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Intuitionistic and Type-2 Fuzzy Logic

We describe in this chapter two new areas in fuzzy logic, type-2 fuzzy logic
systems and intuitionistic fuzzy logic. Basically, a type-2 fuzzy set is a set in
which we also have uncertainty about the membership function. Of course,
type-2 fuzzy systems consist of fuzzy if-then rules, which contain type-2 fuzzy
sets. We can say that type-2 fuzzy logic is a generalization of conventional
fuzzy logic (type-1) in the sense that uncertainty is not only limited to the
linguistic variables but also is present in the definition of the membership
functions. On the other hand, intuitionistic fuzzy sets can also be considered
an extension of type-1 fuzzy sets in the sense that intuitionistic fuzzy sets
not only use the membership function, but also a non-membership function
to represent the uncertainty of belonging to a fuzzy set.

Fuzzy Logic Systems are comprised of rules. Quite often, the knowledge
that is used to build these rules is uncertain. Such uncertainty leads to rules
whose antecedents or consequents are uncertain, which translates into uncer-
tain antecedent or consequent membership functions (Karnik & Mendel 1998).
Type-1 fuzzy systems (like the ones seen in the previous chapter), whose mem-
bership functions are type-1 fuzzy sets, are unable to directly handle such
uncertainties. We describe in this chapter, type-2 fuzzy systems, in which the
antecedent or consequent membership functions are type-2 fuzzy sets. Such
sets are fuzzy sets whose membership grades themselves are type-1 fuzzy sets;
they are very useful in circumstances where it is difficult to determine an exact
membership function for a fuzzy set.

The original fuzzy logic, founded by Lotfi Zadeh, has been around for
more than 30 years, and yet it is unable to handle uncertainties (Mendel,
2001). That the original fuzzy logic (type-1 fuzzy logic) cannot do this sounds
paradoxical because the word “fuzzy” has the connotation of uncertainty.
The expanded fuzzy logic (type-2 fuzzy logic) is able to handle uncertainties
because it can model and minimize their effects.

In what follows, we shall first introduce the basic concepts of type-2 fuzzy
sets, and type-2 fuzzy reasoning. Then we will introduce and compare the
different types of fuzzy inference systems that have been employed in various
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applications. We will also consider briefly type-2 fuzzy logic systems and the
comparison to type-1 fuzzy systems. Then we will describe the concept of an
intuitionistic fuzzy set and its applications. We will also describe intuitionis-
tic fuzzy inference systems. Finally, we will address briefly the features and
problems of fuzzy modeling with intuitionistic and type-2 fuzzy logic, which
is concerned with the construction of fuzzy inference systems for modeling a
given target system.

3.1 Type-2 Fuzzy Sets

The concept of a type-2 fuzzy set, was introduced by Zadeh (1975) as an
extension of the concept of an ordinary fuzzy set (henceforth called a “type-
1 fuzzy set”). A type-2 fuzzy set is characterized by a fuzzy membership
function, i.e., the membership grade for each element of this set is a fuzzy set
in [0, 1], unlike a type-1 set where the membership grade is a crisp number
in [0, 1]. Such sets can be used in situations where there is uncertainty about
the membership grades themselves, e.g., an uncertainty in the shape of the
membership function or in some of its parameters. Consider the transition
from ordinary sets to fuzzy sets. When we cannot determine the membership
of an element in a set as 0 or 1, we use fuzzy sets of type-1. Similarly, when
the situation is so fuzzy that we have trouble determining the membership
grade even as a crisp number in [0, 1], we use fuzzy sets of type-2.

This does not mean that we need to have extremely fuzzy situations to
use type-2 fuzzy sets. There are many real-world problems where we cannot
determine the exact form of the membership functions, e.g., in time series
prediction because of noise in the data. Another way of viewing this is to
consider type-1 fuzzy sets as a first order approximation to the uncertainty
in the real-world. Then type-2 fuzzy sets can be considered as a second order
approximation. Of course, it is possible to consider fuzzy sets of higher types
but the complexity of the fuzzy system increases very rapidly. For this reason,
we will only consider very briefly type-2 fuzzy sets. Lets consider some simple
examples of type-2 fuzzy sets.

