
4

Supervised Learning Neural Networks

In this chapter, we describe the basic concepts, notation, and basic learning
algorithms for supervised neural networks that will be of great use for solving
pattern recognition problems in the following chapters of this book. The chap-
ter is organized as follows: backpropagation for feedforward networks, radial
basis networks, adaptive neuro-fuzzy inference systems (ANFIS) and applica-
tions. First, we give a brief review of the basic concepts of neural networks
and the basic backpropagation learning algorithm. Second, we give a brief
description of the momentum and adaptive momentum learning algorithms.
Third, we give a brief review of the radial basis neural networks. Finally, we
end the chapter with a description of the adaptive neuro-fuzzy inference sys-
tem (ANFIS) methodology. We consider this material necessary to understand
the new methods for pattern recognition that will be presented in the final
chapters of this book.

4.1 Backpropagation for Feedforward Networks

This section describes the architectures and learning algorithms for adaptive
networks, a unifying framework that subsumes almost all kinds of neural net-
work paradigms with supervised learning capabilities. An adaptive network,
as the name indicates, is a network structure consisting of a number of nodes
connected through directional links. Each node represents a process unit, and
the links between nodes specify the causal relationship between the connected
nodes. The learning rule specifies how the parameters (of the nodes) should
be updated to minimize a prescribed error measure.

The basic learning rule of the adaptive network is the well-known steepest
descent method, in which the gradient vector is derived by successive invoca-
tions of the chain rule. This method for systematic calculation of the gradient
vector was proposed independently several times, by Bryson and Ho (1969),
Werbos (1974), and Parker (1982). However, because research on artificial
neural networks was still in its infancy at those times, these researchers’ early

Patricia Melin and Oscar Castillo: Hybrid Intelligent Systems for Pattern Recognition Using
Soft Computing, StudFuzz 172, 55–83 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

56 4 Supervised Learning Neural Networks

work failed to receive the attention it deserved. In 1986, Rumelhart et al.
used the same procedure to find the gradient in a multilayer neural network.
Their procedure was called “backpropagation learning rule”, a name which
is now widely known because the work of Rumelhart inspired enormous in-
terest in research on neural networks. In this section, we introduce Werbos’s
original backpropagation method for finding gradient vectors and also present
improved versions of this method.

4.1.1 The Backpropagation Learning Algorithm

The procedure for finding a gradient vector in a network structure is generally
referred to as “backpropagation” because the gradient vector is calculated
in the direction opposite to the flow of the output of each node. Once the
gradient is obtained, a number of derivative-based optimization and regression
techniques are available for updating the parameters. In particular, if we use
the gradient vector in a simple steepest descent method, the resulting learning
paradigm is referred to as “backpropagation learning rule”. Suppose that a
given feedforward adaptive network has L layers and layer l (l = 0, 1, . . . , L)
has N(l) nodes. Then the output and function of node i [i = 1, . . . , N(l)] in
layer l can be represented as xl,i and fl,i, respectively, as shown in Fig. 4.1.
Since the output of a node depends on the incoming signals and the parameter
set of the node, we have the following general expression for the node function
fl,i :

Xl,i = fl,i(xi−1,1, . . . , xl−1,N(l−1), α, β, γ, . . .) (4.1)

where α, β, γ, etc. are the parameters of this node.
Assuming that the given training data set has P entries, we can define an

error measure for the pth (1 ≤ p ≤ P) entry of the training data as the sum
of the squared errors:

 x1,1 x3,1

 x0,1 x2,1

 x1,2

x3,2

 x0,2

x2,2

 x1,3

Layer 0 Layer 1 Layer 2 Layer 3

f1,1

f1,2

f1,3

f2,1

f2,2

f3,1

f3,2

Fig. 4.1. Feedforward adaptive network

4.1 Backpropagation for Feedforward Networks 57

Ep =
N(L)∑

k=1

(dk − xL,k)2 (4.2)

where dk is the kth component of the pth desired output vector and xL,k is the
kth component of the actual output vector produced by presenting the pth
input vector to the network. Obviously, when Ep is equal to zero, the network
is able to reproduce exactly the desired output vector in the pth training data
pair. Thus our task here is to minimize an overall error measure, which is
defined as E =

∑
Ep.

We can also define the “error signal” εl,i as the derivative of the error
measure Ep with respect to the output of the node i in layer l, taking both
direct and indirect paths into consideration. Mathematically,

εl,i =
∂+Ep

∂xl,i
(4.3)

this expression was called the “ordered derivative” by Werbos (1974). The
difference between the ordered derivative and the ordinary partial derivative
lies in the way we view the function to be differentiated. For an internal node
output xl,i, the partial derivative ∂+Ep/∂xl,i is equal to zero, since Ep does
not depend on xl,i directly. However, it is obvious that Ep does depend on
xl,i indirectly, since a change in xl,i will propagate through indirect paths to
the output layer and thus produce a corresponding change in the value of Ep.

