
G. Grieser and Y. Tanaka (Eds.): Intuitive Human Interface 2004, LNAI 3359, pp. 49�67, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Intuitive Interfaces for Motion Generation and Search

Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

Graduate School of Information Science and Electrical Engineering, Kyushu University,
6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan

{okada,h-etou,niijima}@i.kyushu-u.ac.jp

Abstract. This paper treats intuitive interfaces for motion generation and mo-
tion search. These are research results on the interactive animation system
achieved by the research group of the authors as the part of a research project
�Intuitive Human Interface for Organizing and Accessing Intellectual Assets�.
For CG animation creation, the motion design of CG characters as well as the
shape design is very laborious work. For the motion design, the authors have al-
ready proposed a component based motion editing environment, a real-time mo-
tion generation system using puppet/marionette metaphors and a motion data-
base management system. These allow the user to create motions interactively,
intuitively and make it easy to distribute and re-edit motions. In this paper, the
authors introduce these motion generation and motion search systems.

1 Introduction

We have been interested in narrative database systems. Traditionally narrative data
have been represented by the text media so far. Now narrative data would be possible
to be represented by the CG animation because advances of recent computer hardware
technologies have made it possible to create CG animations by very lower costs rather
than ever. Towards the development of a narrative database system, we have been
studying on an interactive animation system. Especially, this paper treats intuitive
interfaces for motion generation and motion search. These are research results on the
interactive animation system achieved by our research group as the part of a research
project �Intuitive Human Interface for Organizing and Accessing Intellectual Assets�.

For 3D animation creation, the character design is a very important factor but very
hard work. Especially its motion design and shape modeling are very laborious work.
For the motion design, we have already proposed a component based motion editing
environment [1, 2]. There are many researches on motion generation for computer
animation. Witkin and Kass proposed concept of spacetime constraints [3]. After that,
many research papers based on spacetime constraints were published [4, 5]. IK (In-
verse Kinematics) is one of the other popular methods for efficient motion generation.
The motion path functionality is also a popular technique to intuitively define move-
ment of a character's center of mass. However, most popular and traditional motion
design is based on key-frame animation [6]. A motion is represented as a sequence of
a number of poses those are automatically generated by interpolation of several key-
poses. Each key-pose is defined by specifying the joints angles of an articulated figure
model. Our proposed motion editing environment is also based on the key-frame

50 Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

animation technology. This environment displays all sequential key-poses at the same
time on a computer screen. Then by looking at those key-poses users can recognize a
complete motion those key-poses mean and can edit each key-pose interactively and
easily through comparing with its adjoining poses on a computer screen. We have
developed such motion editing environment using IntelligentBox [7, 8], which is a
component based 3D graphics software development system that provides functional
components called boxes. The proposed motion editing environment is developed as a
composite box, which includes user-defined motion information itself. Therefore,
users can exchange their edited motions with each other through Internet by copy-
and-transfer operations of such a composite box, and create new motions only by
modifying the motions already defined by other users.

Besides the above motion editing environment, for motion generations, we have
also proposed a real-time motion generation system using puppet/marionette meta-
phors [9, 10]. The puppet is a children toy and it is easy to manipulate for even chil-
dren. For this reason, at first, we employed the puppet metaphor for real-time motion
generation. We developed such a real-time motion generation system using Intelli-
gentBox [9]. This system used the set of a data-glove and a magnetic motion sensor as
its interfaces. A puppet motion is controlled using one-hand actions. Our data-glove
generates only ten finger-joint angles. This number is not enough to fully control an
articulated figure. So the system requested the user to prepare multiple mapping tables
that defines association between ten finger-joint angles of a data-glove and 17 joint of
an articulated figure. When the user performs his/her hand action to generate the mo-
tion of an articulated figure, he/she chooses an adequate mapping-table and changes
the current one into the chosen one by additional keyboard manipulation. Indeed this
was inconvenient. Therefore we introduced another metaphor, i.e., a marionette meta-
phor and especially introduced gravity field concept and ground contact constraint
[10]. Actually in the real world, a human action is performed in the gravity field and
usually on a floor or on the ground. Similarly a marionette action is also performed
based on the physics of the gravity and the ground contact constraint. For this reason,
we employed a marionette metaphor to generate the motions of an articulated figure
in real time by one-hand actions. As related works, there are researches on the use of
motion capture systems as a real-time input interface to control CG character interac-
tively [11]. Noser and Thalmann proposed virtual tennis game environment using a
full-body motion capture system as a real-time motion input interface [12]. Full-body
motion capture systems have become common. However they are still very expensive
and they cannot be used on the desktop. Laszlo, et al [13] proposed interactive control
technique for physically-based animation using standard input devices, i.e., a mouse
device and a keyboard. This technique requests the user to prepare many motion
primitives. The use of a mouse device and a keyboard is convenient but they are not
intuitive devices. Oore, et al proposed a desktop input device and interface for interac-
tive 3D character animation [14, 15]. Our research system is very similar to theirs.
They use two magnetic-based motion sensors while we use the set of a magnetic-
based motion sensor and a data-grove. While our system generates motions of an
articulated figure in real time by the user�s one-hand actions, which are squat and
jump, walking motion and so on, Oore�s system can not generate a character anima-
tion in real time. This means that their system generates motions of some parts of a
figure separately and later it has to compose a full body motion of them. Although the

Intuitive Interfaces for Motion Generation and Search 51

quality of motions generated by Oore�s system seems better than that of our system,
the abstract motions generated by our system are able to be used for various applica-
tions, e.g., as initial motions for key-frame animation [1, 2], as query motions to
search required motions from motion databases and so on.

