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Voice Recognition
with Neural Networks, Fuzzy Logic
and Genetic Algorithms

We describe in this chapter the use of neural networks, fuzzy logic and ge-
netic algorithms for voice recognition. In particular, we consider the case of
speaker recognition by analyzing the sound signals with the help of intelligent
techniques, such as the neural networks and fuzzy systems. We use the neural
networks for analyzing the sound signal of an unknown speaker, and after this
first step, a set of type-2 fuzzy rules is used for decision making. We need to
use fuzzy logic due to the uncertainty of the decision process. We also use
genetic algorithms to optimize the architecture of the neural networks. We
illustrate our approach with a sample of sound signals from real speakers in
our institution.

11.1 Introduction

Speaker recognition, which can be classified into identification and verifica-
tion, is the process of automatically recognizing who is speaking on the basis
of individual information included in speech waves. This technique makes it
possible to use the speaker’s voice to verify their identity and control access
to services such as voice dialing, banking by telephone, telephone shopping,
database access services, information services, voice mail, security control for
confidential information areas, and remote access to computers.

Figure 11.1 shows the basic components of speaker identification and ver-
ification systems. Speaker identification is the process of determining which
registered speaker provides a given utterance. Speaker verification, on the
other hand, is the process of accepting or rejecting the identity claim of a
speaker. Most applications in which a voice is used as the key to confirm the
identity of a speaker are classified as speaker verification.

Speaker recognition methods can also be divided into text-dependent and
text-independent methods. The former require the speaker to say key words
or sentences having the same text for both training and recognition trials,
whereas the latter do not rely on a specific text being spoken.
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(a) Speaker identification 

(b) Speaker Verification

Fig. 11.1. Basic structure of speaker recognition systems

Both text-dependent and independent methods share a problem however.
These systems can be easily deceived because someone who plays back the
recorded voice of a registered speaker saying the key words or sentences can
be accepted as the registered speaker. To cope with this problem, there are
methods in which a small set of words, such as digits, are used as key words and
each user is prompted to utter a given sequence of key words that is randomly
chosen every time the system is used. Yet even this method is not completely
reliable, since it can be deceived with advanced electronic recording equipment



11.2 Traditional Methods for Speaker Recognition 225

that can reproduce key words in a requested order. Therefore, a text-prompted
speaker recognition method has recently been proposed by (Matsui and Furui,
1993).

11.2 Traditional Methods for Speaker Recognition

Speaker identity is correlated with the physiological and behavioral character-
istics of the speaker. These characteristics exist both in the spectral envelope
(vocal tract characteristics) and in the supra-segmental features (voice source
characteristics and dynamic features spanning several segments).

The most common short-term spectral measurements currently used are
Linear Predictive Coding (LPC)-derived cepstral coefficients and their regres-
sion coefficients. A spectral envelope reconstructed from a truncated set of
cepstral coefficients is much smoother than one reconstructed from LPC coef-
ficients. Therefore it provides a stabler representation from one repetition to
another of a particular speaker’s utterances. As for the regression coefficients,
typically the first- and second-order coefficients are extracted at every frame
period to represent the spectral dynamics. These coefficients are derivatives
of the time functions of the cepstral coefficients and are respectively called
the delta- and delta-delta-cepstral coefficients.

11.2.1 Normalization Techniques

The most significant factor affecting automatic speaker recognition perfor-
mance is variation in the signal characteristics from trial to trial (inter-session
variability and variability over time). Variations arise from the speaker them-
selves, from differences in recording and transmission conditions, and from
background noise. Speakers cannot repeat an utterance precisely the same
way from trial to trial. It is well known that samples of the same utterance
recorded in one session are much more highly correlated than samples recorded
in separate sessions. There are also long-term changes in voices.

It is important for speaker recognition systems to accommodate to these
variations. Two types of normalization techniques have been tried; one in the
parameter domain, and the other in the distance/similarity domain.

