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1 LRI, UMR-CNRS 8623, Université Paris-Sud, 91405 Orsay, France
ventos@lri.fr

2 L.I.P.N, UMR-CNRS 7030, Université Paris-Nord,
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Abstract. What we propose here is to reduce the size of Galois lattices
still conserving their formal structure and exhaustivity. For that purpose
we use a preliminary partition of the instance set, representing the asso-
ciation of a “type” to each instance. By redefining the notion of extent
of a term in order to cope, to a certain degree (denoted as α), with this
partition, we define a particular family of Galois lattices denoted as Al-
pha Galois lattices. We also discuss the related implication rules defined
as inclusion of such α-extents and show that Iceberg concept lattices are
Alpha Galois lattices where the partition is reduced to one single class.

1 Introduction

Galois lattices (or concept lattices) are well-defined and exhaustive representa-
tions of the concepts embedded in a data set since they allow us to obtain every
subset of instances distinguishable according to the chosen attributes. However,
when dealing with real-world data sets the size of such a lattice can be too large
to be handled. Various techniques have been proposed to reduce the size of con-
cept lattices by eliminating part of the nodes (e.g. [7]). In particular, Iceberg
concept lattices [14, 17] represent the topmost part of a concept lattice w.r.t. a
global criterion of frequency: only nodes with an extent cardinality satisfying
a threshold according to the whole data set are kept. In this paper, we present
more flexible Galois lattices in which the number of nodes is controlled according
to a local criterion of frequency linked to a prior partition of the set of instances.

The partition is a set of basic classes which are clusters of instances sharing
the same basic type. For instance, in real data concerning the electronic catalog
of computer products C/Net (http://www.cnet.com), there are 59 different ba-
sic types (e.g. Laptops, HardDrives, NetworkStorage) for 2274 instances. Basic
classes are then used in order to add a local criterion of frequency to the notion
of extent as follows: an instance i now belongs to extα(T ), the α-extent of a
subset T of the set of attributes, when it belongs to ext(T ), the extent of T ,
(i.e. i has every of T’s properties), and when at least α % of the instances of the
basic class of i also belong to ext(T ). This new notion of α-extent is used in the
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Galois connection related to the family of Alpha Galois lattices. Alpha Galois
lattices were first introduced in [12] as a part of the system ZooM.

In comparison with concept lattices, Alpha Galois lattices are mainly char-
acterized by the following properties:

– For the same set of attributes, the same set of individuals, and for any value
of α, the Alpha Galois lattice Gα is coarser than the concept lattice G, i.e.
the set of nodes of Gα is a subset of the set of nodes of the concept lattice
G.

– G0 exactly is G, and G100 also is a concept lattice built from a set of instances
that each represents one basic class.

– The values of α define a total order on Alpha Galois lattices where the
Alpha Galois lattice induced by extα1 is coarser than the Alpha Galois lattice
induced by extα2 if α1 ≥ α2.

– When all individuals belong to a single basic class, the corresponding Alpha
Galois lattice is an Iceberg concept lattice where α

100 = minsupp.
– A property (i.e. an attribute) can belong to an intent of an Alpha Galois

lattice Gα even if it is not globally frequent. For instance, in G90 the “sup-
port” property will appear since in the HardDrives basic class, 92 % of the
instances of HardDrives were sold with support. Actually, this property is
not globally frequent (13 products out of 2274, i.e. 0.5 %) and so would not
apppear in the corresponding Iceberg concept lattice with minsupp = 0.9

– The inclusion of α-extent corresponds to particular implication rules, repre-
senting some kind of approximation of usual implication rules, that depends
on the selected partition of the instances.

The general framework of Galois lattices is given in section 2. In section 3,
we present Alpha Galois lattices illlustrated with a simple example. Section 4
presents experimental results on the C/net data set and discusses the ability
of such a representation to deal with exceptional data (α near 0 or near 100).
Section 5 first discusses Iceberg Alpha Galois lattices together with α-implication
rules, and then briefly addresses theoretical issues as the nature of the objects of
a formal context which concept lattice is isomorphic to an Alpha Galois lattice.
Finally, related work and future work are discussed in section 6.

