
Flat and One-Variable Clauses: Complexity of Verifying
Cryptographic Protocols with Single Blind Copying

Helmut Seidl and Kumar Neeraj Verma

Institut für Informatik, TU München, Germany
{seidl,verma}@in.tum.de

Abstract. Cryptographic protocols with single blind copying were defined and
modeled by Comon and Cortier using the new class C of first order clauses,
which extends the Skolem class. They showed its satisfiability problem to be in
3-DEXPTIME. We improve this result by showing that satisfiability for this class
is NEXPTIME-complete, using new resolution techniques. We show satisfiability
to be DEXPTIME-complete if clauses are Horn, which is what is required for
modeling cryptographic protocols. While translation to Horn clauses only gives a
DEXPTIME upper bound for the secrecy problem for these protocols, we further
show that this secrecy problem is actually DEXPTIME-complete.

1 Introduction

Several researchers have pursued modeling of cryptographic protocols using first order
clauses [3,6,15] and related formalisms like tree automata and set constraints[5,11,12].
While protocol insecurity is NP-complete in case of a bounded number of sessions [14],
this is helpful only for detecting some attacks. For certifying protocols, the number of
sessions cannot be bounded, although we may use other safe abstractions. The approach
using first order clauses is particularly useful for this class of problems. A common safe
abstraction is to allow a bounded number of nonces, i.e. random numbers, to be used in
infinitely many sessions. Security however still remains undecidable [5]. Hence further
restrictions are necessary to obtain decidability.

In this direction, Comon and Cortier [6,8] proposed the notion of protocols with single
blind copying. Intuitively this restriction means that agents are allowed to copy at most
one piece of data blindly in any protocol step, a restriction satisfied by most protocols
in the literature. Comon and Cortier modeled the secrecy problem for these protocols
using the new class C of first order clauses, which extends the Skolem class, and showed
satisfiability for C to be decidable [6] in 3-DEXPTIME [8]. The NEXPTIME lower
bound is easy. We show in this paper that satisfiability of this class is in NEXPTIME, thus
NEXPTIME-complete. If clauses are restricted to be Horn, which suffices for modeling
of cryptographic protocols, we show that satisfiability is DEXPTIME-complete (again
the lower bound is easy). While translation to clauses only gives a DEXPTIME upper
bound for the secrecy problem for this class of protocols, we further show that the secrecy
problem for these protocols is also DEXPTIME-complete.

For proving our upper bounds, we introduce several variants of standard ordered
resolution with selection and splitting [2]. Notably we consider resolution as consisting

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 79–94, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

80 H. Seidl and K.N. Verma

of instantiation of clauses, and of generation of propositional implications. This is in the
style of Ganzinger and Korovin [10], but we enhance this approach, and generate in-
teresting implications to obtain optimal complexity. More precisely, while the approach
of Ganzinger and Korovin [10] has a single phase of instantiation followed by proposi-
tional satisfiability checking, we generate certain interesting propositional implications,
instantiate them, and iterate the process. We further show how this technique can be em-
ployed also in presence of rules for replacement of literals in clauses, which obey some
ordering constraints. To deal with the notion of single blind copying we show how terms
containing a single variable can be decomposed into simple terms whose unifiers are of
very simple forms. As byproducts, we obtain optimal complexity for several subclasses
of C, involving so called flat and one-variable clauses.
Outline: We start in Section 2 by recalling basic notions about first order logic and
resolution refinements. In Section 3 we introduce cryptographic protocols with sin-
gle blind copying, discuss their modeling using the class C of first order clauses, and
show that their secrecy problem is DEXPTIME-hard. To decide the class C we start
with the subclass of one-variable clauses in Section 4 and show its satisfiability to be
DEXPTIME-complete. Satisfiability of the fragment of C involving flat clauses is shown
to NEXPTIME-complete in Section 5. In Section 6, the techniques from the two cases
are combined with further ideas to show that satisfiability for C is NEXPTIME-complete.
In Section 7 we adapt this proof to show that satisfiability for the Horn fragment of C is
DEXPTIME-complete.

2 Resolution

We recall standard notions from first order logic. Fix a signature Σ of function symbols
each with a given arity, and containing at least one zero-ary symbol. Let r be the maximal
arity of function symbols in Σ. Fix a set X = {x1,x2,x3, . . .} of variables. Note that
x1,x2, . . . (in bold face) are the actual elements of X, where as x, y, z, x1, y1, . . . are
used to represent arbitrary elements of X. The set TΣ(X) of terms built from Σ and X
is defined as usual. TΣ is the set of ground terms, i.e. those not containing any variables.
Atoms A are of the form P (t1, . . . , tn) where P is an n-ary predicate and ti’s are terms.
Literals L are either positive literals +A (or simply A) or negative literals −A, where
A is an atom. −(−A) is another notation for A. ± denotes + or − and ∓ denotes the
opposite sign (and similarly for notations ±′,∓′, . . .). A clause is a finite set of literals.
A negative clause is one which contains only negative literals. If M is any term, literal or
clause then the set fv(M) of variables occurring in them is defined as usual. If C1 and C2

are clauses then C1∨C2 denotes C1∪C2. C∨{L} is written as C∨L (In this notation, we
allow the possibility of L ∈ C). If C1, . . . , Cn are clauses such that fv(Ci)∩ fv(Cj) = ∅
for i �= j, and if Ci is non-empty for i ≥ 2, then the clause C1 ∨ . . . ∨ Cn is also
written as C1 	 . . . 	 Cn to emphasize this property. Ground literals and clauses are
ones not containing variables. A term, literal or clause is trivial if it contains no function
symbols. A substitution is a function σ : X → TΣ(X). Ground substitutions map
every variable to a ground term. We write σ = {x1 �→ t1, . . . , xn �→ tn} to say that
xiσ = ti for 1 ≤ i ≤ n and xσ = x for x /∈ {x1, . . . , xn}. If M is a term, literal,
clause, substitution or set of such objects, then the effect Mσ of applying σ to M is

Flat and One-Variable Clauses: Complexity of Verifying Cryptographic Protocols 81

defined as usual. Renamings are bijections σ : X → X. If M is a term, literal, clause
or substitution, then a renaming of M is of the form Mσ for some renaming σ, and an
instance of M is of the form Mσ for some substitution σ. If M and N are terms or
literals then a unifier of M and N is a substitution σ such that Mσ = Nσ. If such a
unifier exists then there is also a most general unifier (mgu), i.e. a unifier σ such that
for every unifier σ′ of M and N , there is some σ′′ such that σ′ = σσ′′. Most general
unifiers are unique upto renaming: if σ1 and σ2 are two mgus of M and N then σ1 is
a renaming of σ2. Hence we may use the notation mgu(M,N) to denote one of them.
We write M [x1, . . . , xn] to say that fv(M) ⊆ {x1, . . . , xn}. If t1, . . . , tn are terms
then M [t1, . . . , tn] denotes M{x1 �→ t1, . . . , xn �→ tn}. If N is a set of terms them
M [N] = {M [t1, . . . , tn] | t1, . . . , tn ∈ N}. If M is a set of terms, atoms, literals or
clauses them M [N] =

⋃
m∈M m[N]. A Herbrand interpretation H is a set of ground

atoms. A clause C is satisfied in H if for every ground substitution σ, either A ∈ H
for some A ∈ Cσ, or A /∈ H for some −A ∈ Cσ. A set S of clauses is satisfied in H
if every clause of S is satisfied in H. If such a H exists then S is satisfiable, and H is
a Herbrand model of S. A Horn clause is one containing at most one positive literal.
If a set of Horn clauses is satisfiable then it has a least Herbrand model wrt the subset
ordering.

