
Abstract DPLL and
Abstract DPLL Modulo Theories

Robert Nieuwenhuis1�, Albert Oliveras1�, and Cesare Tinelli2��

1 Technical University of Catalonia, Barcelona
www.lsi.upc.es/~{roberto|oliveras}

2 Dept. of Computer Science, The University of Iowa, www.cs.uiowa.edu/~tinelli

Abstract. We introduce Abstract DPLL, a general and simple abstract r
ule-based formulation of the Davis-Putnam-Logemann-Loveland (DPLL)
procedure. Its properties, such as soundness, completeness or termina-
tion, immediately carry over to the modern DPLL implementations with
features such as non-chronological backtracking or clause learning. This
allows one to formally reason about practical DPLL algorithms in a
simple way. In the second part of this paper we extend the framework
to Abstract DPLL modulo theories. This allows us to express—and for-
mally reason about—state-of-the-art concrete DPLL-based techniques
for satisfiability modulo background theories, such as the different lazy
approaches, or our DPLL(T) framework.

1 Introduction

Most state-of-the-art SAT solvers [MMZ+01,GN02] today are based on dif-
ferent variations of the Davis-Putnam-Logemann-Loveland (DPLL) procedure
[DP60,DLL62], a procedure for deciding the satisfiability of propositional for-
mulas in conjunctive normal form.

Starting essentially with the pioneering work on the GRASP [MSS99] and
SATO [Zha97] systems, the spectacular improvements in the performance of
DPLL-based SAT solvers achieved in the last years are due to i) better imple-
mentation techniques, such as, e.g., the 2-watched literal approach for unit propa-
gation, and ii) several conceptual enhancements on the original DPLL procedure
aimed at reducing the amount of explored search space such as non-chronological
backtracking, conflict-driven lemma learning, and restarts.

Because of their success, both the DPLL procedure and its enhancements
have been recently adapted to satisfiability problems in more expressive logics
than propositional logic. In particular, they have been used to build efficient
solvers for the satisfiability of (certain classes of) ground first-order formulas with
respect to theories such as the theory of equality, of the integer/real numbers,
or of arrays [ACG00,ABC+02,BDS02,dMR02,FJOS03,GHN+04].

� Partially supported by Spanish Min. of Educ. and Science by the LogicTools project
(TIN2004-03382, both these authors), and FPU grant AP2002-3533 (Oliveras).

�� Partially supported by Grant No. 237422 from the National Science Foundation.

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 36–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

 www.lsi.upc.es/~{roberto|oliveras}
www.cs.uiowa.edu/~tinelli

Abstract DPLL and Abstract DPLL Modulo Theories 37

Altogether, it has become non-trivial to reason formally about the properties
of such enhanced DPLL procedures and their extensions to satisfiability modulo
theories (SMT). However, so far there have been no attempts to do so in the
literature, to our knowledge at least, except for a work by Tinelli [Tin02] (one
of these authors). That work describes DPLL and DPLL modulo theories at
an abstract, formal level by means of a sequent-style logical calculus. This cal-
culus consists of a few deterministic derivation rules, modelling the constraint
propagation mechanism of the DPLL procedure, and one branching rule, mod-
elling the non-deterministic guessing step of DPLL. Because of the branching
rule the calculus produces derivation trees. As a consequence, it can explictly
model neither backtracking (chronological or not) nor lemma learning—they are
metalogical features for the calculus. Also, the calculus implicitly assumes the
procedure to keep track of the current truth values of all clauses, which is not
the case in practical implementations.

In this paper we address these limitations of Tinelli’s calculus by modelling
the DPLL procedure and its SMT extensions as transitions systems. While still
as declarative in nature as the calculus in [Tin02], our transition systems can
explicitly model various features of state-of-the-art DPLL-based solvers, thus
bridging the gap between abstract calculi for DPLL and actual implementations.

In Section 2, using transition systems defined by means of conditional tran-
sition rules, we introduce general and simple abstract formulations of several
variants of propositional DPLL, and discuss their soundness, completeness, and
termination. These properties immediately carry over to modern DPLL imple-
mentations with features such as non-chronological backtracking and learning. In
fact, we also explain and formalize what is done by the different implementations.
For example, we explain how different systems implement our backjumping rule,
how devices such as implication graphs are just one possibility for computing
new lemmas, and how standard backtracking is a special case of the backjumping
rule.

We also provide a general and simple termination argument for DPLL pro-
cedures that does not depend on an exhaustive enumeration of all truth assign-
ments; instead, it cleanly expresses that a search state becomes more advanced if
an additional unit is deduced, the higher up in the search tree the better—which
is the very essence of the idea of backjumping.

Our transition systems allow one to formally reason about practical DPLL
implementations in a simple way, which to our knowledge had not been done
before. In Section 3 we extend the framework to Abstract DPLL modulo theories.
This allows us to express—and formally reason about—most state-of-the-art
DPLL-based techniques for satisfiability modulo background theories, such as
various so-called lazy approaches [ACG00,ABC+02,BDS02,dMR02,FJOS03] and
our own DPLL(T) framework [GHN+04].