The above motion editing environment and real-time motion generation system are
main research results for motion generations of our interactive animation system re-
search. Indeed, besides the above two topics, we have been studying motion database
systems. The development of motion database management systems poses two main
questions: which feature can be assumed to be the best similarity among motions, and
what is the best way to specify the query. We employed new similarity feature based
on the symbolic representation of motion data by the spatial quantization as the an-
swer of the first question. Motion data is a sequence of several poses, each of which
consists of joints angles data of an articulated figure model at a different frame time.
To reduce the calculation cost for the motion search, we employ not all the joints but
a small number of the joints, those mean semantically important joints called feature
joints, of each pose of a complete motion data. Furthermore we employed new simi-
larity measure based on the spatial occurrence probability. We divided the 3D space
around a model into a small number of subspaces semantically. At each frame, the
position of each feature joint is represented as the symbol value that corresponds one
of the subspaces, in which the feature joint exists. This means spatial quantization. In
this paper, we show two spatial quantization ways and their experimental results for
the evaluation. We have already developed its prototype system using IntelligentBox.
In this paper, we also propose an intuitive interface as the answer of the second ques-
tion. This interface provides the facility allows the user to intuitively enter query mo-
tions for motion data searches. Researches on motion database systems are very few
so far. As for motion generation aspects, Unuma et al. [16] proposed an algorithm for
the motion regeneration by composing from several semantic primitive motions based
on Fourier transform. Uehara group [17] proposed a method for the extraction of
primitive motions represented symbolized values to recognize human motions by
matching those symbolized sequential values. Lim et al. [18] also proposed an algo-
rithm for the key-posture extraction out of human motion data based on the curve
simplification algorithm. We have never found motion database management systems
like our prototype that employs the symbolic representation for motion data to reduce
the calculation cost of motion searches and that provides an intuitive interface for
entering query motions.

The remainder of this paper is organized as follows: Section 2 describes the com-
ponent based motion editing environment. Section 3 describes the real-time motion
generation system using puppet/marionette metaphors. Section 4 treats the motion
database system. Especially we describe symbolic representation of motion data for
motion searches. Finally Section 5 concludes the paper.

2 Component Based Motion Editing Environment

This section describes the component based motion editing environment. Especially
we explain what kinds of boxes of IntelligentBox are developed and used.

52 Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

2.1 Component Structure of a Human-Like Model and Its One Pose Data

Fig. 2.1 shows components of a human-like model. This model is consisted of 17
joints. Each joint is 3DRotationBox. The bottom box is ArrayBox that stores xyz-
angle data of the all joints. Therefore, this ArrayBox keeps one pose data. This com-
posite box illustrated in the figure is used as a unit for editing one pose.

Fig. 2.1. Component structure of a human-like model.

2.2 Editing of Multiple Key-Poses

Fig. 2.2 (left) shows multiple key-poses those mean a walking motion. This motion is
consisted of five key-poses. By looking at the five key-poses, it is possible to under-
stand that motion is a walking motion. Figure 2.2 (center) shows another motion. This
is a jump motion consisting of six different poses. As for the walking motion, the
character's center of mass moves gradually in one direction. So it is not difficult to
specify each pose by directly dragging the joints of the corresponding model on a
computer screen. However as for the jump motion, the character's center of mass
moves up and then down again. So it is difficult to specify each pose by directly drag-
ging the joints of the corresponding model on a computer screen because some poses

Fig. 2.2. Editing of a walk motion, and editing of a jump motion and its one key-pose.

Intuitive Interfaces for Motion Generation and Search 53

are occluded. For this case, the system provides functionality to disappear other un-
necessary poses except the one pose that the user is currently modifying. There is a
particular box called ContainerBox to provide such functionality. Several Container-
Boxes are located below each model and assigned as its parent box. ContainerBox
controls visibility of its descendant boxes. If a user clicks a mouse button on Con-
tainerBox, its descendant boxes become invisible, and the user clicks again then its
descendant boxes become visible. By interactively controlling their visibility, users
can edit each pose with showing only one corresponding pose as shown in Figure 2.2
(right).

2.3 Mechanism of Motion Generation

Fig. 2.3 (left) shows data flow and component structure for concatenated motion gen-
eration. The upper part of the figure is component structure for one motion genera-
tion. There is InterpolationBox. InterpolationBox generates a motion as a complete
sequence of poses generated by interpolation among several key-poses. The motion is
stored in the slot of ArrayBox. Furthermore the lower part of the figure is component
structure for concatenation of several motions. There is MotionConcatenationBox.
MotionConcatenationBox generates one motion as a sequence of several motions. If
there are two difference motions, i.e., a walking motion and a jump motion, and the
walk motion is assigned a value of zero as its ID number and the jump motion is as-
signed a value of one. After the user specifies a sequence of ID number values like (0,
1, 1, 0) as the parameter of MotionConcatenationBox, the MotionConcatenationBox
generates one concatenated motion. That motion acts in the order of a walk, a jump, a
jump and a walk. Two sequential motions are concatenated smoothly by a linear
combination of last n frames of the first motion and first n frames of the second mo-
tion. Strictly speaking, concatenation process generates a smooth motion, i.e., the first
motion fades out and the second motion simultaneously fades in.

