
Weighted Answer Sets and Applications in Intelligence
Analysis

Davy Van Nieuwenborgh�, Stijn Heymans, and Dirk Vermeir��

Dept. of Computer Science
Vrije Universiteit Brussel, VUB

Pleinlaan 2, B1050 Brussels, Belgium
{dvnieuwe,sheymans,dvermeir}@vub.ac.be

Abstract. The extended answer set semantics for simple logic programs, i.e.
programs with only classical negation, allows for the defeat of rules to resolve
contradictions. In addition, a partial order relation on the program’s rules can be
used to deduce a preference relation on its extended answer sets. In this paper,
we propose a “quantitative” preference relation that associates a weight with each
rule in a program. Intuitively, these weights define the “cost” of defeating a rule.
An extended answer set is preferred if it minimizes the sum of the weights of
its defeated rules. We characterize the expressiveness of the resulting semantics
and show that it can capture negation as failure. Moreover the semantics can be
conveniently extended to sequences of weight preferences, without increasing the
expressiveness. We illustrate an application of the approach by showing how it can
elegantly express subgraph isomorphic approximation problems, a concept often
used in intelligence analysis to find specific regions of interest in a large graph of
observed activities.

1 Introduction

Over the last decade a lot of research has been done on declarative programming using
the answer set semantics [10,2,16], a generalization of the stable model semantics [8].
In answer set programming, one uses a logic program to modularly describe the require-
ments that must be fulfilled by the solutions to a particular problem, i.e. the answer
sets of the program correspond to the intended solutions of the problem. One of the
possible problems in answer set programming is the absence of any solutions in case of
inconsistent programs. To remedy this, the authors proposed [14] the extended answer
set semantics which allows for the defeat of problematic rules. E.g., the rules a ←, b ←
and ¬a ← b are clearly inconsistent and have no classical answer sets, while both {a, b}
and {¬a, b} will be recognized as extended answer sets. Intuitively, ¬a ← b is defeated
by a ← in {a, b}, while ¬a ← b defeats a ← in {¬a, b}.

Within the context of inconsistent programs, it is natural to have some kind of
preference relation that is used to prefer certain extended answer sets above others.

� Supported by the FWO
�� This work was partially funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 169–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



170 D. Van Nieuwenborgh, S. Heymans, and D. Vermeir

In [14], a “qualitative” preference semantics is proposed, using a preference relation on
rules, to induce a partial ordering on the extended answer sets of a program.

As an alternative, this paper considers a “quantitative” preference relation for the
extended answer set semantics on simple programs, i.e. programs containing only classi-
cal negation. We assign each rule in a program a (nonnegative) weight, representing the
cost associated with defeating the rule. Solutions for these weighted programs, called
weighted answer sets, are those extended answer sets that minimize the sum of the
weights of defeated rules.

The resulting semantics turns out to be more expressive than classical answer set
programming, even in the absence of negation as failure. We demonstrate that e.g. the
membership problem is complete for the second level of the deterministic class of the
polynomial hierarchy, i.e. ∆P

2 -complete. Furthermore, we show how negation as failure
can be added to the formalism without increasing the complexity.

In some situations more than one actor is involved in the process of finding a solution
to a particular problem. Quite often we have a sequence of decision makers, where each
one sorts out the best solutions according to her preferences among the solutions that
are preferred by the previous one in the sequence. Intuitively, the solutions that are still
preferred by the last decision maker in the sequence are the ones that are acceptable by
all parties. E.g., in a job selection procedure, the secretary will only keep the applicants
that passed all the tests. Secondly, the head of the department will prefer people that
have better marks on their math tests, and among those, the management of the firm will
select those with a better psychological profile.

Such hierarchies of individual weight preferences are supported by weight sequence
programs, where each rule in a program is equipped with a sequence 〈wi〉i=1,...,n of
weights corresponding to the cost each decision maker associates with defeating this
rule (wi has a higher priority than wi+1). Semantically, weighted answer sets for such
programs will be obtained from first finding the weighted answer sets w.r.t. the weights
of the first decision maker, i.e. the weights w1, and among those finding the ones that
are minimal w.r.t. the weights of the second decision maker, i.e. the weights w2, etc.
Regarding the complexity, it turns out that such sequences of weights do not result in
any additional expressiveness of the formalism, nevertheless allowing to express certain
problems more intuitively.

The proposed semantics has applications in several areas where quantitative prefer-
ences are useful. E.g., in the area of subgraph isomorphism algorithms [12] it is useful,
in case of absence of an exact match of the pattern graph in the larger graph, to search for
subgraph isomorphic approximations (SIA for short) of the larger graph that are minimal
in some sense, i.e. searching for a “minimal” set of items to add to the larger graph such
that the pattern occurs in it. We show how the solutions of such SIA problems corre-
spond with the weighted answer sets of a weighted program that can be constructed out
of the given instance graphs. Applications of SIA can be found in the area of intelligence
analysis [9,4], where it is common to search for a pattern of interest in a large attributed
relational graph [9] (ARG for short). An ARG is a normal graph where nodes and edges
can carry additional attributes e.g. denoting relationships. In intelligence analysis, ARGs
are used to model observed activity in the world under consideration. We show how the



Weighted Answer Sets and Applications in Intelligence Analysis 171

translation of the SIA problem for graphs into weighted programs can be intuitively
adapted to the setting of ARGs, thus providing a useful tool for intelligence analysis.