38 R. Nieuwenhuis, A. Oliveras, and C. Tinelli

2 The Abstract DPLL Procedure

The DPLL procedure works by trying to build incrementally a satisfying truth
assignment for a given propositional formula F in conjunctive normal form. At
each step, the current assignment M for F is augmented either by a process of
boolean constraint propagation, which deduces deterministically from M and F
the truth value of additional variables of F , or by a non-deterministic guess, or
decision, on the truth value of one of the remaining undefined variables.

Modern implementations of DPLL use efficient constraint propagation algo-
rithms, and sophisticated backtracking mechanisms for recovering from wrong
decisions. We provide here a general abstract framework for describing both
constraint propagation and backtracking in DPLL-based systems.

In this section we deal with propositional logic. Atoms are propositional
symbols from a finite set P . If p ∈ P , then p is a positive literal and ¬p is a
negative literal. The negation of a literal l, written ¬l, denotes ¬p if l is p, and
p if l is ¬p. A clause is a set of literals and a cnf (formula) is a set of clauses.
A (partial truth) assignment M is a set of literals such that {p,¬p} ⊆ M for no
p. A literal l is true in M if l ∈ M , is false in M if ¬l ∈ M , and is undefined
otherwise. M is total if no literal of P is undefined in M . A clause C is true in
M if C∩M �= ∅, is false in M , denoted M |= ¬C, if all its literals are false in M ,
and is undefined otherwise. A cnf F is true in M (or satisfied by M), denoted
M |= F , if all its clauses are true in M . In that case, M is called a model of F .
If F has no models then it is unsatisfiable. We write F |= C (F |= F ′) if the
clause C (cnf F ′) is true in all models of F . If F |= F ′ and F ′ |= F , we say that
F and F ′ are logically equivalent. We denote by C ∨ l the clause D such that
l ∈ D and C = D \ {l}.

2.1 The Basic DPLL Procedure

Here, a DPLL procedure will be modeled by a transition system: a set of states
together with a relation, called the transition relation, over these states. States
will be denoted by (possibly subscripted) S. We write S =⇒ S′ to mean that
the pair (S, S′) is in the transition relation, and then say that S′ is reachable
from S in one transition step. We denote by =⇒∗ the reflexive-transitive closure
of =⇒. We write S =⇒! S′ if S =⇒∗ S′ and S′ is a final state, i.e., if S′ =⇒ S′′

for no S′′.
A state is either fail or a pair M || F , where F is a finite set of clauses and

M is a sequence of annotated literals. We will denote the empty sequence of
literals by ∅, unit sequences by their only literal, and the concatenation of two
sequences by simple juxtaposition. We will not go into a complete formalization
of annotated literals; it suffices to know that some literals l will be annotated
as being decision literals; this fact will be denoted here by writing ld (roughly,
decision literals are the ones that have been added to M by the Decide rule given
below). Most of the time the sequence M will be simply seen as a set of literals,
denoting an assignment, i.e., ignoring both the annotations and the fact that M
is a sequence and not a set.

Abstract DPLL and Abstract DPLL Modulo Theories 39

In what follows, the transition relation will be defined by means of (condi-
tional) transition rules. If F is a cnf formula and C is a clause, we will sometimes
write F,C in the second component of a state as a shorthand for F ∪ {C}.
Definition 1. The Basic DPLL system consists of the following transition rules:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if
{

M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if
{

l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ fail if
{

M |= ¬C
M contains no decision literals

Backjump :

M ld N || F =⇒ M l′ || F if

there is some clause C ∨ l′ s.t.:
F |= C ∨ l′ and M |= ¬C
l′ is undefined in M
l′ or ¬l′ occurs in a clause of F

Below we will show that the transition relation terminates when starting from
∅ || F , that is, there exist no infinite sequences of the form ∅ || F =⇒ S1 =⇒ . . . ,
and we will define a Basic DPLL procedure to be any procedure taking an input
cnf F and computing a sequence ∅ || F =⇒! S.

Of course, actual DPLL implementations may use the above rules in more
restrictive ways, using particular application strategies. For example, many sys-
tems will eagerly apply UnitPropagate, but this is not necessary; in fact, below we
will show that any strategy is adequate: the final state produced by the strategy
will be either fail , when F is unsatisfiable, or else a state of the form M || F ′

where M is a model of F . This result holds even if UnitPropagate is not applied
at all. Similarly, most implementations will try to minimize the number of ap-
plications of Decide. Others may apply it only with literals l belonging to some
clause that is not yet true in M (in that case the procedure can also terminate
if M is a non-total model).

