − din

dout + din
(3)
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Table 1. Modified Wheeler expression K1 and K2

Layout K1 K2

Square 2.34 2.75
Hexagonal 2.33 3.82
Octagonal 2.25 3.55

Table 2. Coefficients for current sheet expression

Layout C1 C2 C3 C4

Square 1.27 2.07 0.18 0.13
Hexagonal 1.09 2.23 0.00 0.17
Octagonal 1.07 2.29 0.00 0.19
Circle 1.00 2.46 0.00 0.20

is the fill ratio of coil. Coefficients for Modified Wheeler expression shape dependent K1 and K2 are shown in Table 1.
Besides this first formula iis possible to use another simple expression to estimate the inductance of a planar spiral

inductor. This can be obtained by approximating the sides of the spirals by symmetrical current sheets of equivalent
current densities.

Lgmd =
µ · n2 · davg · c1

2
+

(
ln

(
c2
ρ

)
+ c3 · ρ + c4 · ρ2

)
(4)

where the coefficients ci are shape dependent and are shown in Table 2.

3 Exporting Layout and s-parameters simulation

In order to calculate S-Parameters from the drawn inductor structure, the user must export the layout from the drawing
environment to the electromagnetic simulation environment. All the necessary environment setting, the technology
information of the substrate and the characteristics of the inductor metals necessary to execute the simulation are tied
to the technology and supplied by the program flow in a transparent way for the designer.

The only important action the user has to do is to define the number and position of signal ports where s-parameters
must be calculated through.

The scattering parameters simulation step follows the project exportation and port definition phases. When the
simulation is completed, the simulator will automatically show a series of Smith diagram pertinent to all S parameters
extracted. After viewing the results the user can leave the electromagnetic environment and come back to the designing
environment in order to begin the model synthesis phase.

4 Synthesis and simulation of the S-parameters based model

From the Virtuoso environment, after selecting an item placed on a custom menu, the user can generate an S-parameter
model for Spectre and Ads simulator automatically. These models are written with a syntax useful to the simulators and
are directly based on s-parameters. During the synthesis phase, the flow uses a data file in Touchstone format generated
by EM simulation and containing the S-parameters representation of simulated inductors.

When this phase is completed, the models are created under the ”Predefined” models directory of simulator and,
at the same time all necessary views for simulations are also generated. Once the previous step is completed, the user
can perform the simulation of implemented devices.

5 Macromodel Fitting

By selecting the item “Fit Macro Model” from a customized menu a lumped component inductor is created. The
inductor S-parameter representation will be synthesized in a two-port network consisting of lumped elements.
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Fig. 3. Two-cell Macro Model

The electrical equivalent model of a two cell subdivision of the inductor is shown in Fig. 3 The inductor can be
represented as an equivalent distributed inductor model with a variable number of cells to describe better the inductor
behaviour at high frequencies [2] [3]. The main elements of the two ports are the series inductance LL, the resistance
RL of the segment, the capacitance Cox1 , Cox2 and resistance Rox1, Rox2 formed by the insulating Si02 between
the inductor and the silicon substrate. The two elements modelling the substrate layers under the insulator named, Cb1,
Cb2, Rb1 and Rb2. This step could be performed to know the capacitance and resistance effects from the inductor
versus substrate.

The user could select a topology according to the technology needs. This subcircuit is now described in analytical
form to represent the small-signal characterization to be used to fit the AC representation coming from electromagnetic
simulation. The fitting method is based on a multi-objective optimisation algorithm developed on a controlled random
search method [4] [5] [6]. At the end the model is stored in a file with spice like syntax, to be used in the next step
of the flow. The synthesis phase is based on the program ToolsMG and its operations are transparent to the user. Once
the fitting phase is completed, through an option available on a customized menu it is possible to ascertain visually the
fitting quality by comparing results obtained by simulation and results produced through fitting.

6 Simulation versus Measurement

The proposed inductor simulation has been tested on an example application where s-parameters measured and simu-
lated have been compared. The inductor being tested has the specifications shown below.

• Shape: Octagonal
• Number of turns: 2.5
• Outer dimension (µm): 200.0
• W (µm): 16.0
• S (µm): 8.0
• SiO2 Thick. (µm): 1.8
• Al Thick. (µm): 3.0

The inductors were measured using a network analyser and high frequency probes. The two port S-parameter
measurements and simulation were per-formed over frequency range of 100MHz to 20GHz. A set of unconnected
probe pads was also measured to determine the parasitic of the pads. The pad parasitics were de-embedded from the
measured data by subtracting the Y-parameters of the pads from the Y-parameters of the inductor and converting the
results back to S-parameters. The Q value of the inductor [7] [8] is calculated as:

Q =
Im{ 1

Y11
}

Re{ 1
Y11

}
(5)

The inductance value of the inductor is calculated as:

L =
Im{ 1

Y11
}

2 · π · f (6)

The resistance value of the inductor is calculated as:
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Fig. 4. S11 Parameters: Measure, - EM Simulation, Macromodel

Fig. 5. Q-Factor and Inductance value: ◦ Measure, - EM Simulation, " Macromodel

R = Re{ 1

Y11
} (7)

The planar spiral inductor was synthesized using a semi empirical model of inductor based on 3 cell division,
that means that the cell is composed by 5 YL, 3 Y1 and 3 Y2 (Fig. 3). The measured value of inductance was 1.18
nH , simulation results and synthesized model give value about 1.1 nH . Fig. 4 shows the measured and simulated
S-parameters for the inductor, which was fabricated using the HSB3 process. For S-parameters based model we in-
tend the S-parameters extracted with EM Momentum simulations. The simulation results have been obtained using
the S-parameter representation (Momentum) and the semi empirical inductor model. The overall agreement between
simulation results and measured data is very good. Fig. 5 shows the Q-factor and inductance value versus frequency
where at low frequency the value is about 1 nH in agreement with the predicted value given by equation (1 and (2).
Finally Fig. 6 shows the resistance effect of the inductor, the self-resonant effect is present.
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Fig. 6. Resistance value: ◦ Measure, - EM Simulation, " Macromodel

7 Conclusion

The tool enables the designer to safely analyse the geometry, the type and the positioning of all inductors in a single RF
IC prior to fabrication. The developed flow allows automation of a drawing, synthesis and simulation procedure that
would, otherwise, be very complicated and difficult to manage. A complete interface structure guides the users through
each step making the whole flow very easy to use. The product is available as a STMicroelectronics Unicad Tool and
can be, at the moment, used with the HSB3 family design kits.
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Abstract. In this paper an optimal control approach for the Energy Transport model in semiconductor device design is
presented. After proving an existence result for the minimization problem, the first-order optimality system is derived
and an existence result of Lagrange-multipliers is established.

1 Introduction

Recently there has been an increasing interest in optimal design of semiconductor devices. A major objective in the
optimal design is to improve the current flow over some contacts by modifying the device doping profile, which enters
as a source term in the mathematical model for semiconductor devices.

In this framework, Pinnau et al. have presented an optimal control approach for the standard Drift Diffusion model
(see [1]). In this paper the same optimal control approach is investigated by considering the Energy-Transport Model
The dimensionless stationary Energy-Transport (E.T.) model for charge carriers in a semiconductor enclosed in a
bounded domain Ω ⊂ R

d
, d = 1, 2, 3, is given, by the following equations for electron density n, electron temperature

T , coupled to the Poisson equation for the electric potential V [4]:

divJ1 = 0

divJ2 = J1 · ∇V + W (µ, T ) (1)

λ2�V = n(µ, T ) − C(x)

here J1 is the carrier flux density, J2 the energy flux density, W the energy production, µ the chemical potential, λ the
Debye length and C(x) the doping concentration. Assuming the parabolic state equation one has n(µ, T ) = T 3/2eµ/T .
The general form of the constitutive equations is given by:

J1 = −L11

(
∇ µ

T
− ∇V

T

)
− L12∇

(
− 1

T

)

J2 = −L21

(
∇ µ

T
− ∇V

T

)
− L22∇

(
− 1

T

)
.

The coefficients Lij depend on µ and T and the diffusion matrix L = (Lij) is symmetric and positive definite.
Moreover we assume W (µ, T ) = − 3

2
n(µ,T )(T−TL)

τw(T )
, where τw(T ) is the scaled energy relaxation time, which depends

also on T , and TL is the lattice temperature. By introducing the dual entropy variables:

w1 = µ/T − V/T and w2 = −1/T,

one obtains the following symmetric equations (see [4] for a review):

divI1 = 0

divI2 = Q(w, V )

λ2�V = N(w, V ) − C(x) (2)

I1 = −
2∑

k=1

D1k(w, V )∇wk

I2 = −
2∑

k=1

D2k(w, V )∇wk
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where w = (w1, w2), the matrix D = (Dij) is still symmetric and positive definite, Q(w, V ) = W (µ, T ) and
N(w, V ) = n(µ, T ).

The system (2) is supplemented by homogeneous Neumann boundary conditions on a part ΓN ⊂ ∂Ω, modelling
the insulating parts of the boundary, and Dirichlet conditions on the remaining part, which models the Ohmic contacts
of the device:

w1 = w1D, w2 = w2D, V = VD on ΓD (3)

Ii · ν = ∇V · ν = 0 i = 1, 2 on ΓN ,

here ν denotes the unit outward normal vector along the boundary and w1D, w2D and VD are the H1(Ω)-extensions
of fixed functions defined on ΓD .

Let C be a given reference doping profile and let ΓO be a portion of the Ohmic contacts ΓD , at which we can
measure the current I1. At the contact ΓO we prescribe a gained current density Ig and allow deviations, in some
suitable norm, of the doping profile from C in order to gain this current flow. In other words we intend to minimize
cost functionals of the form

F (w, V,C) =
1

2
‖(I1 − Ig) · ν‖2

H−1/2(Γ0) +
γ

2

∫
Ω

|∇(C − C̄)|2dx (4)

where γ > 0. C enters as a source term in the E.T. model, which can be interpreted as a constraint, to the minimization
problem, determining the current I1, by the state variables (w1, w2, V ).

After discussing, in sec. 2 some analytical questions of the optimal control problem, in sec. 3 we prove an existence
result and in sec. 4 we derive the first-order optimality necessary conditions. Finally, in sec. 5, we establish an existence
and uniqueness result for the Lagrange multipliers.

2 Problem Formulation and Analytic Setting

We make the following assumptions.
(H.1) Ω ⊂ R

d
, d = 1, 2 or 3 is a bounded domain with lipschitzian boundary ∂Ω = ΓN ∪ ΓD , ΓN ∩ ΓD = ∅, ΓN

closed, measd−1(ΓD) > 0

(H.2) Dij ∈ L∞(R
2 × R,R

2×2
) is a symmetric uniformly positive definite 2 × 2 matrix.

(H.3) For all w, V , ŵ, V̂ the function Q : R
2 × R → R satisfies:

2∑
k=1

(Q(w, V ) −Q(ŵ, V̂))(wk − ŵk) ≤ 0

Q(w, V )(w2 − w̄) ≤ 0

|Q(w, V )| ≤ c(1 + |w| + |V |)

with w̄ < 0 and c > 0 a real constant.
(H.4) N ∈ L∞(R

2 × R); wiD , VD ∈ H1(Ω) ∩ L∞(Ω) and w2D = w̄.
(H.5) We assume that the functions Dij , Q,N ∈ C1(R

2 × R).
(H.6) For the gained current we require Ig · ν ∈ H−1/2(∂Ω) and C ∈ H1(Ω) for the reference doping profile.

Remarks: Assumption (H.2) follows from basic physical principles. Assumption (H.4) on N is too restrictive, but the
existence result for the solution of (2), given by the following theorem 3.1, is still assured, relaxing it by assuming the
following condition for the source term Q (as shown in [4]):

2∑
k=1

(Q(w, V ) −Q(ŵ, V̂))(wk − ŵk) ≤ −c|w − ŵ|2.

In order to introduce a functional analytic framework, we consider the space of states

X = yD + X0

where yD
def
= (wD, VD) denotes the boundary data, introduced above, and X0 =

[
H1

0 (Ω ∪ ΓN )
]2 × (H1

0 (Ω ∪ ΓN )

∩L∞(Ω)) is equipped with the norm ‖y‖X0
def
= ‖w‖[H1(Ω)]2 + ‖V ‖H1(Ω) + ‖V ‖L∞(Ω).
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The space H1
0 (Ω ∪ ΓN ) = {u ∈ H1(Ω) : u = 0 on ΓD} can be considered as the closure of C∞

0 (Ω ∪ ΓN ) with

respect to the H1(Ω)-norm (see [8]). The set of co-states will be Z
def
= [H1(Ω)]3 and the set of admissible controls is

given by
C = {C ∈ H1(Ω) : C = C̄ on ΓD}. (5)

Let us define y
def
= (w1, w2, V ). We can rewrite the state equations (2) as f(y, C) = 0, where the nonlinear mapping

f : X × C → Z∗ is defined by

f(y, C)
def
=

⎛
⎝ div

(∑2

k=1
D1k(w, V )∇wk

)
div
(∑2

k=1
D2k(w, V )∇wk

)
+ Q(w, V )

λ2�V −N(w, V ) + C(x)

⎞
⎠ . (6)

Theorem 2.1 The mapping f defined by (6) is Fréchet differentiable. The action of the first derivative at a point
(y, C) ∈ X × C in a direction ŷ = (ŵ1, ŵ2, V̂ ) ∈ X0 is given by:

< fy(y, C)ŷ, z >= (7)

=< div

[
2∑

k=1

(
(
∂D1k

∂w1
ŵ1 +

∂D1k

∂w2
ŵ2 +

∂D1k

∂V
V̂ )∇wk

)]
, zw1 > +

+ < div

[
2∑

k=1

(
(
∂D2k

∂w1
ŵ1 +

∂D2k

∂w2
ŵ2 +

∂D2k

∂V
V̂ )∇wk

)]
, zw2 > +

< div

[
2∑

k=1

(D1k(w, V )∇ŵk)

]
, zw1 > +

< div

[
2∑

k=1

(D2k(w, V )∇ŵk)

]
, zw2 > + <

∂Q

∂w1
ŵ1 +

∂Q

∂w2
ŵ2 +

∂Q

∂V
V̂ , zw2 > +

+ λ2 < �V̂ , zV > − <
∂N

∂w1
ŵ1 +

∂N

∂w2
ŵ2 +

∂N

∂V
V̂ , zV >,

for all z = (zw1 , zw2 , zV ) ∈ Z and
< fC(y, C)Ĉ, z >=< Ĉ, zV > (8)

for all Ĉ ∈ H1
0 (Ω ∪ ΓN ) and z ∈ Z. The symbol < ·, · > denotes the dual pairing of Z∗ and Z.

Proof. First of all let us prove the continuity of the nonlinear mapping (y, C) → f(y, C). Let (y, C), (ỹ, C̃) ∈ X×C
and let z ∈ Z. By the definition of the mapping f one gets

< f(y, C) − f(ỹ, C̃), z >=

=< div

(
2∑

k=1

D1k(w, V )∇wk −
2∑

k=1

D1k(w̃, Ṽ )∇w̃k

)
, zw1 > +

+ < div

(
2∑

k=1

D2k(w, V )∇wk −
2∑

k=1

D2k(w̃, Ṽ )∇w̃k

)
, zw2 > +

+ < Q(w, V ) −Q(w̃, Ṽ ), zw2 > +λ2 < ∆(V − Ṽ ), zV > +

− < N(w, V ) −N(w̃, Ṽ ), zV > + < C − C̃, zV > .

Let us observe that

div

(
2∑

k=1

Dik(w, V )∇wk −
2∑

k=1

Dik(w̃, Ṽ )∇w̃k

)
=

div

(
2∑

k=1

(
Dik(w, V ) −Dik(w̃, Ṽ )

)
∇wk

)
+ div

(
2∑

k=1

Dik(w̃, Ṽ )∇(wk − w̃k)

)
.
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After several integration by parts, by considering the continuity of the trace operators and by the assumption (H.5) we
can estimate

‖f(y, C) − f(ỹ, C̃)‖Z∗ ≤ K
(
‖y − ỹ‖X0 + ‖C − C̃‖C

)
,

where K = K(‖Dik‖L∞ , Ω) denotes a strictly positive constant.
Secondly, (7) is easily obtained, after observing that for each functions Dik, Q and N it holds

�(w1 + tŵ1, w2 + tŵ2, V + tV̂ ) =

= �(w1, w2, V ) +
∂�
∂w1

tŵ1 +
∂�
∂w2

tŵ2 +
∂�
∂V

tV̂ + o (t2),

where � : R
2 × R → R, � ∈ C1(R

2 × R). Moreover one has

< f(y, C) − f(ỹ, C) − fy(y, C)(y − ỹ), z >=

=< div

[
2∑

k=1

(D1k(w, V ) −D1k(w̃, Ṽ ))∇(wk − w̃k)

]
, zw1 > +

+ < div

[
2∑

k=1

(D2k(w, V ) −D2k(w̃, Ṽ ))∇(wk − w̃k)

]
, zw2 > +

+o (

3∑
k=1

< (yk − ỹk)2, zk >)

thus after several integration by parts and observing hypothesis (H.5) one gets

‖f(y, C) − f(ỹ, C) − fy(y, C)(y − ỹ)‖Z∗ ≤ K · o (‖y − ỹ‖2
X0)

and thus the existence and continuity of the mapping (y, C) → fy(y, C).
Finally, (8) is a direct consequence of the linearity of the mapping (y, C) → f(y, C) w.r.t C.

3 Existence of Solutions

In order to establish the existence of a solution to the optimal control problem, we require standard regularity properties
for the cost functional F .
(H.7) Let F : X × C → R denote a cost functional which is assumed to be twice continuously Fréchet differentiable
with Lipschitz continuous second derivatives. Further let F be of separated type i.e F (y, C) = F1(y) + F2(C) and
radially unbounded w.r.t C (i.e. |F | → +∞ as ‖C‖ → +∞) for every y ∈ X . Moreover let us assume that F is
bounded from below and weakly lower semicontinuous.

Remark: Clearly, the cost functional (4) fits into this setting.
We now consider the minimization problem

min
X×C

F (w, V,C) s.t. f(w, V,C) = 0 (9)

The solvability of the state equations (2) for every C ∈ L∞(Ω) has been established in [3] by the following result:

Theorem 3.1 Let C ∈ L∞(Ω). Under the assumptions (H.1)-(H.5), there exists a weak solution (w, V ) of (2)-(3), in
the sense that wi −wiD ∈ H1

0 (Ω ∪ ΓN ) i = 1, 2, V − VD ∈ H1
0 (Ω ∪ ΓN )∩L∞(Ω), and equations (2) are satisfied

in the usual weak sense.
For the proof see [4]. We observe that the assumption C ∈ L∞(Ω) is too strict for our purposes as we seek a

minimizer in H1(Ω), nevertheless the previous result still holds by assuming C ∈ H1(Ω). Clearly, for d = 1 from
Sobolev’s immersion theorem, one can easily obtain that H1(Ω) ⊂ L∞(Ω) and the proof is the same as in [4]. For
d = 2 or 3, the existence of a weak solution V − VD ∈ H1

0 (Ω ∪ ΓN ) is still guaranteed by standard existence result,
since C ∈ L2(Ω). On the other hand, in order to get an L∞-bound for V , we follow the same idea in [4] (pag. 176),
where an L2-bound for the entropy variables u = ( µ

T
,− 1

T
) is obtained. This guarantees, (see also pag. 148, [4]), the

desired L∞- bound for V , by Stampacchia elliptic estimates, since H1(Ω) ↪→ Lp(Ω) (p ∈ [1, 6[) holds.

Theorem 3.2 Assume (H.1)-(H.6) and (H.7) then the constrained minimization problem (9) admits a solution
(w∗, V ∗, C∗) ∈ X × C.

Proof. Let {(wn, Vn, Cn)} ⊆ X × C be a minimizing sequence, i.e

F (wn, Vn, Cn) → infX×CF (w, V,C).
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where the infimum is finite, as F is bounded frow below. From the radial unboundedness of F we infer that {Cn} is
bounded in C. Hence there exists a weakly-convergent subsequence, again denoted by {Cn}, such that

Cn ⇀ C∗ weakly in C.

Since C is weakly closed with respect to the H1(Ω) norm, we have that C∗ ∈ C.
Moreover, by the continuous embedding H1(Ω) ↪→ Lp(Ω) (p ∈ [1, 6[), the sequence {Cn} is also bounded in

Lp(Ω).
Let (wn, Vn) denote a solution of (2)-(3). Because of the boundness of N , we have, by employing the Stampac-

chia’s method (see [7]), the following estimates

‖Vn‖H1(Ω) + ‖Vn‖L∞(Ω) ≤ K(
p
√

misΩ‖N‖L∞ + ‖Cn‖Lp(Ω) + ‖VD‖L∞(ΓD))

where K = K(Ω) > 0.
Moreover in [4], Jüngel proves that ‖wn‖H1(Ω) ≤ c1, where c1 > 0 depends on the L∞(Ω)-norm of Vn and the

H1(Ω)-norm of wD .
Hence there exists a subsequence, again denoted by {(wn, Vn)}, such that

(wn, Vn) → (w∗, V ∗) weakly in [H1(Ω)]3

which, by Rellich theorem, implies strong convergence in [L2(Ω)]3. We also have due to the uniform L∞-bounds

Vn → V ∗weakly-* in L∞(Ω)

This is sufficient to pass to the limit in the state equation (2)-(3)

div

(
−

2∑
k=1

Dik(w∗, V ∗)∇w∗
k

)
= Qi(w

∗, V ∗) i = 1, 2

λ2�V ∗ = N(w∗, V ∗) − C(x).

On the other hand F (w∗, V ∗, C∗) ≤ lim infF (w, V,C) Hence F (w∗, V ∗, C∗) ≤ infF (w, V,C) and so necessarily
F (w∗, V ∗, C∗) = inf F (w, V,C).

Remark: Here we have used the assumption on the boundedness of N . We plan to drop this hypothesis is future
developments.

4 First-order optimality system

The Lagragian L : X × C × Z → R associated to the minimization problem (9) is given by

L(y, C, ξ)
def
= F (y, C)+ < f(y, C), ξ >,

where ξ
def
= (ξw1 , ξw2 , ξV ). By Theorem 2.1 and (H.7), the Lagrangian L is continuously Fréchet differentiable. The

first order optimality system related to problem (9) is given by

∇(y,C,ξ)L(y, C, ξ) = 0. (10)

It is easy to show that variations of L with respect to ξ yield the state equations f(y, C) = 0. Moreover taking variation
of L w.r.t the control C ∈ C leads to the optimality condition given by: (see [1])

ξV = γ�(C − C̄), (11)

with the following boundary conditions,

C = C̄ on ΓD, ∇C · ν = ∇C̄ · ν on ΓN . (12)

Finally, the variations of the lagragian w.r.t the state y yield the co-state equations

f∗
y (y, C)ξ = −Fy(y, C) in X∗ (13)

where f∗
y (y, C) ∈ L(Z,X∗) denote the adjoint operators associated to fy(y, C).
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For the derivation of the co-state equations, let us begin by considering the l.h.s of equation (13). Let ỹ ∈ X0 ∩
C∞

0 (Ω) denote a test function. After several integration by parts, in order to remove all derivatives from the test
function ỹ, we obtain the adjoint system

div[D11(w, V )∇ξw1 ] + div[D21(w, V )∇ξw2 ] + (14)

−
2∑

k=1

(
∂D1k

∂w1
∇wk

)
· ∇ξw1 −

2∑
k=1

(
∂D2k

∂w1
∇wk

)
· ∇ξw2 +

∂Q

∂w1
ξw2 =

∂N

∂w1
ξV

div[D12(w, V )∇ξw1 ] + div[D22(w, V )∇ξw2 ] + (15)

−
2∑

k=1

(
∂D1k

∂w2
∇wk

)
· ∇ξw1 −

2∑
k=1

(
∂D2k

∂w2
∇wk

)
· ∇ξw2 +

∂Q

∂w2
ξw2 =

∂N

∂w2
ξV

λ2�ξV − ∂N

∂V
ξV = (16)

=

2∑
k=1

(
∂D1k

∂V
∇wk

)
· ∇ξw1 +

2∑
k=1

(
∂D2k

∂V
∇wk

)
· ∇ξw2 − ∂Q

∂V
ξw2

Since ỹ ∈ X0, we can choose ỹ arbitrarily on ΓN and ∇ỹ · ν can be chosen arbitrarily on ΓD . First, if we assume ỹ
arbitrary on ΓN and ∇ỹ · ν = 0 on ∂Ω and by observing that λ2 > 0, we get the following boundary conditions

∇ξw1 · ν = ∇ξw2 · ν = ∇ξV · ν = 0 on ΓN . (17)

Therefore, assuming ∇ỹ · ν arbitrary on ΓD we obtain

ξV = ξw2 = 0 on ΓD and ξw1 =

{
0 on ΓD\ΓO,

−ϕ on ΓO

(18)

where, (see [1]) ϕ is the H1(Ω)-solution of

−�ϕ + ϕ = 0 in Ω

ϕ = 0 on ΓN (19)

∇ϕ · ν =

{
0 on ΓD\ΓO

< (I1(y) − Ig) · ν, · >H−1/2(Γ0),H1/2(Γ0) on ΓO.

Thus the first-order necessary optimality condition (10) consists of the state equations (2)-(3) and the adjoint system
(14)-(18). The adjoint and the control are coupled via the optimality condition (11).

5 Existence of Lagrange-multipliers

In this section we are going to establish an existence and uniqueness result for the Lagrange multipliers (ξw1 , ξw2 , ξV ).
The first two equations of system (14)-(16) can be written in the simplified form

div

(
−

2∑
k=1

Dki(w, V )∇ξwk

)
+

2∑
k=1

bki · ∇ξwk − ci · ξw = −siξ
V , i = 1, 2 (20)

where bki =
∑2

j=1

∂Dkj

∂wi
∇wj , ci =

(
0, ∂Q

∂wi

)
, si = ∂N

∂wi
and ξw = (ξw1 , ξw2).

From (H.2) it follows that (Dki) is symmetric positive definite and there exists δ(V ) > 0 such that

n+1∑
i,k=1

Dkiξkξi ≥ δ(V )|ξ|2 ∀ξ ∈ R
2
.

Taking into account the L∞-bound of V , there exists δ0 > 0 such that δ(V ) ≥ δ0 (see [4]).
Moreover if we define h =

(∑2

k=1
( ∂D1k

∂V
∇wk),

∑2

k=1
( ∂D2k

∂V
∇wk)

)
and g = (0, ∂Q

∂V
), equation (16) can be

written as
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−λ2�ξV +
∂N

∂V
ξV = −h · ∇ξw + g · ξw, (21)

where ∇ξw = (∇ξw1 ,∇ξw2).

Theorem 5.1 Assume (H.1)-(H.7). Then there exist two constants l = l(Ω,C, ‖bik‖L∞(Ω), δ0) > 0 and σ =

σ(Ω, λ,C,
∥∥ ∂N

∂V

∥∥
L∞(Ω)

, ‖bik‖L∞(Ω), ‖si ‖L∞(Ω),

δ0, l) > 0, such that for each state (w1, w2, V ) ∈ X with

2∑
i=1

‖ci‖L∞(Ω) ≤ l and
2∑

j=1

(
‖hj‖L∞(Ω) + ‖gj‖L∞(Ω)

)
≤ σ

and ∥∥∥∂N
∂V

∥∥∥
L∞(Ω)

<
λ2

C
,

2∑
i,k=1

‖bik‖L∞(Ω) <
δ0
C

(where C = C(Ω) > 0 is the Poincaré constant), system (14)-(16) supplemented with boundary conditions (17)-(18)
admits a unique solution (ξw1 , ξw2 , ξV ) ∈ Z.

Proof. In order to reduce the linear system (20), (21) to a single elliptic equation, let us define ξ̄w ∈ [H1(Ω)]2 as the
unique solution of

div

(
−

2∑
k=1

Dki(w, V )∇ ¯ξwk

)
+

2∑
k=1

bki · ∇ ¯ξwk − ci · ξ̄w = 0, i = 1, 2

¯ξw1 =

{
0 on ΓD\ΓO

−ϕ on ΓO

, ¯ξw2 = 0 on ΓD and ∇ ¯ξwj · ν = 0 on ΓN , j = 1, 2

where ϕ is the solution of (19). Then, let us introduce the solution operator Tξw (ξV ) : L2(Ω) → [H1
0 (Ω ∪ ΓN )]2 by

div

(
−

2∑
k=1

Dki(w, V )∇Tξwk (ξV )

)
+

2∑
k=1

bki ·∇Tξwk (ξV ) − ci · Tξw (ξV ) = −siξ
V

(i = 1, 2), Tξw (ξV ) = (Tξw1 (ξV ), Tξw2 (ξV ))T ∈ [H1
0 (Ω ∪ ΓN )]2.

Hence the system (20), (21) assumes the equivalent form

−λ2�ξV +
∂N

∂V
ξV + h · ∇Tξw (ξV ) − g · Tξw (ξV ) = −h · ∇ξ̄w + g · ξ̄w (22)

subject to ξV ∈ H1
0 (Ω ∪ ΓN ), and ξwj given by

ξwj = ¯ξwj + Tξ
wj (ξV ) j = 1, 2. (23)

From elliptic estimates, we have

‖Tξw1 (ξV )‖H1(Ω) + ‖Tξw2 (ξV )‖H1(Ω) ≤ ε

2∑
i=1

‖si ‖L∞(Ω)‖ξV ‖L2(Ω),

for some constant ε = ε(Ω,C, ‖bik‖L∞(Ω), δ0, l) > 0, provided we have

2∑
i=1

‖ci‖L∞(Ω) ≤ l,

for l = l(Ω,C, ‖bik‖L∞(Ω), δ0) > 0 small enough and
∑2

i,k=1
‖bik‖L∞(Ω) < δ0

C
.