11.2.2 Parameter-Domain Normalization

Spectral equalization, the so-called blind equalization method, is a typical nor-
malization technique in the parameter domain that has been confirmed to be
effective in reducing linear channel effects and long-term spectral variation
(Furui, 1981). This method is especially effective for text-dependent speaker
recognition applications that use sufficiently long utterances. Cepstral coeffi-
cients are averaged over the duration of an entire utterance and the averaged
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values subtracted from the cepstral coefficients of each frame. Additive vari-
ation in the log spectral domain can be compensated for fairly well by this
method. However, it unavoidably removes some text-dependent and speaker
specific features; therefore it is inappropriate for short utterances in speaker
recognition applications.

11.2.3 Distance/Similarity-Domain Normalization

A normalization method for distance (similarity, likelihood) values using a
likelihood ratio has been proposed by (Higgins et al., 1991). The likelihood
ratio is defined as the ratio of two conditional probabilities of the observed
measurements of the utterance: the first probability is the likelihood of the
acoustic data given the claimed identity of the speaker, and the second is
the likelihood given that the speaker is an imposter. The likelihood ratio
normalization approximates optimal scoring in the Bayes sense.

A normalization method based on a posteriori probability has also been
proposed by (Matsui and Furui, 1994). The difference between the normal-
ization method based on the likelihood ratio and the method based on a
posteriori probability is whether or not the claimed speaker is included in the
speaker set for normalization; the speaker set used in the method based on
the likelihood ratio does not include the claimed speaker, whereas the nor-
malization term for the method based on a posteriori probability is calculated
by using all the reference speakers, including the claimed speaker.

Experimental results indicate that the two normalization methods are al-
most equally effective (Matsui and Furui, 1994). They both improve speaker
separability and reduce the need for speaker-dependent or text-dependent
thresholding, as compared with scoring using only a model of the claimed
speaker.

A new method in which the normalization term is approximated by the
likelihood of a single mixture model representing the parameter distribution
for all the reference speakers has recently been proposed. An advantage of this
method is that the computational cost of calculating the normalization term
is very small, and this method has been confirmed to give much better results
than either of the above-mentioned normalization methods.

11.2.4 Text-Dependent Speaker Recognition Methods

Text-dependent methods are usually based on template-matching techniques.
In this approach, the input utterance is represented by a sequence of feature
vectors, generally short-term spectral feature vectors. The time axes of the
input utterance and each reference template or reference model of the regis-
tered speakers are aligned using a dynamic time warping (DTW) algorithm
and the degree of similarity between them, accumulated from the beginning
to the end of the utterance, is calculated.
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The hidden Markov model (HMM) can efficiently model statistical varia-
tion in spectral features. Therefore, HMM-based methods were introduced as
extensions of the DTW-based methods, and have achieved significantly better
recognition accuracies (Naik et al., 1989).

11.2.5 Text-Independent Speaker Recognition Methods

One of the most successful text-independent recognition methods is based on
vector quantization (VQ). In this method, VQ code-books consisting of a small
number of representative feature vectors are used as an efficient means of char-
acterizing speaker-specific features. A speaker-specific code-book is generated
by clustering the training feature vectors of each speaker. In the recognition
stage, an input utterance is vector-quantized using the code-book of each
reference speaker and the VQ distortion accumulated over the entire input
utterance is used to make the recognition decision.

Temporal variation in speech signal parameters over the long term can be
represented by stochastic Markovian transitions between states. Therefore,
methods using an ergodic HMM, where all possible transitions between states
are allowed, have been proposed. Speech segments are classified into one of
the broad phonetic categories corresponding to the HMM states. After the
classification, appropriate features are selected.

In the training phase, reference templates are generated and verification
thresholds are computed for each phonetic category. In the verification phase,
after the phonetic categorization, a comparison with the reference template
for each particular category provides a verification score for that category.
The final verification score is a weighted linear combination of the scores from
each category.

This method was extended to the richer class of mixture autoregressive
(AR) HMMs. In these models, the states are described as a linear combi-
nation (mixture) of AR sources. It can be shown that mixture models are
equivalent to a larger HMM with simple states, with additional constraints
on the possible transitions between states.

It has been shown that a continuous ergodic HMM method is far superior
to a discrete ergodic HMM method and that a continuous ergodic HMM
method is as robust as a VQ-based method when enough training data is
available. However, when little data is available, the VQ-based method is
more robust than a continuous HMM method (Matsui and Furui, 1993).