Resolution and its refinements are well known methods for testing satisfiability of
clauses. Given a strict partial order < on atoms, a literal ±A is maximal in a clause
C if there is no literal ±′B ∈ C with A < B. Binary ordered resolution and ordered
factorization wrt ordering < are defined by the following two rules respectively:

C1 ∨ A − B ∨ C2

C1σ ∨ C2σ

C1 ∨ ±A ∨ ±B

C1σ ∨ Aσ

where σ = mgu(A,B) in both rules, A and B are maximal in the left and right premises
respectively of the first rule, and A and B are both maximal in the premise of the second
rule. We rename the premises of the first rule before resolution so that they don’t share
variables. The ordering < is stable if: whenever A1 < A2 then A1σ < A2σ for all
substitutions σ. We write S ⇒< S∪{C} to say that C is obtained by one application of
the binary ordered resolution or binary factorization rule on clauses in S (the subscript
denotes the ordering used).

Another resolution rule is splitting. This can be described using tableaux. A tableau
is of the form S1 | . . . | Sn, where n ≥ 0 and each Si, called a branch of the tableau, is
a set of clauses (the | operator is associative and commutative). A tableau is satisfiable
if at least one of its branches is satisfiable. The tableau is called closed if each Si

contains the empty clause, denoted �. The splitting step on tableaux is defined by the
rule: T | S →spl T | (S \ {C1 	 C2}) ∪ {C1} | (S \ {C1 	 C2}) ∪ {C2} whenever
C1 	 C2 ∈ S and C1 and C2 are non-empty. C1 and C2 are called components of the
clause C1 	 C2 being split. It is well known that splitting preserves satisfiability of
tableaux. We may choose to apply splitting eagerly, or lazily or in some other fashion.
Hence we define a splitting strategy to be a function f such that T →spl f(T) for all
tableaux T . The relation ⇒< is extended to tableaux as expected. Ordered resolution
with splitting strategy is then defined by the following rule:T1 ⇒<,f f(T2) ifT1 ⇒< T2.
This provides us with a well known sound and complete method for testing satisfiability.

82 H. Seidl and K.N. Verma

For any binary relation R, R∗ will denote the reflexive transitive closure of R, and R+

will denote the transitive closure of R.

Lemma 1 ([2]). For any set S of clauses, for any stable ordering <, and for any splitting
strategy f , S is unsatisfiable iff S ⇒∗

<,f T for some closed T .

If all predicates are zero-ary then the resulting clauses are propositional clauses.
In this case we write S �p T to say that every Herbrand model of S is a Herbrand
model of T . This notation will also be used when S and T are sets of first order clauses,
by treating every (ground or non-ground) atom as a zero-ary predicate. For example
{P (a),−P (a)} �p � but {P (x),−P (a)} �p �. S �p {C} is also written as S �p C.
If S �p C then clearly Sσ �p Cσ for all substitution σ.

3 Cryptographic Protocols

We assume that Σ contains the binary functions { } and 〈 , 〉 denoting encryption and
pairing. Messages are terms of TΣ(X). A state is of the form S(M1, . . . ,Mn) where
S with arity n is from a finite set of control points and Mi are messages. It denotes
an agent at control point S with messages Mi in its memory. An initialization state
is a state not containing variables. A protocol rule is of the form S1(M1, . . . ,Mm) :
recv(M) → S2(N1, . . . , Nn) : send(N). Here Mi, Nj are messages, and M and N are
each either a message, or a dummy symbol ? indicating nothing is received (resp. sent).
For secrecy analysis we can replace ? by some public message, i.e. one which is known to
everyone including the adversary. The rule says that an agent in state S1(M1, . . . ,Mm)
can receive message M , send a message N , and then move to state S2(N1, . . . , Nn),
thus also modifying the messages in its memory. A protocol is a finite set of initialization
states and protocol rules. This model is in the style of [9] and [5]. The assumption of
single blind copying then says that each protocol rule contains at most one variable
(which may occur anywhere any number of times in that rule). For example, the public-
key Needham-Schroeder protocol below

A → B : {A,NA}KB

B → A : {NA, NB}KB

A → B : {NB}KB

is written in our notation as follows. For every pair of agents A and B in our system
(finitely many of them suffice for finding all attacks against secrecy [7,6]) we have two
noncesN1

AB andN2
AB to be used in sessions whereAplays the initiator’s role andB plays

the responder’s role. We have initialization states Init0(A,N1
AB) and Resp0(B,N2

AB)
for all agents A and B. Corresponding to the three lines in the protocol we have rules
for all agents A and B:

Init0(A,N1
AB):recv(?) → Init1(A,N1

AB):send({〈A,N1
AB〉}KB

)
Resp0(B,N2

AB):recv({〈A, x〉}KB
) →Resp1(B, x,N2

AB):send({〈x,N2
AB〉}KA

)
Init1(A,N1

AB):recv({〈N1
AB , x〉}KA

)→ Init2(A,N1
AB , x):send({x}KB

)
Resp1(B, x,N2

AB):recv({N2
AB}KB

) →Resp2(B, x,N2
AB):send(?)

Any initialization state can be created any number of times and any protocol rule
can be executed any number of times. The adversary has full control over the net-
work: all messages received by agents are actually sent by the adversary and all mes-

Flat and One-Variable Clauses: Complexity of Verifying Cryptographic Protocols 83

sages sent by agents are actually received by the adversary. The adversary can ob-
tain new messages from messages he knows, e.g. by performing encryption and de-
cryption. To model this using Horn clauses, we create a unary predicate reach to
model reachable states, and a unary predicate known to model messages known to
the adversary. The initialization state S(M1, . . . ,Mn) is then modeled by the clause
reach(S(M1, . . . ,Mn)), where S is a new function symbol we create. The protocol rule
S1(M1, . . . ,Mm) : recv(M) → S2(N1, . . . , Nn) : send(N) is modeled by the clauses
known(N) ∨ −reach(S1(M1, . . . ,Mm)) ∨ −known(M) and reach(S2(N1, . . . , Nn))
∨ −reach(S1(M1, . . . ,Mm)) ∨ −known(M). Under the assumption of single blind
copying it is clear that all these clauses are one-variable clauses, i.e. clauses con-
taining at most one variable. We need further clauses to express adversary capabil-
ities. The clauses known({x1}x2) ∨ −known(x1) ∨ −known(x2) and known(x1) ∨
−known({x1}x2)∨−known(x2) express the encryption and decryption abilities of the
adversary. We have similar clauses for his pairing and unpairing abilities, as well as
clauses known(f(x1, . . . ,xn))∨−known(x1)∨ . . .∨−known(xn) for any function f
that the adversary knows to apply. All these are clearly flat clauses, i.e. clauses of the form
C =