Example 3.1. Consider the case of a fuzzy set characterized by a Gaussian
membership function with mean m and a standard deviation that can take
values in [σ1, σ2], i.e.,

µ(x) = exp { − 1/2[(x − m)/σ]2} ; σ ∈ [σ1, σ2] (3.1)

Corresponding to each value of σ, we will get a different membership curve
(see Fig. 3.1). So, the membership grade of any particular x (except x = m)
can take any of a number of possible values depending upon the value of σ, i.e.,
the membership grade is not a crisp number, it is a fuzzy set. Figure 3.1 shows
the domain of the fuzzy set associated with x = 0.7; however, the membership
function associated with this fuzzy set is not shown in the figure.
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Fig. 3.1. A type-2 fuzzy set representing a type-1 fuzzy set with uncertain standard
deviation

Example 3.2. Consider the case of a fuzzy set with a Gaussian membership
function having a fixed standard deviation σ, but an uncertain mean, taking
values in [m1, m2], i.e.,

µ(x) = exp {−1/2[(x − m)/σ]2} ; m ∈ [m1,m2] (3.2)

Again, µ(x) is a fuzzy set. Figure 3.2 shows an example of such a set.

Example 3.3. Consider a type-1 fuzzy set characterized by a Gaussian mem-
bership function (mean M and standard deviation σx), which gives one crisp
membership m(x) for each input x ∈ X, where

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gaussian Type-2

M
em

be
rs

hi
p 

G
ra

de
s

Fig. 3.2. A type-2 fuzzy set representing a type-1 fuzzy set with uncertain mean.
The mean is uncertain in the interval [0.4, 0.6]
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Fig. 3.3. A type-2 fuzzy set in which the membership grade of every domain point
is a Gaussian type-1 set

m(x) = exp {−1/2[(x − M)/σx]2} (3.3)

This is shown in Fig. 3.3. Now, imagine that this membership of x is a fuzzy
set. Let us call the domain elements of this set “primary memberships” of
x (denoted by µ1) and membership grades of these primary memberships
“secondary memberships” of x [denoted by µ2(x, µ1)]. So, for a fixed x, we
get a type-1 fuzzy set whose domain elements are primary memberships of
x and whose corresponding membership grades are secondary memberships
of x. If we assume that the secondary memberships follow a Gaussian with
mean m(x) and standard deviation σm, as in Fig. 3.3, we can describe the
secondary membership function for each x as

µ2(x, µ1) = e − 1/2 [(µ1 − m(x))/σm]2 (3.4)

where µ1 ∈ [0, 1] and m is as in (3.3).
We can formally define these two kinds of type-2 sets as follows.

Definition 3.1. Gaussian type-2
A Gaussian type-2 fuzzy set is one in which the membership grade of every
domain point is a Gaussian type-1 set contained in [0, 1].

Example 3.3 shows an example of a Gaussian type-2 fuzzy set. Another
way of viewing type-2 membership functions is in a three-dimensional fashion,
in which we can better appreciate the idea of type-2 fuzziness. In Fig. 3.4 we
have a three-dimensional view of a type-2 Gaussian membership function.

Definition 3.2. Interval type-2
An interval type-2 fuzzy set is one in which the membership grade of every
domain point is a crisp set whose domain is some interval contained in [0, 1].
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Fig. 3.4. Three-dimensional view of a type-2 membership function

Example 3.1 shows an example of an interval type-2 fuzzy set.
We will give some useful definitions on type-2 fuzzy sets in the following

lines.

Definition 3.3. Footprint of uncertainty
Uncertainty in the primary memberships of a type-2 fuzzy set, Ã, consists of a
bounded region that we call the “footprint of uncertainty” (FOU). Mathemat-
ically, it is the union of all primary membership functions (Mendel, 2001).

We show as an illustration in Fig. 3.5 the footprint of uncertainty for a
type-2 Gaussian membership function. This footprint of uncertainty can be
obtained by projecting in two dimensions the three-dimensional view of the
type-2 Gaussian membership function.

Definition 3.4. Upper and lower membership functions
An “upper membership function” and a “lower membership functions” are two
type-1 membership functions that are bounds for the FOU of a type-2 fuzzy
set Ã. The upper membership function is associated with the upper bound of
FOU(Ã). The lower membership function is associated with the lower bound
of FOU(Ã).

We illustrate the concept of upper and lower membership functions as well
as the footprint of uncertainty in the following example.
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Fig. 3.5. Footprint of uncertainty of a sample type-2 Gaussian membership function

Example 3.4. Gaussian primary MF with uncertain standard deviation
For the Gaussian primary membership function with uncertain standard

deviation (Fig. 3.1), the upper membership function is

upper(FOU(Ã)) = N(m,σ2;x) (3.5)

And the lower membership function is

lower(FOU(Ã)) = N(m,σ1;x) . (3.6)

We will describe the operations and properties of type-2 fuzzy sets in the
following section.

