
Chapter 1
Latent Variables and Indices: Herman Wold’s
Basic Design and Partial Least Squares

Theo K. Dijkstra

Abstract In this chapter it is shown that the PLS-algorithms typically converge if
the covariance matrix of the indicators satisfies (approximately) the “basic design”,
a factor analysis type of model. The algorithms produce solutions to fixed point
equations; the solutions are smooth functions of the sample covariance matrix of
the indicators. If the latter matrix is asymptotically normal, the PLS-estimators
will share this property. The probability limits, under the basic design, of the
PLS-estimators for loadings, correlations, multiple R’s, coefficients of structural
equations et cetera will differ from the true values. But the difference is decreas-
ing, tending to zero, in the “quality” of the PLS estimators for the latent variables. It
is indicated how to correct for the discrepancy between true values and the probabil-
ity limits. We deemphasize the “normality”-issue in discussions about PLS versus
ML: in employing either method one is not required to subscribe to normality; they
are “just” different ways of extracting information from second-order moments.

We also propose a new “back-to-basics” research program, moving away from
factor analysis models and returning to the original object of constructing indices
that extract information from high-dimensional data in a predictive, useful way.
For the generic case we would construct informative linear compounds, whose
constituent indicators have non-negative weights as well as non-negative loadings,
satisfying constraints implied by the path diagram. Cross-validation could settle the
choice between various competing specifications. In short: we argue for an upgrade
of principal components and canonical variables analysis.
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1.1 Introduction

Partial Least Squares is a family of regression based methods designed for the anal-
ysis of high dimensional data in a low-structure environment. Its origin lies in the
sixties, seventies and eighties of the previous century, when Herman O.A. Wold
vigorously pursued the creation and construction of models and methods for the
social sciences, where “soft models and soft data” were the rule rather than the
exception, and where approaches strongly oriented at prediction would be of great
value. The author was fortunate to witness the development firsthand for a few years.
Herman Wold suggested (in 1977) to write a PhD-thesis on LISREL versus PLS
in the context of latent variable models, more specifically of “the basic design”.
I was invited to his research team at the Wharton School, Philadelphia, in the fall
of 1977. Herman Wold also honoured me by serving on my PhD-committee as a
distinguished and decisive member. The thesis was finished in 1981. While I moved
into another direction (specification, estimation and statistical inference in the con-
text of model uncertainty) PLS sprouted very fruitfully in many directions, not only
as regards theoretical extensions and innovations (multilevel, nonlinear extensions
et cetera) but also as regards applications, notably in chemometrics, marketing, and
political sciences. The PLS regression oriented methodology became part of main
stream statistical analysis, as can be gathered from references and discussions in
important books and journals. See e. g. Hastie et al. (2001), or Stone and Brooks
(1990), Frank and Friedman (1993), Tenenhaus et al. (2005), there are many others.
This chapter will not cover these later developments, others are much more knowl-
edgeable and are more up-to-date than I am. Instead we will go back in time and
return to one of the real starting points of PLS: the basic design. We will look at
PLS here as a method for structural equation modelling and estimation, as in Tenen-
haus et al. (2005). Although I cover ground common to the latter’s review I also
offer additional insights, in particular into the distributional assumptions behind the
basic design, the convergence of the algorithms and the properties of their outcomes.
In addition, ways are suggested to modify the outcomes for the tendency to over- or
underestimate loadings and correlations. Although I draw from my work from the
period 1977–1981, which, as the editor graciously suggested is still of some value
and at any rate is not particularly well-known, but I also suggest new developments,
by stepping away from the latent variable paradigm and returning to the formative
years of PLS, where principal components and canonical variables were the main
source of inspiration.

In the next section we will introduce the basic design, somewhat extended beyond
its archetype. It is basically a second order factor model where each indicator is
directly linked to one latent variable only. Although the model is presented as “dis-
tribution free” the very fact that conditional expectations are always assumed to be
linear does suggest that multinormality is lurking somewhere in the background.
We will discuss this in Sect. 1.3, where we will also address the question whether
normality is important, and to what extent, for the old “adversary” LISREL. Please
note that as I use the term LISREL it does not stand for a specific well-known sta-
tistical software package, but for the maximum likelihood estimation and testing
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approach for latent variable models, under the working hypothesis of multivariate
normality. There is no implied value judgement about other approaches or packages
that have entered the market in the mean time. In Sect. 1.3 we also recall some rele-
vant estimation theory for the case where the structural specification is incorrect or
the distributional assumptions are invalid.

The next section, number 4, appears to be the least well-known. I sketch a proof
there, convincingly as I like to believe, that the PLS algorithms will converge from
arbitrary starting points to unique solutions, fixed points, with a probability tend-
ing to one when the sample size increases and the sample covariance matrix has
a probability limit that is compatible with the basic design, or is sufficiently close
to it.

In Sect. 1.5 we look at the values that PLS attains at the limit, in case of
the basic design. We find that correlations between the latent variables will be
underestimated, that this is also true for the squared multiple correlation coefficients
for regressions among latent variables, and the consequences for the estimation of
the structural form parameters are indicated; we note that loadings counterbalance
the tendency of correlations to be underestimated, by overestimation. I suggest ways
to correct for this lack of consistency, in the probabilistic sense.

In the Sect. 1.6, we return to what I believe is the origin of PLS: the construction
of indices by means of linear compounds, in the spirit of principal components and
canonical variables. This section is really new, as far as I can tell. It is shown that for
any set of indicators there always exist proper indices, i. e. linear compounds with
non-negative coefficients that have non-negative correlations with their indicators.
I hint at the way constraints, implied by the path diagram, can be formulated as
side conditions for the construction of indices. The idea is to take the indices as
the fundamental objects, as the carriers or conveyers of information, and to treat
path diagrams as relationships between the indices in their own right. Basically, this
approach calls for the replacement of fullblown unrestricted principal component
or generalized canonical variable analyses by the construction of proper indices,
satisfying modest, “theory poor” restrictions on their correlation matrix. This section
calls for further exploration of these ideas, acknowledging that in the process PLS’s
simplicity will be substantially reduced.

The concluding Sect. 1.7 offers some comments on McDonald’s (1996) thought
provoking paper on PLS; the author gratefully acknowledges an unknown referee’s
suggestion to discuss some of the issues raised in this paper.

