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Editorial: Perspectives on Partial Least Squares

Vincenzo Esposito Vinzi, Wynne W. Chin, Jorg Henseler, and Huiwen Wang

1 Partial Least Squares: A Success Story

This Handbook on Partial Least Squares (PLS) represents a comprehensive presen-
tation of the current, original and most advanced research in the domain of PLS
methods with specific reference to their use in Marketing-related areas and with a
discussion of the forthcoming and most challenging directions of research and per-
spectives. The Handbook covers the broad area of PLS Methods from Regression
to Structural Equation Modeling, from methods to applications, from software to
interpretation of results. This work features papers on the use and the analysis of
latent variables and indicators by means of the PLS Path Modeling approach from
the design of the causal network to the model assessment and improvement. More-
over, within the PLS framework, the Handbook addresses, among others, special
and advanced topics such as the analysis of multi-block, multi-group and multi-
structured data, the use of categorical indicators, the study of interaction effects,
the integration of classification issues, the validation aspects and the comparison
between the PLS approach and the covariance-based Structural Equation Modeling.
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2 V. Esposito Vinzi et al.

Most chapters comprise a thorough discussion of applications to problems from
Marketing and related areas. Furthermore, a few tutorials focus on some key aspects
of PLS analysis with a didactic approach. This Handbook serves as both an intro-
duction for those without prior knowledge of PLS but also as a comprehensive
reference for researchers and practitioners interested in the most recent advances
in PLS methodology.

Different Partial Least Squares (PLS) cultures seem to have arisen following
the original work by Herman Wold (1982): PLS regression models (PLS-R, Wold
et al. 1983; Tenenhaus 1998) and PLS Path Modeling (PLS-PM, Lohmoller 1989;
Tenenhaus et al. 2005). As a matter of fact, up to now, the two cultures are somehow
oriented to different application fields: chemometrics and related fields for PLS-
R; econometrics and social sciences for PLS-PM. While experiencing this internal
diversity, most often the PLS community has to cope also with external diversities
due to other communities that, grown up under the classical culture of statistical
inference, seem to be quite reluctant in accepting the PLS approach to data analysis
as a well-grounded statistical approach.

Generally speaking, PLS-PM is a statistical approach for modeling complex mul-
tivariable relationships among observed and latent variables. In the past few years,
this approach has been enjoying increasing popularity in several sciences. Struc-
tural Equation Models include a number of statistical methodologies allowing the
estimation of a causal theoretical network of relationships linking latent complex
concepts, each measured by means of a number of observable indicators. From the
standpoint of structural equation modeling, PLS-PM is a component-based approach
where the concept of causality is formulated in terms of linear conditional expec-
tation. Herman Wold (1969, 1973, 1975b, 1980, 1982, 1985, 1988) developed PLS
as an alternative to covariance-based structural equation modeling as represented
by LISREL-type models (Joreskog, 1978) with, preferably, maximum likelihood
estimation. He introduced PLS as a soft modeling technique in order to emphasize
the difference in methodology for estimating structural equation models (Fornell
and Bookstein, 1982; Schneeweils, 1991). Soft modeling refers to the ability of
PLS to exhibit greater flexibility in handling various modeling problems in situ-
ations where it is difficult or impossible to meet the hard assumptions of more
traditional multivariate statistics. Within this context, ’soft” is only attributed to
distributional assumptions and not to the concepts, the models or the estimation
techniques (Lohmoller, 1989). As an alternative to the classical covariance-based
approach, PLS-PM is claimed to seek for optimal linear predictive relationships
rather than for causal mechanisms thus privileging a prediction-relevance oriented
discovery process to the statistical testing of causal hypotheses. From the stand-
point of data analysis, PLS-PM may be also viewed as a very flexible approach
to multi-block (or multiple table) analysis. Multi-block situations arise when a
few sets of variables are available for the same set of samples. Tenenhaus and
Hanafi (2007) show direct relationships between PLS-PM and several techniques
for multi-block analysis obtained by properly specifying relationships in the struc-
tural model and by mixing the different estimation options available in PLS-PM.
This approach clearly shows how the data-driven tradition of multiple table analysis



Editorial 3

can be merged in the theory-driven tradition of structural equation modeling to
allow running analysis of multi-block data in light of current knowledge on con-
ceptual relationships between tables. In both structural equation modeling and
multi-block data analysis, PLS-PM may enhance even further its potentialities,
and provide effective added value, when exploited in the case of formative epis-
temic relationships between manifest variables and their respective latent variables.
In PLS-PM latent variables are estimated as linear combinations of the manifest
variables and thus they are more naturally defined as emergent constructs (with
formative indicators) rather than latent constructs (with reflective indicators). As
a matter of fact, formative relationships are more and more commonly used in the
applications, especially in the marketing domain, but pose a few problems for the
statistical estimation. This mode is based on multiple OLS regressions between
each latent variable and its own formative indicators. As known, OLS regression
may yield unstable results in presence of important correlations between explana-
tory variables, it is not feasible when the number of statistical units is smaller than
the number of variables nor when missing data affect the dataset. Thus, it seems
quite natural to introduce a PLS-R external estimation mode inside the PLS-PM
algorithm so as to overcome the mentioned problems, preserve the formative rela-
tionships and remain coherent with the component-based and prediction-oriented
nature of PLS-PM. Apart from the external estimation module, the implementation
of PLS-R within PLS-PM may be extended also to the internal estimation mod-
ule (as an alternative OLS regression) and to the estimation of path coefficients
for the structural model upon convergence of the PLS-PM algorithm and estima-
tion of the latent variable scores. Such an extensive implementation, that might
well represent a playground towards the merging of the two PLS cultures, opens
a wide range of new possibilities and further developments: different dimensions
can be chosen for each block of latent variables; the number of retained compo-
nents can be chosen by referring to the PLS-R criteria; the well established PLS-R
validation and interpretation tools can be finally imported in PLS-PM; new opti-
mizing criteria are envisaged for multi-block analyses; mutual causality with the
so-called feedback relationships may be more naturally estimated and so on so
forth.

Each chapter of this Handbook focuses on statistical methodology but also on
selected applications from real world problems that highlight the usefulness of
PLS Methods in Marketing-related areas and their feasibility to different situa-
tions. Beside presenting the most recent developments related to the statistical
methodology of the PLS-PM approach, this Handbook addresses quite a few open
issues that, also due to their relevance in several applications, are of major impor-
tance for improving and assessing models estimated by PLS-PM. This work finally
wishes to convey the idea that, when exploring and modeling complex data struc-
tures, PLS-PM has the promising role of being the basis for merging the two
PLS cultures while also benefiting those external cultures traditionally grounded
on either data-driven or theory-driven approaches. There are several reasons for
the increasing popularity of PLS Path Modeling. They are mainly related to the
flexible methodological framework provided by this approach that well adapts



4 V. Esposito Vinzi et al.

Fig.1 The PLS handbook’s editors in Beijing (April 2006). From left to right: J6rg Henseler as the
Prince, Vincenzo Esposito Vinzi (Editor-in-Chief) as the Emperor, Huiwen Wang as the Empress,
and Wynne W. Chin as the Minister

to several application fields. For instance, national customer satisfaction indices
(e.g. the Swedish Barometer of Satisfaction by Fornell (1992), the American Cus-
tomer Satisfaction Index by Fornell et al. (1996)) have become the application par
excellence of PLS Path Modeling. Many other applications are found in Strategic
Management (Birkinshaw et al., 1995; Hulland, 1999), Knowledge Management
(Gray and Meister, 2004), Information Technology Management (Gefen and Straub,
1997; Yi and Davis, 2003; Venkatesh and Agarwal, 2006) as well as within var-
ious disciplines of Marketing, such as Relationship Marketing (Reinartz et al.,
2004), Business-to-Business Marketing (Ulaga and Eggert, 2006) and International
Marketing (Singh et al., 2006), just to mention a short, and by no means exhaustive,
list of references.

2 The Handbook in a Nutshell

This Handbook consists of three parts featuring 33 papers selected after three rounds
of a peer reviewing process. In the first part, contemporary methodological develop-
ments of PLS analysis are the focus. The second part contains a set of applications
of PLS in the field of Marketing as well as in related fields. The pedagogical
contributions in the third part reflect tutorials on key aspects of PLS analysis.
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2.1 PartI: Methods of Partial Least Squares

2.1.1 PLS Path Modeling: Concepts, Model Estimation, and Assessment

Theo K. Dijkstra: Latent Variables and Indices — Herman Wold’s Basic Design and
Fartial Least Squares

In this chapter it is shown that the PLS-algorithms typically converge if the covari-
ance matrix of the indicators satisfies (approximately) the ‘basic design’, a factor
analysis type of model. The algorithms produce solutions to fixed point equations;
the solutions are smooth functions of the sample covariance matrix of the indicators.
If the latter matrix is asymptotically normal, the PLS estimators will share this
property. The probability limits, under the basic design, of the PLS-estimators for
loadings, correlations, multiple R?’s, coefficients of structural equations et cetera
will differ from the true values. But the difference is decreasing, tending to zero,
in the ‘quality’ of the PLS estimators for the latent variables. It is indicated how to
correct for the discrepancy between true values and the probability limits. The con-
tribution deemphasizes the ‘normality’-issue in discussions about PLS versus ML:
in employing either method one is not required to subscribe to normality; they are
‘just’ different ways of extracting information from second-order moments.

Dijkstra also proposes a new ‘back-to-basics’ research program, moving away
from factor analysis models and returning to the original object of constructing
indices that extract information from high-dimensional data in a predictive, useful
way. For the generic case one would construct informative linear compounds, whose
constituent indicators have non-negative weights as well as non-negative loadings,
satisfying constraints implied by the path diagram. Cross-validation could settle
the choice between various competing specifications. In short: it is argued for an
upgrade of principal components and canonical variables analysis.

Vincenzo Esposito Vinzi, Laura Trinchera, and Silvano Amato: PLS Path
Modeling: From Foundations to Recent Developments and Open Issues for Model
Assessment and Improvement

In this chapter the Authors first present the basic algorithm of PLS Path Modeling by
discussing some recently proposed estimation options. Namely they introduce the
development of new estimation modes and schemes for multidimensional (forma-
tive) constructs, i.e. the use of PLS Regression for formative indicators, and the use
of path analysis on latent variable scores to estimate path coefficients Furthermore,
they focus on the quality indexes classically used to assess the performance of the
model in terms of explained variances. They also present some recent developments
in PLS Path Modeling framework for model assessment and improvement, includ-
ing a non-parametric GoF-based procedure for assessing the statistical significance
of path coefficients. Finally, they discuss the REBUS-PLS algorithm that enables
to improve the prediction performance of the model by capturing unobserved
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heterogeneity. The chapter ends with a brief sketch of open issues in the area that,
in the Authors’ opinion, currently represent major research challenges.

Wynne W. Chin: Bootstrap Cross-validation Indices for PLS Path Model
Assessment

The goal of PLS path modeling is primarily to estimate the variance of endogenous
constructs and in turn their respective manifest variables (if reflective). Models with
significant jackknife or bootstrap parameter estimates may still be considered invalid
in a predictive sense. In this paper, Chin attempts to reorient researchers from the
current emphasis of assessing the significance of parameter estimates (e.g., loadings
and structural paths) to that of predictive validity. Specifically, his paper examines
how predictive indicator weights estimated for a particular PLS structural model are
when applied on new data from the same population. Bootstrap resampling is used
to create new data sets where new R-square measures are obtained for each endoge-
nous construct in a model. Chin introduces the weighted summed (WSD) R-square
representing how predictive the original sample weights are in a new data context
(i.e., a new bootstrap sample). In contrast, the Simple Summed (SSD) R-square
examines the predictiveness using the simpler approach of unit weights. From this,
Chin develops his Relative Performance Index (RPI) representing the degree to
which the PLS weights yield better predictiveness for endogenous constructs than
the simpler procedure of performing regression after simple summing of indicators.
Chin also introduces a Performance from Optimized Summed Index (PFO) to con-
trast the WSD R-squares to the R-squares obtained when the PLS algorithm is used
on each new bootstrap data set. Results from 2 simulation studies are presented.
Overall, in contrast to Q-square which examines predictive relevance at the indica-
tor level, the RPI and PFO indices are shown to provide additional information to
assess predictive relevance of PLS estimates at the construct level. Moreover, it is
argued that this approach can be applied to other same set data indices such as AVE
(Fornell and Larcker, 1981) and GoF (Tenenhaus, Amato, and Esposito Vinzi, 2004)
to yield RPI-AVE, PFO-AVE. RPI-GoF, and PFO-GoF indices.

2.1.2 PLS Path Modeling: Extensions

Michel Tenenhaus and Mohamed Hanafi: A Bridge Between PLS Path Modeling
and Multiblock Data Analysis

A situation where J blocks of variables Xq, ..., X  are observed on the same set
of individuals is considered in this paper. A factor analysis approach is applied to
blocks instead of variables. The latent variables (LV’s) of each block should well
explain their own block and at the same time the latent variables of same order
should be as highly correlated as possible (positively or in absolute value). Two path
models can be used in order to obtain the first order latent variables. The first one
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is related to confirmatory factor analysis: each LV related to one block is connected
to all the LV’s related to the other blocks. Then, PLS Path Modeling is used with
mode A and centroid scheme. Use of mode B with centroid and factorial schemes
is also discussed. The second model is related to hierarchical factor analysis. A
causal model is built by relating the LV’s of each block X to the LV of the super-
block X+ obtained by concatenation of Xi,..., Xs. Using PLS estimation of
this model with mode A and path-weighting scheme gives an adequate solution for
finding the first order latent variables. The use of mode B with centroid and factorial
schemes is also discussed. The higher order latent variables are found by using the
same algorithms on the deflated blocks. The first approach is compared with the
MAXDIFF/MAXBET Van de Geer’s algorithm (1984) and the second one with the
ACOM algorithm (Chessel and Hanafi, 1996). Sensory data describing Loire wines
are used to illustrate these methods.

Michel Tenenhaus, Emmanuelle Mauger, and Christiane Guinot: Use of ULS-SEM
and PLS-SEM to Measure a Group Effect in a Regression Model Relating Two
Blocks of Binary Variables

The objective of this constribution is to describe the use of unweighted least
squares structural equation modelling and partial least squares path modelling in
a regression model relating two blocks of binary variables when a group effect can
influence the relationship. These methods were applied on the data of a question-
naire investigating sun exposure behaviour addressed to a cohort of French adult
in the context of the SU.VL.MAX epidemiological study. Sun protection and expo-
sure behaviours were described according to gender and class of age (less than 50
at inclusion in the study versus more than 49). Significant statistical differences
were found between men and women, and between classes of age. This paper illus-
trates the various stages in the construction of latent variables or scores, based on
qualitative data. These kind of scores is widely used in marketing to provide a quan-
titative measure of the phenomenon studied before proceeding to a more detailed
analysis.

Arteaga Francisco, Martina G. Gallarza, and Irene Gil: A New Multiblock PLS
Based Method to Estimate Causal Models. Application to the Post-consumption
Behavior in Tourism

This chapter presents a new method to estimate causal models based on the Multi-
block PLS method (MBPLS) from Wangen and Kowalski (1988). The new method
is compared with the classical LVPLS algorithm from Lohmoéller (1989), using an
academic investigation on the post-consumption behaviour of a particular profile of
university students. The results for both methods are quite similar, but the explained
percentage of variance for the endogenous latent variables is slightly higher for
the MBPLS based method. Bootstrap analysis shows that confidence intervals are
slightly smaller for the MBPLS based method.
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Wynne W. Chin and Jens Dibbern: A Permutation Based Procedure for
Multi-Group PLS Analysis — Results of Tests of Differences on Simulated Data and
a Cross Cultural Analysis of the Sourcing of Information System Services Between
Germany and the USA

This paper presents a distribution free procedure for performing multi-group PLS
analysis. To date, multi-group comparison of PLS models where differences in
path estimates for different sampled populations have been relatively naive. Often,
researchers simply examine and discuss the difference in magnitude of particular
model path estimates for two or more data sets. Problems can occur if the assump-
tion of normal population distribution or similar sample size is not tenable. This
paper by Chin and Dibbern presents an alternative distribution free approach via an
approximate randomization test - where a subset of all possible data permutations
between sample groups is made. The performance of this permutation procedure is
applied on both simulated data and a study exploring the differences of factors that
impact outsourcing between the countries of US and Germany.

2.1.3 PLS Path Modeling with Classification Issues

Christian M. Ringle, Sven Wende, and Alexander Will: Finite Mixture Partial Least
Squares Analysis: Methodology and Numerical Examples

In a wide range of applications for empirical data analysis, the assumption that
data is collected from a single homogeneous population is often unrealistic. In
particular, the identification of different groups of consumers and their appropri-
ate consideration in partial least squares (PLS) path modeling constitutes a critical
issue in marketing. The authors introduce a finite mixture PLS software imple-
mentation, which separates data on the basis of the estimates’ heterogeneity in
the inner path model. Numerical examples using experimental as well as empirical
data allow the verification of the methodology’s effectiveness and usefulness. The
approach permits a reliable identification of distinctive customer segments along
with characteristic estimates for relationships between latent variables. Researchers
and practitioners can employ this method as a model evaluation technique and
thereby assure that results on the aggregate data level are not affected by unobserved
heterogeneity in the inner path model estimates. Otherwise, the analysis provides
further indications on how to treat that problem by forming groups of data in order
to perform a multi-group path analysis.

Silvia Squillacciotti: Prediction oriented classification in PLS Path Modeling

Structural Equation Modeling methods traditionally assume the homogeneity of all
the units on which a model is estimated. In many cases, however, this assumption
may turn to be false; the presence of latent classes not accounted for by the global
model may lead to biased or erroneous results in terms of model parameters and
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model quality. The traditional multi-group approach to classification is often unsat-
isfying for several reasons; above all because it leads to classes homogeneous only
with respect to external criteria and not to the theoretical model itself.

In this paper, a prediction-oriented classification method in PLS Path Modelling
is proposed. Following PLS Typological Regression, the proposed methodology
aims at identifying classes of units showing the lowest distance from the models
in the space of the dependent variables, according to PLS predictive oriented logic.
Hence, the obtained groups are homogeneous with respect to the defined path model.
An application to real data in the study of customers’ satisfaction and loyalty will
be shown.

Valentina Stan and Gilbert Saporta: Conjoint use of variables clustering and PLS
structural equations modeling

In the PLS approach, it is frequently assumed that the blocks of variables satisfy the
assumption of unidimensionality. In order to fulfill at best this assumption, this con-
tribution uses clustering methods of variables. illustrate the conjoint use of variables
clustering and PLS path modeling on data provided by PSA Company (Peugeot
Citroén) on customer satisfaction. The data are satisfaction scores on 32 manifest
variables given by 2922 customers.

2.1.4 PLS Path Modeling for Customer Satisfaction Studies
Kai Kristensen and Jacob K. Eskildsen: Design of PLS-based Satisfaction Studies

This chapter focuses on the design of PLS structural equation models with respect
to satisfaction studies. The authors summarize the findings of previous studies,
which have found the PLS technique to be affected by aspects as the skewness
of manifest variables, multicollinearity between latent variables, misspecification,
question order, sample size as well as the size of the path coefficients. Moreover,
the authors give recommendations based on an empirical PLS project conducted
at the Aarhus School of Business. Within this project five different studies have
been conducted, covering a variety of aspects of designing PLS-based satisfaction
studies.

Clara Cordeiro, Alexandra Machds, and Maria Manuela Neves: A Case Study of a
Customer Satisfaction Problem — Bootstrap and Imputation Techniques

Bootstrap is a resampling technique proposed by Efron. It has been used in many
fields, but in case of missing data studies one can find only a few references. Most
studies in marketing research are based in questionnaires, that, for several reasons
present missing responses. The missing data problem is a common issue in market
research. Here, a customer satisfaction model following the ACSI barometer from
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Fornell will be considered. Sometimes, not all customer experience all services or
products. Therefore, one may have to deal with missing data, taking the risk of
reaching non-significant impacts of these drivers on CS and resulting in inaccurate
inferences. To estimate the main drivers of Customer Satisfaction, Structural Equa-
tion Models methodology is applied. For a case study in mobile telecommunications
several missing data imputation techniques were reviewed and used to complete the
data set. Bootstrap methodology was also considered jointly with imputation tech-
niques to complete the data set. Finally, using Partial Least Squares (PLS) algorithm,
the authors could compare the above procedures. It suggests that bootstrapping
before imputation can be a promising idea.

Manuel J. Vilares, Maria H. Almeida, and Pedro Simées Coelho: Comparison of
Likelihood and PLS Estimators for Structural Equation Modeling — A Simulation
with Customer Satisfaction Data

Although PLS is a well established tool to estimate structural equation models,
more work is still needed in order to better understand its relative merits when com-
pared to likelihood methods. This paper aims to contribute to a better understanding
of PLS and likelihood estimators’ properties, through the comparison and evalua-
tion of these estimation methods for structural equation models based on customer
satisfaction data. A Monte Carlo simulation is used to compare the two estima-
tion methods. The model used in the simulation is the ECSI (European Customer
Satisfaction Index) model, constituted by 6 latent variables (image, expectations,
perceived quality, perceived value, customer satisfaction and customer loyalty). The
simulation is conducted in the context of symmetric and skewed response data and
formative blocks, which constitute the typical framework of customer satisfaction
measurement. In the simulation we analyze the ability of each method to adequately
estimate the inner model coefficients and the indicator loadings. The estimators are
analyzed both in terms of bias and precision. Results have shown that globally PLS
estimates are generally better than covariance-based estimates both in terms of bias
and precision. This is particularly true when estimating the model with skewed
response data or a formative block, since for the model based on symmetric data
the two methods have shown a similar performance.

John Hulland, M.J. Ryan, and R.K. Rayner: Modeling Customer Satisfaction: A
Comparative Performance Evaluation of Covariance Structure Analysis versus
Fartial Least Squares

Partial least squares (PLS) estimates of structural equation model path coefficients
are believed to produce more accurate estimates than those obtained with covari-
ance structure analysis (CVA) using maximum likelihood estimation (MLE) when
one or more of the MLE assumptions are not met. However, there exists no empir-
ical support for this belief or for the specific conditions under which it will occur.
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MLE-based CVA will also break down or produce improper solutions whereas PLS
will not. This study uses simulated data to estimate parameters for a model with 5
independent latent variables and 1 dependent latent variable under various assump-
tion conditions. Data from customer satisfaction studies were used to identify the
form of typical field-based survey distributions. Our results show that PLS produces
more accurate path coefficients estimates when sample sizes are less than 500, inde-
pendent latent variables are correlated, and measures per latent variable are less
than 4. Method accuracy does not vary when the MLE multinormal distribution
assumption is violated or when the data do not fit the theoretical structure very well.
Both procedures are more accurate when the independent variables are uncorrelated,
but MLE estimations break down more frequently under this condition, especially
when combined with sample sizes of less than 100 and only two measures per latent
variable.

2.1.5 PLS Regression

Swante Wold, Lennart Eriksson, and Nouna Kettaneh-Wold: PLS in Data Mining
and Data Integration

Data mining by means of projection methods such as PLS (projection to latent struc-
tures), and their extensions is discussed. The most common data analytical questions
in data mining are covered, and illustrated with examples.

1. Clustering, i. e., finding and interpreting “natural” groups in the data,

2. Classification and identification, e. g., biologically active compounds vs. inactive,

3. Quantitative relationships between different sets of variables, e. g., finding vari-
ables related to quality of a product, or related to time, seasonal or/and geograph-
ical change.

Sub-problems occurring in both (1) to (3) are discussed.

1. Identification of outliers and their aberrant data profiles,
2. Finding the dominating variables and their joint relationships, and
3. Making predictions for new samples.

The use of graphics for the contextual interpretation of results is emphasized. With
many variables and few observations — a common situation in data mining — the risk
to obtain spurious models is substantial. Spurious models look great for the training
set data, but give miserable predictions for new samples. Hence, the validation of
the data analytical results is essential, and approaches for that are discussed.

Solve Seebg, Harald Martens, and Magni Martens: Three-block Data Modeling by
Endo- and Exo-LPLS Regression

In consumer science it is common to study how various products are liked or
ranked by various consumers. In this context, it is important to check if there are
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different consumer groups with different product preference patterns. If systematic
consumer grouping is detected, it is necessary to determine the person character-
istics, which differentiate between these consumer segments, so that they can be
reached selectively. Likewise it is important to determine the product characteristics
that consumer segments seem to respond differently to.

Consumer preference data are usually rather noisy. The productsxpersons data
table (X1) usually produced in consumer preference studies may therefore be sup-
plemented with two types of background information: a products xproduct-property
data table (X3) and a personxperson-property data table (X3). These additional
data may be used for stabilizing the data modelling of the preference data X sta-
tistically. Moreover, they can reveal the product-properties that are responded to
differently by the different consumer segment, and the person-properties that char-
acterize these different segments. The present chapter outlines a recent approach to
analyzing the three types of data tables in an integrated fashion and presents new
modelling methods in this context.

Huiwen Wang, Jie Meng, and Michel Tenenhaus: Regression Modelling Analysis
on Compositional Data

In data analysis of social, economic and technical fields, compositional data is
widely used in problems of proportions to the whole. This paper develops regres-
sion modelling methods of compositional data, discussing the relationships of one
compositional data to one or more than one compositional data and the interrelation-
ship of multiple compositional data. By combining centered logratio transformation
proposed by Aitchison (1986) with Partial Least Squares (PLS) related techniques,
that is PLS regression, hierarchical PLS and PLS path modelling, respectively, par-
ticular difficulties in compositional data regression modelling such as sum to unit
constraint, high multicollinearity of the transformed compositional data and hier-
archical relationships of multiple compositional data, are all successfully resolved;
moreover, the modelling results rightly satisfies the theoretical requirement of log-
contrast. Accordingly, case studies of employment structure analysis of Beijing’s
three industries also illustrate high goodness-of-fit and powerful explainability of
the models.

2.2 Part II: Applications to Marketing and Related Areas

Sonke Albers: PLS and Success Factor Studies in Marketing

While in consumer research the “Cronbachs « - LISREL”-paradigm has emerged for
a better separation of measurement errors and structural relationships, it is shown
in this chapter that studies which involve an evaluation of the effectiveness of mar-
keting instruments require the application of PLS. This is because one no longer
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distinguishes between constructs and their reflecting measures but rather between
abstract marketing policies (constructs) and their forming detailed marketing instru-
ments (indicators). It is shown with the help of examples from literature that many
studies of this type applying LISREL have been misspecified and had better made
use of the PLS approach. The author also demonstrates the appropriate use of PLS
in a study of success factors for e-businesses. He concludes with recommendations
on the appropriate design of success factor studies including the use of higher-order
constructs and the validation of such studies.

Carmen Barroso, Gabriel Cepeda Carrion, and José L. Rolddn: Applying
Maximum Likelihood and PLS on Different Sample Sizes — Studies on Servqual
Model and Emloyee Behaviour Model

Structural equation modeling (SEM) has been increasingly utilized in marketing
and management areas. This rising deployment of SEM suggests addressing com-
parisons between different SEM approaches. This would help researchers to choose
which SEM approach is more appropriate for their studies. After a brief review
of the SEM theoretical background, this study analyzes two models with differ-
ent sample sizes by employing two different SEM techniques to the same set of
data. The two SEM techniques compared are: Covariance-based SEM (CBSEM),
specifically maximum likelihood (ML) estimation, and Partial Least Square (PLS).
After the study findings, the paper provides insights in order to suggest to the
researchers when to analyze models with CBSEM or PLS. Finally, practical sug-
gestions about PLS use are added and we discuss whether they are considered by
researchers.

Paulo Alexandre O. Duarte and Mario Lino B. Raposo: A PLS Model to Study
Brand Preference — An Application to the Mobile Phone Market

Brands play an important role in consumers’ daily life and can represent a big asset
for companies owning them. Due to the very close relationship between brands and
consumers, and the specific nature of branded products as an element of consumer
life style, the branded goods industry needs to extend its knowledge of the pro-
cess of brand preference formation in order to enhance brand equity. This chapter
shows how Partial Least Squares (PLS) path modeling can be used to successfully
test complex models where other approaches would fail due to the high number of
relationships, constructs and indicators, here with an application to brand preference
formation for mobile phones. With a wider set of explanatory factors than prior stud-
ies, this one explores the factors that contribute to the formation of brand preference
using a PLS model to understand the relationship between those and consumer pref-
erence on mobile phone brands. The results reveal that brand identity, personality,
and image, together with self-image congruence have the highest impact on brand
preference. Some other factors linked to the consumer and the situation also affect
preference, but in a lower degree.
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Markus Eberl: An Application of PLS in Multi-group Analysis — The Need for
Differentiated Corporate-level Marketing in the Mobile Communications Industry

The paper focuses on the application of a very common research issue in marketing:
the analysis of the differences between groups’ structural relations. Although PLS
path modeling has some advantages over covariance-based structural equation mod-
eling (CBSEM) regarding this type of research issue — especially in the presence of
formative indicators — few publications employ this method. This paper therefore
presents an exemplary model that examines the effects of corporate-level marketing
activities on corporate reputation as a mediating construct and, finally, on customer
loyalty. PLS multi-group analysis is used to empirically test for differences between
stakeholder groups in a sample from Germany’s mobile communications industry.

Sabrina Helm, Andreas Eggert, and Ina Garnefeld: Modelling the Impact of
Corporate Reputation on Customer Satisfaction and Loyalty Using PLS

Reputation is one of the most important intangible assets of a firm. For the most
part, recent articles have investigated its impact on firm profitability whereas its
effects on individual customers have been neglected. Using data from consumers
of an international consumer goods producer, this paper (1) focuses on measuring
and discussing the relationships between corporate reputation, consumer satisfac-
tion, and consumer loyalty and (2) examines possible moderating and mediating
effects among the constructs. We find that reputation is an antecedent of satisfac-
tion and loyalty that has hitherto been neglected by management. Furthermore, we
find that more than half of the effect of reputation onto loyalty is mediated by sat-
isfaction. This means that reputation can only partially be considered a substitute
for a consumer’s own experiences with a firm. In order to achieve consumer loyalty,
organizations need to create both, a good reputation and high satisfaction.

David Martin Ruiz, Dwayne D. Gremler, Judith H. Washburn, and Gabriel Cepeda
Carrion: Reframing Customer Value in a Service-based Paradigm: An Evaluation
of a Formative Measure in a Multi-industry, Cross-cultural Context

Customer value has received much attention in the recent marketing literature, but
relatively little research has specifically focused on inclusion of service components
when defining and operationalizing customer value. The purpose of this study is to
gain a deeper understanding of customer value by examining several service ele-
ments, namely service quality, service equity, and relational benefits, as well as
perceived sacrifice, in customers’ assessments of value. A multiple industry, cross-
cultural setting is used to substantiate our inclusion of service components and to
examine whether customer value is best modeled using formative or reflective mea-
sures. Our results suggest conceptualizing customer value with service components
can be supported empirically, the use of formative components of service value can
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be supported both theoretically and empirically and is superior to a reflective oper-
ationalization of the construct, and that our measure is a robust one that works well
across multiple service contexts and cultures.

Sandra Streukens, Martin Wetzels, Ahmad Daryanto, and Ko de Ruyter: Analyzing
Factorial Data Using PLS: Application in an Online Complaining Context

Structural equation modeling (SEM) can be employed to emulate more traditional
analysis techniques, such as MANOVA, discriminant analysis, and canonical corre-
lation analysis. Recently, it has been realized that this emulation is not restricted to
covariance-based SEM, but can easily be extended to components-based SEM, or
partials least squares (PLS) path analysis. This chapter presents a PLS path mod-
eling apllication to a fixed-effects, between-subjects factorial design in an online
complaint context.

Silvia Thies and Sonke Albers: Application of PLS in Marketing: Content
Strategies in the Internet

In an empirical study the strategies are investigated that content providers follow in
their compensation policy with respect to their customers. The choice of the policy
can be explained by the resource-based view and may serve as recommendations.
The authors illustrate how a strategy study in marketing can be analyzed with the
help of PLS thereby providing more detailed and actionable results. Firstly, complex
measures have to be operationalized by more specific indicators, marketing instru-
ments in this case, which proved to be formative in the most cases. Only by using
PLS it was possible to extract the influence of every single formative indicator on the
final constructs, i.e. the monetary form of the partnerships. Secondly, PLS allows
for more degrees of freedom so that a complex model could be estimated with a
number of cases that would not be sufficient for ML-LISREL. Thirdly, PLS does
not work with distributional assumptions while significance tests can still be car-
ried out with the help of bootstrapping. The use of PLS is recommended for future
strategy studies in marketing because it is possible to extract the drivers at the indi-
cator level so that detailed recommendations can be given for managing marketing
instruments.

Ali Tiirkyilmaz, Ekrem Tatoglu, Selim Zaim, and Cogkun Ozkan: Use of PLS in
TOM Research — TOM Practices and Business Performance in SMEs

Advances in structural equation modeling (SEM) techniques have made it possible
for management researchers to simultaneously examine theory and measures. When
using sophisticated SEM techniques such as covariance based structural equation
modeling (CBSEM) and partial least squares (PLS), researchers must be aware of
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their underlying assumptions and limitations. SEM models such as PLS can help
total quality management (TQM) researchers to achieve new insights. Researchers
in the area of TQM need to apply this technique properly in order to better under-
stand the complex relationships proposed in their models. This paper makes an
attempt to apply PLS in the area of TQM research. In doing that special emphasis
was placed on identifying the relationships between the most prominent TQM con-
structs and business performance based on a sample of SMEs operating in Turkish
textile industry. The analysis of PLS results indicated that a good deal of support has
been found for the proposed model where a satisfactory percentage of the variance
in the dependent constructs is explained by the independent constructs.

Bradley Wilson: Using PLS to Investigate Interaction Effects Between Higher
Order Branding Constructs

This chapter illustrates how PLS can be used when investigating causal models with
moderators at a higher level of abstraction. This is accomplished with the presen-
tation of a marketing example. This example specifically investigates the influence
of brand personality on brand relationship quality with involvement being a mod-
erator. The literature is reviewed on how to analyse moderational hypotheses with
PLS. Considerable work is devoted to the process undertaken to analyse higher order
structures. The results indicate that involvement does moderate the main effects
relationship between brand personality and brand relationship quality.

2.3 Part III: Tutorials

Wynne W. Chin: How to Write Up and Report PLS analyses

The objective of this paper is to provide a basic framework for researchers inter-
ested in reporting the results of their PLS analyses. Since the dominant paradigm
in reporting Structural Equation Modeling results is covariance based, this paper
begins by providing a discussion of key differences and rationale that researchers
can use to support their use of PLS. This is followed by two examples from the
discipline of Information Systems. The first consists of constructs with reflective
indicators (mode A). This is followed up with a model that includes a construct
with formative indicators (mode B).

Oliver Gotz, Kerstin Liehr-Gobbers, and Manfred Krafft: Evaluation of Structural
Equation Models using the Partial Least Squares Approach

This paper gives a basic comprehension of the partial least squares approach. In this
context, the aim of this paper is to develop a guide for the evaluation of structural
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equation models, using the current statistical methods methodological knowledge by
specifically considering the Partial-Least-Squares (PLS) approach’s requirements.
As an advantage, the PLS method demands significantly fewer requirements com-
pared to that of covariance structure analyses, but nevertheless delivers consistent
estimation results. This makes PLS a valuable tool for testing theories. Another
asset of the PLS approach is its ability to deal with formative as well as reflec-
tive indicators, even within one structural equation model. This indicates that the
PLS approach is appropriate for explorative analysis of structural equation models,
too, thus offering a significant contribution to theory development. However, little
knowledge is available regarding the evaluating of PLS structural equation models.
To overcome this research gap a broad and detailed guideline for the assessment
of reflective and formative measurement models as well as of the structural model
had been developed. Moreover, to illustrate the guideline, a detailed application of
the evaluation criteria had been conducted to an empirical model explaining repeat
purchasing behaviour.

Jorg Henseler and Georg Fassott: Testing Moderating Effects in PLS Path Models:
An Illustration of Available Procedures

Along with the development of scientific disciplines, namely social sciences, hypoth-
esized relationships become more and more complex. Besides the examination of
direct effects, researchers are more and more interested in moderating effects. Mod-
erating effects are evoked by variables, whose variation influences the strength or
the direction of a relationship between an exogenous and an endogenous variable.
Investigators using partial least squares path modeling need appropriate means to
test their models for such moderating effects. Henseler and Fassott illustrate the
identification and quantification of moderating effects in complex causal structures
by means of Partial Least Squares Path Modeling. They also show that group com-
parisons, i.e. comparisons of model estimates for different groups of observations,
represent a special case of moderating effects, having the grouping variable as a
categorical moderator variable. In their contribution, Henseler and Fassott provide
profound answers to typical questions related to testing moderating effects within
PLS path models:

1. How can a moderating effect be drawn in a PLS path model, taking into account
that available software only permits direct effects?

2. How does the type of measurement model of the independent and the moderator
variables influence the detection of moderating effects?

3. Before the model estimation, should the data be prepared in a particular manner?
Should the indicators be centered (having a mean of zero), standardized (having
a mean of zero and a standard deviation of one), or manipulated in any other
way?

4. How can the coefficients of moderating effects be estimated and interpreted?
And, finally,

5. How can the significance of moderating effects be determined?
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Borrowing from the body of knowledge on modeling interaction effect within mul-
tiple regression, Henseler and Fassott develop a guideline on how to test moderating
effects in PLS path models. In particular, they create a graphical representation of
the necessary steps and decisions to make in form of a flow chart. Starting with the
analysis of the type of data available, via the measurement model specification, the
flow chart leads the researcher through the decisions on how to prepare the data
and how to model the moderating effect. The flow chart ends with the bootstrap-
ping, as the preferred means to test significance, and the final interpretation of the
model outcomes which are to be made by the researcher. In addition to this tutorial-
like contribution on the modelation of moderating effects by means of Partial
Least Squares Path Modeling, readers interested in modeling interaction effects can
find many modelling examples in this volume, particularly in the contributions by
Chin & Dibbern; Eberl; Guinot, Mauger, Malvy, Latreille, Ambroisine, Ezzedine,
Galan, Hercberg & Tenenhaus; Streukens, Wetzels, Daryanto & de Ruyter; and
Wilson.

Dirk Temme, Henning Kreis, and Lutz Hildebrandt: Comparison of Current PLS
Path Modeling Software — Features, Ease-of-Use, and Performance

After years of stagnancy, PLS path modeling has recently attracted renewed interest
from applied researchers in marketing. At the same time, the availability of soft-
ware alternatives to Lohmoller’s LVPLS package has considerably increased (PLS-
Graph, PLS-GUI, SPAD-PLS, SmartPLS). To help the user to make an informed
decision, the existing programs are reviewed with regard to requirements, method-
ological options, and ease-of-use; their strengths and weaknesses are identified.
Furthermore, estimation results for different simulated data sets, each focusing on a
specific issue (sign changes and bootstrapping, missing data, and multi-collinearity),
are compared.

Zaibin Wu, Jie Meng, and Huiwen Wang: Introduction to SIMCA-P and Its
Application

SIMCA-P is a kind of user-friendly software developed by Umetrics, which is
mainly used for the methods of principle component analysis (PCA) and partial
least square (PLS) regression. This paper introduces the main glossaries, analysis
cycle and basic operations in SIMCA-P via a practical example. In the application
section, this paper adopts SIMCA-P to estimate the PLS model with qualitative
variables in independent variables set and applies it in the sand storm prevention in
Beijing. Furthermore, this paper demonstrates the advantage of lowering the wind
erosion by Conservation Tillage method and shows that Conservation Tillage is
worth promotion in Beijing sand storm prevention.
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Laure Nokels, Thierry Fahmy, and Sebastien Crochemore: Interpretation of the
Preferences of Automotive Customers Applied to Air Conditioning Supports by
Combining GPA and PLS Regression

A change in the behavior of the automotive customers has been noticed throughout
the last years. Customers feel a renewed interest in the intangible assets of perceived
quality and comfort of environment. A concrete case of study has been set up to ana-
lyze the preferences for 15 air conditioning supports. Descriptive data obtained by
flash profiling with 5 experts on the photographs of 15 air conditioning supports are
treated by Generalized Procrustes Analysis (GPA). The preferences of 61 customers
are then explained by Partial Least Squares (PLS) regression applied to the factors
selected from the GPA. The results provided by the XLSTAT GPA and PLS regres-
sion functions help to quickly identify the items that have a positive or negative
impact on the customers’ preferences, and to define products that fit the customers’
expectations.
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Chapter 1
Latent Variables and Indices: Herman Wold’s
Basic Design and Partial Least Squares

Theo K. Dijkstra

Abstract In this chapter it is shown that the PLS-algorithms typically converge if
the covariance matrix of the indicators satisfies (approximately) the “basic design”,
a factor analysis type of model. The algorithms produce solutions to fixed point
equations; the solutions are smooth functions of the sample covariance matrix of
the indicators. If the latter matrix is asymptotically normal, the PLS-estimators
will share this property. The probability limits, under the basic design, of the
PLS-estimators for loadings, correlations, multiple R’s, coefficients of structural
equations et cetera will differ from the true values. But the difference is decreas-
ing, tending to zero, in the “quality” of the PLS estimators for the latent variables. It
is indicated how to correct for the discrepancy between true values and the probabil-
ity limits. We deemphasize the “normality”-issue in discussions about PLS versus
ML.: in employing either method one is not required to subscribe to normality; they
are “just” different ways of extracting information from second-order moments.

We also propose a new “back-to-basics” research program, moving away from
factor analysis models and returning to the original object of constructing indices
that extract information from high-dimensional data in a predictive, useful way.
For the generic case we would construct informative linear compounds, whose
constituent indicators have non-negative weights as well as non-negative loadings,
satisfying constraints implied by the path diagram. Cross-validation could settle the
choice between various competing specifications. In short: we argue for an upgrade
of principal components and canonical variables analysis.
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1.1 Introduction

Partial Least Squares is a family of regression based methods designed for the anal-
ysis of high dimensional data in a low-structure environment. Its origin lies in the
sixties, seventies and eighties of the previous century, when Herman O.A. Wold
vigorously pursued the creation and construction of models and methods for the
social sciences, where “soft models and soft data” were the rule rather than the
exception, and where approaches strongly oriented at prediction would be of great
value. The author was fortunate to witness the development firsthand for a few years.
Herman Wold suggested (in 1977) to write a PhD-thesis on LISREL versus PLS
in the context of latent variable models, more specifically of “the basic design”.
I was invited to his research team at the Wharton School, Philadelphia, in the fall
of 1977. Herman Wold also honoured me by serving on my PhD-committee as a
distinguished and decisive member. The thesis was finished in 1981. While I moved
into another direction (specification, estimation and statistical inference in the con-
text of model uncertainty) PLS sprouted very fruitfully in many directions, not only
as regards theoretical extensions and innovations (multilevel, nonlinear extensions
et cetera) but also as regards applications, notably in chemometrics, marketing, and
political sciences. The PLS regression oriented methodology became part of main
stream statistical analysis, as can be gathered from references and discussions in
important books and journals. See e. g. Hastie et al. (2001), or Stone and Brooks
(1990), Frank and Friedman (1993), Tenenhaus et al. (2005), there are many others.
This chapter will not cover these later developments, others are much more knowl-
edgeable and are more up-to-date than I am. Instead we will go back in time and
return to one of the real starting points of PLS: the basic design. We will look at
PLS here as a method for structural equation modelling and estimation, as in Tenen-
haus et al. (2005). Although I cover ground common to the latter’s review I also
offer additional insights, in particular into the distributional assumptions behind the
basic design, the convergence of the algorithms and the properties of their outcomes.
In addition, ways are suggested to modify the outcomes for the tendency to over- or
underestimate loadings and correlations. Although I draw from my work from the
period 1977-1981, which, as the editor graciously suggested is still of some value
and at any rate is not particularly well-known, but I also suggest new developments,
by stepping away from the latent variable paradigm and returning to the formative
years of PLS, where principal components and canonical variables were the main
source of inspiration.

In the next section we will introduce the basic design, somewhat extended beyond
its archetype. It is basically a second order factor model where each indicator is
directly linked to one latent variable only. Although the model is presented as “dis-
tribution free” the very fact that conditional expectations are always assumed to be
linear does suggest that multinormality is lurking somewhere in the background.
We will discuss this in Sect. 1.3, where we will also address the question whether
normality is important, and to what extent, for the old “adversary” LISREL. Please
note that as I use the term LISREL it does not stand for a specific well-known sta-
tistical software package, but for the maximum likelihood estimation and testing
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approach for latent variable models, under the working hypothesis of multivariate
normality. There is no implied value judgement about other approaches or packages
that have entered the market in the mean time. In Sect. 1.3 we also recall some rele-
vant estimation theory for the case where the structural specification is incorrect or
the distributional assumptions are invalid.

The next section, number 4, appears to be the least well-known. I sketch a proof
there, convincingly as I like to believe, that the PLS algorithms will converge from
arbitrary starting points to unique solutions, fixed points, with a probability tend-
ing to one when the sample size increases and the sample covariance matrix has
a probability limit that is compatible with the basic design, or is sufficiently close
to it.

In Sect.1.5 we look at the values that PLS attains at the limit, in case of
the basic design. We find that correlations between the latent variables will be
underestimated, that this is also true for the squared multiple correlation coefficients
for regressions among latent variables, and the consequences for the estimation of
the structural form parameters are indicated; we note that loadings counterbalance
the tendency of correlations to be underestimated, by overestimation. I suggest ways
to correct for this lack of consistency, in the probabilistic sense.

In the Sect. 1.6, we return to what I believe is the origin of PLS: the construction
of indices by means of linear compounds, in the spirit of principal components and
canonical variables. This section is really new, as far as I can tell. It is shown that for
any set of indicators there always exist proper indices, i.e. linear compounds with
non-negative coefficients that have non-negative correlations with their indicators.
I hint at the way constraints, implied by the path diagram, can be formulated as
side conditions for the construction of indices. The idea is to take the indices as
the fundamental objects, as the carriers or conveyers of information, and to treat
path diagrams as relationships between the indices in their own right. Basically, this
approach calls for the replacement of fullblown unrestricted principal component
or generalized canonical variable analyses by the construction of proper indices,
satisfying modest, “theory poor” restrictions on their correlation matrix. This section
calls for further exploration of these ideas, acknowledging that in the process PLS’s
simplicity will be substantially reduced.

The concluding Sect. 1.7 offers some comments on McDonald’s (1996) thought
provoking paper on PLS; the author gratefully acknowledges an unknown referee’s
suggestion to discuss some of the issues raised in this paper.

1.2 A Second Order Factor Model, the ‘“Basic Design”

Manifest variables, or indicators, are observable variables who are supposed to con-
vey information about the behavior of latent variables, theoretical concepts, who
are not directly observable but who are fundamental to the scientific enterprise
in almost any field, see Kaplan (1946). In the social sciences factor models are
the vehicle most commonly used for the analysis of the interplay between latent
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and manifest variables. Model construction and estimation used to be focussed
mainly on the specification, validation and interpretation of factor loadings and
underlying factors (latent variables), but in the seventies of the previous cen-
tury the relationships between the factors themselves became a central object of
study. The advent of optimization methods for high-dimensional problems, like the
Fletcher-Powell algorithm, see Ortega and Rheinboldt (1970) e. g., allowed research
teams to develop highly flexible and user-friendly software for the analysis, estima-
tion and testing of second order factor models, in which relationships between the
factors themselves are explicitly incorporated. First Karl G. Joreskog from Uppsala,
Sweden, and his associates developed LISREL, then later, in the eighties, Peter
M. Bentler from UCLA designed EQS, and others followed. However, approaches
like LISREL appeared to put high demands on the specification of the theoretical
relationships: one was supposed to supply a lot of structural information on the the-
oretical covariance matrix of the indicators. And also it seemed that, ideally, one
needed plenty of independent observations on these indicators from a multinormal
distribution! Herman O. A. Wold clearly saw the potential of these methods for the
social sciences but objected to their informational and distributional demands, which
he regarded as unrealistic for many fields of inquiry, especially in the social sciences.
Moreover, he felt that estimation and description had been put into focus, at the
expense of prediction. Herman Wold had a lifelong interest in the development of
predictive and robust statistical methods. In econometrics he pleaded forcefully for
“recursive modelling” where every single equation could be used for prediction and
every parameter had a predictive interpretation, against the current of mainstream
“simultaneous equation modelling”. For the latter type of models he developed the
Fix-Point estimation method, based on a predictive reinterpretation and rewriting of
the models, in which the parameters were estimated iteratively by means of simple
regressions. In 1966 this approach was extended to principal components, canonical
variables and factor analysis models: using least squares as overall predictive crite-
rion, parameters were divided into subsets in such a way that with any one of the
subsets kept fixed at previously determined values, the remaining set of parameters
would solve a straightforward regression problem; roles would be reversed and the
regressions were to be continued until consecutive values for the parameters differed
less then a preassigned value, see Wold (1966) but also Wold (1975). The finaliza-
tions of the ideas, culminating into PLS, took place in 1977, when Herman Wold
was at the Wharton School, Philadelphia. Incidentally, since the present author was
a member of Herman Wold’s research team at the Wharton School in Philadelphia
in the fall of 1977, one could be tempted to believe that he claims some of the
credit for this development. In fact, if anything, my attempts to incorporate struc-
tural information into the estimation process, which complicated it substantially,
urged Herman Wold to intensify his search for further simplification. I will try to
revive my attempts in the penultimate section. ..