The error signal for the ith output node (at layer L) can be calculated
directly:

εL,i =
∂+Ep

∂xL,i
=

∂Ep

∂xL,i
(4.4)

This is equal to εL,i = −2(di−xL,i) if Ep is defined as in (4.2). For the internal
node at the ith position of layer l, the error signal can be derived by the chain
rule of differential calculus:

εl,i =
∂+Ep

∂xl,i
︸︷︷︸

=
N(l+1)∑

m=1

∂+Ep

∂xl+1,m

∂fl+1,m

∂xl,i
︸ ︷︷ ︸

=
M(l+1)∑

m=1

εl+1,m
∂fl+1,m

∂xl,i
(4.5)

error signal error signal
at layer l at layer l + 1

where 0 ≤ l ≤ L − 1. That is, the error signal of an internal node at layer
l can be expressed as a linear combination of the error signal of the nodes
at layer l + 1. Therefore, for any l and i, we can find εl,i by first applying
(4.4) once to get error signals at the output layer, and then applying (4.5)
iteratively until we reach the desired layer l. The underlying procedure is
called backpropagation since the error signals are obtained sequentially from
the output layer back to the input layer.

The gradient vector is defined as the derivative of the error measure with
respect to each parameter, so we have to apply the chain rule again to find
the gradient vector. If α is a parameter of the ith node at layer l, we have

58 4 Supervised Learning Neural Networks

∂+Ep

∂α
=

∂+Ep

∂xl,i

∂f l,i

∂α
= εl,i

∂f l,i

∂α
(4.6)

The derivative of the overall error measure E with respect to α is

∂+E

∂α
=

p∑

p=1

∂+Ep

∂α
(4.7)

Accordingly, for simple steepest descent (for minimization), the update
formula for the generic parameter α is

∆α = −η
∂+E

∂α
(4.8)

in which η is the “learning rate”, which can be further expressed as

η =
k

√∑
α(∂E/∂α)2

(4.9)

where k is the “step size”, the length of each transition along the gradient
direction in the parameter space.

There are two types of learning paradigms that are available to suit the
needs for various applications. In “off-line learning” (or “batch learning”),
the update formula for parameter α is based on (4.7) and the update action
takes place only after the whole training data set has been presented-that is,
only after each “epoch” or “sweep”. On the other hand, in “on-line learning”
(or “pattern-by-pattern learning”), the parameters are updated immediately
after each input-output pair has been presented, and the update formula is
based on (4.6). In practice, it is possible to combine these two learning modes
and update the parameter after k training data entries have been presented,
where k is between 1 and P and it is sometimes referred to as the “epoch
size”.

4.1.2 Backpropagation Multilayer Perceptrons

Artificial neural networks, or simply “neural networks” (NNs), have been stud-
ied for more than three decades since Rosenblatt first applied single-layer
“perceptrons” to pattern classification learning (Rosenblatt, 1962). However,
because Minsky and Papert pointed out that single-layer systems were limited
and expressed pessimism over multilayer systems, interest in NNs dwindled in
the 1970s (Minsky & Papert, 1969). The recent resurgence of interest in the
field of NNs has been inspired by new developments in NN learning algorithms
(Fahlman & Lebiere, 1990), analog VLSI circuits, and parallel processing tech-
niques (Lippmann, 1987).

Quite a few NN models have been proposed and investigated in recent
years. These NN models can be classified according to various criteria, such as

4.1 Backpropagation for Feedforward Networks 59

Fig. 4.2. Activation functions for backpropagation MLPs: (a) logistic function;
(b) hyperbolic function; (c) identity function

their learning methods (supervised versus unsupervised), architectures (feed-
forward versus recurrent), output types (binary versus continuous), and so
on. In this section, we confine our scope to modeling problems with desired
input-output data sets, so the resulting networks must have adjustable pa-
rameters that are updated by a supervised learning rule. Such networks are
often referred to as “supervised learning” or “mapping networks”, since we
are interested in shaping the input-output mappings of the network according
to a given training data set.

A backpropagation “multilayer perceptron” (MLP) is an adaptive network
whose nodes (or neurons) perform the same function on incoming signals;
this node function is usually a composite of the weighted sum and a differen-
tiable non-linear activation function, also known as the “transfer function”.
Figure 4.2 depicts three of the most commonly used activation functions in
backpropagation MLPs:

Logistic function: f(x) = 1
1 + e−x

Hyperbolic tangent function: f(x) = tanh(x/2) = 1 − e−x

1 + e−x

Identity function: f(x) = x

Both the hyperbolic tangent and logistic functions approximate the signum
and step function, respectively, and provide smooth, nonzero derivatives with
respect to input signals. Sometimes these two activation functions are referred
to as “squashing functions” since the inputs to these functions are squashed to
the range [0, 1] or [−1, 1]. They are also called “sigmoidal functions” because
their s-shaped curves exhibit smoothness and asymptotic properties.

Backpropagation MLPs are by far the most commonly used NN struc-
tures for applications in a wide range of areas, such as pattern recognition,
signal processing, data compression and automatic control. Some of the well-
known instances of applications include NETtalk (Sejnowski & Rosenberg,

60 4 Supervised Learning Neural Networks

1987), which trained an MLP to pronounce English text, Carnegie Mellon
University’s ALVINN (Pomerleau, 1991), which used an MLP for steering
an autonomous vehicle; and optical character recognition (Sackinger, Boser,
Bromley, Lecun & Jackel, 1992). In the following lines, we derive the back-
propagation learning rule for MLPs using the logistic function.

