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Abstract. Abstract model generation refers to model generation for
abstract clause sets in which arguments of atoms are ignored. We give
two abstract clause sets which are obtained from normal clause sets. One
is for checking satisfiability of the original normal clause set. Another is
used for eliminating unnecessary clauses from the original one. These
abstract clause sets are propositional, i.e. decidable. Thus, we can use
them for preprocessing the original one.

1 Introduction

The use of abstraction seems to be helpful in many subfields of artificial intelli-
gence [10,7,4,3,2]. The most common use of abstraction in theorem proving has
been to abstract the problem, to prove its abstracted version, and then to use
the structure of the resulting proof as guides in searching for the original prob-
lem. This assumes that the structure of the abstract proof is similar to that of
the original problem. The most common approach is to integrate the abstract
proving into the deduction process by specifying clause selection functions that
imitate the abstract proof. On the other hand, there is another approach which
uses the abstract proving as a preprocessing step in the (ground) prover [8].

The benefit of preprocessing a set S of clauses can be large. In the extreme
S may be solved in the preprocessing stage. In this paper, we use model gener-
ation [6,5] as a procedure for preprocessing S rather than proving S. We apply
model generation to abstractions of S. We present two types of abstraction;
c-abstraction and d-abstraction. In these abstractions, we abstract away all ar-
guments from atoms. Thus, abstract clause sets are propositional.

S is satisfiable if its d-abstraction is satisfiable. In this case, we determine its
satisfiability without proving S itself. If a clause in S contains an atom whose
abstraction is not in the model of c-abstraction of S, the clause is unnecessary
for checking unsatisfiability. Thus, the clause can be eliminated.

This c-abstraction based elimination is a kind of simplification which sim-
plifies a set of clauses. Its effect is parallel to that of a simplification operation
eliminating pure literals [15]. However, their strength is not comparable. That
is, the former can eliminate more clauses than the latter does in some cases, and
vice versa. We evaluate effects of abstract model generation for preprocessing
with all CNF problems in the TPTP problem library.
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2 Model Generation

Throughout this paper, a clause ¬A1 ∨ . . .∨¬Am ∨B1 ∨ . . .∨Bn is represented
in implicational form: A1 ∧ . . .∧Am → B1 ∨ . . .∨Bn where Ai (1 ≤ i ≤ m) and
Bj (1 ≤ j ≤ n) are atoms; the left hand side of “→” is said to be the antecedent ;
and the right hand side of “→” the consequent.

A clause is said to be positive if its antecedent is true (m = 0), and negative
if its consequent is false (n = 0); otherwise it is mixed (m �= 0, n �= 0). A
clause is said to be violated under a set M of ground atoms if with some ground
substitution σ the following condition holds: ∀i(1 ≤ i ≤ m)Aiσ ∈ M ∧ ∀j(1 ≤
j ≤ n)Bjσ �∈ M .

A model generation proof procedure is sketched in Fig. 1. The procedure MG
takes a partial interpretation Mc (model candidate) and a set of clauses S to be
proven, and builds a (sub)proof-tree of S.

A leaf labeled with � tells us that a model of S has been found as a current
model candidate. If every leaf of the constructed proof-tree is labeled with ⊥, S
is unsatisfiable; otherwise S is satisfiable. In the latter case, at least one leaf is
labeled with � or at least one branch grows infinitely.

procedure MGTP (S) : P ; /* Input(S):Clause set, Output(P ):Proof-tree of S */

return(MG(∅, S));

procedure MG(Mc, S) : P ;/* Input(Mc): Model candidate */

1. (Model rejection) If a negative clause (A1 ∧ . . . ∧ Am → false) ∈ S is

violated under Mc with a ground substitution σ, return〈⊥〉
2. (Model extension) If a positive or mixed clause (A1 ∧ . . . ∧ Am → B1 ∨

. . . ∨ Bn) ∈ S is violated under Mc with a ground substitution σ,

return 〈
B1σ

P1

Biσ

Pi

Bnσ

Pn

〉

where Pi = MG(Mc ∪ {Biσ}, S) (1 ≤ i ≤ n).