1.2 A Second Order Factor Model, the “Basic Design”

Manifest variables, or indicators, are observable variables who are supposed to con-
vey information about the behavior of latent variables, theoretical concepts, who
are not directly observable but who are fundamental to the scientific enterprise
in almost any field, see Kaplan (1946). In the social sciences factor models are
the vehicle most commonly used for the analysis of the interplay between latent
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and manifest variables. Model construction and estimation used to be focussed
mainly on the specification, validation and interpretation of factor loadings and
underlying factors (latent variables), but in the seventies of the previous cen-
tury the relationships between the factors themselves became a central object of
study. The advent of optimization methods for high-dimensional problems, like the
Fletcher-Powell algorithm, see Ortega and Rheinboldt (1970) e. g., allowed research
teams to develop highly flexible and user-friendly software for the analysis, estima-
tion and testing of second order factor models, in which relationships between the
factors themselves are explicitly incorporated. First Karl G. Jöreskog from Uppsala,
Sweden, and his associates developed LISREL, then later, in the eighties, Peter
M. Bentler from UCLA designed EQS, and others followed. However, approaches
like LISREL appeared to put high demands on the specification of the theoretical
relationships: one was supposed to supply a lot of structural information on the the-
oretical covariance matrix of the indicators. And also it seemed that, ideally, one
needed plenty of independent observations on these indicators from a multinormal
distribution! Herman O. A. Wold clearly saw the potential of these methods for the
social sciences but objected to their informational and distributional demands, which
he regarded as unrealistic for many fields of inquiry, especially in the social sciences.
Moreover, he felt that estimation and description had been put into focus, at the
expense of prediction. Herman Wold had a lifelong interest in the development of
predictive and robust statistical methods. In econometrics he pleaded forcefully for
“recursive modelling” where every single equation could be used for prediction and
every parameter had a predictive interpretation, against the current of mainstream
“simultaneous equation modelling”. For the latter type of models he developed the
Fix-Point estimation method, based on a predictive reinterpretation and rewriting of
the models, in which the parameters were estimated iteratively by means of simple
regressions. In 1966 this approach was extended to principal components, canonical
variables and factor analysis models: using least squares as overall predictive crite-
rion, parameters were divided into subsets in such a way that with any one of the
subsets kept fixed at previously determined values, the remaining set of parameters
would solve a straightforward regression problem; roles would be reversed and the
regressions were to be continued until consecutive values for the parameters differed
less then a preassigned value, see Wold (1966) but also Wold (1975). The finaliza-
tions of the ideas, culminating into PLS, took place in 1977, when Herman Wold
was at the Wharton School, Philadelphia. Incidentally, since the present author was
a member of Herman Wold’s research team at the Wharton School in Philadelphia
in the fall of 1977, one could be tempted to believe that he claims some of the
credit for this development. In fact, if anything, my attempts to incorporate struc-
tural information into the estimation process, which complicated it substantially,
urged Herman Wold to intensify his search for further simplification. I will try to
revive my attempts in the penultimate section. . .

For analytical purposes and for comparisons with LISREL-type of alternatives
Herman Wold put up a second order factor model, called the “basic design”. In the
remainder of this section we will present this model, somewhat extended, i.e. with
fewer assumptions. The next section then takes up the discussion concerning the
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“multivariate normality of the vector of indicators”, the hard or “heroic” assumption
of LISREL as Herman Wold liked to call it. Anticipating the drift of the argument:
the difference between multinormality and the distributional assumptions in PLS is
small or large depending on whether the distance between independence and zero
correlation is deemed small or large. Conceptually, the difference is large, since two
random vectors X and Y are independent if and only if “every” real function of X

is uncorrelated with “every” real function of Y , not just the linear functions. But
any one who has ever given a Stat1 course knows that the psychological distance is
close to negligible. . .

More important perhaps is the fact that multinormality and independence of the
observational vectors is not required for consistency of LISREL-estimators, all that
is needed is that the sample covariance matrix S is a consistent estimator for the
theoretical covariance matrix †. The existence of † and independence of the obser-
vational vectors is more than sufficient, there is in fact quite some tolerance for
dependence as well. Also, asymptotic normality of the estimators is assured without
the assumption of multinormality. All that is needed is asymptotic normality of S ,
and that is quite generally the case. Asymptotic optimality, and a proper interpre-
tation of calculated standard errors as standard errors, as well as the correct use
of test-statistics however does indeed impose heavy restrictions on the distribution,
which make the distance to multinormality, again psychologically spoken, rather
small, and therefore to PLS rather large. . .

There is however very little disagreement about the difference in structural infor-
mation, PLS is much more modest and therefore more realistic in this regard than
LISREL. See Dijkstra (1983, 1988, 1992) where further restrictions, relevant for
both approaches, for valid use of frequentist inference statistics are discussed, like
the requirement that the model was not specified interactively, using the data at
hand.

Now for the “basic design”.
We will take all variables to be centered at their mean, so the expected values are
zero, and we assume the existence of all second order moments. Let � be a vec-
tor of latent variables which can be partitioned in a subvector �n of endogenous
latent variables and a subvector �x of exogenous latent variables. These vectors
obey the following set of structural equations with conformable matrices B and �

and a (residual) vector � with the property that E .� j �x/ D 0:

�n D B�n C ��x C � (1.1)

The inverse of .I � B/ is assumed to exist, and the (zero-) restrictions on B , � and
the covariance matrices of �x and � are sufficient for identification of the structural
parameters. An easy consequence is that

E .�n j �x/ D .I � B/�1 ��x � …�x (1.2)

which expresses the intended use of the reduced form, prediction, since no function
of �x will predict �n better than …�x in terms of mean squared error. Note that the
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original basic design is less general, in the sense that B is sub-diagonal there and
that for each i larger than 1 the conditional expectation of �i given �x and the first
i � 1 elements of �n is zero. In other words, originally the model for the latent
variables was assumed to be a causal chain, where every equation, whether from
the reduced or the structural form, has a predictive use and interpretation.

Now assume we have a vector of indicators y which can be divided into subvec-
tors, one subvector for each latent variable, such that for the i -th subvector yi the
following holds:

yi D �i�i C �i (1.3)

where �i is a vector of loadings, with as many components as there are indicators
for �i , and the vector �i is a random vector of measurement errors. It is assumed that
E .yi j �i / D �i �i so that the errors are uncorrelated with the latent variable of the
same equation. Wold assumes that measurement errors relating to different latent
variables are uncorrelated as well. In the original basic design he assumes that the
elements of each �i are mutually uncorrelated, so that their covariance matrix is
diagonal. We will postulate instead that Vi � E�i �

>
i has at least one zero element

(or equivalently, with more than one indicator, because of the symmetry and the fact
that is a covariance matrix, at least two zero elements). To summarize:

†ij � Eyi y
>
j D �ij �i�j for i ¤ j (1.4)

where �ij stands for the correlation between �i and �j , adopting the convention that
latent variables have unit variance, and

†i i D �i�
>
i C Vi : (1.5)

So the �ij ’s and the loading vectors describe the correlations at the first level, of
the indicators, and the structural equations yield the correlations at the second level,
of the latent variables. It is easily seen that all parameters are identified: equation
(4) determines the direction of �i apart from a sign factor and (5) fixes its length,
therefore the �ij ’s are identified (as well as the Vi ’s), and they on their turn allow
determination of the structural form parameters, given † of course.

