
7

Evolutionary Computing
for Architecture Optimization

This chapter introduces the basic concepts and notation of evolutionary algo-
rithms, which are basic search methodologies that can be used for modelling
and simulation of complex non-linear dynamical systems. Since these tech-
niques can be considered as general purpose optimization methodologies, we
can use them to find the mathematical model which minimizes the fitting er-
rors for a specific problem. On the other hand, we can also use any of these
techniques for simulation if we exploit their efficient search capabilities to find
the appropriate parameter values for a specific mathematical model. We also
describe in this chapter the application of genetic algorithms to the problem
of finding the best neural network or fuzzy system for a particular problem.
We can use a genetic algorithm to optimize the weights or the architecture of
a neural network for a particular application. Alternatively, we can use a ge-
netic algorithm to optimize the number of rules or the membership functions
of a fuzzy system for a specific problem. These are two important application
of genetic algorithms, which will be used in later chapters to design intelligent
systems for pattern recognition in real world applications.

Genetic algorithms have been used extensively for both continuous and
discrete optimization problems (Jang, Sun & Mizutani, 1997). Common char-
acteristics of these methods are described next.

• Derivative freeness: These methods do not need functional derivative in-
formation to search for a set of parameters that minimize (or maximize) a
given objective function. Instead they rely exclusively on repeated evalu-
ations of the objective function, and the subsequent search direction after
each evaluation follows certain heuristic guidelines.

• Heuristic guidelines: The guidelines followed by these search procedures
are usually based on simple intuitive concepts. Some of these concepts are
motivated by so-called nature’s wisdom, such as the evolution.

• Flexibility : Derivative freeness also relieves the requirement for differentiable
objective functions, so we can use as complex an objective function as a
specific application might need, without sacrificing too much in extra coding

Patricia Melin and Oscar Castillo: Hybrid Intelligent Systems for Pattern Recognition Using
Soft Computing, StudFuzz 172, 131–168 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

132 7 Evolutionary Computing for Architecture Optimization

and computation time. In some cases, an objective function can even include
the structure of a data-fitting model itself, which may be a fuzzy model.

• Randomness: These methods are stochastic, which means that they use
random number generators in determining subsequent search directions.
This element of randomness usually gives rise to the optimistic view that
these methods are “global optimizers” that will find a global optimum given
enough computing time. In theory, their random nature does make the
probability of finding an optimal solution nonzero over a fixed amount of
computation time. In practice, however, it might take a considerable amount
of computation time.

• Analytic opacity : It is difficult to do analytic studies of these methods, in
part because of their randomness and problem-specific nature. Therefore,
most of our knowledge about them is based on empirical studies.

• Iterative nature: These techniques are iterative in nature and we need cer-
tain stopping criteria to determine when to terminate the optimization
process. Let K denote an iteration count and fk denote the best objective
function obtained at count k; common stopping criteria for a maximization
problem include the following:
(1) Computation time: a designated amount of computation time, or num-

ber of function evaluations and/or iteration counts is reached.
(2) Optimization goal: fk is less than a certain preset goal value.
(3) Minimal improvement: fk − fk−1 is less than a preset value.
(4) Minimal relative improvement: (fk − fk−1)/fk−1 is less than a preset

value.

Evolutionary algorithms (EAs), in general, and genetic algorithms (GAs), in
particular, have been receiving increasing amounts of attention due to their
versatile optimization capabilities for both continuous and discrete optimiza-
tion problems. Moreover, both of them are motivated by so-called “nature’s
wisdom”: EAs are based on the concepts of natural selection and evolution;
while GAs consider genetic information in a more simple binary form.

7.1 Genetic Algorithms

Genetic algorithms (GAs) are derivative-free optimization methods based on
the concepts of natural selection and evolutionary processes (Goldberg, 1989).
They were first proposed and investigated by John Holland at the University
of Michigan (Holland, 1975). As a general-purpose optimization tool, GAs
are moving out of academia and finding significant applications in many ar-
eas. Their popularity can be attributed to their freedom from dependence on
functional derivatives and their incorporation of the following characteristics:

• GAs are parallel-search procedures that can be implemented on parallel
processing machines for massively speeding up their operations.

7.1 Genetic Algorithms 133

• GAs are applicable to both continuous and discrete (combinatorial) opti-
mization problems.

• GAs are stochastic and less likely to get trapped in local minima, which
inevitably are present in any optimization application.

• GAs’ flexibility facilitates both structure and parameter identification in
complex models such as fuzzy inference systems or neural networks.

GAs encode each point in a parameter (or solution) space into a binary
bit string called a “chromosome”, and each point is associated with a “fitness
value” that, for maximization, is usually equal to the objective function eval-
uated at the point. Instead of a single point, GAs usually keep a set of points
as a “population”, which is then evolved repeatedly toward a better overall
fitness value. In each generation, the GA constructs a new population using
“genetic operators” such as crossover and mutation; members with higher fit-
ness values are more likely to survive and to participate in mating (crossover)
operations. After a number of generations, the population contains members
with better fitness values; this is analogous to Darwinian models of evolu-
tion by random mutation and natural selection. GAs and their variants are
sometimes referred to as methods of “population-based optimization” that
improve performance by upgrading entire populations rather than individual
members. Major components of GAs include encoding schemes, fitness eval-
uations, parent selection, crossover operators, and mutation operators; these
are explained next.

Encoding schemes: These transform points in parameter space into bit
string representations. For instance, a point (11, 4, 8) in a three-dimensional
parameter space can be represented as a concatenated binary string:

1011︸︷︷︸ 0100︸︷︷︸ 1000︸︷︷︸

11 4 8

in which each coordinate value is encoded as a “gene” composed of four binary
bits using binary coding. other encoding schemes, such as gray coding, can also
be used and, when necessary, arrangements can be made for encoding negative,
floating-point, or discrete-valued numbers. Encoding schemes provide a way
of translating problem-specific knowledge directly into the GA framework,
and thus play a key role in determining GAs’ performance. Moreover, genetic
operators, such as crossover and mutation, can and should be designed along
with the encoding scheme used for a specific application.

Fitness evaluation: The first step after creating a generation is to calcu-
late the fitness value of each member in the population. For a maximization
problem, the fitness value fi of the ith member is usually the objective func-
tion evaluated at this member (or point). We usually need fitness values that
are positive, so some kind of monotonical scaling and/or translation may by
necessary if the objective function is not strictly positive. Another approach
is to use the rankings of members in a population as their fitness values. The

134 7 Evolutionary Computing for Architecture Optimization

advantage of this is that the objective function does not need to be accurate,
as long as it can provide the correct ranking information.

Selection: After evaluation, we have to create a new population from the
current generation. The selection operation determines which parents partic-
ipate in producing offspring for the next generation, and it is analogous to
“survival of the fittest” in natural selection. Usually members are selected for
mating with a selection probability proportional to their fitness values. The
most common way to implement this is to set the selection probability equal
to:

fi

/
k=n∑

k=1

fk ,

where n is the population size. The effect of this selection method is to allow
members with above-average fitness values to reproduce and replace members
with below-average fitness values.

Crossover : To exploit the potential of the current population, we use
“crossover” operators to generate new chromosomes that we hope will retain
good features from the previous generation. Crossover is usually applied to
selected pairs of parents with a probability equal to a given “crossover rate”.
“One-point crossover” is the most basic crossover operator, where a crossover
point on the genetic code is selected at random and two parent chromosomes
are interchanged at this point. In “two-point crossover”, two crossover points
are selected and the part of the chromosome string between these two points is
then swapped to generate two children. We can define n-point crossover simi-
larly. In general, (n− 1)-point crossover is a special case of n-point crossover.
Examples of one-and two-point crossover are shown in Fig. 7.1.

crossover point

100 11110 100 10010
⇒

101 10010 101 11110
(a)

1 0011 110 1 0110 110
⇒

1 0110 010 1 0011 010
(b)

Fig. 7.1. Crossover operators: (a) one-point crossover; (b) two-point crossover

Mutation: Crossover exploits current gene potentials, but if the population
does not contain all the encoded information needed to solve a particular
problem, no amount of gene mixing can produce a satisfactory solution. For
this reason, a “mutation” operator capable of spontaneously generating new

7.1 Genetic Algorithms 135

chromosomes is included. The most common way of implementing mutation
is to flip a bit with a probability equal to a very low given “mutation rate”.
A mutation operator can prevent any single bit from converging to a value
throughout the entire population and, more important, it can prevent the
population from converging and stagnating at any local optima. The mutation
rate is usually kept low so good chromosomes obtained from crossover are not
lost. If the mutation rate is high (above 0.1), GA performance will approach
that of a primitive random search. Figure 7.2 provides an example of mutation.