Example 2. In the following sequence of transitions, to improve readability we
have denoted atoms by natural numbers, negation by overlining, and written
decision literals in bold:

∅ || 1∨3, 1∨4∨5∨2, 1∨2 =⇒ (Decide)
3 || 1∨3, 1∨4∨5∨2, 1∨2 =⇒ (UnitPropagate)

3 1 || 1∨3, 1∨4∨5∨2, 1∨2 =⇒ (UnitPropagate)
3 1 2 || 1∨3, 1∨4∨5∨2, 1∨2 =⇒ (Decide)

3 1 2 4 || 1∨3, 1∨4∨5∨2, 1∨2 =⇒ (UnitPropagate)
3 1 2 4 5 || 1∨3, 1∨4∨5∨2, 1∨2 Final state: model found. 	

40 R. Nieuwenhuis, A. Oliveras, and C. Tinelli

Concerning the rules Fail and Backjump, we will show below that if in some
state M || F there is a conflict, i.e., a clause of F that is false in M , it is
always the case that either Fail applies (if there are no decision literals in M)
or Backjump applies (if there is at least one decision literal in M). In fact, in
most implementations Backjump is only applied when such a conflict arises, this
is why it is usually called conflict-driven backjumping. Note that M can be seen
as a sequence M0 l1 M1 . . . lk Mk, where the li are all the decision literals in M .
As in actual DPLL implementations, such a state is said to be in decision level
k, and the literals of each li Mi are said to belong to decision level i.

Example 3. Another example of application of the Basic DPLL rules is:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2

Indeed, before the application of Backjump there was a conflict: the clause 6∨5∨2
is false in 1 2 3 4 5 6. We have backjumped from decision level 3 to decision
level 1, whereas standard backtracking would reverse only the last decision, and
return to 1 2 3 4 5 (decision level 2). The Backjump rule applies here because
we can take 1∨5 playing the role of the backjump clause C ∨ l′ in the definition
of the rule. In fact, one can always take a disjunction of negated decision literals
for this (see the proof of Lemma 6). But in practice one can usually find better
backjump clauses by conflict analysis, that is, by analyzing the so called conflict
graph (see, e.g., [MSS99] for details). 	

The Backjump rule makes progress in the search by returning to a strictly
lower decision level, but with the additional information given by the literal l′

that is added to it. In most DPLL implementations the backjump clause C ∨ l′

is added to the clause set as a learned clause (conflict-driven clause learning).
However, in this Basic system the second component of each state (the clause
set) remains unchanged; this will change in Subsection 2.3 when the learning rule
is added. In fact, for some readers it may be surprising that backjumping can be
done without clause learning. Such a distinction gives the system more flexibility,
allowing it to model, for example, the original DPLL procedure [DLL62].

2.2 Correctness of Basic DPLL

In what follows, (possibly subscripted) F and M will always denote finite clause
sets and annotated literal sequences, respectively.

Abstract DPLL and Abstract DPLL Modulo Theories 41

Lemma 4. If ∅ || F =⇒∗ M || F then the following hold.

1. All the atoms in M are atoms of F .
2. M contains no literal more than once and is indeed an assignment, i.e., it

contains no pair of literals of the form p and ¬p.
3. If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision

literals of M , then F ∪ {l1, . . . , li} |= Mi for all i in 0 . . . n.

Theorem 5 (Termination). There exist no infinite sequences of the form
∅ || F =⇒ S1 =⇒ . . .

Proof. We define a well-founded strict partial ordering � on states, and show
that each rule application M || F =⇒ M ′ || F ′ is decreasing with respect to this
ordering, i.e., M || F � M ′ || F ′.

Let M be of the form M0 l1 M1 . . . lp Mp, where l1, . . . , lp are all the decision
literals of M . Similarly, let M ′ be M ′

0 l′1 M ′
1 . . . l′p′ M ′

p′ .
Let N be the number of distinct atoms (propositional variables) in F . It is not

difficult to show that p, p′ and the length of M and M ′ are always smaller than
or equal to N . Define m(M) to be N − length(M), that is, m(M) is the number
of literals “missing” in M for M to be total. Now define: M || F � M ′ || F ′ if

(i) there is some i with 0 ≤ i ≤ p, p′ such that

m(M0) = m(M ′
0), . . . m(Mi−1) = m(M ′

i−1), m(Mi) > m(M ′
i) or

(ii) m(M0) = m(M ′
0), . . . m(Mp) = m(M ′

p) and m(M) > m(M ′).
Comparing the number of missing literals in sequences is clearly a strict ordering
(i.e., it is an irreflexive and transitive relation) and it is also well-founded, and
hence this also holds for its lexicographic extension on tuples of sequences of
bounded length. It is easy to see that all Basic DPLL rule applications are
decreasing with respect to � if fail is added as an additional minimal element.
The rules UnitPropagate and Backjump decrease by case (i) of the definition and
Decide decreases by case (ii). 	

In the previous termination proof one can observe that DPLL search pro-
gresses (that is, it makes progress w.r.t. �) by adding a literal to the current
decision level (by UnitPropagate), by adding an additional decision level (Decide)
or, which is especially interesting, by what the Backjump rule does, i.e., adding
an additional literal to a previous decision level, even if all the work done in later
decision levels is “thrown away”.