1.3 Distributional Assumptions: Multinormality
or “Distribution Free”?

The (extended) basic design does not appear to impose heavy constraints on the
distribution of the indicators: the existence of second order moments, some zero
conditional expectations and a linear structure, that’s about it. Multinormality seems
conceptually way off. But let us take an arbitrary measurement equation

yi D �i�i C �i (1.6)
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and instead of assuming that E .�i j �i / D 0, we let �i and �i be stochastically
independent, which implies a zero conditional expectation. As Wold assumes the
elements of �i to be uncorrelated, let us take them here mutually independent.
For E .�i j yi / we take it to be linear as well, so assuming here and in the sequel
invertibility of matrices whenever this is needed

E .�i j yi / D �>
i .†i i /

�1 yi / �>
i V �1

i yi (1.7)

If now all loadings, all elements of �i , differ from zero, we must have multinor-
mality of the vector .yi I �i I �i / as follows from a characterization theorem in Kagan
et al. (1973), see in particular theorem 10.5.3. Let us modify and extend each mea-
surement equation as just described, and let all measurement errors be mutually
independent. Then for one thing each element of � will be normal and �, the vector
obtained by stacking the �i ’s, will be multinormal.

If we now turn to the structural equations, we will take for simplicity the special
case of a complete causal chain, where B is square and lower diagonal and the ele-
ments of the residual vector � are mutually independent. A characterization due to
Cramér states that when the sum of independent variables is normal, all constituents
of this sum are normal, and Cramér and Wold have shown that a vector is multinor-
mal if and only if every linear function of this vector is normal. Combining these
characterizations one is easily led to the conclusion that .yI �I �I �/ is multinormal.
See Dijkstra (1981) for a more elaborate discussion and other results.

So, roughly, if one strengthens zero conditional expectations to independence and
takes all conditional expectations to be linear, one gets multinormality. It appears
that psychologically PLS and multinormality are not far apart. But the appreciation
of these conditions is not just a matter of taste, or of mathematical/statistical matu-
rity. Fundamentally it is an empirical matter and the question of their (approximate)
validity ought to be settled by a thorough analysis of the data. If one has to reject
them, how sad is that? The linear functions we use for prediction are then no longer
least squares optimal in the set of all functions, but best linear approximations only
to these objects of desire (in the population,that is). If we are happy with linear
approximations, i.e. we understand them and can use them to good effect, then who
cares about multinormality, or for that matter about linearity of conditional expec-
tations? In the author’s opinion, normality has a pragmatic justification only. Using
it as a working hypothesis in combination with well worn “principles”, like least
squares or, yes, maximum likelihood, often leads to useful results, which as a bonus
usually satisfy appealing consistency conditions.

It has been stated and is often repeated, seemingly thoughtlessly, that LISREL
is based on normality, in the sense that its use requires the data to be normally dis-
tributed. This is a prejudice that ought to be cancelled. One can use the maximum
entropy principle, the existence of second order moments, and the likelihood prin-
ciple to motivate the choice of the fitting function that LISREL employs. But at the
end of the day this function is just one way of fitting a theoretical covariance matrix
† .�/ to a sample covariance matrix S , where the fit is determined by the difference
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between the eigenvalues of S†�1 and the eigenvalues of the identity matrix. To
elaborate just a bit:

If we denote the p eigenvalues of S†�1 by 	1; 	2; : : : ; 	p the LISREL fitting
function can be written as

PiDp
iD1 .	i � log 	i � 1/. Recall that for real positive num-

bers 0 � x � log x � 1 everywhere with equality only for x D 1. Therefore the
LISREL criterion is always nonnegative and zero only when all eigenvalues are
equal to 1. The absolute minimum is reached if and only if a � can be found such
that S D † .�/. So if S D † .��/ for some �� and identifiability holds, LISREL
will find it. Clearly, other functions of the eigenvalues will do the trick, GLS is one
of them. See Dijkstra (1990) for an analysis of the class of Swain functions. The
“maximum likelihood” estimator b� is a well-behaved, many times differentiable
function of S , which yields � when evaluated at S D † .�/. In other words, if S

is close to † .�/ the estimator is close to � and it is locally a linear function of S .
It follows that when S tends in probability to its “true value”, † .�/, then b� will do
the same and moreover, if S is asymptotically normal, then b� is.

Things become more involved when the probability limit of S , plim(S ), does
not satisfy the structural constraints as implied by the second order factor model
at hand, so there is no � for which † .�/ equals plim(S ). We will summarize in
a stylized way what can be said about the behavior of estimators in the case of
Weighted Least Squares, which with proper weighting matrices include LISREL,
i. e. maximum likelihood under normality, and related fitting functions as well. The
result will be relevant also for the analysis of reduced form estimators using PLS.

To simplify notation we will let 
 .�/ stand for the vector of non-redundant ele-
ments of the smooth matrix function † .�/ and s does the same for S . We will let s

stand for plim(S ). Define a fitting function F .s; 
 .�/ j W / by

F .s; 
 .�/ j W / � .s � 
 .�//> W .s � 
 .�// (1.8)

where W is some symmetric random matrix of appropriate order whose plim, W ,
exists as a positive definite matrix (non-random matrices can be handled as well).
The vector � varies across a suitable set, non-empty and compact or such that F has
a compact level set. We postulate that the minimum of F

�
s; 
 .�/ j W

�
is attained

in a unique point �
�
s; W

�
, depending on the probability limits of S and W . One

can show that F tends in probability to F
�
s; 
 .�/ j W

�
uniformly with respect

to � . This implies that the estimator b� .s; W / � arg min .F / will tend to �
�
s; W

�

in probability. Different fitting functions will produce different probability limits, if
the model is incorrect. With sufficient differentiability and asymptotic normality we
can say more (see Dijkstra 1981 e. g.), using the implicit function theorem on the
first-order conditions of the minimization problem. In fact, when

p
n

�
.s � s/

vec
�
W � W

�

�

�! N
�

0;

�
Vss Vsw

Vws Vww

��

(1.9)
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where n is the number of observations, vec stacks the elements columnwise and
the convergence is in distribution to the normal distribution, indicated by N, and we
define:

� � @
=@�> (1.10)

evaluated at �
�
s; W

�
, and M is a matrix with typical element Mij :

Mij � �
@2
>=@�i @�j

	
W Œ
 � s� (1.11)

and eV equals by definition

h
�>W ; Œs � 
�> ˝ �>

i �
Vss Vsw

Vws Vww

� �
W �

Œs � 
� ˝ �

�

(1.12)

with 
 and its partial derivatives in M and eV also evaluated at the same point

�
�
s; W

�
, then we can say that

p
n


b� .s; W / � �

�
s; W

��
will tend to the normal

distribution with zero mean and covariance matrix , say, with

 � �
�>W � C M

��1 eV
�
�>W � C M

��1
: (1.13)

This may appear to be a somewhat daunting expression, but it has a pretty clear
structure. In particular, observe that if s D 


�
�
�
s; W

��
, in other words, if the

structural information contained in † is correct, then M becomes 0 and eV which
sums 4 matrices looses 3 of them, and so the asymptotic covariance of the estimator
b� .s; W / reduces to:

�
�>W �

��1
�>W VssW �

�
�>W �

��1
(1.14)

which simplifies even further to

�
�>V �1

ss �
��1

(1.15)

when W D V �1
ss . In the latter case we have asymptotic efficiency: no other fitting

function will produce a smaller asymptotic covariance matrix. LISREL belongs to
this class, provided the structure it implicitly assumes in Vss is correct. More pre-
cisely, it is sufficient when the element in Vss corresponding with the asymptotic
covariance between sij and skl equals 
ik
jl C 
i l
jk . This is the case when the
underlying distribution is multinormal. Elliptical distributions in general will yield
an asymptotic covariance matrix that is proportional to the normal Vss, so they are
efficient as well. The author is unaware of other suitable distributions. So LISREL
rests for inference purposes on a major assumption, that is in the opinion of the
author not easily met. If one wants LISREL to produce reliable standard errors, one
would perhaps be well advised to use the bootstrap. By the way, there are many
versions of the theorem stated above in the literature, the case of a correct model is
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particularly well covered. In fact, we expect the results on asymptotic efficiency to
be so well known that references are redundant.

