
Combining Lists with
Non-stably Infinite Theories

Pascal Fontaine, Silvio Ranise, and Calogero G. Zarba

LORIA and INRIA-Lorraine

Abstract. In program verification one has often to reason about lists
over elements of a given nature. Thus, it becomes important to be able
to combine the theory of lists with a generic theory T modeling the
elements. This combination can be achieved using the Nelson-Oppen
method only if T is stably infinite.
The goal of this paper is to relax the stable-infiniteness requirement.
More specifically, we provide a new method that is able to combine the
theory of lists with any theory T of the elements, regardless of whether
T is stably infinite or not. The crux of our combination method is to
guess an arrangement over a set of variables that is larger than the one
considered by Nelson and Oppen.
Furthermore, our results entail that it is also possible to combine T with
the more general theory of lists with a length function.

1 Introduction

In program verification one has often to decide the validity or satisfiability of
logical formulae involving lists over elements of a given nature. For instance,
these formulae may involve lists of integers or lists of booleans.

One way to reason about lists over elements of a given nature is to use the
Nelson-Oppen method [12] in order to modularly combine a decision procedure
for a theory modeling lists with a decision procedure for a theory modeling the
elements. This solution requires that the theory of the elements be stably infinite.
Unfortunately, this requirement is not satisfied by many interesting theories such
as, for instance, the theory of booleans and the theory of integers modulo n.

In this paper, we show how to relax the stable infiniteness require-
ment. More specifically, let Tlist be the two-sorted theory of lists involving a sort
elem for elements, a sort list for flat lists of elements, plus the symbols nil, car,
cdr, and cons. For instance, a valid formula in Tlist is

x ≈ cdr(cons(a, nil)) → x �≈ cons(b, y) .

We consider the theory Tlen that extends Tlist with a sort int for the integers, the
symbols 0, 1, +, −, < for reasoning over the integers, and a function symbol
length whose sort is list → int. For instance, a valid formula in Tlen is

x �≈ cdr(cons(a, nil)) → length(x) > 0 .

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 51–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

52 P. Fontaine, S. Ranise, and C.G. Zarba

We then provide a combination method that is able to combine Tlen with any
theory Telem modeling the elements, regardless of whether Telem is stably infinite
or not.

The core ideas of our combination method are:

– modifying the Nelson-Oppen method in such a way to guess an arrangement
over an extended set of free constants, and not just the shared ones.

– appropriately computing a certain minimal cardinality k0, so that we can
ensure that the domain of the elements must have at least k0 elements.

1.1 Related Work

The importance of reasoning about lists is corroborated by the numerous flavors
of theories of lists [1,3,4,13,14,18] present in literature, as well as by the increasing
number of tools [6,7,11,15,16,19] containing some capabilities for reasoning about
lists.

The idea of guessing an arrangement over a larger sets of free constants was
already used by Zarba in order to combine the theory of sets [24] and the theory of
multisets [22] with any arbitrary theory T of the elements, regardless of whether
T is stably infinite or not. This idea was also used by Fontaine and Gribomont [8]
in order to combine the theory of arrays with any other non-necessarily stably
infinite theory T .

The idea of computing minimal cardinalities was used by Zarba [23] in order
to combine the theory of finite sets with a non-necessarily stably infinite theory
T of the elements, in the presence of the cardinality operator. This idea was also
exploited by Tinelli and Zarba [20], who provided a method for combining any
shiny theory S with any non-necessarily stably infinite theory T . Examples of
shiny theories include the theory of equality, the theories of partial and total
orders, and the theories of lattices with maximum and minimum.

2 Many-Sorted Logic

2.1 Syntax

We fix the following infinite sets: a set sorts of sorts, a set con of constant
symbols, a set fun of functions symbols, and a set pred of predicate symbols.
We also fix an infinite set of variable symbols for every sort in sorts.

A signature Σ is a tuple 〈S,C, F, P 〉 where S ⊆ sorts, C ⊆ con, F ⊆ fun,
P ⊆ pred, all the symbols in C have sorts in S, and all the symbols in F, P
have sorts constructed using the sorts in S. If Σ = 〈S,C, F, P 〉 is a signature,
we sometimes write ΣS for S, ΣC for C, ΣF for F , and ΣP for P .

If Σ1 = 〈S1, C1, F1, P1〉 and Σ2 = 〈S2, C2, F2, P2〉 are signatures, we write
Σ1 ⊆ Σ2 when S1 ⊆ S2, C1 ⊆ C2, F1 ⊆ F2, and P1 ⊆ P2. If Σ1 = 〈S1, C1, F1, P1〉
and Σ2 = 〈S2, C2, F2, P2〉 are signatures, their union is the signature Σ1 ∪Σ2 =
〈S1 ∪ S2, C1 ∪ C2, F1 ∪ F2, P1 ∪ P2〉.

Combining Lists with Non-stably Infinite Theories 53

Given a signature Σ and a set of variables, we assume the standard notions
of Σ-term, Σ-atom, Σ-literal, Σ-formula. If ϕ is either a term or a formula, we
denote by varsσ(ϕ) the set of variables of sort σ occurring in ϕ.

