
Towards Constructing Story Databases
Using Maximal Analogies Between Stories

Masaharu Yoshioka, Makoto Haraguchi, and Akihito Mizoe

Graduate School of Information Science and Technology
Hokkaido University

N-14 W-9, Sapporo 060-0814, Japan
{yoshioka,makoto,amring}@db-ei.eng.hokudai.ac.jp

Abstract. In order to construct story databases, it is crucial to have
an effective index that represents the plot and event sequences in a doc-
ument. For this purpose, we have already proposed a method using the
concept of maximal analogy to represent a generalized event sequence
of documents with a maximal set of events. However, it is expensive
to calculate a maximal analogy from documents with a large number
of sentences. Therefore, in this paper, we propose an efficient algorithm
to generate a maximal analogy, based on graph theory, and we confirm
its effectiveness experimentally. We also discuss how to use a maximal
analogy as an index for a story database, and outline our future plans.

1 Introduction

Since many documents can now be accessed through the Internet, various
methodologies for retrieving, organizing and accessing documents have been de-
veloped. Information retrieval and document classification are examples of such
techniques. As the number of documents to be processed is generally very large,
most of these systems use a “bag of words” approach, and use an index based
on words in each document. A “bag of words” approach works efficiently, but
cannot discriminate between two or more documents that have same word sets
in different order. For instance, any “bag of words” indexing system does not
distinguish between “a dog bit a man” and “a man bit a dog”, despite their
different meanings. Thus, there is a need for an extended indexing system that
can handle differences such as this, and is not based on index terms alone.

In addition, most of standard document databases handle document by us-
ing indices that represent facts in the document (e.g. existence of terms and
sentences). Because of this, these systems cannot discriminate between two or
more documents that have same sentences in different order (plot). We call
a document database that can retrieve documents by using a plot as a story
database.

In order to construct a story database, it is crucial to have an effective index
that represents the plot and event sequences in a document. Since a single docu-
ment can have various aspects, we need to add multiple indices even for a single
document. Text summarization is one of the techniques to extract a plot from

G. Grieser and Y. Tanaka (Eds.): Intuitive Human Interface 2004, LNAI 3359, pp. 243–255, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

244 Masaharu Yoshioka, Makoto Haraguchi, and Akihito Mizoe

a story [1]. However, most of these techniques mainly focus on extracting main
plots from a story and are not sufficient to create indices for a story database.
Research on topic focused summarization [2] aims to construct different sum-
maries from a single document, but it requires pre-defined topic sets that are
also difficult to extract automatically.

To address this problem, we have already proposed the concept of maximal
analogy (MA) between stories, which represents a generalized event sequence of
documents with a maximal set of events [3]. We have also proposed a method
for constructing this index from a set of provided documents. However, the com-
putational cost of this method is too high to apply to pairs of large documents.

In this paper, we propose an efficient method for enumerating MAs from
given document pairs based on graph theory. We also discuss how to use the
MA as an index for story databases.

This paper is divided into four sections. In Section 2, we briefly review the
concept of maximal analogy between stories (MA). In Section 3, we propose a
new method to enumerate MAs from two given documents. In Section 4, we
demonstrate experimental results and, based on these, we discuss how to use the
MA as an index for a story database. Section 5 concludes this paper.

2 Maximal Analogies Between Stories

2.1 Requirement for the Indices of Story Databases

In this paper, we use the term “story” to mean a plot or event sequence in
a document. An “event” is a basic unit that represents facts in a story. In this
paper, we use a simplex sentence that has one verb and dependent words for this
unit. In order to handle a complex sentence, we decompose it into a sequence
of simplex sentences. As each single sentence in a document corresponds to an
event, a given document is itself a story, and includes various sub-stories that
are sub-sequences of the entire event sequence. Since it is difficult to define
meaningful sub-stories a priori, we do not restrict to use any sub-sequences of
the event as indices for a story.

To handle documents containing story information, indices of story databases
should satisfy the following criteria.

(R1) Since a document can have various aspects and each of which can be
represented as a story, an index should contain story information.

(R2) Such indices are automatically extracted from documents.
(R3) The determination of what constitutes a significant story in a document

is subjective, so the indexing varies according to individuals.
(R4) Once such indices are discovered and constructed, documents should be

quickly accessible by their indices.