To summarize, if the model is correct in the sense that the structural constraints
on † are met, and S is consistent and W has a positive definite probability limit
then the classical fitting functions will produce estimators that tend in probability
to the true value. If the model is not correct, they will tend to the best fitting value
as determined by the particular fitting function chosen. The estimators are normal,
asymptotically, when S and W are (jointly), whether the structural constraints are
met or not. Asymptotic efficiency is the most demanding property and is not to
be taken for granted. A truly major problem that we do not discuss is model uncer-
tainty, where the model itself is random due to the interaction between specification,
estimation and validation on the same data set, with hunches taken from the data
to improve the model. This wreaks havoc on the standard approach. No statistics
school really knows how to deal with this. See for discussions e. g. Leamer (1978),
Dijkstra (1988) or Hastie et al. (2001).

In the next sections we will see that under the very conditions that make LISREL
consistent, PLS is not consistent, but that the error will tend to zero when the qual-
ity of the estimated latent variables, as measured by their correlation with the true
values, tends to 1 by increasing the number of indicators per latent variable.

1.4 On the PLS-Algorithms: Convergence Issues
and Functional Properties of Fixed Points

The basic approach in PLS is to construct proxies for the latent variables, in the
form of linear compounds, by means of a sequence of alternating least squares
algorithms, each time solving a local, linear problem, with the aim to extract the
predictive information in the sample. Once the compounds are constructed, the
parameters of the structural and reduced form are estimated with the proxies replac-
ing the latent variables. The particular information embodied in the structural form
is not used explicitly in the determination of the proxies. The information actually
used takes the presence or absence of variables in the equations into account, but
not the implied zero constraints and multiplicative constraints on the reduced form
(:the classical rank constraints on submatrices of the reduced form as implied by the
structural form).

There are two basic types of algorithms, called mode A and mode B, and a third
type, mode C, that mixes these two. Each mode generates an estimated weight vector
bw, with typical subvector bwi of the same order as yi . These weight vectors are
fixed points of mappings defined algorithmically. If we let Sij stand for the sample
equivalent of †ij , and signij for the sign of the sample correlation between the
estimated proxiesb�i � bw>

i yi andb�j � bw>
j yj , and Ci is the index set that collects

the labels of latent variables which appear at least once on different sides of the
structural equations in which �i appears, we have for mode A:

bwi /
X

j�Ci

signij � Sijbwj andbw>
i Si ibwi D 1: (1.16)
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As is easily seen the i -th weight vector is obtainable by a regression of the i -th
subvector of indicators yi on the scalar bai � P

j�Ci
signij � b�j , so the weights

are determined by the ability of bai to predict yi . It is immediate that when the
basic design matrix † replaces S the corresponding fixed point wi ; say, is propor-
tional to �i . But note that this requires at least two latent variables. In a stand-alone
situation mode A produces the first principal component, and there is no simple rela-
tionship with the loading vector. See Hans Schneeweiss and Harald Mathes (1995)
for a thorough comparison of factor analysis and principal components. Mode A
and principal components share a lack of scale-invariance, they are both sensitive to
linear scale transformations. McDonald (1996) has shown essentially that mode A
corresponds to maximization of the sum of absolute values of the covariances of the
proxies, where the sum excludes the terms corresponding to latent variables which
are not directly related. The author gratefully acknowledges reference to McDonald
(1996) by an unknown referee.

For mode B we have:

bwi / S�1
i i

X

j�Ci

signij � Sijbwj andbw>
i Si ibwi D 1: (1.17)

Clearly, bwi is obtained by a regression that reverses the order compared to mode
A: herebai , defined similarly, is regressed on yi . So the indicators are used to pre-
dict the sign-weighted sum of proxies. With only two latent variables mode B will
produce the first canonical variables of their respective indicators, see Wold (1966,
1982) e. g. Mode B is a genuine generalization of canonical variables: it is equiva-
lent to the maximization of the sum of absolute values of the correlations between
the proxies, bw>

i Sijbwj , taking only those i and j into account that correspond to
latent variables which appear at least once on different sides of a structural equa-
tion. A Lagrangian analysis will quickly reveal this. The author noted this, in 1977,
while he was a member of Herman Wold’s research team at the Wharton School,
Philadelphia. It is spelled out in his thesis (1981). Kettenring (1971) has introduced
other generalizations, we will return to this in the penultimate section. Replacing
S by † yields a weight vector wi proportional to †�1

i i �i , so that the “population
proxy” �i � w>

i yi has unit correlation with the best linear least squares predictor
for �i in terms of yi . This will be true as well for those generalizations of canonical
variables that were analyzed by Kettenring (1971). Mode B is scale-invariant, in the
sense that linear scale transformations of the indicators leaveb�i and �i undisturbed.

Mode C mixes the previous approaches: some weight vectors satisfy mode A,
others satisfy mode B type of equations. As a consequence the products of mode C
mix the properties of the other modes as well. In the sequel we not dwell upon this
case. Suffice it to say that with two sets of indicators, two latent variables, mode C
produces a variant of the well-known MIMIC-model.