3.2 Operations of Type-2 Fuzzy Sets

In this section we describe the set theoretic operations of type-2 fuzzy sets.
We are interested in the case of type-2 fuzzy sets, Ãi (i = 1, . . . , r), whose
secondary membership functions are type-1 fuzzy sets. To compute the union,
intersection, and complement of type-2 fuzzy sets, we need to extend the
binary operations of minimum (or product) and maximum, and the unary
operation of negation, from crisp numbers to type-1 fuzzy sets, because at
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each x, µÃi(x, u) is a function (unlike the type-1 case, where µÃi(x) is a crisp
number). The tool for computing the union, intersection, and complement of
type-2 fuzzy sets is Zadeh’s extension principle (Zadeh, 1975).

Consider two type-2 fuzzy sets Ã1 and Ã2, i.e.,

Ã1 =
∫

x

µÃ1(x)/x (3.7)

and
Ã2 =

∫

x

µÃ2(x)/x (3.8)

In this section, we focus our attention on set theoretic operations for such
general type-2 fuzzy sets.

Definition 3.5. Union of type-2 fuzzy sets
The union of Ã1 and Ã2 is another type-2 fuzzy set, just as the union of type-1
fuzzy sets A1 and A2 is another type-1 fuzzy set. More formally, we have the
following expression

Ã1 ∪ Ã2 =
∫

x∈X

µÃ1∪Ã2(x)/x (3.9)

We can explain (3.9) by the “join” operation (Mendel, 2001). Basically, the
join between two secondary membership functions must be performed between
every possible pair of primary memberships. If more than one combination of
pairs gives the same point, then in the join we keep the one with maximum
membership grade. We will consider a simple example to illustrate the union
operation. In Fig. 3.6 we plot two type-2 Gaussian membership functions, and
the union is shown in Fig. 3.7.

Definition 3.6. Intersection of type-2 fuzzy sets
The intersection of Ã1 and Ã2 is another type-2 fuzzy set, just as the intersec-
tion of type-1 fuzzy sets A1 and A2 is another type-1 fuzzy set. More formally,
we have the following expression

Ã1 ∩ Ã2 =
∫

x∈X

µÃ1∩Ã2(x)/x (3.10)

We illustrate the intersection of two type-2 Gaussian membership functions
in Fig. 3.8.

We can explain (3.10) by the “meet” operation (Mendel, 2001). Basically,
the meet between two secondary membership functions must be performed
between every possible pair of primary memberships. If more than one com-
bination of pairs gives the same point, then in the meet we keep the one with
maximum membership grade.
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Fig. 3.6. Two sample type-2 Gaussian membership functions
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Fig. 3.8. Intersection of two type-2 Gaussian membership functions

Definition 3.7. Complement of a type-2 fuzzy set
The complement of set Ã is another type-2 fuzzy set, just as the complement
of type-1 fuzzy set A is another type-1 fuzzy set. More formally we have

Ã′ =
∫

x

µÃ′1(x)/x (3.11)

where the prime denotes complement in the above equation. In this equation
µÃ′1 is a secondary membership function, i.e., at each value of xµÃ′1 is a
function (unlike the type-1 case where, at each value of x, µÃ′1 is a point
value).

Example 3.5. Type-2 fuzzy set operations
In this example we illustrate the union, intersection and complement op-
erations for two type-2 fuzzy sets Ã1 and Ã2, and for a particular ele-
ment x for which the secondary membership functions in these two sets are
µÃ1(x) = 0.5/0.1+0.8/0.2 and µÃ2(x) = 0.4/0.5 + 0.9/0.9. Using in the opera-
tions the minimum t-norm and the maximum t-conorm, we have the following
results:

µÃ1∪Ã2(x) = µÃ1(x) ∪ µÃ2(x) = (0.5/0.1 + 0.8/0.2) ∪ (0.4/0.5 + 0.9/0.9)
= (0.5 ∧ 0.4)/(0.1 ∨ 0.5) + (0.5 ∧ 0.9)/(0.1 ∨ 0.9)

+(0.8 ∧ 0.4)/(0.2 ∨ 0.5) + (0.8 ∧ 0.9)/(0.2 ∨ 0.9)
= 0.4/0.5 + 0.5/0.9 + 0.4/0.5 + 0.8/0.9
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= max {0.4, 0.4}/0.5 + max {0.5, 0.8}/0.9
= 0.4/0.5 + 0.8/0.9