Note that it is not trivial to check whether a state is final, because of the
Backjump rule. But in practice Backjump is applied only if there is a conflict.
If in a state M || F there is no conflict, and UnitPropagate and Decide are not
applicable either (i.e., there are no undefined literals in M), then one can of
course stop because M is a model of F .

Lemma 6. Assume that ∅ || F =⇒∗ M || F and that M |= ¬D for some clause
D in F . Then either Fail or Backjump applies to M || F .

42 R. Nieuwenhuis, A. Oliveras, and C. Tinelli

Proof. If there is no decision literal in M , it is immediate that Fail applies.
Otherwise, M is of the form M0 l1 M1 . . . ln Mn for some n > 0, where
l1, . . . , ln are all the decision literals of M . Since M |= ¬D, we have, due to
Lemma 4-3, that F ∪ {l1, . . . , ln} |= ¬D. Now consider any i in 1 . . . n such that
F ∪{l1, . . . , li} |= ¬D, and j in 0 . . . i−1 such that F ∪{l1, . . . , lj , li} |= ¬D. We
will show that then backjumping to decision level j is possible.

Let C be the clause ¬l1∨ . . .∨¬lj , and note that M is of the form M ′ lj+1 N .
Then Backjump applies to M || F as: M ′ lj+1 N || F =⇒ M ′ ¬li || F because

for the clause C ∨ ¬li all three conditions of the Backjump rule hold. In fact:
(i) F |= C ∨ ¬li because F ∪ {l1, . . . , lj , li} |= ¬D implies, being D a clause

in F , that F |= ¬l1 ∨ . . . ∨ ¬lj ∨ ¬li. We also obviously have that M ′ |= ¬C.
(ii) ¬li is undefined in M ′ (by Lemma 4-2) and
(iii) either li or ¬li occurs in a clause of F (by Lemma 4-1). 	

It is interesting to observe that the smaller the j in the previous proof the
better, because one can backjump “higher up”. Note also that, if we take i to
be n and j to be n − 1, the Backjump rule models standard backtracking.

Lemma 7. If ∅ || F =⇒! M || F , then M |= F .

Definition 8. A Basic DPLL procedure is any procedure taking an input cnf F
and computing a sequence ∅ || F =⇒! S.

Now, we can prove that our Basic DPLL system, and hence any Basic DPLL
procedure, provides a decision procedure for the satisfiability of cnf formulas.

Theorem 9. The Basic DPLL system provides a decision procedure for the sat-
isfiability of cnf formulas F , that is:

1. ∅ || F =⇒! fail if, and only if, F is unsatisfiable.

2. ∅ || F =⇒! M || F if, and only if, F is satisfiable.

3. If ∅ || F =⇒! M || F then M is a model of F .

Proof. For the left-to-right implication of property 1: if ∅ || F =⇒! fail then
there is some state M || F such that ∅ || F =⇒∗ M || F =⇒ fail , there is no
decision literal in M and M |= ¬C for some clause C in F . By the case i = 0
of Lemma 4-3 we have that F |= M , and so F |= ¬C. However, since C is a
clause in F it follows that F is unsatisfiable. For the right-to-left implication of
property 1, if ∅ || F �=⇒! fail , then by Theorem 5 there must be a state M || F
such that ∅ || F =⇒! M || F . Then F is satisfiable by Lemma 7.

For property 2, if ∅ || F =⇒! M || F then F is satisfiable by Lemma 7.
Conversely, if ∅ || F �=⇒! M || F , then by Theorem 5 again, ∅ || F =⇒! fail and
hence F is unsatisfiable by property 1. Property 3 is again Lemma 7. 	

The previous theorem does not just prove the desirable properties for a con-
crete DPLL procedure; rather, it proves the correctness of any procedure ap-
plying these steps, with any strategy. For example, the designer of a practical

Abstract DPLL and Abstract DPLL Modulo Theories 43

DPLL implementation is free to choose her own heuristic for selecting the next
decision literal in Decide, or choose the priorities between the different rules.

Note that we may have ∅ || F =⇒! M || F and also ∅ || F =⇒! M ′ || F , for
different M and M ′.3 Then, the formula F is satisfiable and both M and M ′

are models of F .

2.3 DPLL with Clause Learning

Definition 10. The DPLL system with learning consists of the four transition
rules of the Basic DPLL system, plus the following two additional rules:

Learn :

M || F =⇒ M || F, C if
{

all atoms of C occur in F
F |= C

Forget :
M || F, C =⇒ M || F if

{
F |= C

In these two rules, the clause C is said to be learned and forgotten, respectively.
In the following, we denote by =⇒L the transition relation defined by the DPLL
system with learning.