3. (Model finding) If neither 1 nor 2 is applicable, return 〈�〉;

Fig. 1. Model generation procedure

3 Abstract Clauses

An abstract atom of P (t1, . . . , tn) is an atom P . That is, the abstract atom ab-
stracts away its arguments. Henceforth, we will use capital letters A,B,A1, B1, ...
as denoting normal atoms, and small letters a, b, a1, b1, . . . as denoting abstract
atoms corresponding to the capital letters.
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A d-abstract clause of A1∧ . . .∧Am → B1∨ . . .∨Bn is a clause a1∧ . . .∧am →
b1 ∨ . . .∨ bn. A set of d-abstract clauses obtained from a normal clause set S by
replacing normal clauses with d-abstract ones is denoted by d abs(S).

Theorem 1. Let S be a set of clauses. If d abs(S) is satisfiable, then S is sat-
isfiable.

d abs(S) is a set of propositional clauses, so, checking its satisfiability is
decidable, while checking satisfiability of S is generally undecidable1.

Example 1 (D-abstraction). Let S = {p(x)∧ q(x)∧ s(y) → false, p(x)∧ r(x) →
s(f(x)), q(x) → r(x) ∨ s(f(x)), p(x) → q(x) ∨ r(y), true → p(a)}, then
d abs(S) = {p ∧ q ∧ s → false, p ∧ r → s, q → r ∨ s, p → q ∨ r, true → p}.

d abs(S) has a model {p, r, s} and thus is satisfiable. Therefore, we conclude
S is satisfiable.

C-abstract clauses of A1∧. . .∧Am → B1∨. . .∨Bn are n clauses a1∧. . .∧am →
b1, a1 ∧ . . . ∧ am → b2, · · · , and a1 ∧ . . . ∧ am → bn. Note that there is no c-
abstract clause for a negative clause A1 ∧ . . . ∧ Am → false.

A set of c-abstract clauses obtained from a normal clause set S by replacing
normal clauses with c-abstract ones is denoted by c abs(S). Note that negative
clauses are eliminated in c abs(S) and all clauses in c abs(S) are Horn clauses.
Therefore, we obtain a unique model of c abs(S) with the model generation
procedure.

A clause A1 ∧ . . . ∧ Am → B1 ∨ . . . ∨ Bn is relevant to a set A of abstract
atoms if ∀i(1 ≤ i ≤ m)(ai ∈ A), otherwise, irrelevant. If a clause C(∈ S) is used
for model extension or rejection in the model generation procedure on S, C is
relevant to the model of c abs(S). Thus, we obtain the following lemma.

Lemma 1. Let S be a set of clauses, P be a proof tree of S, M be a model of
c abs(S), and C = A1 ∧ . . .∧Am → B1 ∨ . . .∨Bn ∈ S be a clause used for model
extension or rejection in P . Then, ∀i(1 ≤ i ≤ m)ai ∈ M where ai is the abstract
atom of Ai(1 ≤ i ≤ m). That is, C is relevant to M .

Proof. Let Ck = Ak
1 ∧ . . .∧Ak

m → Bk
1 ∨ . . .∨Bk

n ∈ S be a clause used for the k-th
model extension or rejection in P . We can easily show the following property by
induction on k: ∀i(1 ≤ i ≤ m)ak

i ∈ M ∧ ∀j(1 ≤ j ≤ n)bk
j ∈ M where ak

i is the
abstract atom of Ak

i (1 ≤ i ≤ m) and bk
j is the abstract atom of Bk

j (1 ≤ j ≤ n).
This property implies the lemma. ��

The lemma says that if a clause C(∈ S) is irrelevant to the model of c abs(S),
then C is never used for model extensions or rejections in the model generation
procedure on S. Therefore, we ignore irrelevant clauses when we apply the model
generation procedure on S.
1 d abs(S) is exactly the same as the propositional abstraction proposed by Plaisted [7]

and thus folklore. But, it is still interesting to see experimental data on all satisfiable
problems from the TPTP library.
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Theorem 2. If the model generation determines that a set S of clauses is un-
satisfiable, then it also determines that S\IR(S) is unsatisfiable, where IR(S) =
{C|C is irrelevant to M} and M is a model of c abs(S).

The model generation is a sound and complete proof procedure [1], therefore,
we obtain the corollary.

Corollary 1. Let S be a set of clauses. Then, S is unsatisfiable iff S \ IR(S) is
unsatisfiable.