Mutated bit

10011110 ⇒ 10011010

Fig. 7.2. Mutation operator

In the natural evolutionary process, selection, crossover, and mutation all
occur in the single act of generating offspring. Here we distinguish them clearly
to facilitate implementation of and experimentation with GAs.

Based on the aforementioned concepts, a simple genetic algorithm for max-
imization problems is described next.

Step 1: Initialize a population with randomly generated individuals and eval-
uate the fitness value of each individual.

Step 2: Perform the following operations:
(a) Select two members from the population with probabilities pro-

portional to their fitness values.
(b) Apply crossover with a probability equal to the crossover rate.
(c) Apply mutation with a probability equal to the mutation rate.
(d) Repeat (a) to (d) until enough members are generated to form

the next generation.
Step 3: Repeat steps 2 and 3 until a stopping criterion is met.

Figure 7.3 is a schematic diagram illustrating how to produce the next
generation from the current one.

Lets consider a simple example to illustrate the application of the basic
genetic algorithm. Will consider the maximization of the “peaks” function,
which is given by the following equation:

Z = f(x, y) = 3(1 − x)2e−x2−(y+1)2 − 10(x/5 − x3 − y5)e−x2−y2

− (1/3)e−(x+1)2−y2 . (7.1)

The surface plot of this function is shown in Fig. 7.4. To use Gas to find the
maximum of this function, we first confine the search domain to the square
[−3, 3] × [−3, 3]. We use 8-bit binary coding for each variable. Each genera-
tion in our GA implementation contains 30 points or individuals. We use a

136 7 Evolutionary Computing for Architecture Optimization

Current Generation Next Generation

10010110
…

01100010
…

10100100
…

.

.

10010110
…

01100010
…

10100100
…

.

.

selection

crossover

mutation

Fig. 7.3. Producing the next generation in GAs

Fig. 7.4. Surface plot of the “peaks” function

7.1 Genetic Algorithms 137

simple one-point crossover scheme with crossover rate equal to 0.9. We choose
uniform mutation with mutation rate equal to 0.05. Figure 7.5 shows a plot
of the best, average, and poorest values of the objective function across 30
generations. Figure 7.6 shows the contour plot of the “peaks” function with
the final population distribution after 30 generations. We can appreciate from
these figures how the GA is able to find the maximum value of 8.

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

8

10

Generations

F
itn

es
s

Performance of a Simple GA across generations

Best
Average
Poorest

Fig. 7.5. Performance of the genetic algorithm across generations

Now lets consider a more complicated example. We will consider the
Rosenbrock’s valley, which is a classic optimization problem. The global opti-
mum is inside a long, narrow, parabolic shaped flat valley. To find the valley is
trivial, however convergence to the global optimum is difficult and hence this
problem has been repeatedly used in assess the performance of optimization
algorithms. In this case, the function is given by the following equation

f2 =
n−1∑

i

100
(
x2 − x2

1

)2
+ (1 − x1)2 − 2 ≤ xi ≤ 2

global minimum: xi = 1 f(x) = 0 . (7.2)

We show in Fig. 7.7 the plot of Rosenbrock’s valley function. We will apply
a simple genetic algorithm with the same parameters as in the previous ex-
ample, i.e. same population size, mutation rate, and crossover rate. The only

138 7 Evolutionary Computing for Architecture Optimization

Fig. 7.6. Contour plot of the “peaks” function with the final population

Fig. 7.7. Plot of the Rosenbrock’s valley

7.2 Modifications to Genetic Algorithms 139

0 50 100 150 200 250
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

generation

lo
g

10
(f

(x
))

Best = 0.00034306

Convergence of the simple genetic algorithm
for Rosenbrock's function

Fig. 7.8. Performance of the genetic algorithm for Rosenbrock’s valley

parameter we will change is the maximum number of generations, which will
now be of 250. Figure 7.8 shows the performance of the simple genetic algo-
rithm for Rosenbrock’s function. We can notice from this figure that the GA
is able to converge in about 200 generations to a best value of 0.00034306.
We have to mention that the computer program to obtain these results was
implemented in the MATLAB programming language.

7.2 Modifications to Genetic Algorithms

The GA mechanism is neither governed by the use of differential equations nor
does it behave like a continuous function. However, it possesses the unique
ability to search and optimize a solution for complex system, where other
mathematical oriented techniques may have failed to compile the necessary
design specifications. Due to its evolutionary characteristics, a standard GA
may not be flexible enough for a practical application, and an engineering
insight is always required whenever a GA is applied. This becomes more ap-
parent where the problem to be tackled is complicated, multi-tasking and
conflicting. Therefore, a means of modifying the GA structure is sought in

140 7 Evolutionary Computing for Architecture Optimization

order to meet the design requirements. There are many facets of operational
modes that can be introduced.

7.2.1 Chromosome Representation

The problem to be tackled varies from one to the other. The coding of chromo-
some representation may vary according to the nature of the problem itself.
In general, the bit string encoding (Holland, 1975) is the most classic method
used by GA researchers because of its simplicity and traceability. The con-
ventional GA operations and theory (scheme theory) are also developed on
the basis of this fundamental structure. Hence, this representation is adopted
in many applications. However, one minor modification can be suggested in
that a Gray code may be used instead of the binary coding. Hollstien (1971)
investigated the use of GA for optimizing functions of two variables based
on a Gray code representation, and discovered that this works slightly better
than the normal binary representation.

More recently, a direct manipulation of real-value chromosomes (Janikow
& Michalewicz, 1991; Wright, 1991) raised considerable interest. This repre-
sentation was introduced especially to deal with real parameter problems. The
work currently taking place by Janikow and Michalewicz indicates that the
floating-point representation would be faster in computation and more con-
sistent from the basis of run-to-run. At the same time, its performance can be
enhanced by special operators to achieve high accuracy (Michalewicz, 1996).

7.2.2 Objective Functions and Fitness

An objective function is a measuring mechanism that is used to evaluate the
status of a chromosome. This is a very important link to relate the GA and
the system concerned. Since each chromosome is individually going through
the same calculations, the range of this value varies from one chromosome
to another. To maintain uniformity, the objective value O is mapped into a
fitness value with a map Ψ where the domain of F is usually greater than
zero.

Ψ : O → F (7.3)

Linear Scaling

The fitness value fi of chromosome i has a linear relationship with the objec-
tive value oi as

fi = aoi + b (7.4)

where a and b are chosen to enforce the equality of the average objective
value and the average fitness value, and cause maximum scaled fitness to be
a specified multiple of the average fitness.

7.2 Modifications to Genetic Algorithms 141

This method can reduce the effect of genetic drift by producing an ex-
traordinarily good chromosome. However, it may introduce a negative fitness
value, which must be avoided. Hence, the choice of a and b are dependent on
the knowledge of the range of the objective values.

Sigma Truncation

This method avoids the negative fitness value and incorporates the problem
dependent information into the scaling mechanism. The fitness value fi of
chromosome i is calculated according to

fi = oi − (õ − cσ) (7.5)

where c is small integer, õ is the mean of the objective values, σ is the standard
deviation in the population.

To prevent negative values of f , any negative result f < 0 is arbitrarily
set to zero. Chromosomes whose fitness values are less than c (a small integer
from the range 1 and 5) standard deviations from the average fitness value
are not selected.

Power Law Scaling

The actual fitness value is taken as a specific power of the objective value, oi

Fi = ok
i (7.6)

where k is in general problem dependent or even varying during the run
(Gillies, 1985).