Fig. 2.3. Data flow of concatenated motion generation (left) and data flow to generate new
motion by re-editing a motion capture data (right).

54 Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

2.4 Motion Capture Data Support

As shown in Fig. 2.3 (right), IntelligentBox provides a particular box called Motion-
Box. This box reads a motion capture data file and generates a motion as a sequence
of several poses. Currently this box supports BioVision Inc. BVH file format. In the
figure, there is another box called MotionToKeyBox under MotionBox. This box
automatically extracts multiple key-poses from the motion data generated by the Mo-
tionBox. Once several poses are extracted as key-poses, the user can create new mo-
tions by reediting those key-poses.

3 Real-Time Motion Generation
Using Puppet/Marionette Metaphors

This section describes the real-time motion generation method proposed in this re-
search project. Especially we explain how the user creates motions interactively by
the intuitive interface of the proposed system.

3.1 Motion Generation Using Puppet Metaphor

Before explaining the mechanism of motion generation using marionette metaphor,
this subsection explains the mechanism of motion generation based on the puppet
metaphor. We use the term of �puppet� to indicate an articulated figure that is directly
controlled by the user hand action. On the other hand, we use the term of �marionette�
to indicate a string hung articulated figure. This �marionette� case has to simulate
physical effects, i.e., gravity field and ground contact constraint besides direct control
by the user hand action.

3.1.1 Component Structure of a Puppet Model
Fig. 3.1 (left) shows components of a typical puppet model. This model consists of 17
joints. Each joint has three DOF (Degrees Of Freedom) and then it rotates along x-, y-
and z-axes. The system receives finger-joint angle data sent from a data-glove device.
We use a data-glove named Super Glove Jr. produced by Nissho Electronics Corpora-
tion [19]. This device generates ten finger-joint angles data. Each of these angles is
applied to some specific joints of the puppet. Then the real-hand action controls the
puppet motion in real time. The system also receives one set of position and orienta-
tion data sent from a magnetic-based motion sensor, Polhemus Inc. 3SPACE
ISOTRACK II [20]. The position and orientation of the puppet change according to
this data.

As mentioned above, the puppet model, a human-like model, has 17 joints. How-
ever, the data-glove generates only ten finger-joint angles data. To control the puppet
motion by only one-hand action it needs a certain mapping scheme between 17 joints
of the puppet and ten angles data of the data-glove as shown in Fig. 3.1.

3.1.2 Mapping Scheme for Puppet Motion Control
First of all, we assume that each joint angle pi of a puppet is represented as the linear
combination of ten-angle data of a data-glove. It is calculated using the next equation.

Intuitive Interfaces for Motion Generation and Search 55

iiiii bhahahap ++++= 99,11,00, ! (3.1)

where, ip is the angle of i-th joint of a puppet, 910 ,,, hhh ! are ten-angle data of a

data-glove and ib is the initial angle of i-th joint of a puppet. 9,1,0, ,,, iii aaa ! are

coefficients arbitrarily specified by the user.
As for all joints of a puppet, equation (3.1) is transformed into the matrix expres-

sion.
HP ×∏= (3.2)

where, P is a vector Tpppp]16,2,1,0[! , whose element ip is also a vector of the

x-, y-, and z-angle values of each puppet joint. H is a vector Thhh]1,9,,1,0[! ,

whose element is the angle value of each hand joint. Finally, Π is a matrix that
means a mapping table and initial pose information as the following matrix.

=∏

169,161,160,16

19,11,10,1

09,01,00,0

baaa

baaa
baaa

!
""#""

!
!

 (3.3)

A vector []Tbbb 1610 ,,, ! specifies an initial pose. Its element means a vector of

the initial x-, y- and z-angle values of each puppet joint.
Fig. 3.2 shows four poses of the hand and their four corresponding poses of a pup-

pet. We define Pose 1 is an initial pose since the paper shape of a hand seems more
natural rather than the stone shape. Using only one mapping table, by the one-hand
poses in Pose2, 3 and 4, the poses of a puppet shown in the right group of Fig 3.2 are
obtained for instance. This mapping is adequately specified by the user to make it
easier for his/her hand to control the puppet.

3.2 Motion Generation Using Marionette Metaphor

As mentioned in Section 1, one mapping table allows us to make very few kinds of
motions and it is insufficient in the practical use. So the system requests the user to

Fig. 3.1. Puppet/marionette model and its control interface.

56 Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

prepare multiple mapping tables and to choose one of them by the keyboard input
properly. However, it was thought that this is inconvenient and more intuitive inter-
face is needed. We introduced another real-time motion generation method using a
marionette metaphor. This subsection treats motion effects of marionette metaphor,
i.e., gravity field and ground contact constraints.