For analytical purposes and for comparisons with LISREL-type of alternatives
Herman Wold put up a second order factor model, called the “basic design”. In the
remainder of this section we will present this model, somewhat extended, i.e. with
fewer assumptions. The next section then takes up the discussion concerning the
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“multivariate normality of the vector of indicators”, the hard or “heroic” assumption
of LISREL as Herman Wold liked to call it. Anticipating the drift of the argument:
the difference between multinormality and the distributional assumptions in PLS is
small or large depending on whether the distance between independence and zero
correlation is deemed small or large. Conceptually, the difference is large, since two
random vectors X and Y are independent if and only if “every” real function of X
is uncorrelated with “every” real function of Y, not just the linear functions. But
any one who has ever given a Statl course knows that the psychological distance is
close to negligible. ..

More important perhaps is the fact that multinormality and independence of the
observational vectors is not required for consistency of LISREL-estimators, all that
is needed is that the sample covariance matrix S is a consistent estimator for the
theoretical covariance matrix X. The existence of ¥ and independence of the obser-
vational vectors is more than sufficient, there is in fact quite some tolerance for
dependence as well. Also, asymptotic normality of the estimators is assured without
the assumption of multinormality. All that is needed is asymptotic normality of S,
and that is quite generally the case. Asymptotic optimality, and a proper interpre-
tation of calculated standard errors as standard errors, as well as the correct use
of test-statistics however does indeed impose heavy restrictions on the distribution,
which make the distance to multinormality, again psychologically spoken, rather
small, and therefore to PLS rather large. . .

There is however very little disagreement about the difference in structural infor-
mation, PLS is much more modest and therefore more realistic in this regard than
LISREL. See Dijkstra (1983, 1988, 1992) where further restrictions, relevant for
both approaches, for valid use of frequentist inference statistics are discussed, like
the requirement that the model was not specified interactively, using the data at
hand.

Now for the “basic design”.

We will take all variables to be centered at their mean, so the expected values are
zero, and we assume the existence of all second order moments. Let 1 be a vec-
tor of latent variables which can be partitioned in a subvector i, of endogenous
latent variables and a subvector 7y of exogenous latent variables. These vectors
obey the following set of structural equations with conformable matrices B and I"
and a (residual) vector ¢ with the property that E (¢ | nx) = O:

M= B +Tnx+¢ (1.1

The inverse of (I — B) is assumed to exist, and the (zero-) restrictions on B, I' and
the covariance matrices of 1y and ¢ are sufficient for identification of the structural
parameters. An easy consequence is that

E(mln)=U~— B)_l Inx = Mg (1.2)

which expresses the intended use of the reduced form, prediction, since no function
of nx will predict n, better than 17y in terms of mean squared error. Note that the
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original basic design is less general, in the sense that B is sub-diagonal there and
that for each i larger than 1 the conditional expectation of {; given 7y and the first
i — 1 elements of n, is zero. In other words, originally the model for the latent
variables was assumed to be a causal chain, where every equation, whether from
the reduced or the structural form, has a predictive use and interpretation.

Now assume we have a vector of indicators y which can be divided into subvec-
tors, one subvector for each latent variable, such that for the i-th subvector y; the
following holds:

yi =Aini +e€ (1.3)

where A; is a vector of loadings, with as many components as there are indicators
for n;, and the vector ¢; is a random vector of measurement errors. It is assumed that
E (y; | ni) = A;in; so that the errors are uncorrelated with the latent variable of the
same equation. Wold assumes that measurement errors relating to different latent
variables are uncorrelated as well. In the original basic design he assumes that the
elements of each ¢; are mutually uncorrelated, so that their covariance matrix is
diagonal. We will postulate instead that V; = Ee; el.T has at least one zero element
(or equivalently, with more than one indicator, because of the symmetry and the fact
that is a covariance matrix, at least two zero elements). To summarize:

Eij = Eyiy;-r = pij/\i/\j fori # j (1.4)

where p;; stands for the correlation between 7; and 7, adopting the convention that
latent variables have unit variance, and

i Zlik;r-i-Vi. (1.5)

So the p;;’s and the loading vectors describe the correlations at the first level, of
the indicators, and the structural equations yield the correlations at the second level,
of the latent variables. It is easily seen that all parameters are identified: equation
(4) determines the direction of A; apart from a sign factor and (5) fixes its length,
therefore the p;;’s are identified (as well as the V;’s), and they on their turn allow
determination of the structural form parameters, given ¥ of course.

1.3 Distributional Assumptions: Multinormality
or “Distribution Free”?

The (extended) basic design does not appear to impose heavy constraints on the
distribution of the indicators: the existence of second order moments, some zero
conditional expectations and a linear structure, that’s about it. Multinormality seems
conceptually way off. But let us take an arbitrary measurement equation

yi =Aini +e€ (1.6)
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and instead of assuming that E (¢; | n;) = 0, we let ¢; and 7; be stochastically
independent, which implies a zero conditional expectation. As Wold assumes the
elements of €; to be uncorrelated, let us take them here mutually independent.
For E (n; | yi) we take it to be linear as well, so assuming here and in the sequel
invertibility of matrices whenever this is needed

E@ily) =M S yi o ATV ys (1.7)

If now all loadings, all elements of A;, differ from zero, we must have multinor-
mality of the vector (y;; n;; €;) as follows from a characterization theorem in Kagan
et al. (1973), see in particular theorem 10.5.3. Let us modify and extend each mea-
surement equation as just described, and let all measurement errors be mutually
independent. Then for one thing each element of 1 will be normal and €, the vector
obtained by stacking the ¢;’s, will be multinormal.

If we now turn to the structural equations, we will take for simplicity the special
case of a complete causal chain, where B is square and lower diagonal and the ele-
ments of the residual vector ¢ are mutually independent. A characterization due to
Cramér states that when the sum of independent variables is normal, all constituents
of this sum are normal, and Cramér and Wold have shown that a vector is multinor-
mal if and only if every linear function of this vector is normal. Combining these
characterizations one is easily led to the conclusion that (y; n; {; €) is multinormal.
See Dijkstra (1981) for a more elaborate discussion and other results.

So, roughly, if one strengthens zero conditional expectations to independence and
takes all conditional expectations to be linear, one gets multinormality. It appears
that psychologically PLS and multinormality are not far apart. But the appreciation
of these conditions is not just a matter of taste, or of mathematical/statistical matu-
rity. Fundamentally it is an empirical matter and the question of their (approximate)
validity ought to be settled by a thorough analysis of the data. If one has to reject
them, how sad is that? The linear functions we use for prediction are then no longer
least squares optimal in the set of all functions, but best linear approximations only
to these objects of desire (in the population,that is). If we are happy with linear
approximations, i.e. we understand them and can use them to good effect, then who
cares about multinormality, or for that matter about linearity of conditional expec-
tations? In the author’s opinion, normality has a pragmatic justification only. Using
it as a working hypothesis in combination with well worn “principles”, like least
squares or, yes, maximum likelihood, often leads to useful results, which as a bonus
usually satisfy appealing consistency conditions.

It has been stated and is often repeated, seemingly thoughtlessly, that LISREL
is based on normality, in the sense that its use requires the data to be normally dis-
tributed. This is a prejudice that ought to be cancelled. One can use the maximum
entropy principle, the existence of second order moments, and the likelihood prin-
ciple to motivate the choice of the fitting function that LISREL employs. But at the
end of the day this function is just one way of fitting a theoretical covariance matrix
3 (0) to a sample covariance matrix S, where the fit is determined by the difference
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between the eigenvalues of SX~! and the eigenvalues of the identity matrix. To
elaborate just a bit:
If we denote the p eigenvalues of S¥~! by y1,¥2,...,y, the LISREL fitting

function can be written as Zi:’ (yi —logy; — 1). Recall that for real positive num-
bers 0 < x —logx — 1 everywhere with equality only for x = 1. Therefore the
LISREL criterion is always nonnegative and zero only when all eigenvalues are
equal to 1. The absolute minimum is reached if and only if a 6 can be found such
that S = X (0). Soif S = X (04«) for some 0, and identifiability holds, LISREL
will find it. Clearly, other functions of the eigenvalues will do the trick, GLS is one
of them. See Dijkstra (1990) for an analysis of the class of Swain functions. The
“maximum likelihood” estimator 8 is a well-behaved, many times differentiable
function of S, which yields 8 when evaluated at S = X (6). In other words, if S
is close to X (8) the estimator is close to 6 and it is locally a linear function of S.
It follows that when S tends in probability to its “true value”, ¥ (6), then 6 will do
the same and moreover, if S is asymptotically normal, then g is.

Things become more involved when the probability limit of S, plim(S), does
not satisfy the structural constraints as implied by the second order factor model
at hand, so there is no 0 for which X (6) equals plim(S). We will summarize in
a stylized way what can be said about the behavior of estimators in the case of
Weighted Least Squares, which with proper weighting matrices include LISREL,
i. e. maximum likelihood under normality, and related fitting functions as well. The
result will be relevant also for the analysis of reduced form estimators using PLS.

To simplify notation we will let o (6) stand for the vector of non-redundant ele-
ments of the smooth matrix function ¥ (6) and s does the same for S. We will let s
stand for plim(S). Define a fitting function F (s,o (6) | W) by

F(s,0(0)|W)=(s—0(0)" W(s—0(9) (1.8)

where W is some symmetric random matrix of appropriate order whose plim, W,
exists as a positive definite matrix (non-random matrices can be handled as well).
The vector 6 varies across a suitable set, non-empty and compact or such that F has
a compact level set. We postulate that the minimum of F (E, o (0) | W) is attained
in a unique point 6 (§,W), depending on the probability limits of S and W. One
can show that F tends in probability to F (E, o (0) | W) uniformly with respect
to 6. This implies that the estimator a(s, W) = argmin (F) will tend to 0 (E, m
in probability. Different fitting functions will produce different probability limits, if
the model is incorrect. With sufficient differentiability and asymptotic normality we
can say more (see Dijkstra 1981 e. g.), using the implicit function theorem on the
first-order conditions of the minimization problem. In fact, when

\/n[vec (W(s—_WE;] —)N(O’[;iz II//::]) (1.9)
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where n is the number of observations, vec stacks the elements columnwise and
the convergence is in distribution to the normal distribution, indicated by N, and we
define:

A=090/00" (1.10)

evaluated at 0 (E, m, and M is a matrix with typical element M;;:
M;; = [9%0 /36,00, ] W [0 — 5] (1.11)

and V equals by definition

T e 1T o AT][ Ves Vew wa
[A W.5—o]"®A ][sz VW][E_U]@A} (1.12)

with o and its partial derivatives in M and V also evaluated at the same point
0 (EW), then we can say that /n (9 (s,W)—6 (E, m) will tend to the normal
distribution with zero mean and covariance matrix €2, say, with

1 ~

Q=(ATWA+M) V(ATWA+M) . (1.13)
This may appear to be a somewhat daunting expression, but it has a pretty clear
structure. In particular, observe that if § = o (9 (E,m), in other words, if the
structural information contained in X is correct, then M becomes O and V' which
sums 4 matrices looses 3 of them, and so the asymptotic covariance of the estimator
/Q\(s, W) reduces to:

(ATWA) " ATWV WA (ATWA) (1.14)

which simplifies even further to

(ATVIA) T (1.15)

when W = V., 1. In the latter case we have asymptotic efficiency: no other fitting
function will produce a smaller asymptotic covariance matrix. LISREL belongs to
this class, provided the structure it implicitly assumes in Vg is correct. More pre-
cisely, it is sufficient when the element in Vs, corresponding with the asymptotic
covariance between s;; and s; equals 0;,0;; + 0770 k. This is the case when the
underlying distribution is multinormal. Elliptical distributions in general will yield
an asymptotic covariance matrix that is proportional to the normal Vg, so they are
efficient as well. The author is unaware of other suitable distributions. So LISREL
rests for inference purposes on a major assumption, that is in the opinion of the
author not easily met. If one wants LISREL to produce reliable standard errors, one
would perhaps be well advised to use the bootstrap. By the way, there are many
versions of the theorem stated above in the literature, the case of a correct model is
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particularly well covered. In fact, we expect the results on asymptotic efficiency to
be so well known that references are redundant.

To summarize, if the model is correct in the sense that the structural constraints
on X are met, and S is consistent and W has a positive definite probability limit
then the classical fitting functions will produce estimators that tend in probability
to the true value. If the model is not correct, they will tend to the best fitting value
as determined by the particular fitting function chosen. The estimators are normal,
asymptotically, when S and W are (jointly), whether the structural constraints are
met or not. Asymptotic efficiency is the most demanding property and is not to
be taken for granted. A truly major problem that we do not discuss is model uncer-
tainty, where the model itself is random due to the interaction between specification,
estimation and validation on the same data set, with hunches taken from the data
to improve the model. This wreaks havoc on the standard approach. No statistics
school really knows how to deal with this. See for discussions e. g. Leamer (1978),
Dijkstra (1988) or Hastie et al. (2001).

In the next sections we will see that under the very conditions that make LISREL
consistent, PLS is not consistent, but that the error will tend to zero when the qual-
ity of the estimated latent variables, as measured by their correlation with the true
values, tends to 1 by increasing the number of indicators per latent variable.

1.4 On the PLS-Algorithms: Convergence Issues
and Functional Properties of Fixed Points

The basic approach in PLS is to construct proxies for the latent variables, in the
form of linear compounds, by means of a sequence of alternating least squares
algorithms, each time solving a local, linear problem, with the aim to extract the
predictive information in the sample. Once the compounds are constructed, the
parameters of the structural and reduced form are estimated with the proxies replac-
ing the latent variables. The particular information embodied in the structural form
is not used explicitly in the determination of the proxies. The information actually
used takes the presence or absence of variables in the equations into account, but
not the implied zero constraints and multiplicative constraints on the reduced form
(:the classical rank constraints on submatrices of the reduced form as implied by the
structural form).

There are two basic types of algorithms, called mode A and mode B, and a third
type, mode C, that mixes these two. Each mode generates an estimated weight vector
w, with typical subvector w; of the same order as y;. These weight vectors are
fixed points of mappings defined algorithmically. If we let S;; stand for the sample
equivalent of X;;, and sign,; for the sign of the sample correlation between the
estimated proxies 7; = W,-Tyi and7; = iv\j— v;j,and C; is the index set that collects
the labels of latent variables which appear at least once on different sides of the
structural equations in which n; appears, we have for mode A:

Wi X Z signij . Sl‘jwj‘ and ;V\;—Sii/"\}i =1. (1.16)
JjeCi
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As is easily seen the i-th weight vector is obtainable by a regression of the i-th
subvector of indicators y; on the scalar @; = Y, ¢, sign;; - 7];, so the weights
are determined by the ability of @; to predict y;. It is immediate that when the
basic design matrix X replaces S the corresponding fixed point w;, say, is propor-
tional to A;. But note that this requires at least two latent variables. In a stand-alone
situation mode A produces the first principal component, and there is no simple rela-
tionship with the loading vector. See Hans Schneeweiss and Harald Mathes (1995)
for a thorough comparison of factor analysis and principal components. Mode A
and principal components share a lack of scale-invariance, they are both sensitive to
linear scale transformations. McDonald (1996) has shown essentially that mode A
corresponds to maximization of the sum of absolute values of the covariances of the
proxies, where the sum excludes the terms corresponding to latent variables which
are not directly related. The author gratefully acknowledges reference to McDonald
(1996) by an unknown referee.
For mode B we have:

Wi oc St Y signy; - Si;w; and W] S = 1. (1.17)
JeCi

Clearly, w; is obtained by a regression that reverses the order compared to mode
A: here @;, defined similarly, is regressed on y;. So the indicators are used to pre-
dict the sign-weighted sum of proxies. With only two latent variables mode B will
produce the first canonical variables of their respective indicators, see Wold (1966,
1982) e. g. Mode B is a genuine generalization of canonical variables: it is equiva-
lent to the maximization of the sum of absolute values of the correlations between
the proxies, Vvl—'— Sijwj, taking only those i and j into account that correspond to
latent variables which appear at least once on different sides of a structural equa-
tion. A Lagrangian analysis will quickly reveal this. The author noted this, in 1977,
while he was a member of Herman Wold’s research team at the Wharton School,
Philadelphia. It is spelled out in his thesis (1981). Kettenring (1971) has introduced
other generalizations, we will return to this in the penultimate section. Replacing
S by X yields a weight vector w; proportional to E#/\i, so that the “population
proxy” n; = W,-Tyi has unit correlation with the best linear least squares predictor
for n; in terms of y;. This will be true as well for those generalizations of canonical
variables that were analyzed by Kettenring (1971). Mode B is scale-invariant, in the
sense that linear scale transformations of the indicators leave 7); and 7; undisturbed.

Mode C mixes the previous approaches: some weight vectors satisfy mode A,
others satisfy mode B type of equations. As a consequence the products of mode C
mix the properties of the other modes as well. In the sequel we not dwell upon this
case. Suffice it to say that with two sets of indicators, two latent variables, mode C
produces a variant of the well-known MIMIC-model.

Sofar we have simply assumed that the equations as stated have solutions, that
they actually have fixed points, and the iterative procedure to obtain them has been
merely hinted at. To clarify this, let us discuss a simple case first. Suppose we have
three latent variables connected by just one relation n3 = 83171 + B3272 plus a least
squares residual, and let us use mode B. The fixed point equations specialize to:
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W = ’C\lSl_ll . [sign13 . S13VAV3] (1.18)
Wy = 285, - [sign,s - Sa3is] (1.19)
;V\_v, = 2'\35:;}1 . [sign13 . S31®1 + SigH23 . S32{/V\2] . (1.20)

The scalar ¢; forces w; to have unit length in the metric of S;;.The iterations start
with arbitrary nonzero choices for the w;’s, which are normalized as required, the
sign-factors are determined, and a cycle of updates commences: inserting w3 into
(18) and (19) gives updated values for w; and w,, which on their turn are inserted
into (20), yielding an update for w3, then new sign-factors are calculated, and we
return to (18) et cetera. This is continued until the difference between consecutive
updates is insignificant. Obviously, this procedure allows of small variations, but
they have no impact on the results. Now define a function G, say by

G (w3,5) = 3853 - [c1831811' S13 + 2532555 S23] - w3 (1.21)

where c; is such that ¢ S 1_11 S13ws3 has unit length in the metric of Sy, ¢, is defined
similarly, and c3 gives G unit length in the metric of S33. Clearly G is obtained by
consecutive substitutions of (18) and (19) into (20). Observe that:

G (W3, E) = w3 (122)

for every value of w3 (recall that w3 o« £33 A3). A very useful consequence is that
the derivative of G with respect to ws, evaluated at (w3, X) equals zero. Intuitively,
this means that for S not too far away from X, G (w3, S) maps two different vectors
ws, which are not too far away from w3, on points which are closer together than
the original vectors. In other words, as a function of ws, G (w3, S) will be a local
contraction mapping. With some care and an appropriate mean value theorem one
may verify that our function does indeed satisfy the conditions of Copson’s Fixed
point theorem with a parameter, see Copson (1979), Sects. 80-82. Consequently, G
has a unique fixed point w3 (S) in a neighborhood of wj for every value of S in a
neighborhood of %, and it can be found by successive substitutions: for an arbitrary
starting value sufficiently close to w3 the ensuing sequence of points converges to
w3 (S) which satisfies w3 (S) = G (w3 (S), S). Also note that if plim(S) = T then
the first iterate from an arbitrary starting point will tend to w3 in probability, so if
the sample is sufficiently large the conditions for a local contraction mapping will
be satisfied with an arbitrarily high probability. Essentially, any choice of starting
vector will do. The mapping w3 (S) is continuous, in fact it is continuously differ-
entiable, as follows quickly along familiar lines of reasoning in proofs of implicit
function theorems. So asymptotic normality is shared with S. The other weight
vectors are smooth transformations of w3 (.S), so they will be well-behaved as well.

It is appropriate now to point out that what we have done with mode B for three
latent variables can also be done for the other modes, and the number of latent
variables is irrelevant: reshuffle (16) and (17), if necessary, so that the weights cor-
responding to the exogenous latent variables are listed first; we can express them
in terms of the endogenous weight vectors, wy, say, so that after insertion in the
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equations for the latter a function G (wp, S) can be defined with the property that
G (wn, X) = Wy and we proceed as before. We obtain again a well-defined fixed
point w (S) by means of successive substitutions. Let us collect this in a theorem
(Dijkstra, 1981; we ignore trivial regularity assumptions that preclude loading vec-
tors like A; to consist of zeros only; and similarly, we ignore the case where X;; is
identically zero for every jeC;):

Theorem 1.1. If plim(S) = X where ¥ obeys the restrictions of the basic design,
then the PLS algorithms will converge for every choice of starting values to unique
fixed points of (16) and (17) with a probability tending to one when the number
of sample observations tends to co. These fixed points are continuously differen-
tiable functions of S, their probability limits satisfy the fixed point equations with S
replaced by X. They are asymptotically normal when S is.

As a final observation in this section: if plim(S) = X, which is not a basic design
matrix but comes sufficiently close to it, then the PLS-algorithms will converge in
probability to the fixed point defined by w (2 4). We will again have good numerical
behavior and local linearity.

1.5 Correlations, Structural Parameters, Loadings

In this section we will assume without repeatedly saying so that plim(S) = X for a
¥ satisfying the requirements of the extended basic design except for one problem,
indicated below in the text. Recall the definition of the population proxy 1; = WZT Vi
where w; = plim (W;) depends on the mode chosen; for mode A w; is proportional
to A; and for mode B it is proportional to E;l A;. Its sample counterpart, the sample
proxy, is denoted by 7; = WZT vi. In PLS the sample proxies replace the latent vari-
ables. Within the basic design, however, this replacement can never be exhaustive
unless there are no measurement errors. We can measure the quality of the proxies
by means of the squared correlation between 7; and 7; : R? (n;,7;) = (W;r/\,-)z.
In particular, for mode A we have

ATA)?
R () = 22 1.23
A(Uz 771) )LITEI-,')L,' ( )
and for mode B:

Ry (0. 7;) = Al 57" A (1.24)

as is easily checked. It is worth recalling that the mode B population proxy is propor-
tional to the best linear predictor of 7; in terms of y;, which is not true for mode A.
Also note that the Cauchy-Schwarz inequality immediately entails that Rfi is always
less than R% unless A; is proportional to 7' ; or equivalently, to V,~' 1;; for diag-
onal V; this can only happen when all measurement error variances are equal. For
every mode we have that
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R*(7;.7;) = (] zyw;)" = Py - R? (i 7;) - R* (n;.77;) (1.25)

and we observe that in the limit the PLS-proxies will underestimate the squared
correlations between the latent variables. This is also true of course for two-block
canonical variables: they underestimate the correlation between the underlying
latent variables eventhough they maximize the correlation between linear com-
pounds. It is not typical for PLS of course. Methods like Kettenring’s share this
property. The error depends in a simple way on the quality of the proxies, with
mode B performing best.

The structural bias does have consequences for the estimation of structural form
and reduced form parameters as well. If we let R stand for the correlation matrix
of the latent variables, R does the same for the population proxies, and K is the
diagonal matrix with typical element R (1;,7;) , we can write

R =KRK + 1 — K> (1.26)

So conditions of the Simon-Blalock type, like zero partial correlation coefficients,
even if satisfied by R will typically not be satisfied by R. Another consequence is
that squared multiple correlations will be underestimated as well: the value that
PLS obtains in the limit, using proxies, for the regression of 7; on other latent
variables never exceeds the fraction R? (1;,7;) of the “true” squared multiple corre-
lation coefficient. This is easily deduced from a well-known characterization of the
squared multiple correlation: it is the maximum value of 1 — 8T RS with respect to
B where R is the relevant correlation matrix of the variables, and § is a conformable
vector whose i -th component is forced to equal 1 (substitution of the expression for
R quickly yields the upper bound as stated). The upper bound can be attained only
when the latent variables other than n; are measured without flaw.
In general we have that the regression matrix for the population proxies equals
ﬁ, say, with
T = RxRy = KallRuKxRoy' (1.27)

where subscripts indicate appropriate submatrices, the definitions will be clear. Now
we assumed that B and I" could be identified from IT. It is common knowledge in
econometrics that this is equivalent to the existence of rank restrictions on submatri-
ces of TT. But since R differs from R these relations will be disturbed and TT will not
satisfy them, except on sets of measure zero in the parameterspace. This makes the
theory hinted at in Sect. 1.3 relevant. With p replacing s, and 7 replacing o for max-
imum similarity, if so desired, we can state that classical estimators for the structural
form parameters will asymptotically center around (B, I'x) say, which are such that
I - B*)_1 T, fits TT “best”. “Best” will depend on the estimation procedure cho-
sen and TI varies with the mode. In principle, the well-known delta method can
be used to get standard errors, but we doubt whether that is really feasible (which
is something of an understatement). The author, Dijkstra (1982, 1983), suggested
to use the bootstrap as a general tool. Later developments, such as the stationary
bootstrap for time series data, has increased the value of the method even more, but
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care must be used for a proper application; in particular, one should resample the
observations on the indicators, not on the sample proxies, for a decent analysis of
sampling uncertainty.

Turning now to the loadings, some straightforward algebra easily yields that both
modes will tend to overestimate them in absolute value, mode B again behaving
better than mode A, in the limit that is. The loadings are in fact estimated by

A= i (1.28)
and the error covariance matrices can be calculated as
Vi=Sii— ik, (1.29)

(Note that ?iwi = 0, so the estimated errors are linearly dependent, which will have
some consequences for second level analyses, not covered here). Inserting popula-
tion values for sampling values we get for mode A that Ai, the probability limit of
’)Ii, is proportional to ¥;;A;. For mode B we note that Ii is proportional to A; with
a proportionality factor equal to the square root of 1 over R? (1;,7;) . Mode B, but
not mode A, will reproduce X;; exactly in the limit. For other results, all based on
straightforward algebraic manipulations we refer to Dijkstra (1981).

So in general, not all parameters will be estimated consistently. Wold, in a report
that was published as Chap. 1 in Joreskog and Wold (1982), introduced the auxiliary
concept of ‘consistency at large’ which captures the idea that the inconsistency will
tend to zero if more indicators of sufficient quality can be introduced for the latent
variables. The condition as formulated originally was

1

—T _. 2712

[E@Ta)] Lo (1.30)
WA

This is equivalent to R? (n;,7;) — 1. Clearly, if these correlations are large, PLS
will combine numerical expediency with consistency. If the proviso is not met in
a sufficient degree the author (Dijkstra, 1981) has suggested to use some simple

“corrections”. E. g. in the case of mode B one could first determine the scalar f; say
that minimizes, assuming uncorrelated measurement errors,

trace ([S,-i — diag (S;;) — [flz ’X,XIT — diag (flz ’)I,’)I;'—)]]Z) (1.31)

for all real f; and which serves to rescale ’X,-. We get

AT [Sii — diag (Sin)] A

a /XlT [X,X;" — diag (xl/l\r)l:l //\\i .

(1.32)
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One can check that m,- tends in probability to A;. In addition we have that
plim ( J:"?) equals R% (ni,7;) . So one could in principle get consistent estimators

for R, the correlation matrix of the latent variables by reversing (25) so to speak.
But a more direct approach can also be taken by minimization of

~

~~ o~ T ~ ~ o~
trace { [Su' —rij fi f -M/\]T-] '[Sij —rij fi f 'MAJT-]} (1.33)
for r;;. This produces the consistent estimator

A;—Sij/\j
Fifi A kTR

(1.34)

rij =

With a consistent estimator for R we can also estimate B and I' consistently. We
leave it to the reader to develop alternatives. The author is not aware of attempts in
the PLS-literature to implement this idea or related approaches. Perhaps the devel-
opment of second and higher order levels has taken precedence over refinements
to the basic design because that just comes naturally to an approach which mimics
principal components and canonical variables so strongly. But clearly, the bias can
be substantial if not dramatic, whether it relates to regression coefficients, correla-
tions, structural form parameters or loadings as the reader easily convinces himself
by choosing arbitrary values for the R? (1;,7;)’s; even for high quality proxies the
disruption can be significant, and it is parameter dependent. So if one adheres to the
latent variable paradigm, bias correction as suggested here or more sophisticated
approaches seems certainly to be called for.

1.6 Two Suggestions for Further Research

In this section we depart from the basic design with its adherence to classical factor
analysis modelling, and return so to speak to the original idea of constructing indices
by means of linear compounds. We take the linear indices as the fundamental objects
and we read path diagrams as representing relationships between the indices in their
own right. What we try to do here is to delineate a research program that should
lead to the construction of proper indices, more about them below, that satisfy the
restrictions implied by a path diagram. In the process PLS will loose a lot of its
simplicity: proper indices impose inequality restrictions on the indices, and we will
no longer do regressions with sums of sign weighted indices, if we do regressions at
all, but with sums that somehow reflect the pattern of relationships. The approach is
highly provisional and rather unfinished.

As a general principle indicators are selected on the basis of a presumed
monotonous relationship with the underlying concept: they are supposed to reflect
increases or decreases in the latent variable on an empirically relevant range (without
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loss of generality we assume that indicators and latent variable are supposed to vary
in the same direction). The ensuing index should mirror this: not only the weights
(the coefficients of the indicators in the index) but also the correlations between the
indicators and the index ought to be positive, or at least non-negative. In practice, a
popular first choice for the index is the first principal component of the indicators,
the linear compound that best explains total variation in the data. If the correlations
between the indicators happen to be positive, Perron-Frobenius’ theorem tells us that
the first principal component will have positive weights, and of course it has positive
correlations with the indicators as well. If the proviso is not met we cannot be certain
of these appealing properties. In fact, it often happens that the first principal com-
ponent is not acceptable as an index, and people resort to other weighting schemes,
usually rather simple ones, like sums or equally weighted averages of the indicators.
It is not always checked whether this simple construct is positively correlated with
its indicators.

Here we will establish that with every non-degenerate vector of indicators is
associated a set of admissible indices: linear compounds of the indicators with non-
negative coefficients whose correlations with the indicators are non-negative. The
set of admissible or proper weighting vectors is a convex polytope, generated by a
finite set of extreme points. In a stand-alone situation, where the vector of indicators
is not linked to other indicator-vectors one could project the first principal compo-
nent on this convex polytope in the appropriate metric, or choose another point in the
set,e.g. the point whose average squared correlation with the indicators is maximal.
In the regular situation, with more than one block of manifest variables, we propose
to choose weighting vectors from each of the admissible sets, such that the ensuing
correlation matrix of the indices optimizes one of the distance functions suggested
by Kettenring (1971), like: GENVAR (the generalized variance or the determinant of
the correlation matrix), MINVAR, its minimal eigenvalue or MAXVAR, its maximal
eigenvalue. GENVAR and MINVAR have to be minimized, MAXVAR maximized.
The latter approach yields weights such that the total variation of the corresponding
indices is explained as well as possible by one factor. The MINVAR-indices will
move more tightly together than any other set of indices, in the sense that the vari-
ance of the minimum variance combination of the indices will be smaller, at any rate
not larger, than the corresponding variance of any other set of indices. GENVAR is
the author’s favorite, it can be motivated in terms of total variation, or in terms of
the volume of (confidence) ellipsoids; see Anderson (1984, in particular Chap. 7.5),
or Gantmacher (1977, reprint of 1959, in particular Chap. 9, Sect.5). Alternatively,
GENVAR can be linked to entropy. The latent variables which the indices repre-
sent are supposed to be mutually informative, in fact they are analyzed together for
this very reason. If we want indices that are mutually as informative as possible,
we should minimize the entropy of their distribution. This is equivalent to the min-
imization of the determinant of their covariance or correlation matrix, if we adopt
the “most neutral” distribution for the indicators that is consistent with the existence
of the second order moments: the normal distribution. (The expression “most neu-
tral” is a non-neutral translation of “maximum entropy”...). Also, as pointed out by
Kettenring (1971), the GENVAR indices satisfy an appealing consistency property:
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the index of every block, given the indices of the other blocks, is the first canonical
variable of the block in question relative to the other indices; so every index has
maximum multiple correlation with the vector of the other indices.

For the situation where the latent variables are arranged in a path diagram, that
embodies a number of zero constraints on the structural form matrices (the matrix
linking the exogenous latent variables to the endogenous latent variables, and the
matrix linking the latter to each other), we suggest to optimize one of Ketten-
ring’s distance functions subject to these constraints. Using Bekker and Dijkstra
(1990) and Bekker et al. (1994) the zero constraints can be transformed by symbolic
calculations into zero constraints and multiplicative constraints on the regression
equations linking the endogenous variables to the exogenous latent variables. In
this way we can construct admissible, mutually informative indices, embedded in a
theory-based web of relationships.

Now for some detail.

1.6.1 Proper Indices

Let X be an arbitrary positive definite covariance or correlation matrix of a random
vector X of order p by 1, where p is any natural number. We will prove that there
is always a p by 1 vector w with non-negative elements, adding up to 1, such that
the vector Tw that contains the covariances between X and the “index” w' X ,has
no negative elements as well (note that at least one element must be positive, since
the positive definiteness of ¥ and the fact that the weights add up to one preclude
the solution consisting of zeros only). Intuitively, one might perhaps expect such
a property since the angle between any w and its image Xw is acute due to X’s
positive definiteness.
Consider the set:

{xeR?:x>0,1"x =1,Zx > 0} (1.35)

where ¢ is a column vector containing p ones. The defining conditions can also be
written in the form Ax < b with

+17 +1
7T -1

A= _J and b = 0 (1.36)
> 0

where [ is the p by p identity matrix, and the zero vectors in b each have p com-
ponents. Farkas’ lemma (see e. g. Alexander Schrijver 2004, in particular corollary
2.5a1in Sect. 2.3.) implies that the set

{xeR? : Ax < b} (1.37)
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is not empty if and only if the set

[yeR?P*2:y>0,y"4=0,y"b <0} (1.38)
is empty. If we write y | as (yl, yo.u', vT) where u and v are both of order p by 1,
we can express y ' A = 0 as

VIE+uT+(2—y1)-1T=0 (1.39)

and the inequalities in (1.38) require that # and v must be non-negative and that
Y2 — Y1 1s positive. If we postmultiply (1.39) by v we get:

VISv4+uTv4 (ya—y1) 1 v=0 (1.40)

which entails that v is zero and therefore from (1.39) that u as well as y, — y; are
zero. (Note that this is true even when X is just positive semi-definite). We conclude
that the second set is empty, so the first set is nonempty indeed! Therefore there are
always admissible indices for any set of indicators. We can describe this set in some
more detail if we write the conditions in “standard form” as in a linear programming
setting. Define the matrix A as:

_ T oT
A = [E —1i| (1.41)

where 1 is again of order p by 1, and the dimensions of the other entries follow from
this. Note that A has 2p columns. It is easily verified that the matrix A has full
rowrank p + 1 if X is positive definite. Also define a p + 1 by 1 vector b as [1;0],
a 1 stacked on top of p zeros, and let s be a p by 1 vector of “slack variables”. The
original set can now be reframed as:

xeRP,seRP:A-[i}=b,x20,s20 (1.42)

Clearly this is a convex set, a convex polytope in fact, that can be generated by
its extreme points. The latter can be found by selecting p + 1 independent columns
from A, resulting in a matrix A p, say, with B for “basis”, and checking whether the
product of the inverse of A p times b has nonnegative elements only (note that A El b
is the first column of the inverse of A g). If so, the vector [x;s] containing zeros
corresponding to the columns of A which were not selected, is an extreme point of
the enlarged space (x, s). Since the set is bounded, the corresponding subvector x
is an extreme point of the original (x)-space. In principle we have to evaluate ( pzf 1)
possible candidates. A special and trivial case is where the elements of X are all
non-negative: all weighting vectors are acceptable, and, as pointed out before, the
first principal component (suitably normalized) is one of them.
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1.6.2 Potentially Useful Constraints

As indicated before we propose to determine for every block of indicators its set of
admissible proper indices, and then choose from each of these sets an index such
that some suitable function of the correlation matrix of the selected indices is opti-
mized; we suggested the determinant (minimize) or the first eigenvalue (maximize),
and others. A useful refinement may be the incorporation of a priori constraints on
the relationships between the indices. Typically one employs a pathdiagram that
embodies zero or multiplicative constraints on regression coefficients. It may hap-
pen e.g. that two indices are believed to be correlated only because of their linear
dependence on a third index, so that the conditional correlation between the two
given the third is zero: p»3.1, say, equals 0. This is equivalent to postulating that the
entry in the second row and third column of the inverse of the correlation matrix
of the three indices is zero (see Cox and Nanny Wermuth (1988), in particular the
Sects. 3.1-3.4). More complicated constraints are generated by zero constraints on
structural form matrices. E. g. the matrix that links three endogenous latent variables
to each other might have the following structure:

Bir 0 0
B = | B21 B2z P23 (1.43)
0 B3z B33

and the effect of the remaining exogenous latent variables on the first set is cap-
tured by

0 y12
'={yn1 O (1.44)
0 0

Observe that not all parameters are identifiable, not even after normalization (823
will be unidentifiable). But the matrix of regression coefficients, of the regressions
of the three endogenous latent variables on the two endogenous latent variables,
taking the given structure into account, satisfies both zero constraints as well as
multiplicative constraints. In fact, this matrix, IT, say, with IT = BT, can be
parameterized in a minimal way as follows (see Bekker et al. (1994), Sect. 5.6):

0 65
=16, 6104 (1.45)
02 0204

So ITy; = 0 and [T, 13, — 221137 = 0. These restrictions should perhaps not
be wasted when constructing indices. They can be translated into restrictions on
the inverses of appropriate submatrices of the correlation matrix of the latent vari-
ables. Bekker et al. (1994) have developed software for the automatic generation of
minimal parameterizations.
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Some small scale experiments by the author, using the constraints of proper-
ness and those implied by a path diagram, were encouraging (to the author), and
only a few lines of MATLAB-code were required. But clearly a lot of develop-
ment work and testing remains to be done. For constructing and testing indices
a strong case can be made for cross-validation, which naturally honoures one of
the purposes of the entire exercise: prediction of observables. It fits rather natu-
rally with the low-structure environment for which PLS was invented, with its soft
or fuzzy relationships between (composite) variables. See e. g. Geisser (1993) and
Hastie et al. (2002) for cross-validation techniques and analyses. Cross-validation
was embraced early by Herman Wold. He also saw clearly the potential of the related
Jackknife-method, see Wold (1975).

1.7 Conclusion

I have described and analyzed some of PLS’ properties in the context of a latent
variable model. It was established that one may expect the algorithms to converge,
from essentially arbitary starting values, to unique fixed-points. As a function of the
sample size these points do not necessarily converge to the parameters of the latent
variable model, in fact their limits or theoretical values may differ substantially from
the “true” value if the quality of the proxies is not (very) high. But in principle
it is possible to adjust the PLS-estimators in a simple way to cancel the induced
distortions, within the context of the (extended) basic design. I also outlined an
approach where the indices are treated as the fundamental objects, and where the
path diagrams serve to construct meaningful, proper indices, satisfying constraints
that are relatively modest.

There are other approaches construed as alternatives to PLS. One such approach,
as pointed out by a referee, is due to McDonald (1996) who designed six methods
for the estimation of latent variable models as the basic design. These methods all
share a least squares type of fitting function and a deliberate distortion of the under-
lying latent variable model. His method I e. g. minimizes the sum of squares of the
difference between S and X (0) as a function of 6, where 6 contains the loadings
as well as the structural parameters of the relationships between the latent variables,
and where all measurement error variances are a priori taken to be zero. Once the
optimal value for 6 is obtained, weighting vectors for the composites are chosen pro-
portional to the estimated loading vectors. McDonald applies his methods as well as
PLS to a particular, simple population correlation matrix, with known parameters.
Method I is the favorite of the referee who referred me to McDonald (1996), but
McDonald himself carefully avoids to state his overall preferences. Clearly, one set
of parameters is no basis for a well-established preference, as McDonald takes care
to point out on page 254, and again on page 262: the results will typically be rather
parameter dependent. I think it is relevant to note the fact, which is not difficult
to show, that Method I's loading vectors based on true parameters, their probability
limits, are typically not proportional to the true loadings, as opposed to PLS mode B.
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Table 2 of McDonald (1996) confirms this. Moreover, the ensuing proxies are not
proportional to the best linear predictors of the latent variables (in terms of their
direct indicators), again unlike PLS mode B. A necessary and sufficient condition
for proportionality in the context of the basic design with unrestricted correlations
between the latent variables, is that the loading vectors are eigenvectors of the cor-
responding error covariance matrices; if the latter are diagonal the unique factors of
each block should have identical variances.

One reviewer of McDonald’s paper, apparently a member of the “PLS-camp”,
suggested that among users of PLS there is an emerging consensus that PLS repre-
sents a philosophy rather different from the standard philosophy of what quantitative
behavioral science is doing: PLS is mainly prediction-oriented whereas the tradi-
tional approach is mainly inference-oriented. I tend to agree with this reviewer, if
only for the fact that in each and every one of Wold’s contributions to statistics
“prediction” and “predictive specifications” are central, key terms. And there is also
the embryonic PLS-model of principal components, which served as one of the
starting points of PLS (or NIPALS as it was called then in 1966): loadings as well
as “latent” variables are viewed and treated as parameters to be estimated with a
least squares “prediction” criterion leading to linear compounds as estimates for
the latent variables. So in this context at least, the approach appears to be entirely
natural. But I would maintain that it is still in need of serious development and
explication. Somehow the latent variable model, the basic design, seems to have
interfered in a pernicious way by posturing as the unique and proper way to analyze
and model high-dimensional data; this may have (as far as I can see) impeded further
developments. Without wanting to sound presumptuous, my contribution contained
in Sect. 1.6 can be seen as an attempt to revive what I believe to be the original
program. Perhaps PLS could re-orient itself by focussing on (proper) index build-
ing through prediction-based cross-validation. McDonald clearly disagrees with the
reviewer of his paper about the prediction versus inference issue, and counters by
claiming that, if it were true, since “we cannot do better than to use multivariate
regressions or canonical variate analysis”, one would expect to see a preference
among PLS users for multivariate regressions, or if they must use a path model they
should prefer mode B to mode A. Since this does not seem to happen in practice
he infers the invalidity of the reviewer’s statement. McDonald has a point when the
true parameters are known, but not when they are subject to estimation. If the goal
is prediction, this goal is as a rule served best by simplifying the maintained model
even more than we would do if description were just what we were after. In fact,
predictors based on a moderately incorrect version of the “true model” usually out-
perform those constructed on the basis of a more elaborate, more correct version,
see Dijkstra (1989) or Hastie et al. (2002). In other words, one can certainly not
dismiss path models and indices if prediction is called for.

The final issue raised by McDonald at the very end of his paper concerns the
use and appropriateness of latent variable models (in what follows the emphasis is
mine). He contends that because of factor score indeterminacy, a small number of
indicators makes a latent variable model quite inappropriate; indeed, we need lots
of them if we want to do any serious work using the model (this is an “inescapable
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fact”). But if we have a large number of indicators per latent variable, a simple aver-
age of the former will do an adequate job in replacing the latter, so we then no longer
need the model (in other words, the model is either inappropriate or redundant). In
my opinion this point of view is completely at odds with the notion of an acceptable
model being a useful approximation to part of reality, latent variable modelling is
no exception. If a model is to be any good for empirical explanation, prediction or
otherwise, it should not be a complete and correct specification. See among many
e.g. Kaplan (1946, 1964), or Hastie et al. (2002). A suitable methaphor is a map,
that by its very nature must yield a more or less distorted picture of “angles and
distances”; maps that are one-to-one can’t get us anywhere. The technical merits of
McDonald’s paper are not disputed here, but the philosophical and methodological
content I find hard to understand and accept.

The reviewer of the present chapter concludes from McDonalds results that “PLS
was a mistake, and Method I should have been invented instead. PLS should simply
be abandoned”. I disagree. I contend that PLS’ philosophy potentially has a lot to
offer. In my view there is considerable scope in the social sciences, especially in
high-dimensional, low-structure, fuzzy environments, for statistical approaches that
specify and construct rather simple “index-models” through serious predictive test-
ing. PLS in one version or the other still appears to have untapped sources, waiting
to be exploited.
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Chapter 2

PLS Path Modeling: From Foundations
to Recent Developments and Open Issues
for Model Assessment and Improvement

Vincenzo Esposito Vinzi, Laura Trinchera, and Silvano Amato

Abstract In this chapter the authors first present the basic algorithm of PLS Path
Modeling by discussing some recently proposed estimation options. Namely, they
introduce the development of new estimation modes and schemes for multidimen-
sional (formative) constructs, i.e. the use of PLS Regression for formative indicators,
and the use of path analysis on latent variable scores to estimate path coefficients
Furthermore, they focus on the quality indexes classically used to assess the perfor-
mance of the model in terms of explained variances. They also present some recent
developments in PLS Path Modeling framework for model assessment and improve-
ment, including a non-parametric GoF-based procedure for assessing the statistical
significance of path coefficients. Finally, they discuss the REBUS-PLS algorithm
that enables to improve the prediction performance of the model by capturing unob-
served heterogeneity. The chapter ends with a brief sketch of open issues in the area
that, in the Authors’ opinion, currently represent major research challenges.

2.1 Introduction

Structural Equation Models (SEM) (Bollen 1989; Kaplan 2000) include a number
of statistical methodologies meant to estimate a network of causal relationships,
defined according to a theoretical model, linking two or more latent complex
concepts, each measured through a number of observable indicators. The basic idea
is that complexity inside a system can be studied taking into account a causality
network among latent concepts, called Latent Variables (LV), each measured by
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several observed indicators usually defined as Manifest Variables (MV). It is in this
sense that Structural Equation Models represent a joint-point between Path Analy-
sis (Tukey 1964; Alwin and Hauser 1975) and Confirmatory Factor Analysis (CFA)
(Thurstone 1931).

The PLS (Partial Least Squares) approach to Structural Equation Models, also
known as PLS Path Modeling (PLS-PM) has been proposed as a component-based
estimation procedure different from the classical covariance-based LISREL-type
approach. In Wold’s (1975a) seminal paper, the main principles of partial least
squares for principal component analysis (Wold 1966) were extended to situations
with more than one block of variables. Other presentations of PLS Path Modeling
given by Wold appeared in the same year (Wold 1975b, c¢). Wold (1980) provides
a discussion on the theory and the application of Partial Least Squares for path
models in econometrics. The specific stages of the algorithm are well described in
Wold (1982) and in Wold (1985). Extensive reviews on the PLS approach to Struc-
tural Equation Models with further developments are given in Chin (1998) and in
Tenenhaus et al. (2005).

PLS Path Modeling is a component-based estimation method (Tenenhaus 2008a).
It is an iterative algorithm that separately solves out the blocks of the measurement
model and then, in a second step, estimates the path coefficients in the structural
model. Therefore, PLS-PM is claimed to explain at best the residual variance of
the latent variables and, potentially, also of the manifest variables in any regression
run in the model (Fornell and Bookstein 1982). That is why PLS Path Modeling is
considered more as an exploratory approach than as a confirmatory one. Unlike the
classical covariance-based approach, PLS-PM does not aim at reproducing the sam-
ple covariance matrix. PLS-PM is considered as a soft modeling approach where
no strong assumptions (with respect to the distributions, the sample size and the
measurement scale) are required. This is a very interesting feature especially in
those application fields where such assumptions are not tenable, at least in full. On
the other side, this implies a lack of the classical parametric inferential framework
that is replaced by empirical confidence intervals and hypothesis testing procedures
based on resampling methods (Chin 1998; Tenenhaus et al. 2005) such as jackknife
and bootstrap. It also leads to less ambitious statistical properties for the esti-
mates, e.g. coefficients are known to be biased but consistent at large (Cassel et al.
1999, 2000). Finally, PLS-PM is more oriented to optimizing predictions (explained
variances) than statistical accuracy of the estimates.

In the following, we will first present the basic algorithm of PLS-PM by dis-
cussing some recently proposed estimation options and by focusing on the quality
indexes classically used to assess the performance (usually in terms of explained
variances) of the model (Sect.2.2). Then, we will present a non-parametric GoF-
based procedure for assessing the statistical significance of path coefficients
(Sect.2.3.1). Finally, we will present the REBUS-PLS algorithm that enables to
improve the prediction performance of the model in presence of unobserved hetero-
geneity (Sect. 2.4). This chapter ends with a brief sketch of open issues in the area
that, in our opinion, currently represent major research challenges (Sect. 2.5).
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2.2 PLS Path Modeling: Basic Algorithm and Quality Indexes

2.2.1 The Algorithm

PLS Path Modeling aims to estimate the relationships among Q (¢ = 1,..., Q)
blocks of variables, which are expression of unobservable constructs. Essentially,
PLS-PM is made of a system of interdependent equations based on simple and mul-
tiple regressions. Such a system estimates the network of relations among the latent
variables as well as the links between the manifest variables and their own latent
variables.

Formally, let us assume P variables (p = 1,..., P) observed on N units (n =
1,..., N). The resulting data (x,p4) are collected in a partitioned data table X:

X=[X1....Xq.....X0]

where X, is the generic g-th block made of P, variables.

As well known, each Structural Equation Model is composed by two sub-models:
the measurement model and the structural model. The first one takes into account the
relationships between each latent variable and the corresponding manifest variables,
while the structural model takes into account the relationships among the latent
variables.

In the PLS Path Modeling framework, the structural model can be written as:

E;=Boy+ Y. Paks+&; @1
q:E,—E;
where & ;(j =1, ..., J) is the generic endogenous latent variable, B4, is the generic

path coefficient interrelating the ¢-th exogenous latent variable to the
J-th endogenous one, and §; is the error in the inner relation (i.e. disturbance term
in the prediction of the j-th endogenous latent variable from its explanatory latent
variables).

The measurement model formulation depends on the direction of the relation-
ships between the latent variables and the corresponding manifest variables (Fornell
and Bookstein 1982). As a matter of fact, different types of measurement model are
available: the reflective model (or outwards directed model), the formative model
(or inwards directed model) and the MIMIC model (a mixture of the two previous
models).