A method using statistical dynamic features has recently been proposed.
In this method, a multivariate auto-regression (MAR) model is applied to
the time series of cepstral vectors and used to characterize speakers. It was
reported that identification and verification rates were almost the same as
obtained by a HMM-based method.
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11.2.6 Text-Prompted Speaker Recognition Method

In the text-prompted speaker recognition method, the recognition system
prompts each user with a new key sentence every time the system is used and
accepts the input utterance only when it decides that it was the registered
speaker who repeated the prompted sentence. The sentence can be displayed
as characters or spoken by a synthesized voice. Because the vocabulary is
unlimited, prospective impostors cannot know in advance what sentence will
be requested. Not only can this method accurately recognize speakers, but it
can also reject utterances whose text differs from the prompted text, even if
it is spoken by the registered speaker. A recorded voice can thus be correctly
rejected.

This method is facilitated by using speaker-specific phoneme models, as
basic acoustic units. One of the major issues in applying this method is how
to properly create these speaker-specific phoneme models from training ut-
terances of a limited size. The phoneme models are represented by Gaussian-
mixture continuous HMMs or tied-mixture HMMs, and they are made by
adapting speaker-independent phoneme models to each speaker’s voice. In or-
der, to properly adapt the models of phonemes that are not included in the
training utterances, a new adaptation method based on tied-mixture HMMs
was recently proposed by (Matsui and Furui, 1994).

In the recognition stage, the system concatenates the phoneme models of
each registered speaker to create a sentence HMM, according to the prompted
text. Then the likelihood of the input speech matching the sentence model is
calculated and used for the speaker recognition decision. If the likelihood is
high enough, the speaker is accepted as the claimed speaker.

Although many recent advances and successes in speaker recognition have
been achieved, there are still many problems for which good solutions remain
to be found. Most of these problems arise from variability, including speaker-
generated variability and variability in channel and recording conditions. It
is very important to investigate feature parameters that are stable over time,
insensitive to the variation of speaking manner, including the speaking rate
and level, and robust against variations in voice quality due to causes such as
voice disguise or colds. It is also important to develop a method to cope with
the problem of distortion due to telephone sets and channels, and background
and channel noises.

From the human-interface point of view, it is important to consider how
the users should be prompted, and how recognition errors should be handled.
Studies on ways to automatically extract the speech periods of each person
separately from a dialogue involving more than two people have recently ap-
peared as an extension of speaker recognition technology.

This section was not intended to be a comprehensive review of speaker
recognition technology. Rather, it was intended to give an overview of recent
advances and the problems, which must be solved in the future (Furui, 1991).
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11.2.7 Speaker Verification

The speaker-specific characteristics of speech are due to differences in physi-
ological and behavioral aspects of the speech production system in humans.
The main physiological aspect of the human speech production system is the
vocal tract shape. The vocal tract modifies the spectral content of an acoustic
wave as it passes through it, thereby producing speech. Hence, it is common
in speaker verification systems to make use of features derived only from the
vocal tract.

The acoustic wave is produced when the airflow, from the lungs, is car-
ried by the trachea through the vocal folds. This source of excitation can be
characterized as phonation, whispering, frication, compression, vibration, or
a combination of these. Phonated excitation occurs when the airflow is modu-
lated by the vocal folds. Whispered excitation is produced by airflow rushing
through a small triangular opening between the arytenoid cartilage at the
rear of the nearly closed vocal folds. Frication excitation is produced by con-
strictions in the vocal tract. Compression excitation results from releasing a
completely closed and pressurized vocal tract. Vibration excitation is caused
by air being forced through a closure other than the vocal folds, especially
at the tongue. Speech produced by phonated excitation is called voiced, that
produced by phonated excitation plus frication is called mixed voiced, and
that produced by other types of excitation is called unvoiced.