µÃ1∩Ã2(x) = µÃ1(x) ∩ µÃ2(x) = (0.5/0.1 + 0.8/0.2) ∩ (0.4/0.5 + 0.9/0.9)
= (0.5 ∧ 0.4)/(0.1 ∧ 0.5) + (0.5 ∧ 0.9)/(0.1 ∧ 0.9)

+(0.8 ∧ 0.4)/(0.2 ∧ 0.5) + (0.8 ∧ 0.9)/(0.2 ∧ 0.9)
= 0.4/0.1 + 0.5/0.1 + 0.4/0.2 + 0.8/0.2
= max {0.4, 0.5}/0.1 + max {0.4, 0.8}/0.2
= 0.5/0.1 + 0.8/0.2

µÃ′1(x) = 0.5/(1 − 0.1) + 0.8/(1 − 0.2) = 0.5/0.9 + 0.8/0.8 .

3.3 Type-2 Fuzzy Systems

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and
in general, will not change for any type-n (Karnik & Mendel 1998). A higher-
type number just indicates a higher “degree of fuzziness”. Since a higher type
changes the nature of the membership functions, the operations that depend
on the membership functions change; however, the basic principles of fuzzy
logic are independent of the nature of membership functions and hence, do
not change. Rules of inference like Generalized Modus Ponens or Generalized
Modus Tollens continue to apply.

The structure of the type-2 fuzzy rules is the same as for the type-1 case
because the distinction between type-2 and type-1 is associated with the na-
ture of the membership functions. Hence, the only difference is that now some
or all the sets involved in the rules are of type-2. In a type-1 fuzzy system,
where the output sets are type-1 fuzzy sets, we perform defuzzification in or-
der to get a number, which is in some sense a crisp (type-0) representative of
the combined output sets. In the type-2 case, the output sets are type-2; so we
have to use extended versions of type-1 defuzzification methods. Since type-1
defuzzification gives a crisp number at the output of the fuzzy system, the
extended defuzzification operation in the type-2 case gives a type-1 fuzzy set
at the output. Since this operation takes us from the type-2 output sets of the
fuzzy system to a type-1 set, we can call this operation “type reduction” and
call the type-1 fuzzy set so obtained a “type-reduced set”. The type-reduced
fuzzy set may then be defuzzified to obtain a single crisp number; however, in
many applications, the type-reduced set may be more important than a single
crisp number.

Type-2 sets can be used to convey the uncertainties in membership func-
tions of type-1 fuzzy sets, due to the dependence of the membership functions
on available linguistic and numerical information. Linguistic information (e.g.
rules from experts), in general, does not give any information about the shapes
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of the membership functions. When membership functions are determined or
tuned based on numerical data, the uncertainty in the numerical data, e.g.,
noise, translates into uncertainty in the membership functions. In all such
cases, any available information about the linguistic/numerical uncertainty
can be incorporated in the type-2 framework. However, even with all of the
advantages that fuzzy type-2 systems have, the literature on the applications
of type-2 sets is scarce. Some examples are Yager (1980) for decision making,
and Wagenknecht & Hartmann (1998) for solving fuzzy relational equations.
We think that more applications of type-2 fuzzy systems will come in the
near future as the area matures and the theoretical results become more un-
derstandable for the general public in the fuzzy arena.

3.3.1 Singleton Type-2 Fuzzy Logic Systems

This section discusses the structure of a singleton type-2 Fuzzy Logic Systems
(FLS), which is a system that accounts for uncertainties about the antecedents
or consequents in rules, but does not explicitly account for input measurement
uncertainties. More complicated (but, more versatile) non-singleton type-2
FLSs, which account for both types of uncertainties, are discussed later.

The basics of fuzzy logic do not change from type-1 to type-2 fuzzy sets,
and in general will not change for type-n. A higher type number just indi-
cates a higher degree of fuzziness. Since a higher type changes the nature of
the membership functions, the operations that depend on the membership
functions change, however, the basic principles of fuzzy logic are independent
of the nature of membership functions and hence do not change. Rules of
inference, like Generalized Modus Ponens, continue to apply.

A general type-2 FLS is shown in Fig. 3.9. As discussed before a type-2 FLS
is very similar to type-1 FLS, the major structural difference being that the
defuzzifier block of a type-1 FLS is replaced by the output processing block in
type-2 FLS. That block consists of type-reduction followed by defuzzification.