In the rest of this paper we identify a conjunction of formulae ϕ1 ∧ · · · ∧ ϕn

with the set {ϕ1, . . . , ϕn}. In addition, we abbreviate literals of the form ¬(s ≈ t)
with s �≈ t.

2.2 Semantics

Definition 1. If Σ is a signature, a Σ-interpretation A over a set of variables
V is a map which interprets:1

– each sort σ ∈ ΣS as a non-empty domain Aσ;
– each variable x ∈ V of sort σ as an element xA ∈ Aσ;
– each constant symbol c ∈ ΣC of sort σ as an element cA ∈ Aσ;
– each function symbol f ∈ ΣF of sort σ1 × · · · × σn → τ as a function

fA : Aσ1 × · · · × Aσn
→ Aτ ;

– each predicate symbol p ∈ ΣP of sort σ1 × · · · × σn as a subset PA of
Aσ1 × · · · × Aσn

. �

A Σ-formula is satisfiable if it evaluates to true under some Σ-interpretation.
Let A be an Σ-interpretation over the set of variables V , and let Σ′ ⊆ Σ and

V ′ ⊆ V . We denote by AΣ′,V ′
the interpretation obtained from A by restricting

it to interpret only the symbols in Σ′ and variables in V ′. For convenience, AΣ′

also denotes AΣ′,V .
A Σ-structure is a Σ-interpretation over an empty set of variables.

2.3 Theories

Following Ganzinger [9], we define theories as sets of structures rather than as
sets of formulas. More formally:

Definition 2. A Σ-theory is a pair 〈Σ,A〉 where Σ is a signature and A is a
set of Σ-structures. �

Definition 3. Let T be a Σ-theory, and let Σ ⊆ Ω. An Ω-interpretation A is
a T -interpretation if AΣ,∅ ∈ T . �

A formula is T -satisfiable if it evaluates to true under some T -interpretation.
Given a Σ-theory T , the ground satisfiability problem of T is the problem of

deciding, for each ground Σ-formula ϕ, whether or not ϕ is T -satisfiable.

Definition 4. Let Σ be a signature, let S ⊆ ΣS be a nonempty set of sorts, and
let T be a Σ-theory. We say that T is stably infinite with respect to S if every
ground Σ-formula ϕ is T -satisfiable if and only if there exists a T -interpretation
satisfying ϕ such that Aσ is infinite, for each sort σ ∈ S. �
1 Unless otherwise specified, we use the convention that calligraphic letters denote in-

terpretations, and that the corresponding Roman letters, appropriately subscripted,
denote the domains of the interpretations.

54 P. Fontaine, S. Ranise, and C.G. Zarba

Definition 5 (Combination of theories). Let Ti = 〈Σi,Ai〉 be a theory, for
i = 1, 2. The combination of T1 and T2 is the theory comb(T1, T2) = 〈Σ,A〉
where Σ = Σ1 ∪ Σ2 and A = {A | AΣ1 ∈ A1 and AΣ2 ∈ A2}. �

2.4 The Theory of Integers

Let us fix a signature Σint containing a sort int for the integers, plus the constant
symbols 0 and 1 of sort int, the function symbols + and − of sort int× int → int,
and the predicate symbol <, of sort int × int.

Definition 6. The standard int-structure is the Σint-structure A specified
by letting Aint = Z and interpreting the symbols 0, 1,+,−, < according to their
intuitive meaning over Z. �

Definition 7. The theory of integers is the pair Tint = 〈Σint, {A}〉, where
A is the standard int-structure. �

The ground satisfiability problem of Tint can be decided by using methods
based on integer automata [21], the omega test [2,17], or appropriate extensions
of the Fourier-Motzkin method [10].

2.5 Lists

Let A be a non-empty set, and assume that the special object ⊥ does not belong
to A.2 A list x over A of length n is a map x : N → A∪ {⊥} such that x(i) ∈ A,
for i < n, and x(i) = ⊥, for i ≥ n. We write |x| = n to indicate that the length
of the list x is n. We denote by A∗ the set of lists over A.

We denote by nil the empty list, that is, nil(i) = ⊥, for each i ∈ N. We denote
by car and cons the partial functions defined as follows: given a list x �= nil , we
let car(x) = x(0), whereas cdr(x) is the unique list y such that y(n) = x(n + 1),
for each n ∈ N.

Given an element e ∈ A and a list x in A∗, we denote by cons(e, x) the list
y such that y(0) = e, and y(n + 1) = x(n), for each n ∈ N.

2.6 The Theory of Lists

We fix a signature Σlist containing a sort elem for elements and a sort list for lists
of elements, plus the constant symbol ⊥elem of sort elem, the constant symbols
nil and ⊥list of sort list, the function symbols car of sort list → elem, the function
symbol cdr of sort list → list, and the function symbol cons of sort elem × list →
list.

Definition 8. A standard list-structure A is a Σlist-structure satisfying the
following conditions:
2 Using this special object ⊥ to define lists is not fundamental but it is convenient for

the following.