Ranking

There are other methods that can be used such as the Ranking scheme (Baker,
1987). The fitness values do not directly relate to their corresponding objective
values, but to the ranks of the objective values.

Using this approach can help the avoidance of premature convergence and
speed up the search when the population approaches convergence. On the
other hand, it requires additional overheads in the in the GA computation for
sorting chromosomes according to their objective values.

7.2.3 Selection Methods

To generate good offspring, a good parent selection mechanism is necessary.
This is a process used for determining the number of trials for one particular
individual used in reproduction. The chance of selecting one chromosome as
a parent should be directly proportional to the number of offspring produced.

142 7 Evolutionary Computing for Architecture Optimization

Baker (1987) presented three measures of performance of the selection
methods: Bias, Spread, and Efficiency. Bias defines the absolute difference
between individuals in actual and expected probability for selection. Opti-
mal zero bias is achieved when an individual’s probability equals its expected
number of trials. Spread is a range in the possible number of trials that an
individual may achieve. If g(i) is the actual number of trials due to each indi-
vidual i, then the “minimum spread” is the smallest spread that theoretically
permits zero bias, i.e.

G(i) ∈ {�et(i)�, �et(i)
} (7.7)

where et(i) is the expected number of trials of individual i, �et(i)� is the floor
and �et(i)
 is the ceiling. Thus the spread of a selection method measures
its consistency. Efficiency is related to the overall time complexity of the
algorithms.

The selection method should thus be achieving a zero bias whilst maintain-
ing a minimum spread and not contributing to an increased time complexity
of the GA.

Many selection techniques employ the “roulette wheel mechanism”. The
basic roulette wheel selection method is a stochastic sampling with replace-
ment (SSR) technique. The segment size and selection probability remain the
same throughout the selection phase and the individuals are selected according
to the above procedures. SSR tends to give zero bias but potentially inclines
to a spread that is unlimited.

Stochastic Sampling with Partial Replacement (SSPR) extends upon SSR
by resizing a chromosome’s segment if it is selected. Each time a chromosome
is selected, the size of its segment is reduced by a certain factor. If the segment
size becomes negative, then it is set to zero. This provides an upper bound
on the spread of �et(i)� but with a zero lower bound and a higher bias. The
roulette wheel selection methods can generally be implemented with a time
complexity of the order of NlogN where N is the population size.

Stochastic Universal Sampling (SUS) is another single-phase sampling
method with minimum spread, zero bias and the time complexity is in the
order of N (Baker, 1987). SUS uses an N equally spaced pointer, where N is
the number of selections required. The population is shuffled randomly and a
single random number in the range [0, Fsum/N] is generated, ptr, where Fsum

is the sum of the individuals’ fitness values. An individual is thus guaranteed
to be selected a minimum of �et(i)� times and no more than �et(i)
, thus
achieving minimum spread. In addition, as individuals are selected entirely
based on their position in the population, SUS has zero bias.

7.2 Modifications to Genetic Algorithms 143

7.2.4 Genetic Operations

Crossover

Although the one-point crossover method was inspired by biological processes,
it has one major drawback in that certain combinations of schema cannot be
combined in some situations (Michalewicz, 1996).

A multi-point crossover can be introduced to overcome this problem. As a
result, the performance of generating offspring is greatly improved. Another
approach is the uniform crossover. This generates offspring from the parents,
based on a randomly generated crossover mask. The resulting offspring contain
a mixture of genes from each parent. The number of effective crossing points
is not fixed, but will be averaged at L/2 (where L is the chromosome length).

The preference for using which crossover techniques is still arguable. How-
ever, De Jong (1975) concluded that a two-point crossover seemed to be an
optimal number for multi-point crossover. Since then, this has been contra-
dicted by Spears and De Jong (1991) as a two-point crossover could perform
poorly if the population has largely being converged because of any reduced
crossover productivity. A general comment was that each of these crossover
operators was particularly useful for some classes of problems and quite poor
for others, and that the one-point crossover was considered a “loser” experi-
mentally.

Crossover operations can be directly adopted into the chromosome with
real number representation. The only difference would be if the string is com-
posed of a series of real numbers instead of binary numbers.

Mutation

Originally, mutation was designed only for the binary-represented chromo-
some. To adopt the concept of introducing variations into the chromosome,
a random mutation (Michalewicz, 1996) has been designed for a real number
chromosome:

g = g + ψ(µ, σ) (7.8)

where g is the real number gene; ψ is a random function which may be
Gaussian or normally distributed; µ is the mean and σ is the variance of
the random function.

Operational Rates Settings

The choice of an optimal probability operation rate for crossover and mutation
is another controversial debate for both analytical and empirical investiga-
tions. The increase of crossover probability would cause the recombination of
building blocks to rise, and at the same time, it also increases the disruption
of good chromosomes. On the other hand, should the mutation probability
increase, this would transform the genetic search into a random search, but
would help to reintroduce the lost genetic material.

144 7 Evolutionary Computing for Architecture Optimization

7.2.5 Parallel Genetic Algorithm

Considering that the GA already possesses an intrinsic, parallelism architec-
ture, there is no extra effort to construct a parallel computational framework.
Rather, the GA can be fully exploited in its parallel structure to gain the
required speed for practical applications.

There are a number of GA-based parallel methods to enhance the com-
putational speed (Cantú-Paz, 1995). The methods of parallelization can be
classified as Global, Migration and Diffusion. These categories reflect differ-
ent ways in which parallelism can be exploited in the GA as well as the nature
of the population structure and recombination mechanisms used.

Global GA

Global GA treats the entire population as a single breeding mechanism. This
can be implemented on a shared memory multiprocessor or distributed mem-
ory computer. On a shared memory multiprocessor, chromosomes are stored in
the shared memory. Each processor accesses the particular assigned chromo-
some and returns the fitness values without any conflicts. It should be noted
that there is some synchronization needed between generation to generation.
It is necessary to balance the computational load among the processors using
a dynamic scheduling algorithm.

On a distributed memory computer, the population can be stored in one
processor to simplify the genetic operators. This is based on the farmer-worker
architecture. The farmer processor is responsible for sending chromosomes to
the worker processors for the purpose of fitness evaluation. It also collects the
results from them, and applies the genetic operators for producing the next
generation.

Migration GA

This is another parallel processing method for computing the GA. The mi-
gration GA divides the population into a number of sub-populations, each of
which is treated as a separate breeding unit under the control of a conventional
GA. To encourage the proliferation of good genetic material throughout the
whole population, migration between the sub-populations occurs from time
to time. The required parameters for successful migration are the “migration
rate” and the “migration interval”. The migration rate governs the number
of individuals to be migrated. The migration interval affects the frequency
of migrations. The values of these parameters are intuitively chosen rather
than based on some rigorous scientific analysis. In general, the occurrence of
migration is usually set at a predetermined constant interval that is governed
by migration intervals. We illustrate the concept of migration in Fig. 7.9.

The migration GA is well suited to parallel implementation on Multiple
Instruction Multiple Data (MIMD) machines. The architecture of hypercubes

7.2 Modifications to Genetic Algorithms 145

Fig. 7.9. Detailed description of the migration concept

and rings are commonly used for this purpose. Given the range of possible
population topologies and migration paths between them, efficient communi-
cation networks should thus be possible on most parallel architectures. This
applies to small multiprocessor platforms or even the clustering of networked
workstations.

Diffusion GA

The Diffusion GA considers the population as a single continuous structure.
Each individual is assigned to a geographic location on the population surface
and usually placed in a two-dimensional grid. This is because of the topology
of the processing element in many massively parallel computers that are con-
structed in this form. The individuals are allowed to breed with individuals
contained in a small local neighborhood. This neighborhood is usually cho-
sen from immediately adjacent individuals on the population surface and is
motivated by the practical communication restrictions of parallel computers.