∨k
i=1 ±iPi(fi(xi

1, . . . , x
i
ni

))∨
∨l

j=1 ±jQj(xj), where {xi
1, . . . , x

i
ni
} = fv(C) for

1 ≤ i ≤ k. Asymmetric keys, i.e. keys K such that message {M}K can only be de-
crypted with the inverse key K−1, are also easily dealt with using flat and one-variable
clauses. The adversary’s knowledge of other data c like agent’s names, public keys, etc
are expressed by clauses known(c). Then the least Herbrand model of this set of clauses
describes exactly the reachable states and the messages known to the adversary. Then
to check whether some message M remains secret, we add the clause −known(M) and
check whether the resulting set is satisfiable.

A set of clauses is in the class V1 if each of its members is a one-variable clause. A
set of clauses is in the class F if each of its members is a flat clause. More generally we
have the class C proposed by Comon and Cortier [6,8]: a set of clauses S is in the class
C if for each C ∈ S one of the following conditions is satisfied:
– C is a one-variable clause
– C =

∨k
i=1 ±iPi(ui[fi(xi

1, . . . , x
i
ni

)]) ∨
∨l

j=1 ±jQj(xj), where for 1 ≤ i ≤ k we
have {xi

1, . . . , x
i
ni
} = fv(C) and ui contains at most one variable.

If all clauses are Horn then we have the corresponding classes V1Horn, FHorn and
CHorn. Clearly the classesV1 (resp.V1Horn) andF (resp.FHorn) are included in the
class C (resp. CHorn) since the ui’s above can be trivial. Conversely any clause set in C
can be considered as containing just flat and one-variable clauses. This is because we can
replace a clause C∨±P (u[f(x1, . . . , xn)]) by the clause C∨±Pu(f(x1, . . . , xn)) and
add clauses −Pu(x) ∨ P (u[x]) and Pu(x) ∨−P (u[x]) where Pu is a fresh predicate.
This transformation takes polynomial time and preserves satisfiability of the clause set.
Hence now we need to deal with just flat and one-variable clauses. In the rest of the
paper we derive optimal complexity results for all these classes.

Still this only gives us an upper bound for the secrecy problem of protocols since
the clauses could be more general than necessary. It turns out, however, that this is not
the case. In order to show this we rely on a reduction of the reachability problem for
alternating pushdown systems (APDS). In form of Horn clauses, an APDS is a finite set of
clauses of the form (i) P (a) where a is a zero-ary symbol, (ii) P (s[x])∨−Q(t[x]) where

84 H. Seidl and K.N. Verma

s and t involve only unary function symbols, and (iii) P (x)∨−P1(x)∨−P2(x). Given
such an APDS S, a ground atom P (t) is reachable if P (t) is in the least Herbrand model
of S, i.e. if S∪{−P (t)} is unsatisfiable. Reachability in APDS is DEXPTIME-hard [4].
We encode this problem into secrecy of protocols, as in [9]. Let K be a (symmetric) key
not known to the adversary. Encode atoms P (t) as messages {〈P, t〉}K , by treating P
as some data. Create an initialization state S (no message is stored in the state). Clause
(i) is translated as S : recv(?) → S : send({〈P, a〉}K). Clause (ii) is translated as
S : recv({〈Q, t[x]〉}K) → S : send({〈P, s[x]〉}K). Clause (iii) is translated as S : recv
(〈{〈P1, x〉}K , {〈P2, x〉}K〉) → S : send({〈P, x〉}K). The intuition is that the adversary
cannot decrypt messages encrypted with K. He also cannot encrypt messages with K.
He can only forward messages which are encrypted with K. However he has the ability
to pair messages. This is utilized in the translation of clause (iii). Then a message {M}K

is known to the adversary iff M is of the form 〈P, t〉 and P (t) is reachable in the APDS.

Theorem 1. Secrecy problem for cryptographic protocols with single blind copying,
with bounded number of nonces but unbounded number of sessions is DEXPTIME-hard,
even if no message is allowed to be stored at any control point.

4 One Variable Clauses: Decomposition of Terms

We first show that satisfiability for the classesV1 andV1Horn is DEXPTIME-complete.
Note that although we consider only unary predicates, this is no restriction in the case
of one-variable clauses, since we can encode atoms P (t1, . . . , tn) as P ′(fn(t1 . . . , tn))
for fresh P ′ and fn for every P of arity n. As shown in [6,8], ordered resolution on
one-variable clauses, for a suitable ordering, leads to a linear bound on the height of
terms produced. This does not suffice for obtaining a DEXPTIME upper bound and
we need to examine the forms of unifiers produced during resolution. We consider
terms containing at most one variable (call them one-variable terms) to be compositions
of simpler terms. A non-ground one-variable term t[x] is called reduced if it is not
of the form u[v[x]] for any non-ground non-trivial one-variable terms u[x] and v[x].
The term f(g(x), h(g(x))) for example is not reduced because it can be written as
f(x, h(x))[g(x)]. The term f ′(x, g(x), a) is reduced. Unifying it with the reduced term
f ′(h(y), g(h(a)), y) produces ground unifier {x �→ h(y)[a], y �→ a} and both h(y) and
a are strict subterms of the given terms. Indeed we find:

Lemma 2. Let s[x] and t[y] be reduced, non-ground and non-trivial terms where x �= y
and s[x] �= t[x]. If s and t have a unifier σ then xσ, yσ ∈ U [V] where U is the set of
non-ground (possibly trivial) strict subterms of s and t, and V is the set of ground strict
subterms of s and t.

In case both terms (even if not reduced) have the same variable we have the following
easy result:

Lemma 3. Let σ be a unifier of two non-trivial, non-ground and distinct one-variable
terms s[x] and t[x]. Then xσ is a ground strict subterm of s or of t.

Flat and One-Variable Clauses: Complexity of Verifying Cryptographic Protocols 85

In the following one-variable clauses are simplified to involve only reduced terms.

Lemma 4. Any non-ground one-variable term t[x] can be uniquely written as t[x] =
t1[t2[. . . [tn[x]] . . .]] where n ≥ 0 and each ti[x] is non-trivial, non-ground and reduced.
This decomposition can be computed in time polynomial in the size of t.