Using cepstral analysis as described in the previous section, an utterance
may be represented as a sequence of feature vectors. Utterances spoken by
the same person but at different times result in similar yet a different se-
quence of feature vectors. The purpose of voice modeling is to build a model
that captures these variations in the extracted set of features. There are two
types of models that have been used extensively in speaker verification and
speech recognition systems: stochastic models and template models. The sto-
chastic model treats the speech production process as a parametric random
process and assumes that the parameters of the underlying stochastic process
can be estimated in a precise, well-defined manner. The template model at-
tempts to model the speech production process in a non-parametric manner
by retaining a number of sequences of feature vectors derived from multiple
utterances of the same word by the same person. Template models dominated
early work in speaker verification and speech recognition because the tem-
plate model is intuitively more reasonable. However, recent work in stochastic
models has demonstrated that these models are more flexible and hence allow
for better modeling of the speech production process. A very popular stochas-
tic model for modeling the speech production process is the Hidden Markov
Model (HMM). HMMs are extensions to the conventional Markov models,
wherein the observations are a probabilistic function of the state, i.e., the
model is a doubly embedded stochastic process where the underlying stochas-
tic process is not directly observable (it is hidden). The HMM can only be
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viewed through another set of stochastic processes that produce the sequence
of observations.

The pattern matching process involves the comparison of a given set of
input feature vectors against the speaker model for the claimed identity and
computing a matching score. For the Hidden Markov models discussed above,
the matching score is the probability that a given set of feature vectors was
generated by a specific model. We show in Fig. 11.2 a schematic diagram of a
typical speaker recognition system.

Fig. 11.2. Blocks diagram of a typical speaker recognition system

11.3 Voice Capturing and Processing

The first step for achieving voice recognition is to capture the sound signal
of the voice. We use a standard microphone for capturing the voice signal. Af-
ter this, we use the sound recorder of the Windows operating system to record
the sounds that belong to the database for the voices of different persons. A
fixed time of recording is established to have homogeneity in the signals. We
show in Fig. 11.3 the sound signal recorder used in the experiments.

After capturing the sound signals, these voice signals are digitized at a
frequency of 8 Khz, and as consequence we obtain a signal with 8008 sample
points. This information is the one used for analyzing the voice.
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Fig. 11.3. Sound recorder used in the experiments

We also used the Sound Forge 6.0 computer program for processing the
sound signal. This program allows us to cancel noise in the signal, which may
have come from environment noise or sensitivity of the microphones. After
using this computer program, we obtain a sound signal that is as pure as
possible. The program also can use fast Fourier transform for voice filtering.
We show in Fig. 11.4 the use of the computer program for a particular sound
signal.

Fig. 11.4. Main window of the computer program for processing the signals
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Fig. 11.5. Spectral analysis of a specific word using the FFT

We also show in Fig. 11.5 the use of the Fast Fourier Transform (FFT) to
obtain the spectral analysis of the word “way” in Spanish.

11.4 Neural Networks for Voice Recognition

We used the sound signals of 20 words in Spanish as training data for a
supervised feedforward neural network with one hidden layer. The training
algorithm used was the Resilient Backpropagation (trainrp). We show in
Table 11.1 the results for the experiments with this type of neural network.

The results of Table 11.1 are for the Resilient Backpropagation training
algorithm because this was the fastest learning algorithm found in all the
experiment (required only 7% of the total time in the experiments). The
comparison of the time performance with other training methods is shown in
Fig. 11.6.

We now show in Table 11.2 a comparison of the recognition ability achieved
with the different training algorithms for the supervised neural networks. We
are showing average values of experiments performed with all the training al-
gorithms. We can appreciate from this table that the resilient backpropagation
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Table 11.1. Results of feedforward neural networks for 20 words in Spanish

Time Num. of No. Words %
Stage (min) Words Neurons Recognized Recognition

1a. 11 20 50 17 85%
2a. 04 20 50 19 95%
1a. 04 20 70 16 80%
2a. 04 20 70 16 80%
3a. 02 20 25 20 100%
1a. 04 20 25 18 90%
1a. 03 20 50 18 90%
2a. 04 20 70 20 100%
2a. 04 20 50 18 90%
1a. 07 20 100 19 95%
2a. 06 20 100 20 100%
1a. 09 20 50 10 50%
1a. 07 20 75 19 95%
1a. 07 20 50 19 95%
2a. 06 20 50 20 100%
1a. 29 20 50 16 80%
1a. 43 20 100 17 85%
2a. 10 20 40 16 80%
3a. 10 20 80 16 80%
1a. 45 20 50 11 55%
2a 30 20 50 15 75%
3a. 35 20 70 16 80%

Fig. 11.6. Comparison of the time performance of several training algorithms

algorithm is also the most accurate method, with a 92% average recognition
rate.