We will illustrate the ideas of parallel genetic algorithms with the well
known harvest optimization problem. We will apply a migration GA to solve
this optimization problem. The harvest system is a one-dimensional equation
of growth with one constraint:

x(k + 1) = ax(k) − u(k) k = 1, . . . , N, such that x(0) = x(N) . (7.9)

The objective function for minimization is therefore defined as:

F (u) = −
N∑

k=1

[u(k)]1/2 . (7.10)

We will apply a multi-population genetic algorithm with migration and real-
valued representation of the individuals. We used 20 decision variables, a

146 7 Evolutionary Computing for Architecture Optimization

Fig. 7.10. Initial population and subpopulations for the migration GA

crossover rate of 1.0 and a mutation rate of 1/number of variables. We used
8 subpopulations with 20 individuals each, and a migration rate of 0.2. The
maximum number of generations was specified at 200. We show in Fig. 7.10 the
initial population of individuals. In Fig. 7.11 we show the simulation results
after 200 generations of the GA.

7.3 Applications of Genetic Algorithms

The genetic algorithms described in the previous sections are very simple, but
variations of these algorithms have been used in a large number of scientific
and engineering problems and models (Mitchell, 1996). Some examples follow.

• Optimization: genetic algorithms have been used in a wide variety of op-
timization tasks, including numerical optimization and such combinatorial
optimization problems as circuit layout and job-shop scheduling.

• Automatic Programming: genetic algorithms have been used to evolve com-
puter programs for specific tasks, and to design other computational struc-
tures such as cellular automata and sorting networks.

7.3 Applications of Genetic Algorithms 147

Fig. 7.11. Final population for the migration GA after 200 generations

• Machine Learning: genetic algorithms have been used for many machine
learning applications, including classification and prediction tasks, such as
the prediction of weather or protein structure. Genetic algorithms have also
been used to evolve aspects of particular machine learning systems, such as
weights for neural networks, rules for learning classifier systems or symbolic
production systems, and sensors for robots.

• Economics: genetic algorithms have been used to model processes of innova-
tion, the development of bidding strategies, and the emergence of economic
markets.

• Immune Systems: genetic algorithms have been used to model various as-
pects of natural immune systems, including somatic mutation during an
individual’s lifetime and the discovery of multi-gene families during evolu-
tionary time.

• Ecology: genetic algorithms have used to model ecological phenomena such
as biological arms races, host-parasite co-evolution, symbiosis, and resource
flow.

• Social Systems: genetic algorithms have been used to study evolutionary
aspects of social systems, such as the evolution of social behavior in insect
colonies, and, more generally, the evolution of cooperation and communi-
cation in multi-agent systems.

148 7 Evolutionary Computing for Architecture Optimization

This list is by no means exhaustive, but it gives the flavor of the kinds of
things genetic algorithms have been used for, both in problem solving and in
scientific contexts. Because of their success in these and other areas, interest
in genetic algorithms has been growing rapidly in the last several years among
researchers in many disciplines.

We will describe bellow the application of genetic algorithms to the prob-
lem of evolving neural networks, which is a very important problem in design-
ing the particular neural network for a problem.

7.3.1 Evolving Neural Networks

Neural Networks are biologically motivated approaches to machine learning,
inspired by ideas from neuroscience. Recently, some efforts have been made to
use genetic algorithms to evolve aspects of neural networks (Mitchell, 1996).

In its simplest feedforward form, a neural network is a collection of con-
nected neurons in which the connections are weighted, usually with real-valued
weights. The network is presented with an activation pattern on its input
units, such as a set of numbers representing features of an image to be classi-
fied. Activation spreads in a forward direction from the input units through
one or more layers of middle units to the output units over the weighted con-
nections. This process is meant to roughly mimic the way activation spreads
through networks of neurons in the brain. In a feedforward network, activa-
tion spreads only in a forward direction, from the input layer through the
hidden layers to the output layer. Many people have also experimented with
“recurrent” networks, in which there are feedback connections between layers.

In most applications, the neural network learns a correct mapping between
input and output patterns via a learning algorithm. Typically the weights are
initially set to small random values. Then a set of training inputs is presented
sequentially to the network. In the backpropagation learning procedure, af-
ter each input has propagated through the network and an output has been
produced, a “teacher” compares the activation value at each output unit with
the correct values, and the weights in the network are adjusted in order to
reduce the difference between the network’s output and the correct output.
This type of procedure is known as “supervised learning”, since a teacher su-
pervises the learning by providing correct output values to guide the learning
process.

There are many ways to apply genetic algorithms to neural networks.
Some aspects that can be evolved are the weights in a fixed network, the
network architecture (i.e., the number of neurons and their interconnections
can change), and the learning rule used by the network.

Evolving Weights in a Fixed Network

David Montana and Lawrence Davis (1989) took the first approach of evolving
the weights in a fixed network. That is, Montana and Davis were using the

7.3 Applications of Genetic Algorithms 149

genetic algorithm instead of backpropagation as a way of finding a good set
of weights for a fixed set of connections. Several problems associated with the
backpropagation algorithm (e.g., the tendency to get stuck at local minima,
or the unavailability of a “teacher” to supervise learning in some tasks) often
make it desirable to find alternative weight training schemes.

Montana and Davis were interested in using neural networks to classify
underwater sonic “lofargrams” (similar to spectrograms) into two classes: “in-
teresting” and “not interesting”. The networks were to be trained from a data-
base containing lofargrams and classifications made by experts as to whether
or not a given lofargram is “interesting”. Each network had four input units,
representing four parameters used by an expert system that performed the
same classification. Each network had one output unit and two layers of hid-
den units (the first with seven units and the second with ten units). The
networks were fully connected feedforward networks. In total there were 108
weighted connections between units. In addition, there were 18 weighted con-
nections between the non-input units and a “threshold unit” whose outgoing
links implemented the thresholding for each of the non-input units, for a total
of 126 weights to evolve.

The genetic algorithm was used as follows. Each chromosome was a list of
126 weights. Figure 7.12 shows (for a much smaller network) how the encoding
was done: the weights were read off the network in a fixed order (from left to
right and from top to bottom) and placed in a list. Notice that each “gene”
in the chromosome is a real number rather than a bit. To calculate the fitness
of a given chromosome, the weights in the chromosome were assigned to the
links in the corresponding network, the network was run on the training set
(here 236 examples from the database), and the sum of the squares of the
errors was returned. Here, an “error” was the difference between the desired
output value and the actual output value. Low error meant high fitness in this
case.

An initial population of 50 weights vectors was chosen randomly, with
each weight being between −1.0 and +1.0. Montana and Davis tried a num-
ber of different genetic operators in various experiments. The mutation and
crossover operators they used for their comparison of the genetic algorithm
with backpropagation are illustrated in Figs. 7.13 and 7.14.

0.3 −0.4
0.7 0.8

0.2 −0.3
−0.3 −0.1

Chromosome: (0.3 −0.4 0.2 0.8 −0.3 −0.1 0.7 −0.3)

4

6

5

321

Fig. 7.12. Encoding of network weights for the genetic algorithm

150 7 Evolutionary Computing for Architecture Optimization

0.3 −0.4 0.3 −0.4

0.2 −0.3 0.2 −0.1
−0.3 −0.1 −0.3 −0.9

0.8 0.7 0.6 0.7

(0.3 −0.4 0.2 0.8 −0.3 −0.1 0.7 −0.3) (0.3 −0.4 0.2 0.6 −0.3 −0.9 0.7 −0.1)

6

4 5

21 3

6

321

54

Fig. 7.13. Illustration of the mutation method. The weights on incoming links to
unit 5 are mutated

Parent 1 Parent 2

0.3 −0.4 0.7 −0.9

0.2 −0.3 0.3 0.5
−0.3 −0.1 0.8 −0.2

0.8 0.7 0.4 0.1

(0.3 −0.4 0.2 0.8 −0.3 −0.1 0.7 −0.3) (0.7 −0.9 0.3 0.4 0.8 −0.2 0.1 0.5)

Child
0.7 −0.9

0.7 0.4
0.2 0.5

−0.3 −0.2

(0.7 −0.9 0.2 0.4 −0.3 −0.2 0.7 0.5)

6

4 5

21 3

6

321

54

4

6

5

321

Fig. 7.14. Illustration of the crossover method. In the child network shown here,
the incoming links to unit 4 come from parent 1 and the incoming links 5 and 6
come from parent 2

The mutation operator selects n non-input units, and for each incoming
link to those units, adds a random value between –1.0 and +1.0 to the weight
on the link. The crossover operator takes two parent weight vectors, and
for each non-input unit in the offspring vector, selects one of the parents
at random and copies the weights on the incoming links from that parent to
the offspring. Notice that only one offspring is created.