2 Preliminaries and Definitions

Detailed definitions, results and proofs regarding Galois connections and lattices
may be found in [1, 2]. Other results concerning Galois lattices in the field of
Formal Concept Analysis can be found in [4]. However we need a more general
presentation than the one in [4] as our main goal is to construct Galois lattices
where the notion of extent is not the usual one. In the rest of the paper we
denote as Galois lattice the formal structure that we define hereunder and we
will denote as concept lattice the Galois lattice as presented in [4].We consider
in our presentation that the reader is familiar with the definitions of ordered
set and lattice. We also recall that a mapping w from an ordered set M to M



Alpha Galois Lattices: An Overview 301

is called a closure operator iff for any pair (x, y) of elements of M we have a)
x ≤ w(x) (extensity), b) if x ≤ y then w(x) ≤ w(y) (monotonicity), and c)
w(x) = w(w(x)) (idempotency). An element of M such that x = w(x) is called
a closed element of M w.r.t. w.

Definition 1 (Galois Connection). Let m1: P → Q and m2: Q → P be maps
between two ordered sets (P,≤P ) and (Q,≤Q). Such a pair of maps is called a
Galois connection if for all p, p1, p2 in P and for all q, q1, q2 in Q:

C1- p1 ≤P p2 ⇒ m1(p2) ≤Q m1(p1)
C2- q1 ≤Q q2 ⇒ m2(q2) ≤P m2(q1)
C3- p ≤P m2(m1(p)) and q ≤Q m1(m2(q))

The following simple example will be used in order to illustrate the different
notions presented in section 2 and in section 3.

Example 1. The two ordered sets are (L,�) and (P(I), ⊆). L is a language a
term of which is a subset of a set of attributes A = {t1, t2, t3,a3,a4,a5,a6,a7,a8}.
Here c1 � c2 means that c1 ⊆ c2. I is a set of individuals = {i1,i2,i3,i4,i5, i6,i7,i8}.
Let int and ext be the two maps int: P(I) → L and ext: L → P(I) such that
int(e1) is the subset of attributes common to all the individuals in e1 and ext(c1)
is the subset of individuals of I which have all the attributes of c1. Example 1 is
fully described in Figure 1 where each line i represents the intent int({i}) of an
individual of I and each column j represents the extent ext({j}) of an attribute
of A.

Together with L and P(I), int and ext define a Galois connection.

Fig. 1. Example 1. Tab(i, j) = 1 if the jth attribute belongs to the ith individual

Definition 2 (Galois Lattices). Let m1: P → Q and m2: Q → P be maps
between two lattices (P,≤P ) and (Q,≤Q), such that (m1,m2) is a Galois connec-
tion.
Let G={ (p,q) with p an element of P and q an element of Q such that p=m2(q)
and q = m1(p)}
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Let ≤ be defined by: (p1,q1) ≤ (p2,q2) iff q1 ≤Q q2.
(G,≤) is a lattice called a Galois lattice. When necessary it will be denoted as
G(P, m1, Q, m2).
Example: In example 1, we have G={(c,e) | c ε L, e ε P(I), e = ext(c) and c =
int(e)}. Then (G, ≤) is a Galois lattice where ≤ is defined by: (c, e) ≤ (c1, e1)
iff e ⊆ e1 (which is equivalent to c ⊇ c1). The Galois lattice corresponding to
example 1 is presented in Figure 2.

Fig. 2. The Galois Lattice corresponding to example 1

In a Galois connection m1◦m2 and m2◦m1 are closure operators on (P,≤P )
and (Q,≤Q). As a consequence, a node of a Galois lattice is a pair of closed
elements of P and Q.
Example: In example 1, ext({a4}) = {i1, i3, i4}, int({i1, i3, i4}) = {a4, a6}.