Example 11. (Example 3 continued). When applying Backjump, many actual
DPLL implementations learn the backjump clause:

.
1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒L (Decide)

1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒L (UnitPropagate)
1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒L (Backjump)

1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒L (Learn)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2, 1∨5

When backjumping to decision level j, the backjump clause C∨l′ (in the example
1∨5) is always such that, if it had existed the last time the procedure was at
level j, the literal l′ could have been added by UnitPropagate. Learning such
clauses hence avoids repeated work by preventing decisions such as 5, if, after
more backjumping, one reaches again a state similar to this decision level j
(where “similar” roughly means that it could produce the same conflict). Indeed,
reaching such similar states frequently happens in industrial problems having
some regular structure. The use of Forget is to free memory by removing a clause
C, once a search region presenting such similar states has been abandoned. In
practice this is usually done if the activity of C (i.e., the number of times C
causes some conflict or some unit propagation) has become low [MMZ+01]. 	

The results given in the previous subsection for Basic DPLL smoothly extend
to DPLL with learning, and again the starting point is the following.

3 Confluence, in the sense of, e.g., rewrite systems is not needed here.

44 R. Nieuwenhuis, A. Oliveras, and C. Tinelli

Lemma 12. If ∅ || F =⇒∗
L M || F ′ then the following hold.

1. All the atoms in M and all the atoms in F ′ are atoms of F .
2. M contains no literal more than once and is indeed an assignment, i.e., it

contains no pair of literals of the form p and ¬p.
3. F ′ is logically equivalent to F .
4. If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision

literals of M , then F ∪ {l1, . . . , li} |= Mi for all i = 0 . . . n.

Proof. It is easy to see that property 3 holds. Using this fact, the other properties
can be proven similarly to the proof of Lemma 4.

Theorem 13 (Termination of =⇒L). There exist no infinite sequences of the
form ∅ || F =⇒L S1 =⇒L . . . if no clause C is learned infinitely many times
along a sequence.

Proof. The ordering used in Theorem 5 can also be applied here, since, by
Lemma 12, atoms appearing in any state are atoms of F . Therefore an infi-
nite sequence of the form ∅ || F =⇒L S1 =⇒L . . . cannot contain any infinite
subsequence of contiguous =⇒ steps, and must hence contain infinitely many
Learn or Forget steps, which is not possible since there are only finitely many
different clauses with atoms in F , and no clause C is learned infinitely many
times along the sequence. 	

Note that the condition that no clause C is learned infinitely many times is in
fact a necessary and sufficient condition for termination. This condition is easily
enforced by applying at least one rule of the Basic DPLL system between two
successive applications of Learn. Since states do not increase with respect to the
ordering used in Theorem 5 when Learn is applied, any strict alternation between
Learn and Basic DPLL rules must be finite as well. As with the basic DPLL
system, we have the following definition and theorem (with identical proof).

Definition 14. A DPLL procedure with learning is any procedure taking an
input cnf F and computing a sequence ∅ || F =⇒∗

L S where S is a final state with
respect to the Basic DPLL system.

Theorem 15. The DPLL system with learning provides a decision procedure
for the satisfiability of cnf formulas F , that is:

1. ∅ || F =⇒!
L fail if, and only if, F is unsatisfiable.

2. ∅ || F =⇒∗
L M || F ′, where M || F ′ is a final state with respect to the Basic

DPLL system, if, and only if, F is satisfiable.

3. If ∅ || F =⇒∗
L M || F ′, where M || F ′ is a final state with respect to the Basic

DPLL system, then M is a model of F .

Abstract DPLL and Abstract DPLL Modulo Theories 45

3 Abstract DPLL Modulo Theories

This section deals with procedures for Satisfiability Modulo Theories (SMT),
that is, procedures for deciding the satisfiability of ground4 cnf formulas in the
context of a background theory T . Typical theories considered in this context
are EUF (equality with uninterpreted function symbols), linear arithmetic (over
the integers and over the reals), some theories of arrays and of other data struc-
tures such as lists, finite sets, and so on. For each of these theories there exist
efficient procedures (in practice) that decide the satisfiability, in the theory, of
conjunctions of ground literals. To decide efficiently the satisfiability of ground
cnf formulas, many people have recently worked on combining these decision
procedures with DPLL based SAT engines. In this section we show that many
of the existing combinations can be described and discussed within the Abstract
DPLL framework.

In the rest of the paper we consider first-order logic without equality—of
which the purely propositional case we have seen until now is a particular
instance. We adopt the standard notions of first-order structure, satisfaction,
entailment, etc., extended with the following. A theory is a satisfiable set of
closed first-order formulas. A formula F is (un)satisfiable in a theory T , or T -
(in)consistent, if there is a (no) model of T that satisfies F , that is, if T ∪ F is
(un)satisfiable. If F and G are formulas, F entails G in T , written F |=T G, if
T |= ¬F ∨ G. If F |=T G and G |=T F , we say that F and G are T -equivalent.
We extend the notion of (partial truth) assignment M from Section 2 to a set
of ground first-order literals in the obvious way. We say that M is a T -model of
a ground formula F if M , seen as the conjuction of its literals, is T -consistent
and M |=T F .