The performance of a genetic algorithm using these operators was com-
pared with the performance of a backpropagation algorithm. The genetic al-
gorithm had a population of 50 weight vectors, and a rank selection method
was used. The genetic algorithm was allowed to run for 200 generations. The
backpropagation algorithm was allowed to run for 5000 iterations, where one

7.3 Applications of Genetic Algorithms 151

iteration is a complete epoch (a complete pass through the training data).
Montana and Davis found that the genetic algorithm significantly outperforms
backpropagation on this task, obtaining better weight vectors more quickly.

This experiment shows that in some situations the genetic algorithm is a
better training method for neural networks than simple backpropagation. This
does not mean that the genetic algorithm will outperform backpropagation in
all cases. It is also possible that enhancements of backpropagation might help
it overcome some of the problems that prevented it from performing as well
as the genetic algorithm in this experiment.

Evolving Network Architectures

Neural network researchers know all too well that the particular architecture
chosen can determine the success or failure of the application, so they would
like very much to be able to automatically optimize the procedure of design-
ing an architecture for a particular application. Many believe that genetic
algorithms are well suited for this task (Mitchell, 1996). There have been sev-
eral efforts along these lines, most of which fall into one of two categories:
direct encoding and grammatical encoding. Under direct encoding a network
architecture is directly encoded into a genetic algorithm chromosome. Under
grammatical encoding, the genetic algorithm does not evolve network archi-
tectures; rather, it evolves grammars that can be used to develop network
architectures.

Direct Encoding

The method of direct encoding is illustrated in work done by Geoffrey Miller,
Peter Todd, and Shailesh Hedge (1989), who restricted their initial project
to feedforward networks with a fixed number of units for which the genetic
algorithm was used to evolve the connection topology. As is shown in Fig. 7.15,
the connection topology was represented by a N×N matrix (5×5 in Fig. 7.15)
in which each entry encodes the type of connection from the “from unit” to
the “to unit”. The entries in the connectivity matrix were either “0” (meaning
no connection) or “L” (meaning a “learnable” connection). Figure 7.15 also
shows how the connectivity matrix was transformed into a chromosome for the
genetic algorithm (“0” corresponds to 0 and “L” to 1) and how the bit string
was decoded into a network. Connections that were specified to be learnable
were initialized with small random weights.

Miller, Todd, and Hedge used a simple fitness-proportionate selection
method and mutation (bits in the string were flipped with some low probabil-
ity). Their crossover operator randomly chose a row index and swapped the
corresponding rows between the two parents to create two offspring. The in-
tuition behind that operator was similar to that behind Montana and Davis’s
crossover operator-each row represented all the incoming connections to a
single unit, and this set was thought to be a functional building block of the

152 7 Evolutionary Computing for Architecture Optimization

From
unit

1 2 3 4 5

To unit 1

2

3

4

5

0

0

L

L

0

0

0

L

L

0

0

0

0

0

L

0

0

0

0

L

0

0

0

0

0

Chromosome: 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0

3

1

4

2

5

Fig. 7.15. Illustration of Miller, Todd, and Hedge’s representation scheme

network. The fitness of a chromosome was calculated in the same way as in
Montana and Davis’s project: for a given problem, the network was trained on
a training set for a certain number of epochs, using backpropagation to mod-
ify the weights. The fitness of the chromosome was the sum of the squares of
the errors on the training set at the last epoch. Again, low error translated to
high fitness. Miller, Todd, and Hedge tried their genetic algorithm on several
problems with very good results. The problems were relatively easy for multi-
layer neural networks to learn to solve under backpropagation. The networks
had different number of units for different tasks; the goal was to see if the
genetic algorithm could discover a good connection topology for each task.
For each run the population size was 50, the crossover rate was 0.6, and the
mutation rate was 0.005. In all cases, the genetic algorithm was easily able to
find networks that readily learned to map inputs to outputs over the training
set with little error. However, the tasks were too easy to be a rigorous test of
this method-it remains to be seen if this method can scale up to more complex
tasks that require much larger networks with many more interconnections.

Grammatical Encoding

The method of grammatical encoding can be illustrated by the work of
Hiroaki Kitano (1990), who points out that direct encoding approaches be-
come increasingly difficult to use as the size of the desired network increases.
As the network’s size grows, the size of the required chromosome increases
quickly, which leads to problems both in performance and in efficiency. In ad-
dition, since direct encoding methods explicitly represent each connection in
the network, repeated or nested structures cannot be represented efficiently,
even though these are common for some problems.

The solution pursued by Kitano and others is to encode networks as gram-
mars; the genetic algorithm evolves the grammars, but the fitness is tested

7.3 Applications of Genetic Algorithms 153

only after a “development” step in which a network develops from the gram-
mar. A grammar is a set of rules that can be applied to produce a set of
structures (e.g., sentences in a natural language, programs in a computer lan-
guage, neural network architectures).

Kitano applied this general idea to the development of neural networks
using a type of grammar called a “graph-generation grammar”, a simple ex-
ample of which is given in Fig. 7.16(a). Here the right-hand side of each rule
is a 2× 2 matrix rather than a one-dimensional string. Each lower-case letter
from a through p represents one of the 16 possible 2 × 2 arrays of ones and
zeros. There is only one structure that can be formed from this grammar:
the 8 × 8 matrix shown in Fig. 7.16(b). This matrix can be interpreted as a
connection matrix for a neural network: a 1 in row i and column i means that
unit i is present in the network and a 1 in row i and column, i �= j, means that
there is connection from unit i to unit j. The result is the network shown in
Fig. 7.16(c) which, with appropriate weights, computes the Boolean function
XOR.

Kitano’s goal was to have a genetic algorithm evolve such grammars. Fig-
ure 7.17 illustrates a chromosome encoding the grammar given in Fig. 7.16(a).
The chromosome is divided up into separate rules, each of which consists of
five elements. The first element is the left-hand side of the rule; the second
through fifth elements are the four symbols in the matrix on the right-hand
side of the rule. The possible values for each element are the symbols A − Z
and a−p. The first element of the chromosome is fixed to be the start symbol,
S; at least one rule taking S into a 2× 2 matrix is necessary to get started in
building a network from a grammar.

The fitness of a grammar was calculated by constructing a network from
the grammar, using backpropagation with a set of training inputs to train the
resulting network to perform a simple task, and then, after training, measuring
the sum of the squares of the errors made by the network on either the train-
ing set or a separate test set. The genetic algorithm used fitness-proportionate
selection, multi-point crossover, and mutation. A mutation consisted of replac-
ing one symbol in the chromosome with a randomly chosen symbol from the
A−Z and a− p alphabets. Kitano used what he called “adaptive mutation”:
the probability of mutation of an offspring depended on the Hamming distance
(number of mismatches) between the two parents. High distance resulted in
low mutation, and vice versa. In this way, the genetic algorithm tended to re-
spond to loss of diversity in the population by selectively raising the mutation
rate.

Kitano (1990) performed a series of experiments on evolving networks for
simple “encoder/decoder” problems to compare the grammatical and direct
encoding approaches. He found that, on these relatively simple problems, the
performance of a genetic algorithm using the grammatical encoding method
consistently surpassed that of a genetic algorithm using the direct encod-
ing method, both in the correctness of the resulting neural networks and
in the speed with which they were found by the genetic algorithm. In the

154 7 Evolutionary Computing for Architecture Optimization

S A B C D

a b c e p

(a)

S

(b)

(c)

A B
C D

c p
a c

a a
a e

a a
a a

a a
a b

0 0
0 0

0 0
0 1

1 0
0 1

0 1
0 1

1 1
1 1

c p a a
a c a e
a a a a
a a a b

1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

A B
C D

0

2

1

3

7

Fig. 7.16. Illustration of Kitano’s graph generation grammar for the XOR problem.
(a) Grammatical rules. (b) A connection matrix is produced from the grammar.
(c) The resulting network

7.3 Applications of Genetic Algorithms 155

S A B C D A c p a c B a a a e

Fig. 7.17. Illustration of a chromosome encoding a grammar

grammatical encoding runs, the genetic algorithm found networks with lower
error rate, and found the best networks more quickly, than in direct encoding
runs. Kitano also discovered that the performance of the genetic algorithm
scaled much better with network size when grammatical encoding was used.