Above and elsewhere, if n = 0 then t1[t2[. . . [tn[x]] . . .]] denotes x. Now if a clause
set contains a clause C = C ′ ∨ ±P (t[x]), with t[x] being non-ground, if t[x] =
t1[. . . [tn[x]] . . .] where each ti is non-trivial and reduced, then we create fresh predicates
Pt1 . . . ti for 1 ≤ i ≤ p − 1 and replace C by the clause C ′ ∨ ±Pt1 . . . tn−1(tn[x]).
Also we add clauses Pt1 . . . ti(ti+1[x]) ∨−Pt1 . . . ti+1(x) and −Pt1 . . . ti(ti+1[x]) ∨
Pt1 . . . ti+1(x) for 0 ≤ i ≤ n − 2 to our clause set. Note that the predicates Pt1 . . . ti
are considered invariant under renaming of terms tj . For i = 0, Pt1 . . . ti is same as
P . Our transformation preserves satisfiability of the clause set. By Lemma 4 this takes
polynomial time and eventually all non-ground literals in clauses are of the form ±P (t)
with reduced t. Next if the clause set is of the form S∪{C1∪C2}, where C1 is non-empty
and has only ground literals, and C2 is non-empty and has only non-ground literals, then
we do splitting to produce S ∪ {C1} | S ∪ {C2}. This process produces at most expo-
nentially many branches each of which has polynomial size. Now it suffices to decide
satisfiability of each branch in DEXPTIME. Hence now we assume that each clause is
either:

(Ca) a ground clause, or
(Cb) a clause containing exactly one variable, each of whose literals is of the form

±P (t[x]) where t is non-ground and reduced.
Consider a set S of clauses of type Ca and Cb. We show how to decide satisfiability of
the set S. Wlog we assume that all clauses in S of type Cb contain the variable x1. Let
Ng be the set of non-ground terms t[x1] occurring as arguments in literals in S. Let Ngs
be the set of non-ground subterms t[x1] of terms in Ng. We assume that Ng and Ngs
always contain the trivial term x1, otherwise we add this term to both sets. Let G be
the set of ground subterms of terms occurring as arguments in literals in S. The sizes
of Ng,Ngs and G are polynomial. Let S† be the set of clauses of type Ca and Cb which
only contain literals of the form ±P (t) for some t ∈ Ng ∪ Ng[Ngs[G]] (observe that
G ⊆ Ngs[G] ⊆ Ng[Ngs[G]]). The size of S† is at most exponential.

For resolution we use ordering ≺: P (s) ≺ Q(t) iff s is a strict subterm of t. We
call ≺ the subterm ordering without causing confusion. This is clearly stable. This is the
ordering that we are going to use throughout this paper. In particular this means that if
a clause contains literals ±P (x) and ±′Q(t) where t is non-trivial and contains x, then
we cannot choose the literal ±P (x) to resolve upon in this clause. Because of the simple
form of unifiers of reduced terms we have:

Lemma 5. Binary ordered resolution and ordered factorization, wrt the subterm order-
ing, on clauses in S† produces clauses which are again in S† (upto renaming).

Hence to decide satisfiability of S ⊆ S†, we keep generating new clauses of S†

by doing ordered binary resolution and ordered factorization wrt the subterm ordering
till no new clause can be generated, and then check whether the empty clause has been
produced. Also recall that APDS consist of Horn one-variable clauses. Hence:

Theorem 2. Satisfiability for the classes V1 and V1Horn is DEXPTIME-complete.

86 H. Seidl and K.N. Verma

5 Flat Clauses: Resolution Modulo Propositional Reasoning

Next we show how to decide the classF of flat clauses in NEXPTIME. This is well known
when the maximal arity r is a constant, or when all non-trivial literals in a clause have
the same sequence (instead of the same set) of variables. But we are not aware of a proof
of NEXPTIME upper bound in the general case. We show how to obtain NEXPTIME
upper bound in the general case, by doing resolution modulo propositional reasoning.
While this constitutes an interesting result of its own, the techniques allow us to deal
with the full class C efficiently. Also this shows that the generality of the class C does
not cost more in terms of complexity. An ε-block is a one-variable clause which contains
only trivial literals. A complex clause C is a flat clause

∨k
i=1 ±iPi(fi(xi

1, . . . , x
i
ni

)) ∨
∨l

j=1 ±jQj(xj) in which k ≥ 1. A flat clause is either a complex clause, or an ε-clause
which is defined to be a disjunction of ε-blocks, i.e. to be of the form C1[x1]	. . .	Cn[xn]
where each Ci is an ε-block. ε-clauses are difficult to deal with, hence we split them to
produce ε-blocks. Hence define ε-splitting as the restriction of the splitting rule in which
one of the components is an ε-block.

Recall that r is the maximal arity of symbols in Σ. Any complex clause C can be
renamed to make it good i.e. such that fv(C) ⊆ Xr = {x1, . . . ,xr}. An ε-block C
can be renamed to make it good i.e. of the form C[xr+1]. The choice of xr+1 is not
crucial. Now notice that ordered resolution between complex clauses and ε-blocks only
produces flat clauses, which can then be split to be left with only complex and ε-blocks.
E.g. Resolution between P1(x1) ∨ −P2(x2) ∨ P3(f(x1,x2)) ∨ −P4(g(x2,x1)) and
P4(g(x1,x1))∨−P5(h(x1))∨P6(x1) produces P1(x1)∨−P2(x1)∨P3(f(x1,x1))∨
−P5(h(x1))∨P6(x1). Resolution between P2(xr+1) and −P2(f(x1,x2))∨P3(x1)∨
P4(x2) produces P3(x1)∨ P4(x2) which can then be split. The point is that we always
choose a non-trivial literal from a clause for resolution, if there is one. As there are finitely
many complex clauses and ε-blocks this gives us a decision procedure. Note however
that the number of complex clauses is doubly exponential. This is because we allow
clauses of the form P1(f1(x1,x1,x2))∨P2(f2(x2,x1))∨P3(f3(x2,x1,x2))∨ ..., i.e.
the nontrivial terms contain arbitrary number of repetitions of variables in arbitrary order.
The number of such variable sequences of r variables is exponentially many, hence the
number of clauses is doubly exponential. Letting the maximal arity r to be a constant,
or forcing all non-trivial literals in a clause to have the same variable sequence would
have produced only exponentially many clauses. In presence of splitting, this would
have given us the well-known NEXPTIME upper bound, which is also optimal. But we
are not aware of a proof of NEXPTIME upper bound in the general case. To obtain
NEXPTIME upper bound in the general case we introduce the technique of resolution
modulo propositional reasoning.

For a clause C, define the set of its projections as π(C) = C[Xr]. Essentially projec-
tion involves making certain variables in a clause equal. As we saw, resolution between
two complex clauses amounts to propositional resolution between their projections. De-
fine the set U = {f(x1, . . . , xn) | f ∈ Σ and each xi ∈ Xr} of size exponential in
r. Resolution between ε-block C1 and a good complex clause C2 amounts to proposi-
tional resolution of a clause from C[U] with C2. Also note that propositional resolution
followed by further projection is equivalent to projection followed by propositional res-

Flat and One-Variable Clauses: Complexity of Verifying Cryptographic Protocols 87

olution. Each complex clause has exponentially many projections. This suggests that
we can compute beforehand the exponentially many projections of complex clauses
and exponentially many instantiations of ε-blocks. All new complex clauses generated
by propositional resolution are ignored. But after several such propositional resolution
steps, we may get an ε-clause, which should then be split and instantiated and used
for obtaining further propositional resolvents. In other words we only compute such
propositionally implied ε-clauses, do splitting and instantiation and iterate the process.
This generates all resolvents upto propositional implication. The difference from the
approach of Ganzinger and Korovin [10] is that they have a single phase of instantiation
followed by propositional satisfiability checking. In contrast, we compute certain inter-
esting propositional implications which are further instantiated, and iterate the process.
We now formalize our approach.

