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Abstract. This paper treats intuitive interfaces for motion generation and mo-
tion search. These are research results on the interactive animation system 
achieved by the research group of the authors as the part of a research project 
�Intuitive Human Interface for Organizing and Accessing Intellectual Assets�. 
For CG animation creation, the motion design of CG characters as well as the 
shape design is very laborious work. For the motion design, the authors have al-
ready proposed a component based motion editing environment, a real-time mo-
tion generation system using puppet/marionette metaphors and a motion data-
base management system. These allow the user to create motions interactively, 
intuitively and make it easy to distribute and re-edit motions. In this paper, the 
authors introduce these motion generation and motion search systems. 

1   Introduction 

We have been interested in narrative database systems. Traditionally narrative data 
have been represented by the text media so far. Now narrative data would be possible 
to be represented by the CG animation because advances of recent computer hardware 
technologies have made it possible to create CG animations by very lower costs rather 
than ever. Towards the development of a narrative database system, we have been 
studying on an interactive animation system. Especially, this paper treats intuitive 
interfaces for motion generation and motion search. These are research results on the 
interactive animation system achieved by our research group as the part of a research 
project �Intuitive Human Interface for Organizing and Accessing Intellectual Assets�. 

For 3D animation creation, the character design is a very important factor but very 
hard work. Especially its motion design and shape modeling are very laborious work. 
For the motion design, we have already proposed a component based motion editing 
environment [1, 2]. There are many researches on motion generation for computer 
animation. Witkin and Kass proposed concept of spacetime constraints [3]. After that, 
many research papers based on spacetime constraints were published [4, 5]. IK (In-
verse Kinematics) is one of the other popular methods for efficient motion generation. 
The motion path functionality is also a popular technique to intuitively define move-
ment of a character's center of mass. However, most popular and traditional motion 
design is based on key-frame animation [6]. A motion is represented as a sequence of 
a number of poses those are automatically generated by interpolation of several key-
poses. Each key-pose is defined by specifying the joints angles of an articulated figure 
model. Our proposed motion editing environment is also based on the key-frame 
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animation technology. This environment displays all sequential key-poses at the same 
time on a computer screen. Then by looking at those key-poses users can recognize a 
complete motion those key-poses mean and can edit each key-pose interactively and 
easily through comparing with its adjoining poses on a computer screen. We have 
developed such motion editing environment using IntelligentBox [7, 8], which is a 
component based 3D graphics software development system that provides functional 
components called boxes. The proposed motion editing environment is developed as a 
composite box, which includes user-defined motion information itself. Therefore, 
users can exchange their edited motions with each other through Internet by copy-
and-transfer operations of such a composite box, and create new motions only by 
modifying the motions already defined by other users. 

Besides the above motion editing environment, for motion generations, we have 
also proposed a real-time motion generation system using puppet/marionette meta-
phors [9, 10]. The puppet is a children toy and it is easy to manipulate for even chil-
dren. For this reason, at first, we employed the puppet metaphor for real-time motion 
generation. We developed such a real-time motion generation system using Intelli-
gentBox [9]. This system used the set of a data-glove and a magnetic motion sensor as 
its interfaces. A puppet motion is controlled using one-hand actions. Our data-glove 
generates only ten finger-joint angles. This number is not enough to fully control an 
articulated figure. So the system requested the user to prepare multiple mapping tables 
that defines association between ten finger-joint angles of a data-glove and 17 joint of 
an articulated figure. When the user performs his/her hand action to generate the mo-
tion of an articulated figure, he/she chooses an adequate mapping-table and changes 
the current one into the chosen one by additional keyboard manipulation. Indeed this 
was inconvenient. Therefore we introduced another metaphor, i.e., a marionette meta-
phor and especially introduced gravity field concept and ground contact constraint 
[10]. Actually in the real world, a human action is performed in the gravity field and 
usually on a floor or on the ground. Similarly a marionette action is also performed 
based on the physics of the gravity and the ground contact constraint. For this reason, 
we employed a marionette metaphor to generate the motions of an articulated figure 
in real time by one-hand actions. As related works, there are researches on the use of 
motion capture systems as a real-time input interface to control CG character interac-
tively [11]. Noser and Thalmann proposed virtual tennis game environment using a 
full-body motion capture system as a real-time motion input interface [12]. Full-body 
motion capture systems have become common. However they are still very expensive 
and they cannot be used on the desktop. Laszlo, et al [13] proposed interactive control 
technique for physically-based animation using standard input devices, i.e., a mouse 
device and a keyboard. This technique requests the user to prepare many motion 
primitives. The use of a mouse device and a keyboard is convenient but they are not 
intuitive devices. Oore, et al proposed a desktop input device and interface for interac-
tive 3D character animation [14, 15]. Our research system is very similar to theirs. 
They use two magnetic-based motion sensors while we use the set of a magnetic-
based motion sensor and a data-grove. While our system generates motions of an 
articulated figure in real time by the user�s one-hand actions, which are squat and 
jump, walking motion and so on, Oore�s system can not generate a character anima-
tion in real time. This means that their system generates motions of some parts of a 
figure separately and later it has to compose a full body motion of them. Although the 
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quality of motions generated by Oore�s system seems better than that of our system, 
the abstract motions generated by our system are able to be used for various applica-
tions, e.g., as initial motions for key-frame animation [1, 2], as query motions to 
search required motions from motion databases and so on. 