The term {a4, a6} is therefore a closed term as int(ext({a4}) = {a4, a6}
Furthermore the functions m1 and m2 define equivalence relations on the

lattices P and Q as follows:

Definition 3 (Equivalence Relations on P and Q ). Let ≡P and ≡Q denote
the equivalence relations defined on P and Q by the mappings m1 and m2, i.e.
let p1, p2 be elements of P and q1, q2 be elements of Q:

p1 ≡P p2 iff m1(p1) = m1(p2), and q1 ≡Q q2 iff m2(q1) = m2(q2)

Lemma 1. Let p be an element of P, and q be an element of Q, then m2(m1(p))
is the greatest element of the equivalence class of ≡P containing p and m1(m2(q))
is the greatest element of the equivalence class of ≡Q containing q.

So, a characteristic property of Galois lattices is that each node (p, q) is a
pair of representatives of their respective equivalence classes.
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In our previous example, we used the language L, defined as the powerset
P(A) of a set of attributes A, as the first lattice, and the powerset P(I) of a set
of individuals I as the second lattice. Such a Galois lattice is known as a concept
lattice[4]. In concept lattices, a node (c, e) is a concept, c is the intent and e is
the extent of the concept. The relationship between I and A is expressed as the
formal context (I, A, R) where R ⊆ I × A is the binary relation such that iRa
if an only if the individual i has the attribute a. We have then int(e) = {a ∈
A | ∀i ∈ e, iRa} and ext(c) = {i ∈ I | ∀a ∈ c, iRa}. The Galois lattice presented
in Figure 2 is then the concept lattice defined by the formal context of Figure 1.

Concept lattices are interesting both from a practical point of view, as they
express in a rigorous way the two sides of a concept, and from a theoretical point
of view, as any complete lattice is isomorphic to a concept lattice [4].

3 Alpha Galois Lattices

In what follows we consider, with no loss of generality, L = P(A) and we start
with the concept lattice G(L, ext,P(I), int) as previously examplified. Then we
will discuss a variation on ext whose purpose is to obtain an equivalence rela-
tion ≡‘

L coarser than the original one (see definition 9) thus resulting in larger
equivalence classes on L and so on less nodes in the corresponding Galois lattice.

The new ext function relies on the association of a predefined type to each
individual of I. The corresponding clusters of instances, which form a parti-
tion of I are denoted as basic classes. The first idea is then to gather such
clusters rather than individuals (see [12]). For instance, let us assume that the
attributes t1, t2, t3 express the types of the individuals of example 1. These types
corresponds to three basic classes BC1, BC2, BC3 whose descriptions are the
following:

BC1={i1,i2}, int(BC1)= {t1,a3,a6}; BC2={i3,i4,i5}, int(BC2)= {t2,a6};
BC3={i6,i7,i8}, int(BC3)= {t3,a3,a6,a8}.

Let us consider the concept lattice built on a set of individuals {bc1,bc2,bc3},
that we call the prototypes of their respective basic classes, and that are such
that, for any index i, int(BCi) = int({bci}). This concept lattice is represented
in Figure 3 as a particular case of an Alpha Galois lattice, and is much smaller
than the original concept lattice.

Now, we propose an intermediate approach where the entities gathered can
be other subsets of I than either individuals or whole basic classes. This leads
to the definition of Alpha Galois lattices.

3.1 Alpha Definitions

Definition 4 (Alpha Satisfaction). Let α belong to [0,100]. Let e={i1, . . . , in}
be a set of individuals and T be a term of L. Then,

e α − satisfies T (e satα T ) iff | ext(T ) ∩ e | ≥ |e|.α
100

Since the Alpha satisfaction is defined according to a set of individuals and to
a term of the language L, we can use it to check whether at least α % of a basic
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class satisfies a term of L and add this constraint to isa, the classical membership
relation between individuals and terms. In what follows i isa T means i ∈ ext(T ).
We call this notion (membership relation plus Alpha satisfaction of the basic
class) the Alpha membership relation.