Sofar we have simply assumed that the equations as stated have solutions, that
they actually have fixed points, and the iterative procedure to obtain them has been
merely hinted at. To clarify this, let us discuss a simple case first. Suppose we have
three latent variables connected by just one relation �3 D ˇ31�1 Cˇ32�2 plus a least
squares residual, and let us use mode B. The fixed point equations specialize to:
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bw1 D bc1S�1
11 � Œsign13 � S13bw3� (1.18)

bw2 D bc2S�1
22 � Œsign23 � S23bw3� (1.19)

bw3 D bc3S�1
33 � Œsign13 � S31bw1 C sign23 � S32bw2� : (1.20)

The scalar bci forces bwi to have unit length in the metric of Si i .The iterations start
with arbitrary nonzero choices for the bwi ’s, which are normalized as required, the
sign-factors are determined, and a cycle of updates commences: inserting bw3 into
(18) and (19) gives updated values for bw1 and bw2, which on their turn are inserted
into (20), yielding an update for bw3, then new sign-factors are calculated, and we
return to (18) et cetera. This is continued until the difference between consecutive
updates is insignificant. Obviously, this procedure allows of small variations, but
they have no impact on the results. Now define a function G, say by

G .w3; S/ � c3S�1
33 � �c1S31S�1

11 S13 C c2S32S�1
22 S23

	 � w3 (1.21)

where c1 is such that c1S�1
11 S13w3 has unit length in the metric of S11, c2 is defined

similarly, and c3 gives G unit length in the metric of S33. Clearly G is obtained by
consecutive substitutions of (18) and (19) into (20). Observe that:

G .w3; †/ D w3 (1.22)

for every value of w3 (recall that w3 / †�1
33 �3). A very useful consequence is that

the derivative of G with respect to w3, evaluated at .w3; †/ equals zero. Intuitively,
this means that for S not too far away from †, G .w3; S/ maps two different vectors
w3, which are not too far away from w3; on points which are closer together than
the original vectors. In other words, as a function of w3; G .w3; S/ will be a local
contraction mapping. With some care and an appropriate mean value theorem one
may verify that our function does indeed satisfy the conditions of Copson’s Fixed
point theorem with a parameter, see Copson (1979), Sects. 80–82. Consequently, G

has a unique fixed point bw3 .S/ in a neighborhood of w3 for every value of S in a
neighborhood of †, and it can be found by successive substitutions: for an arbitrary
starting value sufficiently close to w3 the ensuing sequence of points converges to
bw3 .S/ which satisfiesbw3 .S/ D G .bw3 .S/; S/. Also note that if plim.S/ D † then
the first iterate from an arbitrary starting point will tend to w3 in probability, so if
the sample is sufficiently large the conditions for a local contraction mapping will
be satisfied with an arbitrarily high probability. Essentially, any choice of starting
vector will do. The mapping bw3 .S/ is continuous, in fact it is continuously differ-
entiable, as follows quickly along familiar lines of reasoning in proofs of implicit
function theorems. So asymptotic normality is shared with S . The other weight
vectors are smooth transformations ofbw3 .S/, so they will be well-behaved as well.

It is appropriate now to point out that what we have done with mode B for three
latent variables can also be done for the other modes, and the number of latent
variables is irrelevant: reshuffle (16) and (17), if necessary, so that the weights cor-
responding to the exogenous latent variables are listed first; we can express them
in terms of the endogenous weight vectors, wn, say, so that after insertion in the
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equations for the latter a function G .wn; S/ can be defined with the property that
G .wn; †/ D wn and we proceed as before. We obtain again a well-defined fixed
point bw .S/ by means of successive substitutions: Let us collect this in a theorem
(Dijkstra, 1981; we ignore trivial regularity assumptions that preclude loading vec-
tors like �i to consist of zeros only; and similarly, we ignore the case where †ij is
identically zero for every j�Ci ):

Theorem 1.1. If plim.S/ D † where † obeys the restrictions of the basic design,
then the PLS algorithms will converge for every choice of starting values to unique
fixed points of (16) and (17) with a probability tending to one when the number
of sample observations tends to 1: These fixed points are continuously differen-
tiable functions of S , their probability limits satisfy the fixed point equations with S

replaced by †. They are asymptotically normal when S is.

As a final observation in this section: if plim.S/ D †� which is not a basic design
matrix but comes sufficiently close to it, then the PLS-algorithms will converge in
probability to the fixed point defined bybw .†�/. We will again have good numerical
behavior and local linearity.

1.5 Correlations, Structural Parameters, Loadings

In this section we will assume without repeatedly saying so that plim.S/ D † for a
† satisfying the requirements of the extended basic design except for one problem,
indicated below in the text. Recall the definition of the population proxy �i � w>

i yi

where wi � plim .bwi / depends on the mode chosen; for mode A wi is proportional
to �i and for mode B it is proportional to †�1

i i �i . Its sample counterpart, the sample
proxy, is denoted byb�i � bw>

i yi : In PLS the sample proxies replace the latent vari-
ables. Within the basic design, however, this replacement can never be exhaustive
unless there are no measurement errors. We can measure the quality of the proxies

by means of the squared correlation between �i and �i W R2 .�i ; �i / D �
w>

i �i

�2
.

In particular, for mode A we have

R2
A .�i ; �i / D

�
�>

i �i

�2

�>
i †i i�i

(1.23)

and for mode B:
R2

B .�i ; �i / D �>
i †�1

i i �i (1.24)

as is easily checked. It is worth recalling that the mode B population proxy is propor-
tional to the best linear predictor of �i in terms of yi , which is not true for mode A.
Also note that the Cauchy-Schwarz inequality immediately entails that R2

A is always
less than R2

B unless �i is proportional to †�1
i i �i or equivalently, to V �1

i �i ; for diag-
onal Vi this can only happen when all measurement error variances are equal. For
every mode we have that



36 T.K. Dijkstra

R2
�
�i ; �j

� D �
w>

i †ij wj

�2 D �2
ij � R2 .�i ; �i / � R2

�
�j ; �j

�
(1.25)

and we observe that in the limit the PLS-proxies will underestimate the squared
correlations between the latent variables. This is also true of course for two-block
canonical variables: they underestimate the correlation between the underlying
latent variables eventhough they maximize the correlation between linear com-
pounds. It is not typical for PLS of course. Methods like Kettenring’s share this
property. The error depends in a simple way on the quality of the proxies, with
mode B performing best.

The structural bias does have consequences for the estimation of structural form
and reduced form parameters as well. If we let R stand for the correlation matrix
of the latent variables, R does the same for the population proxies, and K is the
diagonal matrix with typical element R .�i ; �i / ; we can write

R D KRK C I � K2: (1.26)

So conditions of the Simon-Blalock type, like zero partial correlation coefficients,
even if satisfied by R will typically not be satisfied by R. Another consequence is
that squared multiple correlations will be underestimated as well: the value that
PLS obtains in the limit, using proxies, for the regression of �i on other latent
variables never exceeds the fraction R2 .�i ; �i / of the “true” squared multiple corre-
lation coefficient. This is easily deduced from a well-known characterization of the
squared multiple correlation: it is the maximum value of 1 � ˇ>Rˇ with respect to
ˇ where R is the relevant correlation matrix of the variables, and ˇ is a conformable
vector whose i -th component is forced to equal 1 (substitution of the expression for
R quickly yields the upper bound as stated). The upper bound can be attained only
when the latent variables other than �i are measured without flaw.