The above motion editing environment and real-time motion generation system are 
main research results for motion generations of our interactive animation system re-
search. Indeed, besides the above two topics, we have been studying motion database 
systems. The development of motion database management systems poses two main 
questions: which feature can be assumed to be the best similarity among motions, and 
what is the best way to specify the query. We employed new similarity feature based 
on the symbolic representation of motion data by the spatial quantization as the an-
swer of the first question. Motion data is a sequence of several poses, each of which 
consists of joints angles data of an articulated figure model at a different frame time. 
To reduce the calculation cost for the motion search, we employ not all the joints but 
a small number of the joints, those mean semantically important joints called feature 
joints, of each pose of a complete motion data. Furthermore we employed new simi-
larity measure based on the spatial occurrence probability. We divided the 3D space 
around a model into a small number of subspaces semantically. At each frame, the 
position of each feature joint is represented as the symbol value that corresponds one 
of the subspaces, in which the feature joint exists. This means spatial quantization. In 
this paper, we show two spatial quantization ways and their experimental results for 
the evaluation. We have already developed its prototype system using IntelligentBox. 
In this paper, we also propose an intuitive interface as the answer of the second ques-
tion. This interface provides the facility allows the user to intuitively enter query mo-
tions for motion data searches. Researches on motion database systems are very few 
so far. As for motion generation aspects, Unuma et al. [16] proposed an algorithm for 
the motion regeneration by composing from several semantic primitive motions based 
on Fourier transform. Uehara group [17] proposed a method for the extraction of 
primitive motions represented symbolized values to recognize human motions by 
matching those symbolized sequential values. Lim et al. [18] also proposed an algo-
rithm for the key-posture extraction out of human motion data based on the curve 
simplification algorithm. We have never found motion database management systems 
like our prototype that employs the symbolic representation for motion data to reduce 
the calculation cost of motion searches and that provides an intuitive interface for 
entering query motions. 

The remainder of this paper is organized as follows: Section 2 describes the com-
ponent based motion editing environment. Section 3 describes the real-time motion 
generation system using puppet/marionette metaphors. Section 4 treats the motion 
database system. Especially we describe symbolic representation of motion data for 
motion searches. Finally Section 5 concludes the paper. 

2   Component Based Motion Editing Environment  

This section describes the component based motion editing environment. Especially 
we explain what kinds of boxes of IntelligentBox are developed and used. 
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2.1   Component Structure of a Human-Like Model and Its One Pose Data 

Fig. 2.1 shows components of a human-like model. This model is consisted of 17 
joints. Each joint is 3DRotationBox. The bottom box is ArrayBox that stores xyz-
angle data of the all joints. Therefore, this ArrayBox keeps one pose data. This com-
posite box illustrated in the figure is used as a unit for editing one pose. 

Fig. 2.1. Component structure of a human-like model. 