In a reflective model the block of manifest variables related to a latent variable is
assumed to measure a unique underlying concept. Each manifest variable reflects (is
an effect of) the corresponding latent variable and plays a role of endogenous vari-
able in the block specific measurement model. In the reflective measurement model,
indicators linked to the same latent variable should covary: changes in one indicator
imply changes in the others. Moreover, internal consistency has to be checked, i.e.
each block is assumed to be homogeneous and unidimensional. It is important to
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notice that for the reflective models, the measurement model reproduces the fac-
tor analysis model, in which each variable is a function of the underlying factor.
In more formal terms, in a reflective model each manifest variable is related to the
corresponding latent variable by a simple regression model, i.e.:

Xpg = Apo+ Apgdy +€pq (22

where A, is the loading associated to the p-th manifest variable in the g-th block
and the error term € ,, represents the imprecision in the measurement process. Stan-
dardized loadings are often preferred for interpretation purposes as they represent
correlations between each manifest variable and the corresponding latent variable.

An assumption behind this model is that the error €, has a zero mean and is
uncorrelated with the latent variable of the same block:

E(xpgl€g) = Apo + Apg&y- (2.3)

This assumption, defined as predictor specification, assures desirable estimation
properties in classical Ordinary Least Squares (OLS) modeling.

As the reflective block reflects the (unique) latent construct, it should be homoge-
neous and unidimensional. Hence, the manifest variables in a block are assumed to
measure the same unique underlying concept. There exist several tools for checking
the block homogeneity and unidimensionality:

(a) Cronbach’s alpha: this is a classical index in reliability analysis and represents
a strong tradition in the SEM community as a measure of internal consistency.
A block is considered homogenous if this index is larger than 0.7 for confirma-
tory studies. Among several alternative and equivalent formulas, this index can
be expressed as:

Zmép/ cor(X pg, X prq) P,

P+ Zl,;ép/ cor(Xpg, X prg) Pg—1

o (2.4)

where P, is the number of manifest variables in the g-th block.

(b) Dillon-Goldstein’s (or Joreskog’s) rho (Wertz et al. 1974) better known as
composite reliability: a block is considered homogenous if this index is larger
than 0.7

P,
p= (Zpil A17q)2
- P, P, :
(Zpil A1711)2 + Zpil(l - Aéq)

(2.5)

(c) Principal component analysis of a block: a block may be considered unidi-
mensional if the first eigenvalue of its correlation matrix is higher than 1,
while the others are smaller (Kaiser’s rule). A bootstrap procedure can be
implemented to assess whether the eigenvalue structure is significant or rather
due to sampling fluctuations. In case unidimensionality is rejected, eventual
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groups of unidimensional sub-blocks can be identified by referring to patterns
of variable-factor correlations displayed on the loading plots.

According to Chin (1998), Dillon-Goldstein’s rho is considered to be a better indica-
tor than Cronbach’s alpha. Indeed, the latter assumes the so-called tau equivalence
(or parallelity) of the manifest variables, i.e. each manifest variable is assumed to
be equally important in defining the latent variable. Dillon-Goldstein’s rho does not
make this assumption as it is based on the results from the model (i.e. the loadings)
rather than the correlations observed between the manifest variables in the dataset.
Cronbach’s alpha actually provides a lower bound estimate of reliability.

In the formative model , each manifest variable or each sub-block of manifest
variables represents a different dimension of the underlying concept. Therefore,
unlike the reflective model, the formative model does not assume homogeneity nor
unidimensionality of the block. The latent variable is defined as a linear combination
of the corresponding manifest variables, thus each manifest variable is an exogenous
variable in the measurement model. These indicators need not to covary: changes in
one indicator do not imply changes in the others and internal consistency is no more
an issue. Thus the measurement model could be expressed as:

Py

E, =) wpgXpg + 84 (2.6)
p=1

where wpq is the coefficient linking each manifest variable to the corresponding
latent variable and the error term §, represents the fraction of the corresponding
latent variable not accounted for by the block of manifest variables. The assumption
behind this model is the following predictor specification:

PC[
E(yl%pg) = Y 0pgXpg. (2.7)
p=1

Finally, the MIMIC model is a mixture of both the reflective and the formative
models within the same block of manifest variables.

Independently from the type of measurement model, upon convergence of the
algorithm, the standardized latent variable scores (§ ) associated to the g-th latent
variable (§,) are computed as a linear combination of its own block of manifest
variables by means of the so-called weight relation defined as:

PC[
E, = Wpgkpg (2.8)
p=1

where the variables x ,, are centred and w,; are the outer weights. These weights
are yielded upon convergence of the algorithm and then transformed so as to pro-
duce standardized latent variable scores. However, when all manifest variables are
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observed on the same measurement scale and all outer weights are positive, it is
interesting and feasible to express these scores in the original scale (Fornel 1992).
This is achieved by using normalized weights w,, defined as:

Pq
Wpg = —p 2 with Y pg = 1¥q: Py > 1. (2.9)
Zp=1wpq p=1

It is very important not to confound the weight relation defined in (2.8) with
a formative model. The weight relation only implies that, in PLS Path Modeling,
any latent variable is defined as a weighted sum of its own manifest variables. It
does not affect the direction of the relationship between the latent variable and its
own manifest variables in the outer model. Such a direction (inwards or outwards)
determines how the weights used in (2.8) are estimated.

In PLS Path Modeling an iterative procedure permits to estimate the outer
weights (wp4) and the latent variable scores (Eq). The estimation procedure is
named partial since it solves blocks one at a time by means of alternating single
and multiple linear regressions. The path coefficients (84, ) are estimated afterwards
by means of a regular regression between the estimated latent variable scores in
accordance with the specified network of structural relations. Taking into account
the regression framework of PLS Path Modeling, we prefer to think of such a
network as defining a predictive path model for the endogenous latent variables
rather than a causality network. Indeed, the emphasis is more on the accuracy of
predictions than on the accuracy of estimation.

The estimation of the outer weights is achieved through the alternation of the
outer and the inner estimation steps, iterated till convergence. It is important to
underline that no formal proof of convergence of this algorithm has been pro-
vided until now for models with more than two blocks. Nevertheless, empirical
convergence is usually observed in practice.

The procedure works on centred (or standardized) manifest variables and starts
by choosing arbitrary initial weights w 4. Then, in the outer estimation stage, each
latent variable is estimated as a linear combination of its own manifest variables:

Py
Vg Ok Y WpgX pg = £X gy (2.10)
p=1

where v, is the standardized (zero mean and unitary standard deviation) outer esti-
mate of the g-th latent variable &, the symbol o« means that the left side of the
equation corresponds to the standardized right side and the “#£” sign shows the sign
ambiguity. This ambiguity is usually solved by choosing the sign making the outer
estimate positively correlated to a majority of its manifest variables. Anyhow, the
user is allowed to invert the signs of the weights for a whole block in order to make
them coherent with the definition of the latent variable.



2 PLS Path Modeling: Foundations, Recent Developments and Open Issues 53

In the inner estimation stage, each latent variable is estimated by considering its
links with the other Q” adjacent latent variables:

Q/
Dy X Y egqvy (2.11)
q'=1

where #, is the standardized inner estimate of the g-th latent variable &, and
each inner weight (e44/) is equal (in the so-called centroid scheme) to the sign of
the correlation between the outer estimate v, of the g-th latent variable and the
outer estimate of the ¢’ latent variable v,/ connected with v,. Inner weights can be
obtained also by means of other schemes than the centroid one. Namely, the three
following schemes are available:

1. Centroid scheme (the Wold’s original scheme): take the sign of the correlation
between the outer estimate v, of the g-th latent variable and the outer estimate
vy connected with v,.

2. Factorial scheme (proposed by Lohmdller): take the correlation between the
outer estimate v, of the g-th latent variable and the outer estimate v, connected
with v,.

3. Structural or path weighting scheme: take the regression coefficient between v
and the v, connected with v, if v, plays the role of dependent variable in
the specific structural equation, or take the correlation coefficient in case it is
a predictor.

Even though the path weighting scheme seems the most coherent with the direction
of the structural relations between latent variables, the centroid scheme is very often
used as it adapts well to cases where the manifest variables in a block are strongly
correlated to each other. The factorial scheme, instead, is better suited to cases where
such correlations are weaker. In spite of different common practices, we strongly
advice to use the path weighting scheme. Indeed, this is the only estimation scheme
that explicitly considers the direction of relationships as specified in the predictive
path model.

Once a first estimate of the latent variables is obtained, the algorithm goes on by
updating the outer weights wpq.

Two different modes are available to update the outer weights. They are closely
related to, but do not coincide with, the formative and the reflective modes:

e Mode A : each outer weight w,, is updated as the regression coefficient in the
simple regression of the p-th manifest variable of the g-th block (x ,4) on the
inner estimate of the g-th latent variable #,. As a matter of fact, since #, is
standardized, the generic outer weight w,, is obtained as:

Wpq = Cov (X pg. B4) (2.12)

i.e. the regression coefficient reduces to the covariance between each manifest
variable and the corresponding inner estimate of the latent variable. In case the
manifest variables have been also standardized, such a covariance becomes a
correlation.
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e Mode B : the vector w, of the weights wj, associated to the manifest variables
of the g-th block is updated as the vector of the regression coefficients in the
multiple regression of the inner estimate of the g-th latent variable #, on the
manifest variables in X 4:

we = (X,Xq) " X9, (2.13)

where X, comprises the P, manifest variables x ,, previously centred and
scaled by /1/N.

As already said, the choice of the outer weight estimation mode is strictly related
to the nature of the measurement model. For a reflective (outwards directed) model
the Mode A is more appropriate, while Mode B is better for a formative (inwards
directed) model. Furthermore, Mode A is suggested for endogenous latent variables,
while Mode B for the exogenous ones.

In case of a one-block PLS model, Mode A leads to the same results (i.e. outer
weights, loadings and latent variable scores) as for the first standardized principal
component in a Principal Component Analysis (PCA). This reveals the reflective
nature of PCA that is known to look for components (weighted sums) explaining
the corresponding manifest variables at best. Instead, Mode B coherently provides an
indeterminate solution when applied to a one-block PLS model. Indeed, without an
inner model, any linear combination of the manifest variables is perfectly explained
by the manifest variables themselves.

It is worth noticing that Mode B may be affected by multicollinearity between
manifest variables belonging to the same block. If this happens, PLS regression
(Tenenhaus 1998; Wold et al. 1983) may be used as a more stable and better inter-
pretable alternative to OLS regression to estimate outer weights in a formative
model, thus defining a Mode PLS (Esposito Vinzi 2008, 2009; Esposito Vinzi and
Russolillo 2010). This mode is available in the PLSPM module of the XLSTAT
software ! (Addinsoft 2009). As a matter of fact, it may be noticed that Mode A
consists in taking the first component from a PLS regression, while Mode B takes
all PLS regression components (and thus coincides with OLS multiple regression).
Therefore, running a PLS regression and retaining a certain number (that may be
different for each block) of significant PLS components is meant as an intermediate

! XLSTAT-PLSPM is the ultimate PLS Path Modeling software implemented in XLSTAT (http:/
www.xIstat.com/en/products/xIstat-plspm/), a data analysis and statistical solution for Microsoft
Excel. XLSTAT allows using the PLS approach (both PLS Path modeling and PLS regression)
without leaving Microsoft Excel. Thanks to an intuitive and flexible interface, XLSTAT-PLSPM
permits to build the graphical representation of the model, then to fit the model, to display the
results in Excel either as tables or graphical views. As XLSTAT-PLSPM is totally integrated
with the XLSTAT suite, it is possible to further analyze the results with the other XLSTAT
features. Apart from the classical and fundamental options of PLS Path Modeling, XLSTAT-
PLSPM comprises several advanced features and implements the most recent methodological
developments.


http://www.xlstat.com/en/products/xlstat-plspm/
http://www.xlstat.com/en/products/xlstat-plspm/
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mode between Mode A and Mode B. This new Mode PLS adapts well to formative
models where the blocks are multidimensional but with fewer dimensions than the
number of manifest variables.

The PLS Path Modeling algorithm alternates the outer and the inner estimation
stages by iterating till convergence. Up to now convergence has been proved only
for path diagrams with one or two blocks (Lyttkens et al. 1975). However, for multi-
block models, convergence is practically always encountered in practice.

Upon convergence, the estimates of the latent variable scores are obtained
according to 2.8. Thus, PLS Path Modeling provides a direct estimate of the latent
variable individual scores as aggregates of manifest variables that naturally involve
measurement error. The price of obtaining these scores is the inconsistency of the
estimates.

Finally, structural (or path) coefficients are estimated through OLS multiple/
simple regressions among the estimated latent variable scores. PLS regression can
nicely replace OLS regression for estimating path coefficients whenever one or more
of the following problems occur: missing latent variable scores, strongly correlated
latent variables, a limited number of units as compared to the number of predictors
in the most complex structural equation. A PLS regression option for path coeffi-
cients is implemented in the PLSPM module of the XLSTAT software (Addinsoft
2009). This option permits to choose a specific number of PLS components for each
endogenous latent variable.

A schematic description of the PLS Path Modeling algorithm by Léhmoller
(with specific options for the sake of brevity) is provided in Algorithm 1. This
is the best known procedure for the computation of latent variable scores and it
is the one implemented in the PLSPM module of the XLSTAT software. There
exists a second and less known procedure initially proposed in Wold (1985). The
Lohmoller’s procedure is more advantageous and easier to implement. However,
the Wold’s procedure seems to be more interesting for proving convergence proper-
ties of the PLS algorithm as it is monotonically convergent (Hanafi 2007). Indeed, at
present PLS Path Modeling is often blamed not to optimize a well identified global
scalar function. However, very promising researches on this topic are on going and
interesting results are expected soon (Tenenhaus 2008b; Tenenhaus and Tenenhaus
2009).

In Lohmoller (1987) and in Lohmdller (1989) Wold’s original algorithm was
further developed in terms of options and mathematical proprieties. Moreover, in
Tenenhaus and Esposito Vinzi (2005) new options for computing both inner and
outer estimates were implemented together with a specific treatment for missing
data and multicollinearity while enhancing the data analysis flavour of the PLS
approach and its presentation as a general framework to the analysis of multiple
tables.

A comprehensive application of the PLS Path Modeling algorithm to real data
will be presented in Sect.2.4.2 after dealing with the problem of capturing unob-
served heterogeneity for improving the model prediction performance.
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Algorithm 1 : PLS Path Modeling based on Lohmoller’s algorithm with the follow-
ing options: centroid scheme, standardized latent variable scores, OLS regressions
Input: X = [X4,..., X,.....Xp],ie. O blocks of centred manifest variables;
Output: w,, éq, B
I: forallg =1,...,0 do
2:  initialize w,
3 v, X :I:Z::":lwpqqu =£X,w,
4 eyy =sign [cor (vq, vq/)] following the centroid scheme
5
6

Q/
#, x Zq’=1 €qq'Vq
update w, :

(@)  wpy = cov(x pq, ) for Mode A (outwards directed model)

’ —1 ’
(b) wy = (%) (X,;Vﬂq ) for Mode B (inwards directed model)

7: end for
8: Steps 1-7 are repeated until convergence on the outer weights is achieved, i.e. until:

max{wpq,currem iteration — Wpg,previous ileralion} <A
where A is a convergence tolerance usually set at 0.0001 or less
9: Upon convergence:

(1) for each block the standardized latent variable scores are computed as weighted
aggregates of manifest variables:

A

&, X Xywy,

(2) for each endogenous latent variable §; (j = 1,..., J), the vector of path coefficients is
estimated by means of OLS regression as:

- (22)”

where £ includes the scores of the latent variables that explain the j-th endogenous latent
variable & ;, and § ; is the latent variable score of the j-th endogenous latent variable

1,

/Ej’

2.2.2 The Quality Indexes

PLS Path Modeling lacks a well identified global optimization criterion so that there
is no global fitting function to assess the goodness of the model. Furthermore, it
is a variance-based model strongly oriented to prediction. Thus, model validation
mainly focuses on the model predictive capability. According to PLS-PM structure,
each part of the model needs to be validated: the measurement model, the structural
model and the overall model. That is why, PLS Path Modeling provides three differ-
ent fit indexes: the communality index, the redundancy index and the Goodness of
Fit (GoF) index.
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For each ¢-th block in the model with more than one manifest variable (i.e. for
each block with P; > 1) the quality of the measurement model is assessed by means
of the communality index:

P,
1 & .
Comg = 5 ) cor® (xpa-8g)Va: P> 1. (2.14)
q

p=1

This index measures how much of the manifest variables variability in the g-th
block is explained by their own latent variable scores é 4- Moreover, the commu-
nality index for the g-th block is nothing but the average of the squared correlations
(squared loadings in case of standardized manifest variables) between each manifest
variable in the g-th block and the corresponding latent variable scores.

It is possible to assess the quality of the whole measurement model by means of
the average communality index, i.e:

1
Com = ———— > P,Comy. (2.15)
Zq:Pq>1 qq:Pq>1

This is a weighted average of all the Q block-specific communality indexes
(see (2.14)) with weights equal to the number of manifest variables in each block.
Moreover, since the communality index for the g-th block is nothing but the average
of the squared correlation in the block, then the average communality is the average
of all the squared correlations between each manifest variable and the corresponding
latent variable scores in the model, i.e.:

Pq
C0m=ﬁ Z Zcorz(qu,éq). (2.16)

P
4 q:Pg>1 p=1

Let us focus now on the structural model. Although the quality of each structural
equation is measured by a simple evaluation of the R? fit index, this is not sufficient
to evaluate the whole structural model. Specifically, since the structural equations
are estimated once the convergence is achieved and he latent variable scores are esti-
mated, then the R? values only take into account the fit of each regression equation
in the structural model.

It would be a wise choice to replace this current practice by a path analysis on the
latent variable scores considering all structural equations simultaneously rather than
as independent regressions. We see two advantages in this proposal: the path coef-
ficients would be estimated by optimizing a single discrepancy function based on
the difference between the observed covariance matrix of the latent variable scores
and the same covariance matrix implied by the model; the structural model could be
assessed as a whole in terms of a chi-square test related to the optimized discrepancy
function. We have noticed, through several applications, that such a procedure does
not actually change the prediction performance of the model in terms of explained
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variances for the endogenous latent variables. Up to now, no available software has
implemented the path analysis option in a PLS-PM framework.

In view of linking the prediction performance of the measurement model to
the structural one, the redundancy index computed for the j-th endogenous block,
measures the portion of variability of the manifest variables connected to the j-th
endogenous latent variable explained by the latent variables directly connected to
the block, i.e.:

Red; = Comj x R? (éj,éq:gﬁg_,) _ 2.17)

A global quality measure of the structural model is also provided by the average
redundancy index, computed as:

J
— 1
Red = — Red; 2.18
e Jj; ed; ( )

where J is the total number of endogenous latent variables in the model.

As aforementioned, there is no overall fit index in PLS Path Modeling. Never-
theless, a global criterion of goodness of fit has been proposed by Tenenhaus et al.
(2004): the GoF index. Such an index has been developed in order to take into
account the model performance in both the measurement and the structural model
and thus provide a single measure for the overall prediction performance of the
model. For this reason the GoF index is obtained as the geometric mean of the
average communality index and the average R? value:

GoF = vV Com x R? (2.19)

where the average R? value is obtained as:

— 1 I
R = SR (gj,nggq%j), (2.20)

As it is partly based on average communality, the GoF index is conceptually
appropriate whenever measurement models are reflective. However, communalities
may be also computed and interpreted in case of formative models knowing that, in
such a case, we expect lower communalities but higher R? as compared to reflective
models. Therefore, for practical purposes, the GoF index can be interpreted also
with formative models as it still provides a measure of overall fit.

According to (2.16) and (2.20) the GoF index can be rewritten as:

P A J 22
Zq:Pq>1 qu=1 Cor? (xpwsq) Z/'=1 R? (gj*sqtéq—%,)
X .

GoF =
Zquq>l P, J

(2.21)
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A normalized version is obtained by relating each term in (2.21) to the corre-
sponding maximum value. In particular, it is well known that in principal component
analysis the best rank one approximation of a set of variables X is given by the
eigenvector associated to the largest eigenvalue of the X’X matrix. Furthermore,
the sum of the squared correlations between each variable and the first principal
component of X is a maximum.

Therefore, if data are mean centred and with unit variance, the left term under

the square root in (2.21) is such that Zﬁ‘;l cor? (qu, §q> < K(lq), where )L%q) is
the first eigenvalue obtained by performing a Principal Component Analysis on the

q-th block of manifest variables. Thus, the normalized version of the first term of
the GoF is obtained as:

Py 2 £
1 p=1COT (qu,§q>
T, = - Z : . (2.22)
Zq:Pq>1 Py q:Py>1 A(‘I)

In other words, here the sum of the communalities in each block is divided by
the first eigenvalue of the block itself.

As concerning the right term under the square root in (2.19), the normalized
version is obtained as:

1 LR (éjvéq:sq—»s,)

T 2
4 Jj=1 Pj

(2.23)

where p; is the first canonical correlation of the canonical analysis between X ;
containing the manifest variables associated to the j-th endogenous latent variable,
and a matrix containing the manifest variables associated to all the latent variables
explaining §;.

Thus, according to (2.21), (2.22) and (2.23), the relative GoF index is:

GOFrel =
1 2
ZCFPPI Py q:Py>1 A(q) j=1 Pj

(2.24)

This index is bounded between 0 and 1. Both the GoF and the relative GoF are
descriptive indexes, i.e. there is no inference-based threshold to judge the statistical
significance of their values. As a rule of thumb, a value of the relative GoF equal to
or higher than 0.90 clearly speaks in favour of the model.

As PLS Path Modeling is a soft modeling approach with no distributional
assumptions, it is possible to estimate the significance of the parameters trough
cross-validation methods like jack-knife and bootstrap (Efron and Tibshirani 1993).
Moreover, it is possible to build a cross-validated version of all the quality indexes
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(i.e. of the communality index, of the redundancy index, and of the GoF index) by
means of a blindfolding procedure (Chin 1998; Lohmoller 1989).

Bootstrap confidence intervals for both the absolute and the relative Goodness of
Fit Indexes can be computed. In both cases the inverse cumulative distribution func-
tion (cdf) of the GoF (@g,F ) is approximated using a bootstrap-based procedure. B
(usually > 100) re-samples are drawn from the initial dataset of N units defining the
bootstrap population. For each of the B re-samples, the GoF? index is computed,
with b = 1--- B. The values of GoF? are then used for computing the Monte Carlo
approximation of the inverse cdf, dig oF - Thus, it is possible to compute the bounds
of the empirical confidence interval from the bootstrap distribution at the (1 — «)
confidence level by using the percentiles as:

(@8, (@/2). 98, (1= a/2)]. (2.25)

Several applications have shown that the variability of the GoF values is mainly
due to the inner model while the outer model contribution to GoF is very stable
across the different bootstrap re-samples.

2.3 Prediction-Based Model Assessment

In this section we present a non-parametric GoF -based bootstrap validation proce-
dure for assessing the statistical significance of path coefficients (individually or by
sub-sets).

In order to simplify the discussion we will refer to a very simple model with only
three latent variables: &, &, and &5 (see Fig. 2.1). The structural relations defined
in Fig. 2.1 are formalized by the following equations:

&, = Pox+ P12é + {2

&3 =Pos+ P13, + P&+ 45

where B;; (¢g=1,2 and j =2,3) stands for the path coefficient linking the
g-th latent variable to the j-th endogenous latent variable, and ¢; is the error term
associated to each endogenous latent variable in the model.

(2.26)

@ Bis
b (&)
Fig. 2.1 Path diagram of the

structural model specified in @
(2.26)
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Equation (2.26) defines a structural model with only three latent variables and
with three structural paths. In the following, first we present a non-parametric infer-
ential procedure based on the GoF index to assess the statistical significance of a
single path coefficient (Sect. 2.3.1). Then, we discuss the case of an omnibus test on
all the path coefficients or on sub-sets of theirs (Sect. 2.3.2).

2.3.1 Hypothesis Testing on One Path Coefficient

Here we want to test if a generic path coefficient 8;; is different from 0, i.e.

Hp : ,Bq j = 0
H : By #0 (2.27)
The null hypothesis of B,; =0 is tested against the alternative hypothesis that
Bqj # 0, thus a two-tailed test is performed.

In order to perform this hypotesis testing procedure, we need to define a proper
test statistic and the corresponding distribution under the null hypothesis. In par-
ticular, the GoF index will be used to test the hypotheses set in (2.27), while the
corresponding distribution under the null hypothesis will be obtained by using a
bootstrap procedure.

Let GoFy,, be the GoF value under the null hypothesis, @ be the inverse cumu-
lative distribution function (cdf’) of the GoFg,, F be the cdf of X, and o®) pe
the B-sample bootstrap approximation of @. In order to approximate @ by means of
oB we need to define a B-sample bootstrap estimate of F' under the null hypoth-
esis (F Ho® ) i.e. such that the null hypothesis is true. Remembering that X is the
partitioned matrix of the manifest variables, the sample estimates of F' are defined
on the basis of p(x}) = ﬁ, wheren = 1,2,..., N and p(x),) is the probability to
extract the n-th observation from the matrix X .

Suppose we want to test the null hypothesis that no linear relationship exists
between &, and &. In other words, we want to test the null hypothesis that the
coefficient B,3 linking &, to &4 is equal to O:

Ho : 23 =0

2.28
Hy:B23 #0 (228)

In order to reproduce the model under Hy the matrix of the manifest variables asso-
ciated to €5, 1.e. X 3, can be deflated by removing the linear effect of X 5, where X,
is the block of manifest variables associated to &,. In particular, the deflated matrix
X 3(2) is obtained as:

X320 =X3-X2 (XlzXz)_l X5 Xs. (2.29)

Thus, the estimate of F under the null hypothesis is £ [X1.X2.X30)]"
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Once the estimate of cdf of X under the null hypothesis is defined, the B-sample
bootstrap approximation @B of @ is obtained by repeating B times the following
procedure.

Foreachb: b =1,2...,B:

1. Draw a random sample from I:“[XI’X2,X3(2)].

2. Estimate the model under the null hypothesis for the sample obtained at the
previous step.

3. Compute the GoF value, GoF g’o) .

The choice of B depends on several aspects such as: the sample size, the number
of manifest variables and the complexity of the structural model. Usually, we prefer
to choose B > 1000.

The decision on the null hypothesis is taken by referring to the inverse cdf of
GoFp,. In particular, the test is performed at a nominal size «, by comparing the
GoF value for the model defined in (2.26), computed on the original data, to the

(1 — &)™ percentile of o® If GoF > d)g;la), then we reject the null hypothesis.

A schematic representation of the procedure to perform a non-parametric Boot-
strap GoF -based test on a single path-coefficient is given in Algorithm 2.

Algorithm 2 : Non-parametric Bootstrap GoF-based test of a path-coefficient
Hypotheses on the coefficient 8;:

Hoiﬂq/' =0

2.30
Hl :ﬂqj 7& 0 ( )

1: Estimate the specified structural model on the original dataset (bootstrap population) and
compute the GoF index.
-1
: Deflate the endogenous block of manifest variable X ;: X ;i) = X ;— X, (X;Xq) X, X;.
Define B large enough.
: forallb = 1,...,Bd0A
Draw a sample from F[Xl,Xz,Xsm]'
Estimate the model under the null hypothesis.
Compute the GoF value named GoF, HY-
: end for
: By comparing the original GoF index to the inverse cdf of GoFp, accept or reject Hy.

2.3.2 Hypothesis Testing on the Whole Set of Path Coefficients

The procedure described in Sect.2.3.1 can be easily generalized in order to test a
sub-set of path coefficients or all of them at the same time. If the path coefficients are
tested simultaneously, then this omnibus test can be used for an overall assessment
of the model. This test is performed by comparing the default model specified by the
user to the so-called baseline models, i.e the saturated model and the independence
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or null model. The saturated model is the least restrictive model where all the struc-
tural relations are allowed (i.e. all path coefficients are free parameters). The null
model is the most restrictive model with no relations among latent variables (i.e.
all path coefficients are constrained to be 0). Following the structure of the model
defined in figure 2.1, the null model is the model where : 812 = B13 = B23 = 0,
while the saturated model coincides with the one in figure 2.1. More formally:

0:B12=Pp13=pPa3=0
2.31
H; : Atleast one 8,; # 0 (2.31)

As for the simple case described in Sect.2.3.1 we need to properly deflate X in
order to estimate #&_ In particular, each endogenous block X ; has to be deflated
according to the specified structural relations by means of orthogonal projection
operators. In the model defined by (2.26), the block of manifest variables linked
to £, (X2) has to be deflated by removing the linear effect of &; on &,, while the
block of the manifest variables linked to & ; (X 3) has to be deflated by removing the
linear effect of both &, and &,. However, since &, is an endogenous latent variable,
the deflated block X'»(;) has to be taken into account when deflating X 3. In other
words, the deflation of the block X5 is obtained as:

Xom = X2 — X1 (X1X1) 7 XX,

while, the deflation of the block X 3 is obtained as:

X302 = X3 - [X1,. X20)] ([Xl,Xz(l)]’ [lexz(l)]) [X1. X20)] X,

As we deal with a recursive model, it is always possible to build blocks that verify
the null hypothesis by means of a proper sequence of deflations.
The algorithm described in Sect.2.3.1 and in Algorithm 2 can be applied to
[X1 X200 X301.2)] in order to construct an inverse cdf of &) such that Hy is
true. The test is performed at a nominal confidence level «, by comparing the GoF
value for the model defined in (2 26) to the (1 — a)*” percentile of & built upon
F[Xl,Xz(l),Xm.z)] If GoF > &8 (- a), then the null hypothesis is rejected. By com-
paring the GoF value obtained for the default model on the bootstrap population

with the GoFI({b; obtained from bootstrap samples (b = 1,2, ..., B), an empirical
p-value can be computed as:
B
1
p-value = % (2.32)

where

. )
1if GoFyy’ > GoF

=) "7H, =Y (2.33)
0 otherwise

and B is the number of Bootstrap re-samples.
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As stated in (2.31), the above procedure tests the null hypothesis that all path
coefficients are equal to zero against the alternative hypothesis that at least one of
the coefficients is different from zero. By defining a proper deflation strategy, tests
on any sub-set of path coefficients can be performed. Stepwise procedures can also
be defined in order to identify a set of significant coefficients.

2.3.3 Application to Simulated Data

In this subsection we apply the procedures for testing path coefficients to simulated
data.

Data have been generated according to the basic model defined in Fig. 2.2. This
model is a simplified version of the one defined in Fig. 2.1.

According to Fig. 2.2, the structural model is specified by the equation:

£3 = Poz + P13&| + B3k, + &5 (2.34)
Three different tests have been performed on the simulated data-set. In particular,
we perform a test:

1. On the whole model:
Hp : B13 =B23=0

2.35
H; : Atleast one B;; # 0 (2.33)
2. On the coefficient 813
H() . ,313 =0
(2.36)
Hy: B3 #0
3. On the coefficient 8,3
Hp : B23 =0
(2.37)
Hy: Ba3 #0

2.3.3.1 Simulation Scheme

The following procedure has been used in order to simulate the manifest variables
for the model in Fig. 2.2 with a sample size of 50 units:

Fig. 2.2 Path diagram of the
structural model specified by e
(2.34)
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1. For each exogenous block, three manifest variables have been randomly gener-
ated according to a multivariate normal distribution. In particular, the manifest
variables linked to the latent variable &, come from a multivariate normal dis-
tribution with means equal to 2 and standard deviations equal to 1.5 for every
manifest variable. The manifest variables of block 2 come from a multivariate
normal distribution with means equal to 0 and standard deviations equal to 1 for
every manifest variable.

2. The exogenous latent variables & ; and &, have been computed as a standardized
aggregate of the manifest variables obtained in the first step. An error term (from
a normal distribution with zero mean and standard deviation equal to 1/4 of the
manifest variables’ standard deviation) has been added to both exogenous latent
variables.

3. The manifest variables corresponding to the endogenous latent variable & ; have
been generated as a standardized aggregate of &, and &, plus an error term (from
a normal distribution with zero mean and standard deviation equal to 0.25).

2.3.3.2 Results

Table 2.1 reports the path coefficients and the GoF values obtained by running the
PLS-PM algorithm on the simulated dataset.

According to the procedure described in Sect.2.3.2 we need to deflate the data
in different ways in order to perform the three different types of tests. Namely, in
order to perform the first test (Hy : 813 = P23 = 0) we need to deflate the block
X 3 with regards to X, and X; (Test 1), while the second test (Hp : B13 = 0) is
performed by deflating the block X 3 only with regards to X ; (Test 2) and the last
test (Ho : B23 = 0) is performed by deflating the block X 3 with regards to X,
(Test 3).

Under each null hypothesis, bootstrap resampling has been performed to obtain
the bootstrap approximation B of @. Bootstrap distributions have been approxi-
mated by 1,000 pseudo-random samples.

The histograms of the bootstrap approximations of the GoF distributions under
the null hypotheses for Test 1, Test 2 and Test 3 are shown in Figs.2.3-2.5,
respectively. These histograms seem to reveal fairly normal distributions.

Table 2.2 reports the values of the critical thresholds computed for test sizes
o = 0.10 and ¢ = 0.05 on the bootstrap distribution for the three different tests.
The p — values, computed according to the formula in (2.32), are also shown. On
this basis, the null hypotheses for Test 1 and Test 2 have been correctly rejected by
the proposed procedure. Nevertheless, the proposed test accepts the null hypothesis
for Test 3 even if this hypothesis is false. This is due to the very weak value for the
corresponding path coefficient, i.e. 23 = 0.05.

Table 2.1 Results from the B 0.94
simulated data-set 1322 0.05

GoF (Absolute) 0.69
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Table 2.2 Thresholds and % =010 % =005 pvalue

p-values from bootstrap

distributions (1,000 Test 1 0.46 0.49 0

re-samples) Test 2 0.47 0.50 0
Test 3 0.74 0.77 0.27

Further researches are needed to investigate features of the GoF distribution as
well as the statistical power of the proposed tests and their sensitivity with respect
to the size of the coefficients, the sample size and the complexity of the structural
model.

2.4 Heterogeneity in PLS Path Modeling

In this section we discuss how to improve the prediction performance and the
interpretability of the model by allowing for unobserved heterogeneity.

Indeed, heterogeneity among units is an important issue in statistical analysis.
Treating the sample as homogeneous, when it is not, may seriously affect the quality
of the results and lead to biased interpretation. Since human behaviors are complex,
looking at groups or classes of units having similar behaviors will be particularly
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hard. Heterogeneity can hardly be detected using external information, i.e. using
a priori clustering approach, especially in social, economic and marketing areas.
Moreover, in several application fields (e.g. marketing) more attention is being
given to clustering methods able to detect groups that are homogeneous in terms of
their responses (Wedel and Kamakura 2000). Therefore, response-based clustering
techniques are becoming more and more important in statistical literature.

Two types of heterogeneity could be affecting the data: observed and unobserved
heterogeneity (Tenenhaus et al. 2010; Hensler and Fassott 2010; Chin and Dibbern
2007). In the first case the composition of classes is known a priori, while in the
second case information on the number of classes or on their composition is not
available.

So far in this paper we have assumed homogeneity over the observed set of units.
In other words, all units are supposed to be well represented by a unique model
estimated on the whole sample, i.e. the global model.

In a Structural Equation Model, the two cases of observed and unobserved het-
erogeneity match with the presence of a discrete moderating factor that, in the first
case is manifest, i.e. an observed variable, while in the second case is latent, i.e. an
unobserved variable (Chin and Dibbern 2007).

Usually heterogeneity in Structural Equation Models is handled by first forming
classes on the basis of external variables or on the basis of standard clustering tech-
niques applied to manifest and/or latent variables, and then by using the multi-group
analysis introduced by Joreskog (1971) and S6rbom (1974). However, heterogeneity
in the models may not be necessarily captured by well-known observed variables
playing the role of moderating variables (Hahn et al. 2002). Moreover, post-hoc
clustering techniques on manifest variables, or on latent variable scores, do not take
at all into account the model itself. Hence, while the local models obtained by cluster
analysis on the latent variable scores will lead to differences in the group averages
of the latent variables but not necessarily to different models, the same method per-
formed on the manifest variables is unlikely to lead to different and well-separated
models. This is true for both the model parameters and the means of latent vari-
able scores. In addition, a priori unit clustering in Structural Equation Models is
not conceptually acceptable since no structural relationship among the variables is
postulated: when information concerning the relationships among variables is avail-
able (as it is in the theoretical causality network), classes should be looked for while
taking into account this important piece of information. Finally, even in Structural
Equation Models, the need is pre-eminent for a response-based clustering method,
where the obtained classes are homogeneous with respect to the postulated model.
Dealing with heterogeneity in PLS Path Models implies looking for local models
characterized by class-specific model parameters.

Recently, several methods have been proposed to deal with unobserved hetero-
geneity in PLS-PM framework (Hahn et al. 2002; Ringle et al. 2005; Squillacciotti
2005; Trinchera and Esposito Vinzi 2006; Trinchera et al. 2006; Sanchez and
Aluja 2006, 2007; Esposito Vinzi et al. 2008; Trinchera 2007). To our best knowl-
edge, five approaches exist to handle heterogeneity in PLS Path Modeling: the
Finite Mixture PLS, proposed by Hahn et al. (2002) and modified by Ringle et al.
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(2010) (see Chap.8 of this Handbook), the PLS Typological Path Model pre-
sented by Squillacciotti (2005) (see Chap. 10 of this Handbook) and modified by
Trinchera and Esposito Vinzi (2006) and Trinchera et al. (2006), the PATHMOX by
Sanchez and Aluja (2006), the PLS-PM based Clustering (PLS-PMC) by Ringle and
Schlittgen (2007) and the Response Based Unit Segmentation in PLS Path Modeling
(REBUS-PLS) proposed by Trinchera (2007) and Esposito Vinzi et al. (2008).

In the following we will discuss the REBUS-PLS approach in detail.

2.4.1 The REBUS-PLS Algorithm

A new method for unobserved heterogeneity detection in PLS-PM framework was
recently presented by Trinchera (2007) and Esposito Vinzi et al. (2008). REBUS-
PLS is an iterative algorithm that permits to estimate at the same time both the unit
membership to latent classes and the class specific parameters of the local models.
The core of the algorithm is a so-called closeness measure (CM) between units
and models based on residuals (2.38). The idea behind the definition of this new
measure is that if latent classes exist, units belonging to the same latent class will
have similar local models. Moreover, if a unit is assigned to the correct latent class,
its performance in the local model computed for that specific class will be better
than the performance of the same unit considered as supplementary in the other
local models.

The CM used in the REBUS-PLS algorithm represents an extension of the dis-
tance used in PLS-TPM by Trinchera et al. (2006), aiming at taking into account
both the measurement and the structural models in the clustering procedure. In
order to obtain local models that fit better than the global model, the chosen close-
ness measure is defined according to the structure of the Goodness of Fit (GoF)
index, the only available measure of global fit for a PLS Path Model. According to
the DmodY distance used in PLS Regression (Tenenhaus 1998) and the distance
used by Esposito Vinzi and Lauro (2003) in PLS Typological Regression all the
computed residuals are weighted by quality indexes: the importance of residuals
increases while the quality index decreases. That is why the communality index and
the R? values are included in the CM computation.

In a more formal terms, the closeness measure (CM) of the n-th unit to the
k-th local model, i.e. to the latent model corresponding to the k-th latent class, is
defined as:

- 2
2 .
50 3P “pa > 2f—fk
q=1 2=p=1| Com (&1 % pq) ' R (Ej’ingqagj)
= X
2
N 0 Pq “npak r2.
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(2.38)
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where:

Com (x ra-§q k) is the communality index for the p-th manifest variable of the g-th
block in the k-th latent class;

enpgk is the measurement model residual for the n-th unit in the k-th latent class,
corresponding to the p-th manifest variable in the g-th block, i.e. the communality
residuals;

Jujk is the structural model residual for the n-th unit in the k-th latent class, corre-
sponding to the j-th endogenous block;

N is the total number of units;

tr is the number of extracted components. Since all blocks are supposed to be
reflective, the value of #; will always be equal to 1.

As for the GoF index, the left-side term of the product in (2.38) refers to the
measurement models for all the Q blocks in the model, while the right-side term
refers to the structural model. It is important to notice that both the measurement and
the structural residuals are computed for each unit with respect to each local model
regardless of the membership of the units to the specific latent class. In computing
the residual from the k-th latent model, we expect that units belonging to the k-th
latent class show smaller residuals than units belonging to the other (K — 1) latent
classes.

As already said, two kinds of residuals are used to evaluate the closeness between
a unit and a model: the measurement or communality residuals and the struc-
tural residuals. For a thorough description of the REBUS-PLS algorithm and the
computation of the communality and the structural residuals, refer to the original
REBUS-PLS papers (Trinchera 2007; Esposito Vinzi et al. 2008).

The choice of the closeness measure in (2.38) as a criterion for assigning units
to classes has two major advantages. First, unobserved heterogeneity can now be
detected in both the measurement and the structural models. If two models show
identical structural coefficients, but differ with respect to one or more outer weights
in the exogenous blocks, REBUS-PLS is able to identify this source of heterogene-
ity, which might be of major importance in practical applications. Moreover, since
the closeness measure is defined according to the structure of the Goodness of Fit
(GoF) index, the identified local models will show a better prediction performance.

The CM expressed by (2.38) is only the core of an iterative algorithm allowing
us to obtain a response-based clustering of the units.

As a matter of fact, REBUS-PLS is an iterative algorithm (see Fig. 2.6). The first
step of the REBUS-PLS algorithm involves estimating the global model on all the
observed units, by performing a simple PLS Path Modeling analysis. In the sec-
ond step, the communality and the structural residuals of each unit from the global
model are obtained. The number of classes (K) to be taken into account during
the successive iterations and the initial composition of the classes are obtained by
performing a hierarchical cluster analysis on the computed residuals (both from the
measurement and the structural models). Once the number of classes and their initial
composition are obtained, a PLS Path Modeling analysis is performed on each class
and K provisional local models are estimated. The group-specific parameters com-
puted at the previous step are used to compute the communality and the structural
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Fig. 2.6 A schematic representation of the REBUS-PLS algorithm

residuals of each unit from each local model. Then the CM of each unit from each
local model is obtained according to (2.38). Each unit is, therefore, assigned to the
closest local model, i.e. to the model from which it shows the smallest CM value.
Once the composition of the classes is updated, K new local models are estimated.
The algorithm goes on until the threshold of a stopping rule is achieved.

Stability on class composition from one iteration to the other is considered as
a stopping rule. The authors suggest using the threshold of less than 5% of units
changing class from one iteration to the other as a stopping rule. Indeed, REBUS-
PLS usually assures convergence in a small number of iterations (i.e. less than 15).
It is also possible not to define a threshold as a stopping rule and run the algorithm
until the same groups are formed in successive iterations. In fact, if no stopping
rule is imposed once the “best” model is obtained in the REBUS-PLS viewpoint,
i.e. once each unit is correctly assigned to the closest local model, the algorithm
provides the same partition of the units at successive iterations.

If the sample size is large, it is possible to have such boundary units that change
classes time after time at successive iterations. This leads to obtaining a series of
partitions (i.e. of local model estimates) that repeat themselves in successive iter-
ations. In order to avoid the “boundary” unit problem the authors suggest always
defining a stopping rule.

Once the stability on class composition is reached, the final local models are
estimated. The class-specific coefficients and indexes are then compared in order
to explain differences between detected latent classes. Moreover the quality of the
obtained partition can be evaluated through a new index (i.e. the Group Quality
Index - G Q1) developed by Trinchera (2007). This index is a reformulation of the
Goodness of Fit index in a multi-group perspective, and it is also based on residuals.
A detailed presentation of the GQ1, as well as a simulation study aiming at assess-
ing G Q1 properties, can be found in Trinchera (2007). The G Q1 index is equal to
the GoF in the case of a unique class, i.e. when K =1 and n; = N. In other words,
the Group Quality Index computed for the whole sample as a unique class is equal to
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the GoF index computed for the global model. Instead, if local models performing
better than the global one are detected, the G Q1 index will be higher than the GoF
value computed for the global model.

Trinchera (2007) performed a simulation study to assess G Q1 features. In par-
ticular, it is suggested that a relative improvement of the GQI index from the
global model to the detected local models higher than 25% can be considered as
a satisfactory threshold to prefer the detected unit partition to the aggregate data
solution. Finally, the quality of the detected partition can be assessed by a permu-
tation test (Edgington 1987) involving 7' random replications of the unit partition
(keeping constant the group proportions as detected by REBUS-PLS) so as to yield
an empirical distribution of the G Q1 index.

The G Q1 obtained for the REBUS-PLS partition is compared to the percentiles
of the empirical distribution to decide whether local models are performing sig-
nificantly better than the global one. Trinchera (2007) has shown that, in case
of unobserved heterogeneity and apart from the outlier solutions, the GQI index
computed for the aggregate level is the minimum value obtained for the empirical
distribution of the GQ1.

If external concomitant variables are available, an ex-post analysis on the detected
classes can be performed so as to characterize the detected latent classes and
improve interpretability of their composition.

So far, REBUS-PLS is limited to reflective measurement models because the
measurement residuals come from the simple regressions between each manifest
variable in a block and the corresponding latent variable. Developments of the
REBUS-PLS algorithm to the formative measurement models are on going.

2.4.2 Application to Real Data

Here, we present a simple and clear example to show the REBUS-PLS ability to cap-
ture unobserved heterogeneity on empirical data. We use the same data as in Ringle
et al. (2010). This dataset comes from the Gruner&Jahr’s Brigitte Communication
Analysis performed in 2002 that specifically concerns the Benetton fashion brand.
REBUS-PLS has been performed using a SAS-IML macro developed by Trinchera
(2007).

The Benetton dataset is composed of ten manifest variables observed on 444
German women. Each manifest variable is a question in the Gruner&Jahr’s Brigitte
Communication Analysis of 2002. The women had to answer each question using a
four-point scale from “low” to “high”.

The structural model for Benetton’s brand preference, as used by Ringle et al.
(2010), consists of one latent endogenous Brand Preference variable, and two latent
exogenous variables, Image and Character. All manifest variables are linked to
the corresponding latent variable via a reflective measurement model. Figure 2.7
illustrates the path diagram with the latent variables and the employed manifest
variables. A list of the used manifest variables with the corresponding meanings is
shown in Table 2.3.
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Fig. 2.7 Path diagram for Benetton data

Table 2.3 Manifest (MV) and latent variables (LV) definition for Benetton data

LV Name MV Name Concepts
Image Modernity It is modern and up to date
Style of living Represents a great style of life
Trust This brand can be trusted
Impression I have a clear impression of this brand
Character Brand name A brand name is very important to me
Fashion 2 I often talk about fashion
Trends I am interested in the latest trends
Fashion 1 Fashion is a way to express who I am
Brand Sympathy Sympathy
Preference Brand usage Brand usage

A PLS Path Modeling analysis on the whole sample has been performed with
standardized manifest variables. As it is obvious, the global model estimates are
consistent with the ones obtained by Ringle ef al. in their study (see Chap.8).
Since all the blocks in the model are supposed to be reflective, then they should
be homogeneous and unidimensional. Hence, first of all we have to check for block
homogeneity and unidimensionality. Table 2.4 shows values of the tools presented in
Sect. 2.2.1 for checking the block homogeneity and unidimensionality. According to
Chin (1998), all the blocks are considered homogenous, i.e. the Dillon-Goldstein’s
rho is always larger than 0.7. Moreover, the three blocks are unidimensional as only
the first eigenvalues for each block are greater than one. Therefore, the reflective
model is appropriate.

A simple overview of the global model results is proposed in Fig. 2.8. According
to the global model results /mage seems to be the most important driver for
Brand Preference, with a path coefficient equal to 0.423. The influence of the
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Table 2.4 Homogeneity and unidimensionality of MVs blocks

LV Name # of MVs Cronbach’s o D.G’sp PCA eigenvalues

Image 4 0.869 0911 2.873
0.509
0.349
0.269

Character 4 0.874 0.914 2.906
0.479
0.372
0.243

Brand preference 2 0.865 0.937 1.763
0.237
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Fig. 2.8 Global model results from Benetton data obtained by using a SAS-IML macro

exogenous latent variable Character is considerably weaker (path coefficient of
0.177). Nevertheless, the R? value associated with the endogenous latent variable
Brand Preference is quite low, being equal to 0.239. Ringle et al. (2010) consider
this value as a moderate level for a PLS Path Model. In our opinion, an R? value of
0.239 has to be considered as unsatisfactory, and could be used as a first sign of pos-
sible unobserved heterogeneity in the data. Looking at the measurement models, all
the relationships in the reflective measurement models have high factor loadings (the
smallest loading has a value of 0.795, see Table 2.5). In Fig. 2.8 the outer weights
used for yielding standardized latent variable scores are shown. In the Brand Pref-
erence block, Sympathy and Brand Usage have similar weights. Instead, differences
arise in both exogenous blocks. Finally, the global model on Benetton data shows
a value for the absolute GoF equal to 0.424 (see Table 2.6). The quite low value
of the GoF index might also suggest that we have to look for more homogeneous
segments among the units.
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Table 2.5 Measurement model results for the global and the local models obtained by

REBUS-PLS
Global Class 1 Class 2 Class 3
Number of units 444 105 141 198
Outer weights Modernity 0.250 0.328 0.278 0.291
Image Style of living 0.310 0.264 0.314 0.270
Trust 0.321 0.284 0.315 0.375
Impression 0.297 0.292 0.267 0.273
Outer weights Brand name 0.343 0.342 0.262 0.298
Character Fashion2 0.292 0.276 0.345 0.314
Trends 0.258 0.266 0.323 0.335
Fashionl 0.282 0.314 0.213 0.231
Outer weights Sympathy 0.555 0.549 0.852 0.682
Brand preference Brand Usage 0.510 0.637 0.575 0.547
Standardized loadings Modernity 0.795 0.827 0.810 0.818
Image Style of living 0.832 0.834 0.860 0.735
Trust 0.899 0.898 0.890 0.895
Impression 0.860 0.865 0.840 0.834
Standardized loadings Brand name 0.850 0.832 0.842 0.822
Character Fashion2 0.894 0.846 0.929 0.908
Trends 0.859 0.850 0.902 0.878
Fashion1 0.801 0.819 0.788 0.762
Standardized loadings Sympathy 0.944 0.816 0.819 0.855
Brand preference Brand Usage 0.933 0.867 0.526 0.762
Communality Modernity 0.632 0.685 0.657 0.668
Image Style of living 0.693 0.695 0.740 0.541
Trust 0.808 0.806 0.792 0.801
Impression 0.739 0.748 0.706 0.696
Communality Brand name 0.722 0.692 0.709 0.676
Character Fashion2 0.799 0.715 0.864 0.825
Trends 0.738 0.722 0.814 0.770
Fashion] 0.642 0.670 0.620 0.581
Communality Sympathy 0.891 0.666 0.671 0.730
Brand preference Brand Usage 0.871 0.752 0.277 0.581

A more complete outline of the global model results is provided in Table 2.5 for
the outer model and in Table 2.6 for the inner model. These tables contain also the
class-specific results in order to make it easier to compare the segments.