In order to apply the Lax-Milgram theorem to equation (22), let us define the bilinear form a : H1
0 (Ω ∪ ΓN ) ×

H1
0 (Ω ∪ ΓN ) → R and the linear functional G : H1

0 (Ω ∪ ΓN ) → R by:

a(ξV , φ) = λ2

∫
Ω

∇ξV · ∇φdx +

∫
Ω

∂N

∂V
ξV φdx +

+

∫
Ω

h · ∇Tξw (ξV )φdx−
∫

Ω

g · Tξw (ξV )φdx

G(φ) = −
∫

Ω

h · ∇ξ̄wφdx +

∫
Ω

g · ξ̄wφdx
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It is a simpler matter to prove that a and G are continuous. Let us prove the coercivity of a. By using the Schwarz and
Poincaré inequality we get

a(ξV , ξV ) ≥ λ2

∫
Ω

|∇ξV |2 dx−
∥∥∥∂N
∂V

∥∥∥
L∞(Ω)

‖ξV ‖2
L2(Ω) +

−
2∑

j=1

‖hj ‖L∞(Ω)‖∇Tξ
wj (ξV )‖L2(Ω)‖ξV ‖L2(Ω) +

−
2∑

j=1

‖gj ‖L∞(Ω)‖Tξ
wj (ξV )‖L2(Ω)‖ξV ‖L2(Ω) ≥

≥ λ2‖∇ξV ‖2
L2(Ω) − C

∥∥∥∂N
∂V

∥∥∥
L∞(Ω)

‖∇ξV ‖2
L2(Ω) −

−ε

2∑
j=1

(
‖hj‖L∞(Ω) + ‖gj ‖L∞(Ω)

) 2∑
i=1

‖si ‖L∞(Ω)‖ξV ‖2
L2(Ω) ≥ κ‖ξV ‖2

H1(Ω),

for some constant κ = κ(Ω, λ,C, ‖ ∂N
∂V

‖L∞(Ω), ‖bik‖L∞(Ω), ‖si ‖L∞(Ω), δ0, l, σ)
> 0 provided we have

2∑
j=1

(
‖hj‖L∞(Ω) + ‖gj‖L∞(Ω)

)
≤ σ

for σ = σ(Ω, λ,C, ‖ ∂N
∂V

‖L∞(Ω), ‖bik‖L∞(Ω), ‖si ‖L∞(Ω), δ0, l) > 0 small enough and
∥∥ ∂N

∂V

∥∥
L∞(Ω)

< λ2

C
. Thus

the existence of ξV is a consequence of the Lax-Milgram theorem. Further, the existence of ξw is uniquely determined
by (23).
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Abstract We present a multigroup-WENO solver for the non-stationary Boltzmann-Poisson system for semiconductor
device simulation. The proposed numerical technique is applied for investigating the carrier transport in bulk silicon,
in a silicon n+ − n− n+ diode and in a silicon MESFET. Additionally, the obtained results are compared to those of
a full WENO solver.

1 Introduction

In modern highly integrated devices, a consistent description of the dynamics of carriers is essential for a deeper un-
derstanding of the observed transport properties. In this paper we propose a deterministic multigroup-WENO solver
for the coupled Boltzmann-Poisson system, which describes semiconductor devices on a mesoscopic level. Our nu-
merical scheme is based on the combination of the multigroup method [1] for treating the dependence of the electron
distribution function on the three-dimensional wave vector and a fifth-order WENO solver [2], [3] for dealing with the
two-dimensional physical space. The resulting transport equations are used for simulating the charge transport in bulk
silicon, in a silicon n+ − n− n+ diode and in a silicon MESFET. Moreover, the relation of these results to those of a
full WENO solver are discussed.

2 The Boltzmann-Poisson System

The evolution of the electron distribution function f(t,x,k) in semiconductors in dependence of time t, the position
x and the electron wave vector k is governed by the Boltzmann transport equation (BTE) [4]

∂f

∂t
+

1

�
∇k ε · ∇xf − q

�
E · ∇kf = Q(f) , (1)

where q denotes the positive electric charge. The function ε(k) is the energy of the considered crystal conduction band,
measured from the band minimum; according to the Kane dispersion relation, ε is the positive root of

ε(1 + αε) =
�

2k2

2m∗ , (2)

where α is the non-parabolic factor and m∗ the effective electron mass. The electric field E is related to the donor den-
sity ND and the electron density n, as the zero-order moment of the electron distribution function f , by the Poisson’s
equation

ε∆V = q [n(t,x) −ND(x)] , E = −∇xV , (3)

where ε is the dielectric constant and V the electric potential. The collision operator Q(f) takes into account acoustic
deformation potential and optical intervalley scattering [5]. For low electron density, it reads

Q(f)(t,x,k) =

∫
R

3

[
S(k′,k)f(t,x,k′) − S(k,k′)f(t,x,k)

]
dk′,
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where

S(k,k′) = K
[
(nq + 1)δ(ε(k′) − ε(k) + �ωp) + nqδ(ε(k

′) − ε(k) − �ωp)
]

+ K0δ(ε(k
′) − ε(k))

and K and K0 being constant for silicon semiconductors. The symbol δ indicates the usual Dirac distribution and ωp

is the constant phonon frequency. Moreover,

nq =
[
exp
(

�ωp

kBTL

)
− 1
]−1

is the occupation number of phonons, kB the Boltzmann constant and TL the lattice temperature. As in [6] and [2], we
introduce dimensionless quantities and perform a coordinate transformation for k according to

k =

√
2m∗kBTL

�

√
w(1 + αKw)

(
µ,
√

1 − µ2 cosϕ,
√

1 − µ2 sinϕ
)
, (4)

where the new independent variables are the dimensionless energy w = ε/(kBTL), the cosine of the polar angle µ and
the azimuth angle ϕ with αK = kBTLα. It is useful to consider the new unknown function Φ related to the electron
distribution function via

Φ(t,x, w, µ, ϕ) = s(w)f(t,x,k)|
k=...

√
1−µ2 sin ϕ

)
where s(w) =

√
w(1 + αKw)(1+2αKw) is, apart from a dimensional constant factor, the density of states. The use

of this unknown gives a new dimensionless Boltzmann equation, where the free streaming operator can be written in a
conservative form. The explicit expression of this equation, details on the used material parameters, the dimensionless
quantities and the coordinate transformation are found in [3].

3 The Multigroup-WENO Model Equations

For deducing our model equation to the coupled Boltzmann-Poisson system, we proceed as follows. The first step is to
fix a maximum value wmax for the dimensionless energy. Of course, wmax must be related to the physically studied
process, and we must check that Φ(t,x, wmax, µ, ϕ) is negligible for all t, x, µ and ϕ.

If, for instance, the distribution function depends only on two spatial coordinates (x, y), we must choose three
suitable integer N , M and R. Hence, the independent variables w, µ and ϕ are discretized via

wi+1/2 = i∆w, i = 0, 1, . . . , N, ∆w = wmax/N,

µj+1/2 = −1 + j∆µ, j = 0, 1, . . . ,M, ∆µ = 2/M,

ϕk+1/2 = k∆ϕ, k = 0, 1, . . . , R, ∆ϕ = π/R,

where we take into account that, due to the 2D spatial geometry and the symmetry of the collision operator, ϕ ∈ [0, π].
It is important to remark that N must be chosen in such way that ζ = �wp/(kBTL∆w) ∈ N in order to treat the Dirac
distribution in the collision operator correctly.

The unknown function Φ is approximated by the finite sum

Φ(t, x, y, w, µ, ϕ) ≈
N∑

i=1

M∑
j=1

R∑
k=1

nijk(t, x, y)λwi(w)λµj (µ)λϕk(ϕ) (5)

containing N × M × R coefficients nijk and the characteristic functions λwi(w), λµj (µ) and λϕk (ϕ). The first one
is defined by

λwi(w) =

⎧⎨
⎩

1

∆w
, if w ∈ [wi−1/2, wi+1/2],

0, otherwise,
(6)

and the other functions analogously. The evolution equations for the coefficients nijk are constructed as suggested by
the method of weighted residuals [7]. The ansatz (5) is inserted into the dimensionless Boltzmann equation and the
result is integrated over the cells

Zijk = [wi−1/2, wi+1/2] × [µj−1/2, µj+1/2] × [ϕk−1/2, ϕk+1/2].
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This procedure yields a set of N × M × R partial differential equations for the nijk [1]. The physical interpretation
of the unknowns reveals that the nijk equal, except for a constant factor, the density of electrons with wave vectors
k(w, µ, ϕ) ∈ Zijk. Consequently, macroscopic quantities are simply given as weighted sums of the nijk.

Details of the full general procedure are given in a forthcoming paper [9]. Here, the main ideas of the numerical
scheme are shown in the Appendix, where, for sake of clearness, we consider a simple model equation. The extension
to the Boltzmann equation is straightforward.

4 Numerical Results

In this section we present numerical results obtained by the help of our multigroup-WENO solver. All the calculations
are carried out for silicon at the temperature TL = 300 K. The initial data for the coefficients nijk at time t0 = 0 ps
are chosen as integrated Maxwellians normalized to the donor density at the considered positions.

4.1 Electron Transport in Bulk Silicon

In the Fig. 1, we illustrate the dependence of the stationary-state drift velocity and the mean energy on the applied
electric field strength. Moreover, the inserts show the temporal evolution of these quantities in response to the onset of
an electric field pulse for the field strengths Ex = 10 kV cm−1 and Ex = 50 kV cm−1. The parameters used in these
calculations are set to N = 100, M = 22, ζ = 4. Our results are compared to those of a full WENO solver proposed
in [2]. Here, we observe very good agreement between the results for both the steady state values and the transients.
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Fig. 1. Stationary-state drift velocity v and stationary-state mean energy E versus the electric field Ex in silicon at
TL=300 K. The inserts illustrate v and E as functions of time t in response to the onset of an electric field pulse. (—):
multigroup-WENO model; (×): WENO solver [2]
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Fig. 2. Steady state electron density n, drift velocity v, mean energy E and electric field strength Ex as a function of
position x in the n+-n-n+ diode.(—): multigroup-WENO model; (×): WENO solver [2]

4.2 Electron Transport in a Silicon n+ − n − n+ Diode

The considered n+ − n− n+ diode has a total length of 250 nm with a 50 nm active channel located at the middle of
the device. The doping concentrations are set to ND = 5 × 1018 cm−3 in the n+ region and ND = 1015 cm−3 in the
n region. The applied voltage is Vbias = 1 V and the parameters of the grid are chosen as N = 100, M = 22, ζ = 4
together with 150 grid points in real space. Figure 2 displays the stationary-state values of the electron density, the drift
velocity, the mean energy and the electric field strength as a function of position in the n+-n-n+ diode. Moreover, we
compare our results with those of the full WENO solver [2] and find that they coincide in the whole x range.

4.3 Electron Transport in a Silicon MESFET

For the simulation of the Si-MESFET, we use the geometry shown in Fig. 3 with the potentials at source Vs = 0 V,
gate Vg = −0.8 V and drain Vd = 1 V. The donor densities are chosen as n = 1017 cm−3 and n+ = 3× 1017 cm−3.
The ohmic contacts at source and drain act as particle reservoirs. The Schottky contact at the gate is assumed to

be an absorbing boundary, whereas perfectly reflecting boundary conditions are imposed at the non-contact surfaces.
Concerning the boundary conditions for the Poisson equations, we apply the Neumann condition (vanishing electric
field in the direction normal to the surface) on those boundary regions, where there are no contacts. These regions
act as insulating boundaries, while the source, gate and drain contacts are treated as Dirichlet boundaries, where the
bias voltages are applied. The parameters of the grid are chosen as N = 75, M = 8, R = 8, ζ = 3 together with
48 × 32 grid points in real space. Figure 4 illustrates the steady state electron density and the electrostatic potential
versus position. We observe highly accurate non-oscillatory behavior near the junctions. In Fig. 5, we compare the cuts
of the stationary-state electron density, the energy density and the x-components of the momentum and the electric
field obtained with the multigroup-WENO solver with those from the full WENO solver [3] for several y-positions.
Again, we observe good agreement between the results with the CPU time about a factor 2 lower when applying of
the multigroup-WENO procedure instead of the full WENO technique for the same grid. Hence, we believe that the
treatment of the momentum dependence of the electron distribution function, which does not show steep gradients,
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Fig. 4. Steady state electron density n and electrostatic potential V versus position in the Si-MESFET

with the multigroup method and the spatial dependence with a high-order WENO scheme to cope with sharp doping
profiles is an appropriate approach for the deterministic simulation of semiconductor devices.

5 Conclusion

A multigroup-WENO solver for the non-stationary Boltzmann-Poisson system is applied for simulating the electron
transport in bulk silicon, in the spatially one-dimensional n+ − n − n+ diode and in the spatially two-dimensional
MESFET. The comparison of these results with those obtained by full WENO schemes [2], [3] clarifies that the pro-
posed multigroup-WENO solver is certainly a powerful tool for the accurate simulation of the carrier transport in
semiconductor devices. The use of our numerical scheme for approximating the partial derivatives with respect to w,
µ and ϕ requires less CPU time amount than the full WENO scheme. Although this new scheme is of lower order then
the previous one, we do not observe a lost of accuracy in the moments of the distribution function.

6 Appendix

Consider the equation
ut + ∂x[a(w)u] + ∂w[b(t, x, w)u] = 0 (7)

where u(t, x, w) is the unknown and the function a and b are given. If we integrate (7) over the interval [wi− 1
2
, wi+ 1

2
],

then we have ∫ w
i+ 1

2

w
i− 1

2

[
∂

∂t
u(t, x, w) +

∂

∂x
a(w)u(t, x, w)

]
dw = b(t, x, w)u(t, x, w)

∣∣∣wi− 1
2

w
i+ 1

2

.
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Fig. 5. The stationary-state electron density n, the energy density nE and the x-components of the momentum nvx

and of the electric field Ex versus position x in the Si-MESFET. (—): multigroup-WENO model; (×): WENO solver
[3]

Now, assuming that

u(t, x, w) ≈
N∑

i=1

ui(t, x)λwi(w) ,

where the characteristic function λwi is defined by Eq. (6), we obtain under reasonable assumpions

∂ui

∂t
+

⎛
⎝
∫ w

i+ 1
2

w
i− 1

2

a(w) dw

⎞
⎠ ∂ui

∂x
= b(t, x, w)u(t, x, w)

∣∣∣wi− 1
2

w
i+ 1

2

.

For fixed (t, x) and i, if b(t, x, wi+ 1
2
) �= 0, then the term u(t, x, wi+ 1

2
) is treated with the help of an upwind scheme

with a linear approximation using a MinMod slope limiter [8]. In fact, a simple Taylor expansion results in

u(t, x, wi+ 1
2
) ≈

⎧⎪⎨
⎪⎩

ui(t, x) +
∆w

2

∂u

∂w
(t, x, wi) if b(t, x, wi+ 1

2
) > 0

ui+1(t, x) − ∆w

2

∂u

∂w
(t, x, wi+1) if b(t, x, wi+ 1

2
) < 0

.

For b(t, x, wi+1/2) > 0 (otherwise, a similar formula holds), we approximate the partial derivative according to

∂u

∂w
(t, x, wi) ≈

{
min {|d−|, |d+|} sgn(d−) if d−d+ > 0

0 otherwise
.

where d− =
ui(t, x) − ui−1(t, x)

∆w
and d+ =

ui+1(t, x) − ui(t, x)

∆w
.

Then, a set on N partial differential equations for the unknowns ui is derived. The spatial dependence is considered
with the help of the fifth-order WENO method [2] and the time integration is performed by applying a third-order TVD
Runge Kutta scheme [10].
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1 Introduction

In this work we deal with the deterministic simulation of some electronic bipolar devices; in particular, p-n junctions
and bipolar junction transistors (BJT’s), among others. Essentially, a BJT transistor consists of the inverse union of
two diodes of type p-n, being able to form devices of type p+-n-p or n+-p-n, where superscript + indicates a strongly
doped region. The intermediate region between the highly doped emitter and the lower doped collector serves as a base
whose applied voltage controls the carriers flux between emitter and collector. These bipolar transistors constitute a
basic element in manufacturing modern electronic devices as tiny rectifiers, luminance photocells and many others.

It is well known that in order to explain some of the phenomena observed in these devices, it is necessary to
consider both the flow of electrons in the conduction band and holes in the valence band. In each band the particles
may undergo collisions due to dispersion mechanisms (scattering). Also, we are able to include electron-hole pairs
generation and recombination, whose effects in certain devices are not negligible.

We take into account acoustic phonons in the elastic approximation and optical non-polar phonons in the inelastic
approximation with a unique frequency ω both for electrons and for holes. These scattering phenomena are the most
relevant for silicon (Si) (see [Tom93] for its derivation and to find the physical parameters of the material) and were
used in the case of electron transport in [MP01, CGMS03]. In addition, we may include generation-recombination
processes: band to band, Auger recombination, ... [Sze85, MRS90, SB00].

The simulation of this type of devices have been undertaken by means of the numerical resolution of the corre-
sponding system of partial differential equations of Boltzmann-Poisson type using deterministic methods.

2 Boltzmann-Poisson system for bipolar devices

As we have already indicated, from a mathematical point of view, we have to deal with a system of two transport
equations of Boltzmann type: one for the electrons fe (with negative charge) and another one for the holes fh (with
positive charge), coupled with a Poisson’s equation for the potential, from which the corresponding electric field is
calculated Ẽ = −∇

x̃
V

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂̃
t
fl +

1

�
∇kεl (k) · ∇

x̃
fl + sig (l)

e

�
Ẽ · ∇kfl = Q (fl) + Rl (fe, fh)

(l = e, l = h; where sig (l) := −1 when l = e and 1 when l = h)

fl (0, x̃,kl) = Ml (kl) Ñl (x̃) ; kl ∈ R
3, x̃ ∈ [0, L̃]⊂R

�V ≡ ∇2V
(
t̃, x̃
)

=
e

ε

(
ρe − ρh − Ñe + Ñh

)
; t̃ ∈ R

+
0 , x̃ ∈ [0, L̃]⊂R

(1)

where, fl ≡ fl

(
t̃, x̃,kl

)
, t̃ ∈ R

+
0 , x̃ ∈ [0, L̃]⊂R, kl∈R

3 represent the probability density functions of finding an
electron (l = e) or a hole (l = h) with wave vector kl, located in the spatial point x̃ at time t̃; � is the constant of
Planck divided by 2π, e is the electron charge, ε is the permittivity’s constant of the crystal and L̃ is the length of the
device. The tilde everywhere emphasizes the fact that we are considering dimensional variables.
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The initial condition for each transport equation consists of “maxwellians” (distributions in the kernel of the col-
lision operators), so that the initial value of the density (at t̃ = 0) in ρl

(
t̃, x̃
)
≡
∫

R3 fl

(
t̃, x̃,kl

)
dkl agrees with the

corresponding dopant functions Ñl (x̃). We consider non-parabolic (Kane model) bands for both electrons and holes:

εl (kl) = El − sig(l)

�
2

m∗
l
|kl|2

1 +

√
1 + 2 α̃

m∗
l

�2 |kl|2
(2)

where El ≡ EC (for l = e) or EV (for l = h) are the minimum and the maximum of the energy in the conduction and
in the valence band respectively; m∗

e and m∗
h are the effective masses for electrons and holes respectively and α̃ is the

non-parabolicity factor. Therefore, the maxwellian distributions for electrons Me and holes Mh are

Ml (kl) = M exp
(
−sig (l)

El

kBTL

)(√2kBTLm∗
l

�

)−3

exp

(
sig (l)

εl (kl)

kBTL

)
(3)

with M the corresponding factor to have unit mass (see next section), kB the Boltzmann factor and TL the lattice
temperature.

The operator Q (fl) includes the scattering phenomena and we refer to [MP01, CGMS03] for its exact form.
Rl (fe, fh) represents the generation-recombination (GR) mechanisms in this type of devices. This GR terms are
defined, for l = e and l = h, as Rl ≡ RRF

l + RAU
l + RRL

l + RSRH
l ; i.e., the sum of different GR mechanisms:

RRF
l (fe, fh) = − 1

τRF ρi

(
ρ

l
fl − ρ2

i Ml

)

is the band to band mechanism by photons (with τRF = 0.1µs = 105 ps, noting l = e when l = h and l = h when
l = e);

RAU
l (fe, fh) = −Γe

(
ρe ρh fe − ρe ρ2

i Me

)
− Γh

(
ρe ρh fh − ρh ρ2

i Mh

)
is the Auger GR mechanism (with typical values for Si: Γe = 2.8× 10−31 cm6 s−1 and Γh = 9.9× 10−32 cm6 s−1);
RSRH

l is the so-called Schockley-Read-Hall GR mechanism (see [MRS90, Sze85, SB00])

RSRH
e (fe, fh) = ntrCcMe − (Ntr − ntr) Ca fe

RSRH
h (fe, fh) = (Ntr − ntr) CdMh − ntr Cb fh

with ntr = Ntr
Ca ρe+Cd

Ca ρe+Cc+Cbρh +Cd
and the following values for the constants: Ntr = 5×1016 cm−3, τn,p = 105 ps;

Ca ≡ 1
τn Ntr

= 1
τp Ntr

≡ Cb = 2.0× 10−22 cm3

ps
; Cc ≡ Ca ni = Cb ni ≡ Cd � 2. 894 5× 10−12 ps−1. And finally

the simpler linear GR terms (with τRL = 1. µs = 106 ps)

RRL
l (fe, fh) = − 1

τRL

(
fl −Ml (kl) Ñl (x̃)

)

also valid for small deviations with respect to the equilibrium. Here, ρi is the intrinsic concentration given by

ρi ≡ ni (TL) = 2

(
kBTL

√
m∗

e m∗
h

2π �2

) 3
2

e
−

Eg

2kB TL

depending on the jump energy Eg = EC − EV (typical values for Si at room temperature are Eg � 1.08 eV and
ni (300 K) � 1.44725 × 1010 cm−3).

Transformation of the problem

In the one-dimensional case we perform the same change of variables to pseudo-spherical coordinates introduced in
[MP01] in each equation, noting that the effective mass for the conduction and valence band carriers are different:
m∗

e ≡ 0.31m0 for the electrons, m∗
h ≡ 0.5m0 for the holes where m0 is the mass of the electron at rest:

kl≡ kl (wl, φ, µ)≡
√

2

√
m∗

l kBTL

�

√
w l (1 + αKwl)

⎛
⎝
√

1 − µ2 cosφ√
1 − µ2 sinφ

µ

⎞
⎠
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where the jacobian of this transformation is given by
√

2 (m∗
l TLkB)

3
2 �

−3 s (wl) with

s (w) :=
√

w (wαK + 1) (1 + 2wαK) .

This change of variables allows a simple expression for the band energies εl(kl) = El − sig(l)kBTLwl that
implies also a simple form of the maxwellians (3) (with M := (2π

∫ +∞
0

s(w) e−w dw)−1) as

Ml ≡ Ml (wl) =
(√

2kBTLm∗
l /�

)−3

M e−wl .

Therefore, in the case of axial symmetry in space with respect to the z̃ axis, we reduce ourselves to one variable in

space: z̃ ∈
[
0, L̃
]
⊂ R. The new unknowns will be the following functions (for l = e and l = h)

Φl ≡ Φl

(
t̃, z̃, wl, µ

)
≡ s (wl) Fl

(
t̃, z̃, wl, µ

)

where Fl

(
t̃, z̃, wl, µ

)
denote the functions fl

(
t̃, x3,kl

)
once the corresponding change of variables (2) is carried out.

Now the convective terms of each transport equation is written as follows

s (wl)
1

�

∂εl

∂k3

∂fl

∂x3
=

∂

∂z̃

(
a
(l)
1 (wl, µ)Φl

)

with

a
(l)
1 ≡

√
2
kBTL

m∗
l

µ s (wl)

(1 + 2αKwl)
2
.

The force term is written as(
e

�
Ẽ · ∇kfl

)
s (wl) ≡

(
e

�
Ẽ3

∂fl

∂k3

)
s (wl)

=
∂

∂wl

(
a2

(
t̃, z̃, wl, µ

)
Φl

)
+

∂

∂µ

(
a3

(
t̃, z̃, wl, µ

)
Φl

)

with

a
(l)
2 ≡

e Ẽ3

(
t̃, z̃
)

√
2kBTLm∗

l

2µ s (wl)

(1 + 2αKwl)
2

; a(l)
3 ≡

e Ẽ3

(
t̃, z̃
)

√
2kBTLm∗

l

(
1 − µ2

)
(1 + 2αKwl)

s (wl)
.

In this way, the two Boltzmann’s equations can be written in a totally conservative form, using these new variables:

∂Φl

∂t̃
+

∂

∂z̃

(
a
(l)
1 Φl

)
+ sig (l)

(
∂

∂wl

(
a
(l)
2 Φl

)
+

∂

∂µ

(
a
(l)
3 Φl

))
= Q̂ (Φl) + R̂l (Φe, Φh)

where the generation-recombination operators are (for l = e and l = h)

R̂l (Φe, Φh) ≡ s (wl) Rl (Fe, Fh)

and the collision operator takes the same form as in [CGMS03]. The energy intervals wl ∈
[
0, w

(max)
l

]
must be

adjusted in the numerical experiments so that Fl

(
t̃, z̃, wl, µ

)
� 0 for any wl ≥ w

(max)
l and ∀t̃, z̃, µ, both for l = e

and l = h.

Coupling

The coupling between both transport equations is done by means of the appropriate Poisson’s equation from which
the electric field Ẽ3

(
t̃, z̃
)

= −∂z̃V
(
t̃, z̃
)

is obtained. Using dimensional coordinates in space z̃ ∈ [0, L̃] and time
t̃ ∈ R

+
0 ⎧⎨

⎩
∂2V

∂z̃2

(
t̃, z̃
)

=
e

ε

(
�e

(
t̃, z̃
)
− �h

(
t̃, z̃
))

, z̃ ∈ [0, L̃]

V
(
t̃, 0
)

= Vleft, V
(
t̃, L̃
)

= Vright

where �l

(
t̃, z̃
)
≡ ρl

(
t̃, z̃
)
−Ñl (z̃) in which the density of carriers for electrons (l = e) and holes (l = h) is given

by

ρl

(
t̃, z̃
)

=

(√
2m∗

l kBTL

�

)3

π

∫ w
(max)
l

0

∫ 1

−1

Φl

(
t̃, z̃, wl, µ

)
dµ dwl.
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Here, the boundary conditions Vleft, Vright have to be settled according with the applied Vbias and the corresponding

built-in potentials due to the p-n or n-p junctions, generically given by Vbi =
kBTL

e
ln
(

NaNd

n2
i

)
where Na and Nd

denote the constant values of the dopants concentrations (donors and receivers) in both sides of the junction. In the
case of a BJT transistor, we are forced to solve separately two Poisson’s equations to include the potential at the base;
then also VBE and VCE have to be considered.

3 Numerical resolution

The simulations have been undertaken using deterministic methods: weigthed essentially non oscillatory finite differ-
ences (FD-WENO [Shu98]) of high order for the advection terms together Runge-Kutta third order in time. As it is
well known, the basic idea of the WENO methods, consists of using a convex nonlinear combination of all the possible
candidates obtained for the so called Essentially Non Oscillatory (ENO) reconstruction technique instead of taking
only one, that would provide the more regular. In this way, when k possible reconstruction candidates (obtained from
2k − 1 cells) are taking into account, but only one of them is used for the reconstruction, finally we will be able to
reach an order of precision at most k, with the ENO technique; whereas with the WENO procedure, it is possible to
reach a precision order of 2k − 1 (at least in the regular regions of the function), because all the possible candidates
are used. One of the main drawbacks of FD-WENO methods is the need of a uniform mesh.

However, dealing with devices of a certain length, the consideration of a uniform mesh forces to take an undesirable
high number of points to obtain an appropriate resolution in the depletion zone, where the more intense fluxes take
place. Therefore, we have also implemented the possibility of using nonuniform meshes in the spatial variable z̃ by

z̃i ≡ ξ−1 (ξi) ≡ X (ξi) , i = 1, . . . ,M (4)

originating from some regular transformation (with ξ ≡ ξ (z̃) and X ≡ X (ξ) smooth enough).
For this purpose, we can take a transformation ϕ : [−1, 1] −→ [−1, 1] that is an uneven function (symmetrical

with respect to the origin) sufficiently regular and with inverse ϕ−1 also regular, so that |ϕ (ξ)| � 1 for |ξ| � 1;
that is to say, with the objective of which the images of a uniformly distributed set of points near the origin are more

accumulated near the origin. Therefore, if we take z̃ = X (ξ) ≡ L̃
2s (ϕ (ξ) + 1)s ∈ [0, L̃] with s = log2

(
L̃

z̃o

)
, then

ξ ≡ ξ (z̃) ≡ X−1 (z̃) = ϕ−1

(
2
(

z̃

L̃

) 1
s − 1

)
∈ [−1, 1] and now the accumulation of points will take place around

z̃o ∈ [0, L̃] (the case s = 1 corresponds with z̃o = L̃
2

).
In this way, any conservation law of the form ∂tu+∂z̃f (u) = 0 is transformed into ∂tu+ξ′ (z̃) ∂ξf (u) = 0 and

it would suffice to apply the ENO or WENO technique to it in order to approach the first derivative ∂ξf (u), keeping
the conservativity of the scheme and the convergence, assured by a theorem of Lax-Wendroff type (consult ([OC83])).

Numerical Results

We have verified how the numerical results obtained correspond qualitatively and quantitatively well to the behavior
expected for p-n junctions. Extensive comparisons with results of the drift-diffusion equations have been performed
using the software PISCES. The only problem in some specific cases (depending on the length and doping differences)
is the need of fine grids for obtaining sufficiently decreasing residues in order to have a good convergence to the final
steady state. To try to overcome this problem we have used the indicated space transformation of coordinates (4) to
have the adapted resolution in the depletion or transition zone, where almost all the particle interchange really takes
place and where it appears a non null electric field.

Although this method is well adapted to p-n junctions it is difficult to be generalized to other geometries as BJT
transistors. In this case, we are exploring the use of some sort of multidomain/multigrid technique inspired in a FD-
WENO method with interpolation at subdomain interfaces ([SS03]).