What accounts for the grammatical encoding method’s apparent superi-
ority? Kitano argues that the grammatical encoding method can easily create
“regular”, repeated patterns of connectivity, and that this is a result of the
repeated patterns that naturally come from repeatedly applying grammatical
rules. We would expect grammatical encoding approaches, to perform well
on problems requiring this kind of regularity. Grammatical encoding also has
the advantage of requiring shorter chromosomes, since the genetic algorithm
works on the instructions for building the network (the grammar) rather that
on the network structure itself. For complex networks, the later could be huge
and intractable for any search algorithm.

Evolving a Learning Rule

David Chalmers (1990) took the idea of applying genetic algorithms to neural
networks in a different direction: he used genetic algorithms to evolve a good
learning rule for neural networks. Chalmers limited his initial study to fully
connected feedforward networks with input and output layers only, no hidden
layers. In general a learning rule is used during the training procedure for
modifying network weights in response to the network’s performance on the
training data. At each training cycle, one training pair is given to the network,
which then produces an output. At this point the learning rule is invoked to
modify weights. A learning rule for a single layer, fully connected feedforward
network might use the following local information for a given training cycle
to modify the weight on the link from input unit i to output unit j:

ai: the activation of input i
oj : the activation of output unit j
tj : the training signal on output unit j
wij : the current weight on the link from i to j

The change to make in the weight wij is a function of these values:
∆wij = f(ai, oj , tj , wij).

The chromosomes in the genetic algorithm population encoded such functions.
Chalmers made the assumption that the learning rule should be a linear

function of these variables and all their pairwise products. That is, the general
form of the learning rule was

156 7 Evolutionary Computing for Architecture Optimization

∆wij = k0(k1wij + k2ai + k3oj + k4tj + k5wijai + k6wijoj + k7wijtj

+ k8aioj + k9aitj + k10ojtj) .

The km(1 < m < 10) are constant coefficients, and k0 is a scale parameter that
affects how much the weights can change on any cycle. Chalmer’s assumption
about the form of the learning rule came in part from the fact that a known
good learning rule for such networks is the “delta rule”. One goal of Chalmer’s
work was to see if the genetic algorithm could evolve a rule that performs as
well as the delta rule.

The task of the genetic algorithm was to evolve values for the km’s. The
chromosome encoding for the set of km’s is illustrated in Fig. 7.18. The scale
parameter k0 is encoded as five bits, with the zeroth bit encoding the sign
(1 encoding + and 0 encoding −) and the first through fourth bits encoding
an integer n : k0 = 0 if n = 0; otherwise |k0| = 2n−9. Thus k0 can take
on the values 0,+−1/256,+−1/128, . . . ,+−32,+−64. The other coefficients
km are encoded by three bits each, with the zeroth bit encoding the sign and
the first and second bits encoding an integer n. For i = 1, . . . , 10, km = 0 if
n = 0; otherwise |km| = 2n−1.

The fitness of each chromosome (learning rule) was determined as follows.
A subset of 20 mappings was selected from the full set of 30 linear separable
mappings. For each mapping, 12 training examples were selected. For each of
these mappings, a network was created with the appropriate number of input

ko k1 k2 k3

1 0 0 1 0 0 0 1 0 0 0 1 1 0 …

ko encoding by 5 bits:
sign

 integer n

bo b1 b2 b3 b4

|ko| = 2n-9

other k’s encoded by 3 bits each:
sign

 integer n

bo b1 b2

|ko| = 2n-1

Fig. 7.18. Illustration of the method for encoding the km’s

7.3 Applications of Genetic Algorithms 157

units for the given mapping. The network’s weights were initialized randomly.
The network was run on the training set for some number of epochs (typically
10), using the learning rule specified by the chromosome. The performance of
the learning rule on a given mapping was a function of the network’s error on
the training set, with low error meaning high performance. The overall fitness
of the learning rule was a function of the average error of 20 networks over
the chosen subset of 20 mappings. This fitness was then transformed to be a
percentage, where a high percentage meant high fitness.

Using this fitness measure, the genetic algorithm was run on a population
of 40 learning rules, with two-point crossover and standard mutation. The
crossover rate was 0.8 and the mutation rate was 0.01. Typically, over 1000
generations, the fitness of the best learning rules in the population rose from
between 40% and 60% in the initial generation to between 80% and 98%. The
fitness of the delta rule is around 98%, and on one out of a total of ten run the
genetic algorithm discovered this rule. On three of the ten runs, the genetic
algorithm discovered slight variations of this rule with lower fitness.

These results show that, given a somewhat constrained representation,
the genetic algorithm was able to evolve a successful learning rule for simple
single layer networks. The extent to which this method can find learning
rules for more complex networks remains an open question, but these results
are a first step in that direction. Chalmers suggested that it is unlikely that
evolutionary methods will discover learning methods that are more powerful
than backpropagation, but he speculated that genetic algorithms might be
a powerful method for discovering learning rules for unsupervised learning
paradigms or for new classes of network architectures.

Example of Architecture Optimization
for a Modular Neural Network

We show the feasibility of the proposed approach of using genetic algorithms
for architecture optimization with a problem of system identification. We con-
sider the non-linear function given by the following equation:

y = 2e(−0.2X)|sin(x)| (7.11)

We will use a modular neural network for system identification, as in
Chap. 6, but now the genetic algorithm will automatically optimize the num-
ber of neurons in each of the modules. We will again use as range for the
function the [0, 9.45] interval with a 0.01 step size, which gives us 945 points.
The data is divided in the three modules as follows:

Module 1: from 0 to 3.15
Module 2: from 3.15 to 6.30
Module 3: from 6.30 to 9.45

The idea behind this data partition is that learning will be easier in each
of the modules, i.e. a simple NN can learn more easily the behavior of the

158 7 Evolutionary Computing for Architecture Optimization

Fig. 7.19. General architecture of the modular neural network

function in one of the regions. We used three-layer feed-forward NNs for each
of the modules with the Levenberg-Marquardt training algorithm. We show
in Fig. 7.19 the general architecture of the MNN used in this paper.

Regarding the genetic algorithm for MNN evolution, we used a hierarchical
chromosome for representing the relevant information of the network. First,
we have the bits for representing the number of layers of each of the three
modules and then we have the bits for representing the number of nodes of
each layer. This scheme basically gives us the chromosome shown in Fig. 7.20.

CM1 M2 CM3 NC1M1 NC2M1 NC3M1 NC1M2 NC2M2 NC3M2 NC1M3 NC1M3 NC1M3
3BITS 3BITS 3BITS 8BITS 8BITS 8BITS 8BITS 8BITS 8BITS 8BITS 8BITS 8BITS

Fig. 7.20. Basic structure of the chromosome containing the information of the
MNN

The fitness function used in this work combines the information of the
error objective and also the information about the number of nodes as a
second objective. This is shown in the following equation.

f(z) =
(

1
α ∗ Ranking(ObjV 1) + β ∗ ObjV 2

)

∗ 10 (7.12)

The first objective is basically the average sum of squared of errors as calcu-
lated by the predicted outputs of the MNN compared with real values of the
function. This is given by the following equation.

7.3 Applications of Genetic Algorithms 159

f1 =
1
N

N∑

i=1

(Yi − yi) (7.13)

The parameters of the genetic algorithm are as follows:

Type of crossover operator: Two-point crossover
Crossover rate: 0.8
Type of mutation operator: Binary mutation
Mutation rate: 0.05
Population size per generation: 10
Total number of generations: 100

We show in Fig. 7.21 the topology of the final evolved modules of the neural
network for the problem of function identification. As we can appreciate, from
this figure, module 2 is the smallest one and module 3 is the largest one. The
result of MNN evolution is a particular architecture with different size of the
modules (neural networks).