Combining Lists with Non-stably Infinite Theories 55

– ⊥ /∈ Aelem;
– Alist = (Aelem)∗;
– nilA = nil ;
– carA(nil) = (⊥elem)A;
– cdrA(nil) = (⊥list)A;
– carA(x) = car(x), for each x ∈ Alist such that x �= nil ;
– cdrA(x) = cdr(x), for each x ∈ Alist such that x �= nil ;
– consA(e, x) = cons(e, x), for each e ∈ Aelem and x ∈ Alist. �

Note that although car and cdr are partial functions, standard list-structures
interpret the symbols car and cdr as total functions. In particular, all standard
list-structures ensure that the constants ⊥elem and ⊥list have the same interpre-
tations of the terms car(nil) and cdr(nil), respectively. However ⊥elem and ⊥list

may be interpreted by any element and list in the respective domain. There are
thus many standard list-structures.

Definition 9. The theory of lists is the pair Tlist = 〈Σlist,A〉, where A is
the set of all standard list-structures. �

As a by product of the results of this paper, we will see that the ground
satisfiability problem of Tlist can be decided by appropriately adapting Oppen’s
decision procedure for a one-sorted theory of lists without nil [14].

2.7 The Theory of Lists with a Length Function

We fix a signature Σlen containing all the symbols in Σint and Σlist, plus the
function symbol length of sort list → int.

Definition 10. A standard len-structure A is a Σlen-structure satisfying
the following conditions:

– AΣint is the standard int-structure;
– AΣlist is a standard list-structure;
– lengthA(x) = |x|, for each x ∈ Alist. �

Definition 11. The theory of lists with a length function is the pair
Tlen = 〈Σlen,A〉, where A is the set of all standard len-structures. �

The ground satisfiability problem of Tlen can be decided by appropriately
adapting a decision procedure for a two-sorted theory of recursively defined data
structures with integer constraints [25].

3 The Combination Method

Let Σelem be a signature such that ΣS = {elem}, and let Telem be any Σelem-
theory, not necessarily stably infinite with respect to the sort elem. Assume
that the ground satisfiability problem of Telem is decidable. We now describe a

56 P. Fontaine, S. Ranise, and C.G. Zarba

fail

Integer
phase

Element
phase

fail

Decomposition
phase succeed

fail

List
phase

Fig. 1. The phases of our combination method

combination-based decision procedure for the ground satisfiability problem of
T = comb(Telem, Tlen).

In our combination method we use as black boxes a decision procedure for
the ground satisfiability problem of Telem and a decision procedure for the ground
satisfiability problem of Tint. We also use—albeit not strictly as a black box—
Oppen’s decision procedure for recursively defined data structures.

Without loss of generality, we restrict ourselves to conjunctions Γ of literals
in separate form: Γ = Γelem ∪ Γint ∪ Γlist ∪ Γlength where:

(a) Γelem contains only Σelem-literals;
(b) Γint contains only Σint-literals;
(c) Γlist contains only flat Σlist-literals of the form

x ≈ y , x �≈ y , x ≈ nil ,

e ≈ ⊥elem , x ≈ ⊥list , x ≈ cons(e, y) ,

where e1, e2, e are elem-variables and x, y are list-variables;
(d) Γlength contains only literals of the form u ≈ length(x) where u is an int-

variable and x is a list-variable;
(e) for each list-variable x ∈ vars list(Γ), either x ≈ nil or x �≈ nil is in Γlist.

Notice that, given a set of literals in T , it is easy to build an equisatisfiable
separation verifying (a),(b),(d) the usual way [12] by introducing fresh variables.
However to furthermore ensure (c) and (e), and in particular to eliminate all
occurences of car and cdr, it is necessary to include disjunctions to the set of
literals. For efficiency concerns, this transformation is done at the formula level;
it is described in Section 5.

Our combination method consists of the four phases depicted in Figure 1,
and described below.

3.1 Decomposition Phase

Let Γ = Γelem∪Γint∪Γlist∪Γlength be a conjunction of literals in separate form. Also
let Velem = varselem(Γlist) ∪ {⊥elem} and Vlist = vars list(Γ). In the decomposition
phase we non-deterministically guess an equivalence relation ∼elem of Velem, and
we construct the following set of literals:

αelem = {e1 ≈ e2 | e1 ∼elem e2} ∪ {e1 �≈ e2 | e1, �elem e2} .

Combining Lists with Non-stably Infinite Theories 57

Note that our decomposition phase differs from the one of Nelson-Oppen
method. In fact, in the Nelson-Oppen method one guesses an equivalence relation
over the smaller set of variables varselem(Γelem) ∩ varselem(Γlist). We need to use
the larger set Velem because we do not have any stable infiniteness assumption
over the theory Telem of the elements.

3.2 List Phase

In the list phase we essentially employ Oppen’s decision procedure for recursively
defined data structures. By not using Oppen’s procedure just as a black box, we
will later be able to use the information constructed in this phase in the later
phases of our method. (Cf. Section 5.)