The “net input” x of a node is defined as the weighted-sum of the incoming
signals plus a bias term. For instance, the net input and output of node j in
Fig. 4.3 are

xj =
∑

i

wijxi + wj ,

xj = f(xj) =
1

1 + exp(−xj)
, (4.10)

where xi is the output of node i located in any one of the previous layers, wij is
the weight associated with the link connecting nodes i and j, and wj is the bias
of node j. Since the weights wij are actually internal parameters associated
with each node j, changing the weights of a node will alter the behavior of
the node and in turn alter the behavior of the whole backpropagation MLP.

x1
w1j

w2j
xj

x2

Node j

x3
w3j

 xjΣ ∫

Fig. 4.3. Node j of a backpropagation MLP

Figure 4.4 shows a three-layer backpropagation MLP with three inputs to
the input layer, three neurons in the hidden layer, and two output neurons
in the output layer. For simplicity, this MLP will be referred to as a 3-3-2
network, corresponding to the number of nodes in each layer.

The “backward error propagation”, also known as the “backpropagation”
(BP) or the “generalized data rule” (GDR), is explained next. First, a squared
error measure for the pth input-output pair is defined as

Ep =
∑

k

(dk − xk)2 (4.11)

where dk is the desired output for node k, and xk is the actual output for node
k when the input part of the pth data pair presented. To find the gradient
vector, an error term εi is defined as

εi =
∂+Ep

∂xi
(4.12)

4.1 Backpropagation for Feedforward Networks 61

x1 x7

x2

x8

x3

⇑⇑ ⇑
 Layer 0

(Input Layer)
 Layer 1

(Hidden Layer)
Layer 2

(Output Layer)

5

6

7
4

8

Fig. 4.4. A 3-3-2 backpropagation MLP

By the chain rule, the recursive formula for εi can be written as

εi =

−2(di − xi)∂xi

∂xi
= −2(di − xi)xi(1 − xi) if node i is a

output node
∂xi

∂xi

∑
j,i<j

∂+Ep

∂xj

∂xj

∂xi
= xi(1 − xi)

∑
j,i<j εjwij otherwise

(4.13)

where wij is the connection weight from node i to j; and wij is zero if there
is no direct connection. Then the weight update wki for on-line (pattern-by-
pattern) learning is

∆wki = −η
∂+Ep

∂wki
= −η

∂+Ep

∂xi

∂xi

∂wki
= −ηεixk (4.14)

where η is a learning rate that affects the convergence speed and stability of
the weights during learning.

For off-line (batch) learning, the connection weight wki is updated only
after presentation of the entire data set, or only after an “epoch”:

∆wki = −η
∂+E

∂wki
= −η

∑

p

∂+Ep

∂wki
(4.15)

or, in vector form,

∆w = −η
∂+E

∂w
= −η∇wE (4.16)

where E =
∑

p Ep. This corresponds to a way of using the true gradient
direction based on the entire data set.

The approximation power of backpropagation MLPs has been explored by
some researchers. Yet there is very little theoretical guidance for determining
network size in terms of say, the number of hidden nodes and hidden layers
it should contain. Cybenko (1989) showed that a backpropagation MLP, with
one hidden layer and any fixed continuous sigmoidal non-linear function, can
approximate any continuous function arbitrarily well on a compact set. When
used as a binary-valued neural network with the step activation function,

62 4 Supervised Learning Neural Networks

a backpropagation MLP with two hidden layers can form arbitrary complex
decision regions to separate different classes, as Lippmann (1987) pointed out.
For function approximation as well as data classification, two hidden layers
may be required to learn a piecewise-continuous function Masters (1993).

Lets consider a simple example to illustrate the backpropagation learning
algorithm. We will consider as training data the set of points distributed in
the square [−1, 1] × [−1, 1], which are shown in Fig. 4.5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Training Data

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 4.5. Training data for the backpropagation learning algorithm

We show in Fig. 4.6 the initial approximation of a three layer neural net-
work with 10 neurons in the hidden layer and hyperbolic tangent activation
functions. The initial approximation is quite bad because the initial weights of
the network are generated randomly. After training with the backpropagation
algorithm for 1000 epochs with arrive to the final approximation shown in
Fig. 4.7, which has a final sum of squares errors SSE = 0.0264283.

4.1.3 Methods for Speeding Up Backpropagation

One way for to speed up backpropagation is to use the so-called “momentum
term” (Rumelhart, Hinton & Williams, 1986):

∆w = η∇wE + α∆wprev (4.17)

where wprev is the previous value of the weights, and the “momentum con-
stant” α, in practice, is usually set to a value between 0.1 and 1. The addition

4.1 Backpropagation for Feedforward Networks 63

Fig. 4.6. Initial approximation of the backpropagation learning algorithm

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Function Approximation after 1000 epochs with
backpropagation

Input

O
u

tp
u

t:
 -

,
 T

a
rg

e
t:

 +

Fig. 4.7. Final approximation backpropagation after 1000 epochs

64 4 Supervised Learning Neural Networks

of the momentum term smoothes weight updating and tends to resist erratic
weight changes due to gradient noise or high spatial frequencies in the error
surface. However, the use of momentum terms does not always seem to speed
up training; it is more or less application dependent.