2.2   Editing of Multiple Key-Poses 

Fig. 2.2 (left) shows multiple key-poses those mean a walking motion. This motion is 
consisted of five key-poses. By looking at the five key-poses, it is possible to under-
stand that motion is a walking motion. Figure 2.2 (center) shows another motion. This 
is a jump motion consisting of six different poses. As for the walking motion, the 
character's center of mass moves gradually in one direction. So it is not difficult to 
specify each pose by directly dragging the joints of the corresponding model on a 
computer screen. However as for the jump motion, the character's center of mass 
moves up and then down again. So it is difficult to specify each pose by directly drag-
ging the joints of the corresponding model on a computer screen because some poses 

Fig. 2.2. Editing of a walk motion, and editing of a jump motion and its one key-pose. 
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are occluded. For this case, the system provides functionality to disappear other un-
necessary poses except the one pose that the user is currently modifying. There is a 
particular box called ContainerBox to provide such functionality. Several Container-
Boxes are located below each model and assigned as its parent box. ContainerBox 
controls visibility of its descendant boxes. If a user clicks a mouse button on Con-
tainerBox, its descendant boxes become invisible, and the user clicks again then its 
descendant boxes become visible. By interactively controlling their visibility, users 
can edit each pose with showing only one corresponding pose as shown in Figure 2.2 
(right). 

2.3   Mechanism of Motion Generation 

Fig. 2.3 (left) shows data flow and component structure for concatenated motion gen-
eration. The upper part of the figure is component structure for one motion genera-
tion. There is InterpolationBox. InterpolationBox generates a motion as a complete 
sequence of poses generated by interpolation among several key-poses. The motion is 
stored in the slot of ArrayBox. Furthermore the lower part of the figure is component 
structure for concatenation of several motions. There is MotionConcatenationBox. 
MotionConcatenationBox generates one motion as a sequence of several motions. If 
there are two difference motions, i.e., a walking motion and a jump motion, and the 
walk motion is assigned a value of zero as its ID number and the jump motion is as-
signed a value of one. After the user specifies a sequence of ID number values like (0, 
1, 1, 0) as the parameter of MotionConcatenationBox, the MotionConcatenationBox 
generates one concatenated motion. That motion acts in the order of a walk, a jump, a 
jump and a walk. Two sequential motions are concatenated smoothly by a linear 
combination of last n frames of the first motion and first n frames of the second mo-
tion. Strictly speaking, concatenation process generates a smooth motion, i.e., the first 
motion fades out and the second motion simultaneously fades in. 

 

Fig. 2.3. Data flow of concatenated motion generation (left) and data flow to generate new
motion by re-editing a motion capture data (right). 
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2.4   Motion Capture Data Support 

As shown in Fig. 2.3 (right), IntelligentBox provides a particular box called Motion-
Box. This box reads a motion capture data file and generates a motion as a sequence 
of several poses. Currently this box supports BioVision Inc. BVH file format. In the 
figure, there is another box called MotionToKeyBox under MotionBox. This box 
automatically extracts multiple key-poses from the motion data generated by the Mo-
tionBox. Once several poses are extracted as key-poses, the user can create new mo-
tions by reediting those key-poses. 

3   Real-Time Motion Generation   
Using Puppet/Marionette Metaphors 

This section describes the real-time motion generation method proposed in this re-
search project. Especially we explain how the user creates motions interactively by 
the intuitive interface of the proposed system. 

3.1   Motion Generation Using Puppet Metaphor 

Before explaining the mechanism of motion generation using marionette metaphor, 
this subsection explains the mechanism of motion generation based on the puppet 
metaphor. We use the term of �puppet� to indicate an articulated figure that is directly 
controlled by the user hand action. On the other hand, we use the term of �marionette� 
to indicate a string hung articulated figure. This �marionette� case has to simulate 
physical effects, i.e., gravity field and ground contact constraint besides direct control 
by the user hand action. 

3.1.1   Component Structure of a Puppet Model  
Fig. 3.1 (left) shows components of a typical puppet model. This model consists of 17 
joints. Each joint has three DOF (Degrees Of Freedom) and then it rotates along x-, y- 
and z-axes. The system receives finger-joint angle data sent from a data-glove device. 
We use a data-glove named Super Glove Jr. produced by Nissho Electronics Corpora-
tion [19]. This device generates ten finger-joint angles data. Each of these angles is 
applied to some specific joints of the puppet. Then the real-hand action controls the 
puppet motion in real time. The system also receives one set of position and orienta-
tion data sent from a magnetic-based motion sensor, Polhemus Inc. 3SPACE 
ISOTRACK II [20]. The position and orientation of the puppet change according to 
this data. 