Performing REBUS-PLS on Benetton data leads to detecting three different
classes of units showing homogeneous behaviors. As a matter of fact, the clus-
ter analysis on the residuals from the global model (see Fig.2.9) suggests that we
should look for two or three latent classes. Both partitions have been investigated.
The three classes partition is preferred as it shows a higher Group Quality Index.
Moreover, the G Q1 index computed for the two classes solution (GQI = 0.454)
is close to the GoF value computed for the global model (i.e. the GQI index in
the case of only one global class, GoF = 0.424). Therefore, the 25% improvement
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Table 2.6 Structural model results for the global model and the local models obtained by
REBUS-PLS

Global Class 1 Class 2 Class 3
Number of units 444 105 141 198
Path Image 0.423 0.420 0.703 0.488
Coefficients [0.331;0.523] [0.225;0.565] [0.611;0.769] [0.314;0.606]
on brand Character 0.177 0.274 0.319 0.138
preference [0.100; 0.257] [0.078;0.411] [0.201;0.408] [0.003;0.311]
Redundancy Brand preference 0.210 0.207 0.322 0.180
R? 0.239 0.292 0.680 0.275
Brand preference [0.166;0.343] [0.162;0.490] [0.588;0.775] [0.195;0.457]
R? Image 0.81 0.67 0.79 0.90
contributions Character 0.19 0.33 0.21 0.10
GoF value 0.424 0.457 0.682 0.435

[0.354;0.508] [0.325;0.596] [0.618;0.745] [0.366;0.577]

0.150 4

0.125 4

0.100 1

0.075 1

0.050 1

0.025

0.000 Sfaddesad

Fig. 2.9 Dendrogramme obtained by a cluster analysis on the residuals from the global model
(Step 3 of the REBUS-PLS algorithm)

foreseen for preferring the partition in two classes is not achieved. Here, only the
results for the three classes partition are presented.

The first class is composed of 105 units, i.e around 24% of the whole sample.
This class is characterized by a path coefficient linking the latent variable Character
to the endogenous latent variable Brand Preference higher than the one obtained for
the global model. Moreover, differences in unit behaviors arise also with respect to
the outer weights in the Brand Preference block, i.e. Brand Usage shows a higher
weight than Sympathy. The GoF value for this class (0.457) is similar to the one for
the global model (0.424). Figure 2.10 shows the estimates obtained for this class.

The second class, instead, shows a definitely higher GoF value of 0.682 (see
Table 2.6). This class is composed of around 32% of the whole sample, and
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Fig. 2.11 Local model results for the second class detected by the REBUS-PLS algorithm on
Benetton data

is characterized by a much higher path coefficient associated to the relationship
between the Image and the Brand Preference. Looking at the measurement model
(see Table 2.5), differences arise in the Brand Preference block and in the Character
block. As a matter of fact, the communality index (i.e. the square of the correlation)
between the manifest variable Brand Usage and the corresponding latent variable
Brand Preference is really lower than the one obtained for the global model as well
as for the first local model described above. Other differences for this second class
may be detected by looking at the results provided in Fig. 2.11.
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Fig. 2.12 Local model results for the third class by the REBUS-PLS algorithm on Benetton data

Finally, the results for the third class are presented in Fig. 2.12. This class is com-
posed of 198 units., i.e. more than 44% of the whole sample. It is characterized by
a very weak relationship between the latent variable Character and the endogenous
latent variable Brand Preference. Moreover, the 95% bootstrap confidence interval
shows that this link is close to be non significant as the lower bound is very close
to 0 (see Table 2.6). Differences arise also with respect to the measurement model,
notably in the Image block. As a matter of fact, in this class the manifest variable
Style of living shows a very low correlation compared with the other models (both
local and global).

Nonetheless, the quality index values computed for this third local model are only
slightly different from the ones in the global model (R? = 0.275 and GoF = 0.435).

The three classes solution shows a Group Quality Index equal to 0.531. In order
to validate the REBUS-PLS based partition, an empirical distribution of the GO/
values is yielded by means of permutations. The whole sample has been randomly
divided 300 times into three classes of the same size as the ones detected by REBUS-
PLS. The GQI has been computed for each of the random partitions of the units.
The empirical distribution of the GQ1 values for a three classes partition is then
obtained (see Fig.2.13). As expected, the GQI value from the REBUS-PLS parti-
tion is definitely an extremely high value of the distribution thus showing that the
REBUS-PLS based partition is better than a random assignment of the units into
three classes.

Moreover, in Fig.2.14, it is possible to notice that the GQI computed for the
global model (i.e. the GoF value) is a very small value in the GQ/I distribution.
Therefore, the global model has to be definitely considered as being affected by
heterogeneity.

Ringle et al. (2010) apply FIMIX-PLS to Benetton data (see Chap. 8) and iden-
tify only two classes. The first one (80.9% of the whole sample) is very similar to
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the global model results in terms of path coefficients. Nevertheless, the R? value
associated to the endogenous latent variable Brand Preference is equal to 0.108.
This value is even smaller than for the global model (R? = 0.239). The second
detected class, instead, is similar to the second class obtained by REBUS-PLS. As
a matter of fact, also in this case the exogenous latent variable Image seems be the
most important driver for Brand Preference, showing an R? close to 1.

In order to obtain local models that are different also for the measurement
model, Ringle et al. (2010) apply a two-step strategy. In the first step they simply
apply FIMIX-PLS. Successively they use external/concomitant variables to look
for groups overlapping the FIMIX-based ones. Nevertheless, also in this two-step
procedure the obtained results are not better than the ones provided by the REBUS-
PLS-based partition. As a matter of fact, the R? value and the GoF value for the first
local model are smaller than for the global model. The local model for the largest
class (80% of the whole sample) performs worse than the global model, and worse
than all the REBUS-PLS based local models.

The REBUS-PLS algorithm turned out to be a powerful tool to detect unobserved
heterogeneity in both experimental and empirical data.
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2.5 Conclusion and Perspectives

In the previous sections, where needed, we have already enhanced some of the on
going research related to the topics of interest for this chapter. Namely, the devel-
opment of new estimation modes and schemes for multidimensional (formative)
constructs, a path analysis on latent variable scores to estimate path coefficients,
the use of GoF-based non parametric tests for the overall model assessment, a
sensitivity analysis for these tests, the generalization of REBUS-PLS to capturing
heterogeneity in formative models.

We like to conclude this chapter by proposing a short list of further open issues
that, in our opinion, currently represent the most important and promising research
challenges in PLS Path Modeling:

e Definition of optimizing criteria and unifying functions related to classical or
modified versions of the PLS-PM algorithm both for the predictive path model
between latent variables and for the analysis of multiple tables.

e Possibility of imposing constraints on the model coefficients (outer weights,
loadings, path coefficients) so as to include any information available a priori
as well as any hypothesis (e.g. equality of coefficients across different groups,
conjectures on model parameters) in the model estimation phase.

e Specific treatment of categorical (nominal and ordinal) manifest variables.

e Specific treatment of non-linearity both in the measurement and the structural
model.

e Outliers identification, i.e. assessment of the influence of each statistical unit on
the estimates of the outer weights for each block of manifest variables.

e Development of robust alternatives to the current OLS-based PLS Path Modeling
algorithm.

e Development of a model estimation procedure based on optimizing the GoF
index, i.e. on minimizing a well defined fit function.

e Possibility of specifying feedback relationships between latent variables so as to
investigate mutual causality.

The above mentioned issues represent fascinating topics for researchers from
both Statistics and applied disciplines.

There is nothing vague or fuzzy about soft modeling;
the technical argument is entirely rigorous
Herman Wold
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Chapter 3
Bootstrap Cross-Validation Indices for PLS
Path Model Assessment

Wynne W. Chin

Abstract The goal of PLS path modeling is primarily to estimate the variance of
endogenous constructs and in turn their respective manifest variables (if reflective).
Models with significant jackknife or bootstrap parameter estimates may still be con-
sidered invalid in a predictive sense. In this chapter, the objective is to shift from that
of assessing the significance of parameter estimates (e.g., loadings and structural
paths) to that of predictive validity. Specifically, this chapter examines how pre-
dictive indicator weights estimated for a particular PLS structural model are when
applied on new data from the same population. Bootstrap resampling is used to cre-
ate new data sets where new R-square measures are obtained for each endogenous
construct in a model. The weighted summed (WSD) R-square represents how well
the original sample weights predict when given new data (i.e., a new bootstrap sam-
ple). In contrast, the simple summed (SSD) R-square examines the predictiveness
using the simpler approach of unit weights. Such an approach is equivalent to per-
forming a traditional path analysis using simple summed scale scores. A relative
performance index (RPI) based on the WSD and SSD estimates is created to repre-
sent the degree to which the PLS weights yield better predictiveness for endogenous
constructs than the simpler procedure of performing regression after simple sum-
ming of indicators. In addition, a Performance from Optimized Summed Index
(PFO) is obtained by contrasting the WSD R-squares to the R-squares obtained
when the PLS algorithm is used on each new bootstrap data set. Results from two
studies are presented. In the first study, 14 data sets of sample size 1,000 were cre-
ated to represent two different structural models (i.e., medium versus high R-square)
consisting of one endogenous and three exogenous constructs across seven different
measurement scenarios (e.g., parallel versus heterogenous loadings). Five-hundred
bootstrap cross validation data sets were generated for each of 14 data sets. In study
2, simulated data based on the population model conforming to the same scenarios
in study 1 were used instead of the bootstrap samples in part to examine the accu-
racy of the bootstrapping approach. Overall, in contrast to Q-square which examines
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predictive relevance at the indicator level, the RPI and PFO indices are shown to
provide additional information to assess predictive relevance of PLS estimates at
the construct level. Moreover, it is argued that this approach can be applied to other
same set data indices such as AVE (Fornell C, Larcker D, J] Mark Res 18:39-50,
1981) and GoF (Tenenhaus M, Amato S, Esposito Vinzi V, Proceedings of the
XLIT SIS (Italian Statistical Society) Scientific Meeting, vol. Contributed Papers,
739-742, CLEUP, Padova, Italy, 2004) to yield RPI-AVE, PFO-AVE. RPI-GoF, and
PFO-GoF indices.

3.1 Introduction

PLS path modeling is a components based methodology that provides determinate
construct scores for predictive purposes. Its goal is primarily to estimate the variance
of endogenous constructs and in turn their respective manifest variables (if reflec-
tive). To date, a large portion of the model validation process consists of parameter
inference where significance of estimated parameters are tested (Chin 1998). Yet,
models with significant jackknife or bootstrap parameter estimates may still be con-
sidered invalid in a predictive sense. In other words, to what extent will the estimated
weights from the PLS analysis predict in future situations when we have new data
from the same underlying population of interest? If we develop a consumer based
satisfaction scale to predict brand loyalty, for example, will the weights derived to
form the satisfaction scale be as predictive. In this chapter, the objective is to shift
the focus from that of assessing the significance or accuracy of parameter estimates
(e.g., weights, loadings and structural paths) to that of predictive validity. Specif-
ically, this chapter presents a bootstrap re-sampling process intended to provide a
sense as to how efficacious the indicator weights estimated for a particular PLS
structural model are in predicting endogenous constructs when applied on new data.

Predictive sample reuse technique as developed by Geisser (1974) and Stone
(1975) represent a synthesis of cross-validation and function fitting with the per-
spective “that prediction of observables or potential observables is of much greater
relevance than the estimation of what are often artificial constructs-parameters”
(Geisser 1975, p. 320). For social scientists interested in the predictive validity of
their models, the Q-square statistic has been the primary option. This statistic is
typically provided as a result of a blindfolding algorithm (Chin 1998, pp. 317-
318) where portions of the data for a particular construct block (i.e., indicators
by cases for a specific construct) are omitted and cross-validated using the esti-
mates obtained from the remaining data points. This procedure is repeated with a
different set of data points as dictated by the blindfold omission number until all
sets have been processed. Two approaches have been used to predict the holdout
data. A communality-based Q-square takes the construct scores estimated for the
target endogenous construct (minus the holdout data) to predict the holdout data.
Alternatively, a redundancy-based Q-square uses the scores for those antecedent
constructs that are modeled as directly impacting the target construct. In both
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instances, a Q-square relevance measure is obtained for the endogenous construct
in question. This relevance measure is generally considered more informative than
the R-square and the Average Variance Extracted statistics since the latter two have
the inherent bias of being assessed on the same data that were used to estimate its
parameters and thereby raises the issue of data overfitting.

As Chin (1995, p. 316) noted over a decade ago “alternative sample reuse meth-
ods employing bootstrapping or jackknifing have yet to be implemented.” This still
seems to be the case. Moreover, the Q-square measure is meant to help assess pre-
dictive validity at the indicator level, while there is still need for indices that help
provide information regarding the predictive validity of a PLS model at the con-
struct level. With that in mind, this chapter presents a bootstrap reuse procedure for
cross-validating the weights derived in a PLS analysis for predicting endogenous
constructs. It is meant to answer questions concerning the value of the weights pro-
vided in a PLS analysis as it relates to maximizing the R-square of the key dependent
constructs of a model.

Standard cross validation involves using a sample data set for training followed
by test data set from the same population to evaluate predictiveness of the model
estimates. As Picard and Cook (1984, p. 576) noted in the context of regression
models is that “when a model is chosen because of qualities exhibited by a particu-
lar set of data, predictions of future observations that arise in a similar fashion will
almost certainly not be as good as might naively be expected. Obtaining an ade-
quate estimator of MSE requires future data and, in the extreme, model evaluation
is a long-term, iterative endeavor. To expedite this process, the future can be con-
structed by reserving part of the present, available data.” Their approach is to split
the existing data into two part (not necessarily of equal size) to see how the fitted
model in part one performs on the reserved set for validation. Such an approach
has been applied in chemometrics to determine the number of components in a PLS
models (Du et al. 2006; Xu et al. 2004; Xu and Liang 2001). This approach is argued
as a consistent method in determining the number of components when compared
to the leave-one-out cross validation, but requires more than 50% of samples left
out to be accurate (Xu and Liang 2001), although it can underestimate the predic-
tion ability of the model selected if a large percentage of samples are left out for
validation (Xu et al. 2004).

Here we differ by using the original sample set as the training set to estimate a
given PLS model and then employ bootstrap re-sampling to create new data sets.
The indicator weights derived from the original sample set are used on the new
bootstrap samples and R-square measures are examined for each endogenous con-
struct in the model. The weighted summed (WSD) R-square represents how well the
original sample weights predict given new data (i.e., a new bootstrap sample). As
comparison, we also calculate the Simple Summed (SSD) R-square which reflects
the predictiveness using the simpler approach of unit weights. Such an approach
is equivalent to what many social scientists normally do — that being to create unit
weighted composite scores for each construct in order to run a traditional path analy-
sis. The relative performance index (RPI) based on the WSD and SSD R-squares can
then calculated to represent the degree to which the PLS weights from the original
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sample provide greater predictiveness for endogenous constructs than the simpler
procedure of performing regression after simple summing of indicators.

For each bootstrap sample set, a standard PLS run can also be completed. The
R-squares obtained from running the model in question on each bootstrap data
set would represent optimized summed (OSD) R-squares as dictated by the PLS
algorithm and thus should generally be greater than the WSD or SSD R-squares.
A performance from optimized summed index (PFO) can then be obtained by
contrasting the WSD to the OSD R-squares.

3.2 General Procedure

The specific steps for calculating the RPI and PFO indices are as follows':

1. Take original sample set model run, record original sample weights and R-square
for each endogenous construct in the model.

2. Create N bootstrap samples where each sample will be used to obtain three
different R-squares for each endogenous construct (i.e., OSD, WSD, and SSD
R-squares).

3. For each bootstrap sample, run PLS algorithm and record the R-square for
each endogenous construct. This will be labeled the optimized summed (OSD)
R-square.

4. Standardize each bootstrap sample data and apply the original sample weights to
calculate the WSD set of construct scores. Unit weights are applied to calculate
the SSD set of construct scores.

5. To obtain the WSD and SSD R-squares, replace each construct in the graph with
the single indicator from your calculation in step 4. Estimate and record R-square
twice. The R-square resulting from the use the weights from the original run will
be labeled the Weighted Summed (WSD) R-square. The third R-square repre-
sents the baseline level of unit weights and is labeled the Simple Summed (SSD)
R-square.

6. Calculate relative performance index (RPI) of using original samples weights
(WSD R-square) over simple summed regression. (SSD R-square).

100 * (WSD R-square — SSD R-square)

RPI =
SSD R-square

7. Calculate Performance from PLS optimized summed (PFO) by examining how
the WSD R-square differs from the OSD R-square.

100 * (OSD R-square — WSD R-square)

PFO =
WSD R-square

! This is based on the assumption that the default unit variance, no location algorithm is employed.
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@ 0.3 (model 1)
0.4 (model 2)
0.5 (model 1) Dependent
0.7 (model 2) Construct
R-square 0.43 (model 1)
0.3 (model 1) R-square 0.81 (model 2)
0.4 (model 2)

Fig. 3.1 Models used to generate data

3.3 Study 1

To test how the WSD, SSD, OSD, and two new indices RPI and PFO perform, 14
data sets of sample size 1,000 were generated to reflect 2 underlying models (see
Fig. 3.1). Each model consists of one dependent construct and three independent
constructs. Model 1 represents a medium predictive model with an R-square of 0.43
while model 2 has standardized paths that result in a higher R-square of 0.81. Six
indicators were created for each construct. For each model, data sets for seven case
scenarios were created. These case settings also used by Chin et al. (2003) in their
simulation of interaction effects represents varying levels of homogeneity for each
set of indicators as well as reliability (See column 1, Table 3.1). The first setting
represents a baseline with homogeneous indicators all set at a standardized load-
ing of 0.70. The expectation is that PLS estimated weights should not provide any
substantive improvements over a simple summed approach. Setting 7, in compar-
ison, is quite heterogeneous and lower in reliability with two indicator loadings
set at 0.7, two at 0.5, and two at 0.3. Composite reliabilities (Werts et al. 1974)
and average variance extracted (AVE) (Fornell and Larcker 1981) for each setting
are presented in Tables 3.1 and 3.2. All data where generated from an underlying
normal distribution.

Five-hundred bootstrap runs were performed for each of the 14 data sets and
summary statistics are provided in Tables 3.1 and 3.2. Not surprisingly, Table 3.1
reflecting the medium R-square model 1 demonstrates that as the overall reliability
of the indicators drop, the mean estimated R-square also lowers. Figure 3.2 provides
a plot of these estimates. Interestingly enough, we see that the WSD R-squares are
quite close to the OSD estimates. The SSD R-squares, as expected, only matches
the other two estimates for the case of identical loadings (i.e., setting 1). Approxi-
mately the same pattern also appears for model 2 (see Fig. 3.3 and Table 3.2). But
in this instance the relationship between the mean R-squares and the population
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Fig. 3.2 Mean comparison of 500 bootstrap samples for Model 1
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(high R-square setting)
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Fig. 3.3 Mean comparison of 500 bootstrap samples

based average variance extracted and composite reliability is more apparent. For
example, case setting 5 has a higher average communality and scale reliability than
case settings 4 and 6. These differences, in turn, are reflected in better estimates of
the structural paths and higher mean R-squares.

Figure 3.4 provides a plot of the RPI across the two models and seven set-
tings. Both model yielded somewhat similar results with model 2 being slightly
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RELATIVE PERFORMANCE INDEX TO SIMPLE SUMMED REGRESSION (RPI)
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Fig. 3.4 Mean of RPI for 500 bootstrap samples

more consistent with the average communality of its indicators. Again, in agree-
ment with the earlier R-square results, the average RPI for the baseline setting is not
substantively different from zero. The relative percentage improvement over simple
summed path analysis did reach 68% in the case of setting 4. As comparison, redun-
dancy based Q-squares were also estimated for each data set. Figures 3.5 and 3.6 are
plots of models 1 and 2 respectively using OSD and SSD weights. Since the objec-
tive of this measure is for evaluating predictiveness as the indicator level, we see the
Q-square tends to drop as the indicator reliabilities go lower. On average, the OSD
based Q-squares are slightly higher and follows the pattern of the mean R-squares.
But the differences were not that dramatic. We also note that when the higher struc-
tural paths are higher as in Model 2, the Q square becomes more in line with the
magnitude of the composite reliability and communality of the construct. For exam-
ple, case 5 is now higher than either cases 4 or 6. This reflects the stronger linkage
for the antecedent constructs in conjunction with the reliability of the indicators in
predicting individual item responses. But, as expected, it provides little information
on the strength of relationship at the construct level. The plot of PFO (see Fig. 3.7) in
conjunction with the plot of the RPI provides a sense as to how well the PLS model
performs. For case settings 3 through 5, for example, we see that the PLS supplied
weights provide improvements over unit weighting regression in the range of 50%.
In terms of the distance from the PLS optimized OSD R-square, the performance of
the PLS estimated weights was never more than 5% from the optimized.
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Q-SQUARE PLS OPTIMIZED SUMMED VERSUS SIMPLE SUMMED
(medium R-square setting)

0.12

—0— QSQ_OSD
--0-- QSQ_SSD

0.08

0.04

0.00

-0.04

-0.08

-0.12
Case1 Case2 Case3 Case4 Case5 Case6 Case7?
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PERFORMANCE FROM PLS OPTIMIZED R-SQUARE (PFO)
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Fig. 3.7 Mean comparisons of PFO for 500 bootstrap samples

3.4 Study 2

For study 2, the same model and setting were applied. In fact the same 14 data
sets with their associated weights were used. But instead of cross-validating based
on bootstrap resamples, 500 simulated data sets reflecting the underlying popula-
tion model were generated. In essence, instead of using bootstrapping to mirror the
endeavor of obtaining 500 new data sets, we actually go and obtain new data. Thus,
we can see how well the earlier bootstrapping approximates (i.e., mirrors) that of
actual data. Tables 3.3 and 3.4 provide the summary results while Figs. 3.7 and 3.8
present the combined plots of the RPI and PFO estimates obtained from the ear-
lier bootstrapped data along with the simulated data for this study. The results show
that the RPI estimates using bootstrapping is quite similar to the simulated data.
The medium R-square scenario tends to be more inflated than the higher R-square
scenario for case setting 3 through 5. Overall, except for case setting 4, we see the
strong convergence on the estimates for RPI. For the PFO statistic, we again see the
simulation results follow a similar pattern to the bootstrap results. Two slight depar-
tures are found for case setting 4 and 6 for the medium R-square simulated data.
Overall, it may be concluded that the bootstrap data did come close to reflecting the
underlying population (Fig. 3.9).
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Table 3.3 Statistics for 500 simulated samples for medium R-square model of 0.43

R-square OSD R-square WSD R-square SSD RPI ~ PFO

Setting 1: All Mean 0.318 0.314 0.314 —0.11 —1.31

loadings set at 0.7 SE 0.024 0.025 0.025 0.33  0.57

T-stat 13.060 12.707 12.720 —0.34 —2.28

Setting 2: 3 loadings Mean 0.253 0.244 0.200 22.49 —3.66

set0.7,3at 0.3 SE 0.023 0.023 0.023 553  1.69

T-stat 11.044 10.416 8.873 4.07 —2.17

Setting 3: 2 loadings Mean 0.267 0.261 0.180 46.33 —2.22

set0.8,4at 0.3 SE 0.023 0.024 0.022 912 1.71

T-stat 11.818 10.975 8.031 5.08 —1.30

Setting 4: 1 loading ~ Mean 0.194 0.173 0.118 48.01 —10.67

set0.8,5at0.3 SE 0.020 0.021 0.019 10.87  4.03

T-stat 9.757 8.125 6.315 4.42 —2.65

Setting 5: 2 loadings Mean 0.212 0.202 0.152 33.67 —4.71

set0.7,4 at 0.3 SE 0.022 0.023 0.021 8.44 242

T-stat 9.748 8.989 7.353 3.99 —1.95

Setting 6: 2 loadings Mean 0.167 0.150 0.127 19.18 —9.79

setat0.6,4at03 SE 0.020 0.020 0.019 6.78  3.43

T-stat 8.265 7.477 6.692 2.83 —2.85

Setting 7: 2 loadings Mean 0.237 0.226 0.198 14.73 —4.45

setat 0.7, 2 at0.5, SE 0.023 0.023 0.022 3.98 1.6l

and 2 at 0.3 T-stat 10.449 9.931 9.057 3.70 —2.77
Standardized paths set at 0.3, 0.5, and 0.3 for constructs A, B, and C respectively

Table 3.4 Statistics for 500 simulated samples for high R-square model of 0.81

R-square OSD R-square WSD  R-square SSD RPI  PFO

Setting 1: All Mean 0.592 0.589 0.590 —0.07 —0.43

loadings setat 0.7 SE 0.018 0.019 0.019 0.15 0.21

T-stat 32.117 31.734 31.787 —0.48 —2.09

Setting 2: 3 loadings Mean 0.465 0.462 0.374 23.51 =0.77

set 0.7,3 at 0.3 SE 0.023 0.024 0.025 3.67 0.73

T-stat 19.962 19.133 15.112 6.41 —1.06

Setting 3: 2 loadings Mean 0.490 0.482 0.335 44.26 —1.56

set 0.8,4 at 0.3 SE 0.022 0.023 0.023 523 1.04

T-stat 22.672 20.948 14.316 8.47 —1.50

Setting 4: 1 loading ~ Mean 0.352 0.345 0.219 58.41 —1.93

set 0.8,5 at 0.3 SE 0.020 0.022 0.021 8.26 1.89

T-stat 17.245 15.393 10.254 7.07 —1.02

Setting 5: 2 loadings  Mean 0.388 0.374 0.286 31.21 —=3.60

set0.7,4 at 0.3 SE 0.024 0.025 0.025 477 1.42

T-stat 16.371 15.105 11.488 6.54 —2.53

Setting 6: 2 loadings Mean 0.299 0.281 0.237 18.87 —5.90

setat0.6,4at03 SE 0.024 0.025 0.024 412 2.02

T-stat 12.387 11.370 9.873 4.58 —2.92

Setting 7: 2 loadings  Mean 0.433 0.428 0.369 16.25 —1.20

setat0.7,2at0.5, SE 0.023 0.024 0.024 3.06 0.85

and 2 at 0.3 T-stat 18.909 17.960 15.347 531 —1.41

Standardized paths set at 0.3, 0.5, and 0.3 for constructs A, B, and C respectively
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3.5 Discussion and Conclusion

This chapter has presented two new bootstrapped cross-validation indices designed
to assess how well PLS estimated weights perform at predicting endogenous con-
structs. It uses bootstrap resampling to assess both the relative improvement over a
simple summed path analytical strategy (i.e., RPI) and its proximity to the PLS opti-
mized estimates (i.e., PFO). More importantly, it provides an alternative to model
R-squares that PLS skeptics argue may be capitalizing on chance. The results pre-
sented here are encouraging, yet highlight some key points. In general, the cross
validated R-squares are quite close to the PLS estimates as reflected in the PFO num-
bers reported here. Conversely, the RPI estimates show many instances where PLS
makes a substantial improvement over unit weighted regression. But, if one expects
the indicators used in measuring an underlying construct are relatively homogenous
in their loadings, we should expect this belief will be corroborated by having a small
RPI (i.e., close to zero). Low RPIs in general would suggest that a simple summed
path analysis would generate similar results. But with greater measurement vari-
ability, the RPI can be useful in providing information on the relative improvement
from using PLS estimates. As an example, case setting 3 for high R-square model
2 scenario (with 2 loadings of 0.8 and 4 at 0.3) show that the mean WSD R-square
of approximately 0.5 provides a 43% improvement over unit weighted scales and
is within 1% of the OSD estimates. This chapter also showed that while the Q-
square measures provide similar patterns to the mean R-squares, it provides limited
information on the value of PLS for maximizing the construct level relationships.
Overall, this chapter only scratches the surface of bootstrap cross validation and,
as in the case of any study, a word of caution must be sounded before strong gener-
alizations are made. First, both smaller and larger sample sizes should be examined
along with varying the data distributions to match different levels of non-normality.
In this study, all data were generated from an underlying normal distribution. If the
data were assumed or estimated to be non-normal, significance testing of the indices
may require a percentile or BCA tests with concomitant increase in bootstrap sam-
ple size (Efron and Tibshirani 1993). Moreover, the models examined in this chapter
are relatively simplistic which is contrary to the level of complexity that PLS can
ideally be applied. Furthermore, while the six indicator model was used to match
those of previous studies, additional tests on the performance of indices for two,
four and eight indicators would seem reasonable. Finally, the RPI and PFO indices
should be considered part of the toolkit for researchers in appraising their models.
Other measures based on the original sample set such as the communality of a block
of measures (i.e., AVE), Q-square, and Goodness of Fit (GoF) (i.e., which is the geo-
metric mean of a model’s average estimated R-square with the average communality
of measures used) do provide additional diagnostic value. One goal for the future
would logically be to link these sample based measure or even other alternatives yet
to be presented in a similar fashion done in this chapter with R-square. For exam-
ple, bootstrap cross validation equivalents of the indices presented in this chapter
using GoF (i.e., RPI-GoF and PFO-GoF), which shifts the focus away from only
one single endogenous construct would be a logical next step for those interested in
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a global cross validation index since GoF is “meant as an index for validating a PLS
model globally” (Tenenhaus et al. 2005).

References

Chin, W. W. (1995). Partial least squares is to LISREL as principal components analysis is to
common factor analysis. Technology Studies, 2, 315-319.

Chin, W. W. (1998). The partial least squares approach for structural equation modeling. In
G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295-336). New Jersy:
Lawrence Erlbaum.

Chin, W. W, Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable
modeling approach for measuring interaction effects: Results from a monte carlo simula-
tion study and electronic mail emotion/adoption study. Information Systems Research, 14(2),
189-217.

Du, Y.-P, Kasemsumran, S., Maruo, K., Nakagawa, T., & Ozaki, Y. (2006). Ascertainment of the
number of samples in the validation set in Monte Carlo cross validation and the selection of
model dimension with Monte Carlo cross validation. Chemometrics and Intelligent Laboratory
Systems, 82, 83—-89.

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap (monographs on statistics
and applied probability #57). New York: Chapman & Hall.

Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable
variables and measurement error. Journal of Marketing Research, 18, 39-50.

Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American
Statistical Association, 70, 320-328.

Picard, R. R., & Cook, R. D. (1984). Cross-validation of regression models. Journal of the
American Statistical Association, 79(387), 573-585.

Stone, M. (1975). Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society, Series B, 36(2), 111-133.

Tenenhaus, M., Amato, S., & Esposito Vinzi, V. (2004). A global Goodness-of-Fit index for
PLS structural equation modelling. In Proceedings of the XLII SIS (Italian Statistical Society)
Scientific Meeting, vol. Contributed Papers (pp. 739-742). Padova, Italy: CLEUP.

Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y. M., & Lauro, C. (2005). PLS path modelling,
computational statistics and data analysis (Vol. 48, No. 1, pp. 159-205). The Netherlands:
North-Holland.

Xu, Q.-S., & Liang, Y.-Z. (2001). Monte Carlo cross valiation. Chemometrics and Intelligent
Laboratory Systems, 56, 1-11.

Xu, Q.-S, Liang, Y.-Z, & Du, Y.-P. (2004). Monte Carlo cross-validation for selecting a model
and estimating the prediction error in multivariate calibration. Journal of Chemometrics, 18,
112-120.

Werts, C. E., Linn, R. L., & Joreskog, K. G. (1974). Intraclass reliability estimates: Testing
structural assumptions. Educational and Psychological Measurement, 34(1), 25-33.



Chapter 4
A Bridge Between PLS Path Modeling
and Multi-Block Data Analysis

Michel Tenenhaus and Mohamed Hanafi

Abstract A situation where J blocks of variables X1, ..., X are observed on the
same set of individuals is considered in this paper. A factor analysis approach is
applied to blocks instead of variables. The latent variables (LV’s) of each block
should well explain their own block and at the same time the latent variables of
same order should be as highly correlated as possible (positively or in absolute
value). Two path models can be used in order to obtain the first order latent vari-
ables. The first one is related to confirmatory factor analysis: each LV related to
one block is connected to all the LV’s related to the other blocks. Then, PLS path
modeling is used with mode A and centroid scheme. Use of mode B with centroid
and factorial schemes is also discussed. The second model is related to hierarchical
factor analysis. A causal model is built by relating the LV’s of each block X to
the LV of the super-block X ;4 obtained by concatenation of Xj,..., X ;. Using
PLS estimation of this model with mode A and path-weighting scheme gives an
adequate solution for finding the first order latent variables. The use of mode B with
centroid and factorial schemes is also discussed. The higher order latent variables
are found by using the same algorithms on the deflated blocks. The first approach
is compared with the MAXDIFF/MAXBET Van de Geer’s algorithm (1984) and
the second one with the ACOM algorithm (Chessel and Hanafi, 1996). Sensory data
describing Loire wines are used to illustrate these methods.

Introduction

In this paper, we consider a situation where J blocks of variables are observed on the
same set of n individuals. The block X ; contains k; variables . All these variables
are supposed to be centered and are often standardized in practical applications. We
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can follow a factor analysis approach on tables instead of variables. We suppose
that each block X ; is summarized by m latent variables (LV’s) plus a residual X ;,,,.
Each data table is decomposed into two parts:

Xj = [Fppl + -+ Fimply| + [Xin]

The first part of the decompositionis Fj; P,T1 + A+ Fim p]Tm where the F;,’s are
n-dimension column vectors and the p;j’s are k ;-dimension column vectors. The
latent variables (also called scores, factors or components) Fi, ..., Fj; should
well explain the data table X ; and, at the same time, the correlations between the
scores of same order 4 should be as high as possible in absolute value, or in positive
value to improve interpretation. These scores play a similar role as the common
factors in factor analysis (Morrison 1990). The second part of the decomposition is
the residual X ;,, which represents the part of X ; not related to the other blocks in a
m dimensions model, i.e., the specific part of X ;. The residual X j,, is the deflated
block X ; of order m.

To obtain first order latent variables that well explain their own blocks and are
at the same time well correlated, covariance-based criteria have to be used. Several
existing strategies can be used, among them the MAXDIFF/MAXBET (Van de Geer
1984) and ACOM (Chessel and Hanafi 1996) algorithms or other methods (Hanafi
and Kiers 2006). In the present paper, it is shown how to use PLS path modeling
for the analysis of multi-block data with these objectives. PLS path modeling offers
two path models that can be used to obtain the first order latent variables. In the first
strategy, the LV of each block is connected to all the LV’s of the other blocks in
such a way that the obtained path model is recursive (no cycles). This is a confirma-
tory factor analysis model with one factor per block (Long 1983). Then, PLS path
modeling is used with mode A and centroid scheme. In the second strategy, a hierar-
chical model is built by connecting each LV related to block X ; to the LV related to
the super-block Xy, obtained by concatenation of X, ..., X ;. PLS estimation of
this model with mode A and path-weighting scheme gives an adequate solution for
finding the first order latent variables. The use of mode B with centroid and factorial
schemes is also discussed for both strategies. The higher order latent variables are
found by using the same algorithms on the deflated blocks. These approaches will
be compared to the MAXDIFF/MAXBET and ACOM algorithms.

Sensory data about Loire wines will be used to illustrate these methods. PLS-
Graph (Chin 2005) has been used to analyze these data and the ouputs of this
software will be discussed in details.

4.1 A PLS Path Modeling Approach to Confirmatory
Factor Analysis

A causal model describing the confirmatory factor analysis (CFA) model with one
factor per block is given in Fig. 4.1.
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Fig. 4.1 Path model for confirmatory factor analysis

The general PLS algorithm (Wold 1985) can be used for the analysis of multi-
block data (Lohmoller 1989; Tenenhaus et al. 2005). In usual CFA models, the
arrows connecting the latent variables are double-headed. But in PLS, the link
between two latent variables is causal: the arrow connecting two latent variables
is unidirectional. So it is necessary to select, in the general PLS algorithm, options
that don’t take into account the directions of the arrows, but only their existence.
This is the case for the centroid and factorial schemes of the PLS algorithm. The
directions of the arrows have no importance, with the restriction that the complete
arrow scheme must be recursive (no cycle).

The general PLS algorithm is defined as follows for this specific application.
The indices 1 for first order weights and latent variables have been dropped out for
improving the legibility of the paper.

4.1.1 External Estimation

Each block X ; is summarized by the standardized latent variable

Fj = Xjo
4.1.2 Internal Estimation

Each block X is also summarized by the latent variable

J

Zj = Z ejkFr

k=1,k#j
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where the coefficients e ;; are computed following two options:

— Factorial scheme: the coefficient e i is the correlation between F; and Fy.
— Centroid scheme: the coefficient ¢ i is the sign of this correlation.

A third option exists, the path-weighting scheme, but is not applicable for the
specific path model described in Fig. 4.1 because it takes into account the direction
of the arrows.

4.1.3 Computation of the Vector of Weights w; Using Mode A or
Mode B Options

For mode A
The vector of weights w; is computed by PLS regression of z; on X ;, using only
the first PLS component:
wj o X7z 4.1

where o means that the left term is equal to the right term up to a normalization.
In PLS path modeling, the normalization is chosen so that the latent variable F; =
X jwj is standardized.

For mode B

The vector of weights w; is computed by OLS regression of z; on X ;:

wy o (XTX )T xTz; 4.2)

The PLS algorithm

The algorithm is iterative. We begin by an arbitrary choice of weights w;. In
the software PLS-Graph (Chin 2005), the default is to choose all the initial weights
equal to 1. We get the external estimations, then the internal ones, choosing between
the factor and centroid schemes. Using equation (4.1) if mode A is selected or
(4.2) if mode B is preferred, we get new weights. The procedure is iterated until
convergence which is always observed in practice.

4.1.4 Some Considerations on the Criteria

For mode A and centroid scheme

Using optimality properties of PLS regression, we can deduce that the weight
vector w; is obtained in two steps:
1. By maximizing the criterion

J
Cov(X;Wj, D ejiFr) 43)
k=1,k#]j

subject to the constraints |w; | = 1 forall j.
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2. By normalizing W in order to obtain a standardized latent variable F;:

W
w; = =L

Sj
where s is the standard deviation of X jW -

Criterion (4.3) can also be written as

J J
Y eikCov(X;W). Fr) = \[Var(X;Ww;) Y |Cor(X;%,. Xiwp)| (4.4)
k=1,k#j k=1,ks#j

We may conclude that PLS path modeling of the causal model of Fig.4.1, with
mode A and centroid scheme, aims at maximizing the following global criterion

J J

VVar(X;w;) Y |Cor(X W, Xie)| (4.5)
j=1 k=1k#j
subject to the constraints HW J H = 1 for all j. Therefore, we may conclude that

the choice of mode A and centroid scheme leads to latent variables that are well
explaining their own block and are well correlated (in absolute value) with the other
blocks. The properties and the solution of this optimization problem are currently
investigated and will be reported elsewhere.

The higher order latent variables are obtained by replacing the blocks X ; by the
deflated blocks X j,, in the algorithm. Therefore, the latent variables related to one
block are standardized and uncorrelated.

For mode B with centroid and factorial schemes

Using two different approaches and practical experience (i.e., computational
practice), Mathes (1993) and Hanafi (2007) have shown that use of mode B with
centroid scheme leads to a solution that maximizes the criterion

Z ’Cor(ijj,kak)’ (4.6)
j.k

In the same way, they have concluded that use of mode B with factorial scheme
leads to a solution that maximizes the criterion

ZCorz(ijj,kak) 4.7
Jk

This last criterion corresponds exactly to the “SsqCor” criterion of Kettenring
(1971). Hanafi (2007) has proven the monotone convergence of criteria (4.6) and
(4.7) when the Wold’s algorithm is used instead of the Lohmoller’s one.
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The proof of the convergence of the PLS algorithm for mode A is still an open
question for a path model with more than two blocks. Nevertheless, when mode B
and centroid scheme are selected for each block, Hanafi and Qannari (2005) have
proposed a slight modification of the algorithm in order to guarantee a monotone
convergence. The modification consists in the replacement of the internal estimation

J

7= Z sign(Cor(F;, Fy)) x Fy
k=1,k#j

by
J
= Z sign(Cor(F;, Fr)) x Fy
k=1
This modification does not influence the final result.
The MAXDIFF/MAXBET algorithm

Van de Geer introduced the MAXDIFF method in 1984. It comes to maximize
the criterion

J
> Cov(X;W;. Xiwk)
Jk=1k#j

J
= Y Var(X;%;)/Var(Xiwi) Cor(X ;. X ) (4.8)

Jk=1k#]j

subject to the constraints ||'v7 J || = 1forall j.
The MAXBET method is a slight modification of the MAXDIFF algorithm. In
MAXBET, the following criterion

J

Z Cov(X;w;, Xiwi)
J.k=1
J J
= Var(X;jw;) + Z A Var(X ;jw )/ Var(Xpwi) Cor(X ;W , Xxwi)
Jj=1 Jik=1,k#]

4.9)

is maximized instead of (8).
Let’s describe the MAXBET algorithm. The algorithm is iterative:

1. Choose arbitrary weight vectors w; with unit norm.
2. For each j, the maximum of (4.9) is reached by using PLS regression of
Zl{:l X Wi on X ;. Therefore new weight vectors are defined as
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T/ ~
X X k=1 Xiwk
TN ~
o7t |

wj =

3. The procedure is iterated until convergence.

Proof of the monotonic convergence of the MAXBET algorithm has been ini-
tially proposed by Ten Berge (1988). Chu and Watterson (1993) completed this
previous property by showing that the MAXBET algorithm always converges.
Hanafi and Ten Berge (2003) showed that the computation of the global optimal
solution is guaranteed in some specific cases.

The MAXDIFF algorithm is similar to the SUMCOR algorithm (see table 1
below) with the covariance criterion replacing the correlation criterion. It would
be rather useful to maximize criteria like

J
Z ‘COV(Xjo,Xka)‘
Jk=1,k#j

or
J

Y. Cov’(X;W). Xiw)
Jk=1,k#j

subject to the constraints ||Vv', || = 1 forall j. The second criterion has recently been
introduced by Hanafi and Kiers (2006) as MAXDIFF B criterion. The first criterion
appears new. The computation of the solution for both criteria can be performed
by using one monotonically convergent general algorithm proposed by Hanafi and
Kiers (2006).

4.2 The Hierarchical PLS Path Model

It is rather usual to introduce a super-block X4 obtained by concatenation of
the original blocks X1,..., Xy : Xy41 = [X1,..., Xs]. The hierarchical model
proposed by Wold (1982) is described in Fig. 4.2. In this section too, the index 1 is
removed for first order weights and latent variables.

Lohmoller (1989) has studied the use of mode A and of the path-weighting
scheme for estimating the latent variables of the causal model described in
Fig.4.2. He has shown that a solution of the stationary equations related to this
model is obtained for the first standardized principal component Yy 1 of the super-
block X741 and for variables Y;’s defined as the standardized fragments of Y1
related to the various blocks X ;. In practice, he has noted that the PLS algorithm
converges toward the first principal component.
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Fig. 4.2 Path model for hierarchical model

the
for

Lohmoller has called “Split Principal Component Analysis” this calculation of
first principal component and of its fragments. Let’s describe the PLS algorithm
this application.

4.2.1 Use of Mode A with the Path-Weighting Scheme

1.

2.

The latent variable Fy; is equal, in practical applications, to the first standard-
ized principal component of the super-block X j 4.

The latent variable F'; = X ;w; is obtained by PLS regression of F; 1 on block
X, using only the first PLS component:

wj o« XT Fyyy
So, it is obtained by maximizing the criterion
Cov(X;Wwj, Fr+1) (4.10)
subject to the constraint HW ; H = 1, and standardization of X ;W ;:

Fi=Xjwj,

where w; = W, /s; and s; is the standard deviation of X ;W ;.

. We can check that the correlation between F; and Fy 4 is positive:

wj & X] Fry1 = F/ Fryy =wlX] Frypocwlw; >0

The ACOM algorithm of Chessel and Hanafi (1996) consists in maximizing the
criterion
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J
> Co(Xjwy Xygiwys1) @.11)
j=1
J
= Z Var(X jwj)Var(X s 1wy41)Cor* (X ;wi, X 41wy +1)
j=1
subject to the constraints ||wj H = |wj+1]| = 1.

It leads to the first principal component X j4i1wys4+1 of Xy and to the first
PLS component in the PLS regression of Xy i1wy41 on X ;. This is exactly the
solution that has been obtained above for the hierarchical path model with mode A
and path-weighting scheme, up to a normalization. This leads to latent variables that
are at the same time well explaining their own block and as positively correlated as
possible to the first principal component of the whole data table. The higher order
latent variables are obtained by replacing the blocks X ; by the deflated blocks X
in the algorithm.

4.2.2 Use of Mode B with Centroid and Factorial Schemes

Using the results by Mathes (1993) and Hanafi (2005) on the stationnary equations
of the PLS algorithm, and practical experience, it is possible to conclude that use of
mode B with centroid scheme leads to a solution that maximizes the criterion

J

> Cor(X;w;. Xy11wit1) (4.12)
j=1

Furthermore, the optimal solution has the following property:

J

Xypiwse1 ijwj (4.13)
j=1

This is exactly the SUMCOR criterion proposed by Horst (1961). A known property
of this method is that a solution that maximizes (4.12) also maximizes

J

> Cor(X;w;. Xewi) (4.14)
Jk=1
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In Tenenhaus et al. (2005), it was also shown that use of mode B with factorial
scheme leads to a solution that maximizes the criterion

J

Y Cor(Xjwj, Xy41wys1)
j=1

This is exactly the criterion used by Carroll (1968) for generalized canonical
correlation analysis.

4.3 Multi-block Analysis Methods and PLS Path Modeling

Several methods for analyzing multi-block data sets, related to PLS path modeling,
have been proposed in this paper. It is useful to clarify the place of these methods
among the most well known methods for multi-block analysis. In Table 4.1, we
summarize methods which optimize a criterion and give, when the case applies,
their PLS equivalences. Let’s give some explanations on the criteria appearing in
table 4.1:

(@) Afirgt |Cor(F;, Fy)|is the first eigenvalue of block LV correlation matrix.
(b) Asast |Cor(F;, Fy)| is the last eigenvalue of block LV correlation matrix.

(c) F; is the prediction of F in the regression of F' on block X ;.

(d) The reduced block number j is obtained by dividing the block X ; by the square
root of Ay [Cor(xjn, xj¢)] -

(e) The transformed block number j is computed as X ; [(I/H)X]TX]‘]_l/Z.

Methods 1-7 are all generalizations of canonical correlation analysis. Method 1
has to be preferred in cases where positively correlated latent variables are sought.
The other methods 2—7 will probably give very close results in practical situations.
Consequently, PLS path modeling, applied to a confirmatory or hierarchical model,
leads to useful LV’s summarizing the various blocks of variables.

Methods 8-11 are generalizations of PLS regression. Methods 8 and 9 are only
interesting when positively correlated latent variables are sought.

Methods 12 and 14-16 have a common point: the auxiliary variable is the first
principal component of a super block obtained by concatenation of the original
blocks, or of transformed blocks to make them more comparable. Three of them
have a PLS solution. As mode A is equivalent to a PLS regression with one compo-
nent, it is worth noticing that these methods can be applied in a situation where the
number of variables is larger than the number of individuals. Furthermore identical
latent variables are obtained when block principal components are used instead of
the original variables.