In general we have that the regression matrix for the population proxies equals
…, say, with

… D RnxR
�1

xx D Kn…RxxKxR
�1

xx (1.27)

where subscripts indicate appropriate submatrices, the definitions will be clear. Now
we assumed that B and � could be identified from …: It is common knowledge in
econometrics that this is equivalent to the existence of rank restrictions on submatri-
ces of …: But since R differs from R these relations will be disturbed and … will not
satisfy them, except on sets of measure zero in the parameterspace. This makes the
theory hinted at in Sect. 1.3 relevant. With p replacing s, and � replacing 
 for max-
imum similarity, if so desired, we can state that classical estimators for the structural
form parameters will asymptotically center around .B�; ��/ say, which are such that
.I � B�/�1 �� fits … “best”. “Best” will depend on the estimation procedure cho-
sen and … varies with the mode. In principle, the well-known delta method can
be used to get standard errors, but we doubt whether that is really feasible (which
is something of an understatement). The author, Dijkstra (1982, 1983), suggested
to use the bootstrap as a general tool. Later developments, such as the stationary
bootstrap for time series data, has increased the value of the method even more, but
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care must be used for a proper application; in particular, one should resample the
observations on the indicators, not on the sample proxies, for a decent analysis of
sampling uncertainty.

Turning now to the loadings, some straightforward algebra easily yields that both
modes will tend to overestimate them in absolute value, mode B again behaving
better than mode A, in the limit that is. The loadings are in fact estimated by

b�i � Si ibwi : (1.28)

and the error covariance matrices can be calculated as

bVi � Si i �b�i
b�>

i : (1.29)

(Note that bVibwi D 0; so the estimated errors are linearly dependent, which will have
some consequences for second level analyses, not covered here). Inserting popula-
tion values for sampling values we get for mode A that �i , the probability limit of
b�i , is proportional to †i i�i : For mode B we note that �i is proportional to �i with
a proportionality factor equal to the square root of 1 over R2 .�i ; �i / : Mode B, but
not mode A, will reproduce †ij exactly in the limit. For other results, all based on
straightforward algebraic manipulations we refer to Dijkstra (1981).

So in general, not all parameters will be estimated consistently. Wold, in a report
that was published as Chap. 1 in Jöreskog and Wold (1982), introduced the auxiliary
concept of ‘consistency at large’ which captures the idea that the inconsistency will
tend to zero if more indicators of sufficient quality can be introduced for the latent
variables. The condition as formulated originally was

h
E
�
w>

i �i

�2i

w>
i �i

1
2

! 0: (1.30)

This is equivalent to R2 .�i ; �i / ! 1: Clearly, if these correlations are large, PLS
will combine numerical expediency with consistency. If the proviso is not met in
a sufficient degree the author (Dijkstra, 1981) has suggested to use some simple
“corrections”. E. g. in the case of mode B one could first determine the scalar bfi say
that minimizes, assuming uncorrelated measurement errors,

trace

�h
Si i � diag .Si i / �

h
f 2

i �b�i
b�>

i � diag


f 2

i �b�i
b�>

i

�ii2
�

(1.31)

for all real fi and which serves to rescaleb�i . We get

bf 2
i D

b�>
i ŒSi i � diag .Si i/�b�i

b�>
i

h
b�i
b�>

i � diag


b�i
b�>

i

�i
b�i

: (1.32)
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One can check that bfi
b�i tends in probability to �i : In addition we have that

p lim


bf 2
i

�
equals R2

B .�i ; �i / . So one could in principle get consistent estimators

for R, the correlation matrix of the latent variables by reversing (25) so to speak.
But a more direct approach can also be taken by minimization of

trace

�h
Sij � rij

bfi
bfj �b�i

b�>
j

i> �
h
Sij � rij

bfi
bfj �b�i

b�>
j

i

(1.33)

for rij . This produces the consistent estimator

brij �
b�>

i Sij
b�j

bfi
bfj �b�>

i
b�i �b�>

j
b�j

: (1.34)

With a consistent estimator for R we can also estimate B and � consistently. We
leave it to the reader to develop alternatives. The author is not aware of attempts in
the PLS-literature to implement this idea or related approaches. Perhaps the devel-
opment of second and higher order levels has taken precedence over refinements
to the basic design because that just comes naturally to an approach which mimics
principal components and canonical variables so strongly. But clearly, the bias can
be substantial if not dramatic, whether it relates to regression coefficients, correla-
tions, structural form parameters or loadings as the reader easily convinces himself
by choosing arbitrary values for the R2 .�i ; �i /’s; even for high quality proxies the
disruption can be significant, and it is parameter dependent. So if one adheres to the
latent variable paradigm, bias correction as suggested here or more sophisticated
approaches seems certainly to be called for.

1.6 Two Suggestions for Further Research

In this section we depart from the basic design with its adherence to classical factor
analysis modelling, and return so to speak to the original idea of constructing indices
by means of linear compounds. We take the linear indices as the fundamental objects
and we read path diagrams as representing relationships between the indices in their
own right. What we try to do here is to delineate a research program that should
lead to the construction of proper indices, more about them below, that satisfy the
restrictions implied by a path diagram. In the process PLS will loose a lot of its
simplicity: proper indices impose inequality restrictions on the indices, and we will
no longer do regressions with sums of sign weighted indices, if we do regressions at
all, but with sums that somehow reflect the pattern of relationships. The approach is
highly provisional and rather unfinished.

As a general principle indicators are selected on the basis of a presumed
monotonous relationship with the underlying concept: they are supposed to reflect
increases or decreases in the latent variable on an empirically relevant range (without
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loss of generality we assume that indicators and latent variable are supposed to vary
in the same direction). The ensuing index should mirror this: not only the weights
(the coefficients of the indicators in the index) but also the correlations between the
indicators and the index ought to be positive, or at least non-negative. In practice, a
popular first choice for the index is the first principal component of the indicators,
the linear compound that best explains total variation in the data. If the correlations
between the indicators happen to be positive, Perron-Frobenius’ theorem tells us that
the first principal component will have positive weights, and of course it has positive
correlations with the indicators as well. If the proviso is not met we cannot be certain
of these appealing properties. In fact, it often happens that the first principal com-
ponent is not acceptable as an index, and people resort to other weighting schemes,
usually rather simple ones, like sums or equally weighted averages of the indicators.
It is not always checked whether this simple construct is positively correlated with
its indicators.

Here we will establish that with every non-degenerate vector of indicators is
associated a set of admissible indices: linear compounds of the indicators with non-
negative coefficients whose correlations with the indicators are non-negative. The
set of admissible or proper weighting vectors is a convex polytope, generated by a
finite set of extreme points. In a stand-alone situation, where the vector of indicators
is not linked to other indicator-vectors one could project the first principal compo-
nent on this convex polytope in the appropriate metric, or choose another point in the
set,e.g. the point whose average squared correlation with the indicators is maximal.
In the regular situation, with more than one block of manifest variables, we propose
to choose weighting vectors from each of the admissible sets, such that the ensuing
correlation matrix of the indices optimizes one of the distance functions suggested
by Kettenring (1971), like: GENVAR (the generalized variance or the determinant of
the correlation matrix), MINVAR, its minimal eigenvalue or MAXVAR, its maximal
eigenvalue. GENVAR and MINVAR have to be minimized, MAXVAR maximized.
The latter approach yields weights such that the total variation of the corresponding
indices is explained as well as possible by one factor. The MINVAR-indices will
move more tightly together than any other set of indices, in the sense that the vari-
ance of the minimum variance combination of the indices will be smaller, at any rate
not larger, than the corresponding variance of any other set of indices. GENVAR is
the author’s favorite, it can be motivated in terms of total variation, or in terms of
the volume of (confidence) ellipsoids; see Anderson (1984, in particular Chap. 7.5),
or Gantmacher (1977, reprint of 1959, in particular Chap. 9, Sect. 5). Alternatively,
GENVAR can be linked to entropy. The latent variables which the indices repre-
sent are supposed to be mutually informative, in fact they are analyzed together for
this very reason. If we want indices that are mutually as informative as possible,
we should minimize the entropy of their distribution. This is equivalent to the min-
imization of the determinant of their covariance or correlation matrix, if we adopt
the “most neutral” distribution for the indicators that is consistent with the existence
of the second order moments: the normal distribution. (The expression “most neu-
tral” is a non-neutral translation of “maximum entropy”. . . ). Also, as pointed out by
Kettenring (1971), the GENVAR indices satisfy an appealing consistency property:
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the index of every block, given the indices of the other blocks, is the first canonical
variable of the block in question relative to the other indices; so every index has
maximum multiple correlation with the vector of the other indices.