The remainder of this paper is organized as follows: Section 2 introduces weighted
programs and the corresponding weighted answer set semantics, together with a char-
acterization of the expressiveness. Additionally, we show how negation as failure can
be added without increasing the complexity. Section 3 formalizes weight sequence pro-
grams and we show that these systems do not have additional expressiveness in compar-
ison to normal weighted programs. In Section 4, we introduce the problem of subgraph
isomorphic approximations in graph theory and show how weighted programs can be
conveniently used to compute them. Section 5 discusses a generalization of subgraph iso-
morphic approximations in the area of attributed relational graphs. Finally, we conclude
in Section 6. Due to space restrictions, proofs have been omitted.1

2 Weighted Programs

We use the following basic definitions and notation. A literal is an atom a or a negated
atom ¬a. For a set of literals X , ¬X denotes {¬a | a ∈ X} where ¬¬a = a. X is
consistent if X ∩ ¬X = ∅. An interpretation I is a consistent set of literals. A simple
rule r is of the form a ← β with {a} ∪ β a finite set of literals2. The rule r is satisfied
by I , denoted I |= r, if a ∈ I whenever β ⊆ I , i.e. if r is applicable (β ⊆ I), then it
must be applied (a ∈ I).

A countable set of simple rules is called a simple logic program (SLP). The Herbrand
baseBP of a SLP P contains all atoms appearing in P . For a SLP P and an interpretation
I we say that a rule a ← β ∈ P is defeated w.r.t. I iff there exists an applied competing
rule ¬a ← β′ ∈ P . Furthermore, we use PI ⊆ P to denote the reduct of P w.r.t. I , i.e.
PI = {r ∈ P | I |= r}, the set of rules satisfied by I .

An interpretation I is called a model of a SLP P if PI = P , i.e. I satisfies all rules
in P . If there is no model J of P such that J ⊂ I , I is a minimal model or answer set
of P . An extended answer set for P is any interpretation I such that I is an answer set
of PI and each unsatisfied rule in P \PI is defeated.

Example 1. Consider the following SLP P about diabetes.

hypoglycemia ← diabetes ← sugar ← hypoglycemia
¬sugar ← diabetes cola light ← ¬sugar cola ← sugar

Clearly, while this program has no traditional answer sets, it has, however, two ex-
tended answer sets I = {diabetes, hypoglycemia, sugar, cola} and J = {diabetes,
hypoglycemia,¬sugar, cola light}.

The extended answer sets of a program are not always equally preferred. E.g., in
the above example, when low on sugar (hypoglycemia), one would prefer drinking
cola , rather than taking no sugar at all (¬sugar ). So, defeating the rule sugar ←
hypoglycemia is “worse” than defeating the rule ¬sugar ← diabetes. Therefore, we

1 They are available in http://tinf2.vub.ac.be/˜dvnieuwe/graphasptech.ps
2 As usual, we assume that programs have already been grounded.

http://tinf2.vub.ac.be/~dvnieuwe/graphasptech.ps


172 D. Van Nieuwenborgh, S. Heymans, and D. Vermeir

equip the rules in simple programs with a weight representing the “penalty” involved
when defeating the rule. Naturally, extended answer sets that minimize the total penalty
of a program are to be preferred over others.

Definition 1. A simple weight rule is a rule r of the form a ← β〈w〉, where {a} ∪ β
is a finite set of literals and w is an associated weight value, i.e. a non-negative integer.
We use w(r) to denote the weight of r. A countable set of such simple weight rules is a
simple weight program (SWP). The extended answer sets of a SWP P coincide with the
extended answer sets of the SLP P ′ obtained from P by removing the weights from the
rules.

The program from Example 1 can be extended to a SWP containing a larger “penalty”
weight for the hypoglycemia rules, i.e. the program:

hypoglycemia ← 〈0〉 diabetes ← 〈0〉 sugar ← hypoglycemia〈1〉
¬sugar ← diabetes〈0〉 cola light ← ¬sugar〈0〉 cola ← sugar〈0〉

This program still has I and J as its extended answer sets, but intuitively I is better
than J as it satisfies the rule with weight 1 while J does not, which we formalize in the
following definition.

Definition 2. The penalty of an extended answer set S w.r.t. a SWP P , is defined by
ΦP (S) =

∑
r∈P\PS

w(r), i.e. the sum of the weights of all defeated rules in P w.r.t. S.
For two extended answer sets S1 and S2 of P , we define S1 
 S2 iff ΦP (S1) ≤

ΦP (S2). A weighted answer set of P is an extended answer set of P that is minimal
w.r.t. ≺ (a ≺ b iff a 
 b and not b 
 a) among the set of all extended answer sets of P .
A weighted answer set S of P with ΦP (S) = 0 is called a proper weighted answer set.

Intuitively, weighted answer sets are those solutions that minimize the penalties
incurred by defeating rules. For the weighted version of the program from Example 1
one obtains that ΦP (I) = 0 and ΦP (J) = 1 such that I ≺ J , which corresponds with
our intuition.

While the previous example uses only two different weight values, the following
example shows that one can use the proposed semantics to represent complex relations
between defeated rules.

Example 2. Consider a company that wants to hire an employee. To get hired, you have
to do some tests and based on these results the company decides.

math ← 〈0〉 lang ← 〈0〉 psych ← 〈0〉 prac ← 〈0〉 phys ← 〈0〉
¬math ← 〈0〉 ¬lang ← 〈0〉 ¬psych ← 〈0〉 ¬prac ← 〈0〉 ¬phys ← 〈0〉

hire ← 〈3〉 ¬hire ← ¬math〈1〉 ¬hire ← ¬lang〈1〉
¬hire ← ¬psych〈3〉 ¬hire ← ¬prac〈2〉 ¬hire ← ¬phys〈4〉

Intuitively, the rules with weight 0, i.e. no penalty involved when defeated, represent
the choice between passing or not passing a certain test. Furthermore, the last five rules
encode which penalty is involved when a person fails a certain test, but still gets hired.
E.g., not passing the practical test is the same as failing both math and language. On



Weighted Answer Sets and Applications in Intelligence Analysis 173

the other hand, not passing the physical is considered unacceptable while failing the
psychological test will be tolerated only if it is the only failed test. Finally, the rule
hire ← 〈3〉 expresses the company’s policy: defeating this rule is cheaper from the
moment the penalty gets higher than 3.