Definition 5 (Alpha Membership Relation). Let I be a set of individuals
and BC be a partition of I into a set of basic classes. Let BCl : I → BC be such
that BCl(i) is the basic class to which belongs i, and let T be a term of L, then:

i isaα T iff i isa T and BCl(i) satα T

Example (Example 1). Let T={a6,a8}, ext(T) = {i1,i3,i5,i6,i7,i8}. BC1
sat50 T since i1 isa T and | BC1 | =2. As a result i1 isa50 T . BC2 sat60
T since | ext(T ) ∩ BC2 |≥ |BC2|.60

100 . So we have i3 and i5 isa60 T . Finally
BC3 sat100 T since 100 % of the individuals of BC3 belong to the extent of T .
So we have i6, i7, and i8 isa100 T .

Finally, we use the Alpha membership relation to define the notion of extent
used in Alpha Galois Lattices.

Definition 6 (Alpha Extent of a Term). The α-extent of T in I w.r.t. the
set BC of basic classes is the following set:

extα(T ) = {i ∈ I | i isaα T}
Example (Example 1) : Let T={a6,a8}, then ext0(T)= ext(T) = {i1, i3,i5,
i6,i7,i8}, ext60(T)= {i3,i5,i6,i7,i8} and ext100(T)= {i6,i7,i8}.

The following proposition about the new Galois connection needs the defini-
tion of Eα, a subset of P(I) whose elements are made of sufficiently large parts
of basic classes.

Proposition 1. Let Eα be the following subset of P(I):
Eα = {e ∈ P(I) | ∀i ∈ e | e ∩ BCl(i) | ≥ |BCl(i)|.α

100 }.
Then int and extα define a Galois connection on L and Eα.

Proof: The proof relies on theorem 1 given in the next section and is presented
as the proof of a corollary.

We can therefore define Galois lattices from this new Galois connection and
we called them Alpha Galois lattices.

Definition 7 (Alpha Galois Lattices). The Galois lattice G(L, extα, Eα, int)
corresponding to the Galois connection defined above is called an Alpha Galois
lattice and is denoted as Gα.

When α is equal to 0, Eα = P(I) and extα = ext. Therefore, the Alpha
Galois lattice is the concept lattice corresponding to the same attributes and
instances. When α is equal to 100, the nodes of the Galois lattice are only whole
basic classes gathered. As a consequence the Alpha Galois lattice is the concept
lattice obtained by considering as instances the prototypes of the basic classes.
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The Alpha Galois lattice G100 of Example 1 is represented in Figure 3. Figure
4 presents the topmost part of G60. Note that intents of the nodes of G100 are
also intents of nodes of G60 that in turn are all intents of nodes of the original
concept lattice G0 (see Figure 2).

Fig. 3. When α =100 the Alpha Galois lattice G100 of example 1 is much smaller than
the original concept lattice presented in Figure 2

{a6,a8}{i3,i5,i6,i7,i8}

{a6}{i1,i2, ... ,i8}

{t2,a6}{i3,i4,i5}

�t3,a3,a6,a8��i6,i7,i8� {t2,a4,a6}{i3,i4}

�a3,a6��i1,i2,i6,i7,i8�

Fig. 4. α = 60 : The topmost part of G60 of example 1. New nodes, w.r.t. G100 are
the lighter ones

Moreover, there exists a total order on Alpha Galois lattices defined in the
next section.

