
A Finite State Model for On-Line Analytical Processing
in Triadic Contexts

Gerd Stumme

Chair of Knowledge & Data Engineering, Department of Mathematics and Computer Science,
University of Kassel, Wilhelmshöher Allee 73, D–34121 Kassel, Germany

http://www.kde.cs.uni-kassel.de

Abstract. About ten years ago, triadic contexts were presented by Lehmann and
Wille as an extension of Formal Concept Analysis. However, they have rarely
been used up to now, which may be due to the rather complex structure of the
resulting diagrams. In this paper, we go one step back and discuss how traditional
line diagrams of standard (dyadic) concept lattices can be used for exploring and
navigating triadic data.

Our approach is inspired by the slice & dice paradigm of On-Line-Analytical
Processing (OLAP). We recall the basic ideas of OLAP, and show how they may be
transferred to triadic contexts. For modeling the navigation patterns a user might
follow, we use the formalisms of finite state machines. In order to present the
benefits of our model, we show how it can be used for navigating the IT Baseline
Protection Manual of the German Federal Office for Information Security.

1 Introduction

Concept lattices have proven their high potential for visualizing and exploring datasets
in many applications during the last 25 years. This success of Formal Concept Analysis
incited researchers to extend it to other types of knowledge representation. Among them
are for instances logical extensions, relational data, and power context families. One
of these extensions are triadic contexts, which were introduced ten years ago by Fritz
Lehmann and Rudolf Wille in [14]. They defined a triadic formal context as a quadruple
K := (G, M, B, Y) where G, M , and B are sets, and Y is a ternary relation between
G, M , and B, i. e., Y ⊆ G × M × B. The elements of G, M , and B are called
(formal) objects, attributes, and conditions, resp, and (g, m, b) ∈ Y is read “object g
has attribute m under condition b. A triadic concept of K is a triple (A1, A2, A3) with
A1 ⊆ G, A2 ⊆ M , and A3 ⊆ B where A1 × A2 × A3 ⊆ Y such that none of its three
components can be enlarged without violating this condition.

Lehmann and Wille present an extension of the theory of ordered sets and (concept)
lattices to the triadic case, and discuss structural properties. This approach initiated
research on the theory of concept trilattices, which was followed by several researchers
(e. g., [1, 2, 3, 4, 5, 6, 8, 10, 11, 15, 16, 17, 18, 20, 21, 22]). Already in the first paper on
this topic, Lehmann and Wille elaborated also a visualization of concept trilattices in
triadic diagrams. But even though there are applications where the natural representation
of the data are triadic contexts, the visualization by triadic diagrams never made it into

B. Ganter and R. Godin (Eds.): ICFCA 2005, 3403, pp. 315–328, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

316 G. Stumme

practice, and there exist only few visualizations of rather small concept trilattices. This
is probably due to the complex structure of the diagrams. In this paper, we go one step
back and discuss how traditional line diagrams of dyadic concept lattices can be used
for exploring and navigating triadic data.

The idea of deriving dyadic contexts from the triadic one is not new. Lehmann and
Wille present, for instance, in [14] the derived dyadic context K

(1) := (G, M ×B, Y (1))
with (g, (m, b)) ∈ Y (1) : ⇐⇒ (g, m, b) ∈ Y (marked by ‘

M

’ below), and its two
symmetric variations. In [8], the set B is used to define two modal operators (marked
by ‘∃’ and ‘∀’ below). We will use these derivation modes later, but will set them in a
common navigation framework.

Our approach for navigating triadic data is inspired by the slice & dice paradigm
of On-Line-Analytical Processing (OLAP). We present the basic ideas of OLAP in the
next section, and show how they may be transferred to triadic contexts. For modeling the
navigation patterns a user might follow, we use the formalisms of finite state machine
(see Section 3). In order to present the benefits of our model, we show in Section 4 how
it can be used for navigating the IT Baseline Protection Manual of the German Federal
Office for Information Security. As this model is only a first step to a comprehensive
navigation environment for triadic (and possibly other) data, many interesting research
questions remain open. They conclude the article.