Another useful technique is normalized weight updating:

∆w = −κ(∇wE)/(||∇wE||) (4.18)

This causes the network’s weight vector to move the same Euclidean distance
in the weight space with each update, which allows control of the distance
κ based on the history of error measures. Other strategies for speeding up
backpropagation training include the quick-propagation algorithm Fahlman
(1988), backpropagation with adaptive learning rate, backpropagation with
momentum and adaptive learning rate, and Levenberg-Marquardt learning
algorithm (Jang, Sun & Mizutani, 1997).

Lets consider a simple example to illustrate these methods. We will again
use as training data the set of points shown in Fig. 4.5. We will first apply the
backpropagation with momentum learning algorithm with the same parame-
ters as before. We show in Fig. 4.8 the initial function approximation and in
Fig. 4.9 the final function approximation achieved with backprogration with
momentum.

Fig. 4.8. Initial function approximation with backpropagation with momentum

In this case, the final SSE is of 0.0082689, which is lower than the one
obtained by simple backpropagation. As a consequence we are achieving a
better final approximation with the backpropagation with momentum.

Now we will consider the use of “backpropagation with momentum and
adaptive learning rate”. In this case, the learning rate is not fixed as in the
previous methods, instead it is changed according to the error surface. We will
again consider the training data of Fig. 4.5. The initial function approximation
is shown in Fig. 4.10. The final function approximation is shown in Fig. 4.11,

4.1 Backpropagation for Feedforward Networks 65

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Function Approximation after 1000 epochs
with backpropagation with momentum

Input

O
ut

pu
t:

-,
 T

ar
ge

t:
+

Fig. 4.9. Final function approximation with backpropagation with momentum

Fig. 4.10. Initial approximation with backpropagation and adaptive learning rate

which is achieved after 1000 epochs with the same network architecture as
before.

In this case, the final approximation achieved with the “backpropagation
method with adaptive learning rate” is even better because the SSE is of only
0.0045014. This SSE is lower than the ones obtained previously with the other
methods.

We will now consider the more complicated problem of forecasting the
prices of onion and tomato in the U.S. market. The time series for the prices
of these consumer goods show very complicated dynamic behavior, and for

66 4 Supervised Learning Neural Networks

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Function Approximation after 1000 epochs with back
propagation with momentum and adaptive learningrate

Input

O
ut

pu
t:

-,
 T

ar
ge

t:
+

Fig. 4.11. Final approximation with backpropagation and adaptive learning rate

this reason it is interesting to analyze and predict the future prices for these
goods. We show in Table 4.1 the time series of onion prices in the U.S. market
from 1994 to 2000. We also show in Fig. 4.12 the time series of onion prices
in the same period, to give an idea of the complex dynamic behavior of this
time series.

We will apply both the neural network approach and the linear regression
one to the problem of forecasting the time series of onion prices. Then, we will
compare the results of both approaches to select the best one for forecasting.

Table 4.1. Time series of onion prices in the U.S. Market for 1994–2000 period

Month 1994–1995 1995–1996 1996–1997 1997–1998 1998–1999 1999–2000

October 4.13 7.30 6.60 5.63 8.74 6.89
November 4.20 7.50 6.69 5.72 4.66 6.93
December 4.38 7.60 6.30 4.80 8.11 5.63
January 5.16 8.21 6.10 4.75 6.19 3.92
February 5.14 6.00 5.84 4.83 5.97 4.59
March 4.65 7.86 4.73 4.75 4.86 3.76
April 4.89 5.58 5.38 4.75 5.62 3.19

4.1 Backpropagation for Feedforward Networks 67

0 5 10 15 20 25 30 35 40 45

3

4

5

6

7

8

9

Price in US Dlls. per box
pr

ic
e

time

Fig. 4.12. Price in US Dollars per box of onion from October 1994 to April 2000

We also show in Table 4.2 the time series of tomato prices in the U.S. Market
from 1994 to 1999.

First, we will describe the results of applying neural networks to the time
series of onion prices (Table 4.1). The data given in Table 4.1 was used as
training data for feedforward neural networks with two different learning al-
gorithms. The adaptive learning backpropagation with momentum, and the
Levenberg-Marquardt training algorithms were used for the neural networks.

We show in Fig. 4.13 the result of training a three layer (85 nodes in
the hidden layer) feedforward neural network with the Levenberg-Marquardt
learning algorithm. In Fig. 4.13, we can see how the neural network approxi-
mates very well the real time series of onion prices over the relevant period of
time. Actually, we have seen that the approximating power for the Levenberg-
Marquardt learning algorithm is better.