We describe below some simulation results of our approach for speaker
recognition using neural networks. First, in Fig. 11.7 we have the sound signal
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Table 11.2. Comparison of average recognition of four training algorithms

Method Average Recognition

trainrp 92%
TRAINCGF-srchcha 85%
traingda 81%
traingdx 70%
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Fig. 11.7. Input signal of the word “example” in Spanish with noise

of the word “example” in Spanish with noise. Next, in Fig. 11.8 we have the
identification of the word “example” without noise. We also show in Fig. 11.9
the word “layer” in Spanish with noise. In Fig. 11.10, we show the identifica-
tion of the correct word “layer” without noise.

From the Figs. 11.7 to 11.10 it is clear that simple monolithic neural net-
works can be useful in voice recognition with a small number of words. It is
obvious that words even with noise added can be identified, with at leat 92%
recognition rate (for 20 words). Of course, for a larger set of words the recog-
nition rate goes down and also computation time increases. For these reasons
it is necessary to consider better methods for voice recognition.
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Pattern recognition for the word "Example" in Spanish

Fig. 11.8. Identification of the word “example”
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Input signal with noise for recognition of the word "Layer" in Spanish

Fig. 11.9. Input signal of the word “layer” in Spanish with noise added
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Fig. 11.10. Identification of the word “layer”

11.5 Voice Recognition with Modular Neural Networks
and Type-2 Fuzzy Logic

We can improve on the results obtained in the previous section by using
modular neural networks because modularity enables us to divide the problem
of recognition in simpler sub-problems, which can be more easily solved. We
also use type-2 fuzzy logic to model the uncertainty in the results given by
the neural networks from the same training data. We describe in this section
our modular neural network approach with the use of type-2 fuzzy logic in
the integration of results.

We now show some examples to illustrate the hybrid approach. We use
two modules with one neural network each in this modular architecture. Each
module is trained with the same data, but results are somewhat different
due to the uncertainty involved in the learning process. In all cases, we use
neural networks with one hidden layer of 50 nodes and “trainrp” as learning
algorithm. The difference in the results is then used to create a type-2 interval
fuzzy set that represents the uncertainty in the classification of the word. The
first example is of the word “example” in Spanish, which is shown in Fig. 11.11.

Considering for now only 10 words in the training, we have that the first
neural network will give the following results:

SSE = 4.17649e-005 (Sum of squared errors)
Output = [0.0023, 0.0001, 0.0000, 0.0020, 0.0113, 0.0053, 0.0065, 0.9901,
0.0007, 0.0001]
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Fig. 11.11. Sound signal of the word “example” in Spanish

The output can be interpreted as giving us the membership values of the
given sound signal to each of the 10 different words in the database. In this
case, we can appreciate that the value of 0.9901 is the membership value to the
word “example”, which is very close to 1. But, if we now train a second neural
network with the same architecture, due to the different random inicialization
of the weights, the results will be different. We now give the results for the
second neural network:

SSE = 0.0124899
Output = [0.0002, 0.0041, 0.0037, 0.0013, 0.0091, 0.0009, 0.0004, 0.9821,
0.0007, 0.0007]

We can note that now the membership value to the word “example” is
of 0.9821. With the two different values of membership, we can define an
interval [0.9821, 0.9901], which gives us the uncertainty in membership of the
input signal belonging to the word “example” in the database. We have to use
centroid deffuzification to obtain a single membership value. If we now repeat
the same procedure for the whole database, we obtain the results shown in
Table 11.3. In this table, we can see the results for a sample of 6 different
words.