The numerical results we show correspond to a BJT (n+-p-n) device of 2µm with abrupt dopants jumps at 0.49
and 0.59 µm of NDE = 5 × 1018, NAB = 5 × 1017 and NDC = 1 × 1016 cm−3 in the emitter, base and collector,
respectively. In this case, a uniform grid of 1000 points in space, 40 in energy and 8 in the angle variable have been
used for the computations. The potential drop is of 3 V between emitter and collector and 0.62 V between emitter and
base. Built-in potentials of the corresponding p-n junctions have been taken also into account.

We have modeled the base contact at z̃b = 0.54 µm by subdividing the device in two regions A = [0, z̃b] and
B = [z̃b, L̃]. In region A we impose the base potential drop and we impose maxwellian distribution for holes with
incoming velocities at z̃b. In region B we take into account base and collector potential drops in the Poisson equation
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and we impose incoming boundary conditions in z̃b from the results of region A. This coupling procedure of the
computation in regions A and B is performed at each stage of the RK solver and at each time we need to compute the
electric potential in the whole device.

Figures 1a–c shows the evolution of the electron and hole densities and the electric potential. The final results are
compared (using diamonds) to the drift diffusion results from PISCES software and they are in good agreement as one
can expect in this particular device. Probability density functions are shown in next figures for electrons and holes in
different points of the device from which one can observe the response of electrons and holes to the electric field.
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Abstract In this paper, a hybrid intelligent computational methodology is presented for the parameter extraction of
compact models. This solution technique integrates the genetic algorithm (GA), the neural network (NN), and the
Levenberg-Marquardt (LM) method for current-voltage (I-V) curves characterization, optimization, and parameter ex-
traction of deep-submicron metal-oxide-semiconductor field effect transistors (MOSFETs). For a specified compact
model, this unified optimization technique extracts a set of corresponding parameters with respect to measured data.
The GA is performed to search solutions according to the feedback of the NN, where the LM solves a local optimization
problem with the input of the GA. The well-known BSIM and EKV compact models of MOSFETs have been studied
and implemented for automatic parameters extraction. In terms of accuracy and convergence of score, the proposed
optimization technique is computationally verified to show its advantages for parameter extraction of MOSFETs. Com-
parisons among pure GA approach, solution with GA and NN, solution with GA and LM, and the proposed method
are also discussed.

1 Introduction

Understanding electrical characteristics of various semiconductor devices is one of important issues in modern elec-
tronic industry. In semiconductor device modelling, setting on each construction parameter is always a complicated
problem which significantly affects the results of designed and fabricated very large scale integration (VLSI) device
and circuit. Computer simulator together with a set of optimal parameters is the right issue for VLSI circuit design,
in particular for the nanoelectronics era. For a specified compact model, the process that fits the simulation data as
closely as possible to the measured data is the so-called parameter extraction in electrical engineering. It is not only
a time-consuming task but also requires engineering expertise to find a proper configuration of parameters with rea-
sonable physical meanings. Model parameter extraction has been of great interest in both the design and fabrication
communities in the last decade; nevertheless, it still has room to improve the performance of extraction methods for
searching model solutions in semiconductor industry.

An equivalent circuit model together with a set of proper parameters intrinsically characterizes the electrical char-
acteristics of designed and fabricated VLSI devices. Various compact models have been studied for deep-submicron
and sub-100 nanometer devices [1][2][3][4][5]. Problem of model parameter extractions can be regarded as a multidi-
mensional optimization problem which minimizes the error between the measured data and simulated result. Numerical
and evolutional methods, such as Newton-liked method and genetic algorithm (GA), have been considered in the char-
acteristic optimization of VLSI devices, but numerical methods in general require an accurate initial guess to perform
a local optimization. Solution with a pure GA [6][7][8] suffers a long time evolution process. It may take days even
weeks to find suitable parameters for several devices within a single model, for example. Any accurate and robust
solution methodologies will benefit parameter extraction of equivalent circuit models of VLSI device [9][10].

We in this paper develop a flexible hybrid intelligent computational methodology. Based on the GA, the neural
network (NN), and the Levenberg-Marquardt (LM) method, this solution technique for parameter extraction of deep-
submicron MOSFETs shows its superiority over the other approaches. Starting from GA for a rough estimation on
the solution, the LM method will enable a local optimization, where the NN investigates the quality of solutions and
suggests searching directions for the GA. This unified optimization technique extracts optimal parameters for a given
compact model from measured current-voltage (I-V) curves in a computationally cost-effective manner. The well-
known BSIM and EKV compact models of metal-oxide-semiconductor field effect transistors (MOSFETs) have been
implemented and verified for the automatic parameters extraction using the proposed optimization technique. Accuracy



346 Yiming Li

and convergence of score are verified to show the advantages of the developed method for parameter extraction of
MOSFETs with respect to the BSIM and EKV compact models.

This paper is organized as follow. Section 2 briefly states the concept of GA, NN, LM, and the proposed hy-
brid intelligent computational methodology. Section 3 shows computer experimental results for MOSFETs’ parameter
extraction with different compact models. Finally, we draw conclusions.

2 The Methodology of Hybrid Optimization

In this section, we state the hybrid intelligent computational methodology for semiconductor device equivalent circuit
model parameter extraction. The solution methodology integrates the GA, NN, and LM methods [6][7][8]. First of
all, we briefly state the basic concept of the GA, NN, and LM methods. The configuration of the the proposed hybrid
intelligent computational methodology is then described.

It is known that GA is a globally searching optimization method which is based on the mechanism of natural
selection and natural genetics. It works with a code of parameter strings called chromosome instead of the solutions
themselves. Each chromosome represents a solution set, and the fitness functions is adopted to measure the survival
scores of all chromosomes in the population. Then the GA will accord its selection scheme to select several chromo-
somes for copulation, discard unwanted chromosomes, and select the crossover scheme to produce the new generation.
Then the GA will apply fitness function for the new population again and loop this cycle until certain stop criteria is
achieved [9][10].

NN is an adaptive learn network which has the remarkable ability to derive meaning from complicated or imprecise
data. It has been wildly used in various rages especially in pattern reorganizations and the image processing. In this
work, we adopt Hamming net to guide GAs to search the better solutions. The Hamming net is a supervised feedback
NN which contains two sub-networks, the matching score net and the maximum net. When the training patterns stores
into matching score net, it measures the differences between input patterns and training patterns. After grabbing the
output of each node in the matching score net, the maximum net is functioned to determine which training pattern is
the most similar to the input pattern. Once there is a unique restrained output above the threshold, the Hamming net
terminated, and considers the training pattern represented by the node which provided the outstanding output is most
similar to the input pattern, thus the input pattern can be clustered into this training pattern.

In contrast with the GA and NN above, the LM method is a quasi-Newton method to accelerate the Gauss-Newton
method. It belongs to one of numerical optimization methods. The Gauss-Newton method is the basic algorithm for
solving the nonlinear optimization problem. Due to the nonlinear property of the problem, a gradient for each variable
can be obtained. It starts from an initial guess, and follows the direction of the normal of the gradient to find the optimal
solution. Therefore, the initial guess must be chosen carefully, or the solution may fell into a local optima. Unlike the
Gauss-Newton method has the fixed steps toward the solution, LM optimization method detects that some regions with
monotonic variation property can be speed up by increasing the step size. On the other hand, when the optimization
process encounters a sensitive region, the step should be shorten to avoid skipping the optimum.

An execution flowchart of the hybrid intelligent computational technique for the parameter extraction task is shown
in Fig. 1. As shown in this figure, the GA firstly searches the entire problem space to get a set of roughly estimated
solutions. After a roughly computed solution is obtained, the LM method performs a local optima search and sets
the local optima as the suggested values for the GA to perform further optimizations. Meanwhile, the NN is applied
to investigate the influence of parameters on the optimized functions, and guides the GA to focus on those signifi-
cant parameters to obtain the better solutions instead of performing blind search. The NN compares the difference
of the physical characteristics of the measured data and the simulated I-V curves. According to the examined results
of the original and the computed first derivatives of I-V curves, the NN will suggests that the GA should focus on
the evolution of those corresponding parameters. Conventional GA-based methods are plagued by problems such as
rapid decreases in the population diversity and disproportionate exploitation and exploration of the solution space with
multiple dimensions. The results are frequent premature convergence and inefficient search. Compared with the pure
GA-based global optimization techniques, the LM method finds a solution rapidly with an accurate initial guesses. We
have to note that the LM method, a modified Gauss-Newton method, is still a local method and is easily trapped into
local optima. With a proper integration of the LM method in the optimization process, the GA saves much unneces-
sary efforts to search optima. Furthermore, the most significant parameters that influence physical quantities of VLSI
devices have also be detected and monitored. If physical quantities are intolerant, other electrical characteristics will
also lose their accuracy. Therefore, the parameters which affect those major quantities should be extracted firstly and
the priority of optimization sequence of the model parameters should be considered. Besides, each physical quantity
affects some specified I-V curves characteristics such that we can be conscious of the intolerance of physical quantities
through investigating the characteristics of I-V curves. The information described above is built in our NN. Under the
guidance of the NN, the GA emphasizes the most important parameters and corrects physical quantities one by one. A
hybrid optimization algorithm is shown below.
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GA for global
optimization

NN for problem
behavior inspection

LM method for local
optimization

Enhanced
solution

Partially
optimized
solution

Evolutionary
trend guidance

Problem
behavior

Fig. 1. An illustration of the proposed hybrid intelligent computational methodology. In the beginning, the GA performs
search of parameters in large. According to the electrical characteristics of the problem and the obtained rough results
from the GA, the NN plays a role in identifying the physical meaning of computed data and guiding the direction of
search of the GA. The LM simultaneously solves the corresponding optimization problem with the input data from the
GA. It returns the optimized results to the GA for the next process of evolution

Begin Hybrid Optimization Algorithm

Initialize parameters extraction environment

Begin GA optimization

Initialize GA

While EstimatedError(BestSolution) > ToleranceError

GA performs ParametersExtractionOptimization

GA obtain BestSolution

LM ParametersExtractionOptimization(BestSolution)

NN ModelInspection(BestSolution)

End While

End GA optimization

End Hybrid Optimization Algorithm

This unified framework exhibits effective optimization in automatic parameter extraction of VLSI device. It shows
robust automatic optimization performance for different parameter extraction of compact models. The BSIM and EKV
models are the well-known compact models in VLSI industry; for a DC base band characterization, there are more than
one hundred parameters in the BSIM model and 30 parameters in the EKV model have to be extracted. We investigate
the accuracy and efficiency of the proposed hybrid intelligent computational technique by considering both the BSIM-
4 and EKV compact models. Shown in the next section, numerical results confirm that the proposed methodology is
superior to the other approaches, compared with the pure numerical and evolutional methods.

3 Results and Discussion

With the hybrid intelligent computational methodology, the accuracy of the extracted parameters, shown in Figs. 2
and 3, are obtained for both the BSIM-4 and EKV compact models, respectively. We note that the BSIM-4 compact
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Fig. 2. The BSIM-4 extracted (solid-line) and measured (dot-lines) (a) IDS − VDS and (b) IDS − VGS curves of the
90 nm MOSFET (width = 10.0 µm), where VBS = 0 V and VGS varies from 0.4 V to 1.4 V in the IDS − VDS curves,
and VDS = 0.1 V and VBS varies is 0.0 V to -1.5 V in the IDS − VGS curves
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Fig. 3. The EKV extracted (solid-line) and measured (dot-lines) (a) IDS − VDS and (b) IDS − VGS curves are of the
0.18 µm MOSFET, where VBS = -0.6V and VGS migrates from 0.4 V to 1.4 V in the IDS − VDS curves, and VDS =
1.3 V and VBS is from 0.0 V to -0.9 V in the IDS − VGS curves

model has a capability of characterizing sub-100 nm MOSFETs. The EKV compact model features the modelling
of deep-submicron MOSFETs. Therefore, 90 nm MOSFETs are adopted for the BSIM-4 compact model and 180
nm MOSFETs are considered for the EKV compact model in our following investigations. As shown in Fig. 2a, it
represents the IDS − VDS curves and Fig. 2b stands for IDS − VGS curves; the width and length of the N-MOSFET
is equal to 10 µm and 90 nm. For another testing example, the width and length of the target device is equal to 10 µm
and 180 nm in Fig. 3. Similarly, Fig. 3a shows the IDS − VDS curves and Fig. 3b stands for IDS − VGS curves. The
errors between the measured data and the extracted I-V curves are less than 3% for both the BSIM-4 and EKV compact
models. Accuracy of the proposed method is confirmed through the two examples above. Compared with the BSIM-4
compact model, under the same stopping criterion, the EKV compact model has a faster convergence property, but the
former has a higher accuracy of extraction.

With the same setting on the device dimension, Tab. 1 summarizes a comparison of the time cost of the hybrid
intelligent computational methodology and standard GA for parameter extraction of single and multiple devices with
respect to the different compact models. The hybrid technique shows no advantage than others in extracting fewer
devices on both compact models as we expected before. However, the more target devices optimized, the superiority of
the hybrid technique becomes more efficient apparently. The table 1 suggests the hybrid technique reveals its excellent
performance. Figure 4 is a comparison of the fitness score versus the number of generation with respect to different
extraction methods for the BSIM-4 compact model. As shown in Fig. 4, without the guidance of the NN, the methods
of the GA only and the GA+LM spend a lot of time to reduce the fitness score down to 0.5, while the ones with the
NN can fast shot this problem. Comparing the GA+LM and GA+NN+LM methods, shown in Fig. 4, the NN detects
the difference between the measured data and the extracted I-V curves, and suggest a better extraction direction to the
GA to perform the fine tune task among the I-V curves and its corresponding relative parameters. The results indicate
that the evolutionary process with the guidance of the NN shows the better convergence behavior, and they confirm the
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Table 1. Comparison of the time cost among different methods for the BSIM-4 and EKV compact models with different
number of targets to be extracted

Number of devices BSIM-4 EKV
to be extracted this work (sec.) pure GA (sec.) this work (sec.) pure GA (sec.)

1 354 348 108 125
2 986 998 684 798
4 8451 9841 4587 5981
8 90984 11845 15240 17549
16 260772 290187 41251 46587
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Fig. 4. The convergence of score versus the number of generations with respect to different extraction methods, where
the testing is with the BSIM-4 compact model applying to 4 N-MOSFETs with different length and width, where the
smallest dimension of device is 130 nm
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Fig. 5. Comparisons of the convergence of score versus the number of generations between the proposed method and
pure GA with the BSIM-4 and EKV compact models. In this experiment, 16 N-MOSFETs with different length and
width are optimized in a global sense, where the smallest dimension of device is 130 nm

great efficiency of the method. By extracting a set of global parameters for 16 N-MOSFETs with different width and
length, Fig. 5 shows a comparison of the convergence of score of the proposed method with pure GA for different two
compact models. The smallest channel length is 130 nm among the extracting 16 devices. The EKV compact model
can more quickly achieve a lower score than the BSIM-4 model due to less parameters, but it’s final results are not
better than the results of the BSIM-4 model after lots of generations. It is due to the intrinsic limitation of EKV compact
model. We note that the proposed method can continuously improve the fitness score when the others saturate, shown
in Figs. 4 and 5.
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4 Conclusions

In this paper, based on the GA, the NN, and the LM methods, we have developed a hybrid intelligent computational
technique for model parameter extraction of modern VLSI devices. This automatic optimization technique has been
successfully developed and implemented for the BSIM-4 and EKV compact models of VLSI MOSFETs. Preliminary
experiments have confirmed that the proposed method can solve complicated multidimensional optimization problem.
It may provide a cost-effective way to parameter extraction of deep-submicron and nanoscale VLSI devices. This
optimization technique can also be applied to extract parameters of other semiconductor devices. We are currently
extend this approach to VLSI circuit design optimization.
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Abstract In this paper, we present a calibrated SPICE-compatible mobility function for modeling and simulation of
the excimer leaser annealed lower temperature polycrystalline silicon (LTPS) thin film transistors (TFTs). Compared
with the conventional mobility function in the well-known RPI TFT equivalent circuit model, the proposed mobility
function exhibits accurate results in terms of several DC characteristics. A physical-based model parameter extraction
procedure is also proposed for studying the RPI TFT model with the proposed mobility. The model implemented in a
circuit simulator for LTPS TFT analog circuit simulation shows reasonable outputs and encounters no any convergence
problems.

1 Introduction

Excimer laser annealing technique has recently been proposed in the fabrication of LTPS TFTs, in particular for it
application to active-matrix liquid crystal display (AMLCD) [1] and system on panel (SOP). The laser annealed poly-
crystalline silicon has relatively larger grain size and relatively exhibits higher electron and hole mobility functions
than the conventional ones. Therefore, an embedded driving circuit can be achieved by replacing additional driving
integration circuits in LCDs. It is known that an equivalent circuit model plays an important role in designing embed-
ded driving circuits using laser annealed LTPS TFTs. Unfortunately, currently reported mobility functions are valid for
some conventional TFTs and can not have reasonable prediction in the circuit simulation of the laser annealed LTPS
TFTs [2].

In this work, we propose a calibrated SPICE-compatible mobility function which is suitable for the simulation of
the n- and p-type laser annealed LTPS TFTs. This mobility is mainly considering the channel mobility degradation
from the vertical electric field. With the well-known RPI TFT model, numerical results using the conventional TFT
mobility and ours are performed and compared with the measured data for different dimension of LTPS TFTs. It is
found that the RPI TFT model with our mobility shows several improved characteristics. To extract model parameters,
a physical-based extraction procedure for the explored model is also discussed. To further verify the validity of the
mobility function in circuit design, we perform a two-stage common source amplifier of LTPS TFTs using the RPI TFT
model with the conventional and our mobility functions. Numerical results show that the proposed mobility predicts
reasonable output than that of the conventional one. We note that it can be directly incorporated into circuit simulator
without numerical convergence problems.

In Sec. 2, we state the mobility function in the RPI TFT model for modeling and simulation of LTPS TFTs. A model
parameter extraction procedure is also presented. In Sec. 3, we report and discuss the simulation results obtained with
the conventional and our mobility functions. Comparison between simulation and measurement is performed to show
the accuracy of the model. Finally, we draw the conclusions.

2 Modeling and Simulation

The RPI TFT model is a compact model developed on the single crystalline MOSFET model [3, 4]. It has following
properties

(i) field effect mobility is a function of gate bias;
(ii) effective mobility accounts for trap states;
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(iii) reverse bias drain current function of electric field near drain and temperature;
(iv) a design independent on channel length;
(v) a unified DC model consists of four parts (leakage, subthreshold, above threshold, and kink effect parts) for

channel length down to 4 µm;
(vi) an AC model accurately reproduces Cgc frequency dispersion; and

(vii) an automatic scaling of model parameters that accurately models a wide range of device geometries.

The conventional mobility function used in the RPI TFT model is represented as

1

µFET

=
1

MU0
+

1

Tmu1 · ( 2VGT E
Vsth

)MMU
. (1)

Though the vertical electrical field induced mobility degradation effect has been introduced in the RPI TFT model, this
expression can not successfully model the mobility of LTPS TFTs. According to our observation that a higher order
effect of electric field on the electron and hole transport is significantly; therefore, a unified carrier’s mobility function
is phenomenologically proposed.

µFET =
U0

1 + Ua(VGT E+2Vsth
TOX

) + Ub(
VGT E+2Vsth

TOX
)2

. (2)

We note that the appearance of Eq. (2) is similar to the mobility of BSIM-4 model [7]. However, the physical and
mathematical meaning between ours and BSIM-4 are different. By introducing the higher order term with parameter
Ub in Eq. (2), the mobility successfully considers the effects of the TFT in high electric field, the substrate bias, and the
temperature. It improves the correctness of the circuit simulation, without increasing any complexity and convergence
of the circuit simulation. The proposed mobility is useful in precisely simulating the circuit characteristics of the
complementary SOP circuit. The VGTE appearing in Eqs. (1) and (2) is given by [4]

VGTE = Vsth[1 +
VGT

2Vsth
+

√
DELTA2 + (

VGT

2V sth
− 1)2]. (3)

Notations used in Eqs. (1)-(3) have their conventional meanings in [4].
To extract the parameters of the RPI TFT model, the developed extraction strategy consists of the following five

steps sequentially, and each step optimizes different parameters among different regions. Firstly, a set of characterized
mobility parameters, U0, Ua, Ub, can be extracted precisely in the linear region of IDS − VGS curves. Second, we
extract the sub-threshold regions of the IDS − VGS curves by selecting the threshold and flat band parameters: VTO,
and ETA. Third, by choosing the saturation and the kink effect parameters, AT, BT, we extract the saturation region
of the IDS − VDS curves. Furthermore, we fit the saturation region on both IDS − VDS and IDS − VGS curves by
tuning ASAT, LASAT, and VST. Finally, we extract the leakage region of the IDS − VGS in the log scale with respect
to parameters: IO, IOO, DD, DG. The IDS − VGS , IDS − VDS , output conductance (Gds), and transconductance
(Gm). In Sec. 3, characteristics calculated with the conventional [3, 4] and our mobility functions are examined, where
a two-stage common source amplifier is also explored.

3 Results and Discussion

In this section, based on the proposed extraction procedure we first verify the accuracy of the mobility function used in
RPI TFT model for two different LTPS TFT devices. The verification is performed with comparison between simulation
and measurement. The first sample is with the channel width (W) and length (L) of 20 µm and 4.5 µm, respectively.
For the second sample, the device’s W/L = 4/12 [µm/µm]. The extracted results of IDS −VDS and IDS −VGS curves
are shown in Figs. 1a and 1b. Their correspondingly calculated first derivatives are shown in Figs. 1c and 1d. Similarly,
the second example presents its optimization results in Fig. 2. Both examples have shown good accuracy of the RPI
TFT model with our mobility for different dimension of LTPS TFT sample. Maximum average errors are computed
for all calculations. Errors of all simulated I-V curves are within 1% and errors of the calculated first derivatives are
about 5%. The detail maximum average errors of the examined devices are summarized in Table 1. The piecewise
curves of Gds, shown in Figs. 1c and 2c, are due to the nature of the RPI TFT model [3, 4]. We note that the calculated
first derivatives of IDS − VGS curves, shown in Figs. 1d and 2d, exhibit nonphysical variations. It is because we do
not simultaneously take the variation of the first derivatives of I-V curves into consideration in our extraction process.
However, to further eliminate these phenomena and improve the extraction accuracy of the calculated first derivatives of
IDS−VGS curves, optimization process should be done by simultaneously considering errors of the original curves and
their first derivatives. Tables 2 and 3 list some extracted parameters for the first and the second samples, respectively.
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Fig. 1. Simulated original (a) IDS − VDS of the LTPS TFT with W/L = 20/4.5 [µm/µm], where VGS = 3.0 V,
6.0 V, 9.0 V, and 12.0 V, from bottom to top, respectively. (b) Plot of IDS − VGS , where VDS = 0.1 V, 5.1 V, and 10.1
V, from bottom to top, respectively. The corresponding first derivatives are shown in (c) IDS −VDS and (d) IDS −VGS

Fig. 2. Simulated original (a) IDS −VDS of the device with W/L = 4/12 [µm/µm], where VGS is from 4.0 V (bottom)
to 20.0 V (top) with step 4.0 V. (b) Plot of IDS − VGS , where VDS are 0.1 V, 3.1 V, 6.1 V, and 9.1 V, from bottom to
top, respectively. The corresponding first derivatives are shown in (c) IDS − VDS and (d) IDS − VGS

Table 1. The maximum average errors of the extracted devices

Sample-1 Sample-2

ID − VD 1.68 % 0.91 %
ID − VG 0.60 % 0.67 %
Gds 5.54 % 3.07 %
Gm 3.12 % 5.08 %
Log(ID − VG) 2.82 % 1.96 %
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Table 2. A list of the extracted parameters of the LTPS TFT with W/L = 20/4.5 and 4/12 [µm/µm], respectively

Name W/L=20/4.5 W/L=4/12 Name W/L=20/4.5 W/L=4/12

ASAT 1.286 0.412 AT 3.1415e−8 3.0281e−8

LASAT 8.6953e−7 −5.4417e−6 LKINK 1.9e−5 1.9e−5

MMU 2.9062 2.79015 MU0 76.63075 124.69635

ASAT 0.412 0.412 AT 3.02817e−8 3.02817e−8

MUS 1 1 VKINK 100 100

VSI 2 2 VST 11.51466 21.046579

BLK 0.001 0.001 DD 1.4e−7 4.1945e−6

EB 0.68 0.68 IO 6 613.297

BT 1.05188e−6 −3.2749e−6 MK 1.3 1.3

MU1 0.0022 0.0022 BT −3.27459e−6 −3.2748e−6

VON 0 0 VTO 1.8932 1.14956256

DG 2.0e−7 3.70455e−7 IOO 150 1776.80049
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Fig. 3. Comparison of IDS −VDS (the left figure) and IDS −VGS (the right one) among the quasi-static measurement
and the simulations of the RPI model with the conventional and our mobility functions

To validate the proposed mobility function used in the RPI TFT model, we further compare the accuracy of the RPI
TFT model using the conventional and our mobility function in the next example.

Comparison of the simulated and calculated first derivatives of two sets of I-V curves for the RPI TFT model with
the conventional and our mobility functions is shown in Figs. 3 and 4, where the measurement is performed for the
LTPS TFT with W/L = 20/4.5 [µm/µm]. The dotted lines are measured data, the dashed lines are the result of the RPI
TFT model with the conventional mobility, and the solid lines are the outcome of our mobility. As shown in Fig. 3,
the proposed mobility has a good agreement with the measured data; moreover, the accuracy of the calculated physical
quantity is further achieved. The conventional RPI mobility is poor in modeling the effect of high gate bias, shown
in the right figure of Fig. 3. Without a correct formulation for the device operated under high gate bias regime, shown
in the right figure of Fig. 4, output characteristics calculated by the RPI TFT model with the conventional mobility
is inaccurate at high gate biases. According to the right figure of Fig. 3, the RPI TFT model with the conventional
mobility overestimates the current level at the high gate biases and underestimates drain current at the low gate biases.
The deviated output characteristics is further observed from Fig. 4 that the modified mobility does improve the accuracy
of the calculated first derivatives of ID − VD curves.

The proposed mobility function in the RPI TFT model shows its accuracy for the quasi-static characteristic simula-
tions; in particular, for the high field properties of Gm and Gds. The improved accuracy of the calculated Gm implies
a reliable TFT circuit simulation. It is one of important issues for the analog circuit simulation. By implementing the
mobility function in SPICE3f5, we have performed a circuit simulation with LTPS TFTs. As shown in Fig. 5, the input
signal V in = 0.05 sin(2πft), where f = 1 KHz and the DC bias is at 6.0 V. The simulation results are shown in
Fig. 6, the output gain calculated from the proposed mobility is equal to 8; however, the simulation of output gain with
the conventional one is 4. It is found that the proposed mobility function predicts a reasonable higher output gain than
that of the conventional one. This result is mainly from the different estimation of the transconductance, which plays a
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Fig. 6. A plot of the input and output signals of the simulated circuit

crucial factor in analog circuit simulation. A 50% discrepancy observed from Fig. 6 should be clarified when designing
SOP circuits.

4 Conclusions

We have presented a mobility function together with a parameter extraction procedure for the excimer laser annealed
LTPS TFTs simulation. It has been successfully implemented into the well-known RPI TFT model and performed
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device and circuit simulation without numerical difficulties. Comparison among the results of the conventional mobility
function, the measured data, and our results has confirmed that the proposed mobility function can model LTPS TFT’s
characteristics and have better simulation accuracy. This SPICE-compatible mobility function has also applied to LTPS
TFTs analog circuit simulation and demonstrated reasonable output results. We are currently fabricating and measuring
the electrical characteristics of LTPS TFT circuit and compare the obtained data with the simulated results.
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Abstract We present the results obtained with a data parallelization of the WENO-Boltzmann numerical scheme for
semiconductors introduced in [CGMS03A, CGMS03B]. We show that an efficient and parallel implementation of this
deterministic method allows the computation of macroscopic quantities and IV curves of a realistic 2D device: a Si
MESFET. The execution time and speedup results demonstrate the good scalability of the proposed paralell implemen-
tation.

1 Introduction

The parallelization of a direct WENO (Weighted Essentially Non-Oscillatory) solver for the 2D-spatial Boltzmann-
Poisson system describing electron transport in Si-based semiconductor devices has been addressed. A non-parabolic
Kane energy-band and elastic acoustic and inelastic non-polar optical phonon operators have been used [CGMS03A] in
the physical description of the electron transport in the device. This choice is by no means restrictive and more compli-
cated band structures, including several valleys, and different scattering mechanisms, both intervalley and intravalley
ones, can be included in a flexible way both in the numerical method and its parallelization [CCM04].

The numerical scheme which has been parallelized [CGMS03A, CGMS03B] uses a formulation of the Boltzmann-
Poisson system in spherical coordinates for the wave vector space. After adimensionalization one is reduced to simulate
the evolution in time t of the distribution function Φ in the five-dimensional space (x, y, ω, µ, φ), where x and y are
the spatial coordinates, ω ≥ 0 is a dimensionless energy, µ ∈ [−1, 1] is the cosine of the angle with respect to the
x-axis and φ ∈ [0, π] the azimuthal angle. The resulting Boltzmann equation reads

∂Φ

∂t
+

∂

∂x
(a1Φ) +

∂

∂y
(a2Φ) +

∂

∂ω
(a3Φ) +

∂

∂µ
(a4Φ) +

∂

∂φ
(a5Φ) = s(ω)C(Φ) (1)

where the flux functions ai and the Jacobian factor s(w) can be seen in [CGMS03B]. The dimensionless collision
operator C(Φ) is given by:

C(Φ)(t, x, y, ω, µ, φ) =
1

2π t∗

∫ π

0

∫ 1

−1

[βΦ(t, x, y, ω, µ′, φ′)

+aΦ(t, x, y, ω + α, µ′, φ′) + Φ(t, x, y, ω − α, µ′, φ′)]dφ′dµ′

− 1

s(ω) t∗
[βs(ω) + as(ω − α) + s(ω + α)]Φ(t, x, y, ω, µ, φ) . (2)

where the constant parameters t∗, α, a and β depend on scattering mechanisms (see [CGMS03A] for a more
detailed description).