More in detail, in the list phase we construct the least equivalence relation
∼list of Vlist satisfying the following conditions:

(a) if x ≈ y is in Γlist then x ∼list y;
(b) if x1 ≈ cons(e1, y1) and x2 ≈ cons(e2, y2) are in Γlist, and e1 ∼elem e2 and

y1 ∼list y2 then x1 ∼list x2;
(c) if x1 ≈ cons(e1, y1) and x2 ≈ cons(e2, y2) are in Γlist, and x1 ∼list x2 then

e1 ∼elem e2 and y1 ∼list y2.

Furthermore, we construct the relation ≺list of Vlist defined by letting x ≺list y
if and only if there are list-variables x′, y′ ∈ Vlist and an elem-variable e ∈ Velem

such that x ∼list x′, y ∼list y′, and the literal y′ ≈ cons(e, x′) is in Γlist.
We end our method by outputting fail if at least one of the following con-

ditions does not hold:

(C1) If x ∼list y then the literal x �≈ y is not in Γlist;
(C2) There are no two literals x ≈ nil and y ≈ cons(e, z) in Γlist for which

x ∼list y;
(C3) The relation ≺list is well-founded.

If instead all conditions (C1)–(C3) hold, we proceed to the next phase.

3.3 Integer Phase

In this phase we extract integer constraints from the conjunctions Γlist and Γlength,
as well as from the equivalence relation ∼list constructed in the list phase.

More in detail, we generate a fresh int-variable ux, for each list-variable x in
Vlist, and we construct the following set of literals

αint = {ux ≈ 0 | x ≈ nil is in Γlist} ∪
{ux > 0 | x �≈ nil is in Γlist} ∪
{ux = uy + 1 | x ≈ cons(e, y) is in Γlist} ∪
{u ≈ ux | u ≈ length(x) is in Γlength} ∪
{ux ≈ uy | x ∼list y} .

Then, we check whether Γint∪αint is Tint-satisfiable. If this is not the case, we
end our method by outputting fail; otherwise we proceed to the next phase.

58 P. Fontaine, S. Ranise, and C.G. Zarba

3.4 Element Phase

We will prove later that when we reach this point we can already conclude that
αelem∪Γlist∪Γint∪Γlength is Tlen-satisfiable.3 Therefore, we can effectively compute
the minimal integer k0 for which there exists a Tlen-interpretation A satisfying
αelem ∪ Γlist ∪ Γint ∪ Γlength such that k0 = |Aelem|.4

Let {|elem| ≥ k0} denotes the set of disequalities {ei �≈ ej | 1 ≤ i < j ≤ k0},
where the ei are fresh elem-variables. The last step of the element phase consists
of checking whether Γelem ∪αelem ∪{|elem| ≥ k0} is Telem-satisfiable. If this is not
the case, we end the method by outputting fail; otherwise we happily output
succeed.

4 Correctness

In this section we prove that our combination method is correct. Clearly, our
method is terminating. The following proposition shows that our method is also
partially correct.

Proposition 12. Let Telem be a Σelem-theory such that ΣS = {elem}, let T =
comb(Telem, Tlen), and let Γ = Γelem∪Γint∪Γlist∪Γlength be a conjunction of literals
in separate form. Then the following are equivalent:

1. Γ is T -satisfiable.
2. There exists an equivalence relation ∼elem of varselem(Γlist)∪{⊥elem} for which

our method outputs succeed. �

Proof. Remember that Velem = varselem(Γlist) ∪ {⊥elem} and Vlist = vars list(Γ).
(1 ⇒ 2). Let M be a T -interpretation satisfying Γ . We define an equivalence
relation ∼elem over Velem by letting

e1 ∼elem e2 ⇐⇒ eM1 = eM2 , for each e1, e2 ∈ Velem .

We claim that if we guess ∼elem as defined above, then our method outputs
succeed. To see this, let ∼list be the equivalence relation constructed in the list
phase, and let ≡list be the equivalence relation of Vlist defined as follows:

x ≡list y ⇐⇒ xM = yM , for each x, y ∈ Vlist .

By construction ≡list satisfies conditions (a)–(c) in the list phase. Therefore,
we have ∼list ⊆ ≡list, that is:

x ∼list y =⇒ x ≡list y , for each x, y ∈ Vlist .

3 A Tlen-interpretation satisfying αelem∪Γlist∪Γint∪Γlength is denoted by C in the second
part of the proof of Proposition 12.

4 One way of computing k0 is to use [25] to check, for increasing k, whether there exists
a Tlen-interpretation A satisfying αelem ∪ Γlist ∪ Γint ∪ Γlength such that |Aelem| = k.

Combining Lists with Non-stably Infinite Theories 59

By using the fact that ∼list ⊆ ≡list, one can verify that ∼list satisfies all
conditions (C1)–(C3) of the list phase. Therefore, our method does not output
fail when executing the list phase.

Next, we claim that our method also does not output fail when executing
the integer phase. To justify the claim, we need to show that Γint ∪ αint is Tint-
satisfiable. Indeed, by again using the fact that ∼list ⊆ ≡list, it is possible to verify
that a Tint-interpretation satisfying Γint ∪ αint can be obtained by extending M
to the variables ux by letting

uM
x = |xM| , for each list-variable x ∈ Vlist .