Fig. 7.21. Topology of the final evolved MNN for function identification

The MNN architecture shown in Fig. 7.21 is the best one for the specific
problem of system identification. It is worthwhile noting that this network
topology is difficult to design manually, for this reason the HGA approach is
a good choice for neural network design and optimization. Finally, we show
in Fig. 7.22 the evolution of the HGA for MNN topology optimization. From
this figure, we can notice that the evolutionary approach is achieving the goal
of MNN design.

160 7 Evolutionary Computing for Architecture Optimization

Fig. 7.22. Plot of the HGA performance for MNN evolution

We described in section our hierarchical genetic algorithm approach for
modular neural network topology design and optimization. The proposed ap-
proach was illustrated with a specific problem of function identification. The
best MNN is obtained by evolving the modules (single NNs) according to the
error of identification and also the complexity of the modules. The results for
the problem of function identification are very good and show the feasibility
of the HGA approach for MNN topology optimization.

7.3.2 Evolving Fuzzy Systems

Ever since the very first introduction of the fundamental concept of fuzzy logic
by Zadeh in 1973, its use in engineering disciplines has been widely studied. Its
main attraction undoubtedly lies in the unique characteristics that fuzzy logic
systems possess. They are capable of handling complex, non-linear dynamic
systems using simple solutions. Very often, fuzzy systems provide a better
performance than conventional non-fuzzy approaches with less development
cost.

However, to obtain an optimal set of fuzzy membership functions and rules
is not an easy task. It requires time, experience, and skills of the operator for
the tedious fuzzy tuning exercise. In principle, there is no general rule or
method for the fuzzy logic set-up. Recently, many researchers have considered
a number of intelligent techniques for the task of tuning the fuzzy set.

Here, another innovative scheme is described (Man, Tang & Kwong, 1999).
This approach has the ability to reach an optimal set of membership functions
and rules without a known overall fuzzy set topology. The conceptual idea of

7.3 Applications of Genetic Algorithms 161

r e ∆u

−

u

y

Genetic Algorithm

Fuzzy Logic System

Input
Membership

functions

Fuzzifier

Fuzzy
Rules

Output
Membership

functions

DefuzzifierInference
Engine

Controller
Process

Fig. 7.23. Genetic algorithm for a fuzzy control system

this approach is to have an automatic and intelligent scheme to tune the
membership functions and rules, in which the conventional closed loop fuzzy
control strategy remains unchanged, as indicated in Fig. 7.23.

In this case, the chromosome of a particular is shown in Fig. 7.24. The
chromosome consists of two types of genes, the control genes and parameter
genes. The control genes, in the form of bits, determine the membership func-
tion activation, whereas the parameter genes are in the form of real numbers
to represent the membership functions.

To obtain a complete design for the fuzzy control system, an appropriate
set of fuzzy rules is required to ensure system performance. At this point it
should be stressed that the introduction of the control genes is done to govern
the number of fuzzy subsets in the system.

Membership
Chromosome

Control Genes
(ze)

Parameter Genes
 (zp)

(z) … … …0 α1a α1b α1c
1 1 0 α2a α2b α2c γna γnb γnc

Fig. 7.24. Chromosome structure for the fuzzy system

162 7 Evolutionary Computing for Architecture Optimization

Start

Z H

Selection
membership
Chromosome

from Λ

Crossover
and

Mutation

New
membership

Chromosome z

Determine
the number

of active
fuzzy subsets

Formulate
the

Membership
Functions

Select the
Fuzzy Rule

Chromosome

Mutation

Fitness Evaluation

Check whether insert Z
and H into Λ and Ω

Membership
population Λ

Fuzzy Rule
population Ω

Fig. 7.25. Genetic cycle for fuzzy system optimization

Once the formulation of the chromosome has been set for the fuzzy mem-
bership functions and rules, the genetic operation cycle can be performed. This
cycle of operation for the fuzzy control system optimization using a genetic
algorithm is illustrated in Fig. 7.25.

There are two population pools, one for storing the membership chromo-
somes and the other for storing the fuzzy rule chromosomes. We can see this,
in Fig. 7.26, as the membership population and fuzzy rule population, respec-
tively. Considering that there are various types of gene structure, a number
of different genetic operations can be used. For the crossover operation, a one
point crossover is applied separately for both the control and parameter genes
of the membership chromosomes within certain operation rates. There is no

7.3 Applications of Genetic Algorithms 163

Fig. 7.26. Architecture of the fuzzy control system

crossover operation for fuzzy rule chromosomes since only one suitable rule
set can be assisted.

Bit mutation is applied for the control genes of the membership chromo-
some. Each bit of the control gene is flipped if a probability test is satisfied
(a randomly generated number is smaller than a predefined rate). As for the
parameter genes, which are real number represented, random mutation is ap-
plied.

The complete genetic cycle continues until some termination criteria, for
example, meeting the design specification or number of generation reaching a
predefined value, are fulfilled.

Application to the Optimization of a Fuzzy Controller

We describe in this section the application of a Hierarchical Genetic Algo-
rithm (HGA) for fuzzy system optimization (Man et al., 1999). In particular,
we consider the problem of finding the optimal set of rules and membership
functions for a specific application (Yen & Langari, 1999). The HGA is used
to search for this optimal set of rules and membership functions, according
to the data about the problem. We consider, as an illustration, the case of a
fuzzy system for intelligent control.

Fuzzy systems are capable of handling complex, non-linear and sometimes
mathematically intangible dynamic systems using simple solutions (Jang
et al., 1997). Very often, fuzzy systems may provide a better performance
than conventional non-fuzzy approaches with less development cost (Procyk
& Mamdani, 1979). However, to obtain an optimal set of fuzzy membership
functions and rules is not an easy task. It requires time, experience and skills
of the designer for the tedious fuzzy tuning exercise. In principle, there is no
general rule or method for the fuzzy logic set-up, although a heuristic and

164 7 Evolutionary Computing for Architecture Optimization

iterative procedure for modifying the membership functions to improve per-
formance has been proposed. Recently, many researchers have considered a
number of intelligent schemes for the task of tuning the fuzzy system. The
noticeable Neural Network (NN) approach (Jang & Sun, 1995) and the Ge-
netic Algorithm (GA) approach (Homaifar & McCormick, 1995) to optimize
either the membership functions or rules, have become a trend for fuzzy logic
system development.

The HGA approach differs from the other techniques in that it has the
ability to reach an optimal set of membership functions and rules without a
known fuzzy system topology (Tang et al., 1998). During the optimization
phase, the membership functions need not be fixed. Throughout the genetic
operations (Holland, 1975), a reduced fuzzy system including the number of
membership functions and fuzzy rules will be generated. The HGA approach
has a number of advantages:

(1) An optimal and the least number of membership functions and rules are
obtained

(2) No pre-fixed fuzzy structure is necessary, and
(3) Simpler implementing procedures and less cost are involved.

We consider in this section the case of automatic anesthesia control in human
patients for testing the optimized fuzzy controller. We did have, as a reference,
the best fuzzy controller that was developed for the automatic anesthesia con-
trol (Karr & Gentry, 1993), and we consider the optimization of this controller
using the HGA approach (Castillo & Melin, 2003). After applying the genetic
algorithm the number of fuzzy rules was reduced from 12 to 9 with a similar
performance of the fuzzy controller (Lozano, 2004). Of course, the parame-
ters of the membership functions were also tuned by the genetic algorithm. We
did compare the simulation results of the optimized fuzzy controllers obtained
with the HGA against the best fuzzy controller that was obtained previously
with expert knowledge, and control is achieved in a similar fashion.

The fitness function in this case can be defined in this case as follows:

fi = Σ|y(k) − r(k)| (7.14)

where Σ indicates the sum for all the data points in the training set, and y(k)
represents the real output of the fuzzy system and r(k) is the reference output.
This fitness value measures how well the fuzzy system is approximating the
real data of the problem.

