
CERES in Many-Valued Logics�

Matthias Baaz1 and Alexander Leitsch2

1 Institut für Computermathematik (E-118),
TU-Vienna, Wiedner Hauptstraße 8-10,

1040 Vienna, Austria
baaz@logic.at

2 Institut für Computersprachen (E-185),
TU-Vienna, Favoritenstraße 9,

1040 Vienna, Austria
leitsch@logic.at

Abstract. CERES is a method for cut-elimination in classical logic
which is based on resolution. In this paper we extend CERES to CERES-
m, a resolution-based method of cut-elimination in Gentzen calculi for
arbitrary finitely-valued logics. Like in the classical case the core of the
method is the construction of a resolution proof in finitely-valued log-
ics. Compared to Gentzen-type cut-elimination methods the advantage
of CERES-m is a twofold one: 1. it is easier to define and 2. it is compu-
tationally superior and thus more appropriate for implementations and
experiments.

1 Introduction

The core of classical cut-elimination methods in the style of Gentzen [8] consists
of the permutation of inferences and of the reduction of cuts to cuts on the
immediate subformulas of the cut formula. If we switch from two- valued to
many-valued logic, the reduction steps become intrinsically tedious and opaque
[3] in contrast to the extension of CERES to the many-valued case, which is
straightforward.

We introduce CERES-m for correct (possible partial) calculi for m-valued
first order logics based on m-valued connectives, distributive quantifiers [7] and
arbitrary atomic initial sequents closed under substitution. We do not touch
the completeness issue of these calculi, instead we derive clause terms from the
proof representing the formulas which are ancestor formulas of the cut formulas;
the evaluation of these clause terms guarantees the existence of a resolution
refutation as core of a proof with atomic cuts only. This resolution refutation
is extended to a proof of the original end-sequent by adjoining cut-free parts
of the original proof. Therefore, it is sufficient to refute the suitably assembled
components of the initial sequents using a m-valued theorem prover [2].

� supported by the Austrian Science Fund (FWF) proj. no P16264-N05

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 1–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 M. Baaz and A. Leitsch

2 Definitions and Notation

Definition 1 (language). The alphabet Σ consists of an infinite supply of vari-
ables, of infinite sets of n-ary function symbols and predicate symbols er σ con-
tains a set W of truth symbols denoting the truth values of the logic, a finite
number of connectives ◦1, . . . , ◦m of arity n1, . . . , nm, and a finite number of
quantifiers Q1, . . . , Qk.

Definition 2 (formula). An atomic formula is an expression of the form
P (t1, . . . , tn) where P is an n-ary predicate symbol in Σ and t1, . . . , tn are terms
over Σ. Atomic formulas are formulas.

If ◦ is an n-ary connective and A1, . . . , An are formulas then ◦(A1, . . . , An)
is a formula.

If Q is quantifier in Σ and x is a variable then (Qx)A is a formula.

Definition 3 (signed formula). Let w ∈ W and A be a formula. Then w:A
is called a signed formula.

Definition 4 (sequent). A sequent is a finite sequence of signed formulas. The
number of signed formulas occurring in a sequent S is called the length of S and
is denoted by l(S). Ŝ is called the unsigned version of S if every signed formula
w:A in S is replaced by A. The length of unsigned versions is defined in the
same way. A sequent S is called atomic if Ŝ is a sequence of atomic formulas.

Remark 1. Note that the classical sequent (∀x)P (x) � Q(a) can be written as
f : (∀x)P (x), t:Q(a).

m-valued sequents are sometimes written as m-sided sequents. We refrain
from this notation, because it denotes a preferred order of truth values, which
even in the two-valued case might induce unjustified conclusions.

Definition 5 (axiom set). A set A of atomic sequents is called an axiom set
if A is closed under substitution.

The calculus we are defining below is capable of formalizing any finitely
valued logic. Concerning the quantifiers we assume them to be of distributive
type [7]. Distribution quantifiers are functions from the non-empty sets of truth-
values to the set of truth values, where the domain represents the situation in
the structure, i.e. the truth values actually taken.

Definition 6. Let A(x) be a formula with free variable x. The distribution
Distr(A(x)) of A(x) is the set of all truth values in W to which A(x) evalu-
ates (for arbitrary assignments of domain elements to x).

Definition 7. Let q be a mapping 2W → W . In interpreting the formula
(Qx)A(x) via q we first compute Distr(A(x)) and then q(Distr(A(x))), which is
the truth value of (Qx)A(x) under the interpretation.

CERES in Many-Valued Logics 3

In the calculus defined below the distinction between quantifier introductions
with (strong) and without eigenvariable conditions (weak) are vital.

Definition 8. A strong quantifier is a triple (V,w,w′) (for V ⊆ W) s.t.
(Qx)A(x) evaluates to w if Distr(A(x)) ⊆ V and to w′ otherwise. A weak quan-
tifier is a triple (u,w,w′) s.t. (Qx)A(x) evaluates to w if u ∈ Distr(A(x)), and
to w′ otherwise.

Remark 2. Strong and weak quantifiers are dual w.r.t. to set complementation.
In fact to any strong quantifier there corresponds a weak one and vice versa. Like
in classical logic we may speak about weak and strong occurrences of quantifiers
in sequents and formulas.

Note that strong and weak quantifiers define merely a subclass of distribution
quantifiers. Nevertheless the following property holds:

Proposition 1. Any distributive quantifier can be expressed by strong and weak
quantifiers and many valued associative, commutative and idempotent connec-
tives (which are variants of conjunction and disjunction).

Definition 9 (LM-type calculi). We define an LM-type calculus K. The ini-
tial sequents are (arbitrary) atomic sequents of an axiom set A. In the rules of
K we always mark the auxiliary formulas (i.e. the formulas in the premiss(es)
used for the inference) and the principal (i.e. the inferred) formula using dif-
ferent marking symbols. Thus, in our definition, classical ∧-introduction to the
right takes the form

Γ, t:A+ Γ, t:B+

Γ, t:A ∧ B∗

If Π � Γ,∆ is a sequent then Π � Γ,∆+ indicates that all signed formulas in
∆ are auxiliary formulas of the defined inference. Γ � ∆,w:A∗ indicates that
A:w∗is the principal formula (i.e. the inferred formula) of the inference.