Table 4.2. Time series of tomato prices in the U.S. Market for the 1994–1999 period

Month 1994 1995 1996 1997 1998 1999

June 28.40 32.80 26.80 27.30 25.70 27.80
July 23.30 17.10 23.50 25.40 43.10 20.30
August 27.40 12.70 20.60 25.40 20.40 22.50
September 19.10 17.20 22.40 23.20 26.60 25.30
October 25.70 20.20 27.60 23.30 43.10 18.90
November 28.80 22.70 31.60 41.10 35.80 20.30

68 4 Supervised Learning Neural Networks

Fig. 4.13. Neural network for onion prices with the Levenberg-Marquardt algorithm

Now we describe the results of applying neural networks to the time series
of tomato prices (Table 4.2). We show in Fig. 4.14 the result of training
a three layer (85 nodes in hidden layer) neural network with the Levenberg-
Marquardt learning algorithm. In Fig. 4.14, we can see how the neural network
approximates very well the time series of tomato prices.

We also show in Fig. 4.15 the results of forecasting tomato prices from
2000 to 2010 using the neural network with the Levenberg-Marquardt learning
algorithm. Predictions are considered very good by experts at the beginning
(first three years or so) but after that they may be not so good. In any case, the
results are better than the ones obtained with classical regression methods.

We summarize the above results using neural networks, and the results
of using linear regression models in Table 4.3. From Table 4.3 we can see
very clearly the advantage of using neural networks for simulating and fore-
casting the time series of prices. Also, we can conclude from this table that
the Levenberg-Marquardt training algorithm is better than backpropagation
with momentum. Of course, the reason for this may be that the Levenberg-
Marquardt training algorithm, having a variable learning rate is able to adjust
to the complicated behavior of the time series. Finally, we have to mention
that the problem of time series analysis can be considered as one of pat-
tern recognition, because we are basically finding or learning the patterns in
data. For this reason, it is very important to be able to use neural networks
in this type of problems. We will concentrate in this book more on pattern

4.1 Backpropagation for Feedforward Networks 69

0 5 10 15 20 25 30 35
10

15

20

25

30

35

40

45
Neural Network training for forecasting tomato prices

Time (months)

P
ri
ce

 in
 d

o
lla

rs

Fig. 4.14. Neural network for tomato prices with the Levenberg-Marquardt algo-
rithm

30 40 50 60 70 80 90 100
25

26

27

28

29

30

31

32

33

Forecasting tomato prices from 2000 to 2010
(only producing months considered, i.e. june-november)

Time (months)

P
ric

e
in

 d
ol

la
rs

Fig. 4.15. Forecasting tomato prices from 2000 to 2010 with the neural network

70 4 Supervised Learning Neural Networks

Table 4.3. Summary of results for the forecasting methods

Training Data Validation with Future Data (2000)

SSE Tomato SSE Onion SSE Tomato SSE Onion

NN LM 0.019 0.00039 0.025 0.00055
NN BPM 0.100 0.00219 0.150 0.00190
LR AR(1) 0.250 0.05000 0.551 0.08501
LR AR(2) 0.200 0.01000 0.511 0.03300

recognition for images, but time series analysis and data mining are also im-
portant areas of application for intelligent techniques.

4.2 Radial Basis Function Networks

Locally tuned and overlapping receptive fields are well-known structures that
have been studied in regions of the cerebral cortex, the visual cortex, and oth-
ers. Drawing on knowledge of biological receptive fields, Moody and Darken
(1989) proposed a network structure that employs local receptive fields to
perform function mappings. Similar schemes have been proposed by Powell
(1987) and many others in the areas of “interpolation” and “approximation
theory”; these schemes are collectively call radial basis function approxima-
tions. Here we will call the neural network structure the “radial basis function
network” or RBFN.

Figure 4.16 shows a schematic diagram of a RBFN with four receptive
field units; the activation level of the ith receptive field unit (or hidden
unit) is

wi = Ri(x) = Ri(||x − ui||/σi), i = 1, 2, . . . ,H , (4.19)

where x is a multidimensional input vector, ui is a vector with the same
dimension as x, H is the number of radial basis functions (or, equivalently,
receptive field units), and Ri() is the ith radial basis function with a single
maximum at the origin. There are no connection weights between the input
layer and the hidden layer. Typically, Ri() is a Gaussian function

Ri(x) = exp
[
−(||x − ui||2)/2σ2

i

]
(4.20)

or a logistic function

Ri(x) = 1/[1 + exp
[
(||x − ui||2)/σ2

i

]
(4.21)

Thus, the activation level of radial basis function wi computed by the ith
hidden unit is maximum when the input vector x is at the center ui of that
unit.