By proving S \ IR(S) instead of S, we can diminish its execution cost if
IR(S) �= ∅. If S \IR(S) = ∅, we conclude that S is satisfiable. When IR(S) = ∅,
we may decrease the number of clauses in S by applying the same consideration
on the set CON(S) = {B1 ∧ . . . ∧ Bn → A1 ∨ . . . ∨ Am | (A1 ∧ . . . ∧ Am →
B1∨. . .∨Bn) ∈ S} which is obtained from the contrapositive set of S by reversing
every literal polarity. Thus, we obtain a process which eliminates unnecessary
clauses in S:

(1) Let S be a set of clauses.
(2) i = 0, S0 = S.
(3) Si+1 = Si \ IR(Si), i = i + 1.
(4) If i = 1 or Si �= Si−1, then Si = CON(Si) and goto (3).
(5) If i is an even number, then Si = CON(Si).

We stop the process when it reaches a fixpoint gotten as Si = Si−1. Then,
we try to prove the final Si instead of S.

Example 2 (C-abstraction). Let S(= S0) be a set of 6 clauses from C1 to C6:

C1 : r(x) → false C2 : v(x) → r(x) C3 : s(x) → r(x)
C4 : q(x) → s(x) ∨ u(x) C5 : p(x) → q(x) C6 : true → p(a)

Then, c-abstraction c abs(S0) is a set of the following clauses:

C21 : v → r C31 : s → r C41 : q → s
C42 : q → u C51 : p → q C61 : true → p

We obtain the model {p, q, u, s, r} of c abs(S0) with model generation. The
clause C2 is irrelevant to this model and thus eliminated. So, S1 = {C1, C3, C4,
C5, C6}, then S1 = CON(S1) = {C1C , C3C , C4C , C5C , C6C} where

C1C : true → r(x) C3C : r(x) → s(x) C4C : s(x) ∧ u(x) → q(x)
C5C : q(x) → p(x) C6C : p(a) → false

Next, we obtain the model {r, s} of c abs(S1). Therefore, C4C , C5C , and C6C

are irrelevant to this model and thus eliminated. So, S2 = {C1C , C3C}, then
S2 = CON(S2) = {C1, C3}. We continue this process until no clause is elimi-
nated. Finally, S3 becomes an empty set. Thus, we conclude S is satisfiable.
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4 Experimental Results

The method is implemented on top of a constraint logic programming system B-
Prolog [17]. We use all 5522 CNF problems in the TPTP problem library version
2.7.0 [13,14]. We remove equality axioms using the tptp2X utility (distributed
with TPTP) with option “-t rm_equality:rsftp” from each problem if any.
The problems were run on a DELL computer (Mobile Intel Pentium III 650MHz
CPU, 512MB memory, Linux 2.6.0).

If a problem S contains equality which is represented using the equal/2
predicate in TPTP, we simply add a positive unit clause “true → equal” to
d abs(S) and c abs(S) before preprocessing. In other words, we assume that all
individuals are equal in d-abstraction and the equal/2 predicate is relevant in
c-abstraction.

4.1 D-Abstraction: Checking Satisfiability

In 766 satisfiable first-order problems, 223 problems are determined as satisfiable
with their d-abstract clause sets, within one second for each. Table 1 (a) shows
the number of problems solved by d-abstraction for each problem domain in
TPTP. The first column shows domain names, and the second column shows the
number of problems solved and the number of satisfiable first-order problems in
that domain. For example, there are 17 satisfiable first-order problems in the
BOO domain. Among them, 4 problems are solved by d-abstraction. 45 % of
223 problems are in the SYN category and 19 % are in the NLP category. Table
1 (b) shows similar information for every problem rating2. The effectiveness of
d-abstraction seems to be independent of the problem domains and ratings.

4.2 C-Abstraction: Eliminating Unnecessary Clauses

In 5522 CNF problems, 725 problems are reduced by c-abstraction based elimi-
nation. For the ALG, COM, FLD, GRA, HEN, HWC, KRS, LDA, RNG, ROB,
SWC, and TOP categories, no problem is reduced. The average preprocessing
time is 3.75 seconds for 725 problems. More than 90% problems are reduced
within one second for each, while 35 problems need more than ten seconds for
reducing. All these 35 problems are in the SYN category and consist of more
than 1000 clauses.

Table 2 (a) shows the numbers of problems reduced with c-abstraction for
each problem domain. For example, there are 83 CNF problems in the HWV
category. 31 problems of them are reduced. For the NLP and SYN categories,
more than half of the problems are reduced.