Flux functions a3, a4 and a5 depend on the electric field vector E which is computed self-consistently by solving
the dimensionless Poisson equation in the 2D spatial domain

∆V = ε [n(t, x, y) −ND(x, y)] , (3)

E = −∇V,
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where ε is a dimensionless parameter, ND(x, y) the dimensionless doping profile, V the electric potential and n(t, x, y)
the electron density computed from Φ by

∫ π

0

∫ ∞

0

∫ 1

−1

Φdµdω dφ. (4)

In the Boltzmann equation (1) the advection part is treated with a 5th order non-oscillatory finite difference WENO
scheme [SHU98], the collision operator (2) is approximated by means of a quadrature formula and the time-dependent
part is solved by an explicit Runge-Kutta method. Poisson’s equation (3) is solved by an iterative standard SOR method
computed at each Runge-Kutta step and a midpoint quadrature formula is used in (4) resulting in a charge-conservative
method.

We refer to [CGMS03A, CGMS03B, CGMS04] for the complete description of the numerical method, a discussion
of this particular choice of the numerical scheme and the comparison of the results with respect to Monte Carlo
simulations. Let us briefly mention that high-gradient regions in macroscopic quantities, in particular: density, energy
and mean velocity (see Fig. 2-3) clearly imply the existence of high-gradient regions both in physical space (x, y) and
in velocity space (ω, µ, φ) for the unknown distribution function Φ (see also Fig. 5). In order to accurately approximate
the derivatives in these regions, we use WENO reconstruction methods which are well fitted for this purpose [SHU98]
and, moreover, they produce a high order approximation in smooth regions.

Results of the 1D case [CGMS03A] and of the 2D case [CGMS04] have been validated by comparing them to
Monte Carlo methods, and they give excellent validation results even with coarse grids. Moreover, in the 2D case Monte
Carlo methods are not well apt for resolving almost empty regions in the device (close to the gate in a MESFET) while
deterministic methods do. Therefore, these deterministic results, although not competitive with Monte Carlo methods
at the level of the execution time in 2D, should be used as benchmarks for Monte Carlo, hydrodynamic or drift-diffusion
results. We refer to [CGMS04] for a more detailed discussion about WENO-Boltzmann versus Monte Carlo methods
in 2D.

Other advantages of this method are the transient computation, the knowledge of the distribution function itself
and not only of their moments as well as the absence of oscillations or numerical noise even close to regions between
different boundary conditions. A drawback of the use of WENO schemes is that we are reduced to uniform grid sizes
and almost rectangular type geometries. Nevertheless, these drawbacks can be overcome by using an interpolation
between different uniform grid sizes as in [GCG04, SS03].

2 Parallelization and numerical results

The aim of this work has been to obtain efficient parallel implementations of this 2D-space solver for a PC cluster
because this scheme demands a great deal of computing power. The parallelization is based on domain decomposition
techniques. An analysis of the scheme reveals that the best choice to decompose the data structure of the solution
Φ is by splitting only the physical space dimensions among the processors by following a 2D block-decomposition.
For this purpose, a logical 2D grid of processors is automatically defined according to the actual spatial grid size and
the available number of processors. In this way, only the flux terms for the physical space require communication
among the processors. Moreover, an overlapping of communication and computation has been enabled to improve the
performance in the computations of these fluxes. The rest of fluxes can be parallelized in a straightforward manner
because remote communication is not required. This choice leads to a relatively low communication cost and involves
an important reuse of the existing sequential code.

To solve the Poisson equation in order to compute the electric potential, a parallel red-black Successive Over-
Relaxation (SOR) scheme is implemented following a data distribution which matches with the distribution followed
by the WENO-Boltzmann solver. The time discretization is carried out by using a parallel implementation of a third-
order low-Storage Runge-Kutta method [GS98] in order to save memory resources. An scalable message-passing
implementation of the solver has been obtained for any number of processors by making use of the Message Passing
Interface (MPI).

The parallel scheme has been applied to the simulation of a MESFET device (see Fig. 1) used in several works
as a benchmark for testing electron transport solvers [JS94, CGMS03B, AMRS04]. The doping profile is given by
3 × 1017cm−3 in the n+ regions and 1017cm−3 in the n region.

Results for the density, the potential and the electric current field can be seen in Fig. 2-3 with a potential of −0.8V
at the gate and 1V at the drain with respect to the source. Several numerical experiments have been made on a cluster of
8 dual 2.5 Ghz AMD processors connected via a Gigabit ethernet switch. Numerical results for macroscopic quantities
are shown at 5ps, where we use 48 × 32 × 102 × 12 × 12 grid points for the (x, y, ω, µ, φ) domain.

Insulating boundaries are treated mimicking reflecting boundaries for the Boltzmann equation (1) and Neumann
boundary conditions for the electric potential (3). As a result zero normal component to the insulating boundary of the
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Fig. 1. Schematic representation of a 2D silicon MESFET device
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electric current (see Fig. 3) is well resolved. Source and drain are Ohmic contacts and therefore we impose Dirichlet
boundary conditions for the electric potential and inflow boundary conditions for the Boltzmann equation implying
local neutrality. The gate is simulated as a Schottky contact and thus it should repel electrons. The gate region should
have a very low density; and the electrons may only leave the gate region to enter the device. As a consequence, the
density at the gate is extremely small: more than 8 orders of magnitude lower than the doping profile. Therefore, we
consider Dirichlet boundary conditions for the electric potential and zero charge density for the Boltzmann equation.
We again refer to [CGMS04] for a detailed explanation of the implementation of the boundary conditions.

We clearly observe the appearance of singularities for the electric field at the points between insulating and contact
boundary conditions at the top of the device. These singularities can be seen in Fig. 4 where the evolution of the electric
field on the top of the device is plotted up to 5ps. They are not numerical artifacts and they do not disappear by grid
refinement but on the contrary, they become larger in value resulting in a small CFL number for the time solver and
therefore slowing the pace of the code. This is by no means a failure of the approach but a real success since it captures
these singularities that appear even in drift-diffusion approximations [G93]. Other numerical methods to approximate
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the transport phase based on characteristics and dimensional splitting (see for instance [FSB01]) may improve the num-
ber of necessary time-steps since they avoid a restrictive CFL. This direction will be further investigated in forthcoming
works.

In Fig. 5 we observe the probability density function (PDF) at three points of the device as a function of (w, µ)
averaged over φ. We observe how the flow of electrons takes place since µ = 1 is the direction of increasing x and
µ = −1 is the opposite.

The efficient implementation of the scheme allows us to compute current-voltage characteristics for this device.
The current-voltage characteristic curves when a voltage of -0.8 V and -0.4 V is applied at the gate are shown in Fig. 6.
These results have been obtained by simulating the MESFET device at each of the drain voltage values corresponding
to stars in Fig. 6 up to 5ps. Here, we use 42×24×80×12×12 grid points for discretizing the (x, y, ω, µ, φ) domain.
In this figure we show the computed current both at the drain and at the source since they should be equal up to a sign
for the stationary solution and this is so up to 5 digits in all experiments performed.

Figure 7 shows execution times and speedup results obtained with several grid sizes and number of processors for
the time integration of 0.01 picoseconds. The results show a good scalability in the range of processors [2,16] and a
parallel efficiency close to 100 %.

3 Conclusions

A flexible parallelization of WENO-Boltzmann schemes for the kinetic description of realistic semiconductor devices
has been performed. This method is flexible in band structure, scattering mechanisms and boundary conditions for the
kinetic description and fairly flexible regarding the device geometry. Shown numerical results, in the particular case
of a MESFET, reveal that these simulations although still computationally expensive and not competitive with Monte
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Carlo methods, provide useful benchmarks for all known solvers for charge particle transport in semiconductors and
they are the most accurate simulations to date up to our knowledge.
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Abstract In several bipolar electronic devices holes give a relevant contribution to the total current. Therefore it is
important to take into account also hole transport besides that of electrons. In this work we present a hydrodynamical
model of hole transport in silicon semiconductors based on the maximum entropy principle following the approach
used in [3] for electrons. We employ this model for studying the hole mobility and a 1-D n+-p-n+ structure

1 Introduction and physical setting

In industrial applications the simulation of hole transport, in bipolar devices, is usually obtained by numerically in-
tegrating the drift-diffusion model, which is based on the assumption of isothermal charge flow. This is well justified
in devices such as MOSFET (Metal Oxide Field Effect Transistors) since the contribution of holes to the total cur-
rent is marginal. However in bipolar heterojunctions the role of holes in charge transport is of the same order or even
greater than that of electrons. In such situations more sophisticated models, which include at least the average energy
as fundamental variable, are needed. These models are usually known as hydrodynamical models.

In Si three valence bands are present [3]. The first two are the heavy and light valence bands which are degenerate
in correspondence of their maximum at k = 0, k being the hole wave vector. The third band is the so-called split-off
band which is separated from the first two by the spin-orbit energy ∆ = 0.0443 eV at k = 0. Because of its low
density of states and its energy separation the split-off valence band is usually neglected.

The dispersion relations for the two degenerate energy bands of light and heavy holes have quite difficult analytical
expressions. For this reason, here, we consider a simplified energy band model usually employed in order to get a
macroscopic description of hole transport. It consists of a single spherical parabolic band with an effective mass related
to some plausible average in the k space. Therefore the hole energy is approximated by the expression E = �

2k2

2m∗
H

, where

m∗
H is the heavy hole effective mass and k can vary on all R

3, � is the reduced Planck constant.
In the semiclassical approximation holes are considered as particles of mass m∗

H and charge e having the same
magnitude as that of electrons but positive sign. Their behavior inside the crystal is described by a distribution function
fH(x,k, t) which satisfies the hole Boltzmann transport equation

∂fH

∂t
+ vH · ∇xfH +

eE

�
· ∇kfH = C[fH ]. (1)

vH is the hole velocity which is related to the energy by the relation vH = 1
�
∇kE(k), [3], which in the parabolic

band approximation reads vH = �k
m∗

H
. E represents the electric field and C[fH ] the collision term. The electric field E

satisfies the Poisson equation

−∇ (ε(x)∇φ) = e (ND(x) −NA(x) − n(x) + p(x)) , (2)

where ε is the dielectric constant of the material, φ the electric potential and n, p ND , NA the electron, hole, donor
and acceptor densities.

As regards the collision term, in silicon holes interact with two types of phonons: the non-polar optical and the
acoustic phonons. Moreover one has to take into account also the scattering with the impurities of the crystal. See [1]
for details.
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2 The hydrodynamical model

Starting from the Boltzmann equation (1), it is possible to obtain macroscopic equations describing hole transport. To
this end, it is sufficient to multiply equation (1) by suitable weight functions ψ = ψ(k) and integrate with respect to k
on R

3. If we set

Mψ =

∫
R3

ψ(k)fH(x,k, t)dk,

which is the moment of fH relative to the weight function ψ(k), we get, after some manipulation, the following
equation ‡

∂Mψ

∂t
+

∂

∂xi

∫
R3

ψ(k)vifHdk − eEi

�

∫
R3

∂ψ

∂ki
fHdk =

∫
R3

ψ(k)C[fH ]dk. (3)

In particular we have used the weight functions ψA = (1,v, E , Ev), obtaining a set of equations for the hole density
p, the average velocity VH , the energy WH and the energy flux SH

∂p

∂t
+

∂(p V i
H)

∂xi
= 0, (4)

∂(p P j
H)

∂t
+

∂(p U ij
H )

∂xi
− p e Ej = p Cj

PH
, j = 1, 2, 3, (5)

∂p WH

∂t
+

∂(p Si
H)

∂xi
− p e EiV

i
H = p CWH , (6)

∂(p Sj
H)

∂t
+

∂(p F ij
H )

∂xi
− p e EiG

ji
H = p Cj

SH
, j = 1, 2, 3. (7)

p =

∫
R3

fHdk, V i
H =

1

mH
P i

H =
1

p

∫
R3

vifHdk,

WH =
1

p

∫
R3

EfHdk, Si
H =

1

p

∫
R3

viEfHdk.

This set of equations is not closed because of the presence of the fluxes

U ij
H =

1

p

∫
R3

fHvi
�kjdk crystal momentum flux,

F ij
H =

1

p

∫
R3

E(k)vivjfdk flux of energy flux, (8)

Gij
H =

1

p

∫
R3

1

�
fH

∂(Evi)

∂kj
dk,

and the production terms

Cj
PH

=
1

p

∫
R3

�kjC[fH ](x,k, t)dk average crystal momentum production,

CWH =
1

p

∫
R3

E(k)C[fH ](x,k, t)dk the energy production, (9)

Cj
SH

=
1

p

∫
R3

E(k)vjC[fH ]dk flux energy production.

The closure has been obtained by employing the maximum entropy principle (MEP) and expanding with respect to a
formal anisotropy parameter. Here we skip all the details and refer the reader to [3]. The resulting approximated MEP
distribution function depends linearly on the fundamental variables Vh, and Sh,

fME
H =

exp(− 3
2 WH

E)(
4
3
πm∗WH

)3/2
p

[
1 −
(
−21m∗

H

4WH
VH +

9m∗
H

4W 2
H

SH

)
· v

−E
(

9m∗
H

4W 2
H

VH − 27m∗
H

20W 3
H

SH

)
· v
]
. (10)

‡Einstein summation over repeated letters is understood



Hole Mobility in Si Semiconductors. 365

Substituting the distribution function (10) in (8) and (9), one gets the following closure relations

U ij
H =

2

3
WHδij , m∗

HF ij
H =

10

9m∗
H

W 2
Hδij , Gij

H =
5

3m∗
H

WHδij ,

and

Ci
PH

= C
i(op)
PH

+ C
i(ac)
PH

+ C
i(imp)
PH

,

CWH = C
(op)
WH

+ C
(ac)
WH

+ C
(imp)
WH

,

Ci
SH

= C
i(op)
SH

+ C
i(ac)
SH

+ C
i(imp)
SH

,

where

C
i(op)
PH

= c
(op)
11 V i + c

(op)
12 Si, C

i(op)
SH

= c
(op)
21 V i + c

(op)
22 Si,

C
(op)
WH

=
3

2
�ωopK̃op W

−3/2
H [Nop B1 − (Nop + 1)B2] ,

C
i(ac)
PH

= c
(ac)
11 V i + c

(ac)
12 Si, C

i(ac)
SH

= c
(ac)
21 V i + c

(ac)
22 Si,

C
(ac)
WH

= −4096

27
π2m∗

Hv2
sK′

ac W
−1/2
H

(
WH − 3

2
kBTL

)
,

C
i(imp)
PH

= c
(imp)
11 V i + c

(imp)
12 Si, C

i(imp)
SH

= c
(imp)
21 V i + c

(imp)
22 Si,

C
(imp)
WH

= 0.

The cij’s, B1, and B2 are functions of the average energy and they can be found in [3], while

K̃op =
8(m∗

H)3/2
√

3π

�3
Kop, K′

ac =
3
√

3m
∗3/2
H

16π3/2�4vs
Kac.

Kop = (DtK)2

8π2ρωop
, where DtK is the optical deformation potential, ωop is the optical phonon frequency, ρ is the silicon

density. Kac =
Ξ2

d
8π2ρvs

, Ξd being the acoustic deformation potential, vs the longitudinal component of the sound
velocity.

3 Drift-Diffusion model and Mobility

Introducing an energy relaxation time by means of the formula CWH = −WH−W0
τWH

, where W0 = 3/2 kBTL, and
applying the drift-diffusion scaling

t = O(
1

δ2
), xi = O(

1

δ
), V i = O(δ), Si = O(δ), τW = O(

1

δ
).

to the system (4)-(7), it is possible to obtain the limiting drift-diffusion model [3] valid in the low field regime

∂p

∂t
+ ∇ · JH = 0, JH = pVH = D11(W0)∇p + pD13(W0)∇φ, (11)

where JH is the hole current, while

D11 =

2
3
c22WH − 10

9
c12

W2
H

m∗
H

c11c22 − c12c21
and D13 = e

c22 − 5
3
c12

WH
m∗

H

c11c22 − c12c21
,

with

cij = c
(op)
ij + c

(ac)
ij + c

(imp)
ij ,

D11(W0) and D13(W0) are therefore two explicit functions of W0.
By comparing (11)2 with the expression of the particle current J in the form

J = −Dp∇p− µp0p∇φ,
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one can identify the diffusivity coefficient Dp and the low field mobility µp0 as

Dp = −D11(W0), µp0 = −D13(W0). (12)

If we neglect the quadratic terms in the velocity then W0 = 3 kBTL
2

, consequently

Dp = µp0
2W0

3e
= µp0

kBTL

e
(13)

and the Einstein relation is verified for each W0.
As regards the high field mobility, it is obtained by numerically solving the full system (4)-(7). The results are

shown in fig. 1, where a comparison with the Caughey-Thomas formula of the mobility

µp = µp0

[
1 +

(
µp0 | E |

vs

)2
]−1/2

is reported. The influence of impurities is also taken into account, see Fig. 2.
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4 n+-p-n+ device

Now we consider a one dimensional n+-p-n+ Si structure of length 250 nm with a 50 nm channel, which is intended
to represent the channel of a MOSFET with an active region of 50 nm. The donor doping profile is

{
ND(x) = 5 × 1018/cm3 if 0 ≤ x ≤ 100nm or 150nm ≤ x ≤ 250nm,

ND(x) = 1015/cm3 if 100 ≤ x ≤ 150nm,

while the acceptor concentration NA is identically equal to 1016/cm3. Previous simulations of this device have been
performed by keeping the holes at equilibrium [5], here we take into account the dynamics both of the electrons and
the holes. The electron transport is modeled by means of the hydrodynamical model developed in [1]. The physical
paremeters used for the simulation can be found in [4] as regards the electrons and in [3] as regards the holes. Since the
time scale of the device is of the order of 1 ps, we neglect the generation-recombination terms. In Figs. 3-6a we report
the electron and hole densities, the mean velocities, energies and the electric field for an applied bias of 0.6V. The
contribution of the holes to the total current is negligible but their distribution at the steady state is not trivial. There
is an accumulation of holes in the region of the channel close to the first junction, followed by a depletion zone close
to the second junction. The depletion region is wider and therefore less deep than the accumulation one as determined
by the electric field. Major differences with respect to the electrons are present in the stationary velocity profile, which
has a maximum at about x=0.11 µm and a minimum at about x=0.15 µm as a consequence of the hole distribution and
the conservation of the partial currents.

In Fig. 6b the IV characteristic-curve is shown. The results are in good agreement with the Monte Carlo ones, see
Fig. 26 of ref. [5].
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1 Introduction

The accurate computation of a physically meaningful quantity (the goal quantity) associated with the solution of a
given problem is of paramount importance in engineering applications. For example, in micro- or nano-electronics the
output current is a fundamental quantity to assess the performance of the device at hand. In particular, we consider
the Drift-Diffusion (DD) model for semiconductors describing the charge-transport in a device in terms of the electric
potential (ψ), electron (n) and hole (p) concentrations [Sel84]. Thus, the goal quantity can be described by a suitable
functional J , either linear or nonlinear, of the variables ψ, n and p. The accurate approximation of J can be dealt with
in the framework of the optimal control theory. In particular, we consider an anisotropic a posteriori error estimation
relying on the dual-based approach of [BR01, GS02]. We solve an adjoint (dual) linearized problem while employing
anisotropic interpolation estimates [FP01, FP03] to bound the approximation error associated with the solution of
the dual problem with respect to a suitable finite dimensional space. Thus, the parameters describing the distribution
and shaping of the elements of the computational mesh act as control parameters, through which it is possible to
approximate the goal quantity as accurate as needed.

The outline of the paper is as follows. In Sect. 2 the DD model for semiconductors is introduced. In Sect. 3 we
sketch the abstract framework on which the anisotropic analysis is based. In particular, in Sect. 3.1 we recall some
anisotropic interpolation error estimates which are the basic tool linking the dual-based a posteriori analysis of Sect. 4
to the anisotropic mesh adaptivity procedure. In Sect. 5 we derive the desired anisotropic a posteriori error estimator,
while in Sect. 6 we address the iterative adaptive procedure used to construct the anisotropic meshes. A numerical
validation is carried out on some test cases dealing with a pn-junction diode in Sect. 7. Finally, some conclusions and
open issues are drawn in Sect. 8.

2 The Drift-Diffusion model

In this section we recall the stationary Drift-Diffusion charge transport model (see e.g. [Sel84]), consisting of the
conservation laws for charge and for electron and hole concentrations (1)(left)

⎧⎪⎪⎨
⎪⎪⎩

div(εE) − ρ = 0,

− divJn + qR = 0,

divJp + qR = 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E = −∇ψ,

Jn = q(Dn∇n− µn n∇ψ),

Jp = −q(Dp∇p + µp p∇ψ),

ρ = q(p− n + D),

Dn = µnVth,

Dp = µpVth.

(1)

completed by the constitutive relations (1)(right). In (1), ψ, n and p are the unknowns, i.e. the electric potential, and
the electron and hole concentrations, while Jn,Jp are the electron and hole current densities, E is the electric field,

∗This work was partially supported by the INDAM 2003 Project “Modellistica Numerica per il Calcolo Scientifico
e Applicazioni Avanzate”.
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ρ is the net charge density, D is the given doping profile, R is the recombination/generation rate, Dn, µn (Dp, µp)
are the electron (hole) diffusion coefficient and mobility, Vth is the thermal voltage, ε is the semiconductor dielectric
permittivity, and q is the positive electron charge.

As typical expression for R, we consider henceforth the so-called Shockley-Read-Hall form, given by R =
(pn−n2

i )/[(p+ni)τn +(n+ni)τp], where ni is the electron/hole intrinsic concentration, and τn and τp are suitable
relaxation times (see, e.g., [Sel84]). The whole system is completed by suitable boundary conditions, usually of mixed
type. For simplicity, we consider the case where the device is made up of a homogeneous semiconductor material, oc-
cupying the computational domain Ω, that is we do not deal with metal-semiconductor or metal-oxide-semiconductor
structures. Thus, the boundary ∂Ω of Ω is split into two non-overlapping parts, ΓD and ΓN, where Dirichlet and Neu-
mann boundary conditions are imposed, respectively. For instance, in the case of the pn junction diodes of Fig. 1, we
have ΓD = AG∪CD while ΓN = ∂Ω\ΓD. The boundary conditions characterizing the devices in Fig. 1 are thus given
by ψ = ψD, n = nD and p = pD on ΓD, while ∇ψ · n = ∇n · n = ∇p · n = 0, on ΓN, where n is the unit outward
normal vector to ∂Ω, ψD = Vapp + Vbi, with Vapp the external applied voltage and Vbi = Vth sinh−1(D/(2ni))|ΓD ,
the so-called built-in voltage, while nD = [(D +

√
D2 + 4n2

i )/2]|ΓD
and pD = −[(D +

√
D2 + 4n2

i )/2]|ΓD
.

3 The anisotropic “tool box”

Let us introduce a conformal partition Th of Ω, in the usual sense [Cia78], consisting of triangular elements and let
K denote the general triangle. Let TK : K̂ → K be the standard affine mapping between the reference triangle
K̂ (e.g. the unit equilateral one) and the general one K, with x = (x1, x2)

T = TK(x̂) = MK x̂ + tK . Then let
us introduce the polar decomposition of MK , i.e. MK = BK ZK , with BK symmetric positive definite and ZK

orthogonal matrices, respectively. Decomposing BK in terms of its eigenvectors ri,K and eigenvalues λi,K , with
i = 1, 2, yields BK = RT

KΛKRK , where RT
K =

[
r1,K , r2,K

]
and ΛK = diag[λ1,K , λ2,K ]. Throughout we assume

λ1,K ≥ λ2,K , that is sK = λ1,K/λ2,K ≥ 1, sK being the so called stretching factor (see Fig. 2 for the geometrical
meaning of the quantities λi,K , ri,K ).

A B

D

F

G

n

p

E

C

Fig. 1. Geometry of a pn junction diode

Fig. 2. Geometrical quantities related to the affine mapping TK
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3.1 Anisotropic interpolation error estimates

Moving from the above abstract framework, we now recall some anisotropic interpolation error estimates, introduced in
[FP01, FP03]. We assume a standard notation for the Lebesgue and Sobolev spaces, see, e.g., [Cia78]. For any function
v ∈ H1(Ω), let GK(v) be the symmetric positive semi-definite matrix with entries (GK(v))i, j =

∫
∆K

∂xiv ∂xjv dx,

and let IK(v) ∈ IP1(K) be a Clément-like interpolant of v on K, where IP1(K) is the space of polynomials of degree
less than or equal to one on K, ∆K being a suitable patch of elements surrounding K. Then the following estimates
can be proved:

‖v − IK(v)‖2
L2(K) ≤ C1

2∑
i=1

λ2
i,K (rT

i,K GK(v)ri,K), (2)

‖v − IK(v)‖2
L2(e) ≤ C2

1

λ2,K

2∑
i=1

λ2
i,K (rT

i,K GK(v)ri,K), (3)

where the edge e ∈ ∂K and C1, C2 suitable constants (see [MPP03] for more details).

4 Dual-based a posteriori analysis

Suppose that we are interested in approximating the goal quantity J(u) by J(uh) such that |J(u)− J(uh)| ≤ τ , with
J a continuous functional, possibly nonlinear, u and uh the exact and approximate solutions to the problem at hand,
and τ a given tolerance. In electronics, J can be, for example, the total current in a device, or in Computational Fluid
Dynamics, it can represent the kinetic energy or the vorticity of a fluid, the lift or drag in a flow past a body, while in
structural mechanics, it can be the torsion moment, the stress values or the total surface tension.

With this aim we can follow the so-called dual approach in [BR01, GS02]. In a general setting, let a(u; v) and
J(u) be semilinear forms, where it is understood that, when more than one argument is present, the forms are linear
with respect to all the arguments on the right of the semicolon. The problem at hand can be formulated as the following
control problem: find u ∈ V such that

J(u) = min
v∈M

J(v) with M = {w ∈ V : a(w; v) = F (v), ∀v ∈ V } ,

where F is a linear form and V is a suitable Hilbert space. Let L(u; z) = J(u) + F (z) − a(u; z), for any u, z ∈ V ,
be the corresponding Lagrangian. The condition for finding the critical points of L, that is

L′(u, z;ϕ, v) = J ′(u;ϕ) + F (v) − a(u; v) − a′(u;ϕ, z) = 0, ∀ϕ, v ∈ V,

yields the primal problem (P.P.): find u ∈ V such that

a(u; v) = F (v), ∀v ∈ V,

and the adjoint problem (A.P.): find z ∈ V such that

a′(u;ϕ, z) = J ′(u;ϕ), ∀ϕ ∈ V,

where a′(u;ϕ, z) = lim
ε→0

1

ε
[a(u + εϕ; z) − a(u; z)] is the Gâteaux derivative of a(u; z) with respect to its first

argument, and likewise for J ′(u;ϕ). Then let us consider the Galerkin approximation (G.A.) of (P.P.): find uh ∈ Vh

such that

a(uh; vh) = F (vh), ∀vh ∈ Vh,

where Vh is a suitable finite dimensional subspace of V . The problems (P.P.) and (G.A.) are linked by the Galerkin
orthogonality (G.O.) condition:

a(u; vh) − a(uh; vh) = 0, ∀vh ∈ Vh.

In the case when both a and J are linear, from (P.P.), (A.P.) and (G.O.) the following error representation holds:
J(u) − J(uh) = F (z − ϕh) − a(uh; z − ϕh), for any ϕh ∈ Vh. Otherwise in the more general case when either a
or J are nonlinear, it can be proved that

J(u) − J(uh) = F (z − ϕh) − a(uh; z − ϕh) + R ∀ϕh ∈ Vh, (4)
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where

R =

1∫

0

[a′′(uh + se; e, e, z) − J ′′(uh + se; e, e)]s ds,

is a remainder term quadratic with respect to e = u − uh (see Propositions 2.2 and 2.3 in [BR01]). In practice,
neglecting R, choosing ϕh as a suitable interpolant of z and integrating by parts over the elements of the mesh, we
obtain an estimate of the form

|J(u) − J(uh)| ≤ C
∑

K∈Th

ρK(uh)ωK(z),

where ρK(uh) is a residual term depending only on the approximate solution uh and ωK(z) is a weighting term taking
into account the dual solution z.

5 Goal-oriented a posteriori analysis for the DD model

In this section we apply the general framework of the previous section to the Drift-Diffusion model (1) (more details
can be found in [MP04]). For this purpose, let U = (ψ, n, p) and Z = (z1, z2, z3) be the primal and dual solution
triplets, respectively, and let (u, v) =

∫
Ω
u v dΩ denote the standard L2(Ω)-scalar product. Then problem (1) can be

cast in the abstract framework above by defining

a(U ;Z) = (ε∇ψ,∇z1) − q(p− n + D, z1) + q(Dn∇n− µnn∇ψ,∇z2) + q(R, z2)

+ q(Dp∇p + µpp∇ψ,∇z3) + q(R, z3),

while F (U) = 0. Thus L(U ;Z) = J(U)− a(U ;Z), for any (U,Z) ∈ W × W̃ , where W is the affine space of func-
tions in [H1(Ω)]3 taking into account the nonhomogeneous Dirichlet boundary conditions, while W̃ = [H1

ΓD
(Ω)]3.

Letting V = (v1, v2, v3), we have

a′(U ;V,Z) = (ε∇v1,∇z1) − q(v3 − v2, z1)

+q(Dn∇v2 − µnn∇v1 − µnv2∇ψ,∇z2) + q(R′
n(U)v2, z2) + q(R′

p(U)v3, z2)

+q(Dp∇v3 + µpp∇v1 + µpv3∇ψ,∇z3) + q(R′
n(U)v2, z3) + q(R′

p(U)v3, z3),

R′
n(U), R′

p(U) being the derivatives of the recombination/generation term with respect to n and p, respectively. Let
J(U) be the quantity we are interested in and let us introduce the Galerkin approximation Uh = (ψh, nh, ph) ∈ Wh of
the primal solution, such that a(Uh, Vh) = 0, for any Vh ∈ W̃h, where Wh and W̃h are finite dimensional subspaces
of W and W̃ , respectively. Moving from equality (4) and neglecting the remainder term R, it holds

J(U) − J(Uh) � −a(Uh;Z − Vh), ∀Vh ∈ W̃h.