As mentioned above, the puppet model, a human-like model, has 17 joints. How-
ever, the data-glove generates only ten finger-joint angles data. To control the puppet 
motion by only one-hand action it needs a certain mapping scheme between 17 joints 
of the puppet and ten angles data of the data-glove as shown in Fig. 3.1. 

3.1.2   Mapping Scheme for Puppet Motion Control 
First of all, we assume that each joint angle pi of a puppet is represented as the linear 
combination of ten-angle data of a data-glove. It is calculated using the next equation. 
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iiiii bhahahap ++++= 99,11,00, !  (3.1) 

where, ip  is the angle of i-th joint of a puppet, 910 ,,, hhh !  are ten-angle data of a 

data-glove and ib  is the initial angle of i-th joint of a puppet. 9,1,0, ,,, iii aaa !  are 

coefficients arbitrarily specified by the user. 
As for all joints of a puppet, equation (3.1) is transformed into the matrix expres-

sion. 
HP ×∏=  (3.2) 

where, P  is a vector Tpppp ]16,2,1,0[ ! , whose element ip  is also a vector of the 

x-, y-, and z-angle values of each puppet joint. H  is a vector Thhh ]1,9,,1,0[ ! , 

whose element is the angle value of each hand joint. Finally, Π  is a matrix that 
means a mapping table and initial pose information as the following matrix. 
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A vector [ ]Tbbb 1610 ,,, ! specifies an initial pose. Its element means a vector of 

the initial x-, y- and z-angle values of each puppet joint. 
Fig. 3.2 shows four poses of the hand and their four corresponding poses of a pup-

pet. We define Pose 1 is an initial pose since the paper shape of a hand seems more 
natural rather than the stone shape. Using only one mapping table, by the one-hand 
poses in Pose2, 3 and 4, the poses of a puppet shown in the right group of Fig 3.2 are 
obtained for instance. This mapping is adequately specified by the user to make it 
easier for his/her hand to control the puppet. 

3.2   Motion Generation Using Marionette Metaphor 

As mentioned in Section 1, one mapping table allows us to make very few kinds of 
motions and it is insufficient in the practical use. So the system requests the user to 

 

Fig. 3.1. Puppet/marionette model and its control interface. 
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prepare multiple mapping tables and to choose one of them by the keyboard input 
properly. However, it was thought that this is inconvenient and more intuitive inter-
face is needed. We introduced another real-time motion generation method using a 
marionette metaphor. This subsection treats motion effects of marionette metaphor, 
i.e., gravity field and ground contact constraints. 

3.2.1   Motion Effect of Gravity Field  
Similarly to a real marionette, the body of our marionette consisting of a waist, left 
and right hips, a chest, and left and right collars is treated as one rigid part. Fig. 3.3 
shows five kinds of hand positions and poses in the upper group, and their corre-
sponding marionette positions and poses in the lower group. First one (Pose 1) is a 
normal position and pose. Other four have a different orientation but their positions 
are almost the same. Second figure (Pose 2) and third figure (Pose 3) show that the 
hand fall down forward and that the hand go up backward respectively. These rota-
tions of the marionette body correspond to pitch of the Euler Transformation. Fourth 
figure (Pose 4) and fifth figure (Pose 5) show the rotations of the marionette body 
correspond to roll of the Euler Transformation. Although there are no figures, the 

 
Fig. 3.2. Four one-hand poses and their corresponding puppet poses. 

 

Fig. 3.3. Normal and four one-hand orientations and their corresponding marionette poses with 
gravity effect. 
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rotations of the marionette body correspond to head of the Euler Transformation is 
also possible. The marionette exists in the gravity field so its two arms and two legs 
always hang down. In this case, the positions of the hand is enough high so the 
ground contact constraint does not exist. Only gravity effect exists. 

3.2.2   Motion Effect Based on Marionette Metaphor 
Actually the arms of a real marionette are controlled by the strings connected to each 
of their hand, and the legs of the marionette are controlled by the strings connected to 
each of their knee. Fig. 3.4 shows another set of example poses those describe this 
effect. We used a mapping table similar to the one used to generate the poses of Fig. 
3.2, that is, the thumb and little finger of the user hand control the marionette�s legs 
and the index finger and third finger control the marionette�s arms. Pose 1 means that 
the marionette right hand is pulled up by a virtual, invisible string. This virtual string 
is controlled by the hand action of the user, strictly speaking, by the action of the 
user�s third finger. Pose 2 is almost the same as Pose 1. In this case, the marionette 
left hand is pulled up by the action of the user�s index finger. In the case of Pose 3, 
the marionette both left and right hands are pulled up. 