As a final conclusion for this theoretical part, we may consider that PLS path
modeling appears to be a unified framework for Multi-block data analysis.
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Table 4.1 Multi-block analysis methods with a criterion to be optimized and PLS approach
Method Criterion PLS path Mode Scheme
model
(1) SUMCOR Maxy" ik Cor(F;, Fy) Hierarchical B Centroid
(Horst 1961) or
Maxy_; Cor (F;,Y" Fy)
(2) MAXVAR Max {)‘-ﬁm [Cor(F;, Fy )]}> (a) Hierarchical B Factorial
(Horst 1961) or or
GCCA Maxy"; Cor*(F;, Fj41)
(Carroll 1968)
(3) SsqCor Maxy" ik Cor*(F i Fr) Confirmatory B Factorial
(Kettenring 1971)
(4) GenVar Min {det[Cor(F;, Fy)]}
(Kettenring 1971)
(5) MINVAR Min {has[Cor(F;, Fi)1} (b)
(Kettenring 1971)
(6) Lafosse (1989) Maxy_; Cor* (F;, Y« Fy)
(7) Mathes (1993) Max Z/.k |Cor(F;, Fy)| Confirmatory B Centroid
or Hanafi (2005)
(8) MAXDIFF Maxap |lwj1=1 >tk Co(Xjwj, Xpwy)
(Van de Geer, 1984
& Ten Berge,
1988)
(9) MAXBET (Van Maxap |jwj1=1 Z/:k Cov(Xjwj, Xiwi)
de Geer, 1984 &
Ten Berge, 1988)
(10) MAXDIFF B Maxa v =1 2 j £k Cov* (X, Xkwi)
(Hanafi and
Kiers 2006)
(11) (Hanafi and Maxay |jwj1=1 2k [Cov(Xjw, Xpwi)|
Kiers 2006)
(12) ACOM Maxai | ; |1=1 Z,» Covz(Xj wj, X4 \wjy1)  Hierarchical A Path-
(Chessel and or N weighting
e R ]
(Lohmoller 1989)
(13) CCSWA Max,y, lIwj lI=1.Var (F)=1 Z]- C0v4(X/ Wi, F)
(Hanafi et al., or )
2006) or HPCA Minjpj=1 Y, HX/XfT _ A/FFTH
(Wold et al., 1996)
(14) Generalized Max Y2 R*(F, X;) Y. Cor® (xin, ;) (©
PCA (Casin 2001) J h
2
(15) MFA (Escofier Minp.p/ Z +X/ - Fp; Hierarchical A Path-
and Pages 1994) 7| e[ cortsinnin (applied to the weighting
reduced X ;)
(d)
—1/2 2
(16) Oblique Ming.,, 3 ”X J(ixIx;) TRl Hierarchical A Path-
maximum variance (applied to the weighting
method transformed

(Horst 1965)

X)) (e
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4.4 Application to Sensory Data

In this section we are going to present in details the application on a practical
example of one method described in the previous sections: PLS confirmatory fac-
tor analysis with mode A and centroid scheme. We will also mention more briefly
the MAXDIFF/MAXBET algorithms and PLS hierarchical model with mode A and
path-weighting scheme. On these data they practically yield the same latent vari-
able estimates as the PLS confirmatory factor analysis. We have used sensory data
about wine tasting that have been collected by C. Asselin and R. Morlat and are
fully described in Escofier and Pages (1988). This section can be considered as
a tutorial on how to use PLS-Graph (Chin 2005) for the analysis of multi-block
data.

4.4.1 Data Description

A set of 21 red wines with Bourgueil, Chinon and Saumur origins are described by
27 variables grouped into four blocks:

X1 = Smell at rest

Rest]l = smell intensity at rest, Rest2 = aromatic quality at rest, Rest3 = fruity
note at rest, Rest4 = floral note at rest, Rest5 = spicy note at rest

X = View
Viewl = visual intensity, View2 = shading (from orange to purple), View3 =
surface impression

X3 = Smell after shaking

Shakingl = smell intensity, Shaking2 = smell quality, Shaking3 = fruity note,
Shaking4 = floral note, Shaking5=spicy note, Shaking6 = vegetable note,
Shaking7 = phenolic note, Shaking8 = aromatic intensity in mouth, Shaking9
= aromatic persistence in mouth, Shaking10 = aromatic quality in mouth

X4 = Tasting

Tastingl = intensity of attack, Tasting2 = acidity, Tasting3 = astringency, Tast-
ing4 = alcohol, Tasting5 = balance (acidity, astringency, alcohol), Tasting6 = mell-
owness, Tasting7 = bitterness, Tasting8 = ending intensity in mouth, Tastingd =
harmony

Two other variables are available and will be used as illustrative variables: (1)
the global quality of the wine and (2) the soil with four categories, soil 3 being the
reference one for this kind of wine. These data have already been analyzed by PLS
and GPA in Tenenhaus and Esposito Vinzi (2005).
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Fig. 4.3 Loading plots for PCA of each block

4.4.2 Principal Component Analysis of Each Block

PCA of each block is an essential first step for the analysis of multi-block data.
The loading plots for each block are given in Fig.4.3. The View block is one-
dimensional, but the other blocks are two-dimensional.

4.4.3 PLS Confirmatory Factor Analysis

We have used the PLS-Graph software (Chin 2005), asking for mode A, centroid
scheme and two dimensions.

4.4.3.1 Study of Dimension 1

The causal model is described in Fig. 4.4. The correlations between the first order
latent variables are given in Table 4.2 and the other results in Tables 4.3, 4.4 and 4.5.



112 M. Tenenhaus and M. Hanafi

shé[l|<|;910
rest1 0575 0.821 0.928
0.710 D& 01 0212 /D
: shaking2 ~0.842 oo &%/ 0.926~" shakings

D\ ©207) 0173 kin
0.913

shakin shaking9

(0.086)

0.844 (0.160) —0.551 shaking7
s Q207 (-0-109)
o425 0.029 shaking3 (0.032) \(0.074)
rest3 (0.236) (0-027) shakingé
shaking4 0.ygoshakings
rest5 -0.239 .

tasting1

(~0.027) (0.'07723) tasting8
0.791 -
tasting2 (015500 7 o.\azg (g:?g;
(0.149) 0.142) tasting7
tasting3 asTng6
tastingd tasting5
Fig. 4.4 PLS confirmatory factor analysis for wine data (dim. 1)
Table 4.2 Correlations between the first order latent variables
Smell at rest View Smell after Tasting
shaking
Smell at rest 1.000
View 0.733 1.000
Smell after shaking 0.870 0.843 1.000
Tasting 0.739 0.892 0.917 1.000
Table 4.3 Results for the first dimension (Inner model)
Inner Model
Block Mult. RSq® AvCommun®
Smell at rest 0.7871 0.4463
View 0.8077 0.9449
Smell after shaking 0.9224 0.4646
Tasting 0.9039 0.6284
Average 0.8553 0.5692
(a) R? of each LV with all the other LVs, not a standard output of PLS-

Graph
(b) Average gives the average of block communalities weighted by the
number of MV by block
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Table 4.4 Results for the first dimension (Outer model)

Outer Model
Variable Weight® Loading® Communality©
Smell at rest
restl 0.2967 0.7102 0.5044
rest2 0.4274 0.9132 0.8340
rest3 0.3531 0.8437 0.7118
rest4 0.2362 0.4247 0.1804
rest5 0.0268 0.0289 0.0008
View
viewl 0.3333 0.9828 0.9660
view2 0.3229 0.9800 0.9604
view3 0.3735 0.9531 0.9085
Smell after shaking
shaking1 0.1492 0.5745 0.3300
shaking2 0.1731 0.8422 0.7094
shaking3 0.1604 0.7870 0.6194
shaking4 0.0324 0.2448 0.0599
shaking5 0.0735 0.2069 0.0428
shaking6 —0.1089 —0.5515 0.3042
shaking7 0.0857 0.4377 0.1916
shaking8 0.2081 0.9263 0.8581
shaking9 0.2119 0.9250 0.8556
shakin10 0.1616 0.8214 0.6748
Tasting
tasting1 0.1537 0.9373 0.8786
tasting2 —0.0270 —0.2309 0.0533
tasting3 0.1545 0.7907 0.6252
tasting4 0.1492 0.7883 0.6215
tasting5 0.1424 0.8292 0.6876
tasting6 0.1529 0.8872 0.7872
tasting7 0.0719 0.3980 0.1584
tasting8 0.1733 0.9709 0.9426
tasting9 0.1678 0.9494 0.9013

a. Weights of standardized original MV for LV 1 construction
b. Correlation between original MV and LV 1
c. Communality = R? between MV and first LV

The communalities are the square of the correlations between the manifest variables
and the first dimension latent variable of their block. The four latent variables F
are well correlated with the variables related to the first principal components of
each block.

The quality of the causal model described in figure 4 can be measured by a
Goodness-of-Fit (GoF) index. It is defined by the formula
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Table 4.5 _First dimension latent variables
Latent variables

Smell View Smell after Tasting

at rest shaking
2EL 0.224 0.522 0.146 —0.425
ICHA —0.904 —1.428 —1.060 —0.730
IFON —0.946 —0.721 —0.653 —0.176
1VAU —2.051 —2.136 —2.303 —2.290
IDAM 2.290 0.742 1.460 0.963
2BOU —0.391 0.966 0.325 0.801
1BOI 1.029 0.338 0.937 0.815
3EL —0.533 0.105 0.255 0.433
DOMI —0.796 0.292 0.185 0.121
ITUR —0.980 —0.458 —0.521 —0.527
4EL 0.436 —0.007 0.522 0.536
PERI 0.639 1.151 0.400 0.506
2DAM 0.975 0.764 0.915 0.929
1POY 0.204 1.327 0.522 1.174
1ING 0.648 0.557 0.592 0.632
1BEN 0.248 —0.286 0.007 0.245
2BEA 1.055 0.067 1.428 0.297
IROC —0.355 —0.374 —0.098 —0.149
2ING —1.660 —2.606 —2.559 —2.961
Tl 0.791 0.604 —0.135 —0.375
T2 0.076 0.579 —0.365 0.180

1 J kj 12
GoF(1) = A DY Cor(xjr. Fjy) x Vi > R2(Fji:{Fry .k # j})
J=17%7 j=1k=1 j=1
= /AvCommun(1) x /Average Mult.RSq(1)
= +/0.5692 x 0.8553 = 0.6977 (4.15)

where AvCommun(1) and Average Mult.RSq(1) are given in table 4.3.

The first term of the product measures the quality of the outer model and the
second term the one of the inner model. The GoF index for the model described in
figure 4 and for dimension 1 is equal to 0.6977.

Using the bootstrap procedure of PLS-Graph (results not shown), we have
noticed that the weights related to rest5 (Spicy note at rest), shaking4 (Floral note),
shaking5 (Spicy note), shaking7 (Phenolic note), tasting2 (Acidity) and tasting7
(Bitterness) are not significant (|f| <2). It may be noted on figure 3 that these
items are precisely those that are weakly contributing to component 1 and highly
contributing to component 2 in the PCA of each block.
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4.4.3.2 Study of Dimension 2

The second order latent variables are now computed on the deflated blocks X ;.
The results built on these blocks, but expressed in term of the original variables,
are shown on Fig.4.5. We obtain a new set of latent variables Fj»,j = 1,...,4.
The correlations between the LV are given in table 4.6. We may notice that the
second latent variable for the view block is weakly correlated to the other second
order latent variables. The other results are given in Tables 4.7 and 4.8. The average
communalities express the proportion of variance of each block explained by the

two block latent variables.
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shaki g1\ | /s king9

rest1 —0.485
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Fig. 4.5 PLS confirmatory factor analysis for wine data (dim. 2)
Table 4.6 Correlations between the second order latent variables
Smell View Smell after ~ Tasting
at rest shaking
Smell at rest 1.000
View 0.409 1.000
Smell after shaking 0.791 0.354 1.000

Tasting 0.854 0.185 0.787 1.000
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Table 4.7 Results for the second dimension (Inner model)

Inner Model
Block Mult.RSq AvCommun
Smell at rest 0.8071 0.7465
View 0.2972 0.9953
Smell after shaking 0.6844 0.7157
Tasting 0.7987 0.8184
Average 0.6469 0.7867

Table 4.8 Results for the second dimension (Outer model)

Outer Model
Variable Weight® Loading® Communality©
Smell at rest
restl 0.4729 0.6335 0.9057
rest2 —0.1128 —0.1202 0.8484
rest3 —0.1971 —0.2014 0.7524
rest4 —0.1977 —0.3845 0.3283
rest5S 0.6032 0.9469 0.8975
View
viewl 1.0479 0.1648 0.9932
view2 1.0192 0.1798 0.9927
view3 —2.1285 —0.3026 1.0000
Smell after shaking
shakingl 0.3161 0.6772 0.7886
shaking?2 —0.1179 —0.3269 0.8162
shaking3 —0.1235 —0.3120 0.7168
shaking4 —0.1977 —0.5283 0.3390
shaking5 0.3449 0.7701 0.6359
shaking6 0.2199 0.6459 0.7214
shaking7 0.1529 0.5153 0.4572
shaking8 0.0537 0.1401 0.8777
shaking9 0.1459 0.1961 0.8940
shaking10 —0.1686 —0.4853 0.9103
Tasting
tasting1 0.1096 0.0554 0.8817
tasting?2 0.2017 0.5658 0.3735
tasting3 0.4391 0.4739 0.8498
tasting4 0.0302 0.2935 0.7076
tasting5 —0.3838 —0.4943 0.9319
tasting6 —0.2756 —0.4239 0.9668
tasting7 0.4213 0.7611 0.7376
tasting8 0.0789 0.0781 0.9487
tasting9 —0.1145 —0.2578 0.9678

a. Weights of standardized original MV for LV2 construction
b. Correlation between original MV and LV2
c. Communality = R? between MV and two first LV’s
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Table 4.9 Results for the second dimension latent variables
Latent variables

Smell View Smell after Tasting

at rest shaking
2EL —0.436 0.556 —0.744 —0.943
ICHA —0.909 —0.019 —1.077 —0.866
1FON 0.168 —0.091 —0.687 —1.012
1VAU 0.695 1.018 0.504 1.393
IDAM 0.171 —0.085 —0.313 —0.157
2BOU —0.067 0.260 —0.953 0.443
1BOI —0.145 0.219 —0.174 —0.171
3EL 0.625 1.540 1.631 —0.008
DOM1 0.008 —0.291 —0.470 —0.506
1TUR —0.708 —0.595 —0.176 —0.294
4EL 0.199 —0.990 0.258 0.615
PER1 0.174 1.933 0.386 0.279
2DAM —0.932 —0.981 —0.085 —0.939
1POY —0.704 1.156 —0.011 —0.673
1ING —0.448 —1.636 —0.489 0.217
1BEN —0.309 —0.417 —1.150 —0.713
2BEA —1.599 —1.967 0.029 —0.275
1ROC —0.236 —1.298 —0.809 —0.096
2ING —0.699 0.747 —0.543 —1.125
T1 2.112 0.088 2.396 1.950
T2 3.039 0.854 2.4717 2.882

The GoF index for this second model is defined as:

J

J kj
1 1 .
GoF(2) = Pk E E Cor?(x ji. Fj2) x 7 E R2(Fjoi{Fra. k # J})

J=1"J j=1k=1 j=1

= \/AvC0mmun(2) — AvCommun(1) x \/Average Mult.RSq(2)
= \/(0.7867 —0.5692) x 0.6469 = 0.3751

where AvCommun(2) and Average Mult.RSq(2) are given in table 4.7. This for-
mula comes from the definition of AvCom mun(2) and from the fact that the latent
variables F'j; and F;, are uncorrelated:

AvCommun(2)
1 J kj ,
= —Zﬁ-;lkj ;];R (xjk; Fj1, Fj2)
1 J kj 1 J kj
= W Z Z CorZ(Xjk, Fjl) + W Z Z Corz(xjk, sz)
J=17%) j=1k=1 J=17%) j=1k=1
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The data can be visualized in a global component space by using the first prin-
cipal component of the four first order components Fi1, F»1, F31, F41 and the first
principal component of the three second order components Fy», F3,, F4p. We have
not used the second component of the view block because this component is not
related with the other second components (Table 4.6). This graphical display is given
in Fig. 4.6. The loading plot is given in Fig. 4.7. The various mapping (F 1, F2) are
given in Fig. 4.8.

Discussion

From global criterion (4.5), tables 2 and 6, PLS Confirmatory factor analysis
comes here to carry out a kind of principal component analysis on each block such
that the same order components are as positively correlated as possible. So, for each
dimension /, the interpretations of the various block components Fj;, j =1,...,J
can be related.

In table 4.10 and in figure 4.7 the “Smell at rest”, “View”, “Smell after shaking”
and “Tasting” loadings with the global components are displayed. It makes sense as
the correlations of the variables with the block components and the global compo-
nents are rather close. The global quality judgment on the wines has been displayed
as an illustrative variable. This loading plot is quite similar to the one obtained by
multiple factor analysis (Escofier and Pages 1988, p. 117). So, we may keep their
interpretation of the global components.

The first dimension is related with “Harmony” and “Intensity”. For this kind
of wine, it is known that these wine characteristics are closely related. The sec-
ond dimension is positively correlated with “Bitterness”, “Acidity”, “Spicy” and
“Vegetable” notes and negatively correlated with “Floral” note. Soil however is
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Fig. 4.6 Wine and soil visualization in the global component space
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Fig. 4.7 Loading plot for the wine data

very predictive of the quality of wine: an analysis of variance of the global qual-
ity judgment on the soil factor leads to I = 5.327 with p-value = .009. This point
is illustrated in figure 6. All the reference soils are located in the “good” quadrant.
It can also be noted that the second dimension is essentially due to two wines from
soil 4: T1 and T2. They are in fact the same wine presented twice to the tasters. In an
open question on aroma recognition, aromas “mushrooms” and “underwood” were
specifically mentioned for this wine.

4.4.4 Use of the MAXDIFF/MAXBET Algorithms

On this example, the PLS confirmatory factor analysis model and MAXDIFF/
MAXBET give practically the same latent variables for the various blocks. The
correlations between the latent variables on the same block for both approaches are
all above .999. So it is not necessary to go further on this approach.

4.4.5 Use of Hierarchical PLS Path Model

The causal model estimated with mode A and path-weighting scheme is described
in figure4.9. The correlations between the latent variables are given in table 4.11.
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Fig. 4.8 Wine visualization with respect to four aspects

On this example, the PLS hierarchical model and the PLS confirmatory factor
analysis model give the same latent variables for the various blocks. The correla-
tions between the latent variables on the same block for both approaches are all
above .999. The correlation between the first principal component of the four first
order components of the PLS confirmatory factor analysis and the global score of
the hierarchical PLS path model is equal to .995. So it is not necessary to go further
on this approach.

4.5 Conclusion

There were two objectives in this paper. The first one was to show how PLS path
modeling is a unified framework for the analysis of multi-block data. The second
one was to give a tutorial on the use of PLS-Graph for multi-block data analysis.
We can now give some guidelines for the selection of a method. There are three
types of methods with respect to the unified general framework: (1) generalized
canonical correlation analysis, (2) generalized PLS regression and (3) split-PCA.
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Table 4.10 Correlations between the original variables and the global components 1 and 2
(Variables clearly related to second dimension are in italic)

Correlation with Correlation with
global component 1  global component 2
Smell intensity at rest (Restl) 0.60 0.68
Aromatic quality at rest (Rest2) 0.83 —0.07
Fruity note at rest (Rest3) 0.71 —0.15
Floral note at rest (Rest4) 0.44 —0.33
Spicy note at rest (Rest5) 0.04 0.86
Visual intensity (View1) 0.88 0.24
Shading (View2) 0.86 0.24
Surface impression (View3) 0.95 0.08
Smell intensity (Shakingl) 0.63 0.62
Smell quality (Shaking2) 0.78 —0.38
Fruity note (Shaking3) 0.73 —0.34
Floral note (Shaking4) 0.17 —0.50
Spicy note (Shaking5) 0.29 0.70
Vegetable note (Shaking6) —0.50 0.61
Phelonic note (Shaking7) 0.39 0.32
Aromatic intensity in mouth (Shaking8) 0.92 0.02
Aromatic persistence in mouth (Shaking9) 0.93 0.14
Aromatic quality in mouth (Shaking10) 0.74 —0.53
Intensity of attack (Tastingl) 0.84 0.07
Acidity (Tasting2) —0.17 0.41
Astringency (Tasting3) 0.80 0.49
Alcohol (Tasting4) 0.78 0.22
Balance (Tasting5) 0.77 —0.50
Mellowness (Tasting6) 0.83 —0.41
Bitterness (Tasting7) 0.38 0.70
Ending intensity in mouth (Tasting8) 0.93 0.07
Harmony (Tasting9) 0.90 —0.23
GLOBAL QUALITY 0.74 —0.46

If the main objective is to obtain high correlations in absolute value between factors,
mode B has to be preferred and methods number 2, 3, or 7 mentioned in table 1 will
probably give very close results. If positive correlations are wished, then method
number 1 is advised: PLS-graph appears to be a software where SUMCOR Horst’s
algorithm is available. For data with many variables and high multicolinearity inside
the blocks, it is preferable (and mandatory when the number of variables is larger
than the number of individuals) to use a generalized PLS regression method. The
ACOM Chessel & Hanafi’s algorithm seems to be the most attractive one and is
easy to implement with PLS-graph (hierarchical PLS path model with mode A and
path weighting scheme). Furthermore, ACOM will give the same results using the
original MV’s or the block principal components. That means that ACOM can still
be used when the number of variables is extremely high. Multi-block analysis is
very common in sensory analysis. We have given a detailed application in this field.
We have commented the various outputs of PLS-Graph so that the reader should be
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Fig. 4.9 Hierarchical PLS path modeling of the wine data
Table 4.11 Correlations between the first LV’s for the hierarchical PLS model
Smell View Smell after ~ Tasting
at rest shaking
Smell at rest 1.000
View 0.726 1.000
Smell after shaking 0.866 0.828 1.000
Tasting 0.736 0.887 0.917 1.00
Global 0.855 0.917 0.972 0.971

able to re-apply these methods for him(her)self. As a final conclusion to this paper,
we mention our conviction that PLS path modeling will become a standard tool for
multi-block analysis. We hope that this paper will contribute to reach this objective.
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Chapter 5

Use of ULS-SEM and PLS-SEM to Measure
a Group Effect in a Regression Model
Relating Two Blocks of Binary Variables

Michel Tenenhaus, Emmanuelle Mauger, and Christiane Guinot

Abstract The objective of this paper is to describe the use of unweighted least
squares (ULS) structural equation modeling (SEM) and partial least squares (PLS)
path modeling in a regression model relating two blocks of binary variables, when
a group effect can influence the relationship. Two sets of binary variables are avail-
able. The first set is defined by one block X of predictors and the second set by
one block Y of responses. PLS regression could be used to relate the responses Y
to the predictors X, taking into account the block structure. However, for multi-
group data, this model cannot be used because the path coefficients can be different
from one group to another. The relationship between Y and X is studied in the
context of structural equation modeling. A group effect A can affect the measure-
ment model (relating the manifest variables (MVs) to their latent variables (LVs))
and the structural equation model (relating the Y -LV to the X-LV). In this paper,
we wish to study the impact of the group effect on the structural model only, sup-
posing that there is no group effect on the measurement model. This approach has
the main advantage of allowing a description of the group effect (main and inter-
action effects) at the LV level instead of the MV level. Then, an application of this
methodology on the data of a questionnaire investigating sun exposure behavior is
presented.
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5.1 Introduction

The objective of this paper is to describe the use of unweighted least squares
structural equation modeling (ULS-SEM) and partial least squares path model-
ing (PLS-SEM) in a regression model relating a response block Y to a predictor
block X, when a group effect A can affect the relationship. A structural equation
relates the response latent variable (LV) n associated with block Y to the pre-
dictor latent variable ¢ associated with block X, taking into account the group
effect A. In usual applications, the group effect acts on the measurement model
as well as on the structural model. In this paper, we wish to study the impact of
the group effect on the structural model only, supposing that there is no group
effect on the measurement model. This constraint is easy to implement in ULS-
SEM, but not in PLS-SEM. This approach has the main advantage of allow-
ing a description of the group effect (main and interaction effects) at the LV
level instead of the manifest variable level. We propose a four-step methodology:
(1) Use of ULS-SEM with constraints on the measurement model, (2) LV esti-
mates are computed in the framework of PLS: the outer LV estimates £ and 7
are computed using mode A and, as inner LV estimates, the ULS-SEM LVs,
(3) Analysis of covariance relating the dependent LV 7 to the independent terms
'5, A (main effect) and A * § (interaction effect), and (4) Tests on the structural
model, using bootstrapping.

These methods were applied on the data of a questionnaire investigating sun
exposure behavior addressed to a cohort of French adults in the context of the
SU.VI.MAX epidemiological study. Sun protection behavior was described accord-
ing to gender and class of age (less than 50 at inclusion in the study versus more
or equal to 50). This paper illustrates the various stages in the construction of latent
variables, also called scores, based on qualitative data.

5.2 Theory

Chin, Marcolin and Newsted(2003) proposed to use the PLS approach to relate the
response block Y to the predictor block X with a main effect A and an interac-
tion term A * X added to the model as described in Fig.5.1. In this example, the
group variable A has two values, and A; and A, are two dummy variables describ-
ing these values. Ping (1995) has studied the same model in the LISREL context.
A path model equivalent to the one described in Fig. 5.1 is given in Fig. 5.2, where
the redundant manifest variables have been removed. This model in Fig. 5.2 seems
easier to estimate using ULS procedure than the model shown in Fig.5.1, after
removal of the redundant MVs: a negative variance estimate has been encountered in
the presented application for the Fig. 5.1 model, and not for the Fig. 5.2 model. The
study of the path coefficients related to the arrows connecting X * A;, X « A, and 4
to Y in Fig. 5.2 gives some insight on the main group effect A and on the interaction
effect A * X. However, this model can be misleading because the blocks X *x Ay
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Fig. 5.1 Two-block regression model with a group effect (Ping 1995; Chin et al. 2003)
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Fig. 5.2 Two-block regression model with main effect and interaction [Group effect for measure-
ment and structural models]
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Al

x3*A2

Fig. 5.3 Two-block regression model with main effect and interaction [Group effect for the
structural model only]

do not represent the product of the group effect A with the latent variable related to
the X block. In this model the influence of the group effect A on the measurement
and the structural models are confounded. Henseler and Fassot (2006) propose a
two-stage PLS approach: (1) Computing the LV scores LV(X) and LV (Y) using
PLS on the model described in Fig. 5.1 without the interaction term and (2) Using
the LV scores to carry out an analysis of covariance of LV(Y) on LV(X), A and
A * LV(X). In this paper, we propose a methodology to compute the LV scores
taking into account the interaction term.

The main hypothesis that we need to do in this paper is that there is no group
effect on the measurement model. The regression coefficients w ;;, in the regression
equations relating the M Vs to their LVs are all equal among the X * Ay, blocks. This
model is described in Fig. 5.3. These equality constraints cannot be obtained with
PLS-Graph Chin (2005) nor with other PLS softwares. But, a SEM software like
AMOS 6.0 Arbuckle (2005) could be used to estimate the path coefficients subject
to these equality constraints with the ULS method.

5.2.1 Owuter Estimate of the Latent Variables in the PLS Context

Using the model described in Fig. 5.3, it is possible to compute the LV estimates in
a PLS way using the ULS-SEM weights w ;. For each block, the weight w; is equal
to the regression coefficient of &, LV for the block X * Ay, in the regression of the
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manifest variable X ; A5 on the latent variable &:

Cov(X;An.&n) _ Covlw;bn + &;n. &n)
Var (&) Var (&)

= w; 5.1

Therefore, in each block, these weights are proportional to the covariances between
the manifest variables and their LVs. With mode A, using the ULS-SEM latent

variables as LV inner estimates, the LV outer estimate &, for block X *x Ay, is given
by the variable

& oy wi(X; Ay — X Ap) (5.2)
J

where o« means that the left term is equal to the right term up to a normalization to
unit variance. This approach is described in Tenenhaus et al. (2005).

When all the X variables have the same units and all the weights w; are positive,
Fornell et al. (1996) suggest computing the LV estimate as a weighted average of
the original MVs:

E =) WX Ay =EAp (5.3)
j

where w; = w;/ >, wg and £ = >_;wjX; = Xw. The LV estimate has values
between 0 and 1 when the X variables are binary.
In the same way, the LV outer estimate for block Y is given by

n o Y cx(Ye — Vi) (5.4)
k

When all the weights ¢ are positive, they are normalized so that they sum up to 1.
We obtain, keeping the same notation for the “Fornell” n LV estimate,

=y GYr=YC (5.5)
k

where ¢ = ¢/ > ¢ ce. This LV has also values between 0 and 1 when the ¥
variables are binary.

5.2.2 Use of Multiple Regression on the Latent Variables

The structural equation of Fig.5.3, relating n to £ and taking into account the
group effect A4, is now estimated in the PLS framework by using the OLS multiple
regression:

n=PBo+ p141 + ,B/ngl + /3’3§Az +e
= Bo + P1A1 + BLEAL + BLE(1 — Ay) + ¢ (5.6)
= Bo + 1Ay + B5E + (By — BYEAL + ¢
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The regression equation of 77 on E, taking into account the group effect A, is finally
written as follows:

T=Bo+ BrA1 + Bk + PakAs +¢ (5.7)

Consequently, there is a main group effect if the regression coefficient of A; is
significantly different from zero and an interaction effect if the regression coefficient

of §A1 is significantly different from zero.

This approach can be generalized without difficulties if the group effect has more
than two categories. In this approach ULS-SEM is only used to produce weights w
and c that lead to the latent variables gand 7. The regression coefficients of model
(5.7) are estimated by ordinary least squares (OLS), independently of the ULS-SEM
parameters.

5.2.3 Use of Bootstrap on the ULS-SEM Regression
Coefficients

Denoting the latent variables for the model in Fig. 5.3 as follows:

— nis the LV related to block Y

— & is the LV related to block X * A;
— &, is the LV related to block X * A,
— &3 is the LV related to block A

the theoretical model related to the model shown in Fig. 5.3 can be described by
(5.8):
n=~é& + A6 + 1365+ 6 (5.8)

The test for a main effect A is equivalent to the test Hy : A3 = 0. The test for an
interaction effect X * A is equivalent to the test Hy : A1 = A;. Confidence intervals
of the regression coefficients of model (5.8) can be constructed by bootstrapping
using AMOS 6.0. These intervals can be used to test the main group effect and the
interaction effect.

5.3 Application

5.3.1 Introduction

Ultraviolet radiations are known to play a major role in the development of skin
cancers in humans. Nevertheless, in developed countries an increase in sun exposure
has been observed over the last fifty years due to several sociological factors: longer
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holidays duration, traveling facilities and tanning being fashionable. To estimate
the risk of skin cancer occurrence and of skin photoageing related to sun expo-
sure behavior, a self-administered questionnaire was specifically developed in the
context of the SU.VL.LMAX cohort Guinot et al. (2001). The SU.VL.MAX study
(SUppléments en VItamines et Minéraux Anti-oXydants) is a longitudinal cohort
study conducted in France, which studies the relationship between nutrition and
health through the main chronic disorders prevalent in industrialized countries. It
involves a large sample of middle-age men and women right across the country
recruited in a “free-living” adult population Hercberg et al. (1998). The study objec-
tives, design and population characteristics have been described elsewhere Hercberg
et al. (1998b). The information collected on this cohort offers the opportunity to
conduct cross-sectional surveys using self-reported health behavior and habits ques-
tionnaires, such as those used to study the sun exposure behavior of French adults
Guinot et al. (2001).

5.3.2 Material and Methods

Dermatologists and epidemiologists contributed to the definition of the question-
naire, which was in two parts, the first relating to sun exposure behavior over the
past year and the second to sun exposure behavior evaluated globally over the sub-
jects’ lifetime. The questionnaire was addressed in 1997 to the 12,741 volunteers
who were included in the cohort. Over 64% of the questionnaires were returned and
analyzed (8,084 individuals: 4,825 women and 3,259 men).

In order to characterize the sun exposure of men and women, various synthetic
variables characterizing sun exposure behavior were previously generated Guinot
et al. (2001). Homogeneous groups of variables related to sun exposure behavior
were obtained using a variable clustering method. Then, a principal component anal-
ysis was performed on these groups to obtain synthetic variables called “scores”. A
first group of binary variables was produced to characterize sun protection behavior
over the past year (block Y with 6 variables). A second group of binary variables was
produced to characterize lifetime sun exposure behavior (block X: 11 variables):
intensity of lifetime sun exposure (4 variables), sun exposure during mountain sports
(2 variables), sun exposure during nautical sports (2 variables), sun exposure during
hobbies (2 variables), and practice of naturism (1 variable).

The objective of this research was to study the relationship between sun protec-
tion behavior over the past year of the individuals and their lifetime sun exposure
behavior taking into account the group effects gender and class of age.

The methodology used was the following.

Firstly, the possible effect of gender has been studied. This analysis was carried
out in four parts:

Ist part. Because of the presence of dummy variables, the data are not multi-
normal. Therefore, ULS-SEM was carried out using AMOS 6.0 with the option
Method = ULS. So, two weight vectors were obtained: a weight vector ¢ for the
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sun protection behavior over the past year and a weight vector w for lifetime sun
exposure behavior.

2nd part. Using these weights, two scores were calculated: one for the sun
protection behavior and one for lifetime sun exposure behavior.

3rd part. Then, to study the possible gender effect on sun protection behavior over
the past year, an analysis of covariance was conducted using PROC GLM (SAS
software release 8.2 (SAS Institute Inc, 1999)) on lifetime sun exposure behavior
score, gender and the interaction term between gender and lifetime sun exposure
behavior score.

4th part. Finally, the results of the last testing procedure were compared with
those obtained using the regression coefficient confidence intervals for model (5.8)
calculated by bootstrapping (ULS-option) with AMOS 6.0.

Secondly, the possible effect of age was studied for each gender using the same
methodology.

5.3.3 Results

The results are presented as follows. The relationship between sun protection behav-
ior over the past year and lifetime sun exposure behavior has been studied, firstly
with the gender effect (step 1), and secondly with the age effect for each gender
(step 2a and step 2b). Finally, three different “lifetime sun exposure” scores were
obtained, as well as three “sun protection over the past year” scores.

Step 1. Effect of Gender

ULS-SEM allowed to obtained weights ¢ for the sun protection behavior over the
past year and weights w for the lifetime sun exposure behavior. The AMOS results
are shown in Fig. 5.4.

Then, the scores were calculated using the normalized weights on the original
binary variables. The sun protection behavior over the past year was called “Sun
protection over the past year score 1” (normalized weight vector ¢l shown in Table
5.1). For example, the value c11 = 0.24 was obtained by dividing the original
weight 1.00 (shown in Fig. 5.4) by the sum of all the c1 weights (4.22 = 1.00 4
0.84 + --- 4 0.46). The lifetime sun exposure behavior score was called “Lifetime
sun exposure score 1” (normalized weight vector w1l shown in Table 5.2).

To study the possible effect of gender on sun protection behavior, an analysis
of covariance was then conducted relating the “Sun protection over the past year
score 17 to the “Lifetime sun exposure score 1”, “Gender” and the interaction term
“Gender*Lifetime sun exposure score 1”. The results of this analysis are given in
Table 5.3.

The LV “Sun protection over the past year score 17 is significantly related
to the “Lifetime sun exposure score 1” (t-test = 9.61, p<0.0001), to “Gender”
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Fig. 5.4 Two block regression model for relating sun protection behavior over the past year to the
lifetime sun exposure behaviors with a gender effect acting on the structural model and not on the
measurement model

Table 5.1 Normalized weight vector c1 for the “Sun protection over the past year score 1 (Effect
of gender)

0.24  If sun protection products used while sun tanning

0.20  If sun protection products used throughout voluntarily sun exposure periods

0.22  If sun protection products applied regularly several times during sun exposure periods
0.14  If the sun protection product used for the face has a SPF* over 15

0.09  If the sun protection product used for the body has a SPF* over 15

0.11  If sun protection products used besides voluntarily sun exposure periods
4 SPF: Sun Protection Factor

+H A+ttt

(t-test = 8.15, p<0.0001) and to “Gender*Lifetime sun exposure score 1”
(t-test = 4.87, p<0.0001). Generally, men tend to use less sun protection prod-
ucts than women; furthermore, this difference between men and women increases
as lifetime sun exposure increases.

These results are confirmed by the bootstrap analysis of model (5.8) given in
Table 5.4. The 95% Confidence Interval (CI) for the regression coefficient A3 is
[—0.181, —0.084]. Therefore there is a significant “Gender” effect. The 95% CI for
the regression coefficients A; and A, do not overlap. Therefore we may conclude
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Table 5.2 Normalized weight vector wl for the “Lifetime sun exposure score 1” (Effect of gender)

+ 0.14 If sun exposure of the body and the face

+ 0.11 If sun exposure between 11 a.m. and 4 p.m.

+ 0.07 If basking in the sun is declared important or extremely important

+ 0.20 If self-assessed intensity of sun exposure is declared moderate or severe
+ 0.10 If sun exposure during practice of mountain sports

+ 0.05 If the number of days of lifetime mountain sports activities > 200 days?
+ 0.06 If sun exposure during practice of nautical sports

+ 0.03 If the number of days of lifetime nautical sports activities > 400 days®
+ 0.13 If sun exposure during practice of hobbies

+ 0.07 If the number of days of lifetime hobby activities > 900 days?*

+ 0.03 If practice of naturism during lifetime

)

Median value of the duration was used as a threshold for dichotomisation

Table 5.3 SAS output of analysis of covariance for “Sun protection over the past year score 1”
on “Lifetime sun exposure score 1” (score_x1_protect), gender and interaction

Parameter Estimate Standard Error  t Value  Pr>|¢|
Intercept 0.0729460737 B 0.01213456 6.01 <.0001
Score_x1_protect 0.2473795070 B 0.02574722 9.61 <.0001
GENDER Women  0.1269948620 B 0.01557730 8.15 <.0001
GENDER Men 0.0000000000 B - - -

Score_x1_protec*GENDER ~ Women 0.1613712617 B 0.03316612 4.87  <.0001
Score_x1_protec*GENDER  Men 0.0000000000 B - - —

Table 5.4 AMOS output for 95% CI of regression coefficients for Fig. 5.4 “Sun protection over
the past year score 1” on “Lifetime sun exposure score 1”

Coefficients Estimate Lower  Upper
MM Sun exposure (men) —>  Sun protection 1.155 0.950 1.360
A Sun exposure (women) —  Sun protection 1.839 1.596 2.080
A3 Men —>  Sun protection 0.129 —0.181 —0.084

that 1; # A,. There is a significant interaction effect “Gender*Sun Exposure” on
“Sun Protection”. But this last approach does not produce any p-value.

Step 2. Effect of Age

As the relationship between the sun protection behavior over the past year and the
lifetime sun exposure depends on gender, the effect of age was studied for each
gender. Thus, the variable age was dichotomized. This variable called “Age50” is
equal to 0 if less than 50 at inclusion in the SU.VIL.MAX study and equal to 1 if
more or equal to 50. However, in Figs. 5.5 and 5.6, this variable is called “Age>50"
to make the interpretation easier.
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Fig. 5.5 Two block regression model for relating sun protection behavior over the past year to the
lifetime sun exposure behaviors for women with an age effect acting on the structural model and
not on the measurement model

Step 2a. Effect of age for women

Using the same methodology, a sun protection over the past year score (“Sun pro-
tection over the past year score 2”) and a lifetime sun exposure score (‘“‘Lifetime
sun exposure score 2”’) were obtained (normalized weights shown in Tables 5.5 and
5.6, in columns ¢2 and w2, respectively; normalized weights in ¢1 and wl are the
same as in Tables 5.1 and 5.2 and are given here again for comparison purpose). The
AMOS results are shown in Fig. 5.5.

Then, to study the age effect on the sun protection over the past year for women,
an analysis of covariance was conducted relating the “Sun protection over the past
year score 27 to the “Lifetime sun exposure score 2”, “Age50” and the interaction
term “Age50*Lifetime sun exposure score 2”. The results are given in Table 5.7. The
LV “Sun protection over the past year score 2” is significantly related to “Lifetime
sun exposure score 2” (t-test = 15.3, p <0.0001) and to “Age50” (t-test = —4.95,
p <0.0001), but not to the interaction term (t-test = 0.43, p = 0.6687). Women less
than 50 tend to use more sun protection products than women over or equal to 50.

These results are confirmed by the bootstrap analysis of model (5.8) given in
Table 5.8. The 95% CI for the regression coefficient A3 is [—0.187, —0.049].
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Fig. 5.6 Two block regression model for relating sun protection behavior over the past year to the
lifetime sun exposure behaviors for men with an age effect acting on the structural model and not
on the measurement model

Table 5.5 Normalized weights for the sun protection behavior over the past year scores

cl c2 c3
Sun protection products used while suntanning 0.24 0.23 0.29
Sun protection products used throughout voluntarily sun exposure periods 0.20 0.20 0.17
Sun protection products applied regularly several times during sun exposure  0.22 0.22 0.21
Sun protection product used for the face has a SPF over 15 0.14 0.14 0.14
Sun protection product used for the body has a SPF over 15 0.09 0.10 0.12
Sun protection products used besides voluntarily sun exposure periods 0.11 0.11 0.06

Therefore there is a significant “Age50” effect. The 95% CI for the regression coef-
ficients A; and A, do overlap. Therefore we may conclude that Ay = A,. There
is no significant interaction effect “Age50*Sun Exposure” on “Sun Protection” for
women.

Step 2b. Effect of age for men

The normalized weights ¢3 for computing the sun protection over the past year
score (“Sun protection over the past year score 3”) are given in Table 5.5, and
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Table 5.6 Normalized weights for the lifetime sun exposure scores

wl w2 w3
Sun exposure of the body and the face 0.14 0.16 0.12
Sun exposure between 11 a.m. and 4 p.m. 0.11 0.13 0.10
Basking in the sun important or extremely important 0.07 0.09 0.05
Self-assessed intensity of sun exposure moderate or severe 0.20 0.20 0.19
Sun exposure during practice of mountain sports 0.10 0.10 0.10
Number of days of mountain sports activities > 200 days 0.05 0.05 0.05
Sun exposure during practice of nautical sports 0.06 0.05 0.07
Number of days of nautical sports activities > 400 days 0.03 0.03 0.04
Sun exposure during practice of hobbies 0.13 0.11 0.15
Number of days of lifetime hobby activities > 900 days 0.07 0.05 0.09
Practice of naturism during lifetime 0.03 0.03 0.03

Table 5.7 SAS output of analysis of covariance for “Sun protection over the past year score 2”
on “Lifetime sun exposure score 2 (score_x2_protect_women), age and interaction

Parameter Estimate Standard Error t Value Pr>|t|
Intercept 0.2275434886 B 0.01269601 17.92 <.0001
score_x2_protect_women 0.4056820480 B 0.02651644  15.30 <.0001
age50 +50 years —0.1090996349 B 0.02206033 —4.95 <.0001
age50 —50 years  0.0000000000 B - - -

score_x2_protect-women*age50 +50 years  0.0197448010 B 0.04613877 0.43 0.6687
score_x2_protect_women*age50 —50 years  0.0000000000 B - - -

Table 5.8 AMOS output for 95% CI of regression coefficients for figure 5 “Sun protection over
the past year score 2” on “Lifetime sun exposure score 2” (for women)

Coefficients Estimate Lower Upper
19 | Sun exposure (women > 50) —  Sun protection 1.929 1.546  2.280
A2 Sun exposure (women < 50) —  Sun protection 1.929 1.628  2.223
A3 Age > 50 —  Sun protection —0.124 —0.187 —0.049

the normalized weights w3 for lifetime sun exposure score (“Lifetime sun exposure
score 3”) in Table 5.6. The AMOS results are shown in Fig. 5.6.

The results of the analysis of covariance relating the “Sun protection over the
past year score 3” to the “Lifetime sun exposure score 37, “Age50” and the interac-
tion term “Age50*Lifetime sun exposure score 3” are shown in Table 5.9. The LV
“Sun protection over the past year score 3” is significantly related to “Lifetime sun
exposure score 3” (t-test = 8.28, p<0.0001) and tends to be related to the interaction
term “Age50*Sun protection over the past year score 3” (t-test = —1.95, p = 0.05),
but not to “Age50” (t-test = —1.41, p = 0.1576).

The sun protection behavior of men less than 50 tends to increase more rapidly
with the level of lifetime sun exposure than the one of men over or equal to 50.

The 95% CI for the regression coefficient A3 is [—0.104, 0.075]. Therefore there
is no significant “Age50” effect. The 95% CI for the regression coefficients A; and
A» do overlap. We may conclude that A; = A, and, therefore, that there is no
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Table 5.9 SAS output of analysis of covariance for “Sun protection over the past year score 3”
on “Lifetime sun exposure score 3” (score_x3_protect_men), age and interaction

Parameter Estimate Standard Error t Value Pr>|¢|
Intercept 0.1070220420 B 0.01677764 6.38 <.0001
score_x3_protect_men 0.2962098256 B 0.03577279 8.28 <.0001
age50 450 years —0.0315335922 B 0.02230895 —1.41 0.1576
age50 —50 years 0.0000000000 B - -

score_x3_protect_men™age50 +50 years —0.0923178930 B 0.04726879 —1.95 0.0509

score_x3_protect_men*age50 —50 years  0.0000000000 B — — —
These results are partially confirmed by the bootstrap analysis of model (5.8) given in Table 5.10

Table 5.10 AMOS output for 95% CI of regression coefficients for figure 6 “Sun protection over
the past year score 3” on “Lifetime sun exposure score 3” (for men)

Coefficients Estimate Lower Upper
A Sun exposure (men > 50) —  Sun protection 1.034 0.728 1.395
A2 Sun exposure (men < 50) —  Sun protection 1.485 1.136  1.895
A3 Age > 50 —  Sun protection —0.017 —0.104  0.075

significant interaction effect “Age50*Sun Exposure” on “Sun Protection” for men.
But this procedure does not control the risk «.

On the other hand, the previous procedure tends to give too small p-values
because the LV estimates have been constructed to optimize the relationship.
A bootstrap procedure on the first approach will probably give more reliable results.

5.4 Discussion

A major issue is the stability of the scores.

The lifetime sun exposure weights (Table 5.6), lead to scores highly correlated
for women and men:

For women: Cor(“Lifetime sun exposure score 17, “Lifetime sun exposure score
27) =0.99.

For men: Cor(“Lifetime sun exposure score 1”,“Lifetime sun exposure score
3”) = 0.99.

The weights obtained for the sun protection over the past year scores are summa-
rized in Table 5.5. The correlations between the scores are all above 0.99:

For women: Cor(“Sun protection over the past year score 1”,“Sun protection
over the past year score 2”) = 0.99.

For men: Cor(“Sun protection over the past year score 1”,“Sun protection over
the past year score 3”) = 0.99.
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5.5 Conclusion

A software like AMOS is oriented toward the estimation of the path coefficients of
a structural equation model, when a software like PLS-Graph is oriented toward the
production of latent variables or scores. It is possible to use the results of AMOS
to construct scores using the PLS methodology. In this paper, we propose a way
to take into account interactions in the structural equations, independently from the
measurement model. This procedure follows four parts:

1 Use of AMOS to compute the weights of the manifest variables subject to the
constraint that the weights related to the same manifest variable are equal in the
various groups.

2 Computation of the PLS LV estimates using the weights issued from AMOS.

3 Study of the interaction through an analysis of covariance relating the response
block latent variable to the predictor block latent variable, the group effect and
the interaction crossing the predictor block latent variable and the group effect.

4 Use of the bootstrapping possibilities of AMOS 6.0 to produce confidence
intervals of the structural equation regression coefficients.

When the manifest variables are numerical, it is recommended to use the maxi-
mum likelihood (ML) option of AMOS. When the manifest variables are binary (it
is the case in this paper) the unweighted least squares (ULS) should be preferred as
ML estimation supposes multinormality.

In this paper, this methodology has been applied on a large dataset, and its
simplicity and efficiency have been well demonstrated. Its generalization to more
complex path models should be straightforward.
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Chapter 6

A New Multiblock PLS Based Method

to Estimate Causal Models: Application

to the Post-Consumption Behavior in Tourism

Francisco Arteaga, Martina G. Gallarza, and Irene Gil

Abstract This study presents a new algorithm for estimating causal models based
on multiblock PLS method. This new algorithm is tested in a particular post-
consumption behavior with the aim of validating a complex system of relations
between antecedents of value, perceived value, satisfaction and loyalty. The results
are compared with the classical LVPLS method: both methods support the pro-
posed structural relations, but the explained variance is slightly higher with the new
algorithm.

6.1 Introduction

Partial least squares regression (PLS) and derived methods are successfully applied
in a wide variety of scientific research areas, with some specific characteristics in
specific applications. The PLS algorithm that is applied in causal modeling tech-
niques and the PLS algorithm that is applied in chemometrics applications are very
different in their implementation. The first usually apply the LVPLS method which
computational aspects have been developed by Lohmoller (1987, 1989) and the sec-
ond apply the non-linear iterative partial least squares (NIPALS) algorithm (Geladi
and Kowalski 1986; Wold et al. 1987; Martens and Naes 1989).
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The aim of this work is to adapt a multiblock PLS method used in chemomet-
ric applications (Gerlach et al. 1979; Frank et al. 1984; Frank and Kowalski 1985;
Wold et al. 1987; Wangen and Kowalski 1988; Westerhuis and Coenegracht 1997;
Westerhuis et al. 1998), to deal with the causal modeling estimation problem and to
compare the estimations from the new method with the analogous from the classic
LVPLS method. We are also interested in the performance of both methods.

The first part of this work starts with a primer on causal modeling, useful to intro-
duce the problem nature and the notation; we then review the standard partial least
squares path modeling algorithm (PLSPM) to estimate causal models and follow by
reviewing the PLS regression method as it is used in other applications as chemo-
metrics or pharmaceutical applications, from the two blocks PLS to the multiblock
PLS method, and then we adapt the multiblock PL.S method to deal with causal mod-
els, yielding the MultiBlock PLS path modeling method (MBPLSPM). In the second
part, we compare both methods (PLSPM and MBPLSPM) over a post-consumption
behavior application and, with the aim to confirm the conclusions obtained, we com-
pare both methods over a simulated example. Finally we present the conclusions.

Notation is detailed in Appendix 1.

6.2 Causal Modeling

In our context a Causal Model consists of a set of concepts difficult to mea-
sure directly (value, loyalty, satisfaction ...) that present different linear relations
between them. To study and confirm these relations we need to build a scale for each
concept. A scale is a set of observable variables related to the concept that altogether
gives us an indirect measure of it. Because of this, the concepts are called constructs
and the variables from the scale are called indicators. The constructs are also called
latent variables (LV) and the indicators are called manifest variables (MV).