3.2 Alpha Galois Lattice Order

In [5] the authors give a formal view to the extension of formal concept analysis
to more sophisticated languages of terms and use the notion of projection as a
way to obtain smaller lattices by reducing the language. [12] independently uses
the same notion of projection with a similar scope and also introduce exten-
sional projections to modify the ext function. We recall hereunder the notion of
projection:

Definition 8 (Projection). Proj is a projection of an ordered set (M,≤) iff
for any pair (x,y) of elements of M:
x ≥ Proj(x) (minimality),
if x ≤ y then Proj(x) ≤ Proj(y) (monotonicity),
Proj(x) = Proj(Proj(x)) (idempotency).
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Applying first the mapping ext and then an extensional projection yields an
equivalence relation ≡′

L which is coarser than the original one, thus resulting in
larger equivalence classes on L [12].

Definition 9. Let ≡1
L be the equivalence relation defined on L by the mapping

ext1, and let ≡2
L be the equivalence relation defined on L by the mapping ext2,

then, ≡2
L is said coarser than ≡1

L iff for any pair (c1,c2) of elements of L we
have:
if ext1(c1) = ext1(c2) then ext2(c1) = ext2(c2).

The following theorem [12] has a corollary that proves the proposition 1:

Theorem 1 (An Extensional Order on Galois Connections).
Let int and ext define a Galois connection on L and E, and let proj be a

projection of E. Let E1 = proj(E) and ext1 = proj ◦ ext. Then:
1) int, ext1 define a Galois connection on L and E1.
2) The Galois lattice G1(L, ext1, E1, int) has the following property: for any

node g1 = (c, e1) in G1 there exists a node g = (c, e) in G(L, ext, E, int), with
the same intent c, such that e1=proj(e).

3) ≡1
L is coarser than ≡L.

We will say then that G1 is coarser than (or nested in) G and write G1 =
proj(G). Let (c,e) be a node of G, then proj(c,e) = (int ◦ proj(e), proj(e)) is the
projected node in G1.

Corollary 1. Let G(L, ext,P(I), int) be a Galois lattice. Let α ∈ [0, 100] and for
e ∈ P(I), let :

– projα(e) = e − {i | i ∈ e and | e ∩ BCl(i) | < |BCl(i)|.α
100 }

– extα= projα ◦ ext and Eα = projα(P(I))

Then:
- int, extα define a Galois connection on L and Eα and G(L, extα, Eα, int)

is a Galois lattice coarser than G.

proof: In order to prove this corollary, we simply have to show that projα is a
projection: -projα(e) is included in e since we remove elements of e, so projα is
minimal. - If e is included in e′, every element of e removed when applying projα

on e′ will also be removed when applying projα on e, so projα is monotonic. -
finally, projα is idempotent since no more element of projα(e) can be removed
by applying again projα.

Furthermore, we can order the alpha extents according to the value of α: For
every pair (α1, α2) such that α1 ≤ α2, extα2 = projα ◦ extα1 with α = α2. As
a consequence, the value of α defines a total order on Alpha Galois lattices:

Proposition 2 (A Total Order on Alpha Galois Lattices). Let us denote
as ≡α the equivalence relation on L associated to extα. Then for every pair (α1,
α2) such that α1 ≤ α2, ≡α2

L is coarser than ≡α1
L .
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proof: projα is a projection for every value of α belonging to [0,100].
extα1=projα ◦ext with α = α1 and extα2=projα ◦extα1 with α = α2. According
to 3) of Theorem 1, ≡α2

L is then coarser than ≡α1
L .

Example: ≡100
L is coarser than ≡60

L which is in turn coarser than ≡0
L that is the

equivalence relation ≡L of the concept lattice.

The previous proposition is the basis to make successive refinements in Alpha
Galois lattices (see section 4).

There is also a partial order associated to the initial partition BC of I in basic
classes. Let us suppose that we substract some basic classes from I, and so from
BC, thus obtaining a reduced instance set I ′ together with a reduced partition
BC′. It is then easy to show (proof omitted here) that there is a projection proj
such that the corresponding E′

α simply rewrites as proj(Eα). As a consequence
we have the following property where we denote as GB

α the Alpha Galois lattice
built from the partition B.