For a set S of clauses, let comp(S) be the set of complex clauses in S, eps(S) be
the set of ε-blocks in S, π(S) =

⋃
C∈S π(C) and I(S) = S ∪π(comp(S))∪ eps(S)[U].

For sets S and T of complex clauses and ε-blocks, write S � T to mean that:
– if C is a complex clause in S then I(T) �p π(C), and
– every ε-block in S can be renamed as some C[xr+1] ∈ T .
For tableaux T1 and T2 involving only complex clauses and ε-blocks we write T1 � T2

if T1 can be written as S1 | . . . | Sn and T2 can be written as T1 | . . . | Tn (note same
n) such that Si � Ti for 1 ≤ i ≤ n. Intuitively T2 is a succinct representation of T1.
Define the splitting strategy f as the one which repeatedly applies ε-splitting on a tableau
as long as possible. The relation ⇒≺,f provides us a sound and complete method for
testing unsatisfiability. We define the alternative procedure for testing unsatisfiability
by using succinct representations of tableaux. We define � by the rule: T | S � T |
S∪{C1[xr+1]} | . . . | S∪{Ck[xr+1]} whenever I(S) �p C = C1[xi1]	 . . .	Ck[xik

],
C is an ε-clause, and 1 ≤ i1, . . . , ik ≤ r. Then � simulates ⇒≺,f :

Lemma 6. If S is a set of complex clauses and ε-blocks, S � T and S ⇒≺,f T , then
all clauses occurring in T are complex clauses or ε-blocks and T �∗ T ′ for some T ′

such that T � T ′.

Hence we have completeness of �:

Lemma 7. If a set S of good complex clauses and ε-blocks is unsatisfiable then S �∗ T
for some closed T .

Proof. By Lemma 1, S ⇒∗
≺,f S1 | . . . | Sn such that each Si � �. Since all complex

clauses and ε-blocks in S are good, we have S � S. Hence by Lemma 6, we have some
T1, . . . , Tn such that S �∗ T1 | . . . | Tn and Si � Ti for 1 ≤ i ≤ n. Since � ∈ Si and
� is an ε-block, hence � ∈ Ti for 1 ≤ i ≤ n. �	

Call a set S of good complex clauses and ε-blocks saturated if the following condition
is satisfied: if I(S) �p B1[xi1] 	 . . . 	 Bk[xik

] with 1 ≤ i1, . . . , ik ≤ r, each Bi being
an ε-block, then there is some 1 ≤ j ≤ k such that Bj [xr+1] ∈ S.

Lemma 8. If S is a satisfiable set of good complex clauses and ε-blocks then S �∗ T | T
for some T and some saturated set T of good complex clauses and ε-blocks, such that
� /∈ T .

88 H. Seidl and K.N. Verma

Proof. We construct a sequence S = S0 ⊆ S1 ⊆ S2 ⊆ . . . of good complex clauses
and ε-blocks such that Si is satisfiable and Si �∗ Si+1 | Ti for some Ti for each i.
S = S0 is satisfiable by assumption. Now assume we have already defined S0, . . . , Si

and T0, . . . , Ti−1. Let Cl = Bl
1[xil

1
] 	 . . . 	 Bl

k[xil
kl

] for 1 ≤ l ≤ N be all the possible

ε-clauses such that I(Si) �p Cl, 1 ≤ il1, . . . , i
l
kl

≤ r. Since Si is satisfiable, Si ∪ {Cl |
1 ≤ l ≤ N} is satisfiable. Since xil

1
, . . . ,xil

kl

are mutually distinct for 1 ≤ l ≤ N ,

there are 1 ≤ jl ≤ kl for 1 ≤ l ≤ N such that Si ∪ {Bl
jl

[xil
jl

] | 1 ≤ l ≤ N} is

satisfiable. Let Si+1 = Si ∪ {Bl
jl

[xr+1] | 1 ≤ l ≤ N}. Si+1 is satisfiable. Also it is
clear that Si �∗ Si+1 | Ti for some Ti. If Si+1 = Si then Si is saturated, otherwise Si+1

has strictly more ε-blocks. As there are only finitely many good ε-blocks, eventually we
will end up with a saturated set T in this way. Since T is satisfiable, � /∈ T . From
construction it is clear that there is some T such that S �∗ T | T . �	

Theorem 3. Satisfiability for the class F is NEXPTIME-complete.

Proof. The lower bound comes from reduction of satisfiability of positive set constraints
which is NEXPTIME-complete [1]. For the upper bound letS be a finite set of flat clauses.
Repeatedly apply ε-splitting to obtain f(S) = S1 | . . . | Sm. S is satisfiable iff some
Si is satisfiable. The number m of branches in f(S) is at most exponential. Also each
branch has size linear in the size of S. We non-deterministically choose some Si and
check its satisfiability in NEXPTIME.

Hence wlog we may assume that the given set S has only complex clauses and ε-
blocks. Wlog all clauses in S are good. We non-deterministically choose a certain number
of good ε-blocks B1[xr+1], . . . , BN [xr+1] and check that T = S1 ∪ {B1[xr+1], . . . ,
BN [xr+1]} is saturated and � /∈ T . By Lemma 8, if S is satisfiable then clearly there is
such a set T . Conversely if there is such a set T , then whenever T �∗ T , we will have
T = T | T ′ for some T ′. Hence we can never have T �∗ T where T is closed. Then
by Lemma 7 we conclude that T is satisfiable. Hence S ⊆ T is also satisfiable.