We consider the case of controlling the anesthesia given to a patient as the
problem for finding the optimal fuzzy system for control (Lozano, 2004). The
complete implementation was done in the MATLAB programming language.
The fuzzy systems were build automatically by using the Fuzzy Logic Toolbox,
and genetic algorithm was coded directly in the MATLAB language. The fuzzy
systems for control are the individuals used in the genetic algorithm, and these
are evaluated by comparing them to the ideal control given by the experts.

7.3 Applications of Genetic Algorithms 165

In other words, we compare the performance of the fuzzy systems that are
generated by the genetic algorithm, against the ideal control system given by
the experts in this application. We give more details below.

The main task of the anesthesist, during and operation, is to control anes-
thesia concentration. In any case, anesthesia concentration can’t be measured
directly. For this reason, the anesthesist uses indirect information, like the
heartbeat, pressure, and motor activity. The anesthesia concentration is con-
trolled using a medicine, which can be given by a shot or by a mix of gases.
We consider here the use of isoflurance, which is usually given in a concen-
tration of 0 to 2% with oxygen. In Fig. 7.26 we show a block diagram of the
controller.

The air that is exhaled by the patient contains a specific concentration of
isoflurance, and it is re-circulated to the patient. As consequence, we can mea-
sure isoflurance concentration on the inhaled and exhaled air by the patient,
to estimate isoflurance concentration on the patient’s blood. From the control
engineering point of view, the task by the anesthesist is to maintain anesthe-
sia concentration between the high level W (threshold to wake up) and the
low level E (threshold to success). These levels are difficult to be determined
in a changing environment and also are dependent on the patient’s condi-
tion. For this reason, it is important to automate this anesthesia control, to
perform this task more efficiently and accurately, and also to free the anes-
thesist from this time consuming job. The anesthesist can then concentrate
in doing other task during operation of a patient.

The first automated system for anesthesia control was developed using a
PID controller in the 60’s. However, this system was not very successful due
to the non-linear nature of the problem of anesthesia control. After this first
attempt, adaptive control was proposed to automate anesthesia control, but
robustness was the problem in this case. For these reasons, fuzzy logic was
proposed for solving this problem. An additional advantage of fuzzy control is
that we can use in the rules the same vocabulary as the medical Doctors use.
The fuzzy control system can also be easily interpreted by the anesthesists.

The fuzzy system is defined as follows:

(1) Input variables: Blood pressure and Error
(2) Output variable: Isoflurance concentration
(3) Nine fuzzy if-then rules of the optimized system, which is the base for

comparison
(4) 12 fuzzy if-then rules of an initial system to begin the optimization cycle

of the genetic algorithm.

The linguistic values used in the fuzzy rules are the following: PB = Positive
Big, PS = Positive Small, ZERO = zero, NB =Negative Big, NS = Negative
Small

We show below a sample set of fuzzy rules that are used in the fuzzy
inference system that is represented in the genetic algorithm for optimization.

166 7 Evolutionary Computing for Architecture Optimization

if Blood pressure is NB and error is NB
then conc isoflurance is PS

if Blood pressures is PS
then conc isoflurance is NS

if Blood pressure is NB
then conc isoflurance is PB

if Blood pressure is PB
then conc isoflurance is NB

if Blood pressure is ZERO and error is ZERO
then conc isoflurance is ZERO

if Blood pressure is ZERO and error is PS
then conc isoflurance is NS

if Blood pressure is ZERO and error is NS
then conc isoflurance is PS

if error is NB
then conc isoflurance is PB

if error is PB
then conc isoflurance is NB

if error is PS
then conc isoflurance is NS

if Blood pressure is NS and error is ZERO
then conc isoflurance is NB

if Blood pressure is PS and error is ZERO
then conc isoflurance is PS.

The general characteristics of the genetic algorithm that are the following:
NIND = 40; % Number of individuals in each subpopulation.
MAXGEN = 300; % Maximum number of generations allowed.
GGAP = .6; %“Generational gap”, which is the percentage from the

complete population of new individuals generated in each generation.
PRECI = 120; % Precision of binary representations.
SelCh = select(“rws”, Chrom, FitnV, GGAP); % Roulette wheel

method for selecting the indivuals participating in the genetic operations.
SelCh = recombin(“xovmp”, SelCh, 0.7); % Multi-point crossover

as recombination method for the selected individuals.
ObjV = FuncionObjDifuso120 555(Chrom, sdifuso); Objective

function is given by the error between the performance of the ideal control
system given by the experts and the fuzzy control system given by the genetic
algorithm.

In Table 7.1 we show the chromosome representation, which has 120 binary
positions. These positions are divided in two parts, the first one indicates the
number of rules of the fuzzy inference system, and the second one is divided
again into fuzzy rules to indicate which membership functions are active or
inactive for the corresponding rule.

7.3 Applications of Genetic Algorithms 167

Table 7.1. Binary Chromosome Representation

Bit assigned Representation

1 a 12 Which rule is active or inactive
13 a 21 Membership functions active or inactive of rule 1
22 a 30 Membership functions active or inactive of rule 2
. . . Membership functions active or inactive of rule. . .
112 a 120 Membership functions active or inactive of rule 12

We now describe the simulation results that were achieved using the hi-
erarchical genetic algorithm for the optimization of the fuzzy control system,
for the case of anesthesia control. The genetic algorithm is able to evolve the
topology of the fuzzy system for the particular application. We used 300 gen-
erations of 40 individuals each to achieve the minimum error. The value of
the minimum error achieved with this particular fuzzy logic controller was of
0.0064064, which is considered a small number in this application.

In Fig. 7.27 we show the simulation results of the fuzzy logic controller
produced by the genetic algorithm after evolution. We used a sinusoidal input
signal with unit amplitude and a frequency of 2 radians/second, with a transfer
function of [1/(0.5s+1)]. In this figure we can appreciate the comparison of the
outputs of both the ideal controller (1) and the fuzzy controller optimized by
the genetic algorithm (2). From this figure it is clear that both controllers are
very similar and as a consequence we can conclude that the genetic algorithm
was able to optimize the performance of the fuzzy logic controller.

Fig. 7.27. Comparison between outputs of the ideal controller (1) and the fuzzy
controller produced with the HGA (2)

168 7 Evolutionary Computing for Architecture Optimization

We consider in this section the case of automatic anesthesia control in
human patients for testing the optimized fuzzy controller. We did have, as
a reference, the best fuzzy controller that was developed for the automatic
anesthesia control, and we consider the optimization of this controller us-
ing the HGA approach. After applying the genetic algorithm the number of
fuzzy rules was reduced from 12 to 9 with a similar performance of the fuzzy
controller. Of course, the parameters of the membership functions were also
tuned by the genetic algorithm. We did compare the simulation results of the
optimized fuzzy controllers obtained with the HGA against the best fuzzy
controller that was obtained previously with expert knowledge, and control
is achieved in a similar fashion. Since simulation results are similar, and the
number of rules was reduced, we can conclude that the HGA approach is a
good alternative for designing fuzzy systems.

7.4 Summary

We have presented in this chapter the basic concepts of genetic algorithms and
their applications. These optimization methodologies are motivated by na-
ture’s wisdom. Genetic algorithms emulate the process of evolution in nature.
We have presented classical examples of the application of these optimization
techniques. We have also presented the application of genetic algorithms to
the problems of optimizing neural networks and fuzzy systems. Genetic al-
gorithms can then be viewed as a technique for efficient design of intelligent
systems, because they can be used to optimize the weights or architecture of
the neural network, or the number of rules in a fuzzy system. In later chap-
ters we will make use of this fact to design intelligent systems for pattern
recognition in real world applications.

	7 Evolutionary Computingfor Architecture Optimization
	7.1 Genetic Algorithms
	7.2 Modifications to Genetic Algorithms
	7.2.1 Chromosome Representation
	7.2.2 Objective Functions and Fitness
	7.2.3 Selection Methods
	7.2.4 Genetic Operations
	7.2.5 Parallel Genetic Algorithm

	7.3 Applications of Genetic Algorithms
	7.3.1 Evolving Neural Networks
	7.3.2 Evolving Fuzzy Systems

	7.4 Summary