4.2 Radial Basis Function Networks 71

W1

C1
X

C2
W2

 Inputs C3 Output O1

Y W3
C4

W4

Hidden Layer

R1

R2

R3

R4

∑

Fig. 4.16. Single-output RBFN that uses weighted sum

The output of an RBFN can be computed in two ways. In the simpler
method, as shown in Fig. 4.12, the final output is the weighted sum of the
output value associated with each receptive field:

d(x) =
H∑

i=1

ciwi =
H∑

i=1

ciRi(x) (4.22)

where ci is the output value associated with the ith receptive field. We can
also view ci as the connection weight between the receptive field i and the
ouput unit. A more complicated method for calculating the overall output
is to take the weighted average of the output associated with each receptive
field:

d(x) =

(
H∑

i=1

ciwi

)/(
H∑

i=1

wi

)

(4.23)

Weighted average has a higher degree of computational complexity, but it has
the advantage that points in the areas of overlap between two or more recep-
tive fields will have a well-interpolated overall output between the outputs of
the overlapping receptive fields.

For representation purposes, if we change the radial basis function Ri(x) in
each node of layer 2 in Fig. 4.16 to its normalized counterpart Ri(x)/

∑
i Ri(x),

then the overall output is specified by (4.23). A more explicit representation
is the shown in Fig. 4.17, where the division of the weighted sum (

∑
i=1 ci wi)

by the activation total (
∑

i=1 wi) is indicated in the division node in the last
layer. Of course, similar figures can be drawn for two inputs or more in a
RBFN network. We can appreciate from these figures the architecture of this

72 4 Supervised Learning Neural Networks

W1
C1

X

C2
W2

 Inputs C3 O1
Output

Y W3

C4
∑ Wi

W4

Hidden Layer

R1

R2

R3

R4

∑ /

∑

Fig. 4.17. Single-output RBFN that uses weighted average

type of neural networks. As a consequence we can see the difference between
RBFN neural networks and MLP networks.

Moody-Darken’s RBFN may be extended by assigning a linear function to
the output function of each receptive field-that is, making ci a linear combi-
nation of the input variables plus a constant:

ci = aT
i x + bi (4.24)

where ai is a parameter vector and bi is a scalar parameter. An RBFN’s ap-
proximation capacity may be further improved with supervised adjustments
of the center and shape of the receptive field (or radial basis) functions (Lee
& Kil, 1991). Several learning algorithms have been proposed to identify the
parameters (ui, σi, and ci) of an RBFN. Besides using a supervised learn-
ing scheme alone to update all modifiable parameters, a variety of sequential
training algorithms for RBFNs have been reported. The receptive field func-
tions are first fixed, and then the weights of the output layer are adjusted.
Several schemes have been proposed to determine the center positions (ui)
of the receptive field functions. Lowe (1989) proposed a way to determine
the centers based on standard deviations of the training data. Moody and
Darken (1989) selected the centers ui by means of data clustering techniques
that assume that similar input vectors produce similar outputs; σi’s are then
obtained heuristically by taking the average distance to the several nearest
neighbors of ui’s. Once the non-linear parameters are fixed and the receptive
fields are frozen, the linear parameters (i.e., the weights of the output layer)
can be updated using either the least squares method or the gradient method.

Using (4.24), extended RBFN response is identical to the response pro-
duced by the first-order Sugeno (type-1) fuzzy inference system described in

4.2 Radial Basis Function Networks 73

Chap. 2, provided that the membership functions, the radial basis functions,
and certain operators are chosen correctly. While the RBFN consists of radial
basis functions, the Sugeno fuzzy system contains a certain number of mem-
bership functions. Although the fuzzy system and the RBFN were developed
on different bases, they are essentially rooted in the same grounds. Just as
the RBFN enjoys quick convergence, the fuzzy system can evolve to recognize
some features in a training data set.

Assuming that there is no noise in the training data set, we need to es-
timate a function d(.) that yields exact desired outputs for all training data.
This task is usually called an “interpolation” problem, and the resulting func-
tion d(.) should pass through all of the training data points. When we use an
RBFN with the same number of basis functions as we have training patterns,
we have a so-called “interpolation RBFN”, where each neuron in the hidden
layer responds to one particular training input pattern.

Lets consider application of the RBFN network to the same example of
Fig. 4.5. We will use a two layer RBFN network with 3 neurons in the hidden
layer and weighted sum to calculate the output. We show in Fig. 4.18 the
Gaussian radial basis function used in the network. Figure 4.19 illustrates the
application of weighted sum to achieve the approximation of the training data.
Figure 4.20 shows the final approximation achieved with the RBFN network,
which is very good. The final SSE is of only 0.002, which is smaller than
the one obtained by any of the previous methods. We can conclude that the
RBFN network gives the best approximation to the training data of Fig. 4.5.

Fig. 4.18. Gaussian radial basis function

74 4 Supervised Learning Neural Networks

Fig. 4.19. Weighted sum of the three Gaussian functions of the RBFN network

Fig. 4.20. Final function approximation achieved with the RBFN network

4.3 Adaptive Neuro-Fuzzy Inference Systems

In this section, we describe a class of adaptive networks that are functionally
equivalent to fuzzy inference systems (Kosko, 1992). The architecture is re-
ferred to as ANFIS, which stands for “adaptive network-based fuzzy inference

4.3 Adaptive Neuro-Fuzzy Inference Systems 75

system”. We describe how to decompose the parameter set to facilitate the
hybrid learning rule for ANFIS architectures representing both the Sugeno
and Tsukamoto fuzzy models.