 

Fig. 3.4. Five one-hand poses and their corresponding strung marionette poses. 

As for these poses, the inverse kinematics is partially used to determine the posi-
tion of the intermediate joint, i.e., the elbows because the user�s hand actions only 
control the position of each of the marionette�s two hands. To carry out this, we intro-
duced 2-links Inverse Kinematics. For its more detail, see the paper [10]. As for the 
remainder of Fig. 3.4, Pose 4 means that the marionette right knee is pulled up by a 
virtual, invisible string. This virtual string is controlled by the action of the user�s 
little finger. Pose 5 is almost the same as Pose 4. In this case, the marionette left knee 
is pulled up by the action of the user�s thumb. In the both cases, lower legs fall down 
due to the gravity effect. 

3.2.3   Motion Effect of Ground Contact Constraint 
As for a real marionette, ground contact constraint plays a significant role to effec-
tively generate various motions. Fig. 3.5 shows another set of example poses concern-
ing ground contact constraint. Left figure (Pose 1) is an initial pose. In this case, nei-
ther two feet nor two hands touch the ground. Center figure (Pose 2) means that two 
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feet touch the ground due to the lower position of the waist since the user�s hand posi-
tion becomes lower. In this case, positions of both left and right knee are automati-
cally calculated using 2-links Inverse Kinematics. Furthermore, right figure (Pose 3) 
of Fig. 3.5 shows a pose with both feet and hands contacting the ground. 

 
Fig. 3.5. Three one-hand poses and their corresponding marionette poses with ground contact 
constraints. 

3.2.4   Walking Motion Generation 
Our system also generates the walking motion of an articulated figure. In this case, 
the center position of the figure is calculated by following equations: 
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Here, C
i

C
i

C
i ZYX 111 ,, +++ are the x, y, z component of the center position at i+1-th 

frame. RF
i

RF
i ZX ,  are the x, z component of the right foot position at i-th frame, as 

well, LF
i

LF
i ZX ,  are the x, z component of the left foot position. MSMS ZY ,  are the y, 

z component of the position data sent by a motion sensor device. Its x component is 
not used in this case. Z

i
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X
i 111 ,, +++ θθθ  are the rotation angles of the center along x-axis, 

y-axis, and z-axis respectively at i+1-th frame. Y
iθ is the rotation angle along y-axis at 

i-th frame. Z
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Y
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X
MS θθθ ,,  are the rotation angles data along x-axis, y-axis, and z-axis 

respectively, sent from a motion sensor device. It is possible to make a turn by chang-
ing Y

MSθ  and also control its speed by the change of MSZ . 
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3.3   Discussion 

Even if using conventional computer animation software, creation of the motions 
shown in Fig. 3.3, 3.4 and 3.5 is not easy, especially the motion of Fig. 3.5 is very 
difficult. However, using our system, the user can create those motions by his/her 
one-hand actions interactively in real time. 

The main mathematical factor of our system is only 2-links Inverse Kinematics. 
This is very simple so its calculation cost is very low. Therefore, our system generates 
the motions demonstrated in this subsection in real time. As for the performance of 
the system, frame rate is around 18 fps using a standard PC, 850MHz Pentium III 
CPU, 640MB memory, and GeForce3 graphics. This value is satisfactory for interac-
tive animation systems. 

4   Motion Database System Using Symbolic Representation   
of Motion Data for Motion Searches 

This section treats a motion database system using symbolic representation of motion 
data for motion searches. Especially we describe a system overview, our similarity 
measure of motion data and its evaluation results. 

4.1   System Overview 

Fig. 4.1 shows the system configuration of our motion database system. The system 
has original motion data as primary information and their symbolic representation 
data as secondary information in its motion database. When the user enters a query 
motion for similarity motion searches, the system generates the symbolic representa-
tion data from the query motion in order to compare it to each data in the secondary 
information and to output similar motions as the comparison result. 

 

Fig. 4.1. System configuration. 