2 On-Line Analytical Processing and Triadic Contexts

The expression On-Line Analytical Processing (OLAP) has been coined by E. F. Codd
et al in [7], and stands for the analysis of multi-dimensional data. We will first give a
short introduction in the main features of OLAP as far as they are needed in this paper,
before informally outlining how we adapt them to triadic contexts.

OLAP relies on the metaphor of a (high-dimensional) cube containing data. One
might for instance want to structure sales facts along the dimensions region, product
and time. These dimensions span a three-dimensional cube as shown in Fig. 1. The cube
is composed of cells, one for each combination of a region, a product, and a day. The
cell contains a numerical value indicating how many items of that product have been
purchased in the specific region on the given day.

Fig. 1. A data cube

A Finite State Model for On-Line Analytical Processing in Triadic Contexts 317

The analyst may ask queries like ‘Give me the sales facts for all products over all
days in Hessen’or ‘Give me the total number of items sold of product X in Hessen within
the whole time period’. Both queries reduce the dimensionality of the answer: the first
query returns a two-dimensional answer (the ‘slice’which is indicated in Fig. 1), while the
second query returns a one-dimensional answer. This reduction of the dimensionality
is known as slicing in OLAP. The second query applies additionally an aggregation
function as it sums up numbers of items. There are usually predefined hierarchies on
the dimensions along which the aggregation takes place. For instance, days may sum
up to months, and months to years. In this paper, however, we won’t make use of these
hierarchies.1 An additional feature of OLAP is dicing2 which rotates the data cube. This
is particularly useful if the results are presented by spreadsheets, as it allows to permute
rows and columns.

The association between OLAP data cubes and triadic contexts is now straight for-
ward. The latter can in fact be considered as an OLAP data cube with three dimensions
(G, M , and B), and the content of the cells represents the membership function of the
relation Y .

As in OLAP, we want to be able to dice. This means that we want to allow to use any
of the three sets as the set of objects at some point in time, depending on the task on hand.
Therefore, we will not fix the roles of the three sets in advance. Instead, we consider a
triadic context as symmetric structure, where all three sets are of equal importance. The
decision which of the sets is considered as object set, attribute set, and condition set,
resp., is made later by the user. For easier handling, we will therefore denote the triadic
context K := (G, M, B, Y) alternatively by K := (K1, K2, K3, Y) in the sequel. We
consider all (triadic) contexts in this paper to be finite.

We will usually not work on the full triadic context (K1, K2, K3, Y). Instead, we
allow to focus on subsets of interest. Hence, for each of the three dimensions, we allow
to restrict the set Ki to any subset Xi we are currently interested in. Thus, the current
triadic context is just the sub-context (X1, X2, X3, Y ∩(X1×X2×X3)). This reduction
is inspired by the slicing operation in OLAP.

Dicing is modeled by a permutation on the set {1, 2, 3}, i. e., by an element σ of the
full symmetric group S3. Such a permutation indicates that currently Xσ(1) is considered
as set of objects, Xσ(2) as set of objects, and Xσ(3) as set of conditions.

The aggregation mode is determined by one of the four options ‘∃’, ‘∀’, ‘

G

’, and ‘

M

’.

– In the first case, we consider the concept lattice of the dyadic context

K
σ,∃
X1,X2,X3

:= (Xσ(1), Xσ(2), I)

with (xσ(1), xσ(2))∈I if and only if there exists xσ(3) ∈Xσ(3) with (x1, x2, x3)∈Y .
– In the second case, we consider the concept lattice of the dyadic context

K
σ,∀
X1,X2,X3

:= (Xσ(1), Xσ(2), I)

with (xσ(1), xσ(2)) ∈ I if and only if for all xσ(3) ∈ Xσ(3) holds (x1, x2, x3) ∈ Y .

1 For a combination of these hierarchies with Formal Concept Analysis, see [19].
2 Here the terminology is diverging in the literature. In some papers this is called pivoting, while

‘dicing’ is used for ‘slicing’ with resulting slices of dimension 3 or higher.