4.3.1 ANFIS Architecture

A fuzzy inference system consists of three conceptual components: a fuzzy rule
base, which contains a set of fuzzy if-then rules; a database, which defines the
membership functions used in the fuzzy rules; and a reasoning mechanism,
which performs the inference procedure upon the rules to derive a reasonable
output or conclusion (Kandel, 1992). For simplicity, we assume that the fuzzy
inference system under consideration has two inputs x and y and one output
z. For a first-order Sugeno fuzzy model (Sugeno & Kang, 1988), a common
rule set with two fuzzy if-then rules is the following:

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1 ,

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2 ,

Figure 4.21(a) illustrates the reasoning mechanism for this Sugeno model;
the corresponding equivalent ANFIS architecture is as shown in Fig. 4.21(b),
where nodes of the same layer have similar functions, as described next. (Here
we denote the output of the ith node in layer l as 0l,i).

Layer 1: Every node i in this layer is an adaptive node with a node
function

0l,i = µAi(x), for i = 1, 2 ,

0l,i = µBi−2(y), for i = 3, 4 , (4.25)

where x (or y) is the input to node i and Ai (or Bi−2) is a linguistic label
(such as “small” or “large”) associated with this node. In other words, 0l,i is
the membership grade of a fuzzy set A and it specifies the degree to which the
given input x (or y) satisfies the quantifier A. Here the membership function
for A can be any appropriate parameterized membership function, such as the
generalized bell function:

µA(x) =
1

1 + |(x − ci)/ai|2bi
(4.26)

where {ai, bi, ci} is the parameter set. As the values of these parameters
change, the bell-shaped function varies accordingly, thus exhibiting various
forms of membership functions for a fuzzy set A. Parameters in this layer are
referred to as “premise parameters”.

Layer 2: Every node in this layer is a fixed node labeled Π, whose output
is the product of all incoming signals:

02,i = wi = µAi(x)µBi(y), i = 1, 2 (4.27)

76 4 Supervised Learning Neural Networks

A1 B1

 w1

 f1 = p1x + q1y + r1

X Y ⇒ f = w1f1 + w2f2

 w1 + w2

 = w1f1 + w2f2

A2 B2

 w2

 f2 = p2x + q2y + r2

X Y
 x y

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

 x y
 w1 w1

 x w1f1

 f

 y
 w2f2

 w2 w2

 x y

(b)

(a)

A1

A2

B1

B2

Π

Π

N

N

Σ

Fig. 4.21. (a) A two-input Sugeno fuzzy model with 2 rules; (b) equivalent ANFIS
architecture (adaptive nodes shown with a square and fixed nodes with a circle)

Each node output represents the firing strength of a fuzzy rule.
Layer 3: Every node in this layer is a fixed node labeled N . The ith node

calculates the ratio of the ith rule’s firing strength to the sum of all rules’
firing strengths:

03,i = wi = wi/(w1 + w2), i = 1, 2 . (4.28)

For convenience, outputs of this layer are called “normalized firing
strengths”.

4.3 Adaptive Neuro-Fuzzy Inference Systems 77

Layer 4: Every node i in this layer is an adaptive node with a node
function

04,i = wifi = wi(pix + qiy + ri) , (4.29)

where wi is a normalized firing strength from layer 3 and {pi, qi, ri} is the
parameter set of this node. Parameters in this layer are referred to as “conse-
quent parameters”.

Layer 5: The single node in this layer is a fixed node labeled Σ, which
computes the overall output as the summation of all incoming signals:

overall output = 05,i =
∑

i

wifi =
∑

i wifi
∑

i wi
(4.30)

Thus we have constructed an adaptive network that is functionally equivalent
to a Sugeno fuzzy model. We can note that the structure of this adaptive
network is not unique; we can combine layers 3 and 4 to obtain an equiva-
lent network with only four layers. In the extreme case, we can even shrink
the whole network into a single adaptive node with the same parameter set.
Obviously, the assignment of node functions and the network configuration
are arbitrary, as long as each node and each layer perform meaningful and
modular functionalities.

The extension from Sugeno ANFIS to Tsukamoto ANFIS is straightfor-
ward, as shown in Fig. 4.22, where the output of each rule (fi, i = 1, 2) is
induced jointly by a consequent membership function and a firing strength.

4.3.2 Learning Algorithm

From the ANFIS architecture shown in Fig. 4.21(b), we observe that when the
values of the premise parameters are fixed, the overall output can be expressed
as a linear combination of the consequent parameters. Mathematically, the
output f in Fig. 4.21(b) can be written as

f =
w1f1

w1 + w2
+

w2f2

w1 + w2

= w1(p1x + q1y + r1) + w2(p2x + q2y + r2)
= (w1x)p1 + (w1y)q1 + (w1)r1 + (w2x)p2 + (w2y)q2 + (w2)r2 (4.31)

which is linear in the consequent parameters p1, q1, r1, p2, q2, and r2. From
this observation, we can use a hybrid learning algorithm for parameter esti-
mation in this kind of models (Jang, 1993). More specifically, in the forward
pass of the hybrid learning algorithm, node outputs go forward until layer
4 and the consequent parameters are identified by the least-squares method.
In the backward pass, the error signals propagate backward and the premise
parameters are updated by gradient descent.