Some of the program’s extended answer sets are M1 = {math, lang, psych, prac,
phys, hire}, M2 = {¬math,¬lang, psych, prac, phys, hire}, M3 = {math, lang,
psych,¬prac, phys, hire}, M4 = {¬math, lang, psych,¬prac, phys, hire} and
M5 = {¬math, lang, psych,¬prac, phys,¬hire}.

Computing the penalties for these extended answer sets results in ΦP (M1) = 0,
ΦP (M2) = ΦP (M3) = 2 and ΦP (M4) = ΦP (M5) = 3. These values imply the
following order among the given extended answer sets: M1 ≺ {M2,M3} ≺ {M4,M5}.
It can be checked, that M1 is the only (proper) weighted answer set of P . While M2 has
a penalty of 2 by defeating two rules with weight 1, M3 only defeats a single rule, but
with weight 2, yielding that M2 and M3 are incomparable, and thus equally preferred.
Similarly, M4 and M5 only differ in the hire atom and are incomparable with each other,
both having a penalty of 3.

Combining simple programs with weights turns out to be rather expressive.

Theorem 1. Let P be a SWP and let l be a literal. Deciding whether there exists a
weighted answer set M of P containing l is ∆P

2 -complete.

The above result illustrates that the weighted answer set semantics is more powerful
than the classical answer set semantics for (non-disjunctive) programs containing also
negation as failure. Below, we provide a simple translation for such programs to SWPs.
In addition, we show that extending SWPs with negation as failure does not increase
their expressiveness.

In this context, an extended literal is a literal or a naf-literal of the form not l where
l is a literal. The latter form denotes negation as failure. For a set of extended literals
X , we use X− to denote the set of ordinary literals underlying the naf-literals in X , i.e.
X− = {l | not l ∈ X}. For a set of ordinary literals Y , we use not Y to denote the set
not Y = {not y | y ∈ Y }. An extended literal l is true w.r.t. an interpretation I , denoted
I |= l, if l ∈ I in case l is ordinary, or a ∈ I if l = not a for some ordinary literal a. As
usual, I |= X for some set of (extended) literals l iff ∀l ∈ X · I |= l.

An extended rule is a rule of the form a ← β where a is a literal and β is a finite set
of extended literals. An extended rule r = a ← β is satisfied by I , denoted I |= r, if
a ∈ I whenever I |= β, i.e. if r is applicable (I |= β), then it must be applied (a ∈ I).
A countable set of extended rules is called an extended logic program (ELP). When an
ELP P does not contain classical negation, we call P a seminegative logic program. We
adopt from SLP the notion of the reduct PI w.r.t. an interpretation I and the notion of
defeating of rules.

For an extended logic program P and an interpretation I we define the GL-reduct[8]
for P w.r.t. I , denoted P I , as the program consisting of those rules a ← (β\not β−)
where a ← β is in P and I |= not β−. Now, all rules in P I are free from negation
as failure, i.e. P I is a simple program. An interpretation I is then an answer set of P
iff I is an answer set of the GL-reduct P I . Again, an extended answer set for P is any
interpretation I that is an answer set of PI and that defeats each rule in P \PI .



174 D. Van Nieuwenborgh, S. Heymans, and D. Vermeir

Theorem 2. Let P be a seminegative program. The weighted version of P is defined by
N(P ) = P ′ ∪ Pn, where P ′ = {a ← β′〈1〉 | a ← β ∈ P} with β′ obtained from β by
replacing each naf-literal not p with ¬p, and Pn = {¬a ← 〈0〉 | a ∈ BP }. Then, M is
an answer set of P iff M ∪ ¬(BP \M) is a proper weighted answer set of N(P ).

Intuitively, the rules in Pn introduce negation as failure using classical negation by
allowing their defeat “for free”, while defeating rules in P ′, corresponding to the original
rules in P , is penalized.

Example 3. Consider the seminegative program P = {a ← not b, b ← not a}. The
weighted version N(P ) consists of the rules {¬a ← 〈0〉,¬b ← 〈0〉, a ← ¬b〈1〉, b ←
¬a〈1〉}. This program has two proper weighted answer sets, i.e. I = {a,¬b} and
J = {¬a, b}, corresponding with the answer sets {a} and {b} of P .

Simple weighted programs can be extended with negation as failure, i.e. extended
weighted programs (EWP), without increasing the expressiveness of the formalism. The
latter is confirmed by the next theorem which reduces an EWP to an equivalent SWP. For
this reduction, we define a mapping ψ translating original naf-literals by: ψ(not a) = an

and ψ(not ¬a) = a¬
n , where for each atom a ∈ BP , an and a¬

n are fresh atoms. We use
ψ(X), X a set of naf-literals, to denote {ψ(x) | x ∈ X}.

Theorem 3. Let P be a finite EWP. The SWP version of P , denoted S(P ), is defined
by S(P ) = Pn ∪ P ′ ∪ Pc, where Pn = {ψ(not l) ← 〈0〉 | l ∈ BP ∪ ¬BP }, P ′ =
{a ← β′〈w〉 | a ← β〈w〉 ∈ P} where β′ is obtained from β by replacing not β−

with ψ(not β−), and Pc = {¬ψ(not l) ← l〈Υ 〉 | l ∈ BP ∪ ¬BP } where Υ = 1 +∑
r∈P w(r).
Then, M is a weighted answer set of P iff there exists a weighted answer M ′ of

S(P ) such that (a) ΦS(P )(M ′) < Υ ; and (b) M = M ′ ∩ (BP ∪ ¬BP ).

Intuitively, the rules in Pn introduce negation as failure for all literals in the Herbrand
base. As defeating negation as failure should be free, the rules all get a weight of 0. In
P ′ we adapt the original program with the corresponding weights by replacing the
naf-literals by their new representation. The rules in Pc ensure the consistency of any
solution by allowing the new representations of naf-literals to be defeated. To enforce
the satisfaction of these rules, we give them a weight that is higher than any possible
combination of weights in the original program, i.e. the sum of all weights plus 1. As
a result, S(P ) will only yield weighted answer sets with high penalties, i.e. defeating
some of the rules in Pc, iff the original program itself has no solutions, making condition
(a) in Theorem 3 necessary.