The most significant requirement is to determine the most important event
(sub-)sequence that characterizes the document. One possible standard approach
is to evaluate the significance of events using their frequencies and the co-
occurrences of words within them [4]. Although such a scheme is quite effec-
tive, some important words or sentences may be missed from a particular story

Towards Constructing Story Databases 245

extracted from the document. The basic argument of this paper is stated as
follows.

The problem of what constitute important events in a document cannot
be determined by examining only one document. If some event sequence
is regarded as significant from a particular point of view, then we will
find another similar document in which a similar event sequence also
appears. Conversely, when we find a generalized event sequence common
to all the documents, that a user or a group of users consider similar,
it may be a candidate for becoming an important sequence, and may
therefore be used as a possible index for documents.

More precisely, we say that an event sequence is common to a set of doc-
uments whenever the sequence is a generalization of some sequence in every
document. As the act of generalizing event sequences depends on the subsump-
tion of relationships between words, we use the EDR dictionary [5]. Furthermore,
we consider the concept tree representation of events in Section 2.2. A concept
tree is a special case of a concept graph [6], and can be used to represent the
case structures of document sentences.

Given two documents judged to be similar (R3), the concept of maximal
analogy between the two is introduced in Section 2.3 to formalize the common
generalization of event sequences with a maximal set of events. As an MA is
itself an event sequence, it can provide a solution for (R1).

Although we have not yet designed a query-answering system for documents
indexed by MAs, their subsumption-checking never involves any combinatorial
computations. Testing whether a document meets an MA may therefore be per-
formed quickly (R4).

2.2 Minimal Common Subsumer of Concept Trees

After morphological analysis and parsing, each sentence in a document is rep-
resented as a rooted tree, with words as nodes and cases (or role symbols) as
edges. A verb is chosen as the root, as in Fig. 2. As verbs are first-class entities of
events, the tree of words will be simply called an event in Definition 1. Although
such a word tree is normally formalized as a semantic network [7], we consider
it as a type of concept graph [6], allowing us to define an ordering for trees by
restricting a similar ordering for graphs.

To examine the semantic relationship between concept graphs, we use EDR
[5], a machine-readable dictionary. As a word may have more than two possible
meanings, the dictionary must provide the concepts involved in words together
with the relationships between these concepts. The EDR dictionary supports
both types of information for Japanese and English words and concepts. Each
concept is designated by a unique identifier, called a concept ID. Let Terms
be the set of all words and concept IDs in the EDR dictionary. Then a partial
ordering ≺ over Terms can be given by

246 Masaharu Yoshioka, Makoto Haraguchi, and Akihito Mizoe

����������	
��
�
����

����

�
	����

�����

���

����� �

����	�� �

����������� �

Fig. 1. Construction of a Concept Tree

t1 ≺ t2 iff (1) t1 and t2 are both concept IDs and t1 is more specialized one
than t2 in the concept dictionary, or

(2) t1 is a word and t2 is a concept ID that is more general one
than any concept ID associated with t1 in the word dictionary.

Based on this partial ordering for terms, we now have the following definition
of concept trees and their ordering.

Definition 1.
(Concept trees and their paths) Given a set L of role or case symbols, a
path of length n is a sequence of roles p = (�1, ..., �n), where �j ∈ L. The empty
path, λ = (), of length 0 is always regarded as a path denoting the root of a tree . A
concept tree is then defined as a pair g = (Path(g), termg), also called an event,
where Path(g) is a finite and prefix-complete set of paths including the empty
path, and termg is a term labeling function, where termg : Path(g) → Terms.
(Concept Tree Ordering) We say that a concept tree gs subsumes another
concept tree gi iff, for every rooted path p ∈ Path(gs), both p ∈ Path(gi) and
termgi(p) � termgs(p) hold. In this case, we also say that gs is a generalization
of gi, or that gi is a specialization of gs.

We use a morphological analyzer to construct a concept tree. We select noun
and verb terms from a sentence and connect them according to the information
of postpositional particle. Fig.1 shows an example of this process.