Auxiliary formulas and the principal formula of an inference are always sup-
posed to be rightmost. Therefore we usually avoid markings as the status of the
formulas is clear from the notation.

logical rules:
Let ◦ be an n-nary connective.For any w ∈ W we have an introduction rule

◦:w of the form
Γ,∆+

1 ... Γ,∆+
m

Γ,w: ◦(π(∆̂1, . . . , ∆̂m, ∆̂))∗
◦:w

where l(∆1, . . . ,∆m,∆) = n (the ∆i are sequences of signed formulas which are
all auxiliary signed formulas of the inference) and π(S) denotes a permutation
of a sequent S.

Note that, for simplicity, we chose the additive version of all logical intro-
duction rules.

4 M. Baaz and A. Leitsch

In the introduction rules for quantifiers we distinguish strong and weak intro-
duction rules. Any strong quantifier rule Q:w (for a strong quantifier (V,w,w′))
is of the form

Γ, u1:A(α)+, . . . , um:A(α)+

Γ,w: (Qx)A(x)∗
Q:w

where α is an eigenvariable not occurring in Γ , and V = {u1, . . . , um}.
Any weak quantifier rule (for a weak quantifier (u,w,w′)) is of the form

Γ, u:A(t)+

Γ,w: (Qx)A(x)∗
Q:w

where t is a term containing no variables which are bound in A(x). We say that
t is eliminated by Q:w.

We need define a special n-ary connective for every strong quantifier in order
to carry out skolemization. Indeed if we skip the introduction of a strong quan-
tifier the m (possibly m > 1) auxiliary formulas must be contracted into a single
one after the removal of the strong quantifier (see definition of skolemization
below). Thus for every rule

Γ, u1:A(α1)
+
, . . . , um:A(αm)+

Γ,w: (Qx)A(x)∗
Q:w

we define a propositional rule

Γ, u1:A(t)+, . . . , um:A(t)+

Γ,w:A(t)∗
cQ:w

This new operator cQ can be eliminated by the de-skolemization procedure after-
wards.

structural rules:
The structural rule of weakening is defined like in LK (but we need only one

weakening rule and may add more then one formula).

Γ
Γ,∆

w

for sequents Γ and ∆.
To put the auxiliary formulas on the right positions we need permutation

rules of the form
F1, . . . , Fn

Fπ(1), . . . , Fπ(n)
π

where π is a permutation of {1, . . . , n} and the Fi are signed formulas .

CERES in Many-Valued Logics 5

Instead of the usual contraction rules we define an n-contraction rule for any
n ≥ 2 and F1 = . . . = Fn = F :

Γ, F1, . . . , Fn

Γ, F
c : n

In contrast to LK we do not have a single cut rule, but instead rules cutww′

for any w,w′ ∈ W with w 	= w′. Any such rule is of the form

Γ,w:A Γ ′, w′:A
Γ, Γ ′ cutww′

Definition 10 (proof). A proof of a sequent S from an axiom set A is a
directed labelled tree. The root is labelled by S, the leaves are labelled by elements
of A. The edges are defined according to the inference rules (in an n-ary rule
the children of a node are labelled by the antecedents, the parent node is labelled
by the consequent). Let N be a node in the proof φ then we write φ.N for the
corresponding subproof ending in N . For the number of nodes in φ we write ‖φ‖.

Definition 11. Let K be an LM-type calculus. We define P[K] as the set of all
K-proofs. Pi[K] is the subset of P[K] consisting of all proofs with cut-complexity
≤ i (P0[K] is the set of proofs with at most atomic cuts). P∅[K] is the subset of
all cut-free proofs.

Example 1. We define W = {0, u, 1} and the connectives as in the 3-valued
Kleene logic, but introduce a new quantifier D (“D” for determined) which gives
true iff all truth values are in {0, 1}. We only define the rules for ∨ and for D,
as no other operators occur in the proof below.

0:A, 1:A 0:B, 1:B 1:A, 1:B
1:A ∨ B

∨: 1

u:A, u:B
u:A ∨ B

∨:u
0:A, 0:B
0:A ∨ B

∨: 0

0:A(α), 1:A(α)
1: (Dx)A(x) D: 1

u:A(t)
0: (Dx)A(x) D: 0

where α is an eigenvariable and t is a term containig no variables bound in
A(x). Note that D: 1 is a strong, and D: 0 a weak quantifier introduction. The
formula u: (Dx)A(x) can only be introduced via weakening.

For the notation of proofs we frequently abbreviate sequences of structural rules
bei ∗; thus π∗ + ∨:u means that ∨:u is performed and permutations before
and/or afterwards. This makes the proofs more legible and allows to focus on
the logically relevant inferences. As in the definition of LM-type calculi we mark
the auxiliary formulas of logical inferences and cut by +, the principle ones by
∗.

6 M. Baaz and A. Leitsch

Let φ be the following proof

φ1 φ2

0: (Dx)((P (x) ∨ Q(x)) ∨ R(x)), 1: (Dx)P (x)
cut

where φ1 =

(ψ′)
0:P (α) ∨ Q(α), u:P (α) ∨ Q(α), 1:P (α) ∨ Q(α)

0:P (α) ∨ Q(α), u:P (α) ∨ Q(α), u:R(α)∗, 1:P (α) ∨ Q(α)
π∗ + w

0:A(α) ∨ Q(α), u: (P (α) ∨ Q(α)) ∨ R(α)+∗
, 1:P (α) ∨ Q(α)

∨:u

0: (Dx)((P (x) ∨ Q(x)) ∨ R(x))∗, 0:P (α) ∨ Q(α)+, 1:P (α) ∨ Q(α)+
π∗ + D: 0

0: (Dx)((P (x) ∨ Q(x)) ∨ R(x)), 1: (Dx)(P (x) ∨ Q(x))∗
D: 1

and φ2 =

0:P (β), u:P (β), 1:P (β)