E.g., the single rule program Q = {a ← not a〈0〉} has no weighted answer sets. Its
translation S(Q) = {an ← 〈0〉, a¬

n ← 〈0〉,¬an ← a〈1〉,¬a¬
n ← ¬a〈1〉, a ← an〈0〉}

has only one weighted answer set I = {an, a¬
n , a} for which the penalty is ΦQ(I) =

1, yielding a value not strictly smaller than 1, corresponding to the non-existence of
weighted answer sets for the original program.

Combining Theorem 3 with Theorem 1 yields that EWPs have the same complexity
as SWPs, i.e. ∆P

2 -complete.



Weighted Answer Sets and Applications in Intelligence Analysis 175

3 Weight Sequences

In [13] an intuitive semantics is presented for sequences of individual complex qualitative
preferences. The idea is to apply each individual preference in the sequence in turn
and to let it sort out the preferred answer sets left over by the previous preferences
in the sequence. It is shown in [13] that this semantics is quite expressive as it can
handle arbitrary complete problems of the polynomial hierarchy. More specifically, for
a sequence of n preference relations, the semantics is ΣP

n+1-complete.
It is natural to wonder if a similar semantics for sequences of individual weights will

also yield a complexity blow-up depending on the length of the sequence. It turns out
that this is not the case as sequences of weights remain ∆P

2 -complete.

Definition 3. An n-weight sequence rule is a rule r of the form a ← β〈wi〉i=1,...,n,
where {a} ∪ β is a finite set of literals and 〈wi〉i=1,...,n is a sequence of n associated
weight values, i.e. a sequence of non-negative integers. We use wi(r) to denote the weight
wi of r. A countable set of n-weight sequence rules is an n-weight sequence program
(nWSP). The extended answer sets of an nWSP P coincide with the extended answer
sets of the SLP P ′ obtained from P by removing the weight sequences from the rules.

The penalty of an extended answer set S w.r.t. the weights i (1 ≤ i ≤ n) and an
nWSP P , is defined by Φi

P (S) =
∑

r∈P\PS
wi(r), i.e. the sum of the weights wi of all

defeated rules in P w.r.t. S. Each of the penalties Φi
P induces a preference relation ≺i

between the extended answer sets, as in Definition 2.

We define the preference of extended answer sets up to a certain weight level by
induction.

Definition 4. Let P be a nWSP. An extended answer set S is preferable up to weight
level ≺i, 1 ≤ i ≤ n, iff

– i = 1 and S is minimal w.r.t. ≺1, or
– i > 1, S is preferable up to ≺i−1, and there is no T , preferable up to ≺i−1, such

that T ≺i S.

An extended answer set S of P is a weighted answer set iff it is preferable up to ≺n.

Example 4. Consider the problem of two people having to decide what to eat for dinner.
After checking the available ingredients, the cook preparing the dinner decides to let his
wife propose some possible combinations from which he will choose the final one. As his
wife is rather hungry, she decides to choose the meal which is quickest to make, the reason
for which she assigns weights corresponding with times needed to make a particular part
of the meal. On the other hand, her husband is tired and wants to make a meal that is
easy to prepare, yielding weights representing the difficulty to make a particular part of
the meal. Further, they agree on some constraints that each meal should satisfy, e.g. with
french fries they take mayonnaise, etc. The 2WSP corresponding with this problem is
shown below.

Note that the rule ¬v ← v〈200, 200〉 enforces the satisfaction of the common con-
straints, as it implies that every solution not making one of the rules with v in the head
applicable, is better than any solution making one of those rules applicable.



176 D. Van Nieuwenborgh, S. Heymans, and D. Vermeir

french fries ← 〈0, 0〉 rice ← 〈0, 0〉 steak ← 〈0, 0〉
¬french fries ← 〈15, 1〉 ¬rice ← 〈5, 1〉 ¬steak ← 〈10, 1〉

stew ← 〈0, 0〉 meat ball ← 〈0, 0〉 mayonnaise ← 〈0, 0〉
¬stew ← 〈75, 3〉 ¬meat ball ← 〈20, 2〉 ¬mayonnaise ← 〈10, 5〉

tomato sauce ← 〈0, 0〉 ¬tomato sauce ← 〈10, 2〉
v ← ¬french fries,¬rice〈0, 0〉 v ← ¬steak ,¬meat ball ,¬stew〈0, 0〉
v ← steak ,¬french fries〈0, 0〉 v ← rice,meat ball ,¬tomato sauce〈0, 0〉
v ← french fries,¬mayonnaise〈0, 0〉 ¬v ← v〈200, 200〉

For the extended answer sets3 S1 = {french fries, steak ,mayonnaise} and S2 =
{rice,meat ball , tomato sauce} one can check that Φ1

P (S1) = Φ1
P (S2) = 35 and no

other extended answer sets exists with a smaller penalty for Φ1
P , yielding that both S1 and

S2 are preferable up to weight level≺1. On the other hand, Φ2
P (S1) = 7 and Φ2

P (S2) = 5,
making S2 preferable up to weight level ≺2, yielding that S2 is the weighted answer set
for this problem.

Finally, rearranging the weight sequence yields, in general, different solutions. E.g.,
if the cook first decides which meals he wants to make and afterwards his wife can
choose a particular one, it can be checked that S3 = {rice, stew} will be the weighted
answer set of the problem.

In the following theorem we show that an n-weight sequence program can be trans-
formed into a simple weight program such that the weighted answer sets of the former
coincide with the weighted answer sets of the latter.