In more detail, by splitting the integrals over Ω as sums over the elements K of the mesh Th, we get

J(U) − J(Uh) �
3∑

i=1

∑
K∈Th

{(ρi
K , zi − vh,i)K +

1

2
(ji

e, zi − vh,i)∂K},

where ρi
K = ρi

K(ψh, nh, ph) and ji
e = ji

e(ψh, nh, ph), with i = 1, 2, 3, are the internal and edge residuals, respec-
tively, defined by

⎧⎪⎪⎨
⎪⎪⎩

ρ1
K = [ div(εEh) − q(ph − nh + D) ]|K ,

ρ2
K = [−divJn,h + qR(Uh) ]|K ,

ρ3
K = [ divJp,h + qR(Uh) ]|K ,

and ji
e =

⎧⎪⎪⎨
⎪⎪⎩

[ji · n]e, ∀e ∈ Eh,

2ji · n, ∀e ∈ ΓN,

0, ∀e ∈ ΓD,

where j1 = −εEh = ε∇ψh, j2
h = Jn,h = q(Dn∇nh − µnnh∇ψh) and j3

h = −Jp,h = q(Dp∇ph + µpph∇ψh)
are the discrete displacement, electron and hole current densities, respectively, R(Uh) is the recombination/generation
term evaluated at Uh, Eh is the set of the internal edges of Th and [ v ]e denotes the jump of the function v across the
edge e. Now choosing Vh|K = IK(Z), i.e. by identifying the test function Vh with the Clément-like interpolant of the
dual solution Z, and thanks to the anisotropic interpolation error estimates (2)-(3), we obtain
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|J(U) − J(Uh)| ≤ C

3∑
i=1

∑
K∈Th

αK Ri
K(Uh)ωi

K(zi), (5)

where C = C(C1, C2), αK = (λ1,Kλ2,K)3/2, and for i = 1, 2, 3,

Ri
K(Uh) =

1

(λ1,Kλ2,K)1/2
(‖ρi

K‖L2(K) +
1

2λ
1/2
2,K

‖ji
e‖L2(∂K)),

ωi
K(zi) =

1

(λ1,Kλ2,K)1/2
[sK(rT

1,KGK(zi)r1,K) +
1

sK
(rT

2,KGK(zi)r2,K)]1/2,

with Ri
K(Uh) and ωi

K(zi) independent of |K|, at least asymptotically, i.e. when the mesh is sufficiently fine.

6 Generation of the mesh
The technique used to compute the adapted meshes is a metric-based, adaptive iterative procedure that, starting from
a given mesh, T (k)

h , consisting of N (k)
h elements, finds the new mesh T (k+1)

h by exploiting the error estimator (5). In
practice, the anisotropic quantities describing the new mesh T (k+1)

h are approximated by functions piecewise constant
on T (k)

h . Since we are dealing with a vector problem, each of the three terms in (5) yields a contribution to the
adaptive procedure, i.e. a corresponding mesh. As the procedure to obtain each mesh is the same for all the three
contributions, we detail in the following the general procedure for a given i ∈ {1, 2, 3}. For this purpose, let ηi

K =
αK Ri

K(Uh)ωi
K(zi) be the local error estimator. We impose that:

i) ηi
K = τ/N

(k)
h , for any K ∈ T k

h , where τ is the given tolerance (equidistribution criterion);
ii) |K| be as large as possible (mesh elements minimization criterion).
Requirement ii) amounts to solving the minimization problem for the quantities at step k + 1:

find the optimal values s̃K of sK and r̃1,K of r1,K such that ωi
K(zi) be minimized, subject to the constraints

sK ≥ 1, r1,K , r2,K ∈ IR2 , ri,K · rj,K = δij , for i, j = 1, 2, with δij the Kronecker symbol,

where the dependence on k + 1 is understood. Let µm and µM be the (positive) minimum and maximum eigenval-
ues of GK(zi)/(λ

(k)
1,Kλ

(k)
2,K), respectively. Then the solution of this minimization problem yields r̃1,K parallel to the

eigenvector associated with µm and s̃K = λ̃1,K/λ̃2,K = (µM/µm)1/2. Finally, requirement i) allows us to obtain the
specific values for λ̃1,K and λ̃2,K , as

λ̃1,K λ̃2,K � (
τ

N
(k)
h

)2/3(Ri
K(Uh)(s̃K µm +

1

s̃K
µM )1/2)−2/3.

The above quantities define in a unique way the size and shape of the elements of the new mesh T i,(k+1)
h . Following

the same above procedure, once the three metrics for T 1,(k+1)
h , T 2,(k+1)

h , T 3,(k+1)
h have been obtained, the final mesh

T (k+1)
h may be obtained by computing the intersection of the three metrics, as described in [GB98].

7 Numerical results
We asses the procedure outlined in the previous sections on some test cases. Firstly, let us provide some computational
details:
• the Scharfetter-Gummel node-centred box method is used as numerical approximation scheme, thus, only the

current densities along the edges are meaningful [BBFS90]. This scheme guarantees a discrete maximum principle
for the unknowns;

• the reconstruction of the current densities inside each triangle is carried out by the lowest order edge elements of
Nédélec’s first family [Ned80];

• the Newton method is used to solve the whole system;
• the stiffness matrix for the dual problem is just the transpose of the Jacobian associated with the non-linear system

of the primal problem, so that the overhead of solving the dual problem is approximately the same as that of one
further iteration of the Newton method;

• the software BAMG [Hec98] is used to compute all the meshes.
We consider the step-junction diode of Fig. 1, with the following choice for the data: Ω = (0, 10) × (0, 10)µm,
symmetric doping, i.e. D = 1017 cm−3 in the curved polygonal n-region A-G-E-F-A, and D = −1017 cm−3 in
the remaining part, contact length |AG| = |CD| = 4µm, and junction radius |AE| = |AF| = 5µm centred at A,
τn = τp = 10−9 s, µn = 1300 cm2V−1s−1, and µp = 400 cm2V−1s−1.
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7.1 Control of total current

As first choice, we identify the goal functional J with the total current, i.e. with the flux of the total current density
J = Jn +Jp, either at the n-side contact AG, or at the p-side edge CD. In the case of the n-side contact, for example,
the functional J is computed as J(U) =

∫
AG

J · n ds =
∫

∂Ω
J · n ω ds =

∫
Ω
ω divJ dΩ +

∫
Ω

J · ∇ω dΩ =∫
Ω

J · ∇ω dΩ, for any function ω smooth enough, such that ω|AG = 1 and ω|CD = 0. Notice that, we have used
the divergence theorem and, from (1), the property that div J = 0, so that, thanks also to the boundary conditions,
the flux of J at the two contacts is equal and of opposite sign. This escamotage holds for the weak formulation but
it generally fails in the discrete case. It is shown however, to provide rather accurate results in the FEM context (see
[BR01, GS02]). In Fig. 3, both rows show the evolution of the meshes at the first three iterates at Vapp = 0.9 V. The
top row refers to the control on the n-side and the meshes are those corresponding to the dual variable z1 only, while
the bottom row deals with the control on the p-side contact, respectively, and the meshes are associated with z3.

7.2 Control of pointwise electron concentration

As second test case, we consider the control of the electron concentration at the point (4.167, 8.638)µm at the two
biases corresponding to a forward Vapp = 0.7V and a reverse Vapp = −5V . Figure 4 shows the meshes corresponding
to the dual variable z2 at the first iteration (top row) and the corresponding plot of z2 (bottom row). The left column
refers to the forward-bias case while the right column is associated with the reverse-bias polarization.
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Fig. 3. Control of total current: sequence of adapted meshes
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Fig. 4. Control of pointwise electron concentration: sequence of meshes for Vapp = 0.7V (left) and Vapp = −5V
(right) at the first iteration
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8 Conclusions

We have dealt with a dual-based anisotropic a posteriori error estimation for the Drift-Diffusion model in semiconduc-
tors. This allows us to control suitable goal quantities via the optimal control theory where the controls are essentially
the geometrical quantities describing the mesh. By an appropriate distribution and shaping of the elements we can
guarantee that the error in the desired output functional is below a given tolerance. Several open issues are in oder: the
validation on other functionals and on other devices; the extension to the time-dependent problem.
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Kinetic Relaxation Models for the Boltzmann Transport Equation
for Silicon Semiconductors
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Abstract An overview on the relaxation-time approximations of the collisional operator of the Boltzmann transport
equation for semiconductors is given. Solutions of these kinetic models are obtained through the use of exact-integral
representations in the stationary and homogeneous regime. Some properties of these solutions have been discussed and
their validity have been assessed by Monte Carlo simulations in bulk silicon.

1 Introduction

The semiclassical Boltzmann transport equation (hereafter BTE) coupled with Poisson equation, provides the natural
environment for modeling submicron semiconductor devices. Solving it numerically is not an easy task, because the
BTE is an integro-differential equation with six dimensions in the phase space and one in time. Recently, finite differ-
ence scheme [1, 2], discontinuous spline approximations of the distribution function [3] have been introduced, but with
a heavy computational cost. Following the experience of the kinetic theory of gases [4], simpler expressions have been
proposed for the BTE collisional operator. The most widely known collision model is usually called Bhatnagar, Gross
and Krook (hereafter BGK) model, where the fine structure of the collisional operator is replaced by a blurred image,
based upon a simple operator, which retains only the qualitative and average properties of the true collisional operator.

Usually it is assumed that the distribution function relaxes to its equilibrium value determined by the local density
and the lattice temperature, and that this process can be characterized by a relaxation time. This approach is certainly
not exact for scattering in semiconductors, because neglects the energy and angular dependence of the scattering rate
as well as the discrete amounts of energy lost in the scattering from optical phonons.

This model is deeply influenced by the choice of the relaxation time: it can be taken constant [5, 6], or function of
the electric field [7, 8] or of the electron momentum [9, 10]. In the stationary homogeneous regime, by using the BGK
approximation, an analytic solution of the distribution function can be obtained, and consequently its moments can be
evaluated numerically. In this paper, we want to asses the validity of these models, by comparing the moments of the
distribution function with those obtained by MC simulations for bulk silicon, in the stationary regime.

2 Basic equations

The BTE for electrons and one conduction band writes [11]:

∂f

∂t
+ v(k) · ∇xf − q

�
E · ∇kf = Q[f ] (1)

where the unknown function f(t, x,k) represents the probability density of finding an electron at time t in the position
x ≡ (x1, x2, x3) with the wave-vector k ≡ (k1, k2, k3), � is the Planck constant divided by 2π, and q is the absolute
value of the electron charge. The domain of k can be the three-dimensional space or the first Brillouin zone. We
denote by Ω the k-domain. The energy of the considered crystal conduction band structure ε(k) is measured from the
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band minimum. In the neighborhood of the band minimum a good dispersion relation is given by the quasi-parabolic
approximation:

ε(k) [1 + αε(k)] =
�

2k2

2m�
, k ∈ Ω (2)

where α is the non-parabolicity parameter (for silicon α = 0.5 eV −1), m� denotes the effective electron mass, which
is 0.32 me (free electron mass) in silicon. The electron group velocity v ≡ (v1, v2, v3) is given by

v(k) =
1

�
∇kε =

�k

m�

√
1 + 4α �2k2

2m�

.

The electric field E(t, x) ≡ (E1, E2, E3) is related to electronic distribution f by the usual Poisson equation.
Concerning the collision term, the main scattering mechanisms in a silicon semiconductor are the electron-phonon
interactions, the interaction with impurities, the electron-electron scatterings and the interaction with stationary imper-
fections of the crystal, as vacancies. In general, for low electron density, the collision operator can be schematically
written as

Q[f ] =

∫
R

3

[
w(k′,k)f(k′) − w(k,k′)f(k)

]
dk′ , (3)

where w(k,k′) is the transition probability per unit time from a state k to a state k′. The first term in (3) represents the
gain and the second one the loss. In silicon, the main scattering phenomena are due to the electron-phonon interactions
which can be modeled as [12]

w(k,k′) = K0(k,k
′)δ(ε(k′) − ε(k)) +

6∑
i=1

Ki(k,k
′) ×

[
δ(ε(k′) − ε(k) + �ωi)(nqi + 1) + δ(ε(k′) − ε(k) − �ωi)nqi

]
(4)

where �ωi is a optical phonon energy and nqi the phonon equilibrium distribution which, according to the Bose-
Einstein statistics, is given by

nqi =
1

exp(�ωi/kBT0) − 1
.

where T0 is the lattice temperature, K0 and Ki represent respectively the elastic and inelastic scattering probabilities.
The electron-electron interaction is taken into account in the framework of the mean field approximation through the
Poisson equation. This is reasonable since we consider the case of low electron density and, therefore, we can neglect
the short range collisions between electrons.
An analysis of the collisional operator Q can be found in [13]. In this paper the H-theorem is established, and the null
space of Q[f] ∗ is determined by the functions

f(k) = Γ (ε)exp
[
− ε

kBT0

]
(5)

where Γ is a constant function (which gives the well-known lattice maxwellian distribution function) or is periodic,
supposing that all phonon energies �ωi are commensurable. We point out that in silicon the six optical phonon energies
are non commensurable.

3 BGK models

The first BGK model for semiconductors was introduced by Trugman and Taylor [5] in the parabolic band approxi-
mation (i.e. α=0 in eq.(2))

Q[f ] = −f − nf0

τ
(6)

where n is the electron density, and f0 is the lattice maxwellian

f0 =

√
m�

2πkBT0
exp

[
− m�v2

2kBT0

]
.

∗i.e. the functions such that Q[f]=0.
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In the following we shall consider the so called bulk silicon, which is an homogeneous piece of silicon where an
external homogeneous electric field is frozen in the material,i.e. E=(E,0,0) where E is a parameter. In this case the
BTE, with the BGK collisional operator (6), reduces to a linear first order PDE ,whose solution is [5]

fB(k) =

√
π

2
exp
(

1

2
η2 − ηkx

)
exp

(
−k2

y + k2
z

2

)
erfc

[
− 1√

2
(kx − η)

]

where

η = −
√
m�kBT0

qEτ
.

Let us introduce the moments of the distribution function:

Vi =
1

n

∫
Ω

fvid
3k (7)

W =
1

n

∫
Ω

ε(k)fd3k, (8)

Si =
1

n

∫
Ω

fviε(k)d3k. (9)

which represent respectively the average velocity, the average energy and the energy-flux. By using the distribution
function fB after some calculations one obtains

Vx = µE , µ =
q

m�
τ (10)

W =
3

2
kBT0 + m�V 2

x , (11)

Sx = Vx

(
5

2
kBT0 + 3m�V 2

x

)
. (12)

If τ is constant, the average velocity (10) is inconsistent with the velocity saturation phenomena, observed experimen-
tally for high electric fields.
In order to overcome to this difficulty, an electric field dependent relaxation time has been considered [7] :

τ(E) =
m�

q
µ(E) =

m�

q

2µ0

1 +

√
1 + 4

(
µ0E

v0

)2

where the parameters µ0 and v0 are obtained as fitting parameters with MC data in bulk silicon. Now Vx coincides
with the MC data, but the average energy (11) and the energy-flux (12) differ completely respect to the MC data, as
shown in Figs. 1 and 2. For the quasi-parabolic case, a similar procedure could be applied, supposing that a new fitting
function τ (E) could be determined.
An alternative is to consider the relaxation time as function of the momentum. In fact the collisional operator (3) can
be easily written as :

Q[f ] =

∫
R

3
w(k′,k)f(k′) dk′ − f(k)

∫
Ω

w(k,k′) dk′

=

∫
R

3
w(k′,k)f(k′) dk′ − 1

τ(k)
f(k) (13)

where

1

τ(k)
=

∫
Ω

w(k,k′) dk′ (14)

is the total scattering rate, which is not a fitting parameter but it is explicitly determined by the physical transition
probability eq.(3). The equation (13) suggests us the following approximation :

Q[f ] ∼ Qk[f ] = −f(k) − F0(k)

τ(k)
(15)
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Fig. 1. The BGK energy (11) (with +++) versus the electric field and MC data (with ***), in the parabolic band
approximation
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Fig. 2. The BGK energy-flux (12) (with +++) versus the electric field and MC data (with ***), in the parabolic band
approximation

where F0(k) is again the lattice maxwellian, i.e.

F0(k) = exp
(
α0 −

ε

kBT0

)
(16)

with another normalization constant α0, chosen in such a way to maintain the mass conservation, i.e.∫
Ω

Qk[f ]dk =

∫
Ω

F0(k) − f(k)

τ(k)
dk = 0 . (17)

In [10] we proved that this operator fulfills an H-theorem. The BTE with the collisional operator (15) reduces, for bulk
silicon, to a linear first order partial differential equation, whose solution, for an electric E =(E,0,0), is:

f(k) =
1

E

∫ +∞

kx

F0(η, ky, kz)

τ(η, ky, kz)
exp

[
− 1

E

∫ η

kx

dβ

τ(β, ky, kz)

]
dη . (18)
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Since F0 depends on f via eq.(17), the previous equation is an highly nonlinear integral equation to be solved numeri-
cally by quadratures.

Simulation results and conclusions

We have tested the BGK solution eq.(18), in the quasi-parabolic band approximation, with our MC code [14]. Silicon
was at room temperature (T0=3000K) and a homogeneous electric field was frozen in the material along the x direction
(E=100 div 120,000 V/cm): we gathered statistics after the transient regime, i.e. our simulation results are valid in the
stationary regime. We have evaluated numerically the moments (7)-(9) by using eq.(18), and the results are shown in
Figs. 3,4,5. The energy-flux MC data are very well fitted by the corresponding data obtained by using the BGK solution,
as shown in Fig. 5. From Figs. (3) and (4) we notice that the BGK model is able to capture the drift velocity and the
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Fig. 3. The mean velocity versus electric field obtained with the BGK model eq.(18) (solid line) and MC data (with
***), in the quasi-parabolic band approximation
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Fig. 5. The energy-flux versus electric field obtained with the BGK model eq.(18) (solid line) and MC data (with ***),
in the quasi-parabolic band approximation

average energy with a good precision, only for moderate electric fields (≤ 30,000 V/cm), but fails for high-fields
regimes. This behaviour can be explained as follows: the BGK scheme in rarified gas dynamics is based on the fact that
the distribution function relaxes to a well known distribution function (i.e. the local maxwellian). In the semiconductor
case, the lattice maxwellian is not the equilibrium distribution function (in the stationary and homogenous regime) due
to the presence on the electric field in the BTE. Numerical experiments confirm that, for moderate electric field, the
equilibrium distribution function is maxwellian, but not for high fields where anisotropies appear [15].
We guess that, for moderate electric fields, the BGK model (15) can be used for simulating real devices and efficiency
comparisons can be performed with solvers of the full BTE. These will be the topics of future researches.
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Exact Solutions for the Drift-Diffusion Model of Semiconductors via
Lie Symmetry Analysis
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Abstract The symmetry analysis of the drift-diffusion models for semiconductors is performed and examples of exact
invariant solutions are obtained. These latter ones can be used as useful benchmarks for testing numerical codes.

1 Introduction

Simple macroscopic models widely used in engineering applications for the description of charge carrier transport in
semiconductors are the drift-diffusion ones [1, 3, 2]. They are based on the assumption of isothermal motion and are
constituted by the balance equation for electron density and the Poisson equation for the electric potential. In these
models there is the presence of some arbitrary functions as the mobilities, whose expression is based on fitting of
experimental data or Monte Carlo simulations.

A first symmetry analysis [4, 5, 6, 7, 8] of the drift-diffusion models has been performed in [9] for a simplified
version with the use of weak equivalence classification. The most general unipolar model is has been investigated in
[10] in the one dimensional case. Here we recall the symmetry classification and give some examples of invariant exact
solutions for suitable doping profiles and mobilities (for a similar study of the energy-transport model see [11, 12]).

Apart from the mathematical interest, the obtained results are of a certain relevance for the applications because
they furnish example of benchmark solutions useful for testing the numerical code simulating electron devices by the
drift-diffusion model.

2 The mathematical model

The unipolar drift-diffusion model for electrons in semiconductors is given by the balance equation for electron (or
hole) density coupled to the Poisson equation for the electric potential [1, 2, 3]

∂n

∂t
+ ∇ · J = 0, λ2∆Φ = n− c(x) (1)

where n is the electron density, J the electron momentum density, λ2 the dielectric constant divided by the elementary
charge, Φ the electric potential and c(x) the doping concentration that is a function of the position x. ∆ is the Laplacian
operator and ∇ the divergence operator. The drift-diffusion models can be considered as a simplified macroscopic
description of charge transport in semiconductors. Their theoretical foundation is based on the moment method applied
to the Boltzmann transport equation for charge carriers.

The system (1) is supplemented by a constitutive relation for the momentum density J, which is expressed as the
sum of a diffusion and a drift term as J = K∇n + µn∇Φ where K is the diffusion coefficient and µ the mobility.

It is usually assumed that K and µ are related by the Einstein relation K = −U0µ where U0 = kBTL
e

is the
(constant) thermal potential with kB , TL, e Boltzmann constant, lattice temperature kept at equilibrium, absolute value
of the elementary charge, respectively. The mobility µ is considered to be a function of the modulus |E| of the electric
field E = −∇Φ, that is µ = µ(|E|). In more sophisticated approaches also a dependence on the donor and acceptor
concentration is taken into account. The explicit expressions of µ(|E|) are obtained in the existing drift-diffusion
models by a fitting of Monte Carlo simulations or experimental data.
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Case Forms of c(x) and µ(E2) Extensions of LP

I c(x) = c0, µ = µ(E2) X1 = ∂
∂x

II c(x) = c0
(k0x+k1)2

, µ = µ0 X1 = 2k0t
∂
∂t

+ (k0x + k1)
∂

∂x
− 2nk0

∂
∂n

− k0E
∂

∂E

III c(x) = c0, µ = µ0 X1 = B(t) ∂
∂x

− B′(t)
µ0

∂
∂E

Table 1. Lie group classification for the drift-diffusion model

3 The symmetry classification in the one-dimensional case

In the one dimensional case the Poisson equation can be rewritten in terms of the relevant component of the electric
field. The complete system becomes

∂n

∂t
+

∂J

∂x
= 0, −λ2 ∂E

∂x
= n− c(x), (2)

J = −µ(|E|)U0
∂n

∂x
− µ(|E|)nE. (3)

We will get the symmetry classification of the systems (2)-(3) by the infinitesimal Lie method [4, 5, 6, 7, 8].
Our goal is to determine the functional forms of mobility and doping profile for which the system (2)-(3) does admit
symmetries.

Let us consider the one-parameter Lie group of infinitesimal transformations in (x, t, n, E)-space given by

t̂ = t + ε ξ1(x, t, n,E) + O(ε2), x̂ = x + ε ξ2(x, t, n,E) + O(ε2), (4)

n̂ = n + ε η1(x, t, n,E) + O(ε2), Ê = E + ε η2(x, t, n, E) + O(ε2), (5)

where ε is the group parameter and the associated Lie algebra L is the set of vector fields of the form X = ξ1 ∂
∂t

+
ξ2 ∂

∂x
+ η1 ∂

∂n
+ η2 ∂

∂E
.

One requires that the transformations (4)-(5) leave invariant the set of solutions of the system (2)-(3). In other
words, one requires that the transformed system has the same form as the original one.

The analysis of the invariance conditions leads to the following classification (for the details see [10]). The principal
Lie algebra LP is spanned by

X =
∂

∂t
. (6)

In the cases summarized in Table 1, one has also the following extensions whose generator is indicated by X1.

4 Reduction to ODE systems

One of the advantages of the symmetry analysis is the possibility of finding solutions of the original system of PDEs
by solving a system of ODEs. These systems of ODEs, called reduced systems, are obtained by introducing suitable
similarity variables, determined as invariant functions with respect to the infinitesimal generator of the symmetry
transformation.

On the basis of the infinitesimal generators reported in the previous section, we have the following reduced systems.

4.1 Case 1

The generator is c1
∂
∂t

+ c2
∂

∂x
with c1 and c2 arbitrary real constant. The invariance conditions lead to dt

c1
= dx

c2
and

gives the similarity variable σ = c2t − c1x. Since for c1 = 0 one has the homogeneous case, that is with solutions
depending only on t, putting α = c2

c1
(c1 �= 0), one gets σ = x− αt and the similarity solutions

n = ñ(σ), E = Ẽ(σ) (7)

where ñ and Ẽ, after suppressing the symbol “tilde” for simplicity, are solutions of the reduced system

αn + µ(E2)U0n
′ + µ(E2)nE = const = k, λ2E′ = c0 − n (8)
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4.2 Case 2

In this case the infinitesimal generator is

X = (2k0t + c1)
∂

∂t
+ (k0x + k1)

∂

∂x
− 2nk0

∂

∂n
− k0E

∂

∂E
(9)

The invariance conditions reads

dt

2k0t + c1
=

dx

k0x + k1
= − dn

2k0n
= − dE

k0E
(10)

from which one obtains the following similarity variable σ(x, t) = 2k0t+c1
(k0x+k1)2

and the similarity solution

n =
N(σ)

(k0x + k1)2
, E =

F (σ)

k0x + k1
(11)

where N(σ) and F (σ) are solution of the equations

λ2[F (σ) + 2k0F
′(σ)σ] + c0 −N(σ) = 0 (12)

2N ′(σ) − 2µ0k0U0 (3 + 2σ)
d

dσ
(Nσ) − 2µ0σ

d

dσ
(NF ) + 3µ0NF = 0 (13)

4.3 Case 3

In this case the generator is

X = c1
∂

∂t
+ B(t)

∂

∂x
− B′(t)

µ0

∂

∂E
(14)

with c1 arbitrary real constant. The invariance conditions read

dt

c1
=

dx

B(t)
= −µ0dE

B′(t)
(15)

from which we get the following similarity variable σ = G(t)− c1x where G(t) =
∫

B(t). In this case, the variables
n and E are given by

n(x, t) = N(σ), E(x, t) = −G′(t)

µ0c1
+ F (σ) (16)

After some computation, the Poisson equation and the density balance equation read

−λ2c1F
′(σ) = c0 −N(σ) (17)

d

dσ

[
−c1U0N

′(σ) + N(σ)F (σ)
]

= 0 (18)

5 Examples of exact solutions

Here we give some example of exact solutions, obtained by solving the reduced system showed in the previous section
(for more details see [10]). The cases refer to those reported in the table.

5.1 Case 2

For bulk silicon c0 = 0, if the relation 5/2µ0 = λ2 is valid, by setting k0 = 5/2 we have the exact solution of the
reduced system (12)-(13)

N(σ) =
1

σ
, F (σ) =

2

7µ0σ
+ C σ5/2 (19)

where C is an arbitrary constant and σ(x, t) = 4 5 t+c1
(5 x+2 k1)2

.
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Fig. 1. Plot of the solution 20

In terms of the variable n and E one has

n =
4

5t + c1
, E =

2

5x + 2k1

[
(5x + 2k1)

2

14µ0(5t + c1)
+ 32C

(
5t + c1

4

)5/2
]

(20)

In fig. 1 the previous solution is plotted for c1 = 1, k1 = 1 and C = 1/32.
Another class of solutions has been obtained also for c0 �= 0 as follows. First from (12)-(13) we get a single second

order ODE for F

4λ2 k0 σ F ′′ [−µ0σF + 1 − 3µ0k0U0σ − 2µ0k0U0σ
2
]

+λ2F ′ [2 + 4k0 − 2µ0σc0/λ
2 − 24µ0k

2
0U0λ

2 − 6µ0k0U0λ
2σ − 16µ0k

2
0U0

−4µ0k0U0σ
2 − 4µ0σF + 2µ0σk0F − 4µ0σ

2k0F
′]

+µ0F
[
3λ2 − 2µ0k0U0λ

2(3 + 2σ) + 3c0
]
− 2µ0k0U0c0(3 + 2σ) = 0. (21)

If without loss of generality we set k0 = 2 and look for solutions of (21) linear in σ, one finds

n(x, t) =
1

(2x + k1)2

{
λ2

[
−80

U0(4t + c1)

(2x + k1)2
+

3 (80U0λ
2 − c0)

13λ2
+ c0

]}
, (22)

E(x, t) =
1

(2x + k1)

[
−16

U0(4t + c1)

(2x + k1)2
+

3 (80U0λ
2 − c0)

13λ2

]
, (23)

provided that

µ0 =
2704λ2U0

3 (4512λ4U2
0 + 116λ2U0c0 − 3c20)

.

The latter requires, in order to have a positive low field mobility µ0,

c∗1 < c0 < c∗2

c∗1, c
∗
2 being the two (real) roots of 4512λ4U2

0 + 116λ2U0c0 − 3c20 = 0.
In fig. 2 the solution (22)-(23) is plotted for c0 = 1, c1 = 1 and k1 = 5.

5.2 Case 3

Let us combine the equations (17),(18) into the single relation

c21U0λ
2F ′′ − (c1λ

2F ′ + c0)F + J0 = 0, (24)

where the constant J0 arises from a first integration of (18). For bulk silicon, c0 = 0, if J0 = 0 the previous equation
becomes F ′ = F2

2c1U0
+ F0 with F0 an integration constant. The general solution of this latter equation is F (σ) =

−γ tanh
[

γ(σ+c2)
2 c1 U0

]
where γ =

√
2c1U0F0 and c2 a further integration constant.

For N(σ) one has N(σ) = λ2c1

(
F2

2c1U0
+ F0

)
. For periodic G(t) the solution is periodic in time.
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If, for example, l is the length of the device, with the choice G(t) = l sinωt, c1 = 1 and F0 > 0, the similarity
variable reads σ = l sinωt− x and the solution becomes

n(x, t) = λ2F0

{
1 + tanh2

[
γ (l sinωt + x + c2)

2U0

]}
, (25)

E(x, t) = −ωl cosωt

µ0
− γ tanh

[
γ (L sinωt + x + c2)

2U0

]
. (26)

In fig. 3 the previous solution is plotted for c2 = 0 and ω = 4π.
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Different Extrapolation Strategies in Implicit Newmark-Beta
Schemes for the Solution of Electromagnetic High-Frequency
Problems∗
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Abstract The construction of good starting values for iterative solvers applied an implicit Newmark-Beta time step-
ping scheme for the simulation of transient electromagnetic problems, can significantly improve the convergence of
those solvers, and consequently decrease the total solution time. Especially in high frequency problems, this is an
important issue since simple extrapolation schemes, like the zero-order Taylor approximation, do not seem to bring
significant improvements on the convergence of the solver. Different extrapolation strategies applied to high frequency
problems simulated using perfectly matched boundary conditions are compared in terms of their effect in the speed-up
of the solver.