0:P (β), 1:P (β), u:P (β)+, u:Q(β)∗+
π∗ + w

0:P (β), u:P (β) ∨ Q(β)∗+, 1:P (β)
π∗ + ∨:u

0: (Dx)(P (x) ∨ Q(x))∗, 0:P (β)+, 1:P (β)+
π∗ + D: 0

0: (Dx)(P (x) ∨ Q(x)), 1: (Dx)P (x)∗
D: 1

we have to define ψ′ as our axiom set must be atomic. We set

ψ′ = ψ(A,B){A ← P (α), A ← Q(α)}

and define
ψ(A,B) =

S, 0:A, 1:A S, 0:B, 1:B S, 1:A, 1:B
0:A, u:A, u:B, 1:A ∨ B

∨: 1
T, 0:A, 1:A T, 0:B, 1:B T, 1:A, 1:B

0:B, u:A, u:B, 1:A ∨ B

0:A ∨ B, u:A, u:B, 1:A ∨ B
∨: 0

0:A ∨ B, u:A ∨ B, 1:A ∨ B
π∗ + ∨:u

For S = 0:A, u:A, u:B and T = 0:B, u:A, u:B. It is easy to see that the
end sequent is valid as the axioms contain 0:A, u:A, 1:A and 0:B, u:B, 1:B as
subsequents.

Definition 12 (W-clause). A W -clause is an atomic sequent (where W is the
set of truth symbols). The empty sequent is called empty clause and is denoted
by � .

Let S be an W -clause. S’ is called a renamed variant of S if S′ = Sη for a
variable permutation η.

Definition 13 (W -resolution). We define a resolution calculus RW which
only depends on the set W (but not on the logical rules of K). RW operates
on W -clauses; its rules are:

CERES in Many-Valued Logics 7

1. resww′ for all w,w′ ∈ W and w 	= w′,
2. w-factoring for w ∈ W ,
3. permutations.

Let S:Γ,w:A and S′:Γ ′, w′:A′ (where w 	= w′) be two W -clauses and
S′′:Γ ′′, w′:A′′ be a variant of S′ s.t. S and S′ are variable disjoint. Assume that
{A,B′} are unifiable by a most general unifier σ. Then the rule resww′ on S, S′

generates a resolvent R for
R = Γσ, Γ ′′σ.

Let S:Γ,w:A1, . . . , w:Am be a clause and σ be a most general unifier of
{A1, . . . , Am}. Then the clause

S′:Γσ,w:A1σ

is called a w-factor of S.

A W -resolution proof of a clause S from a set of clauses S is a directed labelled
tree s.t. the root is labelled by S and the leaves are labelled by elements of S. The
edges correspond the applications of w-factoring (unary), permutation (unary)
and resww′ (binary).

It is proved in [1] that W -resolution is complete. For the LM-type calculus
we only require soundness w.r.t. the underlying logic. So from now on we assume
that K is sound.

Note that we did not define clauses as sets of signed literals; therefore we need the
permutation rule in order to “prepare” the clauses for resolution and factoring.

Definition 14 (ground projection). Let γ be a W -resolution proof and
{x1, . . . , xn} be the variables occurring in the indexed clauses of γ. Then, for all
ground terms t1, . . . , tn, γ{x1 ← t1, . . . , x1 ← tn} is called a ground projection
of γ.

Remark 3. Ground projections of resolution proofs are ordinary proofs in K;
indeed factoring becomes n-contraction and resolution becomes cut.

Definition 15 (ancestor relation). Let

S1:Γ,∆+
1 ... Sm:Γ,∆+

m

S:Γ,w:A∗ x

be a an inference in a proof φ; let µ be the occurrence of the principal signed
formula w:A in S and νij be the occurrence of the j-th auxiliary formula in Si.
Then all νij are ancestors of µ.

The ancestor relation in φ is defined as the reflexive and transitive closure of
the above relation.

By S(N,Ω) (S̄(N,Ω)) we denote the subsequent of S at the node N of φ
consisting of all formulas which are (not) ancestors of a formula occurrence in
Ω.

8 M. Baaz and A. Leitsch

Example 2. Let ψ(A,B) as in Example 1:

S, 0: A, 1: A S, 0: B, 1: B S, 1: A, 1: B

0: A†, u: A, u: B, 1: A ∨ B
∨: 1

T, 0: A, 1: A T, 0: B, 1: B T, 1: A, 1: B

0: B†, u: A, u: B, 1: A ∨ B

0: A ∨ B†, u: A, u: B, 1: A ∨ B
∨: 0

0: A ∨ B†, u: A ∨ B, 1: A ∨ B
π∗ + ∨: u

Let N0 be the root of ψ(A,B) and µ be the occurrence of the first formula
(0:A ∨ B) in N . The formula occurrences which are ancestors of µ are labelled
with †. The marking is not visible in S and T where the ancestors occur. In the
antecedent N1, N2 of the binary inference ∨: 0 we have S(N1, {µ}) = 0:A and
S(N2, {µ}) = 0:B.

3 Skolemization

As CERES-m (like CERES [6] and [5]) augments a ground resolution proof with
cut-free parts of the original proof related only to the end-sequent, eigenvariable
conditions in these proof parts might be violated. To get rid of this problem,
the endsequent of the proof and the formulas, which are ancestors of the end-
sequent have to be skolemized, i.e eigenvariables have to be replaced by suit-
able Skolem terms. To obtain a skolemization of the end-sequent, we have to
represent (analyze) distributive quantifiers in terms of strong quantifiers (cover-
ing exclusively eigenvariables) and weak quantifiers (covering exclusively terms).
This was the main motivation for the choice of our definition of quantifiers in
Definition 9. The strong quantifiers are replaced by Skolem functions depending
on the weakly quantified variables determined by the scope. Note that distribu-
tive quantifiers are in general mixed, i.e. they are neither weak nor strong, even
in the two-valued case.