Guessing the set T requires non-deterministically choosing from among exponen-
tially many ε-blocks. To check that T is saturated, for every ε-clause C = B1[xi1] 	
. . .	Bk[xik

], with 1 ≤ i1, . . . , ik ≤ r, and Bj [xr+1] /∈ T for 1 ≤ j ≤ k, we check that
I(T) �p C, i.e. I(T)∪¬C is propositionally satisfiable (where ¬(L1∨ . . .∨Ln) denotes
{−L1, . . . ,−Ln}). This can be checked in NEXPTIME since propositional satisfiability
can be checked in NPTIME. We need to do such checks for at most exponentially many
possible values of C. �	

6 Combination: Ordered Literal Replacement

Combining flat and one-variable clauses creates additional difficulties. First observe
that resolving a one variable clause C1 ∨ ±P (f(s1[x], . . . , sn[x])) with a complex
clause ∓P (f(x1, . . . , xn))∨C2 produces a one-variable clause. If si[x] = sj [x] for all
xi = xj , and if C2 contains a literal P (xi) then the resolvent contains a literal P (si[x]).
The problem now is that even if f(s1[x], . . . , sn[x]) is reduced, si[x] may not be reduced.
E.g. f(g(h(x)), x) is reduced but g(h(x)) is not reduced. Like in Section 4 we may think
of replacing this literal by simpler literals involving fresh predicates. Firstly we have to

Flat and One-Variable Clauses: Complexity of Verifying Cryptographic Protocols 89

ensure that in this process we would not generate infinitely many predicates. Secondly
it is not clear that mixing ordered resolution steps with replacement of literals is still
complete. Correctness is easy to show since the new clause is in some sense equivalent to
the old deleted clause. However deletion of clauses arbitrarily can violate completeness
of the resolution procedure. The key factor which preserves completeness is that we
replace literals by smaller literals wrt the given ordering <.

Formally a replacement rule is of the form A1 → A2 where A1 and A2 are (not
necessarily ground) atoms. The clause set associated with this rule is {A1∨−A2,−A1∨
A2}. Intuitively such a replacement rule says that A1 and A2 are equivalent. The clause
set cl(R) associated with a set R of replacement rules is the union of the clause sets
associated with the individual replacement rules in R. Given a stable ordering < on
atoms, a replacement rule A1 → A2 is ordered iff A2 < A1. We define the relation
→R as: S →R (S \ {±A1σ ∨ C}) ∪ {±A2σ ∨ C} whenever S is a set of clauses,
±A1σ ∨ C ∈ S, A1 → A2 ∈ R and σ is some substitution. Hence we replace literals
in a clause by smaller literals. The relation is extended to tableaux as usual. This is
reminiscent of the well-studied case of resolution with some equational theory on terms.
There, however, the ordering < used for resolution is compatible with the equational
theory and one essentially works with the equivalence classes of terms and atoms. This
is not the case here.

Next note that in the above resolution example, even if f(s1[x], . . . , sn[x]) is non-
ground, some si may be ground. Hence the resolvent may have ground as well as non-
ground literals. We avoided this in Section 4 by initial preprocessing. Now we may
think of splitting these resolvents during the resolution procedure. This however will be
difficult to simulate using the alternative resolution procedure on succinct representations
of tableaux because we will generate doubly exponentially many one-variable clauses.
To avoid this we use a variant of splitting called splitting-with-naming [13]. Instead of
creating two branches after splitting, this rule puts both components into the same set,
but with tags to simulate branches produced by ordinary splitting. Fix a finite set P of
predicate symbols. P-clauses are clauses whose predicates are all from P. Introduce fresh
zero-ary predicates C for P-clauses C modulo renaming, i.e. C1 = C2 iff C1σ = C2

for some renaming σ. Literals ±C for P-clauses C are splitting literals. The splitting-
with-naming rule is defined as: S →nspl (S \ {C1 	 C2}) ∪ {C1 ∨ −C2, C2 ∨ C2}
where C1 	 C2 ∈ S, C2 is non-empty and has only non-splitting literals, and C1 has at
least one non-splitting literal. Intuitively C2 represents the negation of C2. We will use
both splitting and splitting-with-naming according to some predefined strategy. Hence
for a finite set Q of splitting atoms, define Q-splitting as the restriction of the splitting-
with-naming rule where the splitting atom produced is restricted to be from Q. Call this
restricted relation as →Q−nspl. This is extended to tableaux as usual. Now once we have
generated the clauses C1 ∨ −C2 and C2 ∨ C2 we would like to keep resolving on the
second part of the second clause till we are left with the clause C2 (possibly with other
positive splitting literals) which would then be resolved with the first clause to produce
C1 (possibly with other positive splitting literals) and only then the literals in C1 would
be resolved upon. Such a strategy cannot be ensured by ordered resolution, hence we
introduce a new rule. An ordering < over non-splitting atoms is extended to the ordering
<s by letting q <s A whenever q is a splitting atom and A is a non-splitting atom,

90 H. Seidl and K.N. Verma

and A <s B whenever A,B are non-splitting atoms and A < B. We define modified
ordered binary resolution by the following rule:

C1 ∨ A − B ∨ C2

C1σ ∨ C2σ
where σ = mgu(A,B) and the following conditions are satisfied:
(1) C1 has no negative splitting literal, and A is maximal in C1.
(2) (a) either B ∈ Q, or

(b) C2 has no negative splitting literal, and B is maximal in C2.
As usual we rename the premises before resolution so that they don’t share variables.
This rule says that we must select a negative splitting literal to resolve upon in any
clause, provided the clause has at least one such literal. If no such literal is present in the
clause, then the ordering <s enforces that a positive splitting literal will not be selected
as long as the clause has some non-splitting literal. We write S �<s

S ∪ {C} to say
that C is obtained by one application of the modified binary ordered resolution or the
(unmodified) ordered factorization rule on clauses in S. This is extended to tableaux as
usual. A Q-splitting-replacement strategy is a function f such that T (→Q−nspl ∪ →spl

∪ →R)∗f(T) for any tableaux T . Hence we allow both normal splitting andQ-splitting.
Modified ordered resolution with Q-splitting-replacement strategy f is defined by the
relation: S �<s,f,R f(T) whenever S �<s

T . This is extended to tableaux as usual.
The above modified ordered binary resolution rule can be considered as an instance
of ordered resolution with selection [2], which is known to be sound and complete
even with splitting and its variants. Our manner of extending < to <s is essential for
completeness. We now show that soundness and completeness hold even under arbitrary
ordered replacement strategies. It is not clear if such rules have been studied elsewhere.
Wlog we forbid the useless case of replacement rules containing splitting symbols. The
relation < is enumerable if the set of all ground atoms can be enumerated as A1, A2, . . .
such that if Ai < Aj then i < j. The subterm ordering is enumerable.

Theorem 4. Modified ordered resolution, wrt a stable and enumerable ordering, with
Q-splitting and ordered literal replacement is sound and complete for any strategy. I.e.
for any set S of P-clauses, for any strict stable and enumerable partial order < on atoms,
for any set R of ordered replacement rules, for any finite set Q of splitting atoms, and
for any Q-splitting-replacement strategy f , S ∪ cl(R) is unsatisfiable iff S �∗

<s,f,R T
for some closed T .