Theorem 4. Let P be an nWSP and let P ′ be the SWP defined by

P ′ = {a ← β〈wi × 10ξi〉 | a ← β〈wi〉i=1,...,n} ,

where ξn = 0 and ξi =
∑

j∈[i+1...n]

(
length

(∑
r∈P wj(r)

))
otherwise, with length(x)

the number of digits in x, e.g. length(2611) = 4.
Then, S is a weighted answer set of P iff S is a weighted answer set of P ′.

Reconsider the rule ¬stew ← 〈75, 3〉 from Example 4. In the SWP version of
this program, the rule would yield the rules ¬stew ← 〈3〉 and ¬stew ← 〈75000〉, as∑

r∈P w2(r) = 215, yielding that length(215) = 3 and 75 × 103 = 75000.
The above transformation can be performed in polynomial time, yielding the fol-

lowing complexity result for n-weighted sequence programs.

Corollary 1. Let P be an nWSP. Deciding whether there exists a weighted answer set
S of P containing l is ∆P

2 -complete.

This result implies that, unlike for sequences of qualitative preferences [13], introducing
sequences of weights does not yield an increase of expressiveness. Nevertheless, these
sequences allow for a more intuitive expression of certain problems.

3 To keep the size of the extended answer sets small, we only provide the positive literals.



Weighted Answer Sets and Applications in Intelligence Analysis 177

4 Approximate Subgraph Isomorphisms

While approximate subgraph isomorphisms are similar to finding largest common sub-
trees [1], the formalisation we introduce in this section is, to the best of our knowledge,
new.

A graph is a tuple G = 〈N,E〉, where N is a finite set of nodes, and E ⊆ N ×N is a
set of tuples representing the edges in the graph. We assume that graphs are directed; an
undirected edge from n to m can still be represented by having both 〈m,n〉 and 〈n,m〉
in E.

Two graphs G1 = 〈N1, E1〉 and G2 = 〈N2, E2〉 are said to be isomorphic, denoted
G1

∼= G2, if there exists a bijection f : N1 → N2 such that f(E1) = E2, where f(E1)
denotes {〈f(t), f(h)〉 | 〈t, h〉 ∈ E}. On the other hand, G2 is called a subgraph of G1,
denoted G2 
 G1, iff N2 ⊆ N1 and E2 ⊆ E1. Furthermore, G2 is called subgraph
isomorphic to G1, denoted G2 � G1, if there exists a subgraph G3 
 G1 such that
G2

∼= G3.
Subgraph isomorphism itself is sometimes too strong a notion for certain appli-

cations. E.g., when a graph G2 = 〈N2, E2〉 is not subgraph isomorphic to a graph
G1 = 〈N1, E1〉, it may be interesting to know what is “missing” in G1 for G2 to be
subgraph isomorphic to it. In this context, a graph G3 = 〈N3, E3〉 is called an ex-
tension of G1 w.r.t. G2 just when G1 
 G3 and N3 = N1 when |N1| ≥ |N2| or
N3 = N1 ∪ {xi | 1 ≤ i ≤ |N2| − |N1|} otherwise, where the xi are new nodes not
occurring in N1. The latter construction of N3 is necessary to handle the cases in which
the graph to search for is bigger than the graph to search in. A graph G3 is a subgraph
isomorphic approximation of G1 w.r.t. G2 iff G3 is an extension of G1 w.r.t. G2 and
G2 � G3. We use G2 �G1 G3 to denote that G2 is approximately subgraph isomorphic
to G3 w.r.t. G1, i.e. G3 is a subgraph isomorphic approximation of G1 w.r.t. G2. The set
of all subgraph isomorphic approximations of G1 w.r.t. G2 is denoted by AG1(G2).

Obviously, not every subgraph isomorphic approximation G3 ∈ AG1(G2) is equally
interesting. E.g., the fully connected graph 〈N3, N3×N3〉 is, clearly, always a subgraph
isomorphic approximation and thus in AG1(G2). However, in most cases there will
exist smaller extensions of G1 in AG1(G2). Therefore, we are particularly interested in
elements from AG1(G2) that have a minimal, in some sense, difference with the original
graph G1. Here we use ∆G1(G3) to denote the unidirectional edge difference between
G1 and G3, i.e. ∆G1(G3) = E3\E1.

Two minimality criteria, which are widely used in areas like diagnostic reasoning
[5,6,15], are cardinal minimality and subset minimality. In the former case, we select
those elements from AG1(G2) that are minimal w.r.t. cardinality among the elements
in AG1(G2). Formally, a graph G3 ∈ AG1(G2) is said to be a subgraph isomorphic
c-approximation iff there does not exist a graph G4 ∈ AG1(G2) such that |∆G1(G4)| <
|∆G1(G3)|. The set of all c-approximations is denoted by Ac

G1
(G2).

Example 5. Consider the three undirected graphs G1, G2 and G3 represented in Figure 1.
Clearly, G1 is subgraph isomorphic to G2, i.e. G1 � G2, but not to G3. However,
adding a single (bidirectional) edge between e.g. m and r in G3, i.e. G4 = 〈N3, E3 ∪
{〈m, r〉, 〈r,m〉}〉, results in a subgraph isomorphic approximation of G3 w.r.t. G1, i.e.
G1 �G3 G4. Obviously, G4 is cardinal minimal yielding that G4 ∈ Ac

G3
(G1).



178 D. Van Nieuwenborgh, S. Heymans, and D. Vermeir

a b

c d

m n

op

q rs

t

u

v w

l h

j

G1 G2 G3
e i

g k

f

Fig. 1. The graphs G1, G2 and G3 of Example 5

Subset minimal isomorphic approximations can be defined in a similar way. However,
in contrast with diagnostic reasoning, subset minimality is less intuitive in this setting.
E.g. adding the edges 〈p, o〉, 〈o, w〉, 〈w, v〉 and 〈v, p〉 (and their reverses) to G3 in
Example 5 yields a subset minimal isomorphic approximation w.r.t. G1. However, if
we see G3 as an activity graph and G1 as a pattern of interest, as is often done by
intelligence agencies for detecting possible threats [4], the previously mentioned subset
minimal approximation is not very useful as it forces the agency to check 4 possible
relations between currently unrelated things. On the other hand, the approximations in
Ac

G3
(G1) are of much more value as they all yield one missing link to complete the

pattern, implying that the agency can quickly confirm these solutions (see also the next
section).