Fig. 3.9. Type-2 Fuzzy Logic System
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During our development of a type-2 FLS, we assume that all the antecedent
and consequent sets in rules are type-2, however, this need not necessarily be
the case in practice. All results remain valid as long as long as just one set is
type-2. This means that a FLS is type-2 as long as any one of its antecedent
or consequent sets is type-2.

In the type-1 case, we generally have fuzzy if-then rules of the form

Rl : IF x1 is Al
1 and . . . xp is Al

p, THEN y is Y l l = 1, . . . , M (3.12)

As mentioned earlier, the distinction between type-1 and type-2 is associated
with the nature of the membership functions, which is not important when
forming the rules. The structure of the rules remains exactly the same in the
type-2 case, but now some or all of the sets involved are type-2.

Consider a type-2 FLS having r inputs x1 ∈ X1, . . . , xr ∈ Xr and one
output y ∈ Y . As in the type-1 case, we can assume that there are M rules;
but, in the type-2 case the lth rule has the form

Rl : IF x1 is Ãl
1 and . . . xp is Ãl

p, THEN y is Ŷ l 1 = 1, . . . ,M (3.13)

This rule represents a type-2 fuzzy relation between the input space
X1 × . . . × Xr, and the output space, Y , of the type-2 fuzzy system.

In a type-1 FLS the inference engine combines rules and gives a mapping
from input type-1 fuzzy sets to output type-1 fuzzy sets. Multiple antecedents
in rules are combined by the t-norm. The membership grades in the input sets
are combined with those in the output sets using composition. Multiple rules
may be combined using the t-conorm or during defuzzification by weighted
summation. In the type-2 case the inference process is very similar. The in-
ference engine combines rules and gives a mapping from input type-2 fuzzy
sets to output type-2 fuzzy sets. To do this one needs to compute unions and
intersections of type-2 fuzzy sets, as well as compositions of type-2 relations.

In the type-2 fuzzy system (Fig. 3.9), as in the type-1 fuzzy system, crisp
inputs are first fuzzified into fuzzy input sets that then activate the inference
block, which in the present case is associated with type-2 fuzzy sets. In this
section, we describe singleton fuzzification and the effect of such fuzzification
on the inference engine. The “fuzzifier” maps a crisp point x = (x1, . . . , xr)T ∈
X1 × X2 . . . × Xr ≡ X into a type-2 fuzzy set Ãx in X.

The type-2 output of the inference engine shown in Fig. 3.9 must be
processed next by the output processor, the first operation of which is type-
reduction. Type-reduction methods include (Mendel, 2001): centroid, center-
of-sums, height, modified height, and center-of-sets. Lets assume that we per-
form centroid type-reduction. Then each element of the type-reduced set is
the centroid of some embedded type-1 set for the output type-2 set of the
FLS. Each of these embedded sets can be thought of as an output set of an
associated type-1 FLS, and, correspondingly, the type-2 FLS can be viewed of
as a collection of many different type-1 FLSs. Each type-1 FLS is embedded
in the type-2 FLS; hence, the type-reduced set is a collection of the outputs
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Fig. 3.10. A type-2 FLS viewed as a collection of embedded type-1 FLSs

of all of the embedded type-1 FLSs (see Fig. 3.10). The type-reduced set lets
us represent the output of the type-2 FLS as a fuzzy set rather than as a crisp
number, which is something that cannot be done with a type-1 fuzzy system.

Referring to Fig. 3.10, when the antecedent and consequent membership
functions of the type-2 FLS have continuous domains, the number of embed-
ded sets is uncountable. Figure 3.10 shows a situation in which we have as-
sumed that the membership functions have discrete (or discretized) domains.
The memberships in the type-reduced set, µY (yi), represent the level of un-
certainty associated with each embedded type-1 FLS. A crisp output can be
obtained by aggregating the outputs of all embedded type-1 FLSs by, e.g.,
finding the centroid of the type-reduced set.

If all of the type-2 uncertainties were to disappear, the secondary mem-
bership functions for all antecedents and consequents would each collapse to
a single point, which shows that the type-2 FLS collapses to a type-1 FLS.