Proposition 3 (A Partial Order on Alpha Galois Lattices). Let BC′ be a
subset of the set of basic classes BC, then the Alpha Galois lattice GBC′

α is coarser
than the Alpha Galois lattice GBC

α .

An interesting case is the one of the partition {I} in which we consider only
one single class, i.e. the case in which all individuals share the same type. The
corresponding Alpha Galois lattice is the topmost part of the concept lattice
defined by the same language L and the same set I of individuals. The lattice
then only contains nodes whose extents have a size greater than α

100 |I| (plus
the bottom node whose extent is empty). This structure has been previously
investigated and is denoted as an Iceberg (or frequent) concept lattice [14, 17]
where α

100 corresponds to the value of the support threshold minsupp.
Note that because of Proposition 3, the Iceberg lattice of any basic class BCi

of a partition BC is always coarser than the Alpha Galois lattice corresponding
to BC.

4 Experiments

The program ALPHA that computes Alpha Galois lattices relies on a straight-
forward top-down procedure in which nodes are generated as follows: a current
node intent c is specialized by adding a new attribute a, then int◦extα is applied
to c ∪ {a} in order to obtain a closed term; the corresponding node has then to
be compared to previous nodes in order to avoid duplicates.

We have experimented with ALPHA on a real dataset composed of 2274
computer products extracted from the C/Net catalog. Each product is described
using a subset of 234 attributes. There are 59 types of products and each product
is labelled by one and only one type.

In our first experiment we have built G100 using the whole data set (so prac-
tically restricted to 59 prototypical instances). Then we smoothly lowered the
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value of α and recomputed the corresponding Gα lattice. As we can see here-
under the number of nodes (and so the CPU time) exponentially grows from
211 concepts to 165369 as α varies from 100 to 91. This means that it is here
impossible to have a complete view of the data at the level of instances (α=0)
and that even relaxation of the basic class constraint (starting with α=100) has
to be limited:

Alpha 100 98 96 94 92 91
Nodes 211 664 8198 44021 107734 165369

Our second experiment concerns the part of G100 between the node whose
extent contains the 3 basic classes (Laptop (252 instances, 39 attributes in-
volved), Hard-drive(45 instances, 22 attributes), Network-storage(4 instances,
16 attributes)) and the Bottom node.

The new G100 contains now 5 nodes (to be compared to the maximum number
of 23 = 8 nodes). Here computation of Gα is performed for a set of values
α ∈ [0, 100] together with the corresponding Iceberg lattices (see Figure 5). We

Frequent and Alpha Lattices

0

1000

2000

3000

4000

5000

6000

7000

8000

10
0

90 80 70 60 50 40 30 20 10

0

Alpha

N
um

be
r 

 o
f  

N
od

es

alpha
frequent

Fig. 5. Number of nodes vs Alpha values for Iceberg lattices and Alpha Galois lattices

are first interested in what happens with high values of α. Starting from G100,
new nodes appear as α slowly decreases. For instance at α = 99, a new node
appears under the G100 node standing for the basic class Laptop. The intent of
the new node now contains the attribute “network-card”. This is due to the fact
that most instances of the class Laptop do possess a network card. So by relaxing
the basic class constraint we get rid of the few, exceptional, instances of Laptop
found in the catalog and that were hiding this “default” property of Laptop in
G100. In the same way most hard-drives are sold with “support”. So at α = 92,
a new node representing hard-drives with “support” appears. Note that in this
case, the attribute “support” is infrequent when considering all the instances
(“support” appears in 13 products out of 301) and so would not be considered
in a Iceberg concept lattice, whereas it is frequent within the hard-drive class
(13 products out of 15) and so comes out in the Alpha Galois lattice G90. As a
summary, by slowly decreasing α from 100 we have a more accurate view of our
data by revealing properties that are relevant to at least some basic classes.
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Fig. 6. Number of nodes vs Alpha values for Iceberg lattices and Alpha Galois lattices