The set of linear relations between the constructs is the so called structural model
and the set of relations between each construct and its indicators is the so called
measurement model.

In Fig. 6.1 we can see the structural model for a particular study of the post-
consumption behavior with nine constructs and eleven linear relations.

In this work we assume that the manifest and the latent variables have zero mean
and standard deviation one. Lohmoéller (1987), in his software LVPLS 1.8, proposes
new options for the PLS algorithm and, in particular, proposes the above men-
tioned standardization for the manifest variables when three conditions matches:
the variable scales are comparable, the means are not interpretable and variance is
not related whit variable importance. This standardization yields also in a simplest
representation of the model equations.

We represent a causal model as a set of B standardized random latent variables,
&p, related between them in a way that some of them are caused by a subset of the
other latent variables that are its precedents, i.e., we assume that each caused latent
variable can be expressed as a linear combination of a subset of the other latent
variables, plus a zero mean error term not correlated with them.
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Fig. 6.1 Representation of the structural model for a particular study of the post-consumption
behavior

The structural model leads to a set of linear equations relating the latent variables
between them:

&= Buki + 0. (6.1)
i#b

The residual ¢ is a zero mean random term not correlated with the latent variables
& that cause &, (prediction specification condition).
For the structural model in Fig. 6.1 we can write three structural equations:

&7 = B72&2 + B73&3 + Brabs + BrsEs + Brsbs + &7
€3 = Ps3ks + Bsaba + Bs7r§7 + (s o = Po1&1 + Porksr + Posls + Lo
6.2)

The latent variables are latent because they are not directly measurable and this is
why we need a set of manifest variables (the above mentioned scale) that altogether
give us an indirect measure of it. That is, knowing the value for the manifest vari-
ables associated to a latent variable, we can assign a value for the latent variable.
Each latent variable has a set of manifest variables that are measured over n subjects;
that is the reason why the data consist of B matrices X;, X», ..., Xp with n rows
and k1, ks, ..., kp columns respectively. For each matrix X, we need to obtain a
vector with the value of the bth latent variable for the n individuals. Each block of
variables constitutes the measurable face of a latent variable and it is interesting the
way in which the variables x;; with j = 1,2, ..., kj (block Xj) are connected with
the latent variable &j,. This is the so called measurement model.

There are three ways to relate each manifest variable with its latent variable, but
for our proposal we only employ the so called reflective way where each manifest
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Fig. 6.2 In the reflective way
each MV comes from a linear
transformation of their LV,
plus a zero mean random term
not correlated with the LV

o1 = xp=Ap &y T ey

Xpy = Xp =4k + e

Xpk, = Xpx, =y Sp T €,

variable is related to its latent variable by a simple regression:
Xpj = Apjbp + ey (6.3)

The residual e, is a zero mean random term not correlated with the latent variable &
(again the prediction specification condition). This implies that in the reflective way
each block of manifest variables is unidimensional (Hulland 1999) in the meaning
of factor analysis, because all the manifest variables for a latent variable are linear
transformations of the same latent variable plus a zero mean random term.

The name reflective is due to the fact that each manifest variable x;; constitutes
a reflect of its latent variable &.

In Fig. 6.2 we illustrate the reflective way for the bth latent variable &p.

6.3 PLS Path Modeling

Lohmoller (1987, 1989) developed the computational aspects in the LVPLS soft-
ware application. The algorithm employed in this work, that we call LVPLS method,
is described by Guinot et al. (2001) and it is showed below.

The algorithm consists of alternating two types of estimation of the latent vari-
ables until they converge to the same results. The types of estimation are the external
estimation (each latent variable is estimated from their manifest variables) and the
internal estimation (each latent variable is estimated from the previous external
estimation of the other latent variables).

In the algorithm the external estimation for the bth latent variable is denoted by
¥, and the internal estimation is denoted by z.

To begin, each external estimation y, is made by assigning the first column of
the X matrix (Xp is the n by Kp matrix that accommodates the value for the K,
variables measured over the n individuals).

The internal estimation z; of &, is defined as:

=\ Y dyy;+ Y dpy;| - (6.4)
J:Byj#0 J:Bip#0
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| for each b, y,, = first column of X, |

*
z,= [ DAyt Dy, ] <

J:B, #0 By #0

A 4

1
w,= —XTz,
n

Estimate f3 ,; as the coefficient of
y; in the PLS regression of y, on |«g¢—
all the y; ‘s with non zero f3;.

Fig. 6.3 Schedule for the LVPLS method, with the structural scheme for the internal estimation
and with mode A for the weights estimation

In this formula and in the following text, the asterisk means that the variable in
parentheses is standardized.

In (4) we divide the sum into two parts. In the first part dy; is the regression coeffi-
cient of y ; in the multiple regression of y, on all the y ;s related to the predecessors
of &, and in the second part dj, is the correlation between y; and ;. This is the
so called structural or path weighting scheme, proposed by Lohmoller (1987) in his
software LVPLS 1.8.

The external estimation y,, of £, is defined by:

yb = Xpwp)™. (6.5)

In (5), wp, are the weights that determinate the influence of each manifest variable in
the construction of the latent variable y,. The coordinates of the vector w; are the
correlations between variables x,; and the previous internal estimation z;. This way
of calculating the weights is the so called “mode A,” that is appropriated when the
manifest variables are collinear as it is the case in the reflective way.

We alternate the internal and external estimations until they match (within desired
precision).

When the algorithm ends we can calculate the path coefficients, that is, for
each b, estimate the f;; values as the coefficient of y; in the single component PLS
regression of y;, on all the y ;s related to the precedents of §j.

In Fig. 6.3 we can see a scheme useful for a better understanding of the LVPLS
algorithm.
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6.4 PLS Regression Methods

In the previous section we describe the PLS path modeling method as it is used in
marketing research: the LVPLS method. In the following sections we describe the
multiblock PLS method and its adaptation to deal with causal models. We begin by
describing the basic two-blocks PLS method (Sect. 6.4.1) for comparing it with the
multiblock extension of the method (Sect. 6.4.2). Finally, we adapt the multiblock
PLS method to deal with causal models, yielding the multiblock PLS path modeling
method (MBPLSPM) (Sect. 6.4.3) as an alternative to the LVPLS above descript
(Sect. 6.3).

6.4.1 Two-Blocks PLS Method

Partial least squares (PLS) is a regression method mainly developed by Herman
Wold and co-workers (Wold 1982, 1985). Stone and Brooks (1990) show how PLS
can be considered as a two stage process in which the set of k predictor variables
are first linearly transformed into a new set of A(A < K) factors which have maxi-
mal covariance with the response variable subject to them being orthogonal to each
other. To known the history of PLS the reader can see Geladi (1988). For a tutorial
on PLS refer to Geladi and Kowalski (1986).

In two blocks PLS method we start from two data matrices X and Y. X is an
N x K matrix and Y is an N x M matrix, without assumptions about N, K or M.
In general, we can suppose that X and Y are centered (each column has zero mean)
and scaled (the variance for each column is one) matrices. Figure 6.4 shows the
algorithm and the arrow scheme for the PLS method. This is the known non-linear
iterative partial least squares (NIPALS) algorithm (Geladi and Kowalski 1986; Wold
et al. 1987; Martens and Naes 1989).

The data matrices X (descriptors) and Y (responses) are represented by their
latent variables t and u respectively. The corresponding weights w and ¢ are obtained
by multiplying the latent variables through the specific matrix, being w normalized
to length one. New values for the latent variables are obtained from the weights. This
is repeated until convergence of u. From this algorithm we obtain the latent variables
t and u that summarize X and Y respectively maximizing their covariance. Loadings
p are calculated to obtain the residuals on X, Xggs = X — tp”, and we employ ¢ to
obtain the residuals on Y, Yggs = Y — tcT. The residual matrices Xggs and Yggs
can be used as the original X and Y matrices to obtain new t and u latent variables,
but in our case we are only interested in the first set of latent variables (remember
that the reflective way for the measurement model implies the unidimensionality of
the blocks, in the meaning of factor analysis).

6.4.2 Multiblock PLS Method

When the number of variables is large, and additional information is available we
can block the descriptor variables into several conceptually meaningful blocks, to
improve the interpretability of the model.
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Fig. 6.4 Algorithm and arrow scheme of the two blocks PLS method

Many multiblock PLS algorithms have been presented in the literature, Gerlach
et al. (1979), Frank et al. (1984), Frank and Kowalski (1985), Wold et al. (1987),
Wangen and Kowalski (1988),Westerhuis and Coenegracht (1997), Westerhuis et al.
(1998) study and compare different variations from the original multiblock PLS
algorithm.

In the multiblock PLS method, as in the previously descript two-blocks PLS
method, we distinguish between the I descriptor blocks, X;, withi = 1,...,1,
and the response block, Y. The latent variables for the ith descriptor block, with
i =1,...,1,1is denoted by t; and for the response block by u.

In Fig. 6.5 we can see the algorithm and the arrow scheme for the basic
multiblock PLS algorithm.

In this algorithm a start latent variable u is regressed on each block X;i=
1,..., I to give the block variable weights w;, that are normalized to length one
and multiplied through the block to give the block latent variable t;. The I latent
variables are combined into the super block T and a two-blocks PLS cycle between
T and Y is performed to give the combined weight wr, which is also normalized
to length one, and the combined latent variable ty. We repeat this until convergence
on u.

6.4.3 Multiblock PLS Path Modeling Method

The presented multiblock PLS method can be adapted to deal with more general
linear models. In particular it is interesting to considerer the possibility of blocking
also the response variables and the existence of blocks of variables that are simul-
taneously descriptor variables and response variables as in the causal models above
mentioned.

Wangen and Kowalski (1988) introduced a multiblock PLS algorithm that was
based on an algorithm originally presented by Wold et al. (1984). We adapt the Wan-
gen and Kowalski multiblock PLS method as an alternative to the LVPLS method,
yielding the multiblock PLS path modeling (MBPLSPM) method.
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Fig. 6.5 Algorithm and arrow scheme of the multiblock PLS method

MBPLSPM is an extension of the PLS regression method useful to deal with
causal models, where there can be more than one set of predictors and more com-
plex relations: various predictor blocks, various predicted blocks and various blocks
which are simultaneously predictor and predicted.

In two-blocks PLS and Multiblock PLS methods we denote by X, the descrip-
tor blocks and by Y the response blocks, also we call t; the latent variable for a
descriptor block X and by u the latent variable for a response block Y. Now, in the
MBPLSPM method, there can be several predictor blocks, several response blocks
and several blocks that are simultaneously predictor and response blocks, because
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of this, in the MBPLSPM method we denote by B the overall number of blocks
and by Xp,b = 1,..., B, the blocks. We assume that the blocks numeration in the
model is logically specified from left (1, 2, ...) toright (B —2, B — 1, B), that is, if
ablock i is the precedent of another block j, necessarily i < j. Left end blocks are
defined as blocks that only predict, right end blocks are blocks that are predicted but
do not predict and interior blocks both predict and are predicted. The left end blocks
are also called exogenous blocks and the interior blocks altogether with the right
end blocks are also called endogenous blocks. If we considerer the causal model in
Fig. 6.1, we can see six left end or exogenous blocks (from block 1 to block 6), two
interior blocks (blocks 7 and 8) and an unique right end block (block 9). The three
last blocks are endogenous blocks.

In MBPLSPM each block Xj has associated two latent variables, t; and up,
instead of one, as in the previous methods. The first latent variable, t;, summarizes
the information contained in block X, considering that it must predict the X ; blocks
with B, # 0. The second latent variable, u, summarizes the information contained
in block X, considering that it must be predicted by the X; blocks with B;; # 0.
If X, is a predictor block, we are only interested in tp, if Xj is a response block,
we are only interested in up, but if X, is simultaneously a predictor and a response
block, we are interested in both latent variables.

MBPLSPM Algorithm
Step 0. Initialization
For b increasing from 1 to B: t; and u, = the first column of X,

Step 1. Backward phase

For b decreasing from B to 1

if Xp predicts no blocks then: set t, = up

if X predicts only the block Xy, then: wp, = qukb =ty = (Xpwp)*
(remember that the asterisk means that the variable in parentheses is stan-
dardized)

if Xj, predicts Nb > 1 blocks then: Uy, = [up1, Ups, . . ., Upyp)

T T
cup = Upty = uyy = Upeyy = wp = Xpuyy = tp = (Xpwp)™

Step 2. Forward phase

For b increasing from 1 to B

if X is predicted by no other blocks, then: set up =t

if X, is predicted by one block Xy, then: ¢; = thkb = uy = (Xpep)*
if Xp is predicted by Nb > 1 blocks, then: Ty = [tpy, tpa, - - -, tons]

wip = Thup = trp = Towrp = ¢ = Xjtrp = up = (Xpep)”

After completing one backward plus forward cycle (Steps 1 and 2 respectively),
all the right end blocks uy vectors are tested for convergence. If, within desired
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precision, these u, are the same as they were during the previous iteration, go to
step 3, otherwise return to step 1.

Step 3. Path coefficients calculation

For each b, estimate the B, values as the coefficient of t; in the PLS
regression of t, on all the t;’s related to the precedents of &.

In the multiblock PLS algorithm from Wangen and Kowalski (1988) the loading
vectors w and c¢ are standardized and the scores t and u are not. Nevertheless, fol-
lowing current causal modeling practice, we standardize only the latent variables t
and u. This is also useful to make easier the comparison with the LVPLS algorithm.
Westerhuis et al. (1998) study and compare different variations from the original
multiblock PLS algorithm, but only with blocks that are exclusively predictor or
predicted blocks, not including blocks that perform simultaneously both functions.

In a complete cycle of the algorithm (backward and forward phases) each block
is taken into account in all their roles played. For instance, if we think in block 9 in
our model from Fig. 6.1, the relevant part of the model is reduced to the submodel
in Fig. 6.6.

Blocks 1, 2 and 8 are clearly related with block 9 because they predict it. Block
7 is also related with block 9 because when we estimate the latent variable for block
2, precedent of block 9, we need to take into account that block 2 is also precedent
of block 7.

In backward phase we see that block 1 and block 8 only predict block 9 and then
we estimate t; and tg from ug:

wi = Xju =t = (Xgwy)*,

wg = Xgu;; = tg = (XSWS)* .

2 SERVICE

1 EFFICIENCY QUALITY

7 PERCEIVED
VALUE

8 SATISFACT

Fig. 6.6 Reduced model including only the blocks and paths that are explicitly related with block
9 in the MBPLSPM algorithm. Grey part of the figure corresponds to blocks and links not explicitly
related with block 9 in the algorithm
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Block 2 predicts block 9, but block 2 also predicts block 7, then we estimate t, from
Uz = [ll7 llg]:

Cyz2 = Ugtz = uyz = Usepgo = Wy = XguUz =1t = (Xsz)* .

In forward phase we see that block 9 is predicted by blocks 1, 2 and 8 and we
estimate ug from Ty = [t; t; tg]:

W9 = TgUQ = trg = Towrg = ¢9 = thTg = U9 = (XgCg)* .

The previous description shows that we need both phases (backward and forward)
to consider the different roles played by block 9 in relation to the other blocks in the
structural model, and this is also true for the other blocks.

For better understanding the MBPLSPM algorithm, Figs. 6.7-6.9 show how the
MBPLSPM algorithm deal with three different situations in a hypothetic causal
model. The first is a single link (Fig. 6.7), the second consists of various prece-
dents for a block (Fig. 6.8) and the last consists of various consequents for a block
(Fig. 6.9).

. .o Tt .
In Fig. 6.8 the expression byz = %%3 comes from an ordinary least squares
T3'T3
regression model but in our implementation we have changed this for a PLS
regression model.

T
. n ug b . .
The expression by; = t‘%‘t comes from an ordinary least squares regression
1t

model but in our implementation we have changed this for a PLS regression model.

X, X,
2 “""-.4
wTi y “" ch
1w, =XTu, Jforward phase
2t =X, w)’ S
- =
3¢,=Xb Ty

4 uy=(Xy0)" backward phase

Fig. 6.7 MBPLSPM algorithm dealing with a single link. by, is the estimation for the
coefficient B
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Fig. 6.8 MBPLSPM dealing with various precedents for a block. wys(j), with j = 1,2, is the
jth coordinate of vector wrs. b3y and b3, are the estimations for the coefficients 3, and B3,
respectively
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the jth coordinate of vector cy;. bp; and b3, are the estimations for the coefficients B, and B3,
respectively
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6.5 The Data Set

For the purposes of the paper, the empirical setting is grounded on services mar-
keting research, where the efforts and discussions made for the last decades have
enabled researchers to obtain a better understanding of the conceptual and method-
ological relationships between service quality, perceived value and customer satis-
faction. Links and associations between service quality and customer satisfaction
have been investigated deeply (Ngobo 1997; Giese and Cote 2000; Oliver 1997;
Caruana et al. 2000; Brady et al. 2002; Grace and O’Cass 2005). Value has been
a rather neglected aspect in customer’s assessment of services during the nineties
(Petrick 2002; Lin et al. 2005). Although since 2000, both academically and man-
agerially the interest on value research has been deeply tackled. Consequently, in
recent years, most modern theoretical proposals take discussion to a higher order
of perceived value, where “value becomes a superordinate concept subsuming qual-
ity” (Oliver 1999, p. 58), or where “customer satisfaction management needs to be
backed-up with in-depth learning about customer value” (Woodruff 1997, p. 139).

The range of empirical studies on methodological links among service quality,
perceived value and customer satisfaction is very wide: Fig. 6.10 proposes a review
that shows links and constructs. As in recent years a special interest on the loyalty
behavior has emerged, we have also considered the loyalty construct, along with the
other three classical constructs (quality, satisfaction and value). Since 1999, tourism
services are one of the most preferred fields for exploring and assessing post con-
sumption behavior (e.g. Oh 1999, 2000, 2003; Petrick et al. 2001; Gallarza and Gil
2006).

As Fig. 6.10 shows, generally, the link between quality and value provides the
widest consensus among authors, quality being an input of value. Methodologically,
the quality-satisfaction proposal is more common as Fig. 6.10 shows, with some
remarkable exceptions such as Bolton and Drew (1991). Regarding the discussion
on the relative superiority of value or satisfaction, although some authors propose a
satisfaction-value link (e.g. Petrick et al. 2001; Chiou 2004), most of them consider
value as the best and most complete antecedent of satisfaction (Fornell et al. 1996,
McDougall and Levesque 2000; Babin and Kim 2001). Furthermore, the cumulative
insights of services literature support the general notion that both value and satisfac-
tion contribute to loyalty as positive behavioral intention (Parasuraman and Grewal
2000; Cronin et al. 2000). Consequently, even with some exceptions as Fig. 6.10
shows, we could say that a certain consensus exists in the literature regarding a nat-
ural chain between quality, value and satisfaction, which has led, in recent years,
to customer loyalty as a final outcome. This theoretical chain of constructs has
led to an important research on the assessment of links between quality, value and
satisfaction, with causal modeling as a natural methodological approach.

In the present study, we explore relationships between classical constructs (ser-
vice quality, satisfaction, perceived value and loyalty) as a post-consumption
sequence. Additionally, given the multidimensional nature of consumption value
(Sheth et al. 1991; Babin et al. 1994; Parasuraman and Grewal 2000) we postulate
that positive and negative value dimensions can have positive and negative effects
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Authors:
1 Zeithaml (1988) 11 Babin and Kim (2001)
2 Dodds, Monroe and Grewal (1991) 12 Petrick et al. (2001)
3 Bolton and Drew (1991) 13 Oh (2003)
4 Fornell et al. (1996) 14 Chiou (2004)
5 Sirohi, McLaughlin and Wittink (1998) 15 Yang and Peterson (2004)
6 Oliver (1999) 16 Lin and Wang (2006)
7 Oh (1999) 17 Grace and O'Cass (2005)
8 Oh (2000) 18 Lin et al. (2005)
9 Cronin, Brady and Hult (2000) 19 Duman & Mattila (2005)
10 McDougall and Levesque (2000) 20 Gallarza & Gil (2006)

Fig. 6.10 Constructs and links in post consumption behavior: a review

on some of these constructs. Following Holbrook’s theory, the eight cells of his
typology could be considered as positive value inputs. Hence, among positive value
dimensions, we consider efficiency, quality, play, and aesthetics as more represen-
tative of an individualistic approach of consumer behavior study and social value as
a representation of all social interactions when consuming (Holbrook 1999; Oliver
1999).

Concerning the negative inputs, according to Gallarza and Gil (2006) we intro-
duce time and effort invested as the main cost of consuming, directly related to
perceived value.
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According to Holbrook’s typology, the affective vs cognitive nature of value
dimensions allows us to consider potential links among cognitive antecedents (effi-
ciency and service quality) and both loyalty and value and affective antecedents
(social value and play) and both satisfaction and loyalty. More precisely, we consid-
ered the following links supported by the following hypothesis:

H1: Perceptions of efficiency are related positively to loyalty.

H2(a): Perceptions of service quality are related positively to perceived value.
H2(b): Perceptions of service quality are related positively to loyalty.

H3(a): Perceptions of play are related positively to perceived value.

H3(b): Perceptions of play are related positively to satisfaction.

HA4: Perceptions of aesthetics are related positively to perceived value.

H5(a): Perceptions of social value are related positively to perceived value.
H5(b): Perceptions of social value are related positively to satisfaction.

HG6: Perceptions of time and effort spent are related negatively to perceived value.

Additionally, according to the aforementioned discussion on the primacy of
major consumer behavioral constructs, we propose a sequential relationship between
perceived value, satisfaction and loyalty: so, we also postulated that:

H7: Perceived value is related positively to satisfaction and
HS: Satisfaction is related positively to loyalty.

A combination of sources was used in the construction of scales (see Appendix 2):
Holbrook (1999) as a conceptual proposal on value dimensionality, literature review
on tourism behavior and previous qualitative techniques (three in deep interviews
and five group discussions).

Concerning endogenous variables, satisfaction was measured using a previously
applied and reliable scale (Cronin et al. 2000). The perceived value scale came form
the same source but an additional indicator was included, according to Zeithaml’s
definition of value as a trade-off between get and give elements. For the loy-
alty scale, according to tourism services literature we measured several behavioral
intentions: we have considered both the visit to the same destination and to other
destinations in the same area (Murphy et al. 2000), but also a positive word of mouth
(Kozak and Rimmington 2000), both to the destination and to the agency (Petrick
etal. 2001). We also conducted a pilot study among students and thus we made a few
corrections and adjustment in the wording and structure of the questionnaire. A five-
point Liker-type scale was used for the nine latent constructs (44 indicators). The
data were taken from an academic investigation on the post-consumption behavior
of a convenience sample of university students: 273 undergraduate students who
travel in the spring break of their third and/or fifth year at university. See Fig. 6.1
for the representation of the structure described by the hypothesis.
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6.6 The Causal Model Estimated

In this section we estimate the model with the known Lohmoller’s LVPLS method
and with the multiblock PLS Path Modeling method, that for short is called the
MBPLS based method, or simply MBPLS. The aim is to compare the estimations
and the performance of both methods.

In Table 6.1 we give the statistics for checking the unidimensionality of each
block.

Except for the second eigenvalue of blocks Social Value and Loyalty, that are
bigger than one, all these statistics lead to an acceptation of the unidimensionality
of all but two blocks. Nevertheless, because the Cronbach’s a is bigger than 0.70 for
both blocks, we consider all the blocks as unidimensional ones.

The estimated coefficients for the structural relations, the s, built from the
hypothesis are show in Table 6.2.

We can see that there are not great differences between both sets of estimations
as it happens with the outer weights (see Table 6.3), that are the factors used to build
each latent variable from their manifest variables, and with the correlations between
the manifest variables and their latent variables (see Table 6.4).

Table 6.1 Check for block unidimensionality
1st principal component

2nd principal component

Cronbach’s a  Eigenvalue Expl. var. (%) Eigenvalue Expl. var. (%)

1 Efficiency 0.7348 2.259 56.47 0.796 19.90
2 Service quality 0.9418 6.151 68.34 0.868 9.64
3 Social value 0.7251 2.442 48.84 1.304 26.08
4 Play 0.8471 2.749 68.72 0.555 13.89
5 Aesthetics 0.8156 2.193 73.10 0.474 15.80
6 Effort and time spent 0.7962 3.193 45.61 0.899 12.84
7 Perceived value 0.8872 2.448 81.60 0.306 10.20
8 Satisfaction 0.8709 2.384 79.48 0.333 11.10
9 Loyalty 0.8043 3.050 50.84 1.337 22.28

Table 6.2 Estimated coefficients with both methods for the structural relations

From To Estimated coefficients
LVPLS MBPLS
1 Efficiency 9 Loyalty 0.2362 0.2628
2 Service quality 7 Perceived value 0.1737 0.1730
2 Service quality 9 Loyalty 0.1133 0.1375
3 Social value 7 Perceived value 0.2998 0.2998
3 Social value 8 Satisfaction 0.2490 0.2483
4 Play 7 Perceived value 0.3330 0.3305
4 Play 8 Satisfaction 0.3361 0.3358
5 Aesthetics 7 Perceived value 0.1248 0.1249
6 Effort and time spent 7 Perceived value 0.1655 0.1765
7 Perceived value 8 Satisfaction 0.3417 0.3395
8 Satisfaction 9 Loyalty 0.5506 0.5133
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Table 6.3 Outer weights for both methods

Outer weight

LVPLS MBPLS
Efficiency
Efficiency 1 0.0152 0.0214
Efficiency 2 0.0200 0.0163
Efficiency 3 0.0221 0.0206
Efficiency 4 0.0225 0.0226
Service quality
Service quality 1 0.0078 0.0077
Service quality 2 0.0076 0.0092
Service quality 3 0.0084 0.0086
Service quality 4 0.0082 0.0079
Service quality 5 0.0084 0.0076
Service quality 6 0.0083 0.0069
Service quality 7 0.0083 0.0081
Service quality 8 0.0087 0.0096
Service quality 9 0.0077 0.0078
Social value
Social value 1 0.0208 0.0216
Social value 2 0.0208 0.0198
Social value 3 0.0184 0.0203
Social value 4 0.0130 0.0092
Social value 5 0.0116 0.0130
Play
Play 1 0.0172 0.0157
Play 2 0.0177 0.0167
Play 3 0.0198 0.0192
Play 4 0.0184 0.0213
Aesthetics
Aesthetics 1 0.0227 0.0177
Aesthetics 2 0.0240 0.0268
Aesthetics 3 0.0242 0.0259
Effort and time
Effort and time 1 —0.0127 —0.0056
Effort and time 2 —0.0115 —0.0053
Effort and time 3 —0.0118 —0.0144
Effort and time 4 —0.0146 —0.0154
Effort and time 5 —0.0150 —0.0177
Effort and time 6 —0.0137 —0.0170
Effort and time 7 —0.0098 —0.0115
Perceived value
Perceived value 1 0.0227 0.0234
Perceived value 2 0.0216 0.0204
Perceived value 3 0.0228 0.0234

(continued)
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Table 6.3 (continued)

Outer weight

LVPLS MBPLS
Satisfaction
Satisfaction 1 0.0220 0.0209
Satisfaction 2 0.0234 0.0224
Satisfaction 3 0.0226 0.0246
Loyalty
Loyalty 1 0.0124 0.0114
Loyalty 2 0.0125 0.0113
Loyalty 3 0.0172 0.0154
Loyalty 4 0.0134 0.0158
Loyalty 5 0.0144 0.0179
Loyalty 6 0.0151 0.0132

Table 6.4 Correlations with both methods between manifest and latent variables
Corr. with the LV

LVPLS MBPLS
Efficiency
Efficiency 1 0.566 0.647
Efficiency 2 0.745 0.700
Efficiency 3 0.825 0.801
Efficiency 4 0.839 0.832
Service quality
Service quality 1 0.792 0.797
Service quality 2 0.767 0.782
Service quality 3 0.847 0.854
Service quality 4 0.827 0.818
Service quality 5 0.852 0.844
Service quality 6 0.843 0.832
Service quality 7 0.847 0.846
Service quality 8 0.878 0.879
Service quality 9 0.780 0.781
Social value
Social value 1 0.837 0.850
Social value 2 0.836 0.832
Social value 3 0.741 0.763
Social value 4 0.525 0.478
Social value 5 0.466 0.459
Play
Play 1 0.782 0.765
Play 2 0.800 0.791
Play 3 0.897 0.898
Play 4 0.833 0.854

(continued)
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Table 6.4 (continued)

Corr. with the LV

LVPLS MBPLS
Aesthetics
Aesthetics 1 0.820 0.779
Aesthetics 2 0.868 0.888
Aesthetics 3 0.876 0.889
Effort and time
Effort and time 1 —0.668 —0.575
Effort and time 2 —0.607 —0.515
Effort and time 3 —0.619 —0.663
Effort and time 4 —0.767 —0.761
Effort and time 5 —0.791 —0.807
Effort and time 6 —0.719 —0.758
Effort and time 7 —0.514 —0.540
Perceived value
Perceived value 1 0.897 0.900
Perceived value 2 0.911 0.906
Perceived value 3 0.902 0.904
Satisfaction
Satisfaction 1 0.883 0.877
Satisfaction 2 0.904 0.900
Satisfaction 3 0.887 0.897
Loyalty
Loyalty 1 0.745 0.715
Loyalty 2 0.656 0.618
Loyalty 3 0.809 0.771
Loyalty 4 0.681 0.738
Loyalty 5 0.658 0.722
Loyalty 6 0.712 0.681

The path coefficients (B;) have been estimated with both algorithms (see
Table 6.2). For assessing significativity of the estimations, as we have no previ-
ous hypothesis about the data distribution, we used the bootstrap method (Efrom
and Tibshirani 1993), taking 10,000 samples with replacement of 273 individuals
from the original sample. It is shown in Table 6.5 the bootstrap confidence intervals
for the estimated coefficients with both methods (from the 2.5 to the 97.5 percentile
of the 10,000 values obtained for each coefficient with both methods).

We see again that the two methods lead to similar results, but in all the eleven
cases the confidence interval width is smaller for the MBPLS based method, that
is, there is less uncertainty for the estimated coefficients with the MBPLS based
method than the calculated with the LVPLS method.

In order to compare the performance of both algorithms, it is interesting to
calculate the explained variance percentage for the endogenous latent variables
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Table 6.5 Bootstrap confidence intervals for the path coefficients with both methods

From To Bootstrap percentiles
LVPLS MBPLS
Py 5 Py75 Py s Pg75

1 Efficiency 9 Loyalty 0.1585 0.3157 0.1944 0.3406
2 Service quality 7 Perceived value 0.1129 0.2262 0.1144 0.2236
2 Service quality 9 Loyalty 0.0189 0.1982 0.0518 0.2146
3 Social value 7 Perceived value 0.2466 0.3484 0.2505 0.3457
3 Social value 8 Satisfaction 0.2053 0.2850 0.2072 0.2840
4 Play 7 Perceived value 0.2777 0.3816 0.2785 0.3742
4 Play 8 Satisfaction 0.3000 0.3726 0.3000 0.3708
5 Aesthetics 7 Perceived value 0.0569 0.1990 0.0650 0.1970
6 Effort and time spent 7 Perceived value 0.1035 0.2222 0.1307 0.2320
7 Perceived value 8 Satisfaction 0.2995 0.3859 0.2972 0.3815
8 Satisfaction 9 Loyalty 0.4577 0.6384 0.4256 0.5938

Table 6.6 Estimated R? for the endogenous constructs and its bootstrap confidence intervals

Latent variable LVPLS MBPLS
Estimated  Bootstrap percentiles ~ Estimated  Bootstrap percentiles
R> (%) Py.5(%) Py7.5(%) R (%) Pys5(%) Py75(%)
7 Perceived value 48.07 38.29 58.10 49.42 40.93 59.57
8 Satisfaction 59.32 49.48 68.43 59.41 49.71 68.55
9 Loyalty 52.82 44.28 61.84 53.50 45.65 62.55

(R?), which is slightly higher when applying the MBPLS based method than when
applying the LVPLS algorithm (see Table 6.6).

Again the confidence interval width is smaller for the MBPLS based method than
the correspondent to the LVPLS method.

In order to highlight the significativity of the slight difference between the R?
value from the MBPLS and the LVPLS methods (RlePLS - RfVPLS) we can see the
bootstrap distribution function for this difference (see Fig. 6.11).

As Fig. 6.11 shows, the explained variance for the 7th latent variable (perceived
value) is higher with the MBPLS algorithm than with LVPLS algorithm for the
99.70% of the samples; for the 8th latent variable (satisfaction) this percentage
reaches 70.34% and 93.58% for the 9th latent variable (loyalty).

As a conclusion, we can affirm that our hypothesis were all supported. The R?
values are quite high, and every path is significant. Among predictors, the impact
of play dimension on perceived value is quite high (0.33); but play dimension also
provides a strong link with satisfaction (0.34), showing a clear prominence of the
affective dimension of the tourism experience investigated. Social value is also rel-
evant for the perceived value (0.30) and for satisfaction (0.25). The more cognitive
antecedents (efficiency and service quality) are linked to loyalty behavior (0.26
and 0.14 respectively), as a willingness to recommend and/or repurchase. Besides,
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R? (MBPLS)-R? (LVPLS) distribution function
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Fig. 6.11 Estimated distribution function for the R? difference between the two methods for the
10,000 bootstrap samples

affective antecedents (play and social value) are better predictors of both customer
satisfaction and perceived value.

Concerning the proposal of investigating the quality—value—satisfaction—loyalty
chain, the study indicates a clear pattern: perceived value is then a mediator between
quality and satisfaction, satisfaction being the behavioral consequence of perceived
value, and leading also to loyalty behavior. Thus, the consumer evaluation inves-
tigated is well modeled in a complex system where positive and negative value
dimensions have effects on three behavioral constructs: satisfaction, perceived value
and loyalty.

6.7 Simulated Data

In order to confirm the slight superiority of the MBPLS based method from the R?
criterion we use simulated data from a hypothetic causal model (see Fig. 6.12).

The model has four latent variables and there are five structural relations summa-
rized in three equations:

E2=Pub1 +5
€3 = B31&1 + B32b2 + &5,
E4 = Bark1 + Bazbs + 8
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Fig. 6.12 Hypothetic model

To generate the four latent variables we follow the next process:

1. Select a value for each one of the five coefficients and calculate the covariance
matrix S, being Var (&) = 1 for all b.
By example, if 21 = 0.7; B31 = 0.2; B3 = 0.6; B41 = 0.3; B4z = 0.7,
results:

1.000 0.700 0.620 0.734
0.700 1.000 0.740 0.728
0.620 0.740 1.000 0.886
0.734 0.728 0.886 1.000

2. Generate n = 150 samples from a multivariate normal distribution with zero
mean and covariance matrix S, obtaining L = {/;3}, a 150 by 4 matrix with
[;» being the value of the b latent variable for the i th subject.

3. Tobuild X = [ X; X» X3 X4 |, where X, =15 - [0.6 0.7 0.8 0.9 | + Ej, being
E; a 150 by 4 matrix which elements are normal with zero mean and standard
deviation 0.9 and 1 the bth column of L.

4. To centre and autoscale the X matrix to obtain 16 columns (4 manifest variables
for each one of the 4 latent variables) with zero mean and standard deviation one.

5. To apply the LVPLS and MBPLS methods on X and calculate the correspondent
R? values for the three endogenous latent variables (&,, &3 and &).

Following the previous process we generate a set of four blocks of manifest variables
for 150 individuals that verify the hypothesis for a casual model with the reflective
way. We can now estimate the model with both methods and, in particular, we can
measure the performance of the estimation from the R? statistic for the endogenous
blocks.

We are interested in the distribution for the difference R3zp, ¢ — R?ps and for
this we apply the Monte Carlo method, that is, we run the previous process, from
step one to step four, 1,000 independent times, obtaining 1,000 independent values
for the difference R}%/IB pLS — R%VPLS, this is, a sample for the difference, from which
we can estimate its distribution function from their percentiles (see Fig. 6.13).
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Fig. 6.13 Monte Carlo distribution function for the difference between the explained variance
with both methods

As Fig. 6.13 shows, the explained variance for LV2 is higher with the MBPLS
algorithm than with LVPLS algorithm for the 72.35% of the samples; for LV3 this
percentage reaches 87.44% and 95.86% for LV4. This confirms that the MBPLS
based method is slightly superior to the classic LVPLS under the R? criterion.

The hypothetic structural model from Fig. 6.10, the path coefficients selected
in step O of the algorithm (8,; = 0.7, B31 = 0.2, B3 = 0.6, 41 = 0.3
and B43 = 0.7), the size of the blocks (150 by 4), the coefficients for the mea-
sure model (0.6, 0.7, 0.8 and 0.9) and the standard deviation for the residuals (0.9)
selected in step 2 of the algorithm are a particular election. As the exposed results
can be affected by this election, we have proved a variety of different situations (not
shown), yielding that the slight superiority of the MBPLS based method over the
classic LVPLS method is repeated in all cases.

6.8 Summary and Conclusions

In this work we have presented a new method to estimate causal models based on the
multiblock PLS method from Wangen and Kowalski (1988). The new method has
been compared with the classical LVPLS algorithm from Lohomoller (1985), using
an academic investigation on the post-consumption tourism behavior of a particular
profile of university students.

The results for both methods are quite similar (see Tables 6.2-6.4), but the
explained percentage of variance (the R? coefficient) for the endogenous latent
variables is slightly higher for the MBPLS based method (see Table 6.6).
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From a bootstrap analysis we have built the confidence intervals for the estimated
coefficients of the structural model (see Table 6.5) and for the R? coefficient cor-
respondent to the endogenous latent variables (see Table 6.6), showing that in both
cases the uncertainty is slightly smaller for the MBPLS based method.

We have also estimated the distribution function for the difference R? (MBPLS)—
R? (LVPLS) of the endogenous latent variables (see Fig. 6.10), showing that this
difference is positive for a majority of the bootstrap samples: 99.7% for the 7th
latent variable (perceived value), 70.34% for the 8th latent variable (satisfaction)
and 93.5% for the 9th latent variable (loyalty).

To confirm these results we have built a hypothetic causal model fixing the
coefficients for the structural model and simulating 1,000 independent sets of
data adding normal distributed noise. We have applied both methods on each
data set and have built the Monte Carlo distribution function for the difference
R? (MBPLS)— R? (LVPLS) for the three endogenous latent variables (see Fig. 6.12),
obtaining that the explained variance for LV2 is higher with the MBPLS algorithm
than with LVPLS algorithm for the 72.35% of the samples; for LV3 this percent-
age reaches 87.44% and 95.86% for LV4, confirming the slightly superiority of the
MBPLS based method to the classic LVPLS under the R? criterion.

Appendix 1 Notation

& Unknown latent variable for the bth block

Xpj Jj th measured variable for &,

Bij path coefficient that indicates the influence of construct j over construct i

Abj Unknown coefficient of &, in the explained part of x;; in reflective way

ep; White noise part of x;; in reflective way, not correlated with &,

&y White noise part of &, not correlated with the precedents of &,

Yp External estimation of the latent variable for block b in LVPLS method

zp Internal estimation of the latent variable for block b in LVPLS method

dy; With non null 8;: regression coefficient of y ; in the multiple regression of
yp on all the y ;s related to the predecessors of &

djp With non null B, correlation between y ; and y,,

X Descriptor data in two-blocks PLS method

Y Response block in two-blocks and multiblock PLS methods

X; Descriptor block in multiblock PLS method

X5 Descriptor and response blocks in the new MBPLSPM method

tut; Latent variable for X, Y and X;, respectively

tpup  Pair of latent variables for X,

w w;  Weight of variables in block X (two-blocks PLS) and X; (multiblock PLS)
Wp Weight of variables in predictor block X

c Weight of variables in block Y

Cp Weight of variables in predicted block Xp

T Super block containing all the t;’s in multiblock PLS method
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Ty Super block containing all t;’s for blocks that predict X in MBPLSPM
Up Super block containing all u,’s for blocks predicted by X in MBPLSPM
W Weight of latent variables in super block T

tr Super latent variable summarizing super block T
trp Super latent variable summarizing super block T
ugp Super latent variable summarizing super block Uy
n Number of individuals in all blocks

K Number of variables in block X,

Appendix 2 Scales and Sources Used

See Table 6.7.

Table 6.7 Scales and sources used in the questionnaire

Efficiency (5 items) Information received during the trip (maps, timetables,
Holbrook (1999), Heung ...)was
and Qu (2000) 4+ focus
groups

Infrastructures destination were
Gastronomy at destination was
Lodging facilities at destination where
Service quality (9 items) Provide service reliably, consistently and dependently
Cronin et al. (2000)
Provide service in a timely manner
Competent employees (knowledgeable and skillful)
Approachable employees and easy to contact
Courteous, polite and respectful employees
Employees listen to me and we understood each other
Employees were trustworthy, believable and honest
Employees make the effort to understand my needs
Employees were neat and clean
Social value (5 items) Reinforce my feeling of belonging to the group
Adaptated from Sweeney
and Soutar (2001) +
focus groups
A better knowledge of my classmates
Being socially accepted in the group
Relationship with other tourists outside the group
Relationship with residents
Play (4 items) Holbrook I enjoyed the leisure (pubs, bars, .. .)
(1999), Babin and Kim
(2001) + focus groups
I enjoyed my free time
The leisure was pleasurable
I had fun in the destination

(continued)
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Table 6.7 (continued)

Aesthetics (4 items)
Adapted from Gallarza
et al. (2002), Holbrook
(1999) + focus groups

Time and effort spent (7
items) General tourism
literature + focus groups

Perceived value (3 items)
Zeithaml (1988), Cronin
et al. (2000)

Satisfaction (3 items)
Cronin et al. (2000)

Loyalty (6 items) Adaptated
from Murphy et al.
(2000), Kozak and
Rimmington (2000),
Petrick et al. (2001)

The city, its streets, buildings were . . .

Exhibitions, museums concerts were . . .
The beauty of the art (monuments) was . . .
Cost of time planning and preparing

Time spent in return trip

Cost of time losses

Cost associated with the time invested in the trip
Opportunity cost associated with the trip

Effort made for leaving tasks and works to do
Mental effort made for leaving family and friends
Overall, the value of this experience is

Comparing what I gave up and what I received . ..
The experience has satisfied my needs and wants
My choice to purchase this trip was a wise one

1 did the right thing when I purchased this trip
This experience is exactly what I needed
Likelihood to return to same destination in next 5 years

Likelihood to return to same area in next 5 years
Likelihood to recommend the destination to friends and
relatives

Likelihood to recommend the agency to friends and
relatives

Same situation, same choice of agency

Same situation, same choice of destination
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Chapter 7

An Introduction to a Permutation Based
Procedure for Multi-Group PLS Analysis:
Results of Tests of Differences on Simulated
Data and a Cross Cultural Analysis

of the Sourcing of Information System
Services Between Germany and the USA

Wynne W. Chin and Jens Dibbern

Abstract To date, multi-group comparison of Partial Least Square (PLS) models
where differences in path estimates for different sampled populations have been
relatively naive. Often, researchers simply examine and discuss the difference in
magnitude of specific model path estimates from two or more data sets. When eval-
uating the significance of path differences, a z-test based on the pooled standard
errors obtained via a resampling procedure such as bootstrapping from each data set
is made. Yet problems can occur if the assumption of normal population or similar
sample size is made. This paper provides an introduction to an alternative distribu-
tion free approach based on an approximate randomization test — where a subset
of all possible data permutations between sample groups is made. The performance
of this permutation procedure is tested on both simulated data and a study explor-
ing the differences of factors that impact outsourcing between the countries of US
and Germany. Furthermore, as an initial examination of the consistency of this new
procedure, the outsourcing results are compared with those obtained from using
covariance based SEM (AMOS 7).

7.1 Introduction

Partial Least Squares (PLS) modeling has been gaining attention among social sci-
entists in recent years (e.g., Chin 1995; Chin and Higgins 1991; Fornell 1982;
Mathieson 1991; Sambamurthy and Chin 1994). One of the reasons is that the
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PLS approach, consistent with standard structural equation modeling precepts, pro-
vides the researcher with greater ability to predict and understand the role and
formation of individual constructs and their relationships among each other (Chin
1998b; Hulland 1999). Moreover, PLS is often considered more appropriate than
covariance-based modeling techniques like LISREL when the emphasis is predic-
tion since it attempts to maximize the explained variance in the dependent construct.
Furthermore, sample size requirements are considerably smaller than the mini-
mum recommended for covariance-based techniques especially for complex models
(Chin and Newsted 1999). In the case of multi-group structural equation model-
ing (MGSEM), advanced procedures for group comparison have been implemented
in covariance-based SEM (e.g., as provided in AMOS 7.0). This approach, how-
ever, can pose high demands on data properties and sample size. Another less
restrictive way of testing structural equation models across groups is the use of the
component-based procedure, partial least squares (PLS).

To date, multi-group comparison of PLS models where differences in path esti-
mates for different sampled populations have been relatively naive. Often, resear-
chers simply examine and discuss the difference in magnitude of particular model
path estimates for two or more data sets (e.g., Thompson et al. 1994). When assess-
ing the significance of the differences, a ¢-test based on the pooled standard errors
obtained via a resampling procedure such as bootstrapping from each sample is
made (e.g., Keil et al. 2000). Yet problems can occur if the assumption of normal
population distribution or similar sample size is not tenable. As an alternative distri-
bution free approach, this paper will present the results of applying an approximate
randomization test — where a subset of all possible data permutations between sam-
ple groups is made. In assessing the significance for a two-sided permutation test, we
could examine whether the originally observed difference falls outside of the middle
n% (e.g., 95 or 99 percentile) of the distribution of differences for the subset runs
performed. But typically, a one-sided test is performed to examine the percentage of
subset runs that are greater than the original observed difference. The performance
of this permutation procedure is tested on both simulated data and a study exploring
the differences of factors that impact outsourcing between the countries of US and
Germany. Furthermore, for reasons of curiosity and in order to examine the consis-
tency of this new procedure, the outsourcing results will be compared with those
obtained from using covariance based SEM (AMOS 7).

7.2 The Permutation Procedure

Randomization, or permutation procedures are now the preferred tests of signifi-
cance for non-normal data. These techniques are considered distribution-free tests
in that they require no parametric assumptions. Randomization tests should not be
viewed as alternatives to parametric statistical tests, rather they should be considered
as those tests for that particular empirical form being examined. The availability
of fast computers has made permutation tests increasingly feasible, even for large
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data sets. Since such methods require no particular assumptions concerning statisti-
cal distributions (with the exception of the important assumption of independent
observations), permutation tests are increasingly applied even in the context of
traditional statistical tests (e.g. correlation, ¢-tests, ANOVAs, etc.).

The procedure for a permutation test based on random assignment, as described
by Edgington (1987) and Good (2000), is carried out in the following manner.

1. A test statistic is computed for the data (e.g., contrasting experimental treat-
ment/control or nonexperimental groupings).

2. The data are permuted (divided or rearranged) repeatedly in a manner consistent
with the random assignment procedure. With two or more samples, all observa-
tions are combined into a single large sample before being rearranged. The test
statistic is computed for each of the resulting data permutations.

3. These data permutations, including the one representing the obtained results,
constitute the reference set for determining significance.

4. The proportion of data permutations in the reference set that have test statistic
test statistic values greater than or equal to (or, for certain test statistics, less
than or equal to) the value for the experimentally obtained results is the P-value
(significance or probability value). For example, if your original test statistic is
greater than 95% of the random values, then you can reject the null hypothesis
at p < 0.05.

Determining significance on the basis of a distribution of test statistics generated
by permuting the data is characteristic of all permutation tests. When the basis for
permuting the data is random assignment, that permutation test is often called a ran-
domization test. This preceding definition is broad enough to include procedures
called randomization tests that depend on random sampling as well as randomiza-
tion. The modern conception of a randomization test, however, is a permutation test
that is based on randomization alone, where it does not matter how the sample is
selected.

A permutation test based on randomization, as Edgington (1987) notes “is valid
for any kind of sample, regardless of how the sample is selected.” This is an
extremely important property because the use of nonrandom samples is common in
surveys and experimentation and would otherwise invalidate the use of parametric
statistical tables (e.g., f or F tables). Essentially, the random sampling assumption
underlying these significance tables states that all possible samples of n cases within
a specified population has the same probability of being drawn.

Statisticians going back to Sir Ronald Fisher (1936, p. 59, c.f., Edgington 1987)
have indicated that the randomization test is the correct test of significance and that
the corresponding parametric test is valid only to the extent the results yield the same
statistical decision. Fisher, in particular, referred to the application of permuting the
data to determine significance. But Efron and Tibshirani (1993, p. 202) noted that
Fisher introduced the idea of permutation testing “more as a theoretical argument
supporting Student’s 7-test than as a useful statistical method in its own right.” With
modern computational power available for permutation tests to be used on a routine
basis, the reliance on parametric tests as an approximation is no longer necessary.
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Fig. 7.1 Base model tested with structural paths P1 and P2 varied

Good (2000) clearly articulates that when samples are very large, decisions based
on parametric tests like the # and F' tests usually agree with decisions based on the
corresponding permutation test. But with small samples, “the parametric test will be
preferable IF the assumptions of the parametric test are satisfied completely” (Good
2000, p. 9). Otherwise, even for large samples, the permutation test is usually as
powerful as the most powerful parametric test and may be more powerful when the
test statistic does not follow the assumed distribution (Noreen 1989, pp. 32-41).