Obviously, when a graph is subgraph isomorphic to another one, the latter is the only
c-approximation of itself.

Theorem 5. Let G1 and G2 be graphs such that G2 � G1. Then, Ac
G1

(G2) = {G1}.

Using the weighted answer set semantics, we have the means to effectively compute
the c-approximations of a given graph G1 w.r.t. a graph G2. In what follows, we will
sometimes use non-grounded rules for clarity, but grounding is performed as usual.

Intuitively, we introduce the edges ofG1 as facts of the form edge(x, y) ← 〈0〉, where
〈x, y〉 ∈ E1. For each possible edge 〈x, y〉 ∈ E1, with x, y ∈ N1, we give a choice to
either include it or not in an approximation by introducing the facts edge(x, y) ← 〈0〉
and ¬edge(x, y) ← 〈1〉. The penalty involved in the latter fact is to ensure that the
computed approximations are cardinal minimal, i.e. not inserting an edge (defeating the
former rule) can be done freely, but inserting an edge (defeating the latter rule) has to
be minimized. In case |N1| < |N2| we also add edges to the |N2| − |N1| new nodes.

To match G2 with the possible approximations, we need to introduce for each node
n ∈ N2 a unique new variable name N . Searching for a match of G2 in the approximation
is done by the single rule match ← β〈0〉, where β = {edge(X,Y ) | 〈x, y〉 ∈ E2} ∪
{X = Y | 〈x, y〉 ∈ E2∧x = y}. Finally, we add the single rule match ← not match〈0〉
which forces any solution to contain a match (note that this rule cannot be defeated).

Definition 5. Let G1 = 〈N1, E1〉 and G2 = 〈N2, E2〉 be graphs. The program com-
puting the c-approximations of G1 w.r.t. G2, denoted LG1(G2), is defined by the rules:

– {edge(x, y) ← 〈0〉 | 〈x, y〉 ∈ E1} ;
– {edge(x, y) ← 〈0〉 ; ¬edge(x, y) ← 〈1〉 | x, y ∈ N1 ∪{xi | (|N1| < |N2|)∧ (1 ≤

i ≤ |N2| − |N1|)} ∧ 〈x, y〉 ∈ E1} ;



Weighted Answer Sets and Applications in Intelligence Analysis 179

– {match ← β〈0〉}, where β = {edge(X,Y ) | 〈x, y〉 ∈ E2} ∪ {X = Y | 〈x, y〉 ∈
E2 ∧ x = y} ; and

– {match ← not match〈0〉} .

If we reconsider the graphs G1 and G3 from Example 5, the program LG3(G1)
contains, besides the numerous edge/2 facts, the rule

match← edge(A,B), edge(B,D), edge(D,C), edge(C,A), edge(B,A), edge(D,B)
edge(C,D), edge(A,C), A = B,B = D,D = C,C = A .

One of the possible weighted answer sets of LG3(G1) is e.g. S = {edge(x, y) |
〈x, y〉 ∈ E3} ∪ {edge(m, r), edge(r,m)} ∪ ({¬edge(x, y) | x, y ∈ N3 ∧ 〈x, y〉 ∈
E3}\{edge(m, r), edge(r,m)}). Clearly, S corresponds with the extension G4 from
Example 5, which is a cardinal minimal approximation of G3 w.r.t. G1. This behavior
is confirmed by the following theorem.

Theorem 6. Let G1 = 〈N1, E1〉 and G2 = 〈N2, E2〉 be graphs. Then, G3 = 〈N3, E3〉
∈ Ac

G1
(G2) iff M = {edge(x, y) | 〈x, y〉 ∈ E3}∪{¬edge(x, y) | x, y ∈ N3∧〈x, y〉 ∈

E3} ∪ {match} is a weighted answer set of LG1(G2).

In the current approach no distinction is made between the edges that can be added to
a graph to obtain an approximation. However, one can imagine situations in which adding
one edge is more “difficult” than adding another, i.e. the cost of adding an edge may
vary. E.g., for an intelligence agency, it may be easier to check a relationship between
people in the home country, than between people in foreign countries, but checking 4
internal relationships may be as hard as checking 1 external relationship, resulting in a
cost of 4 for edges between externals and a cost of 1 for edges between internals. Such
costs represent a quantitative preference relation between edge additions.

In this case, optimal solutions are approximations that minimize the sum of all costs
associated with the added edges in the approximation. It is not difficult to see that this
kind of minimization can easily be computed by an adapted version of the program in
Definition 5: just replace the weights 1 with the cost associated for adding the edge to
an approximation. Clearly, Theorem 6 remains valid in this extension.

Similarly, we could think of an agency where possible threats are first selected,
by some field agent, depending on the effort needed to check certain relationships.
Afterwards, the supervisor will apply, on the proposed investigations of his field agent,
another kind of quantitative preferences, e.g. using information from other departments.
In case there are still a number of possible solutions left over after the supervisor, even
a third individual, e.g. the director, could apply his preferences on these possibilities.
Again, it is not difficult to see that this problem can be elegantly modeled by an adapted
version of the program in Definition 5, this time using the n-weight sequence programs
introduced in Section 3. Also in this extension, an adapted version of Theorem 6 remains
valid.

5 An Application in Intelligence Analysis

Attributed relational graphs (ARGs), an extension of the abstract directed graphs defined
in the previous section, are often used in e.g. intelligence analysis to understand complex,



180 D. Van Nieuwenborgh, S. Heymans, and D. Vermeir

and often uncertain, situations. The nodes in such ARGs are used to describe objects in
the observed world, e.g. persons, organizations, ..., while the edges are used to represent
relationships between the nodes, e.g. interaction, ownership, trust, ... .