For the situation where the latent variables are arranged in a path diagram, that
embodies a number of zero constraints on the structural form matrices (the matrix
linking the exogenous latent variables to the endogenous latent variables, and the
matrix linking the latter to each other), we suggest to optimize one of Ketten-
ring’s distance functions subject to these constraints. Using Bekker and Dijkstra
(1990) and Bekker et al. (1994) the zero constraints can be transformed by symbolic
calculations into zero constraints and multiplicative constraints on the regression
equations linking the endogenous variables to the exogenous latent variables. In
this way we can construct admissible, mutually informative indices, embedded in a
theory-based web of relationships.
Now for some detail.

1.6.1 Proper Indices

Let † be an arbitrary positive definite covariance or correlation matrix of a random
vector X of order p by 1, where p is any natural number. We will prove that there
is always a p by 1 vector w with non-negative elements, adding up to 1, such that
the vector †w that contains the covariances between X and the “index” w>X ,has
no negative elements as well (note that at least one element must be positive, since
the positive definiteness of † and the fact that the weights add up to one preclude
the solution consisting of zeros only). Intuitively, one might perhaps expect such
a property since the angle between any w and its image †w is acute due to †’s
positive definiteness.

Consider the set:

˚
x � R

p W x � 0; �>x D 1; †x � 0
�

(1.35)

where � is a column vector containing p ones. The defining conditions can also be
written in the form Ax � b with

A �

2

6
6
6
4

C{>
�{>
�I

†

3

7
7
7
5

and b �

2

6
6
4

C1

�1

0

0

3

7
7
5 (1.36)

where I is the p by p identity matrix, and the zero vectors in b each have p com-
ponents. Farkas’ lemma (see e. g. Alexander Schrijver 2004, in particular corollary
2.5a in Sect. 2.3.) implies that the set

fx � R
p W Ax � bg (1.37)
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is not empty if and only if the set

˚
y � R

2pC2 W y � 0; y>A D 0; y>b < 0
�

(1.38)

is empty. If we write y> as
�
y1; y2; u>; v>� where u and v are both of order p by 1,

we can express y>A D 0 as

vᵀ † C uᵀ C .y2 � y1/ � {ᵀ D 0 (1.39)

and the inequalities in (1.38) require that u and v must be non-negative and that
y2 � y1 is positive. If we postmultiply (1.39) by v we get:

v>†v C u>v C .y2 � y1/ � {>v D 0 (1.40)

which entails that v is zero and therefore from (1.39) that u as well as y2 � y1 are
zero. (Note that this is true even when † is just positive semi-definite). We conclude
that the second set is empty, so the first set is nonempty indeed! Therefore there are
always admissible indices for any set of indicators. We can describe this set in some
more detail if we write the conditions in “standard form” as in a linear programming
setting. Define the matrix A as:

A �
�

{ᵀ 0ᵀ

† �I

�

(1.41)

where { is again of order p by 1, and the dimensions of the other entries follow from
this. Note that A has 2p columns. It is easily verified that the matrix A has full
rowrank p C 1 if † is positive definite. Also define a p C 1 by 1 vector b as Œ1I 0�,
a 1 stacked on top of p zeros, and let s be a p by 1 vector of “slack variables”. The
original set can now be reframed as:

�

x � R
p ; s � R

p W A �
�

x

s

�

D b; x � 0; s � 0



(1.42)

Clearly this is a convex set, a convex polytope in fact, that can be generated by
its extreme points. The latter can be found by selecting p C 1 independent columns
from A, resulting in a matrix AB , say, with B for “basis”, and checking whether the
product of the inverse of AB times b has nonnegative elements only (note that A�1

B b

is the first column of the inverse of AB ). If so, the vector ŒxI s� containing zeros
corresponding to the columns of A which were not selected, is an extreme point of
the enlarged space .x; s/. Since the set is bounded, the corresponding subvector x

is an extreme point of the original .x/-space. In principle we have to evaluate
�

2p
pC1

�

possible candidates. A special and trivial case is where the elements of † are all
non-negative: all weighting vectors are acceptable, and, as pointed out before, the
first principal component (suitably normalized) is one of them.
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1.6.2 Potentially Useful Constraints

As indicated before we propose to determine for every block of indicators its set of
admissible proper indices, and then choose from each of these sets an index such
that some suitable function of the correlation matrix of the selected indices is opti-
mized; we suggested the determinant (minimize) or the first eigenvalue (maximize),
and others. A useful refinement may be the incorporation of a priori constraints on
the relationships between the indices. Typically one employs a pathdiagram that
embodies zero or multiplicative constraints on regression coefficients. It may hap-
pen e.g. that two indices are believed to be correlated only because of their linear
dependence on a third index, so that the conditional correlation between the two
given the third is zero: �23:1, say, equals 0. This is equivalent to postulating that the
entry in the second row and third column of the inverse of the correlation matrix
of the three indices is zero (see Cox and Nanny Wermuth (1988), in particular the
Sects. 3.1–3.4). More complicated constraints are generated by zero constraints on
structural form matrices. E. g. the matrix that links three endogenous latent variables
to each other might have the following structure:

B D
2

4
ˇ11 0 0

ˇ21 ˇ22 ˇ23

0 ˇ32 ˇ33

3

5 (1.43)

and the effect of the remaining exogenous latent variables on the first set is cap-
tured by

� D
2

4
0 	12

	21 0

0 0

3

5 (1.44)

Observe that not all parameters are identifiable, not even after normalization (ˇ23

will be unidentifiable). But the matrix of regression coefficients, of the regressions
of the three endogenous latent variables on the two endogenous latent variables,
taking the given structure into account, satisfies both zero constraints as well as
multiplicative constraints. In fact, this matrix, …; say, with … � B�1� , can be
parameterized in a minimal way as follows (see Bekker et al. (1994), Sect. 5.6):

… D
2

4
0 �3

�1 �1�4

�2 �2�4

3

5 (1.45)

So …11 D 0 and …21…32 � …22…31 D 0: These restrictions should perhaps not
be wasted when constructing indices. They can be translated into restrictions on
the inverses of appropriate submatrices of the correlation matrix of the latent vari-
ables. Bekker et al. (1994) have developed software for the automatic generation of
minimal parameterizations.
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Some small scale experiments by the author, using the constraints of proper-
ness and those implied by a path diagram, were encouraging (to the author), and
only a few lines of MATLAB-code were required. But clearly a lot of develop-
ment work and testing remains to be done. For constructing and testing indices
a strong case can be made for cross-validation, which naturally honoures one of
the purposes of the entire exercise: prediction of observables. It fits rather natu-
rally with the low-structure environment for which PLS was invented, with its soft
or fuzzy relationships between (composite) variables. See e. g. Geisser (1993) and
Hastie et al. (2002) for cross-validation techniques and analyses. Cross-validation
was embraced early by Herman Wold. He also saw clearly the potential of the related
Jackknife-method, see Wold (1975).