In this paper, we examine the two sample situation where two independent ran-
dom samples G1 = (my, my, ..., m;) and G2 = (ny, ny, ..., ng) are drawn from
potentially two different probability distributions Dg; and Dg». The test statistic is
the difference in the PLS parameter estimates such as P1 and P2 as seen in Fig. 7.1
(i.e., e = P1 — P2). Having observed sample sets G; and G,, we test the null
hypothesis Hy of no difference between Dg; and Dg» (i.e., Ho : Dg1 = Dg2).

7.3 Monte Carlo Design

Figure 7.1 provides the basis for the Monte Carlo generated data. Two exogenous
constructs, labeled X and Z, are created with a correlation of 0.25. Both are mod-
eled to impact the endogenous construct Y. Six indicators were created as measures
reflecting each construct. The standardized loadings were set at 0.6 for three indi-
cators and 0.8 for the other three indicators. While not a full factorial design, the
cells studied provides initial information to contrast varying structural path effect
sizes with data normality (normal versus high kurtosis). In addition, asymmetry in
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Table 7.1 Power for p < 0.05 significance level for path differences (percentages out
of 1,000 runs)

Path setting 1 Path setting 2 Path setting 3
Group 1 Group 1 Group 1
(p1 =0.5, (p1 =0.7, (p1 = 0.6,
p2=.03) p2 =.05) p2 =.03)
Group 2 Group 2 Group 2
(pl = 0.3, (p1 =0.5, (p1 =0.3,
p2 =.05) p2 =.07) p2 = .06)
Data N = 150 (group 1), 82.0 (pl) 90.3 (pl)
Setting 1 N = 150 (group 2) 83.0 (p2) 88.2 (p2)
Data N = 150 (group 1), 64.9 (pl) 76.9 (pl)
Setting 2 N =175 (group 2) 68.3 (p2) 76.5 (p2)
Data N = 150 (group 1) na (pl) 66.6 (pl) 78.8 (pl)
Setting 3 N = 150 (group 2) 66.9 (p2) 67.0 (p2) 79.0 (p2)
non-normal setting A setting B setting C

conditions

sample sizes for the two groups was also tested (150 cases for both versus 150 and
75 for groups 1 and 2 respectively). Data were generated using PreLis 2 (Joreskog
and Sorbom 1996). For non-normal data, the generalized Lambda distribution sug-
gested by Ramberg et al. (1979) was used following the procedure described by
Reinartz et al. (2002).

The structural paths were varied symmetrically with the effects for the two causal
paths in group 1 the same, but reversed of group 2. Thus, for example, in the first
effect treatment the standardized paths were set for P1 at 0.5 and P2 at 0.3 for
the group 1 and reversed with P1 at 0.3 and P2 at 0.5 for group 2. This pro-
vided the opportunity to see the performance for two paths with the same effect
size differences.

Table 7.1 presents the results for those cells analyzed. Each cell represents the
results of running one million PLS analysis. This is due to the fact that 1,000 Monte
Carlo sample sets were created for each cell to reflect that particular condition. Then
1,000 permutations were conducted for each sample to determine the p-value for the
test statistic. The first two rows represent results using normal data, whereas the last
row presents results using non-normal data. For the non-normal conditions, the item
skewness ranged from 0.952 to 1.759 and kurtosis (see Table 7.2) ranged from 2.764
to 18.425.

The results in Table 7.1 provide us with an initial sense of the power for detecting
structural path differences for different sample populations. As typical of power
analysis, the sample and effect size was found to have an impact. For the first row, we
see that the power for normal data where the population path difference is 0.2 was
detected at the p < 0.05 level approximately 82% of the time. When the difference
in path was increased to 0.3 (i.e., path setting 3), the power went up to 88 for p2
and 90.3 for pl. Conversely, the power dropped when the number of cases for the
second group was lowered from 150 to 75 (i.e., data setting 2). Interestingly enough,
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Table 7.2 _Level of kurtosis for indicators used for the non-normal runs

setting A setting B setting C
gl g2 gl g2 gl g2
X1 8.286 6.176 5.705 6.412 5.356 6.176

X2 7.748 5.503 5.498 5.392 6.410 5.503
X3 7.176 8.151 4.908 5.964 6.970 8.151
X4 9.206 4.407 4218 6.435 4.544 4.407
X5 8.144 4.295 3.842 6.830 4.205 4.295
X6 8.068 3.880 4.555 6.220 3.784 3.880
Z1 6.927 5.405 4.863 4.775 6.741 5.405
zZ2 5.345 7.502 7.297 5.754 5.392 7.502
Z3 5.178 5.545 5.580 5.552 7.350 5.545
Z4 7.566 4.483 3.841 4.211 3.628 4.483
zZ5 6.160 5.126 4.232 6.195 3.738 5.126
Z6 6.517 5.667 3.726 4.308 3.978 5.667
Y1 5.713 5.028 5.292 5.823 7.525 5.028
Y2 5.999 4.672 4.489 6.165 4.896 4.672
Y3 5.249 5.248 9.645 6.161 4.990 5.248
Y4 4.847 2.874 2.765 3.610 4.092 2.874
Y5 4.786 3.850 2.818 3.962 3.721 3.850
Y6 4.690 3.056 2.974 3.909 3.899 3.056

Table 7.3 Power at p < 0.05 significance level for loading differences of 0.2 (percentage out of
1,000 runs for six loadings)

0.8 vs. 0.6 0.8 vs. 0.6 0.8 vs. 0.6 0.9 vs. 0.6

(normal) (normal) (non normal) (non normal)

Group 1 = 150, Group 1 = 150, Group 1 = 150, Group 1 = 150,

Group 2 = 150 Group 2 =175 Group2 =75 Group 2 =75

85.0-90.5 76.1-77.4 51.2-52.1 89.4-923

this same drop in power can also be achieved if the data was highly non-normal
(i.e., data setting 3). Finally, it seems it is not simply the effect size, but also the
overall magnitude of predictiveness that may make a difference. In a separate run
(not presented in the table), we kept both path differences equal at 0.3, but changed
the model to represent more substantive paths (i.e., 0.7 and 0.4 versus 0.6 and 0.3).
The power increased a corresponding 20%.

The power to detect standardized path loading differences of 0.2 were also exam-
ined (see Table 7.3). Overall, the power ranged from 76 to 90 in the normal data
settings. Under high non-normality, the power dropped to the 50 percentile range.
But when the effect size was increased to 0.3 population difference, the power
dramatically improved moving into the §9.4-92.3 range.

Taken together, these results are suggestive of the countervailing impact that
asymmetry in group sample sizes, degree of non-normality, difference in magnitude
of path effects, and overall predictiveness of the model have upon each other. In
other words, while asymmetry in group sample sizes is expected to lower the power
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to detect structural path differences, a more predictive model, on average, may mod-
erate this effect. Ideally, we would like high predictive models with normal data and
sample sizes of 150 or higher for each group.

7.4 Cross-Cultural Analysis of an Information Systems
Outsourcing Model

We now provide a didactic example of the use of the PLS based permutation pro-
cedure in a cross cultural context. The example includes the testing of a model that
explains why companies outsource the development and maintenance of software
applications to external vendors. Over the past 15 years, the practice of informa-
tion systems (IS) outsourcing has grown significantly. Many industry watchers have
attributed this growth to the first IS outsourcing mega deal in 1989, when Kodak
decided to outsource major parts of their IS infrastructure to IBM, DEC and Busi-
nessland in a 10-year, $250 million deal (Dibbern et al. 2004). However, in spite of
the fact that the outsourcing market has grown globally, there are a number of obvi-
ous differences between countries. First of all, when looking at the overall amount
of money that is spent for IS services, it soon becomes apparent that the U.S. is
still the leading country in terms of IS outsourcing expenditures with three times
more money spent on IS outsourcing than Germany (Murphy et al. 1999; OECD
2000) as an example. Second, there are significant differences between countries in
terms of what IS functions are being outsourced (Apte et al. 1997; Barthelemy and
Geyer 2001). This phenomenon is essentially attributed to the increasing practice
of selective outsourcing. That is, rather than outsourcing their entire IS department,
firms prefer to outsource part or all of particular IS functions, such as data center
operations, help desk services or applications development.

Thus, the question is raised as to why such national differences do exist. Is the
sourcing decision fundamentally different between countries (i.e., is it motivated or
restricted by different factors?) and, if yes, why so? Most research on IS outsourcing
has been conducted in a single country. Indeed the majority of research is U.S.-based
and it is hard to say to what extent these findings are generalizable across countries.
The few studies with a cross-national perceptive are purely descriptive (Apte et al.
1997; Barthelemy and Geyer 2001).

7.4.1 Theoretical Framework

Figure 7.2 presents a graphical representation of the theoretical model to be tested.
This model suggests that the decision to outsource application services is influenced
by three distinct sets of variables: efficiency variables, effectiveness variables as
well as social influences and other constraints. In addition, firm size similar to other
studies is included as a control variable. The discussion below elaborates upon each
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Comparative
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Impact
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Individual
level

Fig. 7.2 Theoretical framework on IS sourcing

set of factors and explains why the strength of certain linkages is expected to differ
between German and U.S. organizations.

7.4.2 Efficiency Factors

Production Costs. Previous empirical research on IS outsourcing has shown that
cost reduction is one of the major objectives for IS outsourcing (c.f. Dibbern et al.
2004) where an external vendor can realize higher economies of scale because of its
ability to provide the same type of service for multiple customers. At the same time
however, it is one of the major reasons why some companies decide to keep there
IS function in-house or to bring it back in-house (Dibbern et al. 2003; Hirschheim
and Lacity 2000). Thus, overall, the decision of whether it is more production cost
efficient to insource an IS function or to outsource it to an external vendor should
be made on a case to case basis (c.f. Ang and Straub 1998).

Transaction Costs. In addition to production costs, however, transaction costs
should not be neglected (Ang and Straub 1998). Transaction costs are all costs in
terms of time, effort, and money spent that arise when delegating tasks of an IS
function to one or more agents. The magnitude of these transaction costs may also
vary between insourcing and outsourcing, and hence it is important to be clear which
sourcing arrangement is more transaction cost efficient.

The argument that the make-or-buy decision should be guided by both transaction
and production cost considerations can be traced back to transaction cost theory,
which considered the sum of production and transaction cost differences between
the firm and the market (Williamson 1981). Thus, as reflected in paths H1 and H2,
the higher the comparative costs of outsourcing is relative to the firm, the less a
particular application service is outsourced.
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7.4.3 Effectiveness Factors

Focusing solely on efficiency, however, neglects the fact that the output of the IS
work could be significantly influenced by the sourcing choice as well. Empirical
findings have shown that some organizations change their current sourcing arrange-
ment for strategic intents (DiRomualdo and Gurbaxani 1998; McLellan et al. 1995).
The precondition for strategic impacts are variations in the effectiveness of the IS
function.

Systemic Impact. For reaching a high level of IS effectiveness, it is often argued
that beyond producing application software whose features and capabilities meet
the needs of the users, it is even more important to ensure that an organization’s
application software fits synergistically with other IS functions such as data center
operations, network design and maintenance, user support and telecommunications
services. It is often hard to separate the effectiveness of the application software
from that of the overall IS (c.f. Hamilton and Chervany 1981; Pitt et al. 1995).
Accordingly, as tested via path H3, it is important for an organization to examine
whether the systemic impact of application services is higher in-house or with an
external vendor.

Systemic View. In line with the arguments made above and with the resource-
based view (Wade and Hulland 2004), IS workers that feel responsible not only
for their own work, but also for how their work relates to the work of others, may
be viewed as valuable resources. IS executives, when evaluating and comparing
alternative sourcing options, may well consider whether their choice leads to IS
workers with more of an integrative view of the firm. This is reflected in path H4a,
which suggests that the more systemic the view of in-house employees as opposed
to outsourced workers in performing application services, the less these services
are outsourced. Path H4b, in a similar vein, suggests that the impact of the applica-
tion development and maintenance work on overall systems performance is better
achieved in-house, if an organization’s own employees have more of a systemic
view than the personnel of an external service provider.

7.4.4 Social Influences and Constraints

Opinion of Influential Others. The preceding factors are based on the assumption
that the sourcing decision represents a rational decision based on efficiency and
effectiveness criteria. This view has been partially contradicted by other studies that
show an organizations sourcing decision can be influenced by various social influ-
ences and constraints (Lacity and Hirschheim 1993; Lacity and Hirschheim 1995).
Overall, these studies support the view that the opinion of others could have a pro-
found impact on the sourcing decision of organizations and this is tested via path HS.

Outsourcing Process Control. A final main factor that may explain variations in
the degree of outsourcing application services is extent to which organizations have
control (i.e. unlimited power of direction) over all necessary activities associated
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with outsourcing an IS function to an external service provider. These influences
may limit the ability of the main decision makers to act strictly relationally. Accord-
ingly, one would expect that the less the implementation of an outsourcing decision
is constrained by various forces, the easier it is for an organization to outsource
application services. Path H6 tests for this impact. Finally, in accordance with pre-
vious studies on IS sourcing, firm size is added as a control variable and tested via
path H7 (Ang and Straub 1998; Sobol and Apte 1995).

7.4.5 Proposed Cultural Differences

The preceding net of hypotheses (see Fig. 7.2) may be viewed as a mid-range theory
that seeks to explain variations in the extent to which organizations outsource appli-
cation services. The question for this study is whether the relationships between
constructs are the same in Germany and the U.S., or whether country specific fac-
tors affect the generalizability of the proposed linkages. One way of approaching
this question is (1) to identify those cultural dimensions that were found to dif-
fer between Germany and the U.S. in previous cross-cultural research, (2) to select
those dimensions that have an impact on the mid-range theory, and (3) to develop
propositions about how selected linkages will differ between Germany and the U.S.
(based on Lytle et al. 1995).

In following this procedure, three candidates have been identified that may
account for cross-cultural variation in the theoretical framework. Two of them are
cross-cultural dimensions that refer to relationship characteristics between societal
members, while the third refers to more general patterns of institutions and social
systems (Lytle et al. 1995).

The first dimension is individualism-collectivism based on a large scale survey
of approximately 116,000 respondents from 50 different cultural regions worldwide
(Hofstede 1980). The U.S. sample showed the highest individualism ranking of all
the countries, while Germany ranking above the average but significantly lower
on the index scale (rank 15 from 50; index 67 as opposed to 91 from the U.S.)
(Hofstede 1983, 1991). Two of seven categories identified by Triandis (1996) are (1)
the people’s concern about how their decisions could affect others in their collectiv-
ity; and (2) the belief in the correspondence of ones own outcomes, both positive and
negative, with the outcome of others. These two aspects of collectivism can be seen
to be closely related to two constructs in our theoretical model, namely systemic
impact and systemic view.

Another cultural dimension that is closely related to the aspect of systemic view
is the analytical versus integrative view. This dimension was extracted by another
cross cultural study that included about 1000 intercultural trainee programs, plus a
survey of about 30,000 managers of 30 organizations with locations in 50 different
countries (Hampden-Turner and Trompenaars 1993; Trompenaars and Hampden-
Turner 1994). The analytical view reflects the extent to which a firm is perceived as a
collection of tasks, functions, people, and machines rather than as a group of related
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persons working together (an integrative viewpoint). Overall, Germany showed a
higher tendency towards an integrative view of an organization than the U.S.

Taking these preceding cultural dimensions together, it can be argued that in
nations such as Germany, where members of organizations show a tendency towards
collectivism and have more of an integrative view of the organization, it matters
greatly for managers to consider how the overall IS function will be affected by
the sourcing choice. By contrast, managers in countries, such as the U.S., where
individual performance is valued higher than collective action, and where man-
agers have more of an analytical view of the organization, the systemic impact
of the sourcing choice may reside to the background. This leads to the following
proposition:

P1: The negative relationship between comparative in-house advantages in sys-
temic impact and the degree of outsourcing (H3-) is stronger in Germany than in
the U.S.

Moreover, German IS managers may be more inclined to consider whether in-
house personnel or the staff of external vendors shows more of a systemic view in
doing their work:

P2: The negative relationship between comparative systemic view advantages of
in-house workers and the degree of outsourcing (H4a-) is stronger in Germany than
in the U.S.

Third, in Germany there are a number of unique legal and legitimized institu-
tional constraints that do not exist in the same form in the U.S. For example, in
Germany, the protection of employee interests is codified in law. Employee inter-
ests are legally supported by the works constitution act (“Betriebsverfassungsgesetz
BetrVG”) that guarantees the right of employee participation and codetermination
(“Mitbestimmung”) in social, economic, and personnel matters (Richardi 1990).

Overall, these restrictions suggest that in Germany, major organizational deci-
sions, such IS outsourcing, where personnel and social affairs are affected, are more
participative than in the U.S. Accordingly, German managers may be more sensitive
to consider the extent to which they have control over the outsourcing process when
deciding on IS sourcing than their U.S. colleagues:

P3: The impact between the extent to which IS managers believe that they have
control over the outsourcing process and the degree of applications outsourcing is
stronger in Germany than in the U.S.

7.5 Method

7.5.1 Data

Data for this study was gathered via a mailed questionnaire survey. Only companies
with more than 500 employees were considered. The questionnaires were adminis-
tered to the highest ranking IS executives of organizations in the USA and Germany.
Overall, 180 usable questionnaires were returned. Since the survey included both
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questions about the development and maintenance of software applications, the sam-
ple for this study includes 278 decisions on the sourcing of software applications in
Germany and 82 cases in the U.S.

7.5.2 Measures

Each of the constructs from our model was measured with a block of indicators
(questionnaire items). Whenever possible, existing measures from prior empirical
studies were adopted. An overview of the constructs and exemplified measurement
items is provided in Table 7.4. Most of the items were measured on a (positive
to negative) five point Likert scale ranging from “strongly agree” to “strongly dis-
agree”, with “neither agree nor disagree” as a mid-point. For measures of the degree
of outsourcing, respondents were asked to provide percentages ranging form 0%
to 100%. For the construct opinion of others, the semantic differential approach to
measurement was adopted (Osgood et al. 1957), where each response is located
on an evaluative bipolar (negative to positive) dimension, using a seven point Lik-
ert scale. All blocks of indicators were formulated in the reflective mode (Chin
1998a; Chin and Newsted 1999; Fornell 1989). The unit of analysis was the respec-
tive application service. The respondents had to answer each question for both the
development and the maintenance of application software.

7.6 Analysis and Results

In the following, the results of the model testing for both the U.S. and Germany will
be presented. This includes the test of (1) the measurement model and (2) the struc-
tural model in both countries, as well as (3) the test of differences in the structural
paths between both countries.

7.6.1 Results of Partial Least Squares Estimation

Measurement Model. In order to check whether the indicators of each construct
measure what they are supposed to measure, tests for convergent and discrimi-
nant validity were performed in both the U.S. and German sample. Before doing
any multigroup comparisons, it is always important to first establish the measures
perform adequately in both data samples.

In terms of convergent validity (Bagozzi and Phillips 1982), both indicator reli-
ability and construct reliability were assessed (Peter 1981). Indicator reliability
was examined by looking at the construct loadings. All loadings are significant
at the 0.01 level and above the recommended 0.7 parameter value (Significance
tests were conducted using the bootstrap routine with 500 resamples (Chin 1998b).
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Table 7.4 Questionnaire measures
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Construct Source Sample Item

Degree of Based on Dibbern and  For each of the two IS functions, please estimate the
Outsourcing Heinzl (2004); average percentage currently allocated to

Teng et al. (1995) external service providers in terms of

1. ...the functions total budget (from 0 to 100%)

2. ...total person working days.

3. ...total number of people that participate in
doing the work.

Comparative Based on Ang and In doing the actual work required for each of the IS
production Straub (1998) functions
cost 1. ...ourinternal staff works more cost efficient
advantage than an external service provider.

2. ...we can realize higher economies of scale
internally than an external service provider.

Comparative Based on Ang and When delegating i.e. transferring tasks of the
transaction Straub (1998) particular IS function
cost 1. ...thecosts incurred in negotiating, managing
advantage and coordinating are lower within the firm than

in case of contracting with an external service
provider.

2. ...less transaction costs are incurred for internal
employees than when using an external service
provider.

Comparative Informed by the If this IS function is not performed in-house but
systemic notion of task externally,
impact interdependence 1. ...theintegration of this IS function into the
advantage (Pfeffer and overall IS function of our organization is

Salancik 1978; weakened.
Thompson 1967) 2. ...the synergetic effects to other IS functions
will be threatened.

3. ...the overall performance of our entire IS
function will be greatly affected.

Comparative See above plus the In doing the actual work required for each of the IS
systemic individualism- functions, our own employees tend much more
view collectivism than personnel of external service providers to
advantage categorization by 1. ...have a systems view of the organization.

Hui and Triandis 2. ...have an organization wide perspective of how
(1986) work in different areas effect one another.

3. ...consider the task interdependencies in our
organization.

4. ...have an integrated view of the organization.

Outsourcing Based on Ajzen When it comes to outsourcing this IS function to an
Process (1991); Ajzen and external service provider
Control Fishbein (1980) 1. ...ourorganization can act unrestrictedly.

2. ...there are no impediments to our organization.

(continued)
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Sample Item

Construct Source
External Based on Ajzen
Influences (1991); Ajzen and

Fishbein (1980)

Firm size Based on Ang and
Straub (1998)

Persons or groups whose opinion is important to our
organization think that outsourcing this particular
IS function is

..bad - good (-3 to +3).

..negative - positive.

.. harmful - beneficial.

.. foolish - wise.

..illogical - logical.

.. worthless - valuable.

SR o e

Please estimate your organization’s overall number of
employees.

Table 7.5 Indicator and construct reliability

Construct Item Germany USA
Loading CR AVE Loading CR AVE
Degree of Outsourcing Outl 0.96 097 093 0.95 097 091
Out2 0.96 0.98
Out3 0.96 0.94
Production Cost Advantage  Pcl 0.85 086 0.75 0.92 090 0.82
Pc3 0.88 0.89
Transaction Cost Advantage  Tcl 0.90 0.85 0.74 0.70 0.83 0.71
Tc4 0.82 0.97
System Impact Advantage Impactl 0.89 091 0.78 0.92 094 0.85
Impact2 0.89 0.90
Impact3 0.86 0.94
System View Advantage EmplOritl 0.77 091 0.71 0.77 091 0.73
EmplOri2 0.87 0.77
EmplOri3 0.83 0.91
EmplOri4 0.89 0.89
Opinion of Others Otherl 0.92 097 0.82 0.93 098 0.87
Other2 0.93 0.92
Other3 0.92 0.93
Other4 0.89 0.97
Other5 0.88 0.96
Other6 0.89 0.90
Process Control CoProl 0.94 093 0.87 1.00 093 0.87
CoPro2 0.94 0.86

Construct reliability and validity was tested using two indices: (1) the composite
reliability (CR) and (2) the average variance extracted (AVE). All the estimated
indices were above the threshold (Bagozzi and Yi 1988) of 0.6 for CR and 0.5
for AVE (see Table 7.5). Finally, the discriminant validity of the construct items
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Table 7.6 PLS crossloadings for U.S. sample
PC TC firm size Out SysImp Control SysView ExtInfl

Pcl 092 039 0.02 0.36 0.53 0.01 0.17 0.30
Pc3 089 047 0.02 0.31 0.59 0.02 0.36 0.33
Tcl 0.31 0.70 0.02 0.11 0.31 0.15 0.34 0.25
Tc4 046  0.97 0.02 0.30 0.36 0.07 0.35 0.20
NoAll 0.02  0.02 1.00 0.16 0.10 0.04 0.06 0.17
Outl 028  0.19 0.25 0.95 0.08 0.00 0.06 0.29
Out2 036 033 0.11 0.98 0.19 0.02 0.01 0.32
Out3 0.41 0.27 0.11 0.94 0.25 0.04 0.01 0.37
Impactl 0.62 040 0.16 0.22 0.92 0.17 0.37 0.34
Impact2 050 031 0.00 0.16 0.90 0.11 0.30 0.44
Impact3 056 035 0.09 0.14 0.94 0.07 0.44 0.40
CoProl 0.01 0.10 0.04 0.02 0.13 1.00 0.10 0.01
CoPro2 0.11 0.10 0.03 0.00 0.09 0.86 0.04 0.03
EmplOril 0.19 028 0.12 0.09 0.34 0.19 0.77 0.28
EmplOri2 034  0.44 0.05 0.03 0.31 0.01 0.84 0.28
EmplOri3 025 038 0.12 0.11 0.40 0.04 0.91 0.35
EmplOri4  0.19  0.23 0.08 0.08 0.35 0.12 0.89 0.28
Otherl 032 025 0.17 0.28 0.39 0.05 0.28 0.93
Other2 035 021 0.23 0.28 0.37 0.07 0.24 0.92
Other3 0.31 0.12 0.14 0.24 0.42 0.05 0.31 0.93
Other4 036 027 0.15 0.36 0.42 0.05 0.34 0.97
Other5 034 026 0.17 0.34 0.39 0.02 0.41 0.96
Other6 026 021 0.08 0.37 0.37 0.10 0.36 0.90

was assured by looking at the cross-loadings. They are obtained by correlating the
component scores of each latent variable with both their respective block of indica-
tors and all other items that are included in the model (Chin 1998b). In Tables 7.6
and 7.7, in the Appendix, the cross loadings for both the USA and Germany are pre-
sented. The loadings on their respective constructs are shadowed. Moving across
the rows reveals that each item loads higher on its respective construct than on
any other construct. Going down a column also shows that a particular constructs
loads highest with its own item. Taken together, this implies discriminant validity
for both samples.

Structural Model. Having gained confidence that the measures work appropriate
for both the U.S. and German sample, the next step is to test the explanatory power
of the entire model on IS sourcing as well as the predictive power of the independent
variables in both countries. The explanatory power is examined by looking at the
squared multiple correlations (R?) of the main dependent variable, the degree of IS
outsourcing. As can be inferred from Fig. 7.3, in Germany 33% (R? = 0.33) of the
variation in the degree of outsourcing are explained by the independent variables,
while in the U.S. 27% (R? = 0.27) are accounted for. The hypotheses are tested by
examing the magnitude of the standardized parameter estimates between constructs
together with the corresponding #-values that indicate the level of significance.
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Table 7.7 PLS crossloadings for German sample
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PC TC firm size Out SysImp Control SysView ExtInfl
Pcl 0.85 0.57 0.05 0.34 0.40 0.16 0.44 0.25
Pc3 0.88 0.44 0.10 0.38 0.49 0.12 0.42 0.33
Tel 0.53 0.90 0.12 0.36 0.33 0.14 0.33 0.30
Tc4 0.45 0.82 0.03 0.27 0.40 0.06 0.39 0.29
NoAll 0.09 0.07 1.00 0.01 0.03 0.01 0.13 0.00
Outl 0.40 0.36 0.03 0.96 0.41 0.05 0.35 0.36
Out2 0.41 0.37 0.01 0.96 0.43 0.04 0.38 0.32
Out3 0.38 0.36 0.02 0.96 0.41 0.04 0.37 0.38
Impact1 0.51 0.41 0.03 0.38 0.89 0.24 0.46 0.21
Impact2 0.46 0.36 0.03 0.41 0.89 0.14 0.44 0.28
Impact3 0.40 0.34 0.02 0.35 0.86 0.16 0.41 0.22
CoProl 0.16 0.11 0.03 0.05 0.18 0.97 0.17 0.05
CoPro2 0.14  0.12 0.07 0.03 0.21 0.90 0.17 0.05
EmplOril 0.34 0.36 0.08 0.23 0.40 0.15 0.77 0.18
EmplOri2 0.47 0.39 0.17 0.38 0.41 0.08 0.87 0.31
EmplOri3 0.41 0.31 0.03 0.33 0.39 0.22 0.83 0.17
EmplOri4 0.44 0.34 0.14 0.33 0.46 0.15 0.89 0.19
Otherl 0.37 0.37 0.03 0.34 0.28 0.07 0.25 0.92
Other2 0.35 0.35 0.03 0.33 0.27 0.07 0.27 0.93
Other3 0.33 0.31 0.01 0.34 0.27 0.03 0.22 0.92
Other4 0.26 0.28 0.03 0.33 0.22 0.09 0.22 0.89
Other5 0.23 0.25 0.03 0.31 0.22 0.06 0.18 0.88
Other6 0.27 0.32 0.04 0.34 0.21 0.02 0.22 0.89

in-hot?szn;z?l;ar:i‘a’;es in: Beliefs about outsourcing
Efficiency Social Influences & Constraints
|
Costs Others Control
S s gk
zation < Ger: -0.10**
level US: -0.20 n.s.
Degree of
Effectivness Ger: 0,23+ Outsourcing
US: 0.08 n.s.
— Ger: —0.04 n.s.
Impact Ger: -0.15** US: 0.10 n.s.
~ .| us:0.26~

Worker
level

@ Control Variable

* link proposed to be stronger in Germany than in the US

Fig. 7.3 Structural model findings for Germany and the U.S.
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Table 7.8 PLS results for structural model and group comparisons

Independent Dependent Hypo- Germany USA Country
Variable Variable thesis n =278 n =82 Difference
Path P-values _ Path P-values  Path  P-value
Production  Degree of H1(—) —0.13** 3.1 —0.29** 2.0 0.17n.s. 13.0
cost Outsourcing
advantage
Transaction Degree of H2(—) —0.10** 48 —0.20ns. 109  0.10ns. 252
cost Outsourcing
advantage
Systemic  Degree of H3(—) —023*** <0.1 0.08ns. 295 =031 25
impact Outsourcing

advantage

Systemic  Degree of Hda(—) —0.15** 24 0.26** 17 —040"" 0.3
view Outsourcing
advantage

Systemic  Systemic H4b(+) 0.49%**  <0.1 0.41%** <0.1 0.08ns. 17.1
view impact
advantage  advantage

External Degree of H5(+) 020%**  <0.1 0.30** 1.0 —0.10ns. 209
influence Outsourcing

Outsourcing Degree of H6(+) —0.16** 1.3 0.02ns. 41.7 —0.18" 7.9
Process Outsourcing
Control

Firmsize ~ Degree of H7 —0.04n.s. 140 0.10ns. 25.8 —0.14ns. 120

Outsourcing

t-values were obtained through the bootstrap routine (Chin 1998b). An overview
of the results can be inferred from Table 7.8. Moreover, Fig. 7.3 shows a graphical
representation of the findings for Germany and the U.S.

The findings show solid support for the efficiency and effectiveness hypotheses
in Germany. All of the path coefficients show the expected negative sign and are
significant at the 0.05 (**) or 0.01 (***) level. Notably, perceived comparative in-
house advantages in the systemic impact have the strongest impact (H3 : —0.23,
t = 3.67). The impact of Social Influences & Constraints is less consistent. While
solid support can be found for the impact of influential others on the degree of
outsourcing (H5 : 0.20, t = 3.93), the link between decision control and out-
sourcing is negative instead of positive as predicted in the model. Moreover, firm
size has no impact. In the U.S., the opposite was found, that comparative advan-
tages of in-house workers in the systemic view are positively related to the degree
of outsourcing and not negatively, as predicted. Moreover, in contrast to Germany,
no evidence can be found for the significant impact of comparative transaction cost
advantages and systemic impact advantages, as well as for decision control and
firm size.
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Significance of Group Differences. The question is, however, whether the
observed differences between Germany and the U.S. are significant and whether
those differences are in line with the proposed cultural differences (P1 — P3). This
can be inferred from the right column of Table 7.8. It shows the level of probabil-
ity with which the hypotheses that the parameter estimates equal zero (i.e., that the
Null-hypothesis) is true. This probability (scaled from O to 100) is also called crit-
ical distance and should be limited to 1% (P < 1), 5% (P <5), or 10% (P < 10)
(Mohr 1991).

The results show that the path coefficient from systemic impact advantage to
degree of outsourcing (H3) in the structural model for Germany is significantly
stronger (P = 2.5) than the corresponding path in the structural model for the U.S.,
supporting P1 at the 0.05 level of significance. Moreover, the link between outsourc-
ing process control and degree of outsourcing is significantly stronger (P = 7.9)
in Germany than in the U.S., supporting P3 at the 0.1 level of significance. Finally,
P2 is supported partially. It was proposed that the negative link between systemic
view advantage and degree of outsourcing were stronger in Germany than in the
U.S. However, the results show that not the strength, but the direction of that link
is significantly different between Germany and the U.S. It is negative in Germany,
while positive in the U.S.

Given the results of our earlier simulation, we might conjecture that the asym-
metry in sample size between Germany and U.S. may impact the p-value estimate
for P3. While it was found to be significant at the 0.1, it would not be at the 0.05
level of significance. The Germany size at n = 278 is larger than our simulated size
of 150 as was the U.S. sample of 82 being slightly larger than the 75 setting we
tested. At an exact 150 versus 75 group sample difference, recall that we found the
power to range from 65 to 68. Thus, we might conjecture that had the U.S. sample
been closer to 150, we would have obtained a multi-group p-value at 0.05.

7.6.2 Results of AMOS Estimation

The AMOS results of the structural model for Germany and the U.S., as well as the
test results for country differences in the structural model are depicted in Table 7.9.
The focus is on comparing the level of significance for the differences in structural
paths as provided by AMOS with those from PLS. The comparison reveals strong
agreement between the PLS and AMOS results. Just like in PLS, only the relation-
ships from H3, H4, and H6 show significant differences between both countries.
There are only differences in the level of significance, e.g. the country difference
for the path coefficient from systemic view advantage to degree of outsourcing is
significant at the 0.01 level in Germany (P = 0.3) and at the 0.1 level in the U.S.
(P =8.9).



7 A Permutation Based Procedure for Multi-Group PLS Analysis 189

Table 7.9 Amos results for structural model and group comparisons

Independent  Dependent Hypo- Germany USA Country
Variable Variable thesis n =278 n =82 Difference
Path  P-value Path P-value  Path  P-value
Production Degree of HI1(—=) —0.16n.s. 60.2 —0.20n.s. 25.8 0.04n.s. 100.0
cost Outsourcing
advantage
Transaction  Degree of H2(—) —0.10ns. 71.3 —0.38% 49 0.29n.s. 37.1
cost Outsourcing
advantage
Systemic Degree of H3(—) —027*** <0.1 0.05n.s. 652 —0.32" 1.1
impact Outsourcing
advantage
Systemic Degree of H4a(—) —0.10n.s. 37.2 0.39** 0.7 —0.49" 8.9
view Outsourcing
advantage
Systemic Systemic H4b(+) 0.60*** <0.1 0.48%**  <0.1 0.12n.s. 52.7
view impact
advantage advantage
External Degree of H5(+)  0.18** 04 0.29* 1.1 —0.12n.s. 100.0
influence Outsourcing
Outsourcing Degree of Hé6 —0.19** 0.2 —0.004n.s. 92.7 —0.18™ 4.0
Process Outsourcing
Control
Firm size Degree of H7 —0.04n:s. 39.6 0.03n.s.  72.8 —0.08n.s. 40.3
size Outsourcing

7.7 Discussion and Summary

This paper has presented results from two PLS based MGSEM studies. First, it pro-
vides initial insights into how this new procedure for multi-group comparison using
PLS performs with simulated data. This was intended to provide an initial sense
of the sample sizes required to achieve adequate power. Second, it empirically pro-
vides a didactic example of a confirmatory test on cross-cultural differences related
to IS outsourcing. Specifically, we provide an example of how social scientists might
introduce three propositions on differences between two countries.

In terms of the cross cultural results, we showed that some of the factors that
explain variations in the degree of application software outsourcing are the same in
both countries, while other influences differ significantly between both countries.

Commonalities. In both the U.S. and German sample, differences in production
costs between in-sourcing and outsourcing as well as the opinion of influential oth-
ers have a significant impact on the sourcing of application services. Both findings
are in line with the empirical literature on IS outsourcing. The results also show
that it is not a strictly rational decision process that occurs within the boundaries of
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the IS department, but rather a participative process that recognizes the opinion of
external others.

Country Differences. While efficiency matters both in the U.S. and Germany,
effectiveness criteria were found to be treated differently. First of all, while per-
ceived in-house advantages in the systemic impact of an IS function were found
to impede the extent to which application services are outsourced in Germany, the
relationship was found to be irrelevant in the U.S. This obvious country difference
is consistent with our perspective that German managers have more of an inte-
grative view of the organization, where the firm is viewed as a group of related
persons working together. By contrast, U.S. managers may see the firm as a collec-
tion of tasks, functions, people, and machines that can be changed and exchanged
more flexibly, without leading to severe consequences for overall firm performance
(Hampden-Turner and Trompenaars 1993, p. 18).

Second, the results show that in both countries, systemic view is an important
predictor of the extent to which application services are outsourced, however, with
different directional impacts. Germany, with a more integrative view and collec-
tivist culture is less likely (more negative path) to outsource an IS function if they
perceive a systemic view advantage exists for their company employees relative to
outsourced workers. In contrast, the collectivist nature is likely viewed potentially
as a hindrance in the U.S. The analytical nature of the U.S. workforce emphasizes
compartmentalized effort and rotation/shifting of workers when required. Thus, the
more systemic or collectivistic a CIO may perceive his or her company to be, the
greater the desire to minimize this culture through the use of an external workforce.

Another relationship that was found to be culturally sensitive is the link between
outsourcing decision control and degree of outsourcing. It was proposed, that a
higher level of perceived control over the outsourcing process would be positively
related with the degree of outsourcing and that this link would be stronger in
Germany than in the U.S. Interestingly, there was a significant difference in the
impact of that link between Germany and the U.S. But unexpectedly, that link was
positive, instead of negative in Germany, while insignificant in the U.S. In other
words, German organizations show a higher level of outsourcing if IS managers do
not believe that they have full control over all necessary activities associated with
outsourcing. A similar reversed link, albeit in a different organizational context, was
also found in the study from Cordano and Frieze Hanson (2000, p. 637). From their
point of view, this finding may be explained by the limited power of managers,
which hinders them to act in accordance with their beliefs.

Overall, the PLS MGSEM analysis is shown to provide useful information for
researchers interested in applied areas such as cross cultural studies. Using this tech-
nique, we were able to determine that cultural differences play a substantial role
in IS sourcing decisions and that it is necessary to recognize that behavioral and
institutional differences between countries can significantly limit the generalizabil-
ity of mid-range theories of IS sourcing. In terms of our Monte Carlo simulation,
the results, while not surprising, provides a sense of how the effect size, sample
size, normality, and magnitude of prediction impacts the ability to detect an effect.
A future study might involve a more complete assessment of the effect of asymmetry



7 A Permutation Based Procedure for Multi-Group PLS Analysis 191

in the sample size between the two groups with the combined cases fixed at the same
number. Furthermore, we’d recommend a comparison of how the PLS algorithm
compares with a simple summed regression. Our initial test with an asymmetric
sample set of 150 and 75, non-normal condition, and 0.7 and 0.4 path differences
resulted in the PLS algorithm providing a 10 percent higher level in statistical power.

In summary, this paper attempted to illustrate the appropriateness of using a new
non-parametric procedure for conducting MGSEM analysis using PLS. As noted
earlier, such an approach employing randomization tests should not be viewed
as alternatives to parametric statistical tests, rather they should be considered as
those tests for that particular empirical form being examined. Thus, normal theory
MGSEM may be viewed as approximations. This is an extremely important property
in the case of both data distributions and nonrandom samples common in surveys,
which would otherwise invalidate the use of parametric statistical tables (e.g., t or
F tables). Nevertheless, in the case of our outsourcing data set, we did find remark-
ably similar results with the AMOS analysis, which provides greater confidence in
a methodological convergent validity sense. Unfortunately, due to page and analyt-
ical constraints, comparison of our Monte Carlo results with those obtained using
AMOS or similar covariance based MGSEM analysis was not performed. What
would be useful in the future is to generate such data conforming to a model with
varying levels of non-normality (both leptokurtic and platykurtic and left and right
skewed) to see how both methods perform.
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Chapter 8
Finite Mixture Partial Least Squares Analysis:
Methodology and Numerical Examples

Christian M. Ringle, Sven Wende, and Alexander Will

Abstract In wide range of applications for empirical data analysis, the assumption
that data is collected from a single homogeneous population is often unrealistic. In
particular, the identification of different groups of consumers and their appropri-
ate consideration in partial least squares (PLS) path modeling constitutes a critical
issue in marketing. In this work, we introduce a finite mixture PLS software imple-
mentation which separates data on the basis of the estimates’ heterogeneity in the
inner path model. Numerical examples using experimental as well as empirical
data allow the verification of the methodology’s effectiveness and usefulness. The
approach permits a reliable identification of distinctive customer segments along
with characteristic estimates for relationships between latent variables. Researchers
and practitioners can employ this method as a model evaluation technique and
thereby assure that results on the aggregate data level are not affected by unobserved
heterogeneity in the inner path model estimates. Otherwise, the analysis provides
further indications on how to treat that problem by forming groups of data in order
to perform a multi-group path analysis.

8.1 Introduction

Structural equation modeling (SEM) and path modeling with latent variables (LVP)
are applied in marketing research to measure complex cause-effect relationships
(Fornell and Larcker 1981; Steenkamp and Baumgartner 2000). Covariance structure
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analysis (CSA) (Joreskog 1978) and partial least squares analysis (PLS) (Lohmoller
1989) constitute the two corresponding, yet different (Schneeweifl 1991), statistical
techniques for estimating such models. An important research issue in SEM and
LVP is the measurement of customer satisfaction (Fornell et al. 1996; Hackl and
Westlund 2000), which is closely related to the requirement of identifying distinctive
customer segments (ter Hofstede et al. 1999; Wu and Desarbo 2005).

In SEM, segmentation can be achieved based on the heterogeneity of scores for
latent variables in the structural model (DeSarbo et al. 2006). Jedidi et al. (1997) pio-
neer this field of research and propose a procedure that blends finite mixture models
and the expectation-maximization (EM) algorithm (McLachlan and Krishnan 2004;
Wedel and Kamakura 2000). However, this technique extends CSA but is inap-
propriate for PLS path modeling. For this reason, Hahn et al. (2002) propose the
finite mixture partial least squares (FIMIX-PLS) approach that joins a finite mixture
procedure with an EM algorithm specifically regarding the ordinary least squares
(OLS)-based predictions of PLS. Sarstedt (2008) reviews existing segmentation
techniques for PLS path modeling and concludes that FIMIX-PLS can currently
be viewed as the most comprehensive and commonly used approach to capture
heterogeneity in PLS path modeling.

Building on the guiding articles by Jedidi et al. (1997) and Hahn et al. (2002),
this paper presents FIMIX-PLS as it is implemented for the first time in a statistical
software application (SmartPLS; Ringle et al. 2005). Thereby, this methodology
for segmenting data based on PLS path modeling results is made broadly applica-
ble for research in marketing, management and other social sciences disciplines.
This kind of analysis is typically performed in two stages. In the first step, FIMIX-
PLS (see Chap. 8.2) is applied for different numbers of classes using standard PLS
path modelling estimates. If distinctive groups of observations in the overall set of
data cause heterogeneity in the inner PLS path model estimates, FIMIX-PLS results
permit detection of this heterogeneity and provide implications how to treat it by
segmentation. In the second step (see ex post analysis in Chap. 8.3), an explanatory
variable must be uncovered that entails both, similar clustering of data, as indicated
by evaluated FIMIX-PLS outcomes, and interpretability of the formed groups of
observations. Then, correspondingly separated sets of data are used as new input
for segment-specific LVP computations with PLS facilitating multigroup analysis
(Chin and Dibbern 2010, Chap. 8.7). Both analytical steps frame a comprehensive
application of the FIMIX-PLS approach and are carried out by numerical examples
with experimental (see Chap. 8.4) and empirical data (see Chap. 8.5) in this paper.
The numerical examples reveal some important methodological implications that
have not been addressed, yet.

As segmentation is a key element for marketers to form and improve their tar-
geted marketing strategies, these analyses allow us to demonstrate the potentials
of FIMIX-PLS for identifying homogeneous clusters of consumers with regard to
the benefits they seek or in their response to marketing programs. This research
is important to expand the methodological toolbox for analyzing LVP with PLS.
Like the confirmatory tetrad analysis to empirically test whether a measurement
model is reflective or formative (Gudergan et al. 2008), researchers and practitioners
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should employ FIMIX-PLS as a standard procedure to evaluate their PLS path mod-
eling results. They thereby assure that outcomes on the aggregate data level are not
affected by unobserved heterogeneity in the inner path model estimates. Otherwise,
the analysis provides further indications on how to treat that problem by form-
ing groups of data in order to perform a multi-group path analysis. Significantly
distinctive group-specific path model estimations impart further differentiated inter-
pretations of PLS modeling results and may foster the origination of more effective
(marketing) strategies (Rigdon et al. 2010; Ringle et al. 2010a; Sarstedt et al. 2009).

8.2 Methodology

The first methodological step is to estimate path models by applying the basic PLS
algorithm for LVP (Lohmdéller 1989). Then, FIMIX-PLS is employed as formally
described and discussed by its developers (Hahn et al. 2002) using the estimated
scores of latent variables and their modified presentation of relationships in the inner
model (see Table 8.7 in the appendix for a description of all of the symbols used in
the equations presented in this paper):

By +T& = 8.1

Segment-specific heterogeneity of path models is concentrated in the estimated
relationships between latent variables. FIMIX-PLS captures this heterogeneity. The
distributional function for each segment is defined as follows, assuming that 7; is
distributed as a finite mixture of conditional multivariate normal densities f;x (-):

K
i ~ Y ok ik nil€r Bie. T, W) (8.2)
k=1

Substituting f;x (1 |&;, Bx, ', Wi ) results in the following equation:

Z Ok |: | Bi| e é(Bkm+FkEi)/‘I’kI(Bkm+1"k$i)):| (8.3)

Nam 1]

It is sufficient to assume multivariate normal distribution of n;. Equations (8.4)
and (8.5) represent an EM-formulation of the likelihood function and the log-
likelihood (In L) as the corresponding objective function for maximization:

L =TI Tlexfiléi. Bi. Te, W) (8.4)
i k

InL =Y "> zaln(f(niléi, B, T, W) + D Y zaeln(pr) (8.5)
i k i k
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The EM algorithm is used to maximize the likelihood in this model in order to
ensure convergence. The “expectation” of (8.5) is calculated in the E-step, where z;x
is 1 if subject i belongs to class k (or 0 otherwise). The relative segment size py, the
parameters &;, By, I'y and Wy of the conditional probability function are given, and
provisional estimates (expected values) for zjx are computed as follows according
to Bayes’ theorem:

; . ',B ,F ,\IJ
E(Zik) = Pik = pkfl|k(nl|%‘l ks 1k k)

=— (8.6)
Y k=1 Pr filkil&i. Bi, Tk, W)

Equation (8.5) is maximized in the M-step. Initially, new mixing proportions px
are calculated by the average of adjusted expected values Py that result from the
previous E-step:

le =1 Pik
1

Thereafter, optimal parameters for By, I'x, and W are determined by indepen-
dent OLS regression (one for each relationship between latent variables in the inner
model). ML estimators of coefficients and variances are assumed to be identical
to OLS predictions. The following equations are applied to obtain the regression
parameters for endogenous latent variables:

P = 8.7

Yii = 0mi (8.8)
Xmi = (Emi, Nmi)' (8.9)

Eo { 61, 64, Am = Lay =1,..., Ay N &, is regressor of m
mi: —

@ else
(8.10)
Noo — ... 0Byt Bm = Ly =1,..., B A 1p,, is regressor of m
m @ else
(8.11)

The closed form OLS analytic formulation for 7,,; and w,,x is given as follows:

Tmk = ((Vammk)v (:Bbmmk))/ = [Zl Pik(X,/m‘Xmi)]_l [Zz Pik(X,/m‘Ymi%]

8.12)
o = cell (m < m) of Uy = Zi Pik(Ymi - Xmifmk)(Ymi - Xmifmk)/ (8.13)
I pic

The M-step computes new mixing proportions. Independent OLS regressions are

used in the next E-step iteration to improve the outcomes for Pj;. Based on an a

priori specified convergence criterion, the EM-algorithm stops whenever the In L

hardly improves (see Fig.8.1). This is more a measure of lack of progress than a

measure of convergence, and there is evidence that the algorithm is often stopped
too early (Wedel and Kamakura 2000).

When applying FIMIX-PLS, the EM-algorithm monotonically increases /nL

and converges towards an optimum. Experience shows that FIMIX-PLS frequently
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// initial E-step
set random starting values for P;y; set last;,,, = V;set0 < S < 1

repeat do

begin
// the M-step starts here
o = Z!:I Pik /e
determine By, I'v, Wi, Vk
calculate current;,,
A = currenty,, — last;,1.

// the E-step starts here
if A > S then
begin
P, = ok filk (i 1&i B Tk .Wk) ik
K SR ok fik Gri B T W)
last;,;, = current;,,

end
end
until A < §

Fig. 8.1 The FIMIX-PLS algorithm

stops in local optimum solutions, caused by multimodality of the likelihood, so
that the algorithm becomes sensitive to starting values. Moreover, the problem of
convergence in local optima seems to increase in relevance whenever component
densities are not well separated or the number of parameters estimated is large and
the information embedded in each observation is limited (Wedel and Kamakura
2000). This results in relatively weak updates of membership probabilities in the
E-step. Some examples of simple strategies for escaping local optima include ini-
tializing the EM-algorithm from a wide range of (random) values or using sequential
clustering procedures, such as K-means, to obtain an appropriate initial partition of
data. If alternative starting values of the algorithm result in different local optima,
then the solution with the maximum value of likelihood is recommended as best
solution. An issue for future research is to address concerns whether this kind of an
unsystematically selected solution reaches the global optimum.