Intuitively, a concept tree gs is more general than another concept tree gi

if every path in it is preserved in gi and it uses more general terms than those
used in gi. For instance, both trees at the bottom of Fig. 2 are subsumed by
the top tree. Now, the minimal common subsumer (MCS) of two concept trees
is defined, similar to the case of the least common subsumers of concept graphs
[6]. Formally, an MCS of g1 and g2 is defined as a tree consisting of the common

Towards Constructing Story Databases 247

����

��

	��

���	���������

��

���

����������
����

����

�
	����

�����

���

��

���

����������
��
	�

�����
���
��������������� �����������

����

	��	���������	�������
	�����

�
��
��	����������

���������	���������������

����

���

����������

� !�
�"�������������

���� �
��
��	����������

���������	���������������

���

����������

��#
�������
���� !�
�"�������������

Fig. 2. Concept Trees, where the top example is an MCS of the bottom two

paths of gj whose labels are some minimal upper bounds of the corresponding
paired terms in gj .

This may be formalized as follows:

MCS(< g1, g2 >) = (Path<g1,g2>, {λp|p ∈ Path<g1,g2>,
λp = mst({termg1(p), termg2(p)}}),
where Path<g1,g2> = Path(g1) ∩ Path(g2)

where mst(A) is a chosen minimal upper bound of a set of terms A. In this
sense, mst is called a choice function.

2.3 Maximal Analogy and Its Bottom-Up Construction

The maximal analogy between stories is a sequence of generalized events obtained
from different stories. Therefore, we can represent a MA by using a sequence of
MCS obtained from the paired events. In order to preserve the order of events
in different stories, we define op-selection to be a sequence of paired events.

Definition 2.
(op-selection) Each document (Di) is defined as an ordered sequence g

(i)
1 , ...,

gn of events g
(i)
j in their order of appearance in the story. We denote g

(i)
k < g

(i)
l

whenever g
(i)
k precedes g

(i)
l in document Di. For two given stories D1, D2, an op-

selection θ of these two stories is an order preserving one-to-one correspondence
of events in D1 and D2. That is, θ is a sequence Pi1,j1 , ..., Pik ,jk

, where Pin,jn =<

g
(1)
in

, g
(2)
jn

>∈ D1 × D2, g
(1)
in

< g
(1)
in+1

and g
(2)
jn

< g
(2)
jn+1

.

In addition, in order to remove MCSs that are too abstract, we introduce the
following cost function:

gcost(t, t′) = min{length(p) | p is a path connecting t and t′},
gcost({t1, ..., tn}, t) = maxj gcost(tj , t), where we suppose tj � t.

248 Masaharu Yoshioka, Makoto Haraguchi, and Akihito Mizoe

We also introduce a given upper-bound of the generalization, gl, and define
a gl-appropriate MCS by using this gcost function.

gl-appropriate MCS(< g1, g2 >) =
(V Path<g1,g2>, {λp|p ∈ V Path<g1,g2>, λp = mst({termg1(p), termg2(p)}}),

where V Path<g1,g2> = {Path|Path ∈ Path(g1) ∩ Path(g2),
gcost({termg1(p), termg2(p)}, mst(termg1(p), termg2(p)) < gl)}
V Path should contain more than two paths, including the root path.

Fig. 2 shows an example of a gl-appropriate MCS when
gcost({he, machine}, concreteobject) > gl.

We also define gcost(< g1, g2 >) and gcost(θ) as follows.

gcost(< g1, g2 >) = max{gcost({termg1(p), termg2(p)},mst(termg1(p), termg2(p)))
| p ∈ V Path<g1,g2>}

gcost(θ) = max{gcost(P) | P ∈ θ}

Definition 3.
(Maximal Analogy) Given two documents and an upper bound on the gen-
eralization level, gl, an op-selection θ is called gl-appropriate if all correspond-
ing sentences have gl-appropriate MCSs. We then say that a gl-appropriate op-
selection θ is maximal if there exists no gl-appropriate op-selection θ′, such that
it properly includes θ (θ′ ⊃ θ).

The construction of an MA is subject to the construction of maximal op-
selections. In order to find maximal gl-appropriate op-selections efficiently, we
use the following property corresponding only to the anti-monotonicity of sup-
port used in [8] .

(Monotonicity of Cost) gcost(θ) ≤ gcost(θ′) if θ ⊆ θ′.