It remains to show that our method outputs succeed when executing the
element phase. To see this, let k0 be the minimal integer computed in the element
phase. By construction, M satisfies Γelem ∪ αelem. Moreover, since M satisfies
αelem ∪ Γlist ∪ Γint ∪ Γlength, it must have at least k0 elements. It follows that M
is a Telem-interpretation satisfying Γelem ∪ αelem ∪ {|elem| ≥ k0}.

(2 ⇒ 1). Let ∼elem be an equivalence relation of Velem for which our method
outputs succeed. Denote by ∼list and ≺list the relations of Vlist constructed in the
list phase, and denote by k0 the minimal integer computed in the element phase.
Next, note that there exists an interpretation A satisfying Γelem∪αelem∪{|elem| ≥
k0} and a Tint-interpretation B satisfying Γint ∪ αint.

Using A and B, we define a Tlen-interpretation C satisfying αelem∪Γint∪Γlist∪
Γlength by first letting Celem = Aelem∪X, where X is any infinite set disjoint from
Aelem. We also let:

eC = eA, for all e ∈ varselem(Γ) ,

uC = uB, for all u ∈ vars int(Γ) .

In order to define C over the list-variables in Vlist, we fix an injective function
h : (Vlist / ∼list) → X. Note that h exists because Vlist is finite and X is infinite.

Next, we proceed by induction on the well-founded relation ≺list. Thus, let
x ∈ Vlist. Then:

– In the base case, we let xC be the unique list of length uB
x containing only

the element h([x]∼list
). In other words, xC(i) = h([x]∼list

) for i < uB
x , and

xC(i) = ⊥ for i ≥ uB
x .

– In the inductive case, fix a list-variable y such that x ≺list y. Then there
exists variables x′, y′, e such that x ∼list x′, y ∼list y′, and the literal x′ ≈
cons(e, y′) is in Γlist. We let xC = cons(eC , (y′)C).

Note that C is well-defined over the list-variables. Furthermore, by construc-
tion C is a Tlen-interpretation satisfying αelem ∪ Γint ∪ Γlist ∪ Γlength.

It follows that there exists a Tlen-interpretation D satisfying αelem ∪ Γint ∪
Γlist∪Γlength and such that |Delem| = k0. But then, we can use D and A to obtain

60 P. Fontaine, S. Ranise, and C.G. Zarba

1: ϕ := preprocess(ϕ)
2: ϕa ← abs(ϕ)
3: while ϕa �= false do
4: Γ a ← pick assign(ϕa)
5: Γ ← prop2fol(Γ a)
6: (ρ, π) ← check sat(Γ)
7: if ρ = fail then
8: ϕa ← ϕa ∧ ¬fol2prop(π)
9: else

10: return succeed

11: end if
12: end while

Fig. 2. haRVey’s main loop

a T -interpretation M satisfying Γ by letting Melem = Aelem and

eM = eA, for all e ∈ ΣC
elem ∪ varselem(Γ) ,

fM = fA, for all f ∈ ΣF
elem ,

pM = pA, for all p ∈ ΣP
elem ,

uM = uD, for all u ∈ vars int(Γ) .

In order to define M over the list-variables, fix an injective function g : Delem →
Aelem. For convenience, also let g(⊥) = ⊥. Note that g exists because |Delem| =
k0 ≤ |Aelem|. We let:

xM(i) = g(xD(i)) , for all x ∈ vars list(Γ) and i ∈ N .

By construction, M is a T -interpretation satisfying Γ . �

From Proposition 12 and the fact that our combination method is terminat-
ing, we obtain the following decidability result.

Theorem 13 (Decidability). Let Telem be a Σelem-theory such that the ground
satisfiability problem is decidable. Then the ground satisfiability problem of the
theory comb(Telem, Tlen) is decidable. �

5 Using the Combination Method

In this Section, we describe how to lift the proposed combination method to
efficiently (at least in practice) handle arbitrary Boolean combinations of ground
literals. The method is a refinement of the main loop of haRVey [6] (cf. Figure 2),
a prover based on a combination of Boolean solving and satisfiability checking
modulo theories. The idea is to obtain a propositional abstraction ϕa of a formula
ϕ (cf. abs) and to enumerate all the propositional assignments (cf. pick assign).

Combining Lists with Non-stably Infinite Theories 61

If an assignment, refined to a conjunction of first-order literals (cf. prop2fol),
is found satisfiable modulo the background theory (cf. check sat returns with
ρ = fail), then we are entitled to conclude the satisfiability of ϕ. Otherwise, a
new assignment is considered. For efficiency, it is crucial to reduce the number
of invocations to check sat. To this end, it is required that check sat returns
a conflict set π (which is a subset of the input set of literals) so that all the
propositional assignments sharing that set can be eliminated in one shot.5

We now give some details of the implementation of the functionalities in
Figure 2 which are peculiar to using the combination method in Section 3. In
particular, we describe how to satisfy the requirements necessary for the method
to work correctly (see beginning of Section 3) and, most importantly, we explain
how to compute the ∼list and ≺list of Section 3.2.