1 Introduction

For the simulation of high frequency problems in Time Domain (TD) systems of ordinary differential equations are
derived by volume discretization techniques like the Finite Elements Method (FEM) [1], or the Finite Integration
Technique (FIT) [2]. Implicit time stepping schemes as the popular conservative Newmark-Beta scheme applied to
these systems express the field in each time step in the form of an algebraic system of linear equations. These linear
systems are symmetric and positive definite and they can be efficiently solved using iterative solvers like the Conjugate
Gradient method (CG). The choice of a good starting value for such solvers is important for the overall efficiency
of the scheme since it can reduce the time needed for the solution of the equation system in each time step. An
initial approximation for the solution can be constructed using information obtained from the solution of the system in
previous time steps.

Extrapolation strategies based on a Taylor expansion have been already successfully applied in quasi-static electric
and magnetic transient simulations [3]. The Subspace Projection Extrapolation Scheme (SPE) presented in [4] achieves
an optimal combination of different approximations for the initial value by exactly solving the original problem pro-
jected onto a subspace. These two schemes together with some other techniques based on the splitting of the system
matrix in diagonal and non-diagonal terms, and the projection of the excitation vector on a subspace constructed from
the previous solutions are examined in this paper for the high frequency formulation. The considered techniques are
tested in two important cases, the resonator and the scattering problem. For the last one, the introduction of an Ab-
sorbing Boundary Condition (ABC) is necessary for the truncation of the computational domain. This is achieved by
the utilization of Perfectly Matched Layers (PML), which has been proven a very efficient technique in the case of
leapfrog formulation [6]. Its application however in implicit Newmark-Beta formulations becomes cumbersome due to
the dispersive nature of the PML materials which introduces convolution terms into the wave equation. To model the
PML material correctly, modifications to the usual matrix formulation of the closed problem have to be carried out.

2 The FIT-TD Implicit Formulation

The spatial discretization of the Maxwell equations using the FIT scheme leads to the following discrete form of the
wave equation

∗A. Skarlatos is supported by the graduate student program ”Modelierung, Simulation und Optimierung in Inge-
nieurswissenschaften” of the Deutsche Forschungsgemeinschaft (DFG) under grant GK-GRK 853.
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Mε
d2

dt2
�e + Mκ

d

dt
�e + C̃M−1

µ C�e = − d

dt

��
j e, (1)

where C, C̃ are topological matrices which resemble the continuous topological operator curl and Mε,M
−1
µ , and

Mκ are material matrices [2]. For the sake of simplicity we shall call M = Mε, D = Mκ, K = C̃M−1
µ C and

f = − d
dt

��
j e. The wave equation is then simplified into

M
d2

dt2
�e + D

d

dt
�e + K�e = f . (2)

Discretization of the above equation in time using the Newmark-Beta scheme [5] yields

(
M + γ∆tD + β∆t2K

)
�e (n+1) =

(
2M + (1 − 2γ)∆tD − (0.5 − 2β + γ)∆t2K

)
�e (n)

+
(
M + (1 − γ)∆tD − (0.5 + β − γ)∆t2K

)
�e (n−1)

+ ∆t2f (n). (3)

An unconditionally stable, second-order accurate scheme is obtained if β ≥ 0.25. The choice of parameters β =
0.25, γ = 0.5 guarantees that the time discrete electromagnetic energy is conserved in each new time step [2]. For this
reason the Newmark-Beta scheme is the most widely used implicit time integrator for electromagnetic high frequency
problems [1]. The system matrix M + γ∆tD + β∆t2K is symmetric and positive definite and it can be efficiently
solved by the Conjugate Gradient method (CG).

Extrapolation Strategies

The construction of a start value for the solver in order to achieve a faster convergence can be done using different
extrapolation strategies.

Taylor Expansion

The simplest way to extrapolate the field �e at the n + 1 timestep is to express the field in the form of a Taylor series
[3]

�e (n+1) = �e (n) +
d

dt
�e (n)∆t +

d2

dt2
�e (n) ∆t2

2!
+ .... (4)

Keeping the first terms of the series only we obtain a zero-th order extrapolation

�e
(n+1)
0 ≈ �e (n), (5)

or the first order approximation

�e
(n+1)
0 ≈ �e (n) +

d

dt
�e (n)∆t, (6)

and approximating the first derivative with a higher order finite differences scheme [3] we get

d

dt
�e (n) ≈ 1

∆t

(
3

2
�e (n) − 2�e (n−1) +

1

2
�e (n−2)

)
. (7)

We would expect that the more terms we take into account, the more accurate approximation of the field at the
n+1 time step we achieve. However this is not the case here since we are not dealing with exact arithmetics. Given that
the field values in the previous time steps are just numerical approximations of the real ones and since we are working
with finite precision arithmetic, we are not able to know a-priory which order will provide the best approximation.
A quite efficient way to overcome this problem is to combine the different extrapolated values obtained by applying
different orders of Taylor expansion, in order to get an optimal approximation for the solution. This is the main idea
behind the Subspace Projection Extrapolation (SPE) technique [4].
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The Subspace Projection Extrapolation (SPE) Scheme

In the SPE scheme the extrapolated start vectors �e
(n+1)
i , i = 1, ...,m obtained by different orders of Taylor expansion

are linearly combined to yield an optimal start vector [4]. To do this an orthonormalization process is applied to the
extrapolation vectors (e.g. by applying a Modified Gram-Schmidt (MGS) algorithm) to get a set of orthonormal vectors
v1, ...vm̃. These vectors define a basis of a subspace, on which the original problem is projected and solved. Consider
the projection operator

V := {v1|...|vm̃} ∈ R
N×m̃, (8)

where N is the size of the original problem. The problem is projected onto the above constructed subspace and is
solved according to

VT AVz = VT q, (9)

where A = M + γ∆tD + β∆t2K, q the right hand side (excitation) vector of (3), and z ∈ R
m̃. The time step index

was omitted. After solving the reduced problem, the vector z is extracted back into the original space and set as start
value for the original problem

�e0,SPE = Vz. (10)

Diagonal Extraction Approximation

Let us return to the Newmark formulation for the wave equation

(
M + 0.5∆tD + β∆t2K

)
�e (n+1) = q(n), (11)

where γ was set to 0.5. The matrices M and D are diagonal. Bringing the non-diagonal matrix K on the right hand
side (rhs) we obtain

(M + 0.5∆tD) �e (n+1) = q(n) − β∆t2K�e (n+1). (12)

Since the �e (n+1) is not known, we can approximate it on the rhs with the field value in the previous timestep, namely
�e (n)

(M + 0.5∆tD) �e (n+1) ≈ q(n) − β∆t2K�e (n). (13)

The matrix on the left hand side is diagonal, and it can be inverted very easily and we get

�e
(n+1)
0 := (M + 0.5∆tD)−1 (q(n) − β∆t2K�e (n))

as initial guess for (3).

Subspace Projection of the Right Hand Side

The solution of the system in each time step is actually equivalent to applying the inverse matrix on the excitation
vector. If we could thus express the excitation vector as a linear combination of vectors on which the operation of the
inverse matrix was known, we could construct a good approximation to the solution by combining those “inverted”
vectors. Let us consider once again the equation system arising from the Newmark formulation

A�e (n+1) = q(n+1), (14)

where both system matrix and excitation vectors are abbreviated by the terms A and q(n+1). The solution of that
equation can be written as

�e (n+1) = A−1q(n+1). (15)

Normalizing the rhs vector to v1 := q(n+1)/ ‖ q(n+1) ‖, we also have

A−1v1 =
�e (n+1)

‖ q(n+1) ‖ . (16)
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The excitation vector for the next time step now can be written as the sum of a vector parallel to v1, and a remaining
“residual” term r(n+2) with

q(n+2) = α1v1 + r(n+2), (17)

where α1 := vT
1 q(n+2) arises from the projection of the q(n+2) to the v1 vector. The thus defined “residual” vector

r(n+2) should not be confused with the CG residual vector. The solution for the next time step can be thus written as

�e (n+2) = α1A
−1v1 + A−1r(n+2), (18)

and since the vector A−1v1 is known from the previous time step, we can approximate �e (n+2) to get an initial guess
in the CG solver according to

�e
(n+2)
0 := α1A

−1v1 = (α1/ ‖ q(n+1) ‖)�e (n+1), (19)

With this start vector we get the new time step solution �e (n+2) by solving the Newmark system.
Normalizing the residual vector as the new basis vector

v2 := r(n+2)/ ‖ r(n+2) ‖= (q(n+2) − α1v1)/ ‖ r(n+2) ‖, (20)

the vector A−1v2 can be cheaply evaluated by

A−1v2 = (�e (n+2) − α1A
−1v1)/ ‖ r(n+2) ‖ . (21)

The next excitation vector q(n+3) can now be decomposed into components in the vector subspace spanned by the
normalized vectors v1 and v2 plus a new residual vector r(n+3) with

q(n+3) = β1v1 + β2v2 + r(n+3), βi := vT
i q(n+3), i = 1, 2. (22)

Since the vectors A−1v1,A
−1v2 are already known, they can be used to yield an initial approximation for the solution

�e
(n+3)
0 := β1A

−1v1 + β2A
−1v2. (23)

Solving now the system for the n + 3 time step allows us to determine the residual term r(n+3) and so on. Continuing
this procedure in the next time steps, we can increase the dimension of the constructed subspace by one in each time
step. From numerical experiments it turns out that each basis vector can provide a good description of the excitation
term (and consequently of the solution vector) in the proximity of the point where it was constructed. After some time
steps it becomes nearly uncorrelated with them, which is expected due to the fast variation of the signals. In practice,
the best performance for the proposed algorithm is obtained if the described procedure is restarted after a number of
time steps.

3 The Open Problem: PML Boundary Conditions

For the sake of simplicity we shall restrict ourselves in the 2D-TM problem. The wave equation for the TM case can
be written in Frequency Domain (FD)

εL2(ω)Ezez + ∇×
[
L1(ω)−1∇× (Ezez)

]
= −Jzez. (24)

L1, L2 are the PML parameters for the 2D case given by

L1(ω) =
sx

sy
exex +

sy

sx
eyey (25)

L2(ω) = sxsy, (26)

with

sx = 1 +
σx

jωε0
, sy = 1 +

σy

jωε0
. (27)

The notation σx,y summarizes the PML conductivities σx, σy in the layers at the x and y boundaries, respectively.
In the rest domain (computational domain) they have zero value, so the parameters at these cells become 1 and (24)
reduces to the normal wave equation. Transforming (24) into the TD we get
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ε

[
∂2Ez(t)

∂t2
+

σx + σy

ε0

∂Ez(t)

∂t
+

σxσy

ε2
0

Ez(t)

]
ez +

∇×
[
µ−1L1(t) ∗ ∇ × [Ez(t)ez]

]
= −∂Jz(t)

∂t
ez, (28)

where L1(t) is the transformed tensor L1(ω), and ∗ denotes the convolution operator. Discretizing the above modified
wave equation using the FIT discretization scheme, and after some manipulations we obtain

Mε
d2

dt2
�e + Dσ1Mε

d

dt
�e +

(
C̃M−1

µ C + Dσ2Mε

)
�e + C̃M−1

µ L̃1(t)C ∗ �e = − d

dt

��
j e, (29)

where Dσ1 , Dσ2 are diagonal matrices which contain the discretized PML conductivities in (28) along the grid edges
and

L̃1i,j (t) =
σx,yi − σy,xi

ε0
e−σy,xi

t/ε0u(t)δi,j , (30)

where u(t) is the Heaviside (step) function, and δi,j is the Kronecker delta. The first subscript of the σ parameter
is used for the x-directed edges (i.e. σx for the σx,y and σy for the σy,x), and the second for the y-directed ones.
Discretization of (29) using the Newmark-Beta scheme and for γ = 0.5 gives

(
M + 0.5∆tD + β∆t2K

)
�e (n+1) =

(
2M + (1 − 2β)∆t2K

)
�e (n)

+
(
M + 0.5∆tD + β∆t2K

)
�e (n−1)

+∆t2
(
βw(n+1) + (1 − 2β)w(n) + βw(n−1)

)
+∆t2f (n), (31)

with M = Mε, D = Mκ + Dσ1Mε, K = C̃M−1
µ C + Dσ2Mε and f = − d

dt

��
j e, and where w(n) denotes the

convolution term at n-th time step, namely

w(n) =
[
C̃M−1

µ L̃1(t)C ∗ �e(t)
](n)

. (32)

Based on the properties of the exponential function we can show that the convolution term can be evaluated recursively
according to the following update scheme

w(n) = C̃M−1
µ v(n), (33)

v(n) = D1v
(n−1) + D2C

�e (n), (34)

with

D1i,j = e−σy,xi
∆t/ε0δi,j , (35)

D2i,j =

{
σx,yi

−σy,xi
σy,xi

(
1 − e−σy,xi

∆t/ε0
)
δi,j , if σy,xi �= 0

σx,yi
−σy,xi
ε0

∆tδi,j , if σy,xi = 0
. (36)

4 Examples

As first example we shall consider the resonator structure shown in Fig. 1a. The resonator contains two dielectric
cylinders, one with εr = 15 and radius 1 cm, and one with εr = 3 and radius 10 cm. The second cylinder has
a conductivity of κ = 0.08 S/m. The choice of the material parameters was made in such way, to get a system of
relatively bad condition. Each side of the resonator has a length of 1 m, which brings the first resonance at 210 MHz.
The structure is excited by a small dipole located at the point (0.233, 0.233, 0.489). The excitation signal is a modulated
Gaussian pulse with bandwidth 150 MHz. As second example we shall examine the scattering from a dielectric cylinder
with εr = 10 and radius 15 cm. The configuration of the problem is shown in Fig. 1. The field is produced by an infinite
electric line (TM case). The bandwidth of the excitation pulse is 400 MHz. A PML is applied for the truncation of the
computational domain.

Both problems were solved with CG using the above presented extrapolation techniques for the construction of
start values. The total number of iterations as well as the solution time needed for each case are compared in Table 1.
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x
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z

(a)

Source

0.546 m

PML

(b)

Fig. 1. a) Lossy Resonator b) Scattering from dielectric cylinder (TM case)

Resonator Problem Scattering Problem

Extrapolation Scheme Num. of Iterations Time (s) Num. of Iterations Time (s)

Taylor 0 50,109 13,349 21,930 6,077
SPE 31,689 8,703 17,611 5,184

Matrix Splitting 39,000 10,640 19,798 5,861
Rhs projection 27,936 8,272 12,740 4,054

Table 1. Comparison of the different extrapolation schemes
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Fig. 2. Solver convergence with the different extrapolation schemes: a) Resonator Problem b) Scattering Problem

We notice that the SPE technique and the subspace projection of the rhs vector provide the best results in terms of
the solver speed-up for both cases. In Fig. 2 the CG iterations for each timestep and for the different schemes are
illustrated. Again we notice that the number of iterations applying the SPE and rhs projection schemes is clearly below
those of the rest extrapolation schemes for most of the timesteps. The rather rapid variation of the number of iterations
for the rhs projection algorithm is due to the restart procedure which was described above. For these examples the
use of extrapolation techniques with implicit Newmark-Beta schemes offers a significant improvement in terms of
computational simulation time over the standard approach.

5 Conclusions

In this paper a number of different extrapolation techniques for the construction of start values for implicit Newmark-
Beta time-stepping schemes applied to electromagnetic high frequency problems were examined. Applied to electro-
magnetic wave propagation problems, were a perfectly matched layer (PML) absorbing boundary condition was used,
the solution time could be significantly reduced by constructing good approximations of the solution vectors by using
the information obtained in the previous time steps. This improvement in the solution time can be very useful in cases
were no explicit formulation is available (e.g. in the FEM-TD formulation).
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Electromagnetic Characterization Flow of Leadless Packages for RF
Applications
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Abstract The aim of this paper is to show a characterization flow which integrates the 3D electromagnetic simulator
Ansoft High Frequency Structure Simulator (HFSS) in Cadence Virtuoso layout editor for leadless packages modeling.
A set of Cadence Skill language and Ansoft Macro Language procedures makes easier the leadless package simulations
with HFSS inside Cadence Design Framework II. The tool lets HFSS draw the 3D model of a package with the bond
wires from a 2D view in the layout editor Virtuoso. The correct settings for boundaries and ports are fixed as well.
At the end of the electromagnetic simulation, HFSS produces a scattering matrix that can be associated to a new cell
package defined in the DFII Library Manager. For this cell four cell views are created: a symbol view and the views
for the three circuit simulators Mentor Graphics Eldo, Cadence Spectre and Agilent ADS.

Key words: electromagnetic simulation, package, hfss, virtuoso.

1 Introduction

Monolithic microwave integrated circuits (MMIC) performance is greatly influenced by the package, so it is necessary
to account for its parasitic effects. An electrical model, generated using electromagnetic simulators, can be incorporated
into a circuit simulator, such as Eldo, Spectre and ADS, which can predict the overall behavior of the circuit. The 3D
electromagnetic simulator Ansoft HFSS [1] calculates the scattering matrix that can be exported into a file, in the
Touchstone standard format.

The developed tool is a set of Cadence Skill Language [2] procedures and macros written in Ansoft Macro Lan-
guage which allows the user to extract an electrical model of a package with its bond wires, from the Cadence envi-
ronment. These procedures realize a graphic user interface for the following input data: package database (packages
geometry and electromagnetic characteristics), bond wire models database (containing the bond wires geometric mod-
els), project data (die and board dimensions and electromagnetic characteristics, bond wires diameter), bond wires data
(coordinates of the wires start-end points, bond wire models, leads and ports connected to the wires).

A geometric model is drawn in the HFSS 3D Modeler; materials and boundaries are assigned as well. The user
specifies the connections between bond wires and ports, whereas the other necessary settings (port type and position)
are automatically fixed. The block simulated in HFSS includes board, package and bond wires. At the end of the
simulation a cell package, that is a black box element linked to the scattering matrix of the model, is introduced in the
Cadence Library Manager with four cell views: a symbol view (an n-port element) that can be instantiated in a circuit
schematic and three views for the above-mentioned simulators.

2 A simulation flow overview

The simulation flow is divided in three main steps:

(i) data input from Cadence Virtuoso;
(ii) electromagnetic simulation with Ansoft HFSS;

(iii) creation of a cell package in Cadence Library Manager.
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Data on geometry and electromagnetic characteristics of package, die and bond wires is introduced by means
of forms created in Cadence Skill language and saved in files readable by the HFSS macros. It is also necessary to
introduce the coordinates of the starting and ending points of the wires and the numbers of the leads they are connected
to (”0” is assigned to the die paddle, for downbonding wires). This operation can be tedious for large number of wires,
so it has been automatized by using a fictitious bondwire layer: the user draw the bond wires selecting the shape path
and the layer bondwire inside Virtuoso layout editor and a Skill procedure grabs the coordinates and the lead number.

The files created by the skill interface (package, bond wire models, project and bond wires data) are imported by
the HFSS macro; the 3D model is drawn and the user has only to specify the EM simulation settings (e.g. frequency
range, number of simulation steps).

3 The simulated model

The tool models QFN (Quad Flat No-Lead) packages: ASAT LPCC (Leadless Plastic Chip Carrier) [3] and Carsem
MLPQ (Micro Leadframe Package Quad) [4]. These packages have exposed die paddle for mechanical and thermal
integrity. The die paddle is soldered to the board and is connected to the metal plate on the opposite side of the board
(the ground reference) through vias. The whole vias are considered as an only metal contact in the 3D model (die
paddle & gnd contacts in Fig. 1).

The ports (Lumped Gap Sources) are connected to the leads across the board and to the wires across the die. Not
used leads are connected to ground through perfect conductor surfaces. The bond wires connected to the die-paddle
(downbonding) have only one port.

The package is surrounded by an air volume which has, on its external surface, a radiation boundary condition;
this condition allows the electromagnetic field to radiate freely in the space. Surfaces defined as radiation boundaries
absorb the electromagnetic field, moving the boundary to an infinite distance from the structure. On the lower surface
of the board a perfectly conducting boundary (perfect E boundary) is chosen. This plane is a common reference both
for the ports on the leads, directly connected to it, and for the ports on the bond wires, connected to it through the die
paddle and the ground contacts.

The package database file contains the dimensions and the electromagnetic characteristics of leadless packages,
whereas the board data is contained in the project data file.

The bond wire model implemented in the macros is the Philips/T.U. Delft [5] (Fig. 2). The following parameters
are defined:

• Stop height: the height of the bond wire end points;
• Start height: the height of the bond wire start point; it corresponds to the die thickness if Stop height = 0; if

this value is ”0” a connection between the die paddle and the leads is modeled;
• Max height: the maximum height of the bond wire;

Fig. 1. Package model
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Fig. 2. Philips/T.U. Delft model

(a) (b)

Fig. 3. EIA/JEDEC bond wire model: (a) complete model, (b) simplified model

• Gap: the total distance covered by the wire;
• Stretch: the length of the horizontal section that models the wire loop;
• Tilt: allows to model a wire bending after its start point. By choosing Tilt = 0 the simplified model described by

the EIA/JEDEC Standard n.59 [6] (Fig. 3) is obtained.

The tool takes only some of the above mentioned quantities as wire model parameters:

• Gap/Stretch: the Gap is different from wire to wire, so it cannot be considered a wire model parameter;
• Loop height: corresponds to the difference between Max height and Stop height;
• Tilt: has the meaning previously explained;
• Start height: is a boolean whose only two possible values are ”0” for a lead-die paddle connection whereas ”1”

corresponds to the die thickness (Stop height = 0).

It is possible to define different models which are saved in a database file; the user can choose for each bond wire
a model among the ones included in the database or define new models.

The implementation of the bond wire geometry in HFSS is accomplished by the translation of a polygon, repre-
senting the cross-section of the bond wire, along the one-dimensional path specified by the model; the polygon has
the same cross-sectional area as the wire itself. The number of sides the polygon contains (at least four, according to
the EIA/JEDEC standard) and the diameter are project parameters: the model parameters only establish the shape of
the wires but not the size. Choosing a different model for each bond wire allows the user to define different shapes for
different types of wires; for example if there are more than one row of connections to the die paddle, the wires in the
more inner downbonding rows are higher than the others (Fig. 4).

4 The graphic user interface

The user selects four layers among the technology layers, which comprehend the design-kit layers and the Virtuoso
system layers. These layers are associated to bond wires, package layout, die and text labels.

After the definition of a layout Cell View a menu is introduced in the Virtuoso window.
It is possible to choose a leadless package among the ones contained in the package database. The correspondent

layout is drawn, using the layer specified in a layers configuration form.
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Fig. 4. Bond wires and their geometric models: (a) bond wire on a lead, (b) bond wires on the die paddle (downbond-
ing), (c) wire bonded die

After choosing the layer associated to bond wires, the user draws the bond wires and grabs their position from the
Virtuoso window; these coordinates are saved on a file.

In Fig. 5 the forms regarding data about bond wires (a), die, bond wires section and board (b), packages (c) and
wire models (d), are shown.
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(a)

(c)(b) (d)

Fig. 5. Data forms: (a) bond wires, (b) project, (c) package database, (d) bond wire model database

5 Package symbol CDF

The CDF (Component Description Format [7]) describes the parameters and the attributes of parameters of individual
components and libraries of components. The CDF contains also the simulation information for the simulators the
component can work with.
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(b)

(a)

(c)

Fig. 6. Package symbol properties for (a) Eldo, (b) Spectre, (c) ADS

The symbol associated to the package, contains the simulation information concerning the following circuit simu-
lators:

• Mentor Graphics Eldo,
• Cadence Spectre,
• Agilent ADS (Advanced Design System).

The simulation information inserted in the package symbol CDF were extracted from:

• the Eldo Special Component S-Model (Fig. 6 (a));
• the Spectre NPORT component (Fig. 6 (b));
• the ADS Data Item (Fig. 6 (c)).

6 Conclusions

In this paper a system that integrates Ansoft HFSS in the DFII environment has been shown. The tool makes easier the
electromagnetic simulation of leadless packages.

The construction of a 3D model, including the package and the bond wires, can be very difficult if no automatic
means is used. The tool presented allows the designer to modify the bond wires configuration by simply introducing,
moving or deleting wires. Besides the correct simulation settings are chosen for the ports and the boundaries.

Finally a symbol for the package is created; it is linked to the S-parameter file obtained from HFSS and its CDF
contains the simulation information for the circuit simulators Eldo, Spectre and ADS.
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1 Introduction

In the limit of an infinitesimal semiconductor region, a rigorous treatment due to Sah [Sah70] provided a circuit
representation both for the Poisson and the transport equations. In [PML00] this model was extended to regions of
arbitrary size, opening the way for automatic generation of circuits from the device simulation. In this paper we apply
the above simplifying procedure to a selected region of a semiconductor device, keeping the full PDE treatment in the
other regions.

Similar ideas were applied successfully to other areas, such as haemodynamics [QV03] and fluiddynamics, with
application to the study of river bifurcation [MPS04]. From a strictly mathematical viewpoint, analytical results on
coupled PDE/ODE systems (as arising in integrated circuit simulation) can be found in [ABGT04].

2 Equivalent circuit formulation

In this section we outline a general procedure to derive an equivalent circuit formulation of the drift-diffusion equations.
For simplicity, we consider a one-dimensional device, modelled by a space interval I = (xA, xB), and characterized
by a doping profile D(x), x ∈ I . The behavior of the device is described by the transient drift-diffusion system [Sel84],

⎧⎪⎪⎨
⎪⎪⎩

q
∂n

∂t
− ∂xJn = −qR, q

∂p

∂t
+ ∂xJp = −qR,

Jn = −qµnn∂xφn, Jp = −qµpp∂xφp,

−∂x(ε∂xφ) = q(D + p− n),

(1)

where n, p are the number densities of electrons and holes, with charge −q and q, respectively, Jn, Jp and φn, φp

are the corresponding current densities and quasi-Fermi potentials, and φ is the electrostatic potential. The number
densities are expressed in terms of the quasi-Fermi and electrostatic potentials by means of the Maxwell-Boltzmann
relations,

n = ni exp
(
φ− φn

Uth

)
, p = ni exp

(
φp − φ

Uth

)
, (2)

where the constant Uth is the thermal potential. In (1), µn, µp are the mobilities for electrons and holes, respectively.
They are bounded, strictly positive functions, which depend on x, and E = −∂xφ. The dependency on the particle
densities n, p is usually neglected [Sel84, MRS00]. The generation-recombination term can be modeled as a given
function R = R(x, n, p, Jn, Jp).

System (1) is considered in a given time interval (0, T ), and supplemented with appropriate initial conditions, and
with Dirichlet conditions on the Ohmic contacts of the device,

φn(x, t) = φp(x, t) = φ(x, t) − Vbi(x) = Uap(x, t), in {xA, xB} × (0, T ), (3)

where Vbi is the built-in potential and Uap the applied potential.
We assume that a certain region (xa, xb) of the device has a behavior “almost linear”, in a sense that will be

clarified later. Then, we consider a decomposition {xa ≡ x0, x1, . . . , xm ≡ xb}, together with the intermediate nodes
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{x 1
2
, x 3

2
, . . . , xm− 1

2
}. Each inner node xk, with k = 1, . . . ,m− 1 determines a cell ∆xk = (xk− 1

2
, xk+ 1

2
). We also

introduce the region boundary cells ∆x0 = (x0, x 1
2
), ∆xm = (xm− 1

2
, xm).

we find ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d

dt
Qk

n = J
k+ 1

2
n − J

k− 1
2

n − Uk,

d

dt
Qk

p = J
k− 1

2
p − J

k+ 1
2

p − Uk,

d

dt
Q

k+ 1
2

d − d

dt
Q

k− 1
2

d =
d

dt
Qk

p − d

dt
Qk

n,

(4)

where Qk
n :=

∫ x
k+ 1

2
x

k− 1
2

qn dx, Qk
p :=

∫ x
k+ 1

2
x

k− 1
2

qp dx represent the total charge (in absolute value) carried in the cell

∆xk by electron and holes, respectively, Q
k+ 1

2
d (t) := εE(xk+ 1

2
, t), J

k+ 1
2

d := d
dt
Q

k+ 1
2

d are the displacement charge

and current, respectively, J
k+ 1

2
d = Jd(xk+ 1

2
, t), J

k+ 1
2

n = Jn(xk+ 1
2
, t), J

k+ 1
2

p = Jp(xk+ 1
2
, t), are the displacement,

electron and hole currents, respectively, through the branch connecting the node xk to the node xk+1, and Uk :=∫ x
k+ 1

2
x

k− 1
2

qR dx.

3 Closure relations and calibration

Up to this point, (4) is an exact equation, but it is not closed and cannot be used in this form for numerical simulation.
To proceed with, we need to make some constitutive assumptions for the quantities appearing in (4).

The main ansatz is that all quantities depend on the three potentials φ, φn and φp evaluated at the nodes. More
precisely, the quantities with integer index, say k, depend on the potentials

V k(t) := φ(xk, t), V k
n (t) := φn(xk, t), V k

p (t) := φp(xk, t), (5)

evaluated at the node with the same index. Instead, the quantities with fractional index, say k − 1
2

, depend on the
potentials at the neighboring nodes, V k−1, V k−1

n , V k−1
p and V k, V k

n , V k
p .

Explicitly, for the electron, hole and displacement charge, we postulate closure relations of the following type:

Qk
n = fk

n(V k − V k
n ), Qk

p = fk
p (V k

p − V k),

Q
k− 1

2
d = f

k− 1
2

d (V k−1 − V k), Q
k+ 1

2
d = f

k+ 1
2

d (V k − V k+1).
(6)

The first two closure relations in (6) come from an extension of the formulas (2), an extension of the formulas (2),
which express the φ − φn and φp − φ, respectively. The other two closure relations come from the expression of the
electric field as obtained by Poisson equation.