3.2.1 Motion Effect of Gravity Field
Similarly to a real marionette, the body of our marionette consisting of a waist, left
and right hips, a chest, and left and right collars is treated as one rigid part. Fig. 3.3
shows five kinds of hand positions and poses in the upper group, and their corre-
sponding marionette positions and poses in the lower group. First one (Pose 1) is a
normal position and pose. Other four have a different orientation but their positions
are almost the same. Second figure (Pose 2) and third figure (Pose 3) show that the
hand fall down forward and that the hand go up backward respectively. These rota-
tions of the marionette body correspond to pitch of the Euler Transformation. Fourth
figure (Pose 4) and fifth figure (Pose 5) show the rotations of the marionette body
correspond to roll of the Euler Transformation. Although there are no figures, the

Fig. 3.2. Four one-hand poses and their corresponding puppet poses.

Fig. 3.3. Normal and four one-hand orientations and their corresponding marionette poses with
gravity effect.

Intuitive Interfaces for Motion Generation and Search 57

rotations of the marionette body correspond to head of the Euler Transformation is
also possible. The marionette exists in the gravity field so its two arms and two legs
always hang down. In this case, the positions of the hand is enough high so the
ground contact constraint does not exist. Only gravity effect exists.

3.2.2 Motion Effect Based on Marionette Metaphor
Actually the arms of a real marionette are controlled by the strings connected to each
of their hand, and the legs of the marionette are controlled by the strings connected to
each of their knee. Fig. 3.4 shows another set of example poses those describe this
effect. We used a mapping table similar to the one used to generate the poses of Fig.
3.2, that is, the thumb and little finger of the user hand control the marionette�s legs
and the index finger and third finger control the marionette�s arms. Pose 1 means that
the marionette right hand is pulled up by a virtual, invisible string. This virtual string
is controlled by the hand action of the user, strictly speaking, by the action of the
user�s third finger. Pose 2 is almost the same as Pose 1. In this case, the marionette
left hand is pulled up by the action of the user�s index finger. In the case of Pose 3,
the marionette both left and right hands are pulled up.

Fig. 3.4. Five one-hand poses and their corresponding strung marionette poses.

As for these poses, the inverse kinematics is partially used to determine the posi-
tion of the intermediate joint, i.e., the elbows because the user�s hand actions only
control the position of each of the marionette�s two hands. To carry out this, we intro-
duced 2-links Inverse Kinematics. For its more detail, see the paper [10]. As for the
remainder of Fig. 3.4, Pose 4 means that the marionette right knee is pulled up by a
virtual, invisible string. This virtual string is controlled by the action of the user�s
little finger. Pose 5 is almost the same as Pose 4. In this case, the marionette left knee
is pulled up by the action of the user�s thumb. In the both cases, lower legs fall down
due to the gravity effect.

3.2.3 Motion Effect of Ground Contact Constraint
As for a real marionette, ground contact constraint plays a significant role to effec-
tively generate various motions. Fig. 3.5 shows another set of example poses concern-
ing ground contact constraint. Left figure (Pose 1) is an initial pose. In this case, nei-
ther two feet nor two hands touch the ground. Center figure (Pose 2) means that two

58 Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

feet touch the ground due to the lower position of the waist since the user�s hand posi-
tion becomes lower. In this case, positions of both left and right knee are automati-
cally calculated using 2-links Inverse Kinematics. Furthermore, right figure (Pose 3)
of Fig. 3.5 shows a pose with both feet and hands contacting the ground.

Fig. 3.5. Three one-hand poses and their corresponding marionette poses with ground contact
constraints.

3.2.4 Walking Motion Generation
Our system also generates the walking motion of an articulated figure. In this case,
the center position of the figure is calculated by following equations:

.

,

,sin
2

,

,cos
2

1

1

1

1

1

1

X
MS

X
i

Y
MS

Y
i

Y
i

Z
MS

Z
i

Y
i

MS
LF
i

RF
iC

i

MSC
i

Y
i

MS
LF
i

RF
iC

i

Z
XX

X

YY

Z
ZZ

Z

θθ
θθθ

θθ

θ

θ

=

+=

=

×+
+

=

=

×+
+

=

+

+

+

+

+

+

(3.4)

Here, C
i

C
i

C
i ZYX 111 ,, +++ are the x, y, z component of the center position at i+1-th

frame. RF
i

RF
i ZX , are the x, z component of the right foot position at i-th frame, as

well, LF
i

LF
i ZX , are the x, z component of the left foot position. MSMS ZY , are the y,

z component of the position data sent by a motion sensor device. Its x component is
not used in this case. Z

i
Y
i

X
i 111 ,, +++ θθθ are the rotation angles of the center along x-axis,

y-axis, and z-axis respectively at i+1-th frame. Y
iθ is the rotation angle along y-axis at

i-th frame. Z
MS

Y
MS

X
MS θθθ ,, are the rotation angles data along x-axis, y-axis, and z-axis

respectively, sent from a motion sensor device. It is possible to make a turn by chang-
ing Y

MSθ and also control its speed by the change of MSZ .

Intuitive Interfaces for Motion Generation and Search 59

3.3 Discussion

Even if using conventional computer animation software, creation of the motions
shown in Fig. 3.3, 3.4 and 3.5 is not easy, especially the motion of Fig. 3.5 is very
difficult. However, using our system, the user can create those motions by his/her
one-hand actions interactively in real time.

The main mathematical factor of our system is only 2-links Inverse Kinematics.
This is very simple so its calculation cost is very low. Therefore, our system generates
the motions demonstrated in this subsection in real time. As for the performance of
the system, frame rate is around 18 fps using a standard PC, 850MHz Pentium III
CPU, 640MB memory, and GeForce3 graphics. This value is satisfactory for interac-
tive animation systems.