2 In the TPTP distribution, each problem file consists of a header part and a body
part. The header part contains information about problem. The rating filed is in the
header part. The rating gives the difficulty of the problem. It is a real number in the
range 0.0 to 1.0, where 0.0 means that the problem is easy and 1.0 means that the
problem is hard.
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Table 1. Numbers of problems solved by d-abstraction

(a) Domain

ALG 0/2
ANA 2/2
BOO 4/17
CAT 6/10

COL 0/6
COM 0/0
FLD 0/0
GEO 0/17

GRA 0/0
GRP 12/75
HAL 0/0
HEN 3/3

HWC 2/2
HWV 6/8
KRS 2/8
LAT 8/22

LCL 10/44
LDA 0/0
MGT 2/11
MSC 1/2

NLP 42/236
NUM 4/7
PLA 2/2
PUZ 2/20

RNG 5/10
ROB 2/5
SET 4/12
SWC 0/1

SWV 3/9
SYN 100/216
TOP 1/19

(b) Rating

0.00 91/232
0.14 41/79
0.17 4/33
0.29 18/25

0.33 3/109
0.43 15/18
0.50 0/41
0.57 19/56

0.67 0/80
0.71 18/29
0.83 0/1
0.86 14/51

1.00 0/12

Table 2. Numbers of problems reduced by c-abstraction

(a) Domain

ALG 0/15
ANA 4/21
BOO 1/133
CAT 2/62

COL 13/193
COM 0/8
FLD 0/279
GEO 6/253

GRA 0/1
GRP 17/791
HAL 0/0
HEN 0/67

HWC 0/6
HWV 31/83
KRS 0/17
LAT 1/104

LCL 4/527
LDA 0/23
MGT 3/78
MSC 2/13

NLP 156/258
NUM 5/315
PLA 2/32
PUZ 6/82

RNG 0/104
ROB 0/38
SET 5/706
SWC 0/423

SWV 5/21
SYN 462/839
TOP 0/24

(b) Ratio(%)

0-9 87
10-19 6
20-29 32
30-39 17
40-49 108

50-59 19
60-69 55
70-79 118
80-89 167
90-99 116

Table 2 (b) shows the ratio of remaining clauses to the original ones. For
example, the first row indicates that there are 87 problems less than 10 % clauses
of which are remaining after reduction. There are 57 problems which are reduced
to the empty sets. All such problems are determined as satisfiable without proof.

In order to measure the c-abstraction effect, we solved all 725 problems, by
using three provers with a time limit of 600 seconds: DCTP 1.31 [12], Vampire
7.0 [9], and E 0.82 [11]3. These provers attended the CADE ATP system com-
petition CASC-J2[16]. Vampire 7.0 won the first place in the MIX and FOF
divisions, DCTP 1.31 won the third place in the EPR division, and E 0.82 won
the third place in the MIX division.

Table 3 (a) shows summaries of c-abstraction effects on these three provers.
The “before” column shows statistics for the original clause sets, while the “after”
column shows statistics for their reduced clause sets. The last row shows the
average cpu time in seconds. The parenthetic number in the “after” column
shows the cpu time including preprocessing. Table 3 (b) shows a detailed version
of (a). We succeed in enhancing performance of the three provers: The numbers
of problems solved are increased from 642 to 647 for DCTP, from 626 to 642 for
Vampire, and from 650 to 661 for E.

3 DCTP runs with options “-negpref -complexity -fullrewrite -alternate -resisol”.
Vampire runs with options “–mode casc-j2 -p off -t 600”.
E runs with options “-s –print-statistics -xAuto -tAuto –memory-limit=384 –tptp-
in”.
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Table 3. Effect of c-abstraction

(a) Summary

DCTP 1.31 Vampire 7.0 E 0.82
ALL before after before after before after

Attempted 725

Solved 642 647 626 642 650 661

Av. Time(s) 6.15 5.10(9.28) 11.69 7.68(8.80) 5.48 11.64(15.73)

(b) Category summary

Domain DCTP 1.31 Vampire 7.0 E 0.82
(Attempted) before after before after before after

ANA 0 1 1 1 1 1
(4) - 0.0(0.08) 15.53 15.28(15.36) 46.61 36.98(37.06)

BOO 1 1 1 1 1 1
(1) 0.0 0.0(0.07) 150.09 0.46(0.53) 22.66 0.50(0.57)