It has been shown (Jang, 1993) that the consequent parameters identified
in this manner are optimal under the condition that the premise parame-
ters are fixed. Accordingly, the hybrid approach converges much faster since

78 4 Supervised Learning Neural Networks

 A1 B1
 w1

 C1

X Y f1 Z ⇒ f = w1f1+w2f2

 w1 + w2

 = w1f1 + w2f2

 A2 B2

 w2 C2

X Y f2 Z
 x y

(a)

(b)

 w1

 x w1f1

 f

 y
 w2f2

 w2

A1

A2

B1

B2

Π

Π

N

N

Σ

Fig. 4.22. (a) A two-input Tsukamoto fuzzy model with two rules; (b) equivalent
ANFIS architecture

it reduces the search space dimensions of the original pure backpropagation
method. For Tsukamoto ANFIS, this can be achieved if the membership func-
tion on the consequent part of each rule is replaced by a piecewise linear
approximation with two consequent parameters.

As we discussed earlier, under certain minor conditions, an RBFN is func-
tionally equivalent to a fuzzy system, and thus to ANFIS. This functional
equivalence provides a shortcut for better understanding both ANFIS and
RBFNs in the sense that development in either literature cross-fertilize the
other (Jang, Sun & Mizutani, 1997).

4.3 Adaptive Neuro-Fuzzy Inference Systems 79

Finally, we have to mention that it has been shown that the ANFIS
methodology can be viewed as universal approximator (Jang, Sun & Mizutani,
1997). More specifically, it has been shown that when the number of rules is
not restricted, a zero-order Sugeno model has unlimited approximation power
for matching any non-linear function arbitrarily well on a compact set. This
fact is intuitively reasonable. However, the mathematical proof can be made
by showing that ANFIS satisfies the well-known Stone-Weierstrass theorem
(Kantorovich & Akilov, 1982).

We will now show a simple example to illustrate the ANFIS methodology.
We will use as training data the set of points shown in Fig. 4.5 We will use
a network of 20 nodes, 4 rules, 4 Gaussian membership functions, and 16
unknown parameters. The complete network is shown in Fig. 4.23, in which
we can clearly see all the details mentioned above. We have to mention that
the ANFIS methodology is been used here to obtain a first order Sugeno
model. In Fig. 4.24, we can appreciate the rate of convergence of ANFIS as
the error is plotted against the number of epochs. From this figure it is clear
that ANFIS can achieve a comparable error (with the previous methods in this
chapter) in only 20 epochs, which is a lot less than the 1000 epochs required
by the networks presented before (for the same example). In Fig. 4.25 we can
see the final function approximation achieved by the ANFIS method, which
is very good. In Fig. 4.26 we show the non-linear surface of the final fuzzy

Fig. 4.23. Architecture of network for the ANFIS method

80 4 Supervised Learning Neural Networks

Fig. 4.24. Convergence of ANFIS (final SSE = 0.0058851)

system obtained by ANFIS. In Fig. 4.27, we show the use of ANFIS with
specific values. In this case, the “rule viewer” of the Fuzzy Logic Toolbox of
MATLAB is used to obtain these results. Finally, we show in Fig. 4.28 the
membership functions for the input variable of ANFIS.

Finally, we have to say that the use of the ANFIS methodology is facilitated
in the MATLAB programming language because it is already available in the
Fuzzy Logic Toolbox. For this reason, all of the results shown before were
obtained very easily using this tool of MATLAB.

4.4 Summary

In this chapter, we have presented the main ideas underlying supervised
neural networks and the application of this powerful computational theory
to general problems in function approximation. We have discussed in some
detail the backpropagation learning algorithm for feedforward networks, ra-
dial basis function neural networks, and the integration of fuzzy logic tech-
niques to neural networks to form powerful adaptive neuro-fuzzy inference

4.4 Summary 81

Fig. 4.25. Final function approximation achieved by the ANFIS method

Fig. 4.26. Non-linear surface obtained by the ANFIS method

82 4 Supervised Learning Neural Networks

Fig. 4.27. Use of ANFIS to calculate specific values with the rule viewer

Fig. 4.28. Membership functions for the input variable of ANFIS

4.4 Summary 83

systems. In the following chapters, we will show how supervised neural network
techniques (in conjunction with other techniques) can be applied to solve real
world complex problems in intelligent pattern recognition. This chapter will
serve as a basis for the new hybrid intelligent methods that will be described
in the chapters at the end of this book.

	4 Supervised Learning Neural Networks
	4.1 Backpropagation for Feedforward Networks
	4.1.1 The Backpropagation Learning Algorithm
	4.1.2 Backpropagation Multilayer Perceptrons
	4.1.3 Methods for Speeding Up Backpropagation

	4.2 Radial Basis Function Networks
	4.3 Adaptive Neuro-Fuzzy Inference Systems
	4.3.1 ANFIS Architecture
	4.3.2 Learning Algorithm

	4.4 Summary