4 Motion Database System Using Symbolic Representation
of Motion Data for Motion Searches

This section treats a motion database system using symbolic representation of motion
data for motion searches. Especially we describe a system overview, our similarity
measure of motion data and its evaluation results.

4.1 System Overview

Fig. 4.1 shows the system configuration of our motion database system. The system
has original motion data as primary information and their symbolic representation
data as secondary information in its motion database. When the user enters a query
motion for similarity motion searches, the system generates the symbolic representa-
tion data from the query motion in order to compare it to each data in the secondary
information and to output similar motions as the comparison result.

Fig. 4.1. System configuration.

4.2 Similarity Search of Motion Data

This subsection describes how to generate secondary information, i.e., symbolic rep-
resentation data extracted from motion data by spatial quantization. This spatial quan-
tization is applied to a few joints of an articulated figure model, which are semanti-

60 Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

cally important joints called feature joints. First of all, we define feature joints in next
sub-subsection. After that, we explain two spatial quantization ways, and introduce
our similarity measure for similarity motion searches based on the spatial occurrence
probability.

4.2.1 Feature Joints
If the quantization process to obtain secondary information is applied to all the joints
of an articulated figure model, its calculation cost and the secondary information size
become large. Then, if it is possible to determine small number of joints, those are
semantically important or enough to characterize the corresponding motion, the quan-
tization process should be applied to such a small number of joints. We decided four
joints, i.e., a left wrist, right wrist, left ankle and right ankle, as feature joints because
we assume that the positions of those joints are calculated using their parent joints
information and then these joints have much significant information rather than the
other joints. In the following sub- and sub-subsections, feature joints mean four joints,
i.e., a left wrist, right wrist, left ankle and right ankle.

4.2.2 Spatial Quantization for Symbolic Representation of Motion Data
Each motion data consists of multiple sequential pose data. Our spatial quantization
process is applied to each pose data and consequently multiple sequential symbolic
representation data will be obtained after that. Strictly speaking, the symbolic repre-
sentation data of each pose contains four symbol values, each of which means the
location information of the corresponding feature joint. We treat two spatial quantiza-
tion ways as shown in Fig. 4.2.

The space division is performed based on the relative position of each joint to the
center of mass of an articulated figure model. That is, the center of mass of the model
becomes the origin of a local coordinate system around the model. This spatial quan-
tization is not influenced by the direction of the model in a motion. The left figure of
Fig. 4.2 shows one spatial quantization way that the space is divided into eight sub-
spaces and one of the eight unique numbers, zero to seven, is assigned to each of them
as its region number. For each pose in a motion, each feature joint is represented as
the region number where the joint is located. For instance, in the case of the left fig-
ure, the right ankle is located in the subspace numbered by zero and then it is repre-

Fig. 4.2. Two different space division ways.

Intuitive Interfaces for Motion Generation and Search 61

sented as the number 0, and the left ankle is located in the subspace numbered by 5
and then it is represented as the number 5. This is our symbolization process by the
spatial quantization. Symbol values assigned to feature joints do not represent their
strict positions, that is, there is ambiguity so that the secondary information consisting
of such symbolic representation data seems available as the feature information of
motions for similarity searches.

The papers [21, 22] proposed the same space division as the right figure of
Fig. 4.2. In this paper, we propose another space division way shown in the right
figure of Fig. 4.2 because this could obtain better results than the other several space
division ways actually we tried. In the first trial, we decided to divide the space into
27 subspaces equally. In this case, we had to calculate the maximum space reachable
for feature joints from the center of mass of a model. Then, we divided the space into
27 subspaces by dividing each X-, Y- and Z-direction into equally three segments.
However, this division way is not good because in many motions, feature joints exist
close to the center of mass so that outer regions of them are almost useless. As the
second trial, we divided the same maximum space into 64 subspaces by dividing each
direction equally into four segments. However, in this case, the number of regions is
too many and most regions are useless. Especially outer regions are useless due to the
same reason of the 27 division case. Finally we found that the space division shown in
the right figure of Fig. 4.2 is the most efficient way in our trials. The space is divided
into four segments in the both X- and Y-direction, and divided into two segments in
the Z-direction. Totally the space is divided into 32 subspaces. Symbol values as-
signed to the subspaces are determined to satisfy that the difference of two symbol
values of two adjoining subspaces is only one bit. Actual division points are decided
as follows:

1) Three division points in X-direction: the origin, the midpoint between a left wrist
and a left ankle, the midpoint between a right wrist and a right ankle.

2) Three division points in Y-direction: the origin, the midpoint between a shoulder
and an elbow, the midpoint between a knee and an ankle.

3) One division point in Z-direction: the origin.

In the case of the right figure of Fig. 4.2, the positions of a left ankle, right ankle,
left wrist and right wrist are symbolized with 9, 29, 26 and 14 respectively. This is the
symbolization for one pose, and one pose data is represented as one set of symbol
values like {9, 29, 26, 14}. This symbolization is applied to all pose data, and the
corresponding motion data is represented as the sequence of sets of such symbol val-
ues. This symbolized data of a motion is used to generate the spatial occurrence prob-
ability explained in next sub-subsection.