In the following we will use T to denote a background theory T such that
the satisfiability in T of conjunctions of ground literals is decidable. To decide
the satisfiability of ground cnf formulas we consider again the DPLL systems
introduced in the previous section—with arbitrary ground atoms now used in
place of propositional symbols—and add new rules for dealing with T . However,
in the side conditions of the rules presented in the previous section, entailment
between formulas is now replaced by entailment in T between formulas. That is,
the condition F |= C in Learn and Forget is now F |=T C, the Backjump rule is

M ld N || F =⇒ M l′ || F if

there is some clause C ∨ l′ s.t.:
F |=T C ∨ l′ and M |= ¬C
l′ is undefined in M
l′ or ¬l′ occurs in a clause of F

and Decide, Fail and UnitPropagate remain unchanged. We point out that the
rules of the previous section can now be seen as a particular instance of the new
ones if we consider T to be the empty theory.

4 By ground we mean containing no variables—although possibly containing constants
not in T .

46 R. Nieuwenhuis, A. Oliveras, and C. Tinelli

3.1 A Simple Example: The Classical Very Lazy Approach

One way for dealing with SMT is what has been called the lazy approach
[dMR02,ABC+02,BDS02,FJOS03]. This approach initially considers each atom
occurring in a formula F to be checked for satisfiability simply as a proposi-
tional symbol, and sends the formula to a SAT solver. If the SAT solver returns
a propositional model of F that is T -inconsistent, a ground clause, a lemma,
precluding that model is added to F and the SAT solver is started again. This
process is repeated until the SAT solver finds a T -consistent model or returns
unsatisfiable. The main advantage of such a lazy approach is its flexibility, since
it can easily combine any SAT solver with any decision procedure for conjunc-
tions of theory literals, as long as the decision procedure is able to generate such
lemmas.

The addition of these lemmas can be modelled by the following rule, which
we will call Very Lazy Theory Learning:

M l M1 || F =⇒ ∅ || F, ¬l1∨. . .∨¬ln∨¬l if

M l M1 |= F
{l1, . . . , ln} ⊆ M
l1 ∧ . . . ∧ ln |=T ¬l

Combining this rule with the four Basic DPLL rules, or with the six rules
of DPLL with learning, the resulting Very Lazy DPLL system terminates if
no clause is learned infinitely many times, since only finitely many such new
clauses (built over input literals) exist. For this condition to be fulfilled, ap-
plying at least one rule of the Basic DPLL system between any two Learn ap-
plications does not suffice. It suffices if, in addition, no clause generated with
Very Lazy Theory Learning is ever forgotten. The system is also easily proved cor-
rect as it is done in the following subsection, by observing that M , seen as the
conjunction of its literals, is T -consistent for every state M || F that is final with
respect to Basic DPLL and Very Lazy Theory Learning. However, in what follows
we will focus on other more interesting—and in practice better—lazy techniques,
based on tighter integrations between DPLL and theory solvers.

3.2 Less Lazy Approaches

It is clear that, as soon as a DPLL procedure reaches a state M || F with a
(possibly non-total) T -inconsistent M , the corresponding lemma can already be
added. Furthermore, it is also not necessary to restart from scratch once the
lemma has been added. These ideas can be modelled by the following rule.

Definition 16. The Lazy Theory Learning rule is the following:

M l M1 || F =⇒ M l M1 || F, ¬l1∨. . .∨¬ln∨¬l if

{l1, . . . , ln} ⊆ M
l1 ∧ . . . ∧ ln |=T ¬l
¬l1∨. . .∨¬ln∨¬l /∈ F

The Lazy Theory DPLL system consists of this rule and the six rules of DPLL
with learning. In the following, we denote by =⇒LT the transition relation defined
by the Lazy Theory DPLL system.

Abstract DPLL and Abstract DPLL Modulo Theories 47

Note that the lemma ¬l1 ∨ . . .∨¬ln ∨¬l added by an application of the
Lazy Theory Learning rule is, by construction, always false in M l, making ei-
ther Fail or Backjump applicable to the resulting state. In practice, one of these
two rules is always applied immediately after Lazy Theory Learning. This makes
the third test in the rule—introduced here to ensure termination—unnecessary.

This DPLL system is still called lazy because it does not consider any theory
information until a T -inconsistent partial interpretation M l has been reached.
As we will see, this is the essential difference between these lazy approaches and
the DPLL(T) approach that is described in Subsection 3.3 below.

All the results below are proved as in the previous section. However, the
following key lemma is needed to show that for any state of the form M || F that
is final with respect to Basic DPLL and Lazy Theory Learning, M is T -consistent
and M |=T F .

Lemma 17. Let ∅ || F0 =⇒∗
LT M || F . If M is T -inconsistent then the rule

Lazy Theory Learning applies to M || F .

Theorem 18 (Termination of =⇒LT). There exists no infinite sequence of
the form ∅ || F =⇒LT S1 =⇒LT . . . if no clause C is learned by Learn or
Lazy Theory Learning infinitely many times along a sequence.

Definition 19. A Lazy Theory DPLL procedure for T is any procedure taking
an input cnf F and computing a sequence ∅ || F =⇒∗

LT S where S is a final state
with respect to the Basic DPLL system and Lazy Theory Learning.