318 G. Stumme

– In the third case, we consider the concept lattice of the dyadic context

K
σ,

G

X1,X2,X3
:= (Xσ(1) × Xσ(3), Xσ(2), I)

with ((xσ(1), xσ(3)), xσ(2)) ∈ I if and only if (x1, x2, x3) ∈ Y .
– In the fourth case, we consider the concept lattice of the dyadic context

K
σ,

M

X1,X2,X3
:= (Xσ(1), Xσ(2) × Xσ(3), I)

with (xσ(1)), (xσ(2), xσ(3))) ∈ I if and only if (x1, x2, x3) ∈ Y .

Concluding, the binary context (and its concept lattice) that we consider at a given
moment depends on the following selections:

– the choice of three subsets X1 ⊆ K1, X2 ⊆ K2, and X3 ⊆ K3,
– a permutation σ ∈ S3 , and
– the choice of the aggregation mode q ∈ {∃,∀,

G

,

M}.

Up to now, we have discussed how single concept lattices can be derived from a
triadic context. In order to support navigation, however, we need a mechanism which
allows us to come from one concept lattice to the next. This will be discussed in the next
section. We make use of the model of a finite state machine. Single concept lattices will
correspond to states, while the navigation steps are captured by state transitions.

3 The Finite State Model

As said above, there are many binary contexts that can be derived from a triadic one. In
this section, we discuss how the navigation between them may go on. We model this by
a finite state machine.

We recall that a finite state machine is a model of computation consisting of a set of
states, a start state, an input alphabet, and a transition function that maps pairs of input
symbols and current states to a next state. Thus, it is a tuple A = (E, S, δ, s0) where
E is a finite set, the input alphabet, S is a finite set, the set of states, δ is the transition
function, i. e., a mapping from E ×S to S, and s0 ∈ S is the start state. In our approach,
the contexts are considered as the states, and the navigation through the set of contexts
is modeled by the transition function.

Next, we give the formal definition of our finite state machine. Readers unfamiliar
with mathematical notations might first go to Section 4 in order to get a feeling for the
approach, before returning here.

As discussed in Section 2, the derivation of a binary context depends on a set of
choices. The combination of these choices makes up the state:

Definition 1. Let K := (K1, K2, K3, Y) be a triadic context. A state is then a tuple

s := (X1, X2, X3, σ, q)

where X1 ⊆ K1, X2 ⊆ K2, and X3 ⊆ K3, σ ∈ S3 , and q ∈ {∃,∀,

G

,

M}. The set of
all states of a triadic context is denoted by S(K), or simply by S if K is unambiguous
from the context.

For a given state s := (X1, X2, X3, σ, q), we let K(s) := K
σ,q
X1,X2,X3

, and B(s) :=
B(K(s)).

A Finite State Model for On-Line Analytical Processing in Triadic Contexts 319

We initialize our state machine with the start state

s0 := (K1, K2, K3, id,∃) .

This setting allows a first, global overview over the data, which may be refined later.
The initial choice of the existential quantifier for q follows the observation that this is
the most frequently used in applications for deriving a dyadic context.

The input alphabet E of the machine is given by

E := {slice(i, A) | i ∈ {1, 2, 3}, A ⊆ Ki}
∪{dice(σ) | σ ∈ S3}

∪{mode(∃),mode(∀),mode(

G

),mode(

M

)} .

Last but not least we define the transition function. We split up the definition into
three parts, corresponding to the three types of elements of the input alphabet listed
above.

Definition 2. Let s := (X1, X2, X3, σ, q) be a state, and e ∈ E. The transition function
δ is defined as follows. If e = slice(i, A) with i ∈ {1, 2, 3} and A ⊆ Ki, then
δ(s, e) := (X ′

1, X
′
2, X

′
3, σ, q) with X ′

i := A and X ′
j := Xj , for j 	= i.

For simplifying the navigation, one could restrict the set A to be a concept extent or
intent of some suitable concept lattice. Experiments with the example discussed below,
however, revealed the need for selecting arbitrary sets. Note that we also allow to enlarge
sets again, as there is no constraint saying that A has to be a subset of Xi. This allows to
extend sets again during the navigation process. In practice however, A often is a subset
of Xi. We discuss some properties of this case before continuing the definition of the
transition function.