4.2.3 Spatial Occurrence Probability
As mentioned previously, each motion data is a set of continuous pose data. By the
symbolization process, the pose data at each frame time is represented as a set of four
symbol values of feature joints. Contrarily, the motion of each feature joint in a whole
motion is represented as a set of continuous symbol values. From the set, it is possible
to calculate the spatial occurrence probability of the corresponding feature joint.
Strictly speaking, the spatial occurrence probability means a probability distribution
of subspaces in which the corresponding feature joint exist over the whole motion.

62 Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

From one symbolized motion data, one set of four spatial occurrence probability data,
i.e., four histograms shown in Fig. 4.3,.will be obtained. We use it for our similarity
search as the feature information. For i-th feature joint, its occurrence probability of j-
th region is calculated by the next equation.

Fig. 4.3. Four histograms of a left wrist, right wrist, left ankle and right ankle.

N
jicountjip),(),(= (4.1)

Here, N is the number of frames in a symbolized motion data, count(i,j) is the
number of j-th region symbol values concerning i-th feature joint in a symbolized
motion data.

4.2.4 Similarity Measure
In the case of the similarity search, our motion database system outputs motion data
similar to the query motion entered by the user. Strictly speaking, the system calcu-
lates dissimilarity between a query motion and each motion of the motion database
and then outputs motion data having the smaller dissimilarity value one by one. The
dissimilarity value between two motions Q and T is calculated as Euclidean norm
using the next equation.

∑ ∑∑
−

=

−

=

−

=

−=−=
1

0

1

0

21
1

0

1)),(),((||)()(||),(
M

i

N

j
M

M

i
M jiTjiQiTiQTQE (4.2)

Here,)(iQ and)(iT are the histograms concerning feature joint i of two motions Q
and T respectively. M is the number of feature joints. M is always 4.),(jiQ and

),(jiT are the occurrence probabilities of region j concerning feature joint i of two

Intuitive Interfaces for Motion Generation and Search 63

motions Q and T respectively. N is the number of regions. In the case of the right
figure of Fig. 4.2, N is 32.

4.3 Prototype Systems

Figure 4.4 shows the snapshot of our motion database system developed using Intelli-
gentBox. This system searches motions from motion database, similar to the example
motion chosen by the user. The system also searches motions including sequential key
poses specified by the user as the query. This means exact match search. There are
five same articulated figure models in the figure. The most left one is prepared for the
preview of searched motions. One of the searched motions is also used as the query mo-
tion of the next similarity motion search. The other four models are prepared to specify
query poses for the exact match motion search.

Fig. 4.4. Motion database system developed using IntelligentBox.

The system calculates the positions of feature joints to obtain the corresponding
symbol values per each of the four poses and it obtains their symbolic representation
data. Hence, the system retrieves motions whose symbolic representation data in-
cludes the symbolic representation data calculated from the four query poses. Al-
though there are four models to specify query poses in the figure, it is possible to
change the number of models by means of making their copies or deleting some of
them interactively.

4.4 Experiments

This subsection presents experimental results of similarity searches for the evaluation
of our proposed method. Before showing experimental results, we describe our mo-
tion database and evaluation measures.

64 Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

4.4.1 Motion Database
For the evaluation of our motion search method, we had to prepare a motion database.
We used a commercial product called �RIKIYA� [23]. It contains 300 motion data
created by recording real human motions using a motion capture system. Unfortu-
nately these 300 motions are composite motions like the sequence of primitive mo-
tions, e.g., the sequence of �walk�, �tumble�, �rise�, and �walk� again. In the practi-
cal use, the user usually enters a primitive motion, e.g., �walk�, �jump� etc., to search
its similar motions. Therefore, we made seven classes of primitive motions, totally 61
primitive motions, from the 300 composite motions of �RIKIYA�. Its details will be
indicated in Table 4.1 and Table 4.2.

4.4.2 Evaluation Measures
We use the same three evaluation measures described in [24]. They are First tier,
Second tier and Nearest neighbor as follows.
First Tier: This criteria means the percentage of top (k�1) matches (excluding the
query) from the query's class, where k is the number of motions in the class.

Second Tier: This criteria is the same type of result, but for the top 2(k�1) matches.

Nearest Neighbor: This criteria means the percentage of test in which the top match
was from the query's class.

4.4.3 Experimental Results
As described above, we prepared 61 primitive motions by manually cutting out from
original motion data. There are seven classes, i.e., �walk�, �jump�, �tumble�, �rise�,
�sit down a chair�, �kick by right leg�, and �throw by right hand�. We calculated the
above evaluation measures for the similarity searches on these seven classes of primi-
tive motions. Table 4.1 and 4.2 show evaluation results of the 8 division case and
those of the 32 division case. These values are averages of the same class motions and
all motion classes. The total search times to generate the results on 61 motions for the
8 division case and the 32 division case are around 4 seconds and around 5 seconds
using a standard PC, Pentium III 500MHz CPU and 256 MB memory. Search times
for one query motion in the 8 division case and in the 32 division case become 0.065
second and 0.082 second respectively. Most results of the 32 division case are equiva-
lent or better than those of the 8 division case. For the accuracy, the motion classes
�kick by right leg� and �throw by right hand� indicate not good value. One reason for
this seems that these motions have high locality so that we should use only right leg
or right hand as feature joints. Another reason may be that the number of motions in
each of these classes is too small.