In addition, ARG nodes and edges may have additional attributes that describe the
details of the specific objects or relationships: e.g. the name of a person, the kind of
chemical, the type of conversation. An example of such an ARG, based on an example

Person

observeobserve

Factory

reside reside

Person

rent buy

Truck House Chemicals

Fig. 2. The pattern
graph [4]

House,21 West St Car, Honda House, 34 East St

Person, Tom
Person, Richard Person, Harry

Factory,Acme Inc.

House, 123 Main St
Person, Ted

Person, Bill

Chemicals,Gasoline

Chemicals,HCl
Person, Ben

Car, Bentley Person, Jennifer
Convers

atio
n,Phone cal

lC
on

ve
rs

at
io

n,
Ph

on
e

ca
ll

Conversation, Letter

Person, Alice

buy

buy

reside

reside

rent

observe

reside reside

work
observe

work

friends

drives

drives

drives

married

Truck, Liquids

Fig. 3. The observed activity graph [4]

from [4], can be found in Figure 3. Here, a person named Bill has rented a truck for
carrying liquids and that same person resides in a house at 123 Main street together with
a person called Ted. Furthermore, Ted has been observing a factory called Acme Inc.
and he also bought large quantities of the chemical HCl .

Intelligence analysts normally define small abstract patterns which are believed to be
indications of possible threats. An example of such a pattern, based on the same example
from [4], can be found in Figure 2. Intuitively, it states that two persons residing at the
same place and both observing the same factory can be dangerous if one person buys
some chemical, while the other rents a truck.

Having both an ARG of observed activity and a pattern, the analysts need tools for
finding specific regions in the ARG that “closely” match the defined threat pattern. Sub-
graph isomorphic approximations turn out to be valuable tools to accomplish this task
[4]. The framework and results we developed in Section 4 can be intuitively adapted to
the setting of ARGs, where the transformation into a weighted program allows an analyst
to compute subgraph isomorphic approximations that are minimal in some quantitative
sense. In situations where investigating missing additional relationships is equally hard,
the analyst can use the cardinal minimal approximations. On the other hand, if inves-
tigating some relationship has a higher cost than investigating others, an analyst could
rely upon the extension of the framework of Section 4, i.e. defining a cost with each
relationship (edge) that can be added to have a subgraph isomorphic approximation and
only keeping the approximations that minimize the sum of the costs. Similarly, it could
be the case that the analist is not the only one in charge of making the final decision or
that he has multiple equivalent possibilities. In such situations, it can be useful to apply
the quantitative preferences of some other people, e.g. a supervisor or the director, to



Weighted Answer Sets and Applications in Intelligence Analysis 181

refine the number of solutions, so obtaining the most preferred solution. By using the
second extension of the framework of Section 4, also this kind of reasoning with ARGs
can be solved, i.e. by using weight sequence programs.

Instead of formally adapting the framework and the results, we illustrate the adapta-
tion, and its usefulness, using the example on intelligence analysis: we will translate the
ARG and pattern of Figures 3 and 2 into a weighted program and show that the solutions
of the program correspond with the regions of threat in the ARG w.r.t. the given pattern.

First we translate, for convenience, the nodes of the ARG to node-predicates. E.g. a
person named Bill forces the fact node(person, bill) ← 〈0〉 into the program, while the
factory Acme Inc. is responsible for the fact node(factory , acme inc) ← 〈0〉. In total,
we have 17 of such facts in our weighted program.

Next, we have to describe the relationships between the nodes using extended ver-
sions of the edge/2-predicates used in the previous section. E.g. Ted residing at the house
in 123 Main street gives rise to the fact

edge(person, ted , reside, house, 123 main street) ← 〈0〉 ,

while the conversation between Jennifer and Bill can be described by the fact

edge(person, bill , conversation, phone, person, jennifer) ← 〈0〉 .

Note that the different edge-facts can have different arities, which is not a problem as long
as the arities, and the ordering of the arguments, are the same for the same relationship.
E.g. edge-facts representing the conversation relationship always have six arguments:
the first two correspond to a node, the third has to be “conversation”, the fourth the type
of conversation and the last two again correspond to a node.

Also note that ARGs are directed graphs, but certain relations are bidirectional, e.g.
friends and married. For these relationships we have to explicitly add both directions
using the edge-facts: e.g. both edge(person, richard , friend , person, tom) ← 〈0〉 and
edge(person, tom, friend , person, richard) ← 〈0〉 have to be present in the weighted
program. One could argue that a conversation through phone is also bidirectional, but
we use a directed edge here to represent who initiated the call.

The pattern in Figure 2 can be translated into the following rule, where names starting
with an uppercase letter correspond to a variable:

match ← edge(person,NamePerson1 , observe, factory ,NameFactory),
edge(person,NamePerson2 , observe, factory ,NameFactory),
edge(person,NamePerson1 , reside, house,AddressHouse),
edge(person,NamePerson2 , reside, house,AddressHouse),
edge(person,NamePerson1 , rent , truck ,KindOfTruck),
edge(person,NamePerson2 , buy , chemicals,KindOfChemical)〈0〉

The above pattern matching rule also matches situations where only one person
observes a factory and does both the renting of the truck and the buying of the chemicals.
If one wants to have explicitly two different persons, we need to add the condition
NamePerson1 = NamePerson2 to the rule.