For the rest of this section fix a set S of one-variable P-clauses and complex P-clauses
whose satisfiability we need to decide. Let Ng be the set of non-ground terms occurring
as arguments in literals in the one-variable clauses of S. We rename all terms in Ng to
contain only the variable xr+1. Wlog assume xr+1 ∈ Ng. Let Ngs be the set of non-
ground subterms of terms in Ng, and Ngr = {s[xr+1] | s is non-ground and reduced,
and for some t, s[t] ∈ Ngs}. Define Ngrr = {s1[. . . [sm] . . .] | s1[. . . [sn] . . .] ∈ Ngs,
m ≤ n, and each si is non-trivial and reduced}. Define the set of predicates Q = {Ps |
P ∈ P, s ∈ Ngrr}. Note that P ⊆ Q. Define the set of replacement rules R =
{Ps1 . . . sm−1(sm[xr+1]) → Ps1 . . . sm([xr+1]) | Ps1 . . . sm ∈ Q}. They are clearly
ordered wrt ≺. Let G be the set of ground subterms of terms occurring as arguments in
literals in S. For the rest of this section the set of splitting atoms that we are going to use is

Flat and One-Variable Clauses: Complexity of Verifying Cryptographic Protocols 91

Q0 = {±P (t) | P ∈ P, t ∈ G}. Their purpose is to remove ground literals from a non-
ground clause. All sets defined above have polynomial size. We also need the set Ngr1 =
{xr+1}∪{f(s1, . . . , sn) | ∃g(t1, . . . , tm) ∈ Ngr ·{s1, . . . , sn} = {t1, . . . , tm}}which
has exponential size. These terms are produced by resolution of non-ground one-variable
clauses with complex clauses, and are also reduced. In the ground case we have the set
G1 = {f(s1, . . . , sn) | ∃g(t1, . . . , tm) ∈ G | {s1, . . . , sn} = {t1, . . . , tm}} of expo-
nential size. For a set P′ of predicates and a set U of terms, the set P′[U] of atoms is
defined as usual. For a set V of atoms the set −V and ±V of literals is defined as usual.
The following types of clauses will be required during resolution:

C1 clauses C ∨ D, where C is an ε-block with predicates from Q, and D ⊆ ±Q0.
C2 clauses C ∨ D where C is a one-variable clause with literals from ±Q(Ngr1), C

has at least one non-trivial literal, and D ⊆ ±Q0.
C3 clausesC∨D whereC is a non-empty clause with literals from±Q(Ngr1[Ngrr[G1]]),

and D ⊆ ±Q0.
C4 clauses C ∨ D where C =

∨k
i=1 ±iPi(fi(xi

1, . . . , x
i
ni

)) ∨
∨l

j=1 ±jQj(xj) is a
complex clause with each Pi ∈ Q, each Qj ∈ P and D ⊆ ±Q0

We have already argued why we need splitting literals in the above clauses, and why
we need Ngr1 instead of Ngr in type C2. In type C3 we have Ngrr in place of the set Ngs
that we had in Section 4, to take care of interactions between one-variable clauses and
complex clauses. In type C4 the trivial literals involve predicates only from P (and not
Q). This is what ensures that we need only finitely many fresh predicates (those from
Q \ P) because these are the literals that are involved in replacements when this clause
is resolved with a one-variable clause. The Q0-splitting steps that we use in this section
consist of replacing a tableau T | S by the tableau T | (S \{C∨L})∪{C∨−L,L∨L},
where C is non-ground, L ∈ ±P(G) and C ∨ L ∈ S. The replacement steps we are
going to use are of the following kind:
(1) replacing clause C1[x] = C ∨ ±P (t1[. . . [tn[s[x]]] . . .]) by clause C2[x] = C ∨
±Pt1 . . . tn(s[x])} where P ∈ P, s[xr+1] ∈ Ngr is non-trivial, and t1[. . . [tn] . . .] ∈
Ngrr. We have {C1[xr+1]} ∪ cl(R)[Ngrr] �p C2[xr+1].
(2) replacing ground clause C1 = C ∨ ±P (t1[. . . [tn[g]] . . .]) by clause C2 = C ∨
±Pt1 . . . tn[g]} where P ∈ P, g ∈ Ngrr[G1] and t1[. . . [tn] . . .] ∈ Ngrr. This replace-
ment is done only when t1[. . . [tn[g]] . . .] ∈ Ngrr[Ngrr[G1]] \ Ngr1[Ngrr[G1]]. We have
{C1} ∪ cl(R)[Ngrr[Ngrr[G1]]] �p C2.
Define the Q0-splitting-replacement strategy f as one which repeatedly applies first
ε-splitting, then the above Q0-splitting steps, then the above two replacement steps till
no further change is possible. Then �≺s,f,R gives us a sound and complete method for
testing unsatisfiability.

As in Section 5 we now define a succinct representation of tableaux and an alternative
resolution procedure for them. As we said, a literal L ∈ Q0 represents −L. Hence for
a clause C we define C as the clause obtained by replacing every ±L by the literal
∓L. This is extended to sets of clauses as usual. As before U = {f(x1, . . . , xn) | f ∈
Σ, and each xi ∈ Xr}. The functions eps and comp of Section 5 are now extended to
return ε-blocks and complex clauses respectively, possibly in disjunction with splitting
literals. For a set S of clauses, define ov(S) as the set of clauses of type C2 in S. The
function π is as before. We need to define which kinds of instantiations are to be used

92 H. Seidl and K.N. Verma

to generate propositional implications. For a clause C, define I1(C) = {C} ∪ C[U] ∪
C[U[Ngrr∪Ngrr[Ngrr[G1]]]]∪C[Ngr1]∪C[Ngr1[Ngrr[G1]]]. These are the instantiations
necessary for ε-blocks. Define I2(C) = {C}∪C[Ngrr[G1]]. These are necessary for one-
variable clauses. Define I3(C) = {C}. Ground clauses require no instantiation. Define
I4(C) = π(C) ∪ C[Ngrr ∪ [Ngrr[Ngrr[G1]]]]. These are necessary for complex clauses.
For a set S of clauses, define Ii(S) =

⋃
C∈S Ii(C). For a set S of clauses of type C1-C4

define I(S) = S∪I1(eps(S))∪I2(ov(S))∪I4(comp(S))∪cl(R)[Ngrr∪Ngrr[Ngrr[G1]]].
Note that instantiations of clauses in cl(R) are necessary for the replacement rules, as
argued above. For a set T of clauses define the following properties:
(P1T) C satisfies property P1T iff C[xr+1] ∈ T .
(P2T) C satisfies property P2T iff I(T) �p I2(C[xr+1]).
(P3T) C satisfies property P3T iff I(T) �p I3(C).
(P4T) C satisfies property P4T iff I(T) �p I4(C).
For sets of clauses S and T , define S � T to mean that every C ∈ S is of type
Ci and satisfies property PiT for some 1 ≤ i ≤ 4. This is extended to tableaux as
usual. The alternative resolution procedure for testing unsatisfiability by using succinct
representations of tableaux is now defined by the rule:T | S � T | S∪{C1[xr+1]	D} |
S ∪{C2[xr+1]} | . . . | S ∪{Ck[xr+1]} whenever I(S) �p C1[xi1]	 . . .	Ck[xik

]	D,
each Ci is an ε-block, 1 ≤ i1, . . . , ik ≤ r and D ⊆ ±Q0. The simulation property now
states:

Lemma 9. If S � T and S �≺s,f,R T then T �∗ T ′ for some T ′ such that T � T ′.

Hence as for flat clauses we obtain:

Theorem 5. Satisfiability for the class C is NEXPTIME-complete.