The construction is bottom-up to enumerate all possible op-selections with-
out any duplication. For this purpose, we first introduce a partial ordering of
the set of op-selections.

Let Dj = g
(j)
1 , ..., g

(j)
n1 be the entire sequence of events in this order. Then

an op-selection θ is expressed as a sequence Pi1,j1 , ..., Pik,jk
, where Pi�,j�

is the
�-th pair of the i�-th event g

(1)
i�

in D1 and the j�-th event g
(2)
j�

in D2. Pi�,j�

is called a singleton selection. The length k is called the level of θ. Then, the
partial ordering ≺ among op-selections is defined by the transitive closure of the
following direct successor relation:

θ1 ≺ θ2 iff θ1 = θPi,j and θ2 = θPi,jPx,y for some op-selection θ, Pi,j , x and y
such that i < x and j < y.

From this definition, it follows that any θ of level k + 1 has only one direct
predecessor θ1 of level k, a prefix of θ. So, by induction on the level k, all the
op-selections are enumerated without any duplication according to the ordering
≺. Furthermore, we list only op-selections that satisfy the cost condition during
the entire enumeration process.

Towards Constructing Story Databases 249

Base step for level 1 op-selections: We list only singleton op-selections that
satisfy the cost condition:

OPS(1) = {Pij | gcost(Pi,j) ≤ gl}.
Inductive step for level k + 1 op-selections: Suppose we have OPS(k)

holding all op-selections that satisfy the cost condition. We construct op-
selections of the next level consistent with the condition as follows:

OPS(k + 1) = {θPi,jPx,y | θPi,j ∈ OPS(k), Px,y ∈ OPS(1),
i < x, j < y, gcost(θPi,jPx,y) ≤ gl }.

Note that, in the case of k = 1, θ is a null string.
Termination of construction: The generation of OPS(k) terminates when

we find a level � such that OPS(�) = φ, leaving � to have a maximum
min{n1, n2}, where nj is the number of events in the story Dj.

The number of selections generated and tested is minimized. To verify this,
let gcost(θ) exceed the limit gl for an op-selection θ at level k. Then θ has its
unique generation path θ1 ≺ ≺ θk = θ of length k−1. As gcost is monotonic,
there exists a least j such that gcost(θj) > gl. This θj is generated, tested
and fails the condition, because θi ∈ OPS(i) for any i < j. However, as the
predecessor θj is not listed in OPS(j), none of its successors, including θ, are
ever generated and tested.

The algorithm above shows a method for constructing the MA from two
documents. For more than three documents, we iteratively apply the algorithm
for two documents.

3 An Efficient Algorithm
for Enumerating a Maximal Analogy

3.1 Enumerating MAs Using Directed Graphs

The algorithm discussed in the previous section works well for documents with
few sentences, but it fails to enumerate MAs for larger documents. We thus
require an efficient algorithm for this enumeration.

In the previous algorithm, the most significant problem is enumerating the
many candidate op-selections that should be merged for generating MAs. There-
fore, we need an algorithm that does not generate as many candidates. In this
section, we propose a new algorithm based on graph theory.

Fig. 3 shows an example of a possible op-selection represented by a directed
graph. Rounded nodes represent sentence pairs that have a gl-appropriate MCS.
The two numbers in the node correspond to the number of sentences in the first
and second document, respectively. Directed links show how connected nodes
can be used as a sequence in op-selection.

By using this graph, the generation of op-selections can be formalized as
the search for node sets that are connected by directed links. In this case, we
have 11 (level 1), 17 (level 2), 7 (level 3), and 2 (level 4) op-selections, with

250 Masaharu Yoshioka, Makoto Haraguchi, and Akihito Mizoe

P4,4

P2,8

P2,7

P3,4

P3,6

P2,5

P4,3

P4,5

P6,7

P6,3

P1,2

Fig. 3. Possible op-selections represented by a directed graph

P4,4

P2,8

P2,7

P3,4

P3,6

P2,5

P4,3

P4,5

P6,7

P6,3

P0,0

P

P1,2

Fig. 4. Possible MAs represented by a directed graph

7 possible MAs (two from level 2, two from level 3 and two from level 4). By
using the bottom-up approach, several subsets are generated for deriving one
MA. For example, one level 4 op-selection MA (P1,2, P2,5, P3,6, P4,7) is generated
from four level 3 op-selections, that is, as a subset of the MA (P1,2, P2,5, P3,6),
(P1,2, P2,5, P4,7), (P1,2, P3,6, P4,7), (P2,5, P3,6, P4,7).