If we think of a type-2 FLS as a “perturbation” of a type-1 FLS, due to
uncertainties in their membership functions, then the type-reduced set of the
type-2 FLS can be thought of as representing the uncertainty in the crisp
output due to the perturbation. Some measure of the spread of the type-
reduced set may then be taken to indicate the possible variation in the crisp
output due to the perturbation. This is analogous to using confidence intervals
in a stochastic-uncertainty situation.
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We defuzzify the type-reduced set to get a crisp output from the type-2
FLS. The most natural way to do this seems to be finding the centroid of the
type-reduced set. Finding the centroid is equivalent to finding the weighted
average of the outputs of all the type-1 FLSs that are embedded in the type-2
FLS, where the weights correspond to the memberships in the type-reduced
set (see Fig. 3.10). If the type-reduced set Y for an input x is discretized or
is discrete and consists of α points, then the expression for its centroid is

y(x) =

[
α∑

k=1

ykµy(yk)

]/[
α∑

k=1

µy(yk)

]

(3.14)

If α is large then data storage may be a problem for the computation
of (3.14). This equation can, however, be evaluated using parallel process-
ing, in this case data storage will not be problem. Currently, however, most
researchers still depend on software for simulations and cannot make use of
parallel processing. We can, however, use a recursive method to vastly reduce
the memory required for storing the data that are needed to compute the
defuzzification output. From (3.14), we can calculate

A(i) = A(i − 1) + yiµy(yi)A(0) = 0 (3.15)

and
B(i) = B(i − 1) + yiµy(yi)B(0) = 0 (3.16)

for i = 1, . . . , α. With these formulas we just need to store A and B during
each iteration.

From our previous discussions about the five elements that comprise the
Fig. 3.9 type-2 FLS, we see that there are many possibilities to choose from,
even more than for a type-1 FLS. To begin, we must decide on the kind of
defuzzification (singleton or non-singleton). We must also choose a FOU for
each type-2 membership function, decide on the functional forms for both
the primary and secondary membership functions, and choose the parameters
of the membership functions (fixed a-priori or tuned during a training pro-
cedure). Then we need to choose the composition (max-min, max-product),
implication (minimum, product), type-reduction method (centroid, center-of-
sums, height, modified height, center-of-sets), and defuzzifier. Clearly, there is
an even greater richness among type-2 FLSs than there is among type-1 FLSs.
In other words, there are more design degrees of freedom associated with a
type-2 FLS than with a type-1 FLS; hence, a type-2 FLS has the potential to
outperform a type-1 FLS because of the extra degrees of freedom.

3.3.2 Non-Singleton Fuzzy Logic Systems

A non-singleton FLS is one whose inputs are modeled as fuzzy numbers. A
type-2 FLS whose inputs are modeled as type-1 fuzzy numbers is referred
to as “type-1 non-singleton type-2 FLS”. This kind of a fuzzy system not
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only accounts for uncertainties about either the antecedents or consequents
in rules, but also accounts for input measurement uncertainties.

A type-1 non-singleton type-2 FLS is described by the same diagram as in
singleton type-2 FLS, see Fig. 3.9. The rules of a type-1 non-singleton type-2
FLS are the same as those for the singleton type-2 FLS. What are different
is the fuzzifier, which treats the inputs as type-1 fuzzy sets, and the effect of
this on the inference block. The output of the inference block will again be a
type-2 fuzzy set; so, the type-reducers and defuzzifier that we described for a
singleton type-2 FLS apply as well to a type-1 non-singleton type-2 FLS.

We can also have a situation in which the input are modeled as type-2
fuzzy numbers. This situation can occur, e.g., in time series forecasting when
the additive measurement noise is non-stationary. A type-2 FLS whose inputs
are modeled as type-2 fuzzy numbers is referred to as “type-2 non-singleton
type-2 FLS”.

A type-2 non-singleton type-2 FLS is described by the same diagram as in
singleton type-2 FLS, see Fig. 3.9. The rules of a type-2 non-singleton type-
2 FLS are the same as those for a type-1 non-singleton type-2 FLS, which
are the same as those for a singleton type-2 FLS. What is different is the
fuzzifier, which treats the inputs as type-2 fuzzy sets, and the effect of this on
the inference block. The output of the inference block will again be a type-2
fuzzy set; so, the type-reducers and defuzzifier that we described for a type-1
non-singleton type-2 FLS apply as well to a type-2 non-singleton type-2 FLS.

3.3.3 Sugeno Type-2 Fuzzy Systems

All of our previous FLSs were of the Mamdani type, even though we did not
refer to them as such. In this section, we will need to distinguish between the
two kinds of FLSs, we refer to our previous FLSs as “Mamdani” FLSs. Both
kinds of FLS are characterized by if-then rules and have the same antecedent
structures. They differ in the structures of their consequents. The consequent
of a Mamdani rule is a fuzzy set, while the consequent of a Sugeno rule is a
function.