4.2   Similarity Search of Motion Data 

This subsection describes how to generate secondary information, i.e., symbolic rep-
resentation data extracted from motion data by spatial quantization. This spatial quan-
tization is applied to a few joints of an articulated figure model, which are semanti-
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cally important joints called feature joints. First of all, we define feature joints in next 
sub-subsection. After that, we explain two spatial quantization ways, and introduce 
our similarity measure for similarity motion searches based on the spatial occurrence 
probability. 

4.2.1   Feature Joints 
If the quantization process to obtain secondary information is applied to all the joints 
of an articulated figure model, its calculation cost and the secondary information size 
become large. Then, if it is possible to determine small number of joints, those are 
semantically important or enough to characterize the corresponding motion, the quan-
tization process should be applied to such a small number of joints. We decided four 
joints, i.e., a left wrist, right wrist, left ankle and right ankle, as feature joints because 
we assume that the positions of those joints are calculated using their parent joints 
information and then these joints have much significant information rather than the 
other joints. In the following sub- and sub-subsections, feature joints mean four joints, 
i.e., a left wrist, right wrist, left ankle and right ankle. 

4.2.2   Spatial Quantization for Symbolic Representation of Motion Data 
Each motion data consists of multiple sequential pose data. Our spatial quantization 
process is applied to each pose data and consequently multiple sequential symbolic 
representation data will be obtained after that. Strictly speaking, the symbolic repre-
sentation data of each pose contains four symbol values, each of which means the 
location information of the corresponding feature joint. We treat two spatial quantiza-
tion ways as shown in Fig. 4.2. 

The space division is performed based on the relative position of each joint to the 
center of mass of an articulated figure model. That is, the center of mass of the model 
becomes the origin of a local coordinate system around the model. This spatial quan-
tization is not influenced by the direction of the model in a motion. The left figure of 
Fig. 4.2 shows one spatial quantization way that the space is divided into eight sub-
spaces and one of the eight unique numbers, zero to seven, is assigned to each of them 
as its region number. For each pose in a motion, each feature joint is represented as 
the region number where the joint is located. For instance, in the case of the left fig-
ure, the right ankle is located in the subspace numbered by zero and then it is repre-

 
Fig. 4.2. Two different space division ways. 
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sented as the number 0, and the left ankle is located in the subspace numbered by 5 
and then it is represented as the number 5. This is our symbolization process by the 
spatial quantization. Symbol values assigned to feature joints do not represent their 
strict positions, that is, there is ambiguity so that the secondary information consisting 
of such symbolic representation data seems available as the feature information of 
motions for similarity searches. 

The papers [21, 22] proposed the same space division as the right figure of 
Fig. 4.2. In this paper, we propose another space division way shown in the right 
figure of Fig. 4.2 because this could obtain better results than the other several space 
division ways actually we tried. In the first trial, we decided to divide the space into 
27 subspaces equally. In this case, we had to calculate the maximum space reachable 
for feature joints from the center of mass of a model. Then, we divided the space into 
27 subspaces by dividing each X-, Y- and Z-direction into equally three segments. 
However, this division way is not good because in many motions, feature joints exist 
close to the center of mass so that outer regions of them are almost useless. As the 
second trial, we divided the same maximum space into 64 subspaces by dividing each 
direction equally into four segments. However, in this case, the number of regions is 
too many and most regions are useless. Especially outer regions are useless due to the 
same reason of the 27 division case. Finally we found that the space division shown in 
the right figure of Fig. 4.2 is the most efficient way in our trials. The space is divided 
into four segments in the both X- and Y-direction, and divided into two segments in 
the Z-direction. Totally the space is divided into 32 subspaces. Symbol values as-
signed to the subspaces are determined to satisfy that the difference of two symbol 
values of two adjoining subspaces is only one bit. Actual division points are decided 
as follows: 

1) Three division points in X-direction: the origin, the midpoint between a left wrist 
and a left ankle, the midpoint between a right wrist and a right ankle. 

2) Three division points in Y-direction: the origin, the midpoint between a shoulder 
and an elbow, the midpoint between a knee and an ankle. 

3) One division point in Z-direction: the origin. 

In the case of the right figure of Fig. 4.2, the positions of a left ankle, right ankle, 
left wrist and right wrist are symbolized with 9, 29, 26 and 14 respectively. This is the 
symbolization for one pose, and one pose data is represented as one set of symbol 
values like {9, 29, 26, 14}. This symbolization is applied to all pose data, and the 
corresponding motion data is represented as the sequence of sets of such symbol val-
ues. This symbolized data of a motion is used to generate the spatial occurrence prob-
ability explained in next sub-subsection. 