In order to reduce the number of these subset enumerations, we remove di-
rected links that are ineffective in generating MAs. In the previous example,
links between P1,2 and P3,6, P2,5 and P4,7 are ineffective because we can insert
P2,5 or P3,6 between these nodes. In general, we can define ineffective links as
follows:

Definition 4.
(Ineffective Link) A link between two nodes (Pi,jPk,l) that can combine
other gl-appropriate nodes (Px,y : i < x < k, j < y < l) is an ineffective link.

Since we can enumerate op-selections with ineffective links by using two or
more links (e.g., links between Pi,j and Px,y, and Px,y and Pk,l), removal of these
ineffective links does not affect the results for the enumeration of possible MAs.

In order to formalize this enumeration process, we introduce two virtual nodes
P0,0 and P∞,∞ that we call start node and end node respectively. Fig. 4 shows

Towards Constructing Story Databases 251

a graph that removes ineffective links from the graph in Fig. 3 and adds P0,0

and P∞,∞. By using this graph, it is possible to enumerate MAs by following all
paths between P0,0 and P∞,∞.

We can summarize the algorithm as follows.

1. Base step for level 1 op-selections: (Same as previous algorithm) We
list only singleton op-selections satisfying the cost condition:

OPS(1) = {Pi,j | gcost(Pi,j) ≤ gl}.
2. Directed Link generation: We represent singleton op-selections as a

node. We also add P0,0 and P∞,∞, and generate links between nodes (from
Pi,j to Px,y) that satisfy the following criteria.
– i < x and j < y.
– The link is not an ineffective link.

3. Enumeration of MAs: All possible MAs are enumerated by enumerating
all directed paths between P0,0 and P∞,∞.

The high computational cost of step 1 is inevitable when generating MAs. The
computational complexity of this step is O(n ∗ m) (where n, m are the numbers
of sentences in the two documents. In step 2, we generate links between each
node, and the node size is of order O(n ∗ m). For each node, we must check the
connectivity of the link from Pi,j as follows:

a Check the connectivity for Pi+1,x(x = j + 1, · · · , m).
b Check the connectivity for Pi+2,x(x = j + 1, · · · , k), where k is the small-

est number of Pi+1,k connected from Pi,j . It is not necessary to check the
connectivity for Pi+2,x(x = k +1, · · · , m), because Pi+1,k exists between Pi,j

and Pi+2,x

c Iterate steps a and b until Pn,x.

Therefore, the computational complexity of link generation for each node is
O(n+m) and the total computational complexity is O(n∗m∗((n+m)). However,
since each link generation process (O(n+m)) is negligible compared to the graph
generation in Step 1, it takes negligible time compared to Step 1.

A higher computational cost is incurred for Step 3. However, one important
feature of this algorithm is that we can control the order of enumeration. For
example, the longest MAs, subject to the longest path between P0,0 and P∞,∞
in this directed graph, can be calculated by using the following algorithm.

a Set the path length of each node (pli,j) to 0 and a set of candidate longest
paths (clpi,j) to φ.

b Start from node P0,0 and follow the connected links to check whether each
connected link is a candidate for a part of the longest path.
(1) Let Pk,l is the start node and Pm,n is a node connected by a link. When

plk,l + 1 ≥ plm,n, the connected link is a candidate link.
(2) When plk,l+1 = plm,n, new clpk,l is computed by the following operation

clpk,l ∪ {clp, links between Pi,j and Pk,l|clp ∈ clpi,j}. When plk,l + 1 >
plm,n, new clpk,l is computed by the following operation
{clp, links between Pi,j and Pk,l|clp ∈ clpi,j}.

c clp∞,∞ is a set of longest paths of this graph.