3.1 Skolemization of Proofs

Definition 16 (skolemization). Let ∆:Γ,w:A be a sequent and (Qx)B be a
subformula of A at the position λ where Qx is a maximal strong quantifier in
w:A. Let y1, . . . , ym be free variables occurring in (Qx)B, then we define

sk(∆) = Γ,w:A[B{x → f(y1, . . . , ym)}]λ

where f is a function symbol not occurring in ∆.
If w:A contains no strong quantifier then we define sk(∆) = ∆.
A sequent S is in Skolem form if there exists no permutation S′ of S s.t.

sk(S′) 	= S′. S′ is called a Skolem form of S if S′ is in Skolem form and can be
obtained from S by permutations and the operator sk.

The skolemization of proofs can be defined in a way quite similar to the
classical case (see [4]).

CERES in Many-Valued Logics 9

Definition 17 (skolemization of K-proofs). Let K be an LM-type calculus.
We define a transformation of proofs which maps a proof φ of S from A into a
proof sk(φ) of S′ from A′ where S′ is the Skolem form of S and A′ is an instance
of A.

Locate an uppermost logical inference which introduces a signed formula w:A
which is not an ancestor of a cut and contains a strong quantifier.

(a) The formula is introduced by a strong quantifier inference:

ψ[α]
S′:Γ, u1:A(α)+, . . . , um:A(α)+

S:Γ,w: (Qx)A(x)∗
Q:w

in φ and N ′, N be the nodes in φ labelled by S′, S. Let P be the path from the root
to N ′, locate all weak quantifier inferences ξi (i=1,. . . ,n) on P and all terms ti
eliminated by ξi. Then we delete the inference node N and replace the derivation
ψ of N ′ by

ψ[f(t1, . . . , tn)]
S′:Γ, u1:A(f(t1, . . . , tn))+, . . . , um:A(f(t1, . . . , tn))+

S0:Γ,w:A(f(t1, . . . , tn))∗
cQ : w

where f is a function symbol not occurring in φ and cQ is the connective corre-
sponding to Q. The sequents on P are adapted according to the inferences on P .

(b) The formula is inferred by a propositional inference or by weakening (within
the principal formula w:A) then we replace w:A by the Skolem form of w:A
where the Skolem function symbol does not occur in φ.

Let φ′ be the proof after such a skolemization step. We iterate the procedure
until no occurrence of a strong quantifier is an ancestor of an occurrence in the
end sequent. The resulting proof is called sk(φ). Note that sk(φ) is a proof from
the same axiom set A as A is closed under substitution.

Definition 18. A proof φ is called skolemized if sk(φ) = φ.

Note that skolemized proofs may contain strong quantifiers, but these are
ancestors of cut, in the end-sequent there are none.

Example 3. Let φ be the proof from Example 1:

φ1 φ2

0: (Dx)((P (x) ∨ Q(x)) ∨ R(x)), 1: (Dx)P (x)
cut

where φ1 =

(ψ′)
0:P (α) ∨ Q(α), u:P (α) ∨ Q(α), 1:P (α) ∨ Q(α)

0:P (α) ∨ Q(α), u:P (α) ∨ Q(α), u:R(α)∗, 1:P (α) ∨ Q(α)
π∗ + w

0:A(α) ∨ Q(α), u: (P (α) ∨ Q(α)) ∨ R(α)+∗
, 1:P (α) ∨ Q(α)

∨:u

0: (Dx)((P (x) ∨ Q(x)) ∨ R(x))∗, 0:P (α) ∨ Q(α)+, 1:P (α) ∨ Q(α)+
π∗ + D: 0

0: (Dx)((P (x) ∨ Q(x)) ∨ R(x)), 1: (Dx)(P (x) ∨ Q(x))∗
D: 1

10 M. Baaz and A. Leitsch

and φ2 =

0:P (β), u:P (β), 1:P (β)

0:P (β), 1:P (β), u:P (β)+, u:Q(β)∗+
π∗ + w

0:P (β), u:P (β) ∨ Q(β)∗+, 1:P (β)
π∗ + ∨:u

0: (Dx)(P (x) ∨ Q(x))∗, 0:P (β)+, 1:P (β)+
π∗ + D: 0

0: (Dx)(P (x) ∨ Q(x)), 1: (Dx)P (x)∗
D: 1

The proof is not skolemized as the endsequent contains a strong quantifier
occurrence in the formula 1: (Dx)P (x). This formula comes from the proof φ2.
Thus we must skolemize φ2 and adapt the end sequent of φ. It is easy to verify
that sk(φ2) =

0:P (c), u:P (c), 1:P (c)

0:P (c), 1:P (c), u:P (c)+, u:Q(c)∗+
π∗ + w

0:P (c), u:P (c) ∨ Q(c)∗+, 1:P (c)
π∗ + ∨:u

0: (Dx)(P (x) ∨ Q(x))∗, 0:P (c)+, 1:P (c)+
π∗ + D: 0

0: (Dx)(P (x) ∨ Q(x)), 1:P (c)∗
cD−1

Then sk(φ) =
φ1 sk(φ2)

0: (Dx)((P (x) ∨ Q(x)) ∨ R(x)), 1:P (c)
cut

Note that φ1 cannot be skolemized as the strong quantifiers in φ1 are ances-
tors of the cut in φ.

3.2 De-Skolemization of Proofs

Skolem functions can be replaced by the original structure of (strong and weak)
quantifiers by the following straightforward algorithm at most exponential in the
maximal size of the original proof and of the CERES-m proof of the Skolemized
end sequent: Order the Skolem terms (terms, whose outermost function symbol
is a Skolem function) by inclusion.The size of the proof resulting from CERES-m
together with the number of inferences in the original proof limits the number
of relevant Skolem terms. Always replace a maximal Skolem term by a fresh
variable, and determine the formula F in the proof, for which the correspond-
ing strong quantifier should be introduced. In re-introducing the quantifier we
eliminate the newly introduced connectives cQ. As the eigenvariable condition
might be violated at the lowest possible position, where the quantifier can be
introduced (because e.g. the quantified formula has to become part of a larger
formula by an inference) suppress all inferences on F such that F occurs as side
formula besides the original end-sequent. Then perform all inferences on F. This
at most triples the size of the proof (a copy of the proof together with suitable
contractions might be necessary).