4.2.3   Spatial Occurrence Probability 
As mentioned previously, each motion data is a set of continuous pose data. By the 
symbolization process, the pose data at each frame time is represented as a set of four 
symbol values of feature joints. Contrarily, the motion of each feature joint in a whole 
motion is represented as a set of continuous symbol values. From the set, it is possible 
to calculate the spatial occurrence probability of the corresponding feature joint. 
Strictly speaking, the spatial occurrence probability means a probability distribution 
of subspaces in which the corresponding feature joint exist over the whole motion. 
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From one symbolized motion data, one set of four spatial occurrence probability data, 
i.e., four histograms shown in Fig. 4.3,.will be obtained. We use it for our similarity 
search as the feature information. For i-th feature joint, its occurrence probability of j-
th region is calculated by the next equation. 

 

Fig. 4.3. Four histograms of a left wrist, right wrist, left ankle and right ankle. 

N
jicountjip ),(),( =  (4.1) 

Here, N is the number of frames in a symbolized motion data, count(i,j) is the 
number of j-th region symbol values concerning i-th feature joint in a symbolized 
motion data. 

4.2.4   Similarity Measure 
In the case of the similarity search, our motion database system outputs motion data 
similar to the query motion entered by the user. Strictly speaking, the system calcu-
lates dissimilarity between a query motion and each motion of the motion database 
and then outputs motion data having the smaller dissimilarity value one by one. The 
dissimilarity value between two motions Q and T is calculated as Euclidean norm 
using the next equation. 
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Here, )(iQ  and )(iT are the histograms concerning feature joint i of two motions Q 
and T respectively. M is the number of feature joints. M is always 4. ),( jiQ  and 

),( jiT  are the occurrence probabilities of region j concerning feature joint i of two 
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motions Q and T respectively. N is the number of regions. In the case of the right 
figure of Fig. 4.2, N is 32.  

4.3   Prototype Systems 

Figure 4.4 shows the snapshot of our motion database system developed using Intelli-
gentBox. This system searches motions from motion database, similar to the example 
motion chosen by the user. The system also searches motions including sequential key 
poses specified by the user as the query. This means exact match search. There are 
five same articulated figure models in the figure. The most left one is prepared for the 
preview of searched motions. One of the searched motions is also used as the query mo-
tion of the next similarity motion search. The other four models are prepared to specify 
query poses for the exact match motion search. 

 

Fig. 4.4. Motion database system developed using IntelligentBox.  

The system calculates the positions of feature joints to obtain the corresponding 
symbol values per each of the four poses and it obtains their symbolic representation 
data. Hence, the system retrieves motions whose symbolic representation data in-
cludes the symbolic representation data calculated from the four query poses. Al-
though there are four models to specify query poses in the figure, it is possible to 
change the number of models by means of making their copies or deleting some of 
them interactively. 

4.4   Experiments 

This subsection presents experimental results of similarity searches for the evaluation 
of our proposed method. Before showing experimental results, we describe our mo-
tion database and evaluation measures. 
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4.4.1   Motion Database 
For the evaluation of our motion search method, we had to prepare a motion database. 
We used a commercial product called �RIKIYA� [23]. It contains 300 motion data 
created by recording real human motions using a motion capture system. Unfortu-
nately these 300 motions are composite motions like the sequence of primitive mo-
tions, e.g., the sequence of �walk�, �tumble�, �rise�, and �walk� again. In the practi-
cal use, the user usually enters a primitive motion, e.g., �walk�, �jump� etc., to search 
its similar motions. Therefore, we made seven classes of primitive motions, totally 61 
primitive motions, from the 300 composite motions of �RIKIYA�. Its details will be 
indicated in Table 4.1 and Table 4.2. 

4.4.2   Evaluation Measures 
We use the same three evaluation measures described in [24]. They are First tier, 
Second tier and Nearest neighbor as follows. 
First Tier: This criteria means the percentage of top (k�1) matches (excluding the 
query) from the query's class, where k is the number of motions in the class. 

Second Tier: This criteria is the same type of result, but for the top 2(k�1) matches. 