Theorem 20. The Lazy Theory DPLL system provides a decision procedure for
the satisfiability in T of cnf formulas F , that is:

1. ∅ || F =⇒!
LT fail if, and only if, F is unsatisfiable in T .

2. ∅ || F =⇒∗
LT M || F ′, where M || F ′ is a final state wrt the Basic DPLL

system and Lazy Theory Learning, if, and only if, F is satisfiable in T .

3. If ∅ || F =⇒∗
LT M || F ′, where M || F ′ is a final state wrt the Basic DPLL

system and Lazy Theory Learning, then M is a T -model of F .

Systems such as CVC Lite [BB04] are concrete implementations of Lazy
Theory DPLL. Usually, in such implementations the Lazy Theory Learning rule
is applied eagerly, that is, with an empty M1, as soon as the current partial in-
terpretation becomes T -inconsistent. Therefore, the soundness and completeness
of the approach followed by CVC Lite is a particular instance of the previous
theorem.

3.3 The DPLL(T) Approach with Eager Theory Propagation

The Lazy Theory DPLL systems we have seen are lazy in the sense that they use
theory information only after a theory-inconsistent partial assignment has been
generated. In this subsection we describe the DPLL(T) approach [GHN+04] with

48 R. Nieuwenhuis, A. Oliveras, and C. Tinelli

eager theory propagation, which allows the use of theory information as soon as
possible. This new information reduces the search space by discovering the truth
value of literals otherwise considered to be unassigned. Moreover, it does this
without sacrificing modularity or flexibility: combining arbitrary theory decision
procedures for conjunctions of literals with a DPLL system is as simple as for
the lazy approaches such as that of CVC Lite. The key idea behind DPLL(T) is
the following rule:

Definition 21. The Theory Propagate rule is the following:

M || F =⇒ M l || F if

M |=T l
l or ¬l occurs in a clause of F
l is undefined in M

The DPLL(T) system with eager theory propagation consists of this rule and
the six rules of DPLL with learning. We denote by =⇒Edpll(T) the transition
relation defined by the DPLL(T) system with eager theory propagation where
Theory Propagate has priority over all the other rules.

All results as in the previous sections apply here, including termination under
the usual assumption (since Theory Propagate also decreases with respect to the
ordering � used in Theorem 5). The only additional ingredient needed is the
following lemma.

Lemma 22. If ∅ || F0 =⇒∗
Edpll(T) M || F then M is T -consistent.

Proof. This property is true initially, and all rules preserve it, by the fact that
M |=T l if, and only if, M ∪ {¬l} is T -inconsistent: the rules only add literals to
M that are undefined in M , and Theory Propagate adds all literals l of F that
are theory consequences of M , before any literal ¬l making it T -inconsistent can
be added to M by any of the other rules. 	

Definition 23. A DPLL(T) procedure with Eager Theory Propagation for T is
any procedure taking an input cnf F and computing a sequence ∅ || F =⇒∗

Edpll(T)

S where S is a final state wrt Theory Propagate and the Basic DPLL system.

Theorem 24. The DPLL system with eager theory propagation provides a de-
cision procedure for the satisfiability in T of cnf formulas F , that is:
1. ∅ || F =⇒!

Edpll(T) fail if, and only if, F is unsatisfiable in T .

2. ∅ || F =⇒∗
Edpll(T) M || F ′, where M || F ′ is a final state wrt the Basic DPLL

system and Theory Propagate, if, and only if, F is satisfiable in T .
3. If ∅ || F =⇒∗

Edpll(T) M || F ′, where M || F ′ is a final state wrt the Basic
DPLL system and Theory Propagate, then M is a T -model of F .

In practice, the DPLL(T) approach can be implemented, very much in the
spirit of the CLP(X) scheme in constraint logic programming, by building a com-
ponent DPLL(X) common to all theories, and instantiating it with solvers for dif-
ferent theories T to obtain different DPLL(T) procedures. At each state M || F ,
the theory solver only sees the part M and communicates to the DPLL(X) en-
gine any input literals entailed by M in the given theory. More details on an
architecture for concrete DPLL(T) systems can be found in [GHN+04].

Abstract DPLL and Abstract DPLL Modulo Theories 49

3.4 The DPLL(T) Approach with Non-exhaustive Propagation

For some theories eager Theory Propagate is expensive in an actual implemen-
tation. For example, in our experience with EUF, this is the case for detecting
input literals entailed by disequations. However, using the information coming
from the “cheap enough” applications of Theory Propagate is extremely useful
for pruning the search space. Therefore one would like to have a combination of
Theory Propagate, for the cheaper cases, and Lazy Theory Learning, for covering
the incompletenesses of Theory Propagate making the equivalent of Lemma 22
hold. This is actually what is done in the DPLL(T) implementation of [GHN+04].