A type-1 Sugeno FLS was proposed by Takagi & Sugeno (1985), and
Sugeno & Kang (1988), in an effort to develop a systematic approach to
generating fuzzy rules from a given input-output data set. We will consider
in this section the extension of first-order type-1 Sugeno FLS to its type-2
counterpart, with emphasis on interval sets.

Consider a type-2 Sugeno FLS having r inputs x1 ∈ X1, . . . , xr ∈ Xr and
one output y ∈ Y . A type-2 Sugeno FLS is also described by fuzzy if-then
rules that represent input-output relations of a system. In a general first-order
type-2 Sugeno model with a rule base of M rules, each having r antecedents,
the ith rule can be expressed as

Rl : IF x1 is Ãl
1 and . . . xp is Ãl

p, THEN Y i = Ci
0 +Ci

1x1 + · · · +Ci
rxr

(3.17)
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where i = 1, . . . ,M ;Ci
j(j = 1, . . . , r) are consequent type-1 fuzzy sets; Y i,

the output of the ith rule, is also a type-1 fuzzy set (because it is a linear
combination of type-1 fuzzy sets); and Ãi

k (k = 1, . . . , r) are type-2 antecedent
fuzzy sets. These rules let us simultaneously account for uncertainty about
antecedent membership functions and consequent parameter values. For a
type-2 Sugeno FLS there is no need for type-reduction, just as there is no
need for defuzzification in a type-1 Sugeno FLS.

3.4 Introduction to Intuitionistic Fuzzy Logic

The intuitionistic fuzzy sets where defined as an extension of the ordinary
fuzzy sets (Atanassov, 1999). As opposed to a fuzzy set in X (Zadeh, 1971),
given by

B = {(x, µB(x)) |x ∈ X} (3.18)

where µB : X → [0, 1] is the membership function of the fuzzy set B, an in-
tuitionistic fuzzy set A is given by

A = {(x, µA(x), νA(x)) |x ∈ X} (3.19)

where µA : X → [0, 1] and νA : X → [0, 1] are such that

0 ≤ µA + νA ≤ 1 (3.20)

and µA(x); νA(x)∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively.

For each intuitionistic fuzzy set in X, we will call

πA(x) = 1 − µA(x) − νA(x) (3.21)

a “hesitation margin” (or an “intuitionistic fuzzy index”) of x ∈ A and, it
expresses a hesitation degree of whether x belongs to A or not. It is obvious
that 0 ≤ πA(x) ≤ 1, for each x ∈ X.

On the other hand, for each fuzzy set B in X, we evidently have that

πB(x) = 1 − µB(x) − [1 − µB(x)] = 0 for each x ∈ X . (3.22)

Therefore, if we want to fully describe an intuitionistic fuzzy set, we must
use any two functions from the triplet (Szmidt & Kacprzyk, 2002):

• Membership function,
• Non-membership function,
• Hesitation margin.

In other words, the application of intuitionistic fuzzy sets instead of fuzzy
sets means the introduction of another degree of freedom into a set description
(i.e. in addition to µA we also have νA or πA).
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Since the intuitionistic fuzzy sets being a generalization of fuzzy sets give
us an additional possibility to represent imperfect knowledge, they can make
it possible to describe many real problems in a more adequate way.

Basically, intuitionistic fuzzy sets based models maybe adequate in situa-
tions when we face human testimonies, opinions, etc. involving two (or more)
answers of the type (Szmidt & Kacprzyk, 2002):

• Yes,
• No,
• I do not know, I am not sure, etc.

Voting can be a good example of such a situation, as human voters may
be divided into three groups of those who:

• Vote for,
• Vote against,
• Abstain or give invalid votes.

This third group is of great interest from the point of view of, say, customer
behavior analysis, voter behavior analysis, etc., because people from this third
undecided group after proper enhancement (eg., different marketing activities)
can finally become sure, i.e. become persons voting for (or against), customers
wishing to buy products advertised, etc.

3.5 Intuitionistic Fuzzy Inference Systems

Fuzzy inference in intuitionistic systems has to consider the fact that we have
the membership µ functions as well as the non-membership ν functions. In
this case, we propose that the conclusion of an intuitionistic fuzzy system can
be a linear combination of the results of two classical fuzzy systems, one for
the membership functions and the other for the non-membership functions.