CAT 1 1 0 0 0 0
(2) 0.0 0.0(0.08) - - - -

COL 4 4 4 4 0 0
(13) 12.69 6.61(6.73) 159.39 159.22(159.33) - -

GEO 1 1 1 1 1 1
(6) 0.0 0.0(0.07) 0.73 0.11(0.18) 0.86 0.48(0.55)

GRP 17 17 7 8 9 11
(17) 1.05 1.05(1.12) 3.45 3.11(3.19) 1.62 1.35(1.43)

HWV 22 25 28 28 30 29
(31) 1.50 0.08(0.17) 12.76 4.67(4.77) 2.04 10.50(10.59)

LAT 1 1 0 0 0 0
(1) 0.01 0.01(0.09) - - - -

LCL 4 4 1 4 0 4
(4) 0.00 0.00(0.08) 235.93 0.37(0.45) - 0.85(0.93)

MGT 3 3 3 3 3 3
(3) 0.03 0.03(0.11) 11.30 11.39(11.47) 0.51 0.52(0.60)

MSC 2 2 2 2 2 2
(2) 0.01 0.0(0.07) 0.41 0.27(0.34) 0.49 0.52(0.59)

NLP 126 126 140 140 146 146
(156) 0.05 0.04(0.14) 9.96 8.56(8.66) 3.19 33.17(33.27)

NUM 5 5 2 5 2 5
(5) 0.0 0.0(0.08) 0.12 0.33(0.40) 0.49 0.60(0.67)

PLA 2 2 2 2 2 2
(2) 0.01 0.0(0.08) 0.13 0.12(0.20) 0.49 0.48(0.56)

PUZ 6 6 5 6 6 6
(6) 0.03 0.03(0.11) 0.13 0.27(0.35) 0.51 0.51(0.59)

SET 4 4 4 4 3 4
(5) 0.09 0.05(0.13) 79.62 18.24(18.31) 0.49 82.65(82.73)

SWV 5 5 4 5 4 5
(5) 0.01 0.0(0.08) 84.62 0.31(0.39) 0.62 0.57(0.65)

SYN 438 439 421 428 440 441
(462) 8.76 7.39(13.52) 9.05 6.57(8.20) 6.69 4.87(10.95)
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There is a series of 10 satisfiable problems in the NLP domain which have a
negative effect on E. The average proving times for these problems are increased
by 440 seconds after c-abstraction. This is a major cause why the average run
time of E is increased from 5.48 seconds to 11.68 seconds.

C-abstraction effects on Vampire and E seem to be stronger than that on
DCTP. This is due to the fact that there exist problems which have no positive
clause or no negative clause. These problems are obviously satisfiable. But, for
such problems, Vampire and E sometimes consume a lot of cpu time (or reach a
time limit) while DCTP immediately stops. There are 18 such cases for Vampire
and 11 cases for E. These problems become empty sets by c-abstraction, so it is
easy to determine them as satisfiable4

Table 4. Positive and negative effects of c-abstraction

Problem Time No. of clauses DCTP 1.31 Vampire 7.0 E 0.82
(secs) original reduced before after before after before after

ANA006-1 0.08 14 5 T.O. 0.00 T.O. T.O. T.O. T.O.

BOO008-1 0.07 21 1 0.00 0.00 150.09 0.46 22.66 0.50

COL092-2 0.12 195 183 24.66 12.96 T.O. T.O. T.O. T.O.

HWV009-1 0.10 92 66 T.O. 0.10 0.54 0.20 0.56 0.57

HWV031-1 0.10 93 67 T.O. T.O. T.O. T.O. 35.22 283.71

NLP037-1 0.08 66 12 0.02 0.00 65.30 0.10 0.51 0.50

NLP186-1 0.11 108 99 T.O. T.O. 0.25 0.26 34.69 538.11

NUM288-1 0.07 12 0 0.0 0.0 T.O. 0.44 T.O. 0.85

SET787-1 0.08 14 12 0.34 0.21 71.12 71.55 T.O. 329.16

SWV017-1 0.09 37 5 0.01 0.00 215.64 0.44 0.55 0.51

SYN597-1 0.08 28 23 5.36 5.37 30.91 209.20 3.47 T.O.