7 The Horn Case

We show that in the Horn case, the upper bound can be improved to DEXPTIME.
The essential idea is that propositional satisfiability of Horn clauses is in PTIME in-
stead of NPTIME. But now we need to eliminate the use of tableaux altogether. To
this end, we replace the ε-splitting rule of Section 6 by splitting-with-naming. Ac-
cordingly we define the set of splitting atoms as Q = Q0 ∪ Q1 where Q1 = {C |
C is a non-empty negative ε−block with predicates from P}. We know that binary res-
olution and factorization on Horn clauses produces Horn clauses. Replacements on
Horn clauses using the rules from R produces Horn clauses. Q1-splitting on Horn
clauses produces Horn clauses. E.g. clause P (x1) ∨ −Q(x1) ∨ −R(x2) produces
P (x1)∨−Q(x1)∨−−R(x2) and−R(x2)∨−R(x2).Q0-splitting on P (f(x))∨−Q(a)
produces P (f(x1)) ∨ −−Q(a) and −Q(a) ∨ −Q(a) which are Horn. However Q0-
splitting on C = −P (f(x1)) ∨ Q(a) produces C1 = −P (f(x1)) ∨ −Q(a) and C2 =
Q(a)∨Q(a). C2 is not Horn. However C1 = C and C2 = −Q(a)∨Q(a) are Horn. Fi-
nally, asQ1 has exponentially many atoms, we must restrict their occurrences in clauses.
Accordingly, for 1 ≤ i ≤ 4, define clauses of type Ci’ to be of the form C∨E where C is
of type Ci, E ⊆ ±Q1, C ∨ E is Horn and E has at most r negative literals (C is defined
as before, hence it leaves atoms from Q1 unchanged). Now the Q-splitting-replacement

Flat and One-Variable Clauses: Complexity of Verifying Cryptographic Protocols 93

strategy f first applies Q1-splitting as long as possible, then applies Q0-splitting as long
as possible and then applies the replacement steps of Section 6 as long as possible. Suc-
cinct representations are now defined as: S � T iff for each C ∈ S, C is of type Ci’
and satisfies PiT for some 1 ≤ i ≤ 4. The abstract resolution procedure is defined as:
T � T ∪{B1[xr+1]∨−q2∨. . .∨−qk	D	E}∪{qi∨Bi[xr+1] | 2 ≤ i ≤ k}whenever
I(T) �p C, C = B1[xi1] 	 . . . 	 Bk[xik

] 	 D 	 E, C is Horn, 1 ≤ i1, . . . , ik ≤ r,
B1 is an ε-block, Bi is a negative ε-block and qi = Bi for 2 ≤ i ≤ k, D ⊆ ±Q0 and
E ⊆ ±Q1 such that if k = 1 then E has at most r negative literals, and if k > 1 then E
has no negative literal.

Lemma 10. If S � T and S �≺s,f,R S′ then T �∗ T ′ for some T ′ such that S′ � T ′.

Now for deciding satisfiability of a set of flat and one-variable clauses we proceed
as in the non-Horn case. But now instead of non-deterministically adding clauses, we
compute a sequence S = S0 � S1 � S2 . . . starting from the given set S, till no more
clauses can be added, and then check whether � has been generated. The length of this
sequence is at most exponential. Computing Si+1 from Si requires at most exponential
time because the number of possibilities for C in the definition of � above is exponential.
(Note that this idea of Q1-splitting would not have helped in the non-Horn case because
we cannot bound the number of positive splitting literals in a clause in the non-Horn
case, whereas Horn clauses by definition have at most one positive literal). Also note
that APDS can be encoded using flat Horn clauses. Hence:

Theorem 6. Satisfiability for the classes CHorn and FHorn is DEXPTIME-complete.

Together with Theorem 1, this gives us optimal complexity for protocol verification:

Theorem 7. Secrecy of cryptographic protocols with single blind copying, with bounded
number of nonces but unbounded number of sessions is DEXPTIME-complete.

8 Conclusion

We proved DEXPTIME-hardness of secrecy for cryptographic protocols with single
blind copying, and improved the upper bound from 3-DEXPTIME to DEXPTIME. We
improved the 3-DEXPTIME upper bound for satisfiability for the class C to NEXP-
TIME in the general case and DEXPTIME in the Horn case, which match known lower
bounds. For this we invented new resolution techniques like ordered resolution with
splitting modulo propositional reasoning, ordered literal replacements and decomposi-
tions of one-variable terms. As byproducts we obtained optimum complexity for several
fragments of C involving flat and one-variable clauses. Security for several other decid-
able classes of protocols with unbounded number of sessions and bounded number of
nonces is in DEXPTIME, suggesting that DEXPTIME is a reasonable complexity class
for this class of protocols.

94 H. Seidl and K.N. Verma

References

1. A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of set constraints. In CSL’93,
pages 1–17. Springer-Verlag LNCS 832, 1993.

2. L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Automated
Reasoning, volume I, chapter 2, pages 19–99. North-Holland, 2001.

3. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In CSFW’01,
pages 82–96. IEEE Computer Society Press, 2001.

4. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1),
1981.

5. H. Comon and V. Cortier. Tree automata with one memory, set constraints and cryptographic
protocols. Theoretical Computer Science, 2004. To appear.

6. H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic
and application to cryptographic protocols. In RTA’03, pages 148–164. Springer-Verlag LNCS
2706, 2003.

7. H. Comon-Lundh and V. Cortier. Security properties: Two agents are sufficient. In ESOP’03,
pages 99–113. Springer-Verlag LNCS 2618, 2003.

8. V. Cortier. Vérification Automatique des Protocoles Cryptographiques. PhD thesis, ENS
Cachan, France, 2003.

9. N. A. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. In FMSP’99, Trento, Italy, 1999.

10. H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In
LICS’01, pages 55–64. IEEE Computer Society Press, 2003.

11. J. Goubault-Larrecq, M. Roger, and K. N. Verma. Abstraction and resolution modulo AC:
How to verify Diffie-Hellman-like protocols automatically. Journal of Logic and Algebraic
Programming, 2004. To Appear. Available as Research Report LSV-04-7, LSV, ENS Cachan.

12. D. Monniaux. Abstracting cryptographic protocols with tree automata. In SAS’99, pages
149–163. Springer-Verlag LNCS 1694, 1999.

13. A. Riazanov and A. Voronkov. Splitting without backtracking. In IJCAI’01, pages 611–617,
2001.

14. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is NP-
complete. In CSFW’01. IEEE Computer Society Press, 2001.

15. C. Weidenbach. Towards an automatic analysis of security protocols. In CADE’99, pages
378–382. Springer-Verlag LNAI 1632, 1999.

	Introduction
	Resolution
	Cryptographic Protocols
	One Variable Clauses: Decomposition of Terms
	Flat Clauses: Resolution Modulo Propositional Reasoning
	Combination: Ordered Literal Replacement
	The Horn Case
	Conclusion