Now as α slowly grows from 0 to small values (say 10), some instances, whose
behavior is exceptional within their basic class w.r.t. some term t of L, will dis-
appear from the corresponding α-extent. These instances are exceptional as they
belong to the extent of the term t whereas very few instances of the same basic
class do belong to this extent. As a result some properties that are very infrequent
within some basic class will no longer be allowed to discriminate concepts. For
example, only few Laptops have the property “Digital-Signal-Protocol”, and so
when α = 6 , nodes whose intent contains the “Digital Signal Protocol” property
no more include instances of Laptop in their extent. As a result terms including
“Digital-Signal-Protocol” become equivalent whenever their extent only differed
because of Laptop instances, thus resulting on a smaller (and so simpler) lat-
tice. However a closer look to Figure 5 shows there can be a large number of
nodes even for high values of α. In this particular example this is due to the
fact that one basic class, namely Laptop, has a huge Iceberg lattice that invades
the Alpha Galois lattice (data not shown). An experiment with 24 basic classes
and 1187 objects (some large basic classes are removed thus resulting in a more
homogenous class size distribution) shows that the size of Alpha Galois lattices
can be really different from the one of Iceberg lattices (see also Figure 6) :

Alpha Values 100 80 50 30 0
Alpha Nodes 158 842 1493 1900 2202
Frequent Nodes 2 18 18 50 2202

5 Issues Related to the Alpha View of Data

5.1 Combining Global and Local Frequency Constraints: Frequent
Alpha Lattices

On one hand, in Iceberg concept lattices we apply a global frequency constraint
to the concept lattice: all nodes whose extents are small enough are eliminated
(i.e. sent to the bottom node). When the threshold is high this unfortunately
tends to eliminate many intents that, though globally infrequent, are frequent in
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some basic classes. On the other hand in Alpha Galois lattices we apply a local
frequency constraint in such a way that intents frequent in at least one basic
class appear in the lattice. However, a side effect is that an Alpha Galois lattice
may still be very large, especially when using small values of alpha. Our proposal
here is to combine these two constraints : we will only consider nodes whose α-
extent is large enough. Applying the global constraint allows to eliminate nodes
that are locally frequent on some basic classes, and so would be interesting, but
still represent few instances and so can be discarded when we want a simpler
view of the data.

The result of such a filter is again a Galois lattice. More precisely, for any
real number f with 0 ≤ f ≤ 1, consider the function projf on Eα such that
projf (e) = e whenever |e|

|I| ≥ f and projf (e) = ∅ otherwise. projf clearly is a
projection, and therefore Gf

α =projf (Gα) is a Galois lattice coarser than Gα.
More precisely it corresponds to the topmost part of Gα plus a bottom node.

We denote Gf
α as the Iceberg Alpha lattice associated to the instance set I, the

partition BC of I, the Alpha value α and the global frequency threshold f . The
corresponding α-implication rules (see next section) have a support greater than
f . Note that we will speak here of an α-support since the support is computed
using α-extents.

5.2 Alpha Implication Rules

Association rules, as usually defined in data mining, are implications whose truth
values are observed on a set of instances I. Each association rule has a support
value, i.e. the frequency of its antecedent part within the instance set I, together
with a confidence value. When its confidence value is 1, an association rule is
called an implication rule. When considering concept lattices, the partial order
induced on terms by the Galois connection can be related to a set of implication
rules. More precisely extI(T1) ⊆ extI(T2) means that the implication T1 → T2
holds for all instances of I. In such rules, T1 will be denoted as the left part
and T2 as the right part. In Iceberg concept lattices, the extent of a term is
redefined as empty whenever the term is infrequent in I, i.e., when its original
extent contains less than minsupp ∗ |I| instances of I. As a consequence the
corresponding implication rules all have a support greater than minsupp.