SYN599-1 0.08 29 25 89.48 89.57 209.29 162.53 42.30 5.07

SYN610-1 0.08 30 26 T.O. T.O. 15.18 209.38 5.17 2.87

SYN624-1 0.07 35 26 0.25 0.25 4.80 61.30 111.65 0.68

SYN708-1 0.09 83 61 T.O. T.O. 36.04 124.57 72.27 60.82

SYN742-1 0.08 31 0 0.04 0.00 169.80 0.10 0.67 0.49

SYN813-1 1.69 504 378 34.41 T.O. 13.59 9.19 10.71 2.96

SYN818-1 104.59 2621 1397 258.68 87.32 T.O. T.O. 59.65 18.31

SYN821-1 27.53 1716 712 56.24 122.71 T.O. 26.52 T.O. 5.42

SYN822-1 33.15 1768 1138 65.15 34.17 T.O. 59.11 T.O. 71.08

SYN897-1 0.86 122 97 T.O. 4.85 2.26 1.87 1.35 1.11

SYN912-1 2.72 1780 247 61.90 0.62 T.O. T.O. T.O. T.O.

Table 4 shows problems which exhibit positive or negative effect of c-abstraction
on the 3 provers. The second column shows cpu times for preprocessing in sec-
onds, the third the number of original clauses, and the fourth the number of

4 Vampire regards an empty clause set as an error of the input and aborts. We treat
such a case as a normal proof which tells that the set is satisfiable.
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clauses remaining after preprocessing. The last 6 columns show proving time of
the 3 provers. The “before” column shows the time for the original clause sets,
while the “after” column shows the time for their reduced clause sets. “T.O.”
indicates that the problem is not solved in 600 seconds.

We succeeded in enhancing the provers’ performance for several problems. For
example on SYN912-1, DCTP’s proving times is decreased from 61.90 seconds
to 0.62 seconds after 2.72 seconds preprocessing which decreases the number of
clauses from 1780 to 247. Vampire and E can prove SYN822-1 in 59.11 and 71.08
seconds respectively after preprocessing, while they cannot prove it within 600
seconds before preprocessing.

On the other hand, there are some problems which show negative effects of c-
abstraction. For example on NLP186-1, E’s proving time is increased from 34.69
seconds to 538.11 seconds. DCTP can not prove SYN813-1 within 600 seconds
after preprocessing, while it can prove the same problem in 34.41 seconds before
preprocessing. There is another type of problem which show both positive and
negative effects. For example, SYN624-1 shows a negative effect on Vampire and
a positive effect on E: Vampire’s proving times is increased from 4.80 seconds to
61.30 seconds while E’s proving time is decreased from 111.65 seconds to 0.68
seconds.

There are some satisfiable problems which are reduced to empty sets of
clauses in DCTP’s preprocessing phase after c-abstraction based clause elimi-
nation. In these problems, 48 problems are not reduced to empty sets without c-
abstraction. This indicates that c-abstraction based clause elimination enhances
the effects of other preprocessing operations.

4.3 C-Abstraction Based Elimination and Pure Literal Elimination

A pure literal is a literal in a clause that cannot be resolved against any literal in
any clause. Clauses that contain pure literals can be eliminated, because such a
clause cannot contribute a resolution proof. Pure literal elimination has a similar
effect to c-abstraction’s because c-abstraction based preprocessing eliminates
clauses which contain literals irrelevant to model generation.

Pure literal elimination is sometimes stronger and sometimes weaker than c-
abstraction based elimination. The strength comes from a unification operation
which is necessary to the former but unnecessary to the latter. On the other
hand, weakness comes from (model generation) inferences which are necessary
to the latter but unnecessary to the former.

In 5522 CNF problem, 562 problems are reduced by pure literal elimination.
This indicates that c-abstraction is applicable to more problems than pure literal
elimination. The average elimination time is 4.49 seconds for 562 problems. More
than 85% of the problems are reduced within one second for each, while 38
problems needs more than ten seconds for reducing. Pure literal elimination
takes more time than c-abstraction does on average. This is caused by the task
of unification.