CERES in Many-Valued Logics 11

3.3 Re-introduction of Distributive Quantifiers

The distributive quantifiers are by now represented by a combination of strong
quantifiers, weak quantifiers and connectives. A simple permutation of inferences
in the proof leads to the immediate derivation in several steps of the representa-
tion of the distributive quantifier from the premises of the distributive quantifier
inference. The replacement of the representation by the distributive quantifier is
then simple.

4 CERES-m

As in the classical case (see [5] and [6]) we restrict cut-elimination to skolemized
proofs. After cut-elimination the obtained proof can be re-skolemized, i.e. it can
be transformed into a derivation of the original (unskolemized) end-sequent.

Definition 19. Let K be an LM-type calculus. We define SK[K] be the set of
all skolemized proofs in K. SK∅[K] is the set of all cut-free proofs in SK[K]
and, for all i ≥ 0, SKi[K] is the subset of SK[K] containing all proofs with
cut-formulas of formula complexity ≤ i.

Our goal is to transform a derivation in SK[K] into a derivation in SK0[K]
(i.e. we reduce all cuts to atomic ones). The first step in the corresponding
procedure consists in the definition of a clause term corresponding to the sub-
derivations of an K-proof ending in a cut. In particular we focus on derivations
of the cut formulas themselves, i.e. on the derivation of formulas having no
successors in the end-sequent. Below we will see that this analysis of proofs,
first introduced in [5], is quite general and can easily be generalized to LM-type
calculi.

Definition 20 (clause term). The signature of clause terms consists of that
of W -clauses and the operators ⊕n and ⊗n for n ≥ 2.

– (Finite) sets of W -clauses are clause terms.
– If X1, . . . , Xn are clause terms then ⊕n(X1, . . . , Xn) is a clause term.
– If X1, . . . , Xn are clause terms then ⊗n(X1, . . . , Xn) is a clause term.

Clause terms denote sets of W -clauses; the following definition gives the
precise semantics.

Definition 21. We define a mapping | | from clause terms to sets of W -clauses
in the following way:

|S| = C for sets of W -clauses S,

| ⊕n (X1, . . . , Xn)| =
n⋃

i=1

|Xi|,

| ⊗n (X1, . . . , Xn)| = merge(|X1|, . . . , |Xn|),

12 M. Baaz and A. Leitsch

where

merge(S1, . . . ,Sn) = {S1 . . . Sn | S1 ∈ S1, . . . Sn ∈ Sn}.

We define clause terms to be equivalent if the corresponding sets of clauses are
equal, i.e. X ∼ Y iff |X| = |Y |.

Definition 22 (characteristic term). Let K be an LM-type calculus, φ be a
proof of S and let Ω be the set of all occurrences of cut formulas in φ. We define
the characteristic (clause) term Θ(φ) inductively:

Let N be the occurrence of an initial sequent S′ in φ. Then Θ(φ)/N = {S(N,Ω)}
(see Definition 15).

Let us assume that the clause terms Θ(φ)/N are already constructed for all nodes
N in φ with depth(N) ≤ k. Now let N be a node with depth(ν) = k + 1. We
distinguish the following cases:

(a) N is the consequent of M , i.e. a unary rule applied to M gives N . Here we
simply define

Θ(ϕ)/N = Θ(ϕ)/M.

(b) N is the consequent of M1, . . . ,Mn, for n ≥ 2, i.e. an n-ary rule x applied
to M1, . . . ,Mn gives N .

(b1) The auxiliary formulas of x are ancestors of Ω, i.e. the formulas occur
in S(Mi, Ω) for all i = 1, . . . , n. Then

Θ(φ)/N = ⊕n(Θ(ϕ)/M1, . . . , Θ(ϕ)/Mn).

(b2) The auxiliary formulas of x are not ancestors of Ω. In this case we
define

Θ(φ)/N = ⊗n(Θ(ϕ)/M1, . . . , Θ(ϕ)/Mn).

Note that, in an n-ary inference, either all auxiliary formulas are ancestors of
Ω or none of them.

Finally the characteristic term Θ(φ) of φ is defined as Θ(φ)/N0 where N0 is
the root node of φ.

Definition 23 (characteristic clause set). Let φ be proof in an LM-type
calculus K and Θ(φ) be the characteristic term of φ. Then CL(φ), defined as
CL(φ) = |Θ(φ)|, is called the characteristic clause set of φ.

Remark 4. If φ is a cut-free proof then there are no occurrences of cut formulas
in φ and CL(φ) = {�}.

CERES in Many-Valued Logics 13

Example 4. Let φ′ be the skolemized proof defined in Example 3. It is easy to
verify that the characteristic clause set CL(φ′) is

{u:P (c),
0:P (α), 0:P (α), 1:P (α)

0:P (α), 0:Q(α), 1:Q(α)

0:P (α), 1:P (α), 1:Q(α)

0:Q(α), 0:P (α), 1:P (α)

0:Q(α), 0:Q(α), 1:Q(α)

0:Q(α), 1:P (α), 1:Q(α)}.

The set CL(φ′) can be refuted via W -resolution for W = {0, u, 1}. A W -
resolution refutation is (0f stands for 0-factoring) γ =

0:P (α), 0:P (α), 1:P (α) u:P (c)
0:P (c), 0:P (c)

res1u

0:P (c)
0f

u:P (c)
�

res0u

A ground projection of γ (even the only one) is γ′ = γ{α ← c} =

0:P (c), 0:P (c), 1:P (c) u:P (c)
0:P (c), 0:P (c)

cut1u

0:P (c)
c

u:P (c)
� cut0u

Obviously γ′ is a proof in K.