Let A ⊆ Xi. If σ(1) = i or q =

G

and σ(3) = i, then the slice operation
reduces the current set of objects. The resulting concept lattice is thus isomorphic to a
∨-sub-semilattice of the previous one. If σ(2) = i or q =

M

and σ(3) = i, then the
slice operation reduces the current set of attributes, and the resulting concept lattice is
isomorphic to a ∧-sub-semilattice of the previous one. In all these cases, the information
presented in the lattice is thus reduced, just as a slicing operation in OLAP would do. In
the two remaining cases, however, the analogy to OLAP fails. If σ(3) = i and q = ∃,
then the binary relation of the current dyadic context decreases; if q = ∀ then the binary
relation increases. Simple examples show that there is no pre-determined relationship
between the current and the following lattice. In both situations the concept lattice can
either shrink or grow, depending on the constellation.

Definition 2 (contd.). If e = dice(σ′) with σ′ ∈ S3, then δ(s, e) := (X1, X2, X3, σ ◦
σ′, q).

We may denote the elements σ ∈ S3 by (123), (132), . . . , (321) where, e. g., (132)
means that the role of the object set remains unchanged while the attribute and the
condition sets interchange their roles. The transition dice(1, 2, 3) doesn’t do anything;
and the transition dice(2, 1, 3) interchanges the roles of objects and attributes. This
means that the concept lattice is turned upside down.

320 G. Stumme

Definition 2 (contd.). If e = mode(q) with q ∈ {∃,∀,

G

,

M} then δ(s, e) := (X1, X2,
X3, σ, q).

In practice it turns out that the ‘∃’ mode is the mostly used one. The change from
either ‘∃’ or ‘∀’ to ‘

G

’ or ‘

M

’ can be considered as drill-down, since the resulting concept
lattice provides more detailed information. A change of mode in the other direction is a
roll-up, as the information becomes more summarized.

The definition of our finite state machine is now complete. Next we introduce two
additional shortcuts.

Definition 3. We let delG := slice(σ−1(1), {{x} ∈ Xσ−1(1) | {x}′ 	= ∅} and
delM := slice(σ−1(2), {x ∈ Xσ−1(2) | x′ 	= ∅}, where the derivation ·′ is computed
in the current dyadic context.

These two derived operators serve the following purpose. After a slice operation, one
usually also wants to prune the remaining sets to the relevant elements. For instance, if
one reduced the set of objects, then there may be some attributes which do not relate to
any of the remaining objects. In most cases, one may want to remove these attributes
(which would all be attached to the bottom concept), as they do not provide any further
insight. This removing of ‘superfluous’ attributes is performed by delM, while delG
removes all objects which are not covered by at least one attribute any more.

As known from basics about finite state machines, we can now extend the transition
function such that it applies not only to single symbols of the input alphabet, but also to
words. We denote the set of words over the input alphabet E by E∗, which includes the
empty word λ. The transition function δ is then recursively extended to δ∗: E∗ ×S → S
by δ∗(λ, s) := s, and δ∗((w, e), s) := δ∗(w, δ(e, s)), for w ∈ E∗ and e ∈ E.

An element w of E∗ can naturally be considered as a program (which is executed
from right to left). Its semantics is given by the function [[w]]:S → S which is given
by [[w]](s) := δ∗(w, s). Specifically, one can determine the current state of the system
by storing all previous interactions of the user as w ∈ E∗. The current state is then just
[[w]](s0). In an implementation of the framework, w may be shown as navigation history
to the user, and supports an ‘undo’ function or ‘back’ button.

4 Navigation Within the Triadic Information System

In this section, we show by an example, how our framework supports navigation in a
real world dataset. The IT Baseline Security Manual [9] of the German Federal Office
for Information Security provides a description of the threat scenario that is globally
assumed, standard security measures for typical IT systems, and detailed descriptions
of safeguards to assist with their implementation.3

The core data of the manual can be considered as a triadic context. We consider the
the possible threats as objects, the IT components as attributes, and the safeguards as

3 The online version of the manual can be found at http://www.bsi.de/gshb/ .

A Finite State Model for On-Line Analytical Processing in Triadic Contexts 321

Fig. 2. The top part of the concept lattice of the initial state

conditions.4 For presentation purposes, we restrict the example as follows. K1 :={Ex-
change of Data Media, . . . , Exchange/Outlook 2000} is the set of all ten data transmission
systems listed in Section 7 of [9], K2 is the set of all threats against at least one of the
data transmission systems, and K3 is set of all safeguards against at least one of these
threats for at least one of the data transmission systems.5 The top part of the concept
lattice of the start state is shown in Fig. 2. The names of the threats (which play the
role of objects at the moment) are omitted due to representation issues. From this initial
state, we will perform a series of navigation steps to illustrate the different features of
the model.