Another crucial aspect is that FIMIX-PLS only applies mixtures to the regres-
sions in the inner model while this is not possible for the outer model. The
algorithm’s static use of latent variable scores does not entail dynamically form-
ing new groups of data and computing group-specific outer and inner PLS path
model estimates in every iteration compared to a prediction oriented segmentation
algorithm presented by Squillacciotti (2010), Chap. 9. Eventhough, computational
experiment for various data constellations show that FIMIX-PLS performs better
or equally well compared with those alternative PLS segmentation approaches such
as PLS-GAS (Ringle et al. 2010b), PLS-TPM and REBUS-PLS (Esposito Vinzi
et al. 2007). In FIMIX-PLS, one regression equation for each segment captures the
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predictor-outcome relationships at the same time that the uncovered segments are
captured in the inner model and, thus, reliably accounts for heterogeneity in the rela-
tionships of latent variables as demonstrated by two numerical in the Chaps. 8.4 and
8.5. Although, FIMIX-PLS results ought not instantaneously be analyzed and inter-
preted. In a second analytical step, the ex-post analysis (see the following chapter),
an explanatory variable must be identified that allows forming groups of data as indi-
cated by FIMIX-PLS. Then, these a-priori segmented data is used as new inputs for
PLS estimations providing group-specific latent variables scores as well as results
for the outer and inner measurement models. By this means, concerns on the sub-
ject of static utilization of latent variable scores are relaxed and turned into a key
advantage of this segmentation approach (Sarstedt and Ringle 2010). FIMIX-PLS
is generally applicable for all kinds of PLS path models regardless of whether mea-
surement models for latent variables are operationalized as formative or reflective
(see the numerical example in Chap. 8.4).

8.3 Segmentation and Ex Post Analysis

When applying FIMIX-PLS, the number of segments is unknown and the identifi-
cation of an appropriate number of K classes is not straightforward. A statistically
satisfactory solution does not exist for several reasons (Wedel and Kamakura 2000),
i.e., mixture models are not asymptotically distributed as chi-square and do not
allow for the likelihood ratio statistic. For this reason, Hahn et al. (2002) propose
the repeated operation of FIMIX-PLS with consecutive numbers of latent classes
K (e.g., 1-10) and to compare the class-specific outcomes for criteria such as the

InL, the Akaike information criterion (AIC ¢ = —2InL + 2Nk), the consistent
AIC (CAICk = —-2InL + (In(I) 4+ 1)Ng) or the Bayesian Information Cri-
terion (BICg = —2InL + In(I)Nk). The results of these heuristic measures

and their comparison for different numbers of classes provide evidence about
an appropriate number of segments. Moreover, an entropy statistic (EN), limited
between 0 and 1, indicates the degree of separation in the individually estimated
class probabilities (Ramaswamy et al. 1993):

> Yk —Paln(Py)]

ENg =1—
K 11n(K)

(8.14)

The quality of separation of the derived classes will improve the higher EN is.
Values of EN above 0.5 imply estimates for Py that permit unambiguous segmenta-
tion. Thus, this criterion is especially relevant for identifying and clustering different
types of customers in the field of marketing.

Given these assumptions, FIMIX-PLS is only applicable for additional analytic
purposes, if an explanatory variable can be identified. An explanatory variable must
facilitate both a-priori clustering of data, as indicated by the evaluated FIMIX-PLS
results, and interpretability of the distinctive groups. This kind of analysis is essen-
tial for exploiting FIMIX-PLS findings for PLS path modeling, and it is the most
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challenging analytical step to accomplish. Hahn et al. (2002) suggest an ex post
analysis of the estimated probabilities of membership using an approach proposed
by Ramaswamy et al. (1993). The additional findings can be used to a-priori group
data (e.g., into “younger customers” and “older customers”) as well as to compute
and analyze the LVP for each segment. The following numerical examples, which
use experimental and empirical data, document this approach.

8.4 Example Using Experimental Data

Suppose that a market researcher has formulated a LVP on theoretically well
developed cause-effect relationships. The researcher suspects, however, that an
unobserved moderating factor accounts for Heterogeneity or that the data belongs to
a finite number of segments. In such situations, theoretical assumptions can be used
to identify a-priori moderating factors that account for consumer heterogeneity in
PLS path model. This kind of strategy is not feasible in many marketing applications
(Jedidi et al. 1997), and it gives rise to analytical techniques like FIMIX-PLS.

SmartPLS 2.0 (Ringle et al. 2005) is the first statistical software application
for (graphical) path modeling with latent variables employing both the basic PLS
algorithm (Lohmoller 1989) as well as FIMIX-PLS capabilities for the kind of seg-
mentation proposed by Hahn et al. (2002). Applying this statistical software module
to experimental data for a marketing-related path model demonstrates the potentials
of the methodology for PLS-based research. In terms of heterogeneity in the inner
model, it might be desirable to identify and describe price sensitive consumers (Kim
et al. 1999) and consumers who have the strongest preference for another particular
product attribute (Allenby et al. 1998), e.g., quality. Thus, the path model for our
numerical example with experimental data has one endogenous latent variable, Saz-
isfaction, and two exogenous latent variables, Price and Quality, in the inner model
(DeSarbo et al. 2001; Dillon et al. 1997). The used experimental set of data consist
of the following equally sized segments:

e Price-oriented customers (segment 1) — this segment is characterized by a strong
relationship between Price and Satisfaction and a weak relationship between
Quality and Satisfaction.

e Quality-oriented customers (segment 2) — this segment is characterized by a
strong relationship between Quality and Satisfaction and a weak relationship
between Price and Satisfaction.

Instead of using single item constructs, each exogenous latent variable (Price
and Quality) has five indicators, and the endogenous latent variable (Satisfaction) is
measured by three manifest variables (Sarstedt and Wilczynski 2009). We use the
correlation matrix in Table 8.1 to generate experimental data. This matrix is partially
adopted with changed variable names from Albers and Hildebrandt (2006) who
compare, among other aspects, results of formative and reflective operationalized
PLS path models with experimental data. A Monte Carlo simulation is performed
employing the SEPATH module of the software application STATISTICA 7.1 to
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generate manifest variable scores. The first one hundred case values are com-
puted for a strong relationship of 0.9 between Price and Satisfaction and a week
relationship of 0.1 between Quality and Satisfaction in the inner path model (seg-
ment 1). Correspondingly, another one hundred cases reflect the characteristics of
the quality-oriented segment 2 so that the full set of experimental data includes
200 cases.

PLS path modelling permits both, formative as well as reflective operational-
ization of latent variables’ measurement model with manifest variables (Lohmoller
1989; Ringle et al. 2009). The choice depends on the theoretical foundation and
interpretation of cause-effect relationships (Diamantopoulos and Winklhofer 2001;
Jarvis et al. 2003; Gudergan et al. 2008; Rossiter 2002). Consequently, FIMIX-
PLS must properly perform for this experimental set of data using three different
examples of outer measurement models:

e Reflective case — all latent variables have reflective indicators.
Formative case — all latent variables have formative indicators.
Mixed case — the exogenous latent variables have a formative while the latent
endogenous variable has a reflective measurement model.

To begin with, we use reflective measurement model for all three latent vari-
ables. FIMIX-PLS employs the estimates of the standard PLS procedure for this
numerical example with experimental data in order to process the latent variable
scores for K = 2 classes. The standard PLS inner model weights in Table 8.2 show
that both constructs, Price and Quality, have a relatively high effect on Satisfac-
tion resulting in a substantial R? of 0.465. An overview of results is provided
by Table 8.8 in the appendix. However, it is quite misleading to instantaneously
examine and further interpret these good estimates for a PLS path model.

The application of FIMIX-PLS permits additional analysis that lead to differ-
ent conclusions. This procedure identifies two equally sized groups of data that
exhibit segment-specific path coefficients with the same characteristics as expected
for the experimental set of data (see Table 8.2). Attributable to the experimental
design, segment-specific regression variances are very low for the latent endoge-
nous variable Satisfaction (0.170 for segment 1 and 0.149 for segment 2) resulting
in corresponding outcomes for R? at a high level for each segment. Among other
results, SmartPLS 2.0 provides the final probability of membership Pj of each case
to fit into one of the two classes. More than 80% of the cases are assigned to the
class they have been intended to belong to in accordance with the design of data
generation in this numerical example. An EN above 0.5 indicates a good separation
of data.

Table 8.2 Inner model weights

Price — Satisfaction ~ Quality — Satisfaction
Standard PLS 0.538 0.450
FIMIX-PLS segment 1 0.899 0.009
FIMIX-PLS segment 2 0.113 0.902
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In the second analytical step, we test the FIMIX-PLS results for segment-specific
PLS analysis. The FIMIX-PLS probabilities of membership allow splitting the
experimental set of data into two groups. These two sets of data are then sepa-
rately used as input matrices for manifest variables to estimate the path model for
each group with PLS. The FIMIX-PLS results for segment-specific relationships in
the inner model are essentially re-establish by this supplementary analysis. While
the lower relationship in the inner path model for each group of price- or quality-
oriented consumers remains at a value around 0.1, the higher relationship is at a
value close to 0.9 and R? is around 0.8 in both cases. An overview of these result is
given by Table 8.8 in the appendix.

FIMIX-PLS reliably identifies two a-priori formed segments in this numerical
example with experimental data and reflective operationalization of latent variables
in the PLS path model. However, the question remains, if the methodology also
properly performs for path models with formative measurement model. For this rea-
son, all three latent variables are measured with formative indicators and, in the
mixed case, Price and Quality have a formative measurement model while Satisfac-
tion has reflective indicators. The standard inner PLS path model estimates as well
as the FIMIX-PLS results for two segments in these additional analysis (for the for-
mative and the mixed case) are at the same level as indicated for the reflective case.
Then, in the second analytical step, we split the experimental set of data according
to the FIMIX-PLS probabilities of membership P into two sets of data that are
then used as new input matrices for groups specific PLS path model estimates. The
computations also provide almost the same estimates for the inner path model rela-
tionships and the R? of Satisfaction as described before for the reflective case (see
Tables 8.9 and 8.10 in the appendix).

As a result from these numerical examples with experimental data, we further
substantiate the earlier stated rationale that FIMIX-PLS is capable to identify and
treat heterogeneity of inner path model estimates by segmentation no matter if
latent variables have formative or reflective measurement models. The correspond-
ing group-specific PLS analysis are important for marketers to further differentiate
interpretations of the path model resulting in more specific recommendations for the
use of the marketing-mix instruments to effectively target each group of consumers.

8.5 Marketing Example Using Empirical Data

When researchers work with empirical data and do not have a-priori segmentation
assumptions to capture unobserved heterogeneity in the inner PLS path model rela-
tionships, FIMIX-PLS is often not as clear-cut as demonstrated in the foregoing
example that is based on experimental data. Until now, research efforts to apply
FIMIX-PLS and to assess its usefulness for expanding methodological instruments
in marketing was restricted by the unavailability of a statistical software applica-
tion for this kind of analysis. Since such functionalities are provided as presented
in Chap. 8.2, extensive use of FIMIX-PLS with empirical data in future research
ought to furnish additional findings about the methodology and its applicability. For
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this reason, we make use of that technique for a marketing-related path model and
empirical data from Gruner+Jahr’s “Brigitte Communication Analysis 2002”.

Gruner+Jahr is one of the leading publishers of printed magazines in Ger-
many. They have been conducting their communication analysis survey every other
year since 1984. In the survey, over 5,000 women answer numerous questions on
brands in different product categories and questions regarding their personality. The
women represent a cross section of the German female population. We choose
answers to questions on the Benetton fashion brand name (on a four-point scale
from “low” to “high”) in order to use the survey as a marketing-related example
of FIMIX-PLS-based customer segmentation. We assume that Benetton’s aggres-
sive and provocative advertising in the 1990s resulted in a lingering customer
heterogeneity that is more distinctive and easier to identify compared with other
fashion brands in the Communication Analysis Survey (e.g., Esprit or S.Oliver).

The scope of this paper does not include a presentation of theoretically hypoth-
esized LVP and its PLS-based estimation with empirical data (Bagozzi 1994;
Hansmann and Ringle 2005). Consequently, we do not provide a discussion if
one ought use CSA or PLS to estimate the cause-effect relationship model with
latent variables (Bagozzi and Yi 1994), a line of reasoning if the measurement
models of latent variables should be operationalized as formative or reflective
(Diamantopoulos and Winklhofer 2001; Rossiter 2002) or an extensive presentation
of the survey data. Our goal is to demonstrate the applicability of FIMIX-PLS to
empirical data for a reduced cause-effect relationship model on branding (Yoo et al.
2000) that principally guides all kinds of LVP analysis in marketing employing this
segmentation technique.

The PLS path model for Benetton’s brand preference consists of one latent
endogenous Brand preference variable, and two exogenous latent variables, Image
and Person, in the inner model. All latent variables are operationalized via a reflec-
tive measurement model. Figure 8.2 illustrates the path model with the latent
variables and the particular manifest variables from Gruner+Jahr’s “Brigitte Com-
munication Analysis 2002 employed. The basic PLS algorithm (Lohméller 1989)
is applied for estimating that LVP using the SmartPLS 2.0 (Ringle et al. 2005)
software application.

We follow the suggestions given by Chin (1998a) and Henseler et al. (2009) for
arriving at a brief evaluation of results. All relationships in the reflective measure-
ment model have high factor loadings (the smallest loading has a value of 0.795).
Moreover, results for the average variance extracted (AVE) and p. are at good levels
(see Table 8.11 in the appendix). The exogenous latent Image variable (weight of
0.423) exhibits a strong relationship to the endogenous latent Brand preference vari-
able. The influence of the exogenous latent Person variable is considerably weaker
(weight of 0.177). Both relationships are statistically significant [tested with the
bootstrapping procedure using individual sign change (Tenenhaus et al. 2005)]. The
endogenous latent variable Brand preference has a R? of 0.239 and, thus, is at a
moderate level for PLS path models.

The FIMIX-PLS module of SmartPLS 2.0 is applied for customer segmenta-
tion based on the estimated scores for latent variables. Table 8.3 shows heuristic
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I have a clear impression
of this brand

The brand can be trusted

Is modern and up to date

Represents a great

style of living Sympathy

Fashion is a way to
express who I am

Brand usage

I often talk about fashion

A brand name is very
important to me

I am interested in the latest
fashion brands

Fig. 8.2 The brand preference model

Table 8.3 Evaluation of FIMIX-PLS results

Number of InL AIC BIC CAIC EN
latent classes

K=2 —713.233  1448.466  1493.520 1493.545 0.501
K=3 —942.215 1954.431 2097.784 2097.863 0.216
K=4 —1053.389  2192.793  2450.830 2450.972  0.230
K=5 —1117.976  2441.388  2846.874 2847.097 0.214

FIMIX-PLS evaluation criteria for alternative numbers of classes K. According to
these results, the choice of two latent classes seems to be appropriate for customer
segmentation purposes, especially in terms of EN. Compared to EN of 0.43 arrived
at in the only other proficient FIMIX-PLS segmentation presented thus far in lit-
erature by Hahn et al. (2002), our EN result of 0.501 also reaches a proper level
indicating well separable groups of data.

Table 8.4 presents the FIMIX-PLS results for two latent classes. In a large seg-
ment (relative size of 0.809), the explained variance of the endogenous latent Brand
preference variable is at a relatively weak level for PLS models (R? = 0.108). The
variance is explained by the exogenous latent Image variable, with its weight of
0.343, and the exogenous latent Person variable, with its weight of 0.177. A smaller
segment (relative size of 0.191) has a relatively high R? for Brand preference (value
of 0.930). The influence of the Person variable does not change much for this seg-
ment. However, the weight of the Image variable is more than twice as high and has
a value of 0.759. This result reveals that the preference for Benetton is explained
to a high degree whenever the image of this brand is far more important than the
individuals’ personality.
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Table 8.4 FIMIX-PLS disaggregate results for two latent classes

K=1 K=2
Relative segment size 0.809 0.191
R? (for Brand preference) 0.108 0.930

Path Image to Brand preference 0.343 0.759
Path Person to Brand preference 0.177 0.170

Table 8.5 A-priori segmentation based on [ like to buy fashion designers’ perfumes

Segment 1 Segment 2

R? (for Brand preference) 0.204 0.323
Image — Brand preference 0.394 0.562
Person — Brand preference 0.164 0.104

The next step of FIMIX-PLS involves the identification of a certain variable to
form and characterize the two uncovered customer segments. For this reason, we
conducted an ex post analysis for finite mixture models according to the approach
proposed by Ramaswamy et al. (1993). Among several possible indicators exam-
ined, the most significant explanatory variable are: I am very interested in the latest
fashion trends, I get information about current fashion from magazines for women,
Brand names are very important for sports wear and I like to buy fashion design-
ers’ perfumes (t-statistics ranging from 1.462 to 2.177). These variables may be
appropriate for explaining the segmentation of customers into two classes.

Table 8.5 shows PLS results using the I like to buy fashion designers’ perfumes
variable for an a-priori customer segmentation into two classes. Both correspond-
ing outcomes for segment-specific LVP estimations (see Table 8.12 in the appendix)
satisfy the relevant criteria for model evaluation (Chin 1998a; Henseler et al. 2009).
Segment 1 represents customers that are not interested in fashion designers’ per-
fumes (relative size of 0.777). By contrast, segment 2 (relative size of 0.223) is
characterized by female consumers that are attracted to Benetton and who would
enjoy using Benetton products in other product categories, such as perfumes. From
a marketing viewpoint, these customers are very important to fashion designers who
want to plan for brand extensions.

Except for the I like to buy fashion designers’ perfumes variable, the other four
variables identified in the ex post analysis to explain the two classes (with reason-
able t-statistics) do not offer much potential for a meaningful a-priori separation of
data into two groups and segment-specific PLS path modeling. The corresponding
results are at similar levels as the estimates for the full set of data. We therefore
consider reasonable alternatives and test the Customers’ age variable for an a-priori
segmentation of Benetton’s brand preference LVP. The ex post analysis of FIMIX-
PLS results does not furnish evidence for the relevance of this variable (t-statistic
of 0.690). Yet, when creating a customer segment for females over age 28 (seg-
ment 1; relative segment size: 0.793) and for younger women (segment 2; relative
segment size: 0.207), we do achieve a result (see Table 8.6) that is nearly iden-
tical to the a-priori segmentation using I like to buy fashion designers’ perfumes.
The evaluation of results (Chin 1998a; Henseler et al. 2009) substantiates that the
PLS path model estimates are acceptable for each segment (see Table 8.13 in the
appendix).
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Table 8.6 A-priori segmentation based on Customers’ age

Segment 1  Segment 2

R? (for Brand preference) 0.172 0.356
Image — Brand preference 0.364 0.559
Person — Brand preference 0.158 0.110

The findings that we present for the technique to uncover explanatory variables
proposed by Ramaswamy et al. (1993) depict indistinct outcomes for PLS path mod-
eling. Consequently, reliable procedures for the identification of fitting explanatory
variables in the ex post analysis are required and future research must advance on
this essential issue for the applicability of FIMIX-PLS.

Another implication addresses the FIMIX-PLS segment-specific estimates for
relationships in the inner model and R? of endogenous latent variables. The pro-
cedure must be executed for successively increased numbers of classes and the
outcomes for evaluation criteria must be compared in order to determine an appro-
priate number of segments. However, segment-specific FIMIX-PLS results are often
improper for interpretation when a certain number of classes is exceeded. In most
cases, the standardized weights in the inner model are at values higher than one
and/or the unexplained variance of endogenous latent variables exceeds the value
of one (or becomes negative). These kinds of outcomes indicate that the hetero-
geneity in the inner path model cannot appropriately be segmented by FIMIX-PLS
for the chosen number of classes and that the analysis of additional classes may be
stopped. Thus, these findings allow to further improve this methodology. Hahn et al.
(2002) suggest limiting segment-specific FIMIX-PLS estimates between reasonable
bounds. Future research must determine if such bounds for FIMIX-PLS computa-
tion impart useful improvements of the methodology regarding the identification of
an adequate number of segments.

Our numerical example that uses empirical data demonstrates that FIMIX-PLS
reliably identifies distinctive groups of customers. The larger segment tendencyally
exhibits comparable results to the overall PLS path model estimates. Thus, this
group of individuals is not subject for obtaining additional conclusions. In con-
trast, the smaller segment with a substantial relationship between Image and Brand
preference is of high relevance from a marketing perspective. For these women,
Brand preference of Benetton is foremost explained by aspects that are potentially
under control of marketing activities that aim at creating an exclusive Image for
the brand. Characteristics of the individual Person that are more difficult to influ-
ence by marketers are not an important issue for Benetton’s brand preference in this
segment of consumers. Furthermore, two kinds of explanatory variables are uncov-
ered to form and characterize these two groups of data. Females who would like
to buy Benetton’s perfume or, alternatively, younger female consumers account for
the smaller group of data. Hence, the specific PLS path model outcomes for the a
priori formed smaller group of customers are particularly important for originating
marketing strategies with regard to potential brand extensions or Benetton’s target
group of customers.
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8.6 Summary

FIMIX-PLS allows us to capture unobserved heterogeneity in the estimated scores
for latent variables in path models by grouping data. This is advantageous to a pri-
ori segmentation because homogeneous segments are explicitly generated for the
inner path model relationships. The procedure is broadly applicable in business
research. For example, marketing-related path modeling can exploit this approach
for distinguishing certain groups of customers.

In the first numerical example involving experimental data, FIMIX-PLS reliably
identifies and separates the two a-priori created segments of price- and quality-
oriented customers no matter what kind of outer measurement model, reflective
or formative, is employed. The second numerical example of a marketing-related
path model for Benetton’s brand preference is based on empirical data, and it also
demonstrates that FIMIX-PLS reliably identifies an appropriate number of customer
segments if distinctive groups of customers exist that cause heterogeneity within the
inner model. In this case, FIMIX-PLS enables us to identify and characterize: (1) a
large segment of customers that shows similar results when compared to the orig-
inal model estimation as well as (2) a smaller segment of customers that is highly
important for marketing programs revealing a strong relationship between Image
and Brand preference.

We accordingly conclude that the methodology offers valuable capabilities to
extend and further differentiate PLS-based analysis of LVP in order to develop tar-
geted marketing strategies (Rigdon et al. 2010; Ringle et al. 2010a). Under extreme
circumstances, poor standard PLS results for the overall set of data, caused by the
heterogeneity of estimates in the inner model, may result in significant estimates
of the inner relationships and substantial values for R? of endogenous latent vari-
ables for at least one group after segmentation. (Sarstedt and Ringle 2010; Sarstedt
et al. 2009). Researchers and practitioners should employ FIMIX-PLS as a stan-
dard procedure to evaluate their PLS path modeling results. They thereby assure
that outcomes on the aggregate data level are not affected by unobserved hetero-
geneity in the inner path model estimates. Otherwise, the analysis provides further
indications on how to treat that problem by forming groups of data. Significantly
distinctive group-specific path model estimations impart further differentiated inter-
pretations of PLS modeling results and may foster the origination of more effective
(marketing) strategies.

The initial application and critical review of this new segmentation technique
for partial least squares path modeling finally allows us to unveil and discuss some
of the problematic aspects (Ringle 2006) and to address significant areas of future
research. As pointed out in the foregoing chapters, advances on the problem of local
optimum solutions, not interpretable FIMIX-PLS estimates as well as a reliable
procedure to identify explanatory variables in the ex post analysis are crucial for
the applicability of this approach. In addition, extensive simulations with experi-
mental data and broad use of empirical data are required to further exemplify how
FIMIX-PLS provides additional findings for PLS path modeling.
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8.7 Appendix

8.7.1 Description of Symbols

Table 8.7 Table of symbols

A number of exogenous variables as regressors in regression m
7 exogenous variable a,, witha,, = 1,..., A,

B, number of endogenous variables as regressors in regression m
by endogenous variable b, withb,, = 1,..., By,

Yaumk  Tegression coefficient of a,, in regression m for class k
Bb,mk  regression coefficient of b, in regression m for class k
Tk ((Vapmk)» (Bo,,mk))” vector of the regression coefficients
[ cell (m x m) of Wy,

c constant factor

filk(-)  probability for case i given a class k and parameters (-)

1 number of cases or observations

i case or observation i withi = 1,...,1

J number of exogenous variables

j exogenous variable j with j = 1,...,J

K number of classes

k class or segment k withk = 1,..., K

M number of endogenous variables

m endogenous variable m withm = 1,..., M

Ny number of free parameters defined as (K — 1) + KR + KM

Py probability of membership of case i to class k

R number of predictor variables of all regressions in the inner model
S stop or convergence criterion

%4 large negative number

Xomi case values of the regressors for regression m of individual i

Yoni case values of the regressant for regression m of individual

Zik zix = 1, if the case i belongs to class k; z = 0 otherwise

i random vector of residuals in the inner model for case i

i vector of endogenous variables in the inner model for case i

& vector of exogenous variables in the inner model for case i

B M x M path coefficient matrix of the inner model

r M x J path coefficient matrix of the inner model

A difference of current;,; and last;,,

By M x M path coefficient matrix of the inner model for latent class k
Tk M x J path coefficient matrix of the inner model for latent class k
Wy M x M matrix for latent class k containing the regression variances
P (p1, .., pk), vector of the K mixing proportions of the finite mixture
Pk mixing proportion of latent class k

8.7.2 PLS Path Modeling Results for Experimental Data
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8.7.3 PLS Path Modeling Results for the Example
with Empirical Data

Table 8.11 Overview of empirical PLS path modeling results

PLS results for the full set
of empirical data

Image Person Brand Preference

I have a clear impression of this brand 0.860

This brand can be trusted 0.899

Is modern and up to date 0.795

Represents a great style of living 0.832

Fashion is a way to express who I am 0.801

I often talk about fashion 0.894

A brand name is very important to me 0.850

I am interested in the latest trends 0.859

Sympathy 0.944
Brand usage 0.930
AVE 0.718 0.725 0.881
Pc 0.910 0.913 0.937
R’ 0.239
Image — > Brand preference 0.423
Person — > Brand preference 0.177

Relative segment size 1.000




215

8 Finite Mixture Partial Least Squares Analysis

£€CT0 LLLO 9Z1S JUAWITAS IATIR[Y
Y01°0 ¥91°0 Qouaiojaid puelg < — UOSIdd
295°0 76£°0 Qouarejaxd puerg < — oSew]
€0 ¥0T0 24
L16°0 9180 9260 8¢6°0 8680 ¥06°0 %0
LY8°0 8¢S°0 8SL°0 88°0 L89°0 €0L°0 HAV
¥€6°0 0€6°0 a3esn pueig
9060 6¥6°0 Ayredwikg
spuan
8IL°0 €280 1S31e] AY) Ul PI)SAIdUI We |
Qw 0}
LYL0 1S8°0 juetodwut AI0A ST QWeU puelq Y
S¥9°0 8L8°0 uoIySeJ Jnoqe [} u)jo |
we [ oym
88L°0 19L°0 ssa1dxo 0) Aem e ST UOTYSE]
SuIA|
0L8°0 128°0 JO 9[K)s 18213 © sjuasardoy
€80 €8L°0 91ep 03 dn pue urepow s|
9060 ¥68°0 paisnn 9q ues puelq sy,
pueiq
€L8°0 1S8°0 s1y) Jo uorssaidwr Jed[o © dARY |

QOUAIRJAI] puelg uosIdgd ofewy QoudIRJaId puelg uosIdd oSew

sawnfiad  sioud1sap uorysnf {nq o1 ayiy |

dIqereA K1ojeue[dxa ay) uo paseq eyep [eoLnduwd

payuawas word-e 103 synsar §J :¢ dnoin

sawmnfaad s1ous1sap uorysof {nq oy ayij |

dIqerea K1ojeue[dxa o) uo paseq eyep [eoLndud

payuawas norid-e 103 s)nsar §J 11 dnoin

***Anq o1 ay17 [ 10§ s)NsaI §J oyroads-juoweg ZI'§ AqeL



C.M. Ringle et al.

LO0T0
011°0
6550
96€°0
8¥6°0 L880
006°0 £€99°0
0v6°0
856°0

8180

sL0
¥€8°0

6180

6€6°0
Y6L°0

L68°0
888°0
860

0S80

£€6L°0
8S1°0
¥9¢°0
CLT0
876°0 9060
998°0 80L0
260
9¢6°0

1€8°0

L98°0
¥68°0

69L°0

9ZTS JuWSes dAnR[OY

douarogaid puerg <- uosIdg

douaroyaid puerg <- a3ew]

24

006°0 2d
690 AV
a3esn puerg

AyredwiAg

spuon

1S9Je[ QU UI P2ISAIAIUT WL |

Qw 0)

jueytodwr £19A ST QWU pURIq Y

uoryse;J Jnoqe y[e) uajo |

we ] oym

ssa1dxa 01 Aem ®© ST UOIYSe|

Suia|

L08°0 JO 9[A)s 18213 © syuasardoy
LLLO 9ep 0) dn pue uropour S|
6L8°0 paisniy oq ued puelq sIyL,
puelq

098°0 SIy) Jo uorssarduwir Jes[o & 9ARY |

AduIdJald puelgq uosIdd

o8ewy

AdUIdJald puelygq uosId

o8ewy

23  s4aui03sn)) qeriea Aloyeue[dxo
9y} uo paseq ejep [eourdud

23p  s1awoisny) JqeLre Alojeuejdxa
oy} uo paseq ejep [eouduwo

pajuawas norid-e 103 s)nsar §J 11 dnoin pajuswas norid-e 103 sjnsar §q 11 dnoip

216

28D s4out01sn7) 10J S)NsaI §d dyroads-juowises €1°§ el



8 Finite Mixture Partial Least Squares Analysis 217

References

Albers, S., & Hildebrandt, L. (2006). Methodische Probleme bei der Erfolgsfaktorenforschung
— Messfehler, versus reflektive Indikatoren und die Wahl des Strukturgleichungs-Modells.
Schmalenbachs Zeitschrift fr betriebswirtschaftliche Forschung, 58(1), 2-33.

Allenby, G. M., Arora, N., & Ginter, J. L. (1998). On the heterogeneity of demand. Journal
of Marketing Research, 35(3), 384-389.

Bagozzi, R. P. (1994). Structural equation models in marketing research: basic principles. In
R. P. Bagozzi (Ed.), Principles of marketing research (pp. 317-385). Oxford: Blackwell.

Bagozzi, R. P., & Yi, Y. (1994). Advanced topics in structural equation models. In R. P. Bagozzi,
(Ed.), Principles of marketing research (pp. 1-52). Oxford: Blackwell.

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In
G. A. Marcoulides, (Ed.), Modern methods for business research (pp. 295-358). Mahwah:
Lawrence Erlbaum Associates.

Chin, W. W., & Dibbern, J. (2010). A permutation based procedure for multi-group PLS analysis:
results of tests of differences on simulated data. In replace V. Esposito Vinzi, W. W. Chin,
J. Henseler, & H. Wang, (Eds.), Handbook of computational statistics (Vol. II): Partial Least
Squares: Concepts, Methods and Applications, 171-193. Berlin: Springer.

DeSarbo, W. S., Anthony Benedetto, C., Jedidi, K., & Song, M. (2006). Identifying sources of
heterogeneity for empirical deriving strategic types: a constrained finite-mixture structural-
equation methodology. Management Science, 62(6), 909-924.

DeSarbo, W. S., Jedidi, K., & Sinha, I. (2001). Customer value analysis in a heterogeneous market.
Strategic Management Journal, 22(9), 845-857.

Diamantopoulos, A., & Winkelhofer, H. (2001). Index construction with formative indicators: an
alternative to scale development. Journal of Marketing Research, 38(2), 269-277.

Dillon, W. R., White, J. B., Rao, V. R., & Filak, D. (1997). Good science: use structural equation
models to decipher complex customer relationships. Marketing Research, 9(4), 22-31.

Esposito Vinzi, V., Ringle, C.M., Squillacciotti, S., Trinchera, L. (2007): Capturing and Treat-
ing Unobserved Heterogeneity by Response Based Segmentation in PLS Path Modeling: A
Comparison of Alternative Methods by Computational Experiments, ESSEC Research Center,
Working Paper No. 07019, ESSEC Business School Paris-Singapore, Cergy Pontoise Cedex
2007.

Fornell, C., Johnson, M. D., Anderson, E. W., Jaesung, C., & Bryant, B. E. (1996). The american
customer satisfaction index: nature, purpose, and findings. Journal of Marketing, 60(4), 7-18.

Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and
measurement error: algebra and statistics. Journal of Marketing Research, 18(3), 328-388.

Gudergan, S., Ringle, C.M., Wende, S., Will, A. (2008): Confirmatory tetrad analysis in PLS path
modeling, in: Journal of Business Research (JBR), Volume 61 (2008), Issue 12, pp. 1238-1249.

Hackl, P, & Westlund, A. H. (2000). On structural equation modeling for customer satisfaction
measurement. Total Quality Management, 11(4/5/6), 820-825.

Hahn, C., Johnson, M. D., Herrmann, A., & Huber, F. (2002). Capturing customer heterogeneity
using a finite mixture PLS approach. Schmalenbach Business Review, 54(3), 243-269.

Henseler, J., Ringle, C. M., Sinkovics, R. R.: The use of partial least squares path modeling in
international marketing, in: Sinkovics, R. R., Ghauri, P. N. (eds.), Advances in International
Marketing, Vol. 20, Bingley 2009, pp. 277-320.

Hansmann, K., & Ringle, C. M. (2005). Strategies for cooperation. In T. Theurl & E. C. Meyer,
(Eds.), Competitive advantage of the cooperatives’ networks (pp. 131-152). Aachen: Shaker.

Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indica-
tors and measurement model misspecification in marketing and consumer research. Journal of
Consumer Research, 30(2), 199-218.

Jedidi, K., Jagpal, H. S., & DeSarbo, W. S. (1997). Finite-mixture structural equation models for
response-based segmentation and unobserved heterogeneity. Marketing Science, 16(1), 39-59.



218 C.M. Ringle et al.

Joreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. Psychometrika,
43(4), 443-477.

Kim, B., Srinivasan, K., & Wilcox, R. T. (1999). Identitying price sensitve consumers: the relative
merits of domogrphic vs. purchase pattern information. Journal of Retailing, 75(2), 173-193.

Lohmoller, J. (1989). Latent variable path modeling with partial least squares. Heidelberg: Verlag.

McLachlan, G. J., & Krishnan, T. (2004). The EM algorithm and extensions. Chichester: Wiley.

Ramaswamy, V., DeSarbo, W. S., Reibstein, D. J., & Robinson, W. T. (1993). An empirical pooling
approach for estimating marketing mix elasticities with PIMS data. Marketing Science, 12(1),
103-124.

Rigdon, E.E., Ringle, C.M., Sarstedt, M.: Structural Modeling of Heterogeneous Data with Partial
Least Squares, in: Malhotra, N.K. (ed.), Review of Marketing Research, Volume 7, Armonk,
2010, forthcoming.

Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 (beta). http://www.smartpls.de.

Ringle, C. M., Sarstedt, M., Mooi, E. A. (2009a): Response-based segmentation using FIMIX-
PLS: Theoretical foundations and an application to American customer satisfaction index data,
in: Stahlbock, R., Crone, S. F., Lessmann, S. (eds.): Annals of Information Systems, Special
Issue on Data Mining, Vol. 8, Berlin-Heidelberg 2010, 19-49.

Rossiter, J. R. (2002). The C-OAR-SE procedure for scale development in marketing. International
Journal of Research in Marketing, 19(4), 305-335.

Sarstedt, M. (2008): A review of recent approaches for capturing heterogeneity in partial least
squares path modelling. Journal of Modelling in Management, 3(2): 140-161.

Sarstedt, M., & Wilczynski, P. (2009). More for Less? A Comparison of Single-Item and Multi-
Item Measures. Business Administration Review, 69(2), 211-227.

Sarstedt, M., Schwaiger, M., & Ringle, C. M. (2009). Do we fully understand the critical suc-
cess factors of customer satisfaction with industrial goods? - Extending Festge and Schwaigers
model to account for unobserved heterogeneity, in: Journal of Business Market Management
(JBM), Volume 3 (2009), Issue 3, pp. 185-206.

Sarstedt, M., Ringle, C. M. (2010). Treating unobserved heterogeneity in PLS path modelling:
A comparison of FIMIX-PLS with different data analysis strategies, in: Journal of Applied
Statistics, Vol. 37, 2010, in press.

Schneeweif3, H. (1991). Models with latent variables: LISREL versus PLS. Statistica Neerlandica,
45(2), 145-157.

Squillacciotti, S. (2010). Prediction oriented classification in PLS path modeling. In V. Esposito
Vinzi, W. W. Chin, J. Henseler, & H. Wang, (Eds.), Handbook of Computational Statis-
tics (Vol. I1): Partial Least Squares: Concepts, Methods and Applications, 219-234. Berlin:
Springer.

Steenkamp, J., & Baumgartner, H. (2000). On the use of structural equation models for marketing
modeling. International Journal of Research in Marketing, 17(2/3), 195-202.

Tenenhaus, M., Vinzi, V. E., Chatelin, Y., & Lauro, C. (2005). PLS path modeling. Computational
Statistics & Data Analysis, 48(1), 159-205.

Ter Hofstede, F., Steenkamp, J. E. M., & Wedel, M. (1999). International market segmentation
based on consumer-product relations. Journal of Marketing Research, 36(1), 1-17.

Wedel, M., & Kamakura, W. (2000). Market segmentation: conceptual and methodological
foundations (2nd ed.). Dordrecht: Kluwer.

Wu, J., & Desarbo, W. S. (2005). Market segmentation for customer satisfaction studies via a new
latent structure multidimensional scaling model. Applied Stochastic Models in Business and
Industry, 21(4/5), 303-309.

Yoo, B., Donthu, N., & Lee, S. (2000). An examination of selected marketing mix elements and
brand equity. Academy of Marketing Science Journal, 28(2), 195-211.


http://www.smartpls.de

Chapter 9
Prediction Oriented Classification in PLS Path
Modeling

Silvia Squillacciotti

Abstract Structural Equation Modelling methods traditionally assume the homo-
geneity of all the units on which a model is estimated. In many cases, however,
this assumption may turn to be false; the presence of latent classes not accounted
for by the global model may lead to biased or erroneous results in terms of model
parameters and model quality. The traditional multi-group approach to classification
is often unsatisfying for several reasons; above all because it leads to classes homo-
geneous only with respect to external criteria and not to the theoretical model itself.

In this paper, a prediction-oriented classification method in PLS Path Modelling
is proposed. Following PLS Typological Regression, the proposed methodology
aims at identifying classes of units showing the lowest distance from the models
in the space of the dependent variables, according to PLS predictive oriented logic.
Hence, the obtained groups are homogeneous with respect to the defined path model.
An application to real data in the study of customers’ satisfaction and loyalty will
be shown.

9.1 Introduction

PLS Path Modeling has become one of the reference statistical methodologies in the
analysis of customer satisfaction. It allows to build latent variables (such as customer
satisfaction, or perceived value) from a number of manifest variables measuring
the unobserved complex constructs. The scores for these variables can be com-
puted, thus allowing to build and compare indexes of satisfaction and loyalty among
individuals and in time. The model can be estimated through a “soft modeling” tech-
nique, which avoids some of the main drawbacks found in the Maximum-Likelihood
approach (SEM-ML) (Joreskog 1970), namely the restrictive distributional hypothe-
ses on the observed variables (Tenenhaus et al. 2005). This is certainly an advantage
when working on data from marketing surveys. Hence, PLS Approach to Struc-
tural Equation Modeling is an alternative statistical methodology to the Maximum
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Likelihood Approach. The two techniques are more complementary than compet-
ing, and the choice of one rather than the other should depend on the purpose of
the analysis and the research context (Joreskog and Wold 1982; Lohmdéller 1989).
In three specific cases, however, PLS may be preferable to ML: when the sample
size is very small, when the data to be analyzed is not multinormal, and when the
complexity of the model to be estimated may lead to improper or non-convergent
results (Bagozzi and Yi 1994). In marketing applications, such as in the analysis
of the drivers of satisfaction and of its links to loyalty, data are very rarely multi-
normal. Moreover, PLS shows the interesting feature of allowing the computation
of “scores” for the latent variables, which can serve as indexes for the underlying
latent concept (for example as a satisfaction index).

EDF (Electricité de France) is greatly concerned with the analysis of customer
satisfaction and with modeling customers’ drivers to satisfaction and loyalty. The
European energy market is undergoing a great number of major changes. Many
European countries have already witnessed the transition from a monopolistic mar-
ket to a competitive one. In France, the energy market is open for all customer
segments except residential customers, who will be free to choose their energy sup-
plier from July 2007. The study of customer satisfaction through adapted models
allows to find out which elements may lead to customer satisfaction or customer
non-satisfaction and, hence, to the decision of switching to a new energy provider.

The definition of a unique model, however, although allowing the global iden-
tification of the main drivers of customer satisfaction, may “hide” differences
in customer behavior. As underlined in Ozcan (1998), marketing managers are
interested in finding ways to exploit opportunities resulting from heterogeneity
in customers’ behavior when defining their strategical and tactical business deci-
sions. When customers do have different behaviors, models accounting for this
heterogeneity allow the definition of targeted and more efficient strategies.

The traditional approach to segmentation in Structural Equation Modeling con-
sists in estimating separate models for customer segments which have been obtained
either by assigning customers to a priori segments on the basis of demographic
or consumption variables, or through a cluster analysis on the original variables.
None of these approaches, however, is to be considered satisfactory. A limitation to
this “a priori” approach is that very rarely heterogeneity may be captured by well-
known observable variables (Hahn et al. 2002). Clustering procedures, on the other
hand, may be problematic since traditional cluster analysis assumes independence
among variables; preliminary data reduction techniques may also lead to statisti-
cal problems (Jedidi et al. 1997). Apart from the statistical considerations, a priori
segmentation is not conceptually acceptable since no causal structure among the
variables is postulated. Units should be clustered according to all the available infor-
mation, hence in relation with the defined model. In other words, a model-based
clustering method should be used, where the obtained clusters are homogeneous
with respect to the structural causal relationships.

A new technique for the identification of groups homogeneous with respect to the
defined model in the framework of PLS Approach to Structural Equation Modeling
(SEM-PLS) is proposed in this paper. The proposed technique, PLS Typological
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Path Modeling (PLS-TPM) allows to take into account the predictive purpose
of PLS techniques when defining the classes. Differently from existing model-
based classification methods, PLS-TPM requires no distributional assumptions on
observed and/or latent variables.

Structural Equation Modeling (SEM) is often applied in marketing research,
especially in the analysis of customer satisfaction, in order to measure complex
cause-effect relationships. Two statistical methodologies exist for the estimation
of such models: SEM-ML (Maximum Likelihood Approach to Structural Equation
Modeling), also known as LISREL (LInear Structural RELations (Joreskog 1970))
approach, and PLS (Partial Least Squares (Wold 1975)). The following paragraph
gives an overview of model-based classification techniques in the framework of
ML-SEM, while paragraph 3 deals with model-based classification in PLS meth-
ods. FIMIX-PLS, which generalizes finite mixture models to a PLS framework, is
described in paragraph 3.1. PLS-TPM, the methodology proposed by the author, is
introduced in paragraph 3.2.

An empirical application of PLS-TPM to data from a satisfaction survey for an
English energy provider is shown in Chap. 3. Finally, Chap.4 describes the major
research issues in model-based classification in a PLS framework.

9.2 SEM-ML and Classification

When group membership is known a priori, traditional standard multi-group meth-
ods (Joreskog 1971, 1973; Sorbom 1974) can be used in order to account for
heterogeneity. Basically this technique consists in computing separate models for
each segment, where segments have been defined according to the available a priori
information. Segments can be either defined according to prior knowledge on their
homogeneity according to external variables (such as socio-demographic or con-
sumption variables) or on the basis of a cluster analysis. Unfortunately, background
variables such as demographic or psychographic descriptors are rarely sufficient to
allow to form groups a priori. On the other hand, cluster analysis, besides show-
ing a number of statistical drawbacks (Hahn et al. 2002), is conceptually unfit to the
available data structure since it ignores the available information on the relationships
among the variables in the model.

A more sophisticated approach is given by finite-mixture models in SEM
(DeSarbo and Cron 1988; Jones and Maclachlan 1992; Jedidi et al. 1997). Seg-
mentation is performed by taking into account the defined model and the implied
relationships among variables. In this approach to classification, the data is sup-
posed to be the result of the mixture of two or more populations mixed in different
proportions. In other words, each subject is supposed to belong to a segment, each
segment being characterized by a different covariance structure. Hence, data arise
from a mixture of distributions, and the aim is to estimate the probability that each
subject belongs to each of these sub-populations. Distributions that are more fre-
quently used are the multivariate normal or multinomial distribution. The technique
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is based on the EM algorithm, which allows the estimation of the posterior probabil-
ities. The posterior probabilities represent a fuzzy classification of the observations
in the K segments based on the postulated measurement and structural models.

The main drawbacks of the methodology concern the distributional assumptions,
the risk of encountering a local optimum in the iterations and the identification of the
number of classes. The distributional assumptions are required in order to ensure
the model identification. They may however be a problematic constraint, especially
in marketing applications where data are rarely normal and more frequently highly
skewed. The risk of falling into a local optimum may be resolved by choosing differ-
ent starting points for the iterations. Finally, the number of classes K is supposed to
be known. However, in a totally exploratory approach, the number of classes is very
rarely known a priori and is, instead, to be worked out by the analysis. The solution
proposed in Jedidi et al. (1997) consists in performing the Finite Mixture Structural
Equation Model with different possible values of K and comparing several global
measures of fit such as Akaike’s Information Criterion (AIC) or Bayesian Infor-
mation Criterion (BIC). However, in terms of quality of results, the finite-mixture
approach outperforms traditional sequential procedures combining cluster analysis
and multi-group SEM, as it has been demonstrated in a simulation study in Gorz
et al. (2000).

9.3 PLS and Classification

Traditionally, classification in PLS Path Modeling has been performed through
multi-group analysis: groups are defined according to prior knowledge, background
variables, or external analyses. Separate PLS path models are then estimated for
each group, and the results are compared in order to identify, if possible, the
differences among the groups. The existence of groups showing internally homoge-
neous structural models may eventually be validated by means of a partial analysis
criterion as shown in Amato and Balzano (2003).

9.3.1 FIMIX PLS: The PLS Finite Mixture Models

Recently, a different approach to classification in PLS Path Modeling has been pro-
posed: the Finite Mixture Partial Least Squares Approach (FIMIX-PLS) (Hahn et al.
2002; Ringle et al. 2005), which generalizes the finite mixture approach to PLS
Path Modeling. For further details and a complete description of the algorithm, cf.
Chap. 8. The methodology begins with the estimation of the path model through
the traditional PLS-PM algorithm. The information concerning the heterogeneity
of individual behaviors is supposed to be contained in the structural relationships
between the latent variables. The model requires the assumption of multivariate
normal distribution only for the endogenous latent variables 1);. This assumption is
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sufficient since the endogenous variables are expressed as function of the exogenous
variables ;. The likelihood of the model is maximized through the EM algorithm.

As shown in (Hahn et al. 2002), although the EM algorithm monotonically
increases the InL and converges towards an optimum, there is a risk of it converging
towards local optima. This risk increases when group densities are not well sep-
arated, when there is a high number of parameters to be estimated and when the
information contained in each observation is limited. Since the convergence of the
EM algorithm depends on the starting values (Wedel and Kamakura 2000) a possi-
ble solution is to initialize the algorithm with different values or to obtain an initial
partition through clustering procedures (for example k-means) (Ringle et al. 2005).

As in the original finite mixture models described in paragraph 2, in FIMIX-
PLS the number of groups is a priori unknown, and the identification of an optimal
number of classes K is not straightforward. The proposed solution to this problem
follows what has already been said concerning “classical” Finite Mixture Models,
and consists in running FIMIX-PLS several times with different possible choices
of values for K. The choice of the best partition will be based on criteria such
as the InL, the AIC or the BIC indicator. Moreover, an indicator of the degree of
separation for the estimated individual class probabilities, as defined in Ramaswamy
et al. (1993) is available (ENy ). This statistic varies between 0 and 1 (1 indicates
a perfect separation among classes, whereas values very close to O indicate that
segments are “fuzzy” and hardly interpretable). Segmentations can be considered
unambiguous with values of EN higher than 0,5 (Ringle et al. 2005).

The main problematic issue in FIMIX-PLS is basically the one described for the
original Finite Mixture Models, related to the EM algorithm: namely the risk of
convergence in local optima. To that we may add the difficulty of accepting, under
a strictly theoretical point of view, the imposition of a distributional assumption on
the endogenous latent variable in the framework of PLS Modeling. Finally, FIMIX-
PLS is characterized by static outer models for the groups: in order to ensure the
convergence of the procedure, the outer models (i.e. the loadings) are kept constant
over all the classes. This problem is solved by adding a further step in the overall
classification procedure: the “external” analysis. This step consists in searching for
available external descriptive variables leading to the same partition as the one iden-
tified through FIMIX-PLS. Once the variable(s) identified, traditional multi-group
analysis is performed over the groups, i.e. new local models are estimated, each hav-
ing its own outer model. We may however remark that experience has shown how
rarely few external variables allow to univocally recover the same groups as those
identified by a model-based procedure.

9.3.2 PLS Typological Path Modeling (PLS-TPM)

PLS-TPM is a generalization of PLS Typological Regression to a PLS Path mod-
eling framework, i.e. where variables may be grouped in more than two blocks
and blocks are supposed to be linked by means of causal paths. The relationships
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existing between PLS Path Modeling and PLS Regression have been widely dis-
cussed in literature (Tenenhaus 1998; Sampson et al. 1989). A brief overview of
classification methods in the framework of PLS Regression is however required
in order to better understand the context of this chapter and of the proposed
methodology.

9.3.2.1 Classification in PLS Regression

In PLS Regression, classification has traditionally been performed through the
SIMCA (Soft Independent Modeling of Class Analogy) approach (Wold et al. 1984).
The technique consists in performing a first PLS Regression over all the units in the
data set. Units are then assigned to different classes according to their positions on
the extracted PLS components, and one local model is estimated for each class. The
class members