Nearest Neighbor: This criteria means the percentage of test in which the top match 
was from the query's class. 

4.4.3   Experimental Results 
As described above, we prepared 61 primitive motions by manually cutting out from 
original motion data. There are seven classes, i.e., �walk�, �jump�, �tumble�, �rise�, 
�sit down a chair�, �kick by right leg�, and �throw by right hand�. We calculated the 
above evaluation measures for the similarity searches on these seven classes of primi-
tive motions. Table 4.1 and 4.2 show evaluation results of the 8 division case and 
those of the 32 division case. These values are averages of the same class motions and 
all motion classes. The total search times to generate the results on 61 motions for the 
8 division case and the 32 division case are around 4 seconds and around 5 seconds 
using a standard PC, Pentium III 500MHz CPU and 256 MB memory. Search times 
for one query motion in the 8 division case and in the 32 division case become 0.065 
second and 0.082 second respectively. Most results of the 32 division case are equiva-
lent or better than those of the 8 division case. For the accuracy, the motion classes 
�kick by right leg� and �throw by right hand� indicate not good value. One reason for 
this seems that these motions have high locality so that we should use only right leg 
or right hand as feature joints. Another reason may be that the number of motions in 
each of these classes is too small. 

4.5   Discussion 

Our motion database does not have a large number and many kinds of motions be-
cause we had to prepare it by manually cutting out primitive motions from composite 
motions of a commercial product database. For precise evaluations of the availability 
of our motion database system, we will have to prepare a motion database consisting 
of a large number and many kinds of motions. Currently we have been studying algo-
rithms that help us to extract primitive motions from composite motions, and we have 
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already proposed new method based on hierarchical curve simplification [25]. We 
will make a satisfactory motion database by the help of that method. 

Table 4.1. Evaluation results on 32 division 

Motion class 1st measure 2nd measure 3rd measure # of motions 

walk 0.905229 0.996732 1.000000 18 

jump 0.393939 0.621212 0.666667 12 

tumble 0.400000 0.555556 0.800000 10 

rise 0.523810 0.666667 1.000000 7 

sit down a chair 0.533333 0.633333 0.833333 6 

kick by right leg 0.416667 0.666667 0.250000 4 

throw by right hand 0.250000 0.333333 0.250000 4 

All motion classes 0.566471 0.711770 0.786885 61 

Table 4.2. Evaluation results on 8 division 

Motion class 1st measure 2nd measure 3rd measure # of motions 

walk 0.937908 1.000000 1.000000 18 
jump 0.295455 0.575758 0.500000 12 
tumble 0.377778 0.688889 0.700000 10 
rise 0.380952 0.547619 0.428571 7 
sit down a chair 0.666667 0.666667 0.833333 6 
kick by right leg 0.250000 0.333333 0.250000 4 
throw by right hand 0.166667 0.250000 0.000000 4 

All motion classes 0.533425 0.687945 0.655738 61 
 
Moreover, as described in Section 3, we have proposed a real-time motion genera-

tion system using puppet/marionette metaphors. Using this system, the user can gen-
erate coarse motions of an articulated figure model by his/her hand actions in real 
time. Those motions are possible to be used as query motions for similarity motion 
searches. We are supposed to integrate the two systems to develop an intelligent mo-
tion management system. 

5   Concluding Remarks 

In this paper, we described intuitive interfaces for motion generation and motion 
search. These are research results on the interactive animation system achieved by our 
research group as the part of a research project �Intuitive Human Interface for Orga-
nizing and Accessing Intellectual Assets�. We did these researches toward the devel-
opment of a narrative database system in which narrative data would be represented 
as CG animations. As a result, we studied on intuitive interfaces for CG animation 
creation. For the motion design, we have proposed a component based motion editing 
environment, a real-time motion generation system using puppet/marionette meta-
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phors and a motion database system by symbolic representation of motion data. In 
this paper, we mainly treated these topics. On the other hand, for the shape design, we 
have also proposed a polygonal model database management system that accepts hand 
sketch images as the query and outputs corresponding polygonal models by the sil-
houette image matching [26-28]. As well, we have other research results [29, 30]. Due 
to the page number limitation, we did not describe them in this paper. See each paper 
for its detail. 

As future works, we will integrate all the research results mentioned in this paper 
in order to develop an interactive animation system using IntelligentBox towards the 
development of a narrative database system. 
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