First we want to reduce the components to those which are currently used at our
research group. We perform thus the operations

op1: slice(1, {7.3 Firewall, 7.4 E-Mail, 7.5 WWW-Server, 7.6 Remote Access,
7.9Apache Webserver})

op2:delG .

The resulting concept lattice is shown in Fig. 3. The concept in the middle of the diagram
indicates for instance that the two threats ‘T 3.38 Errors in configuration and operation’
and ‘T 4.39 Software conception errors’ are the threats which are directed against all the
three components Firewall, WWW-Server, andApache Webserver. The two threats ‘T 5.2

4 Other assignments have been done in [8, 18, 22]. But as our approach considers all sets equiv-
alently, this assignment influences the start state only. Any initial arrangement can be reached
from any other by one dice operation.

5 This restricted scenario can also be reached by three consecutive slice operations within the
larger system that comprises all components, threads and safeguards discussed in the manual.

322 G. Stumme

Fig. 3. After slicing the set of components to Firewall, E-Mail, WWW-Server, Remote Access,
Apache Webserver

Manipulation of data and software’ and ‘T 5.28 Denial of services’ are directed against
these components, but they additionally concern the E-Mail system, as the lower right
concept indicates. The complete list of threats can be found at the website mentioned
above.

A major set of threats are deliberate attacks to the system. We now want to study
which of these attacks are potentially dangerous to the data transmission systems of our
research group. We perform thus the operation

op3: slice(2, X2∩{‘T 5.1 Manipulation or destruction of IT equipment or acces-
sories’,. . . , ‘T 5.111 Misuse of active content of E-Mails’})

(where X2 is the current set of objects) and obtain the line diagram in Fig. 4. The
diagram shows that there are many rather specific threats, as they are related to only one
component each.

A Finite State Model for On-Line Analytical Processing in Triadic Contexts 323

Fig. 4. After slicing the set of threats to the deliberate acts

Fig. 5. After slicing away all threats which are against single components

In order to analyze in more depth deliberate acts against combinations of components,
we prune away all deliberate acts against single components. The operation

op4:slice(2, {x ∈ X̃2|card({x}′) 	= 1})

(where X̃2 is the current set of objects) yields the concept lattice in Fig. 5. In the lattice,
we can for instance discover that there are four threats which endanger at the same
time firewalls and WWW servers: IP spoofing, DNS spoofing, manipulation of data or
software, and denial of services.

For studying which other components are threatened by denial of service attacks,
we could make use of the same diagram. Another option — which supports the more
natural way of reading from top to bottom — is to turn the diagram upside down first. As

324 G. Stumme

Fig. 6. After dicing (exchange of objects and attributes)

well-known in FCA, this is obtained by interchanging the roles of objects and attributes
on the context level:

op5:dice(2, 1, 3)

The result of the operation is shown in Fig. 6. The components threatened by denial of
service attacks are now exactly those which are listed below ‘T 5.28 Denial of services’
in the diagram. We see that not only firewalls and WWW servers are endangered by this
threat, but also the Apache web server and email systems.

What can now be done in order to protect the data transmission systems of our
research group against deliberate acts? This question can be approached by focusing on
the relation between threats and safeguards rather than between threats and components.
In other words, we have to interchange the role of components and safeguards:

op6:dice(3, 2, 1)

The result is shown in Fig. 6. The encoding of the safeguards can be found online
in [9]. The lattice is rather complex — which indicates that there is no easy solution for
protecting our IT environment.

For getting a better insight, we focus (first) on those safeguards which are related to
hard- and software:

op7:slice(3, {x ∈ X̃3|x = “S 4. . . . ”})

(where X̃3 is the current set of objects). This yields the concept lattice in Fig. 8. It shows
for instance that there is no hard- or software related safeguard against IP spoofing. This
threat has to be countered by other means. On the other side we discover that even with
only two safeguards, ‘S 4.95 Minimal operating system’ and ‘S 4.34 Using encryption,
checksums or digital signatures’, many of the listed threats can be countered.