Assume that IFS is the output of an intuitionistic fuzzy system, then
with the following equation we can calculate the total output as a linear
combination:

IFS = (1 − π)FSµ + πFSν (3.23)

where FSµ is the traditional output of a fuzzy system using the membership
function µ, and FSν is the output of a fuzzy system using the non-membership
function ν. Of course (3.23) for π = 0 will reduce to the output of a traditional
fuzzy system, but for other values of π the result of IFS will be different as
we are now taking into account the hesitation margin π.

The advantage of this method for computing the output IFS of an intu-
itionistic fuzzy system is that we can use our previous machinery of traditional
fuzzy systems for computing FSµ and FSν . Then, we only perform a weighted
average of both results to obtain the final output IFS of the intuitionistic fuzzy
inference system. We consider below a simple example to illustrate these ideas.



50 3 Intuitionistic and Type-2 Fuzzy Logic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

X

D
eg

re
e 

of
 m

em
be

rs
hi

p

small big

Membership Functions for Intuitionistic Fuzzy Systems

Fig. 3.11. Membership functions for the “small” and “big” linguistic values of the
input variable

Example 3.6. : Let us assume that we have a simple intuitionistic fuzzy system
of only two rules:

IF x is small THEN y is big
IF x is big THEN y is small

We will consider for simplicity uniform rectangular membership functions
for both linguistic variables. We show in Fig. 3.11 the membership functions
for the linguistic values “small” and “big” of the input linguistic variable.
We also show in Fig. 3.12 the non-membership functions for the linguistic
values of the output variable. It is clear from Fig. 3.12 that in this case the
membership and non-membership functions are not complementary, which is
due to the fact that we have an intuitionistic fuzzy system.

From Fig. 3.12 we can clearly see that the hesitation margin π is 0.05 for
both cases. As a consequence (3.22) can be written for our example as follows:

IFS = 0.95FSµ + 0.05FSν (3.24)

Now, let us assume that we want to calculate the output of the fuzzy system
for a given input value of x = 0.45. In this case, we have that x is small with
µ = 1 and x is not small with ν = 0, and x is big with µ = 0 and x is not big
with ν = 0.5. As a consequence of these facts we have that,
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Fig. 3.12. Non-membership functions for the “small” and “big” linguistic values of
the output variable

IFS = IFSsmall + IFSbig

IFS = 0.95FSµ small + 0.05FSν small + 0.95FSµ big + 0.05FSν big

IFS = 0.95FSµ small + 0.05FSν big

IFS = 0.95(0.75) + 0.05(0.765)
IFS = 0.74075

Of course, we can compare this intuitionistic fuzzy output with the tradi-
tional one (of 0.75), the difference between these two output values is due to
the hesitation margin. We have to mention that in this example the difference
is small because the hesitation margin is also small. We show in Table 3.1 the
results of the intuitionistic fuzzy system for several input values.

We can appreciate from Table 3.1 the difference between the outputs of
the intuitionistic fuzzy system and the output of the classical one.

Table 3.1. Sample results of the intuitionistic fuzzy system for several input values

Input Values, Membership Non-Membership Intuitionistic
x Result Result Result

0.2500 0.7500 0.7766 0.741330
0.3500 0.7500 0.7766 0.741330
0.4500 0.7500 0.7650 0.740750
0.5500 0.2500 0.2359 0.249295
0.6500 0.2500 0.2250 0.248750
0.7500 0.2500 0.2250 0.248750
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Fig. 3.13. Non-linear surface of the membership function fuzzy system
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Fig. 3.14. Non-linear surface of non-membership function fuzzy system

Finally, we show in Figs. 3.13 and 3.14 the non-linear surfaces for the fuzzy
systems of the membership and non-membership functions, respectively. We
can appreciate from these figures that the surfaces are similar, but they differ
slightly because of the hesitation margin.
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3.6 Summary

In this chapter, we have presented the main ideas underlying intuitionistic
and type-2 fuzzy logic and we have only started to point out the many possi-
ble applications of these powerful computational theories. We have discussed
in some detail type-2 fuzzy set theory, fuzzy reasoning and fuzzy inference
systems. At the end, we also gave some remarks about type-2 fuzzy modeling
with the Mamdani and Sugeno approaches. We have also discussed in some
detail intuitionistic fuzzy sets and intuitionistic fuzzy inference systems. In the
following chapters, we will show how intuitionistic and type-2 fuzzy logic (in
some cases, in conjunction with other methodologies) can be applied to solve
real world complex problems. This chapter will serve as a basis for the new
hybrid intelligent methods, for modeling, simulation, and pattern recognition
that will be described later this book.
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