In Example 4 we have seen that the characteristic clause set of a proof is
refutable by W -resolution. This is a general principle and the most significant
property of cut-elimination by resolution.

Definition 24. From now on we write Ω for the set of all occurrences of cut-
formulas in φ. So, for any node N in φ S(N,Ω) is the subsequent of S containing
the ancestors of a cut. S̄(N,Ω) denotes the subsequent of S containing all non-
ancestors of a cut.

Remark 5. Note that for any sequent S occurring at a node N of φ, S is a
permutation variant of S(N,Ω), S̄(N,Ω).

Theorem 1. Let φ be a proof in an LM-calculus K. Then there exists a W -
resolution refutation of CL(φ).

Proof. According to Definition 22 we have to show that

(∗) for all nodes N in φ there exists a proof of S(N,Ω) from SN ,

14 M. Baaz and A. Leitsch

where SN is defined as |Θ(φ)/N | (i.e. the set of clauses corresponding to N , see
Definition 22). If N0 is the root node of φ labelled by S then, clearly, no ancestor
of a cut exists in S and so S(N0, Ω) = �. But by definition SN0 = CL(φ). So
we obtain a proof of � from CL(φ) in K. By the completeness of W -resolution
there exists a W -resolution refutation of CL(φ).

It remains to prove (∗):
Let N be a leaf node in φ. Then by definition of CL(φ) SN = {S(N,Ω)}. So

S(N,Ω) itself is the required proof of S(N,Ω) from SN .

(IH):
Now assume inductively that for all nodes N of depth ≤ n in φ there exists a
proof ψN of S(N,Ω) from SN .

So let N be a node of depth n + 1 in φ. We distinguish the following cases:

(a) N is the consequent of M , i.e. N is the result of a unary inference in φ. That
means φ.N =

φ.M

S(N)
x

By (IH) there exists a proof ψM of S(M,Ω) from SM . By Definition 22
SN = SM . If the auxiliary formula of the last inference is in S(M,Ω) we
define ψN =

ψM

S′ x

Obviously S′ is just S(N,Ω).
If the auxiliary formula of the last inference in φ.N is not in S(M,Ω) we
simply drop the inference and define ψN = ψ.M . As the ancestors of cut did
not change ψN is just a proof of S(N,Ω) from SN .

(b) N is the consequent of an n-ary inference for n ≥ 2, i.e. φ.N =

φ.M1 . . . φ.Mn

S(N)
x

By (IH) there exist proofs ψMi
of S(Mi, Ω) from SMi

.
(b1) The auxiliary formulas of the last inference in φ.N are in S(Mi, Ω), i.e.

the inference yields an ancestor of a cut. Then, by Definition 22

SN = SM1 ∪ . . . ∪ SMn
.

Then clearly the proof ψN :

ψM1 . . . ψMn

S′ x

is a proof of S′ from SN and S′ = S(N,Ω).

CERES in Many-Valued Logics 15

(b2) The auxiliary formulas of the last inference in φ.N are not in S(Mi, Ω),
i.e. the principal formula of the inference is not an ancestor of a cut.
Then, by Definition 22

SN = merge(SM1 , . . . ,SMn
).

We write Si for SMi
and ψi for ψMi

, Γi for S(Mi, Ω) and define

Di = merge(S1, . . . ,Si),
∆i = Γ1, . . . , Γi,

for i = 1, . . . , n. Our aim is to define a proof ψN of S(N,Ω) from SN

where SN = Dn.
We proceed inductively and define proofs χi of ∆i from Di. Note that
for i = n we obtain a proof χn of S(M1, Ω), . . . , S(Mn, Ω) from SN , and
S(N,Ω) = S(M1, Ω), . . . , S(Mn, Ω). This is just what we want.

For i = 1 we define χ1 = ψ1.
Assume that i < n and we already have a proof χi of ∆i from Di. For
every D ∈ Si+1 we define a proof χi[D]:

Replace all axioms C in χi by the derivation

C,D

D,C
π

and simulate χi on the extended axioms (the clause D remains passive).
The result is a proof χ′[D] of the sequent

D, . . . ,D,∆i.

Note that the propagation of D through the proof is possible as no
eigenvariable conditions can be violated, as we assume the original proof
to be regular (if not then we may transform the ψi into proofs with
mutually disjoint sets of eigenvariables) . Then we define χi[D] as

χ′[D]
∆i,D

c∗ + π

Next we replace every axiom D in the derivation ψi+1 by the proof χi[D]
and (again) simulate ψi+1 on the end-sequents of the χi[D] where the
∆i remain passive. Again we can be sure that no eigenvariable condition
is violated and we obtain a proof ρ of

∆i, . . . ,∆i, Γi+1.

from the clause set merge(Di,Si+1) which is Di+1. Finally we define
χi+1 =

ρ

∆i, Γi+1
π∗ + c∗

Indeed, χi+1 is a proof of ∆i+1 from Di+1. �

16 M. Baaz and A. Leitsch

Like in the classical case ([6]) we define projections of the proof φ relative to
clauses C in CL(φ). The basic idea is the following: we drop all inferences which
infer ancestors of a cut formula; the result is a cut-free proof of the end sequent
extended by the clause C. Of course we do not obtain cut-elimination itself, but
instead a cut free proof of the end sequent extended by a clause. These cut-free
proofs are eventually inserted into a resolution proof, which eventually gives a
proof with atomic cuts only.

Lemma 1. Let φ be a deduction in SK[K] of a sequent S. Let C be a clause
in CL(φ). Then there exists a deduction φ[C] of C,S s.t. φ[C] is cut-free (in
particular φ(C) ∈ SK∅[K]) and ‖φ[C]‖ ≤ 2 ∗ ‖φ‖.

Proof. Let SN be |Θ(φ)/N | (like in the proof of Theorem 1). We prove that

(�) for every node N in φ and for every C ∈ SN there exists a proof T (φ,N,C)
of C, S̄(N,Ω) s.t.