For the electron and hole currents, recalling (1)2, we assume closure relations which are the product of three
terms, the first one accounting for the mobility, the second for the carrier density, and the third for the gradient of the
quasi-Fermi potential (or “voltage”). Then, the resulting closure relations take the general form:

J
k− 1

2
n = g

k− 1
2

mn (V k−1− V k)g
k− 1

2
dn (V k−1− V k−1

n , V k− V k
n )g

k− 1
2

vn (V k−1
n − V k

n ),

J
k− 1

2
p = g

k− 1
2

mp (V k−1− V k)g
k− 1

2
dp (V k−1− V k−1

p , V k− V k
p )g

k− 1
2

vp (V k−1
p − V k

p ).
(7)

Finally, we consider the generation-recombination term Uk. Neglecting for simplicity impact ionization effects, this
term depends on the carrier densities n, p. Then, it is simple to generalize this dependency by assuming

Uk = hk(V k − V k
n , V k

p − V k). (8)

So far, we have expressed (at least formally) all quantities in (4) in terms of voltage differences, once the functions
f ’s, g’s and h’s are explicitly given. Anyway, the voltage differences are not independent. In particular, we have

(V k−1 − V k) − (V k−1 − V k−1
n ) + (V k − V k

n ) − (V k−1
n − V k

n ) = 0,

(V k−1 − V k) + (V k−1
p − V k−1) − (V k

p − V k) − (V k−1
p − V k

p ) = 0.

Thus, we can express the voltage differences V k−1
n − V k

n and V k−1
p − V k

p in terms of the other voltage differences.
Using the closure relations (6)–(8), the integrated system (4) becomes
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
fk

n(V k − V k
n ) = −hk(V k − V k

n , V k
p − V k)

+g
k+ 1

2
n (V k− V k+1, V k− V k

n , V k+1− V k+1
n )

−g
k− 1

2
n (V k−1− V k, V k−1− V k−1

n , V k− V k
n ),

d

dt
fk

p (V k
p − V k) = −hk(V k − V k

n , V k
p − V k)

−g
k+ 1

2
p (V k− V k+1, V k

p − V k, V k+1
p − V k+1)

+g
k− 1

2
p (V k−1− V k, V k−1

p − V k−1, V k
p − V k),

d

dt
f

k+ 1
2

d (V k − V k+1) − d

dt
f

k− 1
2

d (V k−1 − V k)

=
d

dt
fk

p (V k
p − V k) − d

dt
fk

n(V k − V k
n ).

(9)

Here, we have introduced the shorthand notation g
k− 1

2
n := g

k− 1
2

mn g
k− 1

2
dn g

k− 1
2

vn , g
k− 1

2
p := g

k− 1
2

mp g
k− 1

2
dp g

k− 1
2

vp .
Clearly, equation (9) is not sufficient to determine the unknown potentials at the nodes, unless the closure relations

(6)–(8) are explicitly given. relations (6)–(8) are explicitly given. The determination of the closure relations seems to
be an to be an impossible task. Anyway, in some cases, it is possible to assume these relations to be linear, and to
calibrate the

Uap(x, t) = Vap(x) + vap(t), |vap| � |Vap|(� Uth). (10)

At first approximation, the solution corresponding to the applied potential Vap + vap can be thought as the sum of
the steady-state solution corresponding to Vap and the time-dependent solution corresponding to vap. Moreover, the
time-dependent solution can be evaluated by using the linearized equations around the steady-state solution. This
approximation can be justified, at least formally, by invoking the smallness of the potential vap.

Bearing this in mind, we propose a procedure to calibrate the closure relations in the small signal regime. First,
we evaluate the steady-state solution (φs, φns, φps) corresponding to the applied potential Vap, in the whole domain.
Then, we can determine the value of this solution at the k-th node, (V k

s , V k
ns, V

k
ps) := (φs(xk), φns(xk), φps(xk)),

and evaluate also the total electron, hole and displacement charge inside the k-th cell, Qk
ns, Qk

ns, Qk
ns, the currents at

the intermediate nodes, J
k− 1

2
ns , J

k− 1
2

ps , and the generation-recombination term, Uk
s . It is pretty natural to identify

Qk
ns ≡ fk

n(V k
s − V k

ns), Qk
ps ≡ fk

p (V k
ps − V k

s ), Q
k− 1

2
ds ≡ f

k− 1
2

d (V k−1
s − V k

s ).

Thus, we can expand the closure relations (6) around the steady-state solution, introducing the potential differences
(vk, vk

n, v
k
p) := (V k − V k

s , V k
n − V k

ns, V
k

p − V k
ps), and rewriting them as

Qk
n = Qk

ns + Ck
n

(
vk − vk

n

)
, Qk

p = Qk
ps + Ck

p

(
vk

p − vk
)
,

Q
k− 1

2
d = Q

k− 1
2

ds + C
k− 1

2
d

(
vk−1 − vk

)
. (11)

Here, we have introduced the capacitances

Ck
n :=

Qk
n −Qk

ns

(V k − V k
n ) − (V k

s − V k
ns)

, Ck
p :=

Qk
p −Qk

ps

(V k
p − V k) − (V k

ps − V k
s )

,

C
k− 1

2
d :=

Q
k− 1

2
d −Q

k− 1
2

ds

(V k−1 − V k) − (V k−1
s − V k

s )
. (12)

If the functional dependencencies in (11) are approximately linear, we can evaluate the constant capacitances by com-
paring two steady-states solutions and using relations (12), which become exact.
In a similar way, we can write

J
k− 1

2
n = J

k− 1
2

ns + G
k− 1

2
mn

(
vk−1 − vk

)
+ G

k− 1
2

fn

(
vk−1 − vk−1

n

)
+ G

k− 1
2

rn

(
vk − vk

n

)
+ G

k− 1
2

vn

(
vk−1

n − vk
n

)
,

J
k− 1

2
p = J

k− 1
2

ps + G
k− 1

2
mp

(
vk−1 − vk

)
+ G

k− 1
2

fp

(
vk−1

p − vk−1
)

+ G
k− 1

2
rp

(
vk

p − vk
)

+ G
k− 1

2
vp

(
vk−1

p − vk
p

)
,

Uk = hk
s + hk(vk − vk

n, v
k
p − vk)
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and, again assuming linear closure relations, we can determine the coefficients G
k− 1

2
mn , G

k− 1
2

fn , G
k− 1

2
rn , G

k− 1
2

vn , G
k− 1

2
mp ,

G
k− 1

2
fp , G

k− 1
2

rp , G
k− 1

2
vp and hk, by using steady-state numerical simulations at different bias points. Once the constants

are determined, we can use the linearized form of the reduced system (9) and solve for the potentials (vk, vk
n, v

k
p). We

also notice that this general technique, based on the calibration of a physically-based equivalent circuit by a numerical
solution of the “relevant” equations, can be extended to higher space dimensions.

4 A model problem: the one-dimensional P -N diode

In this section we propose a mixed equivalent circuit-PDE formulation of a P -N diode, by applying the ideas ex-
pounded in the previous section on a subdomain of the diode.

A schematic sketch of a P -N diode is shown in Fig. 1.
The device is composed of two regions, Ωn and Ωp, which are separated by a regular, connected hypersurface Γ .

The two regions are positively and negatively doped, respectively.
We model the P-N junction by a segment I = (xA, xB) on which the drift-diffusion equations (1) hold. The

hypersurface Γ reduces to a point xΓ ∈ I . Inside the diode (xA, xB), we can distinguish three regions: the P-doped
quasi-neutral region (xA, xa), the depletion region (xa, xb), and the N-doped quasi-neutral region (xb, xB). Although
the locations of the separation points xa and xb, shown in Fig. 2, can be estimated by a simplified approximation
analysis, it is more efficient to determine them by appropriate steady-state numerical simulations. We would like to
apply the equivalent circuit theory to the depletion region, for a forward biased diode, that is, with positive external
voltage Uap.

The simplest decomposition of this region is based on two nodes, x0 ≡ xa, x1 ≡ xb. The separation point xΓ

between the differently doped regions will be identified with the intermediate node x 1
2

. There are two possible ways of
considering the discretization blocks associated to the to two nodes we have fixed. They are shown in Fig. 2, denoted
by {∆x0, ∆x1} and {∆xa, ∆xb}. The first two blocks use the additional nodes x− 1

2
and x 3

2
, which are inside the

P-doped quasi-neutral region and the N-doped quasi-neutral region, respectively.
Following the theory expounded in the previous section, we propose a coupled model, which uses the drift-diffusion

equations in the quasi-neutral regions and the equivalent circuit formulation in the depletion region.
To start with, we sort out the unknowns of the problem. In the P-doped region (xA, xa), the unknowns are the

three potentials (φP , φP
n , φP

p ), which satisfy system (1) with (x, t) ∈ (xA, xa) × (0, T ), with boundary data

Fig. 1. P-N diode (two-dimensional cross section)

Fig. 2. P-N diode (one-dimensional approximation and domain decomposition)
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{

φP
n (xA, t) = φP

p (xA, t) = φP (xA, t) − Vbi(xA) = Uap(x, t),

φP
n (xa, t) = φa

n(t), φP
p (xa, t) = φa

p(t), φP (xa, t) = φa(t).
(13)

Here, the potentials φa
n, φa

p , and φa, are also unknowns.
In a similar way, in the negatively doped region (xb, xB), the unknowns are the three potentials (φN , φN

n , φN
p ),

which satisfy system (1) with (x, t) ∈ (xb, xB) × (0, T ), with boundary data{
φN

n (xb, t) = φb
n(t), φN

p (xb, t) = φb
p(t), φ(xb, t) = φb(t),

φN
n (xB , t) = φN

p (xB , t) = φN (xB , t) − Vbi(xB) = 0,
(14)

where, the potentials φb
n, φb

p, and φb are unknowns.
In the depletion region (xa, xb), we consider the unknowns (V 0, V 0

n , V 0
p ) on the node x0, and (V 1, V 1

n , V 1
p ) on

the node x1, defined by (5). For the node x0, we consider equation (9), written for k = 0 (9), written for k = 0
modified to take care of the boundary current sources at x− 1

2
, now denoted by For the node x1, we use equation (9),

written for k = 1 (9), written for k = 1 and we let
To close the above coupled model, we need to assign coupling conditions at the boundary. Clearly, the unknown
potentials in the boundary conditions (14) and (13) can be identified with the potentials at the

(φa, φa
n, φ

a
p) = (V 0, V 0

n , V 0
p ), (φb, φb

n, φ
b
p) = (V 1, V 1

n , V 1
p ). (15)

As for the current sources at the boundary, we can identify them with the currents coming through the boundary from
the quasi neutral regions, that is

(Ja
d (t), Ja

n(t), Ja
p (t)) = (JP

d (xa, t), J
P
n (xa, t), J

P
p (xa, t)),

(Jb
d(t), Jb

n(t), Jb
p(t)) = (JN

d (xb, t), J
N
n (xb, t), J

N
p (xb, t)),

(16)

or, depending on the choice of the discretization boxes,

(Ja
d (t), Ja

n(t), Ja
p (t)) = (JP

d (x− 1
2
, t), JP

n (x− 1
2
, t), JP

p (x− 1
2
, t)),

(Jb
d(t), Jb

n(t), Jb
p(t)) = (JN

d (x 3
2
, t), JN

n (x 3
2
, t), JN

p (x 3
2
, t)).

(17)

5 Summary and perspectives

We have presented a general model reduction technique for device simulation based on the box integration method.
By combining this technique with a domain decomposition approach, we have derived a coupled PDAE model for
the whole device. Finally, we have proposed a model problem (one-dimensional P-N diode) to validate our approach.
Numerical results for the reduced, coupled equations for the model problem are on the way.

The main open problems which we would like to face is the automatic subdivision, by domain decomposition, of
the device, and the automatic calibration of the reduced equations (not necessarily under small signal hypothesis). This
work is meant to be a preliminary step towards this goal.
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1 Introduction

The possibility to combine multiple functionalities in one electronic device is directly related to the possibility of
integrating more electronic components into a unique system. From the technological point of view there are two
alternatives: integration at the level of the semiconductor in order to build a system-on-chip (SoC), or integration at
the package level in order to obtain the system-in-package (SiP). The SiP alternative, which consists in integrating
various components (semiconductor devices, resistors, inductors, capacitors, sensors, antennas, etc.) using advanced
printed circuit technologies, requires less development time and resources compared with the ones needed for SoC
implementation. This has not only the advantage of reduced costs, but gives the possibility to implement in a very short
time various functionalities in different models, facilitating the customization of the product, making possible to satisfy
specific requests, thus widening the market opportunities of a given product. Many of the issues related to interconnect
substrates for today’s high-frequency/high-speed mixed signal applications, are also of concern in the case of SiPs.
For example, performance of SiPs are affected by the electromagnetic properties of the interconnect circuit, which
are of increasing importance as the frequency rises. These are, in particular, distributed electromagnetic effects, which
manifest as interconnect-induced delay, reflection, radiation, and long-range nonlocal coupling. Such a complexity is
further complicated by embedded passive devices, sensors and exotic materials, which introduce more discontinuities,
inhomogeneities, anisotropy and nonlinearities in the electromagnetic behavior of the system. Moreover, the trend in
integrated circuits design is to take advantage of miniaturization to pack more functionalities in a chip; this results in
increased chip and package size and complexity, and such complexity is ultimately reflected at the interconnect level[1].
The SiP is a viable alternative to the SoC [2], but it requires the development of a correct methodology of design [3]
and characterization of the interconnection in order to enter the mainstream of the electronic industry technologies. In
this paper, the main issues related to SiP modeling and design will be addressed, with particular attention devoted to
the requirements that integrated packages for SiPs simulation and design must satisfy.

2 Embedded passives in SiPs

A very important issue related with SiPs is the development of technologies and processes for the integration of passive
components in the PCB substrate (embedded passives), i.e. resistors, capacitors and inductors.
The choice of using embedded passives technologies in SiP is dictated by two necessities. The first one regards the
impossibility to obtain good passives, especially inductors, on semiconductors substrates, while many materials with
very good electrical and high frequency properties are available for printed circuit technologies. Furthermore, em-
bedded passive components exhibit enhanced electrical characteristics compared to their discrete counterpart. This is
especially true for the parasitic inductance and resistance of discrete components. In fact, due to the presence of the
connecting leads, and thus to their parasitic inductance, a discrete capacitor behaves like a resonant circuit, and exhibits
a capacitive behavior only if the operating frequency is well below the resonance frequency of the equivalent circuit.
An embedded capacitor, instead, has no connecting leads, thus has a pure capacitive impedance for a wider range of
frequencies. Important benefits in terms of noise filtering can, therefore, be obtained by using embedded by-pass ca-
pacitors for the power and ground lines on the board. Embedded inductors can be implemented with many different
shapes, exploiting either single or multiple metal layers, in coil or transmission lines fashion. Such inductors may be
used in RF applications, since they show better characteristics than those obtained on semiconductor substrates.
The second necessity arises from the continuous increment in number of passives required by new semiconductor de-
vices (for example a Pentium IV requires approximately 550 passives per chip, and a PC motherboard can arrive at
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more than 2300 passives) combined with the need to shrink the dimensions of the final product. The solution to these
problems lays in the massive use of passive embedded technologies, integrating resistors, capacitors and inductors,
into the interconnection on the printed circuit board. Although the advantages in terms of component densities and
high frequency properties of the embedded passives are known, the problem of closely integrating these devices in a
three-dimensional structure have not been yet systematically studied [3].
The use of new or exotic materials could be exploited to implement sensory functions in the board. For example, a
resistive layer used to produce embedded resistors may exhibit a sufficiently high temperature coefficient which would
make it suitable as an embedded temperature sensor. Similarly materials used as dielectric in embedded capacitors or
magnetic cores in embedded inductors may have potential sensory properties which could be suitably used. Embed-
ded inductors can also be used as antennas. The use of special materials embedded in the SiP structure enhances the
characteristics of the inductors, but also increases the parasitic couplings with the surrounding environment.

3 Practical issues in modeling SiPs

SiP substrate is usually a multilayer PCB where interconnections between elements are realized by means of conductive
tracks. Such interconnections are photo-defined and etched in the conductive layers of the PCB, and each conductive
layer is separated from the other by one or more dielectric layers. Conductive tracks are used to carry energy and
information, i.e. as power and signal lines, and one or more conductive planes are realized on the board to provide
a reference potential for power and signal lines. The structure composed by conductive strip parallel to a reference
(or ground) plane, separated by a dielectric layer, acts as a transmission line (a microstrip, in particular) and therefore
can be described by applying transmission lines’ theory. However such a structure has a dispersive behavior and many
parasitic effects which also depend on frequency. As an example, consider the signal return path on the ground plane can
be taken into account: at low frequencies the return current follows the lower resistance path on the ground plane and is
uniformly distributed in the track cross section, while at higher frequencies current tends to accumulate on the bottom
part of the track due to skin effect and the return signal path tends to align with the track due to proximity effect, leading
to substantial resistance variation which need to be taken into account in a correct model. Other issues are represented
by the modeling of two or more such parallel lines, taking into account the couplings between conductors. Equivalent
circuit models usually depend on the physical configuration of conductors, i.e. if they are broad-side or edge coupled,
parallel or not, etc., but also on the propagation modes configuration. Thus, for the same structure the circuit models
may differ for different configurations of modes and for the different simulation engines (for example the even and odd
modes in coupled transmission lines versus a complete multi-modal equivalent). In structures with further complex
geometries, as in the case of planar inductors, which can be seen as a set of coupled conductors, more complicated
coupling schemes and phenomena may arise, as shown in Fig. 1, thus the ’2D’ or ’2.5D’ models used for the previous
structures will no longer be suitable for the reliable simulation of such complex structures, which will therefore require
’3D’ field modeling, at least for the circuit parameters estimation. Among the parasitic couplings in planar embedded
inductors are those with the conductive planes which will be present in the board and/or package. The electromagnetic
field generated by the inductors will couple with such conductive planes inducing parasitic current paths through them.

Fig. 1. Schematic structure of a planar embedded inductor
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Fig. 2. Simulation results showing the induced current distribution on both continuous (left) and splitted (right) ground
planes for an inductor of the kind shown in Fig. 1. Note the opposite currents on domain borders in the splitted ground
plane

The inductance value, the auto-resonance frequency and the quality factor of the inductor are affected by the presence
and the distance of these conductive planes. Moreover, neighbor circuits must be protected and shielded against the
parasitic currents induced on conductive planes to avoid undesired couplings and/or malfunctioning of the electronics.
Preliminary simulations have shown that such parasitic currents are well confined in the portion of the conductive
plane superimposed to the coil, and therefore a splitted reference plane should provide a sufficient degree of electrical
isolation between the coil and the rest of the electronics. Nonetheless, a careless use of partitioning in simulation tools
gives the result shown in Fig. 2. The use of the “distributed” results in a “breakdown” system solving approach can
lead to errors, although the aggregate result of the intermediary simulation steps is correct.

By generalizing the considerations made for the aforementioned specific cases, the tasks that simulation tools
dedicated to SiP design should be able to perform are the following:

• element value calculation
• coupling and parasitic effects evaluation;
• analysis of signal propagation;
• power system design;
• full circuital simulation;
• EM simulation (partial and/or full wave);
• thermal simulation;
• other application specific tasks.

An important feature that a complete simulation environment should have is the possibility to work with different
manufacturing technologies, and be open to future upgrades and enhancements of these technologies.

4 Simulation strategies for SiP

The high integration achieved in SiP technologies creates a highly dense three-dimensional circuit, in which active
semiconductor devices are interconnected between them and with the external world using a web of thin conductors
and embedded passives. The close integration of active and passive devices requires a careful study of the couplings
inside SiP structures at the development stage. The correct estimation of electromagnetic effects not only enhances
the overall quality of the SiP, but also provides mandatory information to the designer who needs to integrate the
SiP in an even more complex system. Electromagnetic phenomena can be described very accurately by the solution
of Maxwell’s equations. Unfortunately, the equations cannot be solved exactly, excluding some special cases that
have little importance in practice. The very strong predictive power of the equations can be unleashed only with the
development of efficient numerical solutions. Main issues are relative to the numerical analysis of the electromagnetic
behavior of complex three-dimensional interconnect structures, in particular in the area of interconnect analysis, signal
integrity issues and behavioral modeling (needed for extraction techniques and model order reduction).

Beyond the numerical method employed, electromagnetic solvers may also be classified on the basis of the domain
in which solution is calculated: frequency or time domain.
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The most successfully commercial electromagnetic simulation tools are frequency domain solvers. In particular,
those based on the Finite Element Method (FEM), which provide good accuracy in reasonable simulation times. For a
first level simulation, or for relatively simple structures, they are a good option for SiP design, due to their stability and
availability of interfaces to/from other design tools. However, they have problems for complex structures.
Among the numerical methods for the solution of electromagnetic problems, time-domain solution methods are receiv-
ing increasing interest, mainly thanks to their more relaxed CPU and memory requirements, with respect to frequency
domain methods, in the analysis of high-frequency/wideband applications. Moreover, time domain methods can fully
capture the physics behind electromagnetic radiation phenomena, thus providing detailed indications to the designer
on the entity, locations and countermeasures about the effects of discontinuities, radiation/interference phenomena,
shielding structures, etc.[1]. A further advantage of time domain solution methods is that nonlinear devices can only
be accurately described in the time-domain, thus board level or system level simulations can be easily performed in
transient mode[4] The Finite Difference Time Domain (FDTD) method is a widely used numerical algorithm to solve
Maxwell’s equations. However it has some drawbacks, in particular:

• the entire computational domain must be meshed, the step size must be small compared to the smallest wavelength
and the smallest feature in the model;

• if the field values are required at some distance the computational domain is excessively large;
• the method requires strictly stability conditions.

Because of these drawbacks it is difficult to take into account the very local effects like the skin effect or current
crowding. To deal with the very fine structures needed to model this effect, a very small time-step must be taken,
and the matrices grow to unmanageable sizes. To tackle these problems local refinement of the mesh in the existing
FDTD method and accelerated time integration processes might be applied [5]. To deal with these computational
disadvantages of FDTD a fundamental research on the compact representation of FDTD simulation results is needed.
Also in other areas of application Reduced Order Modeling can solve the problem of prohibitively large computations.
Consider, for instance, the influence of interconnect structures on chips and printed circuit boards. Although we are
interested in the coupling effect of these structures, a detailed simulation of the electromagnetic effects is not needed.
Of real interest are mainly the inputs and outputs of the interconnect. Therefore, one is able to capture the main
electromagnetic effects into a compact model. The model behaves like a black-box and the inputs and outputs can
be coupled to the circuit simulation program. In this process numerical mathematics plays an important role, but
also the theory of electromagnetism is used. Several of these techniques are very promising[1]. They, for instance,
are very accurate and preserve the stability and the passivity of the underlying model. Although promising, not one
of the methods is implemented in a stand-alone application which simultaneously satisfies all the requirements of a
commercial integrated software package.

For the purpose of comparison, the simulated frequency response of a relatively simple, multilayer, resonating
structure, obtained using several commercially available electromagnetic solvers that implement different solving meth-
ods, are presented in Fig. 3, together with experimental results. The electromagnetic solvers used to achieve this result
make use of time domain (TD) methods (Transmission Line Matrix Method, or TLMM) and frequency domain (FD)
methods (Method of Moments, or MoM; Fast Multipole expansion Method, or FMM; and Finite Element Method, or
FEM). As it can be seen from such a comparison, for not very intricate structures, the accuracy of all tools is equivalent.
The computational differences become evident only when simulating complex structures.

Beside the functional blocks composing the whole system, accurate modeling is also needed for all the elementary
structures realized at the board or package level and which represent discontinuities from the straight interconnection
(i.e. a straight segment of transmission line). Such structures include corners and bends, vias and holes, embedded
elements, test points, connectors, etc. The detailed characterization of such discontinuities is needed to predict and
ensure proper devices and systems operation.
A possible design strategy for SiP analysis and design can consists in the following steps:

• Divide the complex problem into simpler ’basic blocks’.
• Solve each block by applying the suitable model and procedures.
• ’Merge’ the individual block results to reconstruct the original system’s model and simulate it.

To solve each basic block several simulation engines and modeling techniques are used:

• Circuit simulators (Spice-like).
• Transmission Lines simulators.
• 2D, 2.5D and 3D field solvers generating lumped, distributed or mixed models.
• Models (exact, simplified, empiric, etc.).
• Electro-Magnetic simulators.
• Thermal Analysis and simulation tools.
• etc.
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Fig. 3. Comparison of the measured frequency response of a resonating structure with the simulated responses calcu-
lated by means of different commercial electromagnetic solvers

A hypothetical, future, integrated analysis and design software package for SiP applications would have to satisfy also
the following requirements:

• Perform in automatic the partitioning of the complex system.
• Automatically selects the appropriate simulation tool for each basic block.
• Provide robust simulation algorithms.
• Good integration with all other CAD tools used in the design process without operator intervention.
• Last, but not least, short simulation time is a stringent requirement.

5 Conclusions

This paper has addressed the issues related to the electromagnetic modeling and simulation of interconnects in System-
in-Package (SiP) applications. SiP shows potentials to be a valuable approach to electronic systems integration. It has
many advantages over other approaches, like System-on-Chip: higher flexibility and modularity, shorter development
time and lower cost, ability to integrate several different technologies on the same board/package. However, SiP per-
formance are strongly affected by the electromagnetic properties of interconnect structure, embedded passive devices,
exotic materials, etc. Therefore a suitable modeling, simulation and computer-aided design framework is required to al-
low exploiting the full potentials of these technologies. The requirements and characteristics of such a framework have
been listed here. A number of software package dedicated to electromagnetic numerical analysis, circuit simulation,
layout design and so on are commercially available, each with peculiar characteristics which make them particularly
suitable for a given set of functions, frequency range, application. However, a development framework specifically
dedicated to SiP design, fully integrated in the design and manufacturing process flow, and which can satisfy all the
requirements listed above, has yet to come, even if significant research efforts are devoted to this problem.
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Abstract The modified nodal analysis (MNA) leads to differential algebraic equations with properly stated leading
terms. In this article a special structure of the DAEs modelling electrical circuits is exploited in order to derive a
new decoupling for nonlinear index-2 DAEs. This decoupling procedure leads to a solvability result and is also used to
study general linear methods, a class of numerical schemes that covers both Runge-Kutta and linear multistep methods.
Convergence for index-2 DAEs is proved.

1 Introduction

When simulating electrical circuits, one is confronted with solving differential algebraic equations (DAEs) of the form

A(t)
d

dt
d(x(t), t) + b(x(t), t) = 0, t ∈ I. (1)

In case of the charge oriented modified nodal analysis the vector d contains charges and fluxes while x represents all
node potentials and currents of voltage defining elements like voltage sources and inductors. Typically the index of (1)
does not exceed 2 [Est00, Theorem 3.1.3].

Common circuit simulators like SPICE or TITAN use the so-called charge oriented approach A(t)(R(t)y(t))′ +
b(x(t), t) = 0, y(t) − d(x(t), t) = 0, where charges and fluxes are introduced as a new variable y. Notice that this
enlarged system is of the form

A(t)(D(t)x(t))′ + b(x(t), t) = 0, t ∈ I. (2)

Solutions lie in the linear space C1
D(I,Rm) :={z∈C(I,Rm) |Dz∈C1(I,Rn) }.

Using the concept of the tractability index [Mär03] we study DAEs (2) having index µ ∈ {1, 2}. In Sect. 2 we will
exploit the specific structure of the MNA equations to derive a decoupling procedure for nonlinear index-2 DAEs. This
will enable us to prove existence and uniqueness of solutions. In Sect. 3 we study general linear methods for (2) and
prove convergence.

We assume that I is a compact interval, D⊂R
m a domain and that A : I→L(Rn,Rm), D : I → L(Rm,Rn) and

b : D×I → R
m are continuous. Let b′x exist and be continuous. Finally, the leading term of (2) is supposed to be prop-

erly stated, i.e. kerA(t) ⊕ imD(t) = R
n for t ∈ I and there is a smooth projector function R ∈ C1(I, L(Rn,Rn))

such that kerR(t) = kerA(t), imR(t) = imD(t) (see [HM04]).
For analysing (2) we introduce the following sequence of matrix functions and subspaces defined pointwise for

t ∈ I and x ∈ D.

G0(t) = A(t)D(t), B0(x, t) = b′x(x, t)

N0(t) = kerG0(t), S0(x, t) = { z ∈ R
m |B0(x, t)z∈ imG0(t) },

Q0(t) is a projector onto N0(t), P0(t) = I −Q0(t),

G1(x, t) = G0(t) + B0(x, t)Q0(t),

N1(x, t) = kerG1(x, t),

S1(x, t) = { z ∈ R
m |B0(x, t)z∈ imG1(x, t) }.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)
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Let Q1(x, t) be a projector function onto N1 and P1(x, t) = I −Q1(x, t). Finally denote with D−(t) the generalised
reflexive inverse of D(t) defined by

DD−D = D, D−DD− = D−, D−D = P0, DD− = R.

Definition 1. (see [Mär03]) The DAE (2) with a properly stated leading term is regular with tractability index µ ∈
{1, 2} on D×I if there is a sequence (3) such that for (x, t) ∈ D×I

(i) Gi has constant rank ri < m for 0 ≤ i < µ,
(ii) Qi is continuous for i = 0, . . . , µ − 1, Q1(x, t)Q0(t) = 0 and DN1, DS1 are spanned by continously differen-

tiable basis functions,
(iii) Nµ−1 ∩ Sµ−1 = {0}.