4.5 Discussion

Our motion database does not have a large number and many kinds of motions be-
cause we had to prepare it by manually cutting out primitive motions from composite
motions of a commercial product database. For precise evaluations of the availability
of our motion database system, we will have to prepare a motion database consisting
of a large number and many kinds of motions. Currently we have been studying algo-
rithms that help us to extract primitive motions from composite motions, and we have

Intuitive Interfaces for Motion Generation and Search 65

already proposed new method based on hierarchical curve simplification [25]. We
will make a satisfactory motion database by the help of that method.

Table 4.1. Evaluation results on 32 division

Motion class 1st measure 2nd measure 3rd measure # of motions

walk 0.905229 0.996732 1.000000 18

jump 0.393939 0.621212 0.666667 12

tumble 0.400000 0.555556 0.800000 10

rise 0.523810 0.666667 1.000000 7

sit down a chair 0.533333 0.633333 0.833333 6

kick by right leg 0.416667 0.666667 0.250000 4

throw by right hand 0.250000 0.333333 0.250000 4

All motion classes 0.566471 0.711770 0.786885 61

Table 4.2. Evaluation results on 8 division

Motion class 1st measure 2nd measure 3rd measure # of motions

walk 0.937908 1.000000 1.000000 18
jump 0.295455 0.575758 0.500000 12
tumble 0.377778 0.688889 0.700000 10
rise 0.380952 0.547619 0.428571 7
sit down a chair 0.666667 0.666667 0.833333 6
kick by right leg 0.250000 0.333333 0.250000 4
throw by right hand 0.166667 0.250000 0.000000 4

All motion classes 0.533425 0.687945 0.655738 61

Moreover, as described in Section 3, we have proposed a real-time motion genera-

tion system using puppet/marionette metaphors. Using this system, the user can gen-
erate coarse motions of an articulated figure model by his/her hand actions in real
time. Those motions are possible to be used as query motions for similarity motion
searches. We are supposed to integrate the two systems to develop an intelligent mo-
tion management system.

5 Concluding Remarks

In this paper, we described intuitive interfaces for motion generation and motion
search. These are research results on the interactive animation system achieved by our
research group as the part of a research project �Intuitive Human Interface for Orga-
nizing and Accessing Intellectual Assets�. We did these researches toward the devel-
opment of a narrative database system in which narrative data would be represented
as CG animations. As a result, we studied on intuitive interfaces for CG animation
creation. For the motion design, we have proposed a component based motion editing
environment, a real-time motion generation system using puppet/marionette meta-

66 Yoshihiro Okada, Hiroaki Etou, and Koichi Niijima

phors and a motion database system by symbolic representation of motion data. In
this paper, we mainly treated these topics. On the other hand, for the shape design, we
have also proposed a polygonal model database management system that accepts hand
sketch images as the query and outputs corresponding polygonal models by the sil-
houette image matching [26-28]. As well, we have other research results [29, 30]. Due
to the page number limitation, we did not describe them in this paper. See each paper
for its detail.

As future works, we will integrate all the research results mentioned in this paper
in order to develop an interactive animation system using IntelligentBox towards the
development of a narrative database system.

References

1. Okada, Y.: Intuitive Motion Editing Environment for Interactive Animation Systems,
Proc. of Symposium on Visual Computing/Graphics and CAD, pp. 109-114, June 2001,
(in Japanese).

2. Okada, Y., Component Based Motion Editing Environment for Game Character Design,
Proc. of Second International Conference on Intelligent Games and Simulation, SCS Pub-
lication, pp. 22-26, 2001.

3. Witkin, A. and Kass, K.: Spacetime constraints, Proc. of SIGGRAPH'88, pp. 159-168,
1988.

4. Gleicher, M.: Motion editing with spacetime constraints, Proc. of SIGGRAPH'97, pp. 139-
148, 1997.

5. Lee, J. and Shin, S.-Y.: A hierarchical approach to interactive motion editing for human-
like figures, Proc. of SIGGRAPH'99, pp. 39-48, 1999.

6. Life FormsTM, http://www.credo-interactive.com/products/lifeforms/lf_4-0_studio.html
7. Okada, Y. and Tanaka, Y., 1995: IntelligentBox: A Constructive Visual Software Devel-

opment System for Interactive 3D Graphic Applications, Proc. of Computer Animation
�95, IEEE Computer Society Press, pp. 114-125.

8. Okada, Y. and Tanaka, Y., 1998: Collaborative Environments in IntelligentBox for Dis-
tributed 3D Graphic Applications, The Visual Computer (CGS special issue), Vol. 14, No.
4, pp. 140-152.

9. Okada, Y., Real-time character animation using puppet metaphor, Workshop Note of the
First International Workshop on Entertainment Computing (IWEC2002), pp. 86-93, 2002.

10. Okada, Y.: Real-time Motion Generation of Articulated Figures Using Puppet/Marionette
Metaphor for Interactive Animation Systems, Proc. of the 3rd IASTED International Con-
ference on Visualization, Imaging, and Image Processing (VIIP03), ACTA Press, pp. 13-
18, Benalmadena, SPAIN, September 2003.