The same modular neural network approach was extended to the previous
20 words (mentioned in the previous section) and the recognition rate was
improved to 100%, which shows the advantage of modularity and also the
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Table 11.3. Summary of results for the two modules (M1 and M2) for a set of
words in “Spanish”

Example Daisy Way

M1 M2 M1 M2 M1 M2

0.0023 0.0002 0.0009 0.0124 0.0081 0.0000
0.0001 0.0041 0.9957 0.9528 0.0047 0.0240
0.0000 0.0037 0.0001 0.1141 0.0089 0.0003
0.0020 0.0013 0.0080 0.0352 0.9797 0.9397
0.0113 0.0091 0.0005 0.0014 0.0000 0.0126
0.0053 0.0009 0.0035 0.0000 0.0074 0.0002
0.0065 0.0004 0.0011 0.0001 0.0183 0.0000
0.9901 0.9821 0.0000 0.0021 0.0001 0.0069
0.0007 0.0007 0.0049 0.0012 0.0004 0.0010
0.0001 0.0007 0.0132 0.0448 0.0338 0.0007

Salina Bed Layer

M1 M2 M1 M2 M1 M2

0.9894 0.9780 0.0028 0.0014 0.0009 0.0858
0.0031 0.0002 0.0104 0.0012 0.0032 0.0032
0.0019 0.0046 0.9949 0.9259 0.0000 0.0005
0.0024 0.0007 0.0221 0.0043 0.0001 0.0104
0.0001 0.0017 0.0003 0.0025 0.9820 0.9241
0.0000 0.0017 0.0003 0.0002 0.0017 0.0031
0.0006 0.0000 0.0032 0.0002 0.0070 0.0031
0.0001 0.0024 0.0003 0.0004 0.0132 0.0000
0.0067 0.0051 0.0094 0.0013 0.0003 0.0017
0.0040 0.0012 0.0051 0.0001 0.0010 0.0019

utilization of type-2 fuzzy logic. We also have to say that computation time
was also reduced slightly due to the use of modularity.

We now describe the complete modular neural network architecture
(Fig. 11.12) for voice recognition in which we now use three neural networks
in each module. Also, each module only processes a part of the word, which
is divided in three parts one for each module.

We have to say that the architecture shown in Fig. 11.12 is very similar
to the ones shown in previous chapter for face and fingerprint recognition,
but now the input is a voice sound signal. This signal is then divided in three
parts to take advantage of the modularity, but to improve accuracy we use
several simple neural networks in each module. At the end, the results of the
three modules are integrated to give the final decision.

We have also experimented with using a genetic algorithm for optimizing
the number of layers and nodes of the neural networks of the modules with
very good results. The approach is very similar to the one described in the
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Fig. 11.12. Complete modular neural network architecture for voice recognition

previous chapter. We show in Fig. 11.13 an example of the use of a genetic
algorithm for optimizing the number of layers and nodes of one of the neural
networks in the modular architecture. In this figure we can appreciate the
minimization of the fitness function, which takes into account two objectives:
sum of squared errors and the complexity of the neural network.

11.6 Summary

We have described in this chapter an intelligent approach for pattern recog-
nition for the case of speaker identification. We first described the use of
monolithic neural networks for voice recognition. We then described a modu-
lar neural network approach with type-2 fuzzy logic. We have shown examples
for words in Spanish in which a correct identification was achieved. We have
performed tests with about 20 different words in Spanish, which were spo-
ken by three different speakers. The results are very good for the monolithic
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Fig. 11.13. Genetic algorithm showing the optimization of a neural network

neural network approach, and excellent for the modular neural network ap-
proach. We have considered increasing the database of words, and with the
modular approach we have been able to achieve about 96% recognition rate
on over 100 words. We still have to make more tests with different words and
levels of noise.


	11 Voice Recognition with Neural Networks, Fuzzy Logic and Genetic Algorithms
	11.1 Introduction
	11.2 Traditional Methods for Speaker Recognition
	11.2.1 Normalization Techniques
	11.2.2 Parameter-Domain Normalization
	11.2.3 Distance/Similarity-Domain Normalization
	11.2.4 Text-Dependent Speaker Recognition Methods
	11.2.5 Text-Independent Speaker Recognition Methods
	11.2.6 Text-Prompted Speaker Recognition Method
	11.2.7 Speaker Verification

	11.3 Voice Capturing and Processing
	11.4 Neural Networks for Voice Recognition
	11.5 Voice Recognition with Modular Neural Networks and Type-2 Fuzzy Logic
	11.6 Summary