‖T (φ,N,C)‖ ≤ 2‖φ.N‖.

Indeed, it is sufficient to prove (�): for the root node N0 we have S = S̄(N0, Ω)
(no signed formula of the end sequent is an ancestor of Ω), φ.N0 = φ and
CL(φ) = SN0 ; so at the end we just define φ[C] = T (φ,N0, C) for every C ∈
CL(φ).

We prove � by induction on the depth of a node N in φ.

(IB) N is a leaf in φ.

Then, by definition of SN we have S = {S(N,Ω)} and C:S(N,Ω) is the only
clause in SN . Let Γ = S̄(N,Ω). Then S(N) (the sequent labelling the node N)
is a permutation variant of C,Γ and we define T (φ,N,C) =

S(N)
C,Γ

π

If no permutation is necessary we just define T (φ,N,C) = S(N). In both cases

‖T (φ,N,C)‖ ≤ 2 = 2‖φ.N‖.

(IH) Assume (�) holds for all nodes of depth ≤ k.

Let N be a node of depth k + 1. We distinguish the following cases:

(1) N is inferred from M via a unary inference x. By Definition of the clause
term we have SN = SM . So any clause in SN is already in SM .

(1a) The auxiliary formula of x is an ancestor of Ω. Then clearly S̄(N,Ω) =
S̄(M,Ω) and we define T (φ,N,C) = T (φ,M,C). Clearly

‖T (φ,N,C)‖ = ‖T (φ,M,C)‖ ≤(IH) 2‖φ.M‖ < 2‖φ.N‖.

CERES in Many-Valued Logics 17

(1b) The auxiliary formula of x is not an ancestor of Ω. Let Γ = S̄(M,Ω), Γ ′ =
S̄(N,Ω); thus the auxiliary formula of x is in Γ . By (IH) there exists a
proof ψ:T (φ,M,C) of C,Γ and ‖ψ‖ ≤ 2‖φ.M‖. We define T (φ,N,C) =

(ψ)
C,Γ

C, Γ ′ x

Note that x cannot be a strong quantifier inference as the proof φ is
skolemized and there are no strong quantifiers in the end sequent. Thus
T (φ,N,C) is well-defined. Moreover

‖T (φ,N,C)‖ = ‖T (φ,M,C)‖ + 1 ≤(IH) 2‖φ.M‖ + 1 < 2‖φ.N‖.

(2) N is inferred from M1, . . . ,Mn via the inference x for n ≥ 2. By (IH) there
are proofs T (φ,Mi, Ci) for i = 1, . . . , n and Ci ∈ SMi

. Let S̄(Mi, Ω) = Γi

and S̄(N,Ω) = Γ ′
1, . . . , Γ

′
n. We abbreviate T (φ,Mi, Ci) by ψi.

(2a) The auxiliary formulas of x are in Γ1, . . . , Γn. Let C be a clause in SN .
Then, by definition of the characteristic clause set, C = C1, . . . , Cn for
Ci ∈ SMi

(SN is defined by merge). We define T (φ,N,C) as

(ψ1)
C1, Γ1 . . .

(ψn)
Cn, Γn

C1, . . . , Cn, Γ ′
1, . . . , Γ

′
n

x

By definition of ‖ ‖ we have

‖φ.N‖ = 1 +
n∑

i=1

‖φ.Mi‖,

‖ψi‖ ≤ 2‖φ.Mi‖ by (IH)

Therefore

‖T (φ,N,C)‖ = 1 +
n∑

i=1

‖ψi‖ ≤ 1 + 2
n∑

i=1

‖φ.Mi‖ < 2‖φ.N‖.

(2b) The auxiliary formulas of x are not in Γ1, . . . , Γn. Let C by a clause
in SN . Then x operates on ancestors of cuts and SN =

⋃n
i=1 SMi

, thus
C ∈ SMi

for some i ∈ {1, . . . , n}. Moreover Γ ′
i = Γi for i = 1, . . . , n. We

define T (φ,N,C) as

(ψi)
C,Γi

C,Γi, Γ1, . . . , Γi−1, Γi+1, . . . , Γn
w

C,Γ1, . . . , Γn
π

Then
‖T (φ,N,C)‖ ≤ ‖ψi‖ + 2 < 2‖φ.N‖.

18 M. Baaz and A. Leitsch

This concludes the induction proof. �

Example 5. Let φ′ be the proof from Example 3. We have computed the set
CL(φ′) in example 4. We select the clause C: 0:P (α), 0:P (α), 1:P (α) and com-
pute the projection φ′[C]:

0:P (α), u:P (α), u:Q(α), 0:P (α), 1:P (α)
0:P (α), 0:P (α), 1:P (α), u:P (α), u:Q(α)

π

0:P (α), 0:P (α), 1:P (α), u:P (α) ∨ Q(α)
∨:u

0:P (α), 0:P (α), 1:P (α), u:P (α) ∨ Q(α), u:R(α)
w

0:P (α), 0:P (α), 1:P (α), u: (P (α) ∨ Q(α)) ∨ R(α)
∨:u

0:P (α), 0:P (α), 1:P (α), 0: (Dx)((P (x) ∨ Q(x)) ∨ R(x)) D: 0

0:P (α), 0:P (α), 1:P (α), 0: (Dx)((P (x) ∨ Q(x)) ∨ R(x)), 1:P (c)
w

Let φ be a proof of S s.t. φ ∈ SK[K] and let γ be a W -resolution refutation
of CL(φ). We define a ground projection γ′ of γ which is a K-proof of � from
instances of CL(φ). This proof γ′ can be transformed into a proof γ′[φ] of S from
the axiom set A s.t. γ′[φ] ∈ SK0[K] (γ′[φ] is a proof with atomic cuts). Indeed,
γ′ is the skeleton of the proof of S with atomic cuts and the real core of the end
result; γ′[φ] can be considered as an application of γ′ to (the projections of) φ.