1.7 Conclusion

I have described and analyzed some of PLS’ properties in the context of a latent
variable model. It was established that one may expect the algorithms to converge,
from essentially arbitary starting values, to unique fixed-points. As a function of the
sample size these points do not necessarily converge to the parameters of the latent
variable model, in fact their limits or theoretical values may differ substantially from
the “true” value if the quality of the proxies is not (very) high. But in principle
it is possible to adjust the PLS-estimators in a simple way to cancel the induced
distortions, within the context of the (extended) basic design. I also outlined an
approach where the indices are treated as the fundamental objects, and where the
path diagrams serve to construct meaningful, proper indices, satisfying constraints
that are relatively modest.

There are other approaches construed as alternatives to PLS. One such approach,
as pointed out by a referee, is due to McDonald (1996) who designed six methods
for the estimation of latent variable models as the basic design. These methods all
share a least squares type of fitting function and a deliberate distortion of the under-
lying latent variable model. His method I e. g. minimizes the sum of squares of the
difference between S and † .�/ as a function of � , where � contains the loadings
as well as the structural parameters of the relationships between the latent variables,
and where all measurement error variances are a priori taken to be zero. Once the
optimal value for � is obtained, weighting vectors for the composites are chosen pro-
portional to the estimated loading vectors. McDonald applies his methods as well as
PLS to a particular, simple population correlation matrix, with known parameters.
Method I is the favorite of the referee who referred me to McDonald (1996), but
McDonald himself carefully avoids to state his overall preferences. Clearly, one set
of parameters is no basis for a well-established preference, as McDonald takes care
to point out on page 254, and again on page 262: the results will typically be rather
parameter dependent. I think it is relevant to note the fact, which is not difficult
to show, that Method I’s loading vectors based on true parameters, their probability
limits, are typically not proportional to the true loadings, as opposed to PLS mode B.
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Table 2 of McDonald (1996) confirms this. Moreover, the ensuing proxies are not
proportional to the best linear predictors of the latent variables (in terms of their
direct indicators), again unlike PLS mode B. A necessary and sufficient condition
for proportionality in the context of the basic design with unrestricted correlations
between the latent variables, is that the loading vectors are eigenvectors of the cor-
responding error covariance matrices; if the latter are diagonal the unique factors of
each block should have identical variances.

One reviewer of McDonald’s paper, apparently a member of the “PLS-camp”,
suggested that among users of PLS there is an emerging consensus that PLS repre-
sents a philosophy rather different from the standard philosophy of what quantitative
behavioral science is doing: PLS is mainly prediction-oriented whereas the tradi-
tional approach is mainly inference-oriented. I tend to agree with this reviewer, if
only for the fact that in each and every one of Wold’s contributions to statistics
“prediction” and “predictive specifications” are central, key terms. And there is also
the embryonic PLS-model of principal components, which served as one of the
starting points of PLS (or NIPALS as it was called then in 1966): loadings as well
as “latent” variables are viewed and treated as parameters to be estimated with a
least squares “prediction” criterion leading to linear compounds as estimates for
the latent variables. So in this context at least, the approach appears to be entirely
natural. But I would maintain that it is still in need of serious development and
explication. Somehow the latent variable model, the basic design, seems to have
interfered in a pernicious way by posturing as the unique and proper way to analyze
and model high-dimensional data; this may have (as far as I can see) impeded further
developments. Without wanting to sound presumptuous, my contribution contained
in Sect. 1.6 can be seen as an attempt to revive what I believe to be the original
program. Perhaps PLS could re-orient itself by focussing on (proper) index build-
ing through prediction-based cross-validation. McDonald clearly disagrees with the
reviewer of his paper about the prediction versus inference issue, and counters by
claiming that, if it were true, since “we cannot do better than to use multivariate
regressions or canonical variate analysis”, one would expect to see a preference
among PLS users for multivariate regressions, or if they must use a path model they
should prefer mode B to mode A. Since this does not seem to happen in practice
he infers the invalidity of the reviewer’s statement. McDonald has a point when the
true parameters are known, but not when they are subject to estimation. If the goal
is prediction, this goal is as a rule served best by simplifying the maintained model
even more than we would do if description were just what we were after. In fact,
predictors based on a moderately incorrect version of the “true model” usually out-
perform those constructed on the basis of a more elaborate, more correct version,
see Dijkstra (1989) or Hastie et al. (2002). In other words, one can certainly not
dismiss path models and indices if prediction is called for.

The final issue raised by McDonald at the very end of his paper concerns the
use and appropriateness of latent variable models (in what follows the emphasis is
mine). He contends that because of factor score indeterminacy, a small number of
indicators makes a latent variable model quite inappropriate; indeed, we need lots
of them if we want to do any serious work using the model (this is an “inescapable
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fact”). But if we have a large number of indicators per latent variable, a simple aver-
age of the former will do an adequate job in replacing the latter, so we then no longer
need the model (in other words, the model is either inappropriate or redundant). In
my opinion this point of view is completely at odds with the notion of an acceptable
model being a useful approximation to part of reality, latent variable modelling is
no exception. If a model is to be any good for empirical explanation, prediction or
otherwise, it should not be a complete and correct specification. See among many
e. g. Kaplan (1946, 1964), or Hastie et al. (2002). A suitable methaphor is a map,
that by its very nature must yield a more or less distorted picture of “angles and
distances”; maps that are one-to-one can’t get us anywhere. The technical merits of
McDonald’s paper are not disputed here, but the philosophical and methodological
content I find hard to understand and accept.

The reviewer of the present chapter concludes from McDonalds results that “PLS
was a mistake, and Method I should have been invented instead. PLS should simply
be abandoned”. I disagree. I contend that PLS’ philosophy potentially has a lot to
offer. In my view there is considerable scope in the social sciences, especially in
high-dimensional, low-structure, fuzzy environments, for statistical approaches that
specify and construct rather simple “index-models” through serious predictive test-
ing. PLS in one version or the other still appears to have untapped sources, waiting
to be exploited.
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