Figure 8 doesn’t show in detail if a safeguard is designed against a threat for all
relevant components or just for specific ones. One could expect that the choice of a safe-

A Finite State Model for On-Line Analytical Processing in Triadic Contexts 325

guard is independent of the component. By drill-down, we can analyze this hypothesis.
Figure 9 shows the result of

op8:mode(

G

) ,

Fig. 7. After dicing (exchange of objects and conditions) again

Fig. 8. After slicing the safeguards to the hard- and software related ones

326 G. Stumme

Fig. 9. After drill-down to the components

i. e., the concept lattice
B([[op8, . . . , op1]](s0)) .

By comparing Figs. 8 and 9, we discover that this hypothesis is indeed almost true,
since the concept lattices are quite similar. However, there are some differences. For
instance, safeguard ‘S 4.33 Use of a virus scanning program while exchanging of data
media and data transmission’ is adequate against macro viruses and computer viruses for
email systems, while it protects web servers against computer viruses and manipulation
of data or software. At least, this is what the data provided by the IT baseline manual
indicate. One may now discuss if this is adequately modeling the situation. We, however,
will now leave this example, and return to a more general discussion on future research.

5 Conclusion and Outlook

In this paper, we integrated bits and pieces which were available for analyzing triadic
contexts by line diagrams of derived dyadic contexts, and set them into a navigation
framework. As this is only a first step, many interesting research questions remain open.
They include:

– Further development of automated drawing routines is important, as there are so
many potential concept lattices which can be derived from a triadic context that
one cannot create them all beforehand. (In this paper, we have made the layout
manually).

– The framework should be implemented and evaluated in more scenarios. This in-
cludes a concretization of the means of interaction by which the user can perform
the slice & dice operations.

A Finite State Model for On-Line Analytical Processing in Triadic Contexts 327

– How can techniques like conceptual scaling or iceberg lattices be exploited for more
sophisticated navigation means?

– Are there other aggregation modes? For instance, one might want to integrate power
scales [13] or relational scales [12].

– In OLAP, the dimensions carry an additional structure: Each dimension goes along
with a hierarchy along which aggregation is performed. On a small scale, such
hierarchies also exist in our IT example, by means of clustering each of the sets
of components, threats, and safeguards into different sections of the IT Baseline
Manual. How can these hierarchies be incorporated into the model?

– Relational databases are an important application domain which provides a lot of
interesting applications. From the perspective of Formal Concept Analysis, many-
valued contexts and multi-contexts are data structures closely related to relational
databases. How can the framework presented here be extended to incorporate them
as well?

References

1. K. Biedermann. How triadic diagrams represent conceptual structures. In D. Lukose, H. S.
Delugach, M. Keeler, L. Searle, and J. F. Sowa, editors, Conceptual Structures: Fulfilling
Peirce’s Dream, number 1257 in LNAI, pages 304–317, Heidelberg, 1997. Springer.

2. K. Biedermann. Triadic Galois connections. In K. Denecke and O. Lüders, editors, General
algebra and applications in discrete mathematics, pages 23–33,Aachen, 1997. ShakerVerlag.

3. K. Biedermann. Completion of triordered sets and trilattices. In D. Dorninger, G. Eigenthaler,
H.K. Kaiser, H. Kautschitsch, W. More, and W.B. Müller, editors, Contributions to General
Algebra, number 10, pages 61–78, Klagenfurt, 1998. Johannes Heyn Verlag.

4. K. Biedermann. A foundation of the theory of trilattices. Dissertation, TU Darmstadt,Aachen,
1998.

5. K. Biedermann. Powerset trilattices. In M. Mugnier and M. Chein, editors, Conceptual Struc-
tures: Theory, Tools and Applications, volume 1453 of Lecture Notes in Computer Science.
Springer, 1998.