Theorem 2. Let φ be a proof of S from A in SK[K] and let γ′ be a ground
projection of a W -refutation of CL(φ). Then there exists a proof γ′[φ] of S with
γ′[φ] ∈ SK0[K] and

‖γ′[φ]‖ ≤ ‖γ′‖(2 ∗ ‖φ‖ + l(S) + 2).

Proof. We construct γ′[φ]:

(1) Replace every axiom C in γ′ by the projection φ[C]. Then instead of C we
obtain the proof φ[C] of C,S. For every occurrence of an axiom C in γ we
obtain a proof of length ≤ 2 ∗ ‖φ‖ (by Lemma 1).

(2) Apply the permutation rule to all end sequents of the φ[C] and infer S,C.
The result is a proof ψ[C] with ‖ψ[C]‖ ≤ 2 ∗ ‖φ‖ + 1.

(3) Simulate γ′ on the extended sequents S,C, where the left part S remains
passive (note that, according to our definition, inferences take place on the
right). The result is a proof χ of a sequent S, . . . , S from A s.t.

‖χ‖ ≤ ‖γ′‖ ∗ (2 ∗ ‖φ‖ + 1) + ‖γ‖.

Note that χ is indeed a K-proof as all inferences in γ′ are also inferences of
K.

(4) Apply one permutation and contractions to the end sequent of χ for obtaining
the end sequent S. The resulting proof is γ′[φ], the proof we are searching for.
As the number of occurrences of S in the end sequent is ≤ ‖γ′‖ the additional
number of inferences is ≤ 1+l(S)∗‖γ′‖. By putting things together we obtain

‖γ′[φ]‖ ≤ ‖γ′‖(2 ∗ ‖φ‖ + l(S) + 2).

�

CERES in Many-Valued Logics 19

Looking at the estimation in Theorem 2 we see that the main source of
complexity is the length of the W -resolution proof γ′. Indeed, γ (and thus γ′)
can be considered as the characteristic part of γ′[φ] representing the essence of
cut-elimination. To sum up the procedure CERES-m for cut-elimination in any
LM-type logic K cab be defined as:

Definition 25 (CERES-m).

input :φ ∈ P[K].
construct a Skolem form φ′ of φ.
compute CL(φ′).
construct a W -refutation γ of CL(φ′).
compute a ground projection γ′ of γ.
compute γ′[φ′] (γ′[φ′] ∈ SK0[K]).
reskolemize γ′[φ′] to φ′′ (φ′′ ∈ P0[K]).

Example 6. The proof φ from Example 1 has been skolemized to a proof φ′ in
Example 3. In Example 4 we have computed the characteristic clause set CL(φ′)
and gave a refutation γ of CL(φ′) and a ground projection γ′: γ{α ← c}. Recall
γ′:

0:P (c), 0:P (c), 1:P (c) u:P (c)
0:P (c), 0:P (c)

cut1u

0:P (c)
c

u:P (c)
� cut0u

and the instances C ′
1 = u:P (c) and C ′

2 = 0:P (c), 0:P (c), 1:P (c) of two signed
clauses in CL(φ′) which defined the axioms of γ′. We obtain γ′[φ′] by substituting
the axioms C ′

1, C
′
2 by the projections φ[C ′

1], φ[C ′
2] (φ[C ′

2] is an instance of the
projection computed in Example 5). The end sequent of φ′ is

S: 0: (Dx)((P (x) ∨ Q(x)) ∨ R(x)), 1:P (c)

So we obtain γ′[φ′] =

(φ′[C ′
2])

0:P (c), 0:P (c), 1:P (c), S

S, 0:P (c), 0:P (c), 1:P (c)
π

(φ[C ′
1])

u:P (c), S

S, u:P (c)
π

S, S, 0:P (c), 0:P (c)
cut1u

S, S, 0:P (c)
c

(φ[C ′
1])

u:P (c), S

S, u:P (c)
π

S, S, S
cut0u

S
c∗

5 Conclusion

Besides establishing a feasible cut-elimination method for many-valued first order
logics the main aim of this paper is to demonstrate the stability of CERES

20 M. Baaz and A. Leitsch

w.r.t. cut elimination problems beyond classical first order logic. The authors
are convinced, that this stability of CERES will it enable to incorporate intrinsic
non-classical logics such as intuitionistic logic and possibly to extend CERES to
the second order case, where inductive methods of cut-elimination fail by Gödel’s
Second Incompleteness Theorem.

References

1. M. Baaz, C. Fermüller: Resolution-Based Theorem Proving for Many-Valued
Logics, Journal of Symbolic Computation, 19(4), pp. 353-391, 1995.

2. M. Baaz, C. Fermüller, G. Salzer: Automated Deduction for Many-Valued Logics,
in: Handbook of Automated Reasoning 2, eds. J. A. Robinson, A. Voronkov,
Elsevier and MIT Press, pp. 1356-1402, 2001.

3. M. Baaz, C. Fermüller, R. Zach: Elimination of Cuts in First-order Finite-valued
Logics, J. Inform. Process. Cybernet. (EIK), 29(6) , pp. 333-355, 1994.

4. M. Baaz, A. Leitsch: Cut normal forms and proof complexity, Annals of Pure
and Applied Logic, 97, pp. 127-177, 1999.

5. M. Baaz, A. Leitsch: Cut-Elimination and Redundancy-Elimination by Resolu-
tion, Journal of Symbolic Computation, 29, pp. 149-176, 2000.

6. M. Baaz, A. Leitsch: Towards a Clausal Analysis of Cut-Elimination, Journal of
Symbolic Computation, to appear.

7. W. A. Carnielli: Systematization of Finite Many-Valued Logics through the
Method of Tableaux, Journal of Symbolic Logic, 52(2), pp. 473-493, 1987.

8. G. Gentzen: Untersuchungen über das logische Schließen, Mathematische Zeit-
schrift 39, pp. 405–431, 1934–1935.

	Introduction
	Definitions and Notation
	Skolemization
	Skolemization of Proofs
	De-Skolemization of Proofs
	Re-introduction of Distributive Quantifiers

	CERES-m
	Conclusion