252 Masaharu Yoshioka, Makoto Haraguchi, and Akihito Mizoe

P4,4

P2,8

P2,7

P3,4

P3,6

P2,5

P4,3

P4,5

P6,7

P6,3

P0,0

P

P1,2 $

$

$

$

$

%

%

%

%

%&'

%&(

%&'

%&'

%&'

%&'

%&'

%&(

%&(

Fig. 5. Possible MAs represented by a weighted directed graph

3.2 Enumerating MAs by Using an Evaluation Function

In the previous algorithm, MAs were enumerated using the longest path. How-
ever, these longest MAs may not be appropriate. For example, each singleton
op-selection has a gcost, and those with higher gcost may not be appropriate for
inclusion if they are very abstract. Therefore, it is better to include a mechanism
to order MAs by considering the gcost of each singleton op-selection.

In order to handle this, we formalize this problem with a weighted directed
graph scheme. We define an evaluation function eval(Pi,j) to represent the suit-
ability of including MAs based on their gcost function. This function increases
for lower gcost values (i.e., 1 / (gcost + 1)). We also set the weights of links
based on the nodes to which they are connected. For example, a link between
Pi,j and Pk,l takes the weight eval(Pk,l). We also formalize the suitability of an
MA by using the sum of the eval(Pi,j) values of all op-selections.

Since all MAs include P∞,∞, the effect of eval(P∞,∞) is canceled and the
value of eval(P∞,∞) does not have any influence. For convenience, we set eval
(P∞,∞) = 0.

Fig. 5 shows an example of the weighted directed graph of Fig. 4. In this
case eval(P2,5) = eval(P3,4) = eval(P6,7) = 0.5 and eval(P3,6) = eval(P4,3) =
eval(P4,5) = 0.3, and other nodes have eval(Pi,j) = 1. In this case MA (P1,2, P4,4,
P6,7) is the best MA based on this eval function.

The longest paths between P0,0 and P∞,∞ indicate the most appropriate
MAs in this weighted directed graph. We can find out these paths by modifying
algorithm discussed in Section . We modify step b. of the algorithm as follows.

b Start from node P0,0 and follows the connected links to check whether each
connected link is a candidate for a part of the longest path.
(1) Let Pk,l is the start node and Pm,n is a node connected by a link. When

plk,l + eval(Pm,n) ≥ plm,n, the connected link is a candidate.
(2) When plk,l + eval(Pm,n) = plm,n,

clpk,l = clpk,l ∪ {clp, links between Pi,j and Pk,l|clp ∈ clpi,j}.
When plk,l + eval(Pm,n) > plm,n,
clpk,l = {clp, links between Pi,j and Pk,l|clp ∈ clpi,j}.

Towards Constructing Story Databases 253

4 Experimental Results
and Discussion for the Story Database

4.1 Experiments Generating Maximal Analogies

We have implemented this algorithm on a Linux-based PC (CPU: Dual Pentium
III 1.0GHz, RAM: 4 GB). The basic procedure for obtaining MAs is:

1. Concept tree construction for each sentence
We use the Cabocha parser [9] to obtain a case structure for each sentence,
and convert this to a concept tree. The cases are therefore superficial.

2. Singleton gl-appropriate op-selection generation
We compare pairs of concept trees created from two documents and generate
a gl-appropriate op-selection. We use the EDR dictionary to calculate gcost.

3. Link generation
We check the connectivity for each pair of gl-appropriate op-selections and
generate links. We set the value of parameter gl to 4.

4. Generation of an appropriate MA
We determine the highest appropriate MA using the evaluation function
eval(θ) =

∑
P∈θ(1/(1 + gcost(P))).

5. Enumeration of MAs
We enumerate all possible MAs.

In order to analyze the computational cost of this algorithm and evaluate its
efficiency, we use a children’s story and a short folktale, as used in a previous
paper [3] , as input for our algorithm.

Both of these two input stories contain 46 sentences, and have a common
plot as follows.

(E1) There are two brothers.
(E2) The younger brother gains some property.
(E3) The elder brother kills the younger brother in order to steal the
property.
(E4) The bone of the younger brother then sings a song that reveals the
crime.
(E5) As a result, the older brother is caught and punished.

Table 1 shows the results obtained using these two input stories, and Table 2
shows the corresponding computational times for each step.

In some of the most appropriate MAs, (E1) and (E4) are correctly recognized
and parts of (E3) and(E5) are also realized in the same MA. However, we find
no generalized events corresponding to (E2). Since sentences in these documents
have a finer granularity, our system can find more information than the results
discussed in [3].