Function preprocess. A flat atom is an atom of the form p(c1, . . . , cn), c ≈
f(c1, ..., cm), c1 ≈ c2 or c1 ≈ d, where p is n-ary predicate symbol (n ≥ 0), f is
an m-ary function symbol (m > 0), ci is an element of par, and d is a constant.
A flat literal is either a flat atom or the negation of a flat atom of one of the
two forms ¬p(c1, . . . , cn) or c1 �≈ c2. A formula is said to be flattened if all its
literals are flat. It is easy to get an equisatisfiable flattened formula from any
ground formula by introducing fresh variables to name subterms.

The preprocessing step also removes all occurrences of car and cdr in the
formula using the following equivalences

e ≈ car(x) ≡ (x ≈ nil ∧ e ≈ ⊥elem) ∨ (x �≈ nil ∧ (∃list y)(x ≈ cons(e, y)))
x ≈ cdr(y) ≡ (y ≈ nil ∧ x ≈ ⊥list) ∨ (y �≈ nil ∧ (∃elem e)(y ≈ cons(e, x)))

For instance, ϕ[a ≈ car(x)] is equisatisfiable to ϕ[a ≈ e]∧ e ≈ car(x). In this last
formula, the atom e ≈ car(x) has always positive polarity. In a later step, it can
be replaced by (x ≈ nil ∧ e ≈ ⊥elem) ∨ (x �≈ nil ∧ (∃list y)(x ≈ cons(e, y)))
and since the polarity is positive, the existential quantifier can be Skolemized by
simply introducing a fresh variable. Exhaustively applying this transformation
gives a new ground formula, without car and cdr.

Finally, and still by introducing fresh variables, functions cons and length are
made to appear only in unit clauses of the form cons(e, x) ≈ y or length(x) ≈ u.
For instance formula ϕ[cons(e, x) �≈ y] is replaced by ϕ[y′ �≈ y] ∧ y′ ≈ cons(e, x).

Function pick assign. The function pick assign is implemented by the Boolean
solver and returns a propositional assignment satisfying ϕa. It is easy to tune
the solver to make pick assign return a propositional assignment Γ a such that
prop2fol(Γ a) contains the literals representing the fact that each list variable is
equal to nil or not.

5 Best results are obtained in practice when this set is chosen to be minimal: an
unsatisfiable set such that each subset is satisfiable.

62 P. Fontaine, S. Ranise, and C.G. Zarba

Function check sat. First of all, we notice that, thanks to preprocess, the func-
tion pick assign returns a set Γ of literals which can be put in separate form
satisfying conditions (a)–(e) at the beginning of Section 3 by simply partitioning
the literals.

Our combination method uses decision procedures for the quantifier-free frag-
ment of arithmetic and for the theory of acyclic lists. While we use a decision
procedure for the first theory as a black box, we require the decision procedure
for the theory of acyclic lists to be able to return ∼list and ≺list. For this reason,
we detail below how to do this.

Reasoning About Acyclic Lists

We introduce a graph structure encapsulating all constraints on the Tlist-models
of a set of equalities of the form x ≈ y, e ≈ e′, x ≈ cons(e, y), where x, y are
list-variables, and e, e′ are elem-variables. In fact, this structure is implicitly
computed by the algorithm described in [14]. We here make it explicit, and
explain how to extract relations ∼list and ≺list from it. The structure may also
be used in order to guide the guessing in Section 3.1.

From now on, if not otherwise specified, nil is treated as any other variable.
An equality x ≈ nil can thus be seen as an equality between two different list
variables. Given finite sets of list and element variables, a list-graph is a tuple
〈Vlist, Velem, slist, selem〉 with

– Vlist (Velem) is a partition of list (resp. element) variables. It is the set of list
(resp. element) nodes. Variables in a node are labels for that node;

– slist (selem) is a function from Vlist to subsets of Vlist (resp. Velem). Given a list
node u, slist(u) (selem(u)) is the set of list (resp. element) successors of u.

A Tlist-interpretation A agrees with a list-graph if the following conditions are
met:

– if x and y label the same node then A |= x ≈ y, where x and y are both
element variables or both list variables;

– if y labels the list successor of x then A |= ∃e x ≈ cons(e, y);
– if e labels the element successor of x then A |= ∃y x ≈ cons(e, y).

Assume L is a Tlist-satisfiable set of equalities of the form x ≈ y, e ≈ e′, x ≈
cons(e, y). Then there is a list-graph G such that, for every Tlist-interpretation
A, A agrees with G if and only if A is a model of L. Indeed, the following graph
verifies this property:

– x and y label the same node if and only if L |=list x ≈ y,6 where x and y are
both element variables or both list variables;

– y labels the list successor of x if and only if L |=list ∃e x ≈ cons(e, y);
– e labels the element successor of x if and only if L |=list ∃y x ≈ cons(e, y).

6 |=list denotes logical consequence in the theory of lists. That is L |=list x ≈ y if every
Tlist-model of L is a model of x ≈ y.