6. K. Biedermann. An equational theory for trilattices. Algebra Universalis, 42:253–268, 1999.
7. E. F. Codd, S. B. Codd, and C. T. Salley. Providing OLAP (On-Line Analytical Processing)

to User-Analysis: An IT Mandate, 1993. White paper.
8. F. Dau and R. Wille. On the modal unterstanding of triadic contexts. In R. Decker and

W. Gaul, editors, Classification and Information Processing at the Turn of the Millenium,
Proc. Gesellschaft für Klassifikation, 2001.

9. German Federal Office for Information Security. IT Baseline Protection Manual.
http://www.bsi.de/gshb/, October 2003.

10. B. Ganter and S. A. Obiedkov. Implications in triadic contexts. In Conceptual Structures
at Work: 12th International Conference on Conceptual Structures, volume 3127 of Lecture
Notes in Computer Science. Springer, 2004.

11. B. Groh and R. Wille. Lattices of triadic concept graphs. In B. Ganter and G. W. Mineau,
editors, Conceptual Structures: Logical, Linguistic, and Computational Issues, volume 1867
of Lecture Notes in Computer Science. Springer, 2000.

12. J. Hereth. Relational scaling and databases. In U. Priss, D. Corbett, and G. Angelova,
editors, Conceptual Structures: Integration and Interfaces, 10th International Conference
on Conceptual Structures, ICCS 2002, Borovets, Bulgaria, July 15-19, 2002, Proceedings,
volume 2393 of Lecture Notes in Computer Science, pages 62–76. Springer, 2002.

328 G. Stumme

13. J. Hereth and G. Stumme. Reverse pivoting in conceptual information systems. In H. S.
Delugach and G. Stumme, editors, Conceptual Structures: Broadening the Base, volume
2120 of Lecture Notes in Computer Science, pages 202–215. Springer, 2001.

14. F. Lehmann and R. Wille. A triadic approach to formal concept analysis. In G. Ellis, R. Levin-
son, W. Rich, and J. F. Sowa, editors, Conceptual Structures: Applications, Implementation
and Theory, volume 954 of Lecture Notes in Computer Science. Springer, 1995.

15. S. Prediger. Nested concept graphs and triadic power context families. In B. Ganter and G. W.
Mineau, editors, Conceptual Structures: Logical, Linguistic, and Computational Issues. Proc.
ICCS ’00, number 1867 in LNAI, pages 249–262, Heidelberg, 2000. Springer.

16. U. Priss. A triadic model of information flow. In G.W. Mineau, editor, Conceptual Structures:
Extracting and Representing Semantics, pages 159–170, Quebec, Canada, 2001. Dept. of
Computer Science, University Laval.

17. L. Schoolmann and R. Wille. Concept graphs with subdivision: A semantic approach. In Aldo
de Moor, Wilfried Lex, and Bernhard Ganter, editors, Conceptual Structures for Knowledge
Creation and Communication, volume 2746 of Lecture Notes in Computer Science, pages
271–281. Springer, 2003.

18. H. Söll. Begriffliche Analyse triadischer Daten: Das IT-Grundschutzhandbuch des Bun-
desamts für Sicherheit in der Informationstechnik. Diploma thesis, FB Mathematik, TU
Darmstadt, Darmstadt, April 1998.

19. G. Stumme. On-line analytical processing with conceptual information systems. In K. Tanaka
and S. Ghandeharizadeh, editors, Proc. 5th Intl. Conf. on Foundations of Data Organization
(FODO’98), pages 117–126, November 12-13, 1998.

20. R. Wille. The basic theorem of triadic concept analysis. Order, 12:149–158, 1995.
21. R. Wille. Triadic Concept Graphs. In M.-L. Mugnier and M. Chein, editors, Conceptual

structures: theory, tools and application, number 1453 in LNAI, pages 194–208, Berlin-
Heidelberg-New York, 1998. Springer.

22. R. Wille and M. Zickwolff. Grundlagen einer triadischen Begriffsanalyse. In G. Stumme
and R. Wille, editors, Begriffliche Wissensverarbeitung. Methoden und Anwendungen, pages
125–150, Berlin-Heidelberg, 2000. Springer-Verlag.

	Introduction
	On-Line Analytical Processing and Triadic Contexts
	The Finite State Model
	Navigation Within the Triadic Information System
	Conclusion and Outlook