However, we still experience the same problem as the one discussed in [3].
Since the concept hierarchy of the EDR dictionary is constructed for general
purposes, it does not classify terms into effective term groups that can perform
the same role in different documents.

254 Masaharu Yoshioka, Makoto Haraguchi, and Akihito Mizoe

Table 1. Results obtained from two stories

gl-appropriate singleton op-selection 130

Number of links 715

Number of appropriate MAs 76

Maximum MA length 18

Number of possible MAs 905306

Table 2. Computational time for each step

Concept tree construction 17 s

Singleton gl-appropriate op-selection generation 3 s

Link generation less than 1 s

Appropriate MA generation 1 s

Enumeration of MAs 672 s

4.2 Towards Constructing Story Databases Using MAs

From these results, we confirm that the number of possible MAs is very large, and
that it is difficult to determine the most appropriate MA manually. Therefore,
a good scoring function is required to select the appropriate indices.

We are planning two approaches to support this selection.

Definition of a better evaluation function. In order to improve the scoring
function, we plan to apply the measure of importance or significance of terms
[4] and use this for the evaluation function.

Usage of a base query. Since most MAs do not contain a common plot, which
was assumed when extracting from a pair of stories, we introduce the concept
of a base query to represent a simple skeleton of a common plot (that is, one
described in few sentences) that should be included in MAs and used as a
criterion for selecting meaningful MAs.

For future work, we also need a mechanism for retrieving a story based on
the subsumed relationship between MAs and the query.

5 Conclusion

In this paper, we have proposed an efficient algorithm based on graph theory to
generate maximal analogies (MAs), and confirmed the reduction in computation
time. However, as the number of possible MAs is very large, we need a method
to support selection of meaningful MAs for using MAs as effective indices of
story databases. We also outline future work too.

Towards Constructing Story Databases 255

References

1. Mani, I.: Automatic Summarization. John Benjamin Publishing Company (2001)
2. Firmin, T., Chrzanowski, M.J.: An evaluation of automatic text summarization sys-

tems. In Mani, I., Maybury, M.T., eds.: Advances in automatic text summarization,
Cambridge, Massachusetts, The MIT Press (1999) 325–340

3. Haraguchi, M., Nakano, S., Yoshioka, M.: Discovery of maximal analogies between
stories. In: Proc. of the 5th Int’l Conf. on Discovery Science - DS’02 LNCS 2534,
Springer (2002) 324–331

4. Ohsawa, Y., Benson, N.E., Yachida, M.: Keygraph: Automatic indexing by cooc-
currence graph based on building construction metaphor. In: Proceedings of the
Advances in Digital Libraries Conference. (1998) 12–18

5. Japan Electronic Dictionary Research Institute, Ltd. (EDR): EDR ELECTRONIC
DICTIONARY VERSION 2.0 TECHNICAL GUIDE TR2-007. (1998)

6. Cohen, W.W., Hirsh, H.: The learnability of description logics with equality con-
straints. Machine Learning 17 (1994) 169–199

7. Sowa, J.F., ed.: Principles of Semantic Networks. Morgan Kaufmann (1991)
8. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,

J.B., Jarke, M., Zaniolo, C., eds.: Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, Morgan Kaufmann (1994) 487–499

9. Kudo, T., Matsumoto, Y.: Japanese dependency analysis using cascaded chunking.
In: CoNLL 2002: Proceedings of the 6th Conference on Natural Language Learning
2002 (COLING 2002 Post-Conference Workshops). (2002) 63–69

	1 Introduction
	2 Maximal Analogies Between Stories
	2.1 Requirement for the Indices of Story Databases
	2.2 Minimal Common Subsumer of Concept Trees
	2.3 Maximal Analogy and Its Bottom-Up Construction

	3 An Efficient Algorithm for Enumerating a Maximal Analogy
	3.1 Enumerating MAs Using Directed Graphs
	3.2 Enumerating MAs by Using an Evaluation Function

	4 Experimental Results and Discussion for the Story Database
	4.1 Experiments Generating Maximal Analogies
	4.2 Towards Constructing Story Databases Using MAs

	5 Conclusion
	References