Combining Lists with Non-stably Infinite Theories 63

z, u

e3

e1 e2, e4

xy

t

Fig. 3. example of canonical list-graph

This graph is unique. It is such that, for each v ∈ Vlist, slist(v) and selem(v) are
either a singleton or the empty set. In other words, every list node has at most
one list successor, and one element successor. In fact, it can be showed that
every node has two or zero successor, since the cdr and car functions are not
explicitly used in the set of equalities. If nil labels a list-node, then this node has
no list successors. It is acyclic in the sense that slist is acyclic. Finally, for each
u, v ∈ Vlist, if slist(u) = slist(v), slist(u) �= ∅, selem(u) = selem(v), and selem(u) �= ∅,
then u = v. In other words, two different list nodes must not have the same list
and element successors.

This graph will thus be called the canonical list-graph for a set of equalities.
For instance, the canonical list-graph for the set of equalities

y ≈ cons(e1, x), x ≈ cons(e2, z), x ≈ cons(e4, u), t ≈ cons(e3, x)

is given in Figure 3.
Given the canonical list-graph for a set of equalities, we have that x ∼list y is

true if and only if x and y both label the same list node and ≺list is the transitive
closure of the list successor relation.

Computing Canonical list-Graphs

To compute the canonical graph for a set of equalities, three transformations on
list-graphs are necessary:

– a congruence step replaces two lists nodes u and v such that slist(u) = slist(v)
and selem(u) = selem(v) by a unique node u ∪ v.7 The new node inherits all
successors of the nodes it replaces. All list nodes which had u or v as list
successor are made to have u ∪ v as list successor.

– a list unification step (Unify-cdr) replaces two list successors u and v of one
node t by a unique node u ∪ v. The new node inherits all successors of the
nodes it replaces. All list nodes which had u or v as list successor are made
to have u ∪ v as list successor.

– an element unification step (Unify-car) replaces two element successors u
and v of one node t by a unique node u ∪ v. All list nodes which had u or v
as element successor are made to have u ∪ v as list successor.

7 Remember u and v are disjoint sets of list variables.

64 P. Fontaine, S. Ranise, and C.G. Zarba

Congruence:

L

L′

−→
L ∪ L′

Unify-cdr:

L

L′

−→ L ∪ L′

Unify-car:

L L′
−→

L ∪ L′

Fig. 4. Transformation steps

These transformations are depicted in Figure 4.

Let L be a set of equalities of the form x ≈ y, e ≈ e′, x ≈ cons(e, y). To build
the canonical graph for this set, the first operation is to compute the reflexive,
symmetric and transitive closure of all equalities between variables in the set
L. Second, for every equality cons(e, x) ≈ y, the nodes labeled by x and e are
made list and element successors of the node labeled by y. Third, the graph
is unified, beginning with nodes without parent, finishing with those without
successor, using unification steps (beginning with all element unification steps).
Last, the congruence rule is applied, from the nodes without successors, to the
nodes without parents. In presence of nil, a postprocessing ensures that the node
it labels has no successor.

If the graph happens to be cyclic, or if nil happens to have a successor, the
procedure fails. In that case the initial set of equalities is unsatisfiable. A careful
implementation of this procedure is linear in time [14].

The obtained graph (after a finite number of transformation steps) is indeed
the canonical graph: every Tlist-interpretation A agreeing with a graph G also
agrees with the graph obtained from G by a transformation step. That ensures
that every model of L agrees with the final graph. To show that every Tlist-
interpretation agreeing with the graph is also a model for L, it suffices to show
that every equality of L is trivially satisfied by any interpretation agreeing with
the graph.

There is a Tlist-interpretation agreeing with a canonical list-graph, such that
every node is assigned to a different element or list. As a consequence, satisfia-
bility checking of a set of literals in Tlist can be simply implemented by building
the canonical list-graph for all equalities in the set, and check afterward if no
inequality has both members labeling the same node.

Combining Lists with Non-stably Infinite Theories 65

Two final remarks are in order. First, the list-graph may be build before
guessing an arrangement of the element variables, and may be used to guide
this guessing. Indeed it is not necessary to consider an αelem implying that two
variables labeling the same node in the list-graph are different. Second, for the
algorithm in Figure 2 to be efficient, it is required also that check sat returns
a small (minimal, if possible) conflict set π out of the input set of literals. For
instance, the decision procedure for acyclic lists should produce small unsatisfi-
able subsets of the input set of literals, or be able to give the equations necessary
to deduce a given equality from a satisfiable set. We believe this is possible by
adapting the method developed for congruence closure in [5].

6 Conclusion

We presented a combination method that is able to combine a many-sorted
theory Tlen modeling lists of elements in the presence of the length operator with
a theory Telem modeling the elements.

Our method works regardless of whether the theory of the elements is stably
infinite or not. We were able to relax the stable infiniteness requirement by
employing the following basic ideas:

– guess an arrangement larger than the one computed by Nelson and Oppen;
– compute a certain minimal cardinality k0, so that we can ensure that the

domain of the elements must have at least k0 elements.