Observe that for index-1 equations, Q1 = 0 and Q1Q0(t) = 0 trivially holds. For index-2 DAEs G2(x, t) =
G1(x, t) + B0(x, t)P0(t)Q1(x, t) remains nonsingular on D×I and we have N1(x, t) ⊕ S1(x, t) = R

m. In the
following we will adopt the convention to choose Q1 to be the canonical projector onto N1 along S1. Due to N0 ⊂ S1

the property Q1Q0 = 0 is then always given.
The space N0(t) ∩ S0(x, t) = imQ0(t)Q1(x, t) (see [Est00]) is of vital importance as it describes the so-called

index-2 components, i.e. the particular part of the solution that can be calculated only by performing an inherent
differentiation process. In [Est00] it is shown that the circuit’s layout determines this subspace. Thus it is independent
of x. We choose a projector function T (t) onto N0(t)∩S0(x, t) that depends on t only. Note that U = I −T satisfies
kerU(t) = imQ0(t)Q1(x, t). T can be chosen such that TP0 = 0 and P0T = 0 for t ∈ I. Then the following
properties are valid: Q0T = T = TQ0, Q1T = 0, P0U = P0 = UP0, Q1UQ0 = 0.

2 Decoupling nonlinear index-2 equations

From [Est00, Corollary 3.2.8] it is well known that for the charge oriented modified nodal analysis the index-2 compo-
nents Tx enter the equations only in a linear way, i.e. (2) has the structure

A(t)(D(t)x(t))′ + b(U(t)x(t), t) + B(t)T (t)x(t) = 0. (4)

This particular form of the DAEs arising in circuit simulation makes it possible to develop a new decoupling procedure
for index-2 DAEs. For a given solution x(·) of (4) denote x0 = x(t0) and introduce the new variable

w = P̄1D
−(Dx)′ + (Q0 + Q̄1)x (5)

where P̄1(t) = P1(x0, t) and Q̄1(t) = Q1(x0, t). Here and in the sequel t arguments are generally omitted for better
readability. Notice that

Q̄1w = Q̄1x, Q0w = −Q0Q̄1D
−(Dx)′ + Q0x + Q0Q̄1x,

DP̄1w = DP̄1D
−(Dx)′.

From G1(x0, ·)Q̄1 = 0 we infer A(Dx)′ + BTx = (AD + BT )w and, denoting u = DP̄1x, we find

x = P0P̄1x+P0Q̄1x+Q0x = D−u + (P0Q̄1+Q0P̄1)w + Q0Q̄1D
−(Dx)′.

The component Ux = D−u + (P0Q̄1 + UQ0)w can be written in terms of u and w such that (4) is equivalent to

F (u,w, t) := (AD + BT )w + b(D−u + (P0Q̄1 + UQ0)w, ·) = 0. (6)

Lemma 1. Let (2) be a regular DAE with index µ ∈ {1, 2}. Let y0 ∈ imD(t0), (x0, t0) ∈ D×I be given such that
A(t0)y0+b(U(t0)x0, t0)+B(t0)T (t0)x0 =0. Denote

u0 = D(t0)P̄1(t0)x0, w0 = P̄1(t0)D
−(t0)y0 + (Q0 + Q̄1)(t0)x0

and consider F to be defined on a neighbourhood N0 ⊂ R
n×R

m×R of (u0, w0, t0). Then there is a neighbourhood
N1 ⊂ R

n×R of (u0, t0) and a continuous mapping � : N1 → R
m such that F (u,�(u, t), t) = 0 ∀ (u, t) ∈ N1.

Proof. Due to (6) we have F (u0, w0, t0) = 0 and

F ′
w(u,w, ·) = AD + BT + b′x(D−u + (P0Q̄1+UQ0)w, ·) (P0Q̄1+UQ0)

implies that F ′
w(u0, w0, t0) = G2(x0, t0) is nonsingular. Thus the assertion follows from the implicit function theo-

rem. ��
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Notice that the mapping � from the previous lemma is defined only locally around (u0, t0). For simplicity we
assume that the interval I is sufficiently small such that � is defined for all t ∈ I.

We arrive at the following representation of the solution:

x =D−u + (Q0P̄1 + P0Q̄1)�(u, ·) + Q0Q̄1D
−(u + DQ̄1�(u, ·))′. (7)

The component u = DP̄1x satisfies the ordinary differential equation

DP̄1D
−u′ = DP̄1�(u, ·) −DP̄1D

−(DQ̄1�(u, ·))′. (8)

As for linear DAEs this equation will be called the inherent regular ODE. Since, by the index-2 condition, DP̄1D
− ∈

C1(I,Rn), we may rewrite (8) as

u′ = (DP̄1D
−)′u + DP̄1�(u, ·) + (DP̄1D

−)′DQ̄1�(u, ·). (9)

Similar to [HM04] we will now study (9) without assuming the existence of a solution.

Theorem 1. Let the assumptions of Lemma 1 be satisfied. Then

(i) imDP̄1D
− is a (time-varying) invariant subspace of the inherent ODE (9), i.e. u(t0) ∈ im (DP̄1D

−)(t0) implies
u(t) ∈ im (DP̄1D

−)(t) ∀ t ∈ I.
(ii) If the subspaces imDP̄1D

− and imDQ̄1D
− are constant, then (9) simplifies to u′ = DP̄1�(u, ·), u(t0) ∈

im (DP̄1D
−)(t0).

Proof. Similar to [HM04, Theorem 2.2]. Replace R by DP̄1D
−.

Theorem 2. Let the assumptions of Lemma 1 be satisfied. Assume that the mapping t �→ D(t)Q1(t)(x0, t)�(u(t), t)
is C1, where u is the solution of the inherent regular ODE (9) with initial value u(t0) = DP1(x0, t0)x0. Then there
is a unique solution x ∈ C1

D(I,Rm) of the initial value problem

A(t)(Dx)′(t)+b((Ux)(t), t)+(BT )(t)x(t)=0, DP1(x0, t0)(x0−x(t0)) = 0.

Proof. From Lemma 1 we get the mapping �(u, t) and thus the solution u of the inherent regular ODE (9). Due to
Theorem 1 u(t) ∈ imD(t)P1(x0, t)D

−(t) holds for all t where u is defined. Then the mapping x as defined in (7) is
a solution since

A(Dx)′ + b(Ux, ·) + BTx = A(Dx)′ + b(Ux, ·) + BTx− F (u,�(u, ·), ·)
= (AD+BT )Q̄1D

−(Dx)′+ADP̄1D
−(Dx)′−ADP̄1�(u, ·) = 0. ��

Remark 1. If (2) was an index-1 DAE, then P̄1 = I , Q̄1 = 0 and all results can be reinterpreted also for index-1
equations. In particular, (5) reduces to w = D−(Dx)′ + Q0x. This is exactly the mapping studied in [HM04] and the
decoupling procedure presented here generalises [HM04].

3 Numerical Integration by General Linear Methods

For the numerical solution of index-2 equations (4) we investigate general linear methods (GLM). This class of methods
seems to be very attractive for circuit simulation since there are methods with diagonally implicit structure that have
high stage order and a stability behaviour similar to fully implicit Runge-Kutta methods. Examples of such methods are
given in [But03, Wri03]. The diagonally implicit structure yields a very efficient implementation. We will demonstrate
this by studying an example at the end of this section. Also, recall that both Runge-Kutta and linear multistep methods
can be cast into general linear form.

A GLM is given by a partitioned matrix M =

[
A U
B V

]
∈ L(Rs+r,Rs+r). We will always assume that A is

nonsingular. The discretisation of the DAE (4) using the general linear method M reads

Ani[DX]′ni + b(UniXni, tni) + BniTniXni = 0, i = 1, . . . , s, (10a)

[DX]n = h(A⊗ Im)[DX]′n + (U ⊗ Im)[Dx][n−1], (10b)

[Dx][n] = h(B ⊗ Im)[DX]′n + (V ⊗ Im)[Dx][n−1]. (10c)
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For better readability we will drop the Kronecker products in the sequel. As in the case of linear multistep methods r

pieces of information [Dx]
[n−1]
k ∈ R

m, k = 1, . . . , r, are passed on from step to step. These quantities represent some
approximations to D(t)x(t) or it’s derivative. See [But03] for more details. Observe that only information about the
exact solution’s D component is carried on. Thus errors in the null-space of D are not propagated.

Similar to Runge-Kutta methods internal stages Xni ∈ R
m, i = 1, . . . , s, are calculated at intermediate time

points tni = tn−1 + cih within every step. In (10) we wrote Ani = A(tni) and used similar notations for B, T and

U . For compactness of notation we introduced Xn =
(
XT

n1 · · · XT
ns

)T ∈ R
ms and similarly [DX]ni = DniXni.

The initial input vector [Dx][0] can be calculated by generalised Runge-Kutta methods [But03].
From [HMT03] it is well known that one should investigate numerically qualified DAEs in order to get good

numerical results. We will therefore restrict attention to DAEs where the subspaces imDP̄1D
− and imDQ̄1D

− are
constant. Recall from Theorem 1 that the inherent regular ODE (9) now reads

u′ = DP̄1�(u, ·), u(t0) ∈ im (DP̄1D
−)(t0). (11)

We want to apply the decoupling procedure to the discretised problem (10). Therefore we need to split the vector
[Dx][n−1] into it’s DP̄1 and DQ̄1 parts. If [Dx][0] was calculated by a generalised Runge-Kutta method, then

[Dx]
[0]
k = u[0]

k + v[0]
k ∈ im(DP̄1)(t0) ⊕ im(DQ̄1)(t0), k = 1, . . . , r. (12)

Splitting the stages Uni = DniP̄1,niXni, Vni = DniQ̄1,niXni and defining U′
n, V′

n by Un = hAU′
n +Uu[n−1] and

Vn = hAV′
n + Uv[n−1], respectively, we find that (12) holds not only for the first but for every step, since

u[n] = BA−1Un + M∞u[n−1], v[n] = BA−1Vn + M∞v[n−1].

Notice that M∞ = V − BA−1U is the methods stability matrix M(z) evaluated at infinity. This matrix plays a role
similar to R(∞) = 1 − bTA−1

� for Runge-Kutta methods.
As in (5) we define Wni = P1,niD

−
ni[DX]′ni + (Q0,ni + Q̄1,ni)Xni such that

Xni = D−
niUni + (Q0,niP̄1,ni + P0,niQ̄1,ni)Wni + Q0,niQ̄1,niD

−
ni[DX]′ni. (13)

From (10a) it follows that F (Uni,Wni, tni) = 0. Thus Wni = �(Uni, t) is given by the mapping � from Lemma 1.
Here we have to assume that the stepsize h is small enough to guarantee that (Uni, tni) remains in the neighbourhood
N1 of (u0, t0) where � is defined.

Theorem 3. Let M be a stiffly accurate general linear method with nonsingular A. Assume that V is power bounded
and that the spectral radius of M∞ = V − BA−1U is less than 1. Then M is convergent for numerically qualified
DAEs (2) with index µ ∈ {1, 2}.

If M has order p and stage order q for ordinary differential equations, then the order of convergence is (at least)
q.

Proof. Since U′
ni = DniP̄1,niD

−
ni[DX]′ni = DniP1,ni�(Uni, tni) holds for numerically qualified DAEs, the decou-

pling procedure shows that (10) is equivalent to the split system

U′
ni = DniP̄1,ni�(Uni, tni), Vni = DniQ̄1,ni�(Uni, tni),

Un = hAU′
n + U u[n−1], Vn = hAV′

n + U v[n−1],

u[n] = hB U′
n + V u[n−1], v[n] = hB V′

n + V v[n−1].

⎫⎪⎬
⎪⎭ (14)

The left hand block of equations is exactly the numerical scheme resulting from applying M directly to the inherent
regular ODE (11). Thus ODE theory for general linear methods [But03] yields

Uni = u(tn−1 + cih) + O(hq̃+1), U′
ni = u′(tn−1 + cih) + O(hq̃+1),

where we denoted q̃ = min(p− 1, q). Let u be the inherent ODE’s exact solution and introduce

v(t) = D(t)Q̄1(t)�(u(t), t).

Then

‖Vni − v(tni)‖ ≤
∫ 1

0
‖�

′
u(τUni + (1 − τ)u(tni), tni)‖dτ ‖Uni − u(tni)‖

and thus Vni = v(tn−1+cih)+O(hq̃+1). Denoting exact input quantities by v̂[n] and using techniques from [HLR89,
Theorem 3.1] we obtain the recursion
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∆v[n] = Mn
∞∆v[0] +

n∑
i=1

Mn−i
∞ δi

where ∆v[n] = v[n]− v̂[n] and δij = BA−1(Vij −v(ti−1 + cjh)) = O(hq̃+1). Given that the spectral radius of M∞
is less than 1 and ∆v[0] = O(hq̃+1) we find ∆v[n] = O(hq̃+1) and, consequently, V′

ni = v′(tn−1 + cih) + O(hq̃).
By assumption the general linear method has stiff accuracy, i.e. the numerical result xn = Xns coincides with the

last stage. Thus we can use (7), (13) to find a bound for the global error

‖xn−x(tn)‖ ≤ C1‖Uns−u(tn)‖ + C2‖�(Uns, tn)−�(u(tn), tn)‖
+ C3(‖U′

ns−u′(tn)‖ + ‖V′
ns−v′(tn)‖) = O(hmin(p−1,q)) ��

If p > q, Theorem 3 predicts order q behaviour for the global error. This agrees with the results in [HLR89].
However, since the proof above is given for general linear methods it not only covers Runge-Kutta methods but also
linear multistep methods and even more general methods such as those studied in [Wri03]. In particular, for general
linear methods p = q is possible even for diagonally implicit methods. Also the BDF methods have the same property.
With a global error of order O(hp) they indeed have a higher order than predicted by Theorem 3. From [BCP96] it is
known that the k step BDF methods exhibit the true order of convergence for index-2 DAEs only after k + 1 steps.

For general linear methods a similar statement holds. For completeness we formulate this result in the following
remark.

Remark 2. Let the assumptions of theorem 3 hold. Assume that, in addition, p = q ≥ 2 and Mk0∞ = 0. Then M is
convergent for (2) with order p after k0 + 1 steps.

Notice that (14) is the general linear method’s discretisation of a Hessenberg index-1 DAE

u′(t) = f(u(t), t), v(t) = g(u(t), t) (15)

using the direct approach as in [HLR89]. In order to prove the statement of remark 2 one needs to show that V′ is
calculated with order p = q when M is applied to (15).

To reach this goal a careful analysis of numerical methods for fully implicit index-1 DAEs can be performed using
the language of B-series for differential algebraic equations. In [Kvæ90] Kværnø studied the case of Runge-Kutta
methods, but her approach has to be generalised for the much larger class of general linear methods.

The technical effort introducing elementary differentials and B-series for fully implicit index-1 DAEs is far too
much to be presented here. We will therefore skip the proof which will be given in [Voi05]. We conclude this article
by studying a benchmark circuit.

Example 1. Consider the ring modulator depicted in Fig. 1 that mixes a low-frequency signal Uin 1 with a high-
frequency input signal Uin 2. The circuit is modelled by a system of 11 ODEs and 4 algebraic equations [DR89, Pul02]:

C U̇1 = I1 − I3/2 + I4/2 + I7 − U1/R, LH İ1 = −U1,

C U̇2 = I2 − I5/2 + I6/2 + I8 − U2/R, LH İ2 = −U2,

0 = I3 − d(UD1) + d(UD4), LS2 İ3 = U1/2 − U3 −RG2I3,
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Fig. 1. The ring modulator circuit
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0 = −I4 + d(UD2) − d(UD3), LS3 İ4 = −U1/2 + U4 −RG3I4,

0 = I5 + d(UD1) − d(UD3), LS2 İ5 = U2/2 − U5 −RG2I5,

0 = −I6 − d(UD2) + d(UD4), LS3 İ6 = −U2/2 + U6 −RG3I6,

Cp U̇7 = −U7/Rp + d(UD1) + d(UD2)

− d(UD3) − d(UD4),

LS1 İ7 = −U1, + Uin 1

− (RJ + RG1)I7,

LS1 İ8 = −U2 − (RC + RG1)I8.

As usual we used the abbreviations UD1 = U3 − U5 − U7 − Uin 2, UD2 = −U4 + U6 − U7 − Uin 2, UD3 =
U4 +U5 +U7 +Uin 2, UD4 = −U3−U6 +U7 +Uin 2 and d(U) = γ(exp(δ U)−1) with γ = 40.67286402 ·10−9A,
δ = 17.7493332V −1. Notice that the index-2 model of the ring modulator is used here.

We solved the circuit equations using the general linear method

M =

⎡
⎢⎢⎢⎣

1 −
√

2/2 0 1 1 −
√

2/2√
2/4 1 −

√
2/2 1

√
2/4√

2/4 1 −
√

2/2 1
√

2/4

0 1 0 0

⎤
⎥⎥⎥⎦

in Nordsieck form having stiff accuracy and order and stage order p = q = 2. The diagonally implicit structure of
M makes an efficient implementation possible. In order to prove this claim we solved several instances of the ring
modulator simultaneously in order to produce problems of arbitrary size.

The solution was calculated on the interval [0, 10−3] using rtol = atol = 10−4 and constant stepsize h = 10−6.
Fig. 1 contains a plot of the running time against the problem size. For comparison we chose the BDF method with
order 2 and the RadauIIA scheme with two stages (order 3). Since we are solving an index-2 problem the order of
convergence for the Radau method is 2 as well (the stage order) [HLR89]. Notice that we normalised the running time
of the BDF method to 1.

It is clearly visible that the general linear method requires only a multiple of about 1.4 of the BDF’s running
time. This factor grows very slowly with the problem size. In contrast to this, the running time of the fully-implicit
Runge-Kutta scheme grows much more rapidly.
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Modeling and Simulation for Thermal-Electric Coupling in an SOI-Circuit

A. Bartel, U. Feldmann

Fig. 3. (p. 31) Temperature distribution [0. s, 50.ns] (left), startup [0. s, 0.2ns] (right)

A Staggered ALE Approach for Coupled Electromechanical Systems

M. Greiff , U. Binit Bala, W. Mathis

(2)

(1)

(3)

Fig. 3. (p. 36) 2D model including various numerical methods

Fig. 4. (p. 38) Simulated potential and electric field by coupled FEM-RGM
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Fig. 5. (p. 38) Simulated potential and electric field by BEM

Fig. 6. (p. 39) ALE mesh update

Algebraic Sparsefied Partial Equivalent Electric Circuit (ASPEEC)

D. Ioan, G. Ciuprina, M. Rădulescu

Fig. 5. (p. 51) Codestar meander resistor benchmark - RPOLY2 ME
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3-D FE Particle Based Model of Ion Transport Across Ionic Channels

M. E. Oliveri, S. Coco, D. S. M. Gazzo, A. Laudani, G. Pollicino

Fig. 3. (p. 62) Ion trajectories all confined inside the channel for a membrane voltage of 0mV (simulation interval
10ps)

Fig. 4. (p. 63) Ion trajectories inside the channel for a membrane voltage of 100mV in the event of an ion exiting the
channel (simulation interval 10ps)

Coupled Calculation of Electromagnetic Fields and Mechanical Deformation

U. Schreiber, U. van Rienen

Fig. 1. (p. 66) Coupled Simulation Meshes
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Fig. 2. (p. 67) MpCCI Software-Layers

Fig. 3. (p. 67) Electric field distribution of the fundamental mode at f = 1.3 GHz in a
one-cell-cavitiy type TESLA. The maximal field strength on axis is 25 MV/m

Fig. 4. (p. 67) Magnetic field distribution of the fundamental mode at f = 1.3 GHz in a
one-cell-cavitiy type TESLA. The maximal field strength on axis is 25 MV/m
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Challenging Coupled Problems in TCAD

A. Benvenuti, L. Bortesi, G. Carnevale, A. Ghetti, A. Pirovano, L. Vendrame, L. Zullino
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Fig. 1. (p. 74) Simulated final shear stress distribution on SRAM layout (planar stress approximation). Inset: SEM
planar view of active area layout after delayering

Fig. 2. (p. 75) Simulated maximum and average shear stress (right Y axis) during full process flow (left Y axis: thermal
budget profile)

Fig. 3. (p. 75) Typical distribution of wire lengths (normalized to chip size) for a block-based design
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Fig. 4. (p. 76) Schematic of RC parasitics extraction methodology

Fig. 5. (p. 77) 3D view of interconnect lines on a portion of Flash array (10 x 16 cells). The parasitic capacitances have
been extracted both with a conventional field solver and with an efficient Floating Random Walk code [Bra03]

Fig. 7. (p. 77) Pictorial view of four adjacent Flash cells illustrating parasitic capacitive coupling between floating
gates. Dielectrics, Word Line along cutplane AA’ and one drain contact are not shown to allow better visibility of the
floating gates



432 Colour Figures

Position along the Interface [um]

In
te

rfa
ce

 E
le

ct
ro

n 
C

on
ce

nt
ra

tio
n 

[1
/c

m
3 ]

0.16 0.18

Both erased
Right programmed

0.2 0.220

5E+18

1E+19

1.5E+19

Fig. 8. (p. 78) Left: electrostatic potential distribution along the cutplane AA’ of Fig. 7, when the disturbed cell (left) is
erased and the disturbing cell (right) is programmed. An asymmetry in the channel potential of the disturbed cell can
be qualitatively seen. Right: corresponding electron concentration along the channel of the disturbed cell as a function
of the charge stored in the floating gate of the disturbing cell
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Fig. 9. (p. 79) 3D temperature distribution (top) and 2D cross sections on two adjacent Phase Change Memory (PCM)
cells during “reset” operation on the left cell

tf

Fig. 10. (p. 79) Simulated “programming curve” for a PCM cell, showing the programmed resistance as a function of
the programming pulse voltage. On the top the corresponding self-consistently simulated amorphous region is shown
in red for each of the nine bias points
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Fig. 11. (p. 80) Simplified schematic of equivalent circuit used in Charged Device Model ESD event simulation. The
lateral npn BJT (in red) is described numerically with a Drift-Diffusion model

Fig. 12. (p. 80) Maximum device temperature during ESD events for Human-Body Model (black, top inset) and
Charged Device Model (red, bottom inset) discharge event simulation

Fig. 13. (p. 80) Comparison between electron distribution in a MOS vertical cross section under low Vds bias condition.
Left: classic result; right: full-2D Quantum-Mechanical solution. The position of gate (G), source (S) and drain (D)
electrodes is schematically marked on both figures; the depth direction has been stretched to highlight the different
distance from the gate oxide of the peak channel concentration
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Symbolic Methods in Industrial Analog Circuit Design

T. Halfmann, T. Wichmann
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Fig. 3. (p. 93) Bipolar operational amplifier

Stochastic Differential Algebraic Equations in Transient Noise Analysis

R. Winkler
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Fig. 1. (p. 153) Thermal noise of a resistor and shot noise of a pn-junction
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Fig. 2. (p. 155) Thermal noise sources in a MOSFET ring-oscillator model
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Fig. 3. (p. 155) Statistical parameters and solution paths for the nodal potential at node 1

Fig. 4. (p. 157) Global error vs. step-size in logarithmic scale

COLLGUN: a 3D FE Simulator for the Design of TWTs Electron Guns and
Multistage Collectors

S. Coco, S. Corsaro, A. Laudani, G. Pollicino, R. Dionisio, R. Martorana

Fig. 1. (p. 177) Helix TWT schematic
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Fig. 2. (p. 178) GUI main window

Fig. 4. (p. 181) 3-D plot of emitted electron trajectories

Fig. 5. (p. 181) 2-D projection of trajectories and on-axis profile of the focusing magnetic field
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Fig. 6. (p. 181) 2-D projection of trajectories and on-axis profile of the focusing magnetic field

Fig. 7. (p. 182) 3-D plot of electron trajectories

A New Thin-Solenoid Model for Accurate 3-D Representation of Focusing
Axisymmetric Magnetic Fields in TWTs

S. Coco, A. Laudani, G. Pollicino
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Fig. 3. (p. 187) On-axis profile of the magnetic field for the second example
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Fig. 4. (p. 187) On-axis profile of the magnetic field for the 3rd example

Numerical Computation of Magnetic Field and Inductivity of Power Reactor with
Respect of Real Magnetic Properties of Iron Core

M. Marek

Fig. 1. (p. 236) Initialization principle of coal mixture burning by the help of plasma

Fig. 2. (p. 236) Generator of low-temperature plasma plasmatron GNP320
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Fig. 3. (p. 236) Block diagram of plasmatron GNP320 power supply system

Fig. 4. (p. 237) VA characteristics of plasmatron GNP320 (various pressure relations)

Fig. 5. (p. 237) (left) Required percent inductivity size in dependence on working current, (right) Designed inductor
construction
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Fig. 6. (p. 238) REMACOMP Gauging system for magnetic characteristics measuring of constructional materials in
dynamic fields 1Hz 10 kHz. Epstein frame (in the middle). SST yoke (right)

Fig. 7. (p. 238) Chosen BH and magnetization characteristics measured onto electrotechnical sheets metal samples of
core material for the frequency of 1,10,50,100 Hz

Fig. 8. (p. 239) FEM inductor model and Load characteristic

Fig. 9. (p. 240) Computed magnetic field lay-out in the core (I = 800A)
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Fig. 10. (p. 240) Computed magnetic field lay-out in the core and in the air gap (I = 800A)

Fig. 11. (p. 241) (left) Computed inductance, (middle) Comparing of inductance computed values with required percent
values (right) The real inductor design

Two-Band Quantum Models for Semiconductors Arising from the Bloch Envelope
Theory

G. Alı̀, G. Frosali, O.Morandi
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Fig. 1. (p. 276) Band diagram of the simulated het-
erostructure. The dotted line denotes the energy of the
resonant state in the valence quantum well

Fig. 2. (p. 276) Plot of the transmission coefficient of
the heterostructure as a function of the Einc
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Mixed Finite Element Numerical Simulation of a 2D Silicon MOSFET with the
Non-Parabolic MEP Energy-Transport Model

A. M. Anile, A. Marrocco, V. Romano, J. M. Sellier

Fig. 2. (p. 282) Stationary solution for the electron density in cm−3

Sound Synthesis and Chaotic Behaviour in Chua’s Oscillator.

E. Bilotta, R. Campolo, P. Pantano, F. Stranges

Fig. 1. (p. 292) These images show some Chua’s attractors
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Fig. 2. (p. 292) Sound synthesis of one Chua’s attractor

(c) (d)

(b)(a)

Fig. 4. (p. 293) n-scroll attractors: (a) 2-scroll; (b) 3-scroll; (c) 4-scroll; (d) 5-scroll

Fig. 8. (p. 295) Spectrogram for x(t), ρ = 1
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Fig. 9. (p. 296) Spectrogram for x(t), ρ = 2.71

Quantum Corrected Drift–Diffusion Modeling and Simulation of Tunneling Effects
in Nanoscale Semiconductor Devices

G. Cassano, C. de Falco, C. Giulianetti, R. Sacco

Fig. 3. (p. 307) Structure of the Matrix deriving from the FEM discretization of continuity equation
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Fig. 4. (p. 308) Left: gate doping. Right: I-V characteristics

Fig. 5. (p. 308) Electron concentration at thermal equilibrium

Fig. 6. (p. 308) Electric potential, Bohm potentials and quasi–Fermi potentials
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Reverse Statistical Modeling for Analog Integrated Circuits

A. Ciccazzo, V. Cinnera Martino, A. Marotta, S. Rinaudo

Fig. 2. (p. 316) Distribution of electrical performances of IGBT device: Bvdss, Vdson, Vth, Gmp. The extracted
distributions (red line), result of our flow, are compared to their target distributions (blue triangles)
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Coupled EM & Circuit Simulation Flow for Integrated Spiral Inductor

A. Ciccazzo, G. Greco, S. Rinaudo

Fig. 1. (p. 320) Simulation Flow

Fig. 2. (p. 320) Spiral inductor and main parameters used in the estimation formulas

Fig. 4. (p. 323) S11 Parameters: ◦ Measure, - EM Simulation, · · · Macromodel
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Fig. 5. (p. 324) Q-Factor and Inductance value: ◦ Measure, - EM Simulation, " Macromodel

Fig. 6. (p. 324) Resistance value: ◦ Measure, - EM Simulation, " Macromodel

A Multigroup-WENO Solver for the Non-Stationary Boltzmann-Poisson System
for Semiconductor Devices

M. Galler, A. Majorana, F. Schürrer
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Fig. 1. (p. 337) Stationary-state drift velocity v and stationary-state mean energy E versus the electric field Ex in
silicon at TL=300 K. The inserts illustrate v and E as functions of time t in response to the onset of an electric field
pulse. (—): multigroup-WENO model; (×): WENO solver [2]
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Fig. 2. (p. 338) Steady state electron density n, drift velocity v, mean energy E and electric field strength Ex as a
function of position x in the n+-n-n+ diode.(—): multigroup-WENO model; (×): WENO solver [2]
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Anisotropic Mesh Adaptivity Via a Dual-Based A Posteriori Error Estimation for
Semiconductors

S. Micheletti, S. Perotto
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Fig. 3. (p. 380) Control of total current: sequence of adapted meshes
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Fig. 4. (p. 381) Control of pointwise electron concentration: sequence of meshes for Vapp = 0.7V (left) and
Vapp = −5V (right) at the first iteration
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Electromagnetic Characterization Flow of Leadless Packages for RF Applications

G. Alessi

Fig. 1. (p. 406) Package model

Fig. 2. (p. 407) Philips/T.U. Delft model

(a) (b)

Fig. 3. (p. 407) EIA/JEDEC bond wire model: (a) complete model, (b) simplified model
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(a)

(b)

(c)

Fig. 4. (p. 408) Bond wires and their geometric models: (a) bond wire on a lead, (b) bond wires on the die paddle
(downbonding), (c) wire bonded die
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(a)

(b) (c) (d)

Fig. 5. (p. 409) Data forms: (a) bond wires, (b) project, (c) package database, (d) bond wire model database
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(a)

(b) (c)

Fig. 6. (p. 410) Package symbol properties for (a) Eldo, (b) Spectre, (c) ADS

Interconnection Modeling Challenges in System-in-Package (SiP) Design

S. Castorina, R. A. Ene

Fig. 1. (p. 420) Schematic structure of a planar embedded inductor
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Fig. 2. (p. 421) Simulation results showing the induced current distribution on both continuous (left) and splitted (right)
ground planes for an inductor of the kind shown in Fig. 1. Note the opposite currents on domain borders in the splitted
ground plane

Fig. 3. (p. 423) Comparison of the measured frequency response of a resonating structure with the simulated responses
calculated by means of different commercial electromagnetic solvers
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