Finally, we have to add rules for the edges that can eventually be added to our ac-
tivity graph to obtain a subgraph isomorphic approximation. These edges will directly



182 D. Van Nieuwenborgh, S. Heymans, and D. Vermeir

point out the region of interest in the activity graph as the minimization assures that
only edges are added where necessary, i.e. on those places in the activity graph where
the pattern (almost) matches. While we introduced all possible edges in the simula-
tion of Section 4, doing the same in the context of ARGs may not be the best way to
go. Indeed, ARGs can have multiple edges between the same nodes but with different
attributes, which are not always useful to define between certain types of nodes. E.g.
edge(chemical , hcl , buys, chemical , gasoline) ← 〈0〉 is theoretically possible, but use-
less in real life. Therefore, one should avoid the introduction of meaningless edges in
the program, possibly by adding extra semantical constraints, e.g. typing the attributes
in ARGS. Some examples of choices of edges to add are:

edge(person, bill , observe, factory , acme inc) ← 〈0〉
¬ edge(person, bill , observe, factory , acme inc) ← 〈v〉

edge(person, bill , buy , chemical , hcl) ← 〈0〉
¬ edge(person, bill , buy , chemical , hcl) ← 〈w〉

edge(person, alice, conversation, phone, person, ted) ← 〈0〉
¬ edge(person, alice, conversation, phone, person, ted) ← 〈z〉

In the above rules for possible edges to add, the rules with a positive occurrences of
the edge-predicate always have a weight of 0, as not adding an edge, i.e. defeating the
rule, can be done for free. On the other hand, the negative occurrences have a weight
corresponding to the cost associated with adding the edge. In case we use cardinal
minimality, the costs (e.g. v, w and z) will all be 1, while in case of total cost minimality
we could define v = 4, w = 2 and z = 1 yielding that it is twice as hard to check if
someone observed a factory than checking if he bought some chemical, which in turn is
twice as hard than checking if he made a phone call.

For simplicity, we only consider cardinal minimality (and no sequences) in what
follows, i.e. we take all the weights of the rules with negative occurrence of an edge-
predicate to be 1. If we consider the weighted program obtained in the way we described
above, we will have two weighted answer sets S and T . Both will contain all the edges
from the original activity graph together with the fact match . Additionally, S will con-
tain the fact edge(person, bill , observe, factory , acme inc) together with all negated
versions of the other edge-predicates we added to the program Similarly, T will con-
tain the fact edge(person, ted , rent , truck , liquids) together with all negated versions,
except the one occurring positively. Clearly, both S and T correspond with the only
cardinal minimal subgraph isomorphic approximations of the problem.

As said before, we can add the condition NamePerson1 = NamePerson2 to the
pattern rule in our program if we explicitly want two different persons. When we consider
the weighted program obtained in that way, S will be the single weighted answer set
of the program, corresponding to the single subgraph isomorphic approximation of the
problem.

6 Conclusions and Directions for Further Research

We presented a simple and intuitive quantitative preferential semantics based on the
extended answer set semantics, characterized its expressiveness and illustrated its use-
fulness using an application in the area of intelligence analysis. Possible topics for further



Weighted Answer Sets and Applications in Intelligence Analysis 183

research include the efficient implementation of the semantics, e.g. using existing answer
set solvers such as dlv [7] or smodels [11]. Furthermore, the relationships between the
present proposal and other weighted semantics such as weak constraints [3] need to be
investigated.

References

1. Tatsuya Akutsu and Magnús M. Halldórsson. On the approximation of largest common
subtrees and largest common point sets. Theoretical Comp. Science, 233(1-2):33–50, 2000.

2. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

3. Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Strong and weak constraints in dis-
junctive datalog. In Proceedings of the 4th International Conference on Logic Programming
(LPNMR ’97), pages 2–17, 1997.

4. Thayne Coffman, Seth Greenblatt, and Sherry Marcus. Graph-based technologies for intel-
ligence analysis. Communications of the ACM, 47(3):45–47, 2004.

5. L. Console and P. Torasso. A spectrum of logical definitions of model-based diagnosis.
Computational Intelligence, 7(3):133–141, 1991.

6. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis frontend of
the dlv system. AI Communications, 12(1-2):99–111, 1999.

7. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declarative problem-
solving using the dlv system. Logic-Based Artificial Intelligence, pages 79–103, 2000.

8. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Logic Programming, Proceedings of the Fifth International Conference and Symposium,
pages 1070–1080. MIT Press, 1988.

9. R.J. Heuer. Psychology of intelligence analysis. Center for the Study of Intelligence, Central
Intelligence Agency, 2001.

10. Vladimir Lifschitz. Answer set programming and plan generation. Journal of Artificial
Intelligence, 138(1-2):39–54, 2002.

11. Syrjänen T. and Niemelä I. The smodels system. In Proceedings of the 6th International
Conference on Logic Programming and Nonmonotonic Reasoning, volume 2173 of Lecture
Notes in Computer Science, pages 434–438, Vienna, Austria, September 2001. Springer.

12. J.R. Ullman. An algorithm for subgraph isomorphism. J. of the ACM, 23(1):31–42, 1976.
13. Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir. On programs with linearly

ordered multiple preferences. In Proc. of 20th Intl. Conference on Logic Programming (ICLP
2004), volume 3132 of Lecture Notes in Computer Science, pages 180–194. Springer, 2004.

14. Davy Van Nieuwenborgh and Dirk Vermeir. Preferred answer sets for ordered logic programs.
In European Conference on Logics in Artificial Intelligence, JELIA 2002, volume 2424 of
Lecture Notes in Artificial Intelligence, pages 432–443, 2002.

15. Davy Van Nieuwenborgh and Dirk Vermeir. Ordered diagnosis. In Proceedings of the 10th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR2003), volume 2850 of LNAI, pages 244–258. Springer, 2003.

16. Marina De Vos and Dirk Vermeir. Logic programming agents playing games. In Research and
Development in Intelligent Systems XIX (ES2002), BCS Conference Series, pages 323–336.
Springer-Verlag, 2002.


	Introduction
	Weighted Programs
	Weight Sequences
	Approximate Subgraph Isomorphisms
	An Application in Intelligence Analysis
	Conclusions and Directions for Further Research