Definition 25. The DPLL(T) system with non-exhaustive theory propagation
consists of the Lazy Theory Learning and Theory Propagate rules and the six rules
of DPLL with learning. We denote by =⇒NEdpll(T) the transition relation defined
by the DPLL(T) system with eager theory propagation.

Definition 26. A DPLL(T) procedure with Non-Exhaustive Theory Propaga-
tion for T is any procedure taking an input cnf F and computing a sequence
∅ || F =⇒∗

NEdpll(T) S where S is a final state with respect to the Basic DPLL
system and Lazy Theory Learning.

A necessary and sufficient condition for ensuring the termination of the pre-
vious system is again that no clause can be learned by Lazy Theory Learning
or Learn infinitely many times. In practice, this can be achieved by the same
strategy presented in Subsection 3.2. Hence, we have:

Theorem 27. The DPLL system with non-exhaustive theory propagation pro-
vides a decision procedure for the satisfiability in T of cnf formulas F , that is:

1. ∅ || F =⇒!
NEdpll(T) fail if, and only if, F is unsatisfiable in T .

2. ∅ || F =⇒∗
NEdpll(T) M || F ′, where M || F ′ is a final state wrt Basic DPLL

and Lazy Theory Learning, if, and only if, F is satisfiable in T .

3. If ∅ || F =⇒∗
NEdpll(T) M || F ′, where M || F ′ is a final state wrt Basic DPLL

and Lazy Theory Learning, then M is a T -model of F .

4 Conclusions

We have presented a declarative formal framework for modeling DPLL-based
solvers for propositional satisfiability or for satisfiability modulo theories. We
have shown that the essence of these solvers can be described simply and ab-
stractly in terms of rule-based transition systems over states consisting of a truth
assignment and a clause set.

The declarative and formal nature of our transition systems makes it easier to
prove properties such as soundness, completeness or termination of DPLL-style
algorithms. Furthermore, it facilitates their comparison as their differences can

50 R. Nieuwenhuis, A. Oliveras, and C. Tinelli

be more easily seen as differences in the set of their transition rules or in their
rule application strategy.

The approach we presented is as flexible and declarative as the one followed
in [Tin02], which first formulated basic DPLL and DPLL modulo theories ab-
stractly, as sequent-style calculi. But it considerably improves on that work
because it allows one to model more features of modern DPLL-based engines
directly within the framework. This contrasts with the calculi in [Tin02] where
features as backjumping and learning can be discussed only at the control level,
in terms of proof procedures for the calculi.

References

ABC+02. G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani.
A SAT based approach for solving formulas over boolean and linear math-
ematical propositions. In CADE-18, LNCS 2392, pages 195–210, 2002.

ACG00. Alessandro Armando, Claudio Castellini, and Enrico Giunchiglia. SAT-
based procedures for temporal reasoning. In Procs. 5th European Confer-
ence on Planning, LNCS 1809, pages 97–108, 2000.

BB04. Clark W. Barrett and Sergey Berezin. CVC lite: A new implementation
of the cooperating validity checker. Category B. In Procs. 16th Int. Conf.
Computer Aided Verification (CAV), LNCS 3114, pages 515–518, 2004.

BDS02. Clark Barrett, David Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation into sat. In Procs. 14th
Intl. Conf. on Computer Aided Verification (CAV), LNCS 2404, 2002.

DLL62. Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Comm. of the ACM, 5(7):394–397, 1962.

dMR02. Leonardo de Moura and Harald Rueß. Lemmas on demand for satisfiabil-
ity solvers. In Procs. 5th Int. Symp. on the Theory and Applications of
Satisfiability Testing, SAT’02, pages 244–251, 2002.

DP60. Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. Journal of the ACM, 7:201–215, 1960.

FJOS03. C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy
proof explanation. In Procs. 15th Int. Conf. on Computer Aided Verifica-
tion (CAV), LNCS 2725, 2003.

GHN+04. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast decision procedures. In Procs. 16th Int. Conf. Computer
Aided Verification (CAV), LNCS 3114, pages 175–188, 2004.

GN02. E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In
Design, Automation, and Test in Europe (DATE ’02), pages 142–149, 2002.

MMZ+01. M. Moskewicz, Conor. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proc. 38th Design Automation
Conference (DAC’01), 2001.

MSS99. Joao Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Trans. Comput., 48(5):506–521.

Tin02. Cesare Tinelli. A DPLL-based calculus for ground satisfiability modulo
theories. In Procs. 8th European Conf. on Logics in Artificial Intelligence,
LNAI 2424, pages 308–319, 2002.

Zha97. Hantao Zhang. SATO: An efficient propositional prover. In CADE-14,
LNCS 1249, pages 272–275, 1997.

	Introduction
	The Abstract DPLL Procedure
	The Basic DPLL Procedure
	Correctness of Basic DPLL
	DPLL with Clause Learning

	Abstract DPLL Modulo Theories
	A Simple Example: The Classical Very Lazy Approach
	Less Lazy Approaches
	The DPLL(T) Approach with Eager Theory Propagation
	The DPLL(T) Approach with Non-exhaustive Propagation

	Conclusions