11. David J. Sturman, Computer puppetry., IEEE Computer Graphics and Applications,
18(1):38-45, January/February 1998.

12. Noser, H. and Thalmann, D., Sensor Based Synthetic Actors in a Tennis Game Simulation,
Proc. of Computer Graphics International �97, IEEE Computer Society Press, pp.189-198,
1997.

13. Laszlo, J., Panne, M.van de, and Fiume, E., Interactive Control For Physically-Based Ani-
mation, SIGGRAPH2000, pp.201-208, 2000.

14. Oore, S. Terzopoulos, D. and Hinton, G. ,A Desktop Input Device and Interface for Inter-
active 3D Character Animation, Proc. of Graphics Interface 2002, 2002.

15. Oore, S. Terzopoulos, D. and Hinton, G. ,Local Physical Models for Interactive Character
Animation, Computer Graphics Forum, Volume 21, Number 3, Proceedings of Eurograph-
ics 2002.

Intuitive Interfaces for Motion Generation and Search 67

16. Unuma, M., Anjyo, K. and Takeuchi, R.: Fourier Principles for Emotion-based Human
Figure Animation, Proc. SIGGRAPH95, ACM SIGGRAPH, pp. 91-96, 1995.

17. Osaki, R., Shimada, M. and Uehara, K.: A Motion Recognition Method by Using Primi-
tive Motions, Proc. of the Fifth Working Conference on Visual Database Systems
(VDB5), pp. 117-128, 2000.

18. Lim, Ik. S. and Thalmann, D.: Key-posture Extraction out of Human Motion Data by
Curve Simplification, Proc. of 23rd Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC2001), vol. 2, pp. 1167-1169, 2001.

19. http://www.nissho-ele.co.jp/3d/
20. http://www.polhemus.com/
21. Watanabe, R., Okada, Y. and Niijima, K.: A motion search technique based on symbolized

expression of pose data, Proc. of IPSJ 63rd all Japanese domestic conference, pp. 225-226,
September 2001, (in Japanese).

22. Watanabe, R. Okada, Y. and Niijima, K.: A motion search system based on symbolized
expression of pose data, Proc. of IPSJ 64th all Japanese domestic conference, pp. 49-50,
March 2002, (in Japanese).

23. Viewworks, http://www.viewworks.co.jp/
24. Osada, R, et al: Matching 3D Models with Shape Distributions, Shape Modeling International,

May 2001.
25. Etou, H., Okada, Y. and Niijima, K.: Feature Preserving Motion Compression Based on

Curve Simplification, CD-ROM Proc. of ICME2004, 2004.
26. Okada, Y.: 3D Model Matching Based On Silhouette Image Matching, Proc. of

CSCC2002 (Recent Advances in Circuits, Systems and Signal Processing), WSEAS Press,
pp. 380-385, Rethimno Greece, July 2002.

27. Okada, Y.: 3D MODEL DATABASE SYSTEM BY HAND SKETCH QUERY, Proc. of
IEEE International Conference on Multimedia and Expo, Vol. I, pp. 889-892, Lausanne,
Switzerland, August 2002.

28. Okada, Y.: 3D Model Database System by Hand Sketch Query and Its Intuitive Interface,
to appear in 13th European-Japanese Conference on Information Modeling and Knowledge
Bases (13EJC), Kitakyushu, Japan, June 2003.

29. Akazawa, Y., Okada, Y. and Niijima, K.: REAL-TIME VIDEO BASED MOTION
CAPTURE SYSTEM AS INTUITIVE 3D GAME INTERFACE, Proc. of Third Interna-
tional Conference on Intelligent Games and Simulation (GAME-ON2002), SCS Publica-
tion, pp. 22-28, London UK, November 2002.

30. Tanaka, Y., Okada, Y. and Niijima, K.: Treecube: 3D Visualization Tool for Hierarchical
Information, to appear in 13th European-Japanese Conference on Information Modeling
and Knowledge Bases (13EJC), Kitakyushu, Japan, June 2003.

	1 Introduction
	2 Component Based Motion Editing Environment
	2.1 Component Structure of a Human-Like Model and Its One Pose Data
	2.2 Editing of Multiple Key-Poses
	2.3 Mechanism of Motion Generation
	2.4 Motion Capture Data Support

	3 Real-Time Motion Generation Using Puppet/Marionette Metaphors
	3.1 Motion Generation Using Puppet Metaphor
	3.1.1 Component Structure of a Puppet Model
	3.1.2 Mapping Scheme for Puppet Motion Control

	3.2 Motion Generation Using Marionette Metaphor
	3.2.1 Motion Effect of Gravity Field
	3.2.2 Motion Effect Based on Marionette Metaphor
	3.2.3 Motion Effect of Ground Contact Constraint
	3.2.4 Walking Motion Generation

	3.3 Discussion

	4 Motion Database System Using Symbolic Representation of Motion Data for Motion Searches
	4.1 System Overview
	4.2 Similarity Search of Motion Data
	4.2.1 Feature Joints
	4.2.2 Spatial Quantization for Symbolic Representation of Motion Data
	4.2.3 Spatial Occurrence Probability
	4.2.4 Similarity Measure

	4.3 Prototype Systems
	4.4 Experiments
	4.4.1 Motion Database
	4.4.2 Evaluation Measures
	4.4.3 Experimental Results

	4.5 Discussion

	5 Concluding Remarks
	References