Future works include implementing the proposed method in haRVey, and in
particular, study heuristics to make it more efficient, and investigate extending
the procedure for acyclic lists to compute minimal conflict sets. On the theo-
retical side, it remains to determine the exact complexity of the algorithm, and
examine the proposed combination when some sorts (elem, list, int) are equal.

Acknowledgments

We are grateful to Christophe Ringeissen for insightful discussions on the prob-
lem of combining non-stably infinite theories. We would also like to thank the
reviewers for their comments.

References

1. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140–164, 2003.

2. S. Berezin, V. Ganesh, and D. L. Dill. An Online Proof-Producing Decision Pro-
cedure for Mixed-Integer Linear Arithmetic. In Proceedings of TACAS’03, volume
2619 of LNCS, Warshaw, Poland, April 2003.

3. N. S. Bjørner. Integrating Decision Procedures for Temporal Verification. PhD
thesis, Stanford University, 1998.

66 P. Fontaine, S. Ranise, and C.G. Zarba

4. R. S. Boyer and J. S. Moore. A Computational Logic. ACM Monograph SERIES,
1979.

5. L. de Moura, H. Rueß, and N. Shankar. Justifying equality. In PDPAR, 2004.
6. D. Déharbe and S. Ranise. Light-Weight Theorem Proving for Debugging and

Verifying Units of Code. In Proc. of the International Conference on Software
Engineering and Formal Methods (SEFM03). IEEE Computer Society Press, 2003.

7. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated canonizer and
solver. In G. Berry, H. Comon, and A. Finkel, editors, Computer Aided Verification
(CAV), volume 2102 of LNCS, pages 246–249. Springer-Verlag, 2001.

8. P. Fontaine and P. Gribomont. Combining non-stably infinite, non-first order
theories. In S. Ranise and C. Tinelli, editors, Pragmatics of Decision Procedures
in Automated Reasoning, 2004.

9. H. Ganzinger. Shostak light. In A. Voronkov, editor, Automated Deduction –
CADE-18, volume 2392 of LNCS, pages 332–346. Springer, 2002.

10. D. Kapur and X. Nie. Reasoning about Numbers in Tecton. In Proc. 8th Inl.
Symp. Methodologies for Intelligent Systems, pages 57–70, 1994.

11. T. F. Melham. Automating Recursive Type Definitions in Higher Order Logic.
In Current Trends in Hardware Verification and Theorem Proving, LNCS, pages
341–386. Sprigner-Verlag, 1989.

12. G. Nelson and D. C. Oppen. Simplifications by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems, 1(2):245–257, Oct. 1979.

13. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
Journal of the Association for Computing Machinery, 27(2):356–364, 1980.

14. D. C. Oppen. Reasoning about recursively defined data structures. Journal of the
ACM, 27(3):403–411, 1980.

15. S. Owre and N. Shankar. Abstract Datatypes in PVS. Technical Report CSL-93-
9R, SRI International, 1997.

16. L. C. Paulson. A fixedpoint approach to implementing (co)inductive definitions. In
A. Bundy, editor, Automated Deduction — CADE-12, LNAI 814, pages 148–161.
Springer, 1994. 12th international conference.

17. W. Pugh. The omega test: a fast integer programming algorithm for dependence
analysis. Supercomputing, pages 4–13, 1991.

18. R. E. Shostak. Deciding combination of theories. Journal of the Association for
Computing Machinery, 31(1):1–12, 1984.

19. A. Stump, C. W. Barrett, and D. L. Dill. CVC: a cooperating validity checker.
In E. Brinksma and K. G. Larsen, editors, Computer Aided Verification (CAV),
volume 2404 of LNCS, pages 500–504. Springer, 2002.

20. C. Tinelli and C. G. Zarba. Combining non-stably infinite theories. Journal of
Automated Reasoning, 2004. To appear.

21. P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic
constraints. In S. Graf and M. I. Schwartzbach, editors, TACAS, volume 1785 of
LNCS, pages 1–19, Berlin, Mar. 2000. Springer-Verlag.

22. C. G. Zarba. Combining multisets with integers. In A. Voronkov, editor, Automated
Deduction – CADE-18, volume 2392 of LNCS, pages 363–376. Springer, 2002.

23. C. G. Zarba. Combining sets with integers. In A. Armando, editor, Frontiers of
Combining Systems, volume 2309 of LNCS, pages 103–116. Springer, 2002.

24. C. G. Zarba. Combining sets with elements. In N. Dershowitz, editor, Verification:
Theory and Practice, volume 2772 of LNCS, pages 762–782. Springer, 2004.

25. T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for recursive data
structures with integer constraints. In D. A. Basin and M. Rusinowitch, editors,
Automated Reasoning, volume 3097 of LNCS, pages 152–167. Springer, 2004.

	Introduction
	Related Work

	Many-Sorted Logic
	Syntax
	Semantics
	Theories
	The Theory of Integers
	Lists
	The Theory of Lists
	The Theory of Lists with a Length Function

	The Combination Method
	Decomposition Phase
	List Phase
	Integer Phase
	Element Phase

	Correctness
	Using the Combination Method
	Conclusion