Table 5 (a) shows the numbers of problems reduced by pure literal elimination
for every problem domain. Table 5 (b) shows the ratio of remaining clauses to
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Table 5. Pure literal elimination

(a) Domain

ALG 0/15
ANA 3/21
BOO 0/133
CAT 1/62

COL 13/193
COM 2/8
FLD 0/279
GEO 6/253

GRA 0/1
GRP 13/791
HAL 0/0
HEN 0/67

HWC 0/6
HWV 6/83
KRS 0/17
LAT 0/104

LCL 0/527
LDA 0/23
MGT 4/78
MSC 0/13

NLP 142/258
NUM 0/315
PLA 1/32
PUZ 11/82

RNG 0/104
ROB 0/38
SET 2/706
SWC 0/423

SWV 0/21
SYN 358/839
TOP 0/24

(b) Ratio(%)

0-9 18
10-19 4
20-29 3
30-39 5
40-49 2

50-59 13
60-69 27
70-79 43
80-89 98
90-99 350

(c) Effect

DCTP 1.31 Vampire 7.0 E 0.82
ALL before after before after before after

Attempted 562

Solved 509 510 485 485 507 509

Av. Time(s) 6.98 6.77(11.63) 7.10 6.70(8.25) 4.82 13.37(18.15)

the original ones. There are 350 problems which are in the ratio from 90% to
99%. This is 3 times as many as those of c-abstraction (cf. Table 2). We may
say that the clause elimination effect of c-abstraction is generally stronger than
that of pure literal elimination.

Table 5 (c) shows the summaries of pure literal elimination effects on the
provers. A little effect can be seen on the performance of the provers. Indeed,
there is no change in terms of problems solved within 600 seconds after prepro-
cessing for Vampire. The influence of pure literal elimination upon the perfor-
mance of these provers is weaker than that of c-abstraction.

There are 752 problems which are reduced by c-abstraction based elimina-
tion or pure literal elimination. They can be classified into 4 groups by the set
inclusion relation as follows: (1) A is a proper subset of B, (2) A equals B, (3)
A is a proper superset of B, and (4) there is no set inclusion relation between A
and B, where A is a problem (i.e. a set of clauses) reduced by c-abstraction base
elimination and B is a problem reduced by pure literal elimination. There are
333 problems in the first group, 182 in the second, 62 in the third, and 175 in the
fourth. This indicates that pure literal elimination is different from c-abstraction.
And it seems reasonable to suppose that the latter gains the ascendancy over
the former with respect to clause elimination.

By the way, it is possible to apply pure literal elimination after c-abstraction.
Our experiment shows that only simple problems are further reduced by pure
literal elimination after c-abstraction. Thus, pure literal elimination after c-
abstraction has no influence upon the performance of DCTP, Vampire, and E.
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4.4 C-Abstraction Combined with D-Abstraction

Among 725 problems reduced by c-abstraction, there are 87 problems which are
determined as satisfiable by d-abstraction. We don’t need to prove these prob-
lems anymore. Is is natural to combine c-abstraction with d-abstraction. Table
6 shows the summary of c-abstraction effects on the remaining 638 problems.
The parenthetic number in the “after” column shows the cpu time including
c-abstraction and d-abstraction.

Table 6. Effect of C-abstraction on problems passed through d-abstraction

DCTP 1.31 Vampire 7.0 E 0.82
ALL before after before after before after

Attempted 638

Solved 556 560 565 567 585 583

Av. Time(s) 7.06 5.86(10.83) 8.86 8.71(10.09) 5.97 13.10(17.87)

There is a positive effect on DCTP. The number of problems solved is in-
creased from 556 to 560 and the average cpu time is decreased from 7.06 seconds
to 5.86 seconds. For Vampire, c-abstraction barely has a positive effect. The
number of problems solved is increased from 565 to 567, but the average cpu
time is almost unchaged. Unfortunately, there is a negative effect on E. The
number of problems solved is decreased from 585 to 583 and the average cpu
time is increased from 5.97 seconds to 13.10 seconds.

5 Conclusion

Preprocessing a set of clauses has a great impact on the success of a subsequent
automated reasoning system. We have introduced two abstractions of the given
clause set for preprocessing it. Experimental results show that these abstrac-
tions are effective for several problems. 29% of satisfiable first-order problems
in TPTP are determined as satisfiable with their d-abstract clause sets. 13% of
CNF problems in TPTP are reduced with d-abstraction.

C-abstraction sometimes has positive effects and sometimes negative effects
on state-of-the-art theorem provers: DCTP, Vampire, and E. As a whole, without
d-abstraction, these provers profit from c-abstraction. On the other hand for
the problems passed through d-abstraction, DCTP and Vampire profit from
c-abstraction, but E does not. This situation may be improved if we find a
combination of the provers’ options that fit for c-abstraction. Furthermore, the
combination of the proposed method and other preprocessing operations can
enhance their abilities.
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