Association rules are efficiently constructed in two steps, first constructing
the Iceberg concept lattice corresponding to the instance set I. The intents of
the concepts of an Iceberg concept lattice are usually denoted as closed fre-
quent itemsets. Association rules are then built using closed frequent itemsets
[11, 18]. The basic idea is that, as mentioned before, a node in the concept lat-
tice corresponds to an equivalence class of terms, all sharing the same extent. In
particular, the intent of the node, i.e., the unique greatest term, has the same
extent as all the smallest terms (also called generators). We obtain then for each
node several implication rules whose left part are these generators, and whose
right part is the intent of the node. Part of the set of all these rules extracted
from the concept lattice produces the non-redundant Guigues-Duquenne basis
of implication rules [6]. For sake of clarity, the left part of each rule is sub-
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stracted from the right part. For instance, let the node be ({a, b, c}, {i1, i2, i3})
and suppose that the generators of the corresponding equivalence class are
{{a}, {b}} (this means that extI({a})= extI({b}) = {i1, i2, i3}). We obtain then
the implication rules {{a} → {a, b, c}, {b} → {a, b, c}} that are rewritten as
{{a} → {b, c}, {b} → {a, c}}.

Now, in Alpha Galois lattices, whenever extα(T1) ⊆ extα(T2) we will say that
the α-implication T1 →α T2 holds on the pair (I,BC). Because they are derived
from a Galois lattice, α-implication are transitive, monotonic and additive:

–If T1 →α T2 and T2 →α T3, then T1 →α T3
–If T1 →α T2 , and T1 ⊆ T, then T →α T2
–If T1 →α T2 and T3 →α T4, then T1 ∪ T3 →α T2 ∪ T4. Furthermore we have

the modus ponens as an inference rule:
If i isaα T1 and T1 →α T2, then i isaα T2
The Guigues-Duquenne basis of implication rules has been extended to rules

with a minimal support minsupp. Also the Luxenburger basis of association
rules [10] summarizes rules whose confidence is greater or equal to a minimal
confidence level minconf and has also been extended to rules with a minimal
support. Both extended bases are computed using the closed terms of the corre-
sponding Iceberg lattice [11, 13]. Hereunder we adapt definitions of support and
confidence to Alpha rules by changing extents to α-extents:

Definition 10. An α-association rule is a pair of terms T1 and T2, denoted as
T1 →α T2.

The support and confidence of an α-association rule r= T1 →α T2 are defined
as follows :

α-supp(r) = |extα(T1∪T2)|
|I|

α-conf(r) = |extα(T1∪T2)|
|extα(T1)|

The α-association rule r= T1 →α T2 holds on the pair (I,BC) whenever
α-supp(r) ≥ minsupp and α-conf(r) ≥ minconf .

Note that when we consider the implication rules derived from a Galois lat-
tice, the right part T2 of the rule is an intent and the left part T1 is smaller
than T2. As a consequence we have T1 ∪ T2 = T2 and the α-support rewrite
as |extα(T2)|

|I| . This means that the set of rules whose α-support is greater than
minsupp is obtained from the nodes of the Iceberg Alpha lattice Gminsupp

α . The
adaptation of the methods proposed in [11, 13] to compute these bases, start-
ing from the Iceberg lattice (or equivalently from the set of closed terms), is
straightforward (basically we simply have to compute α-extents rather than ex-
tents when adapting existing algorithms).

We would now emphasize by an example the meaning and usefulness of such
rules to handle exceptions when individuals are labelled with basic classes as
proposed in this paper. For this purpose, let us suppose that we have divided
animals (i.e. individuals) into basic classes as mammals, birds, insects and that
we search for general rules in the data. An intuitive rule is the following : an
animal that flies should have wings. This rule holds for birds (unflying birds, as
ostriches, do not contradict the rule) as well as for insects. The rule should also



312 V. Ventos and H. Soldano

hold for mammals, that generally do not fly, but is falsified by a flying squirrel.
The Alpha approach benefits here from the fact that very few mammals fly (in
other words the antecedent part of the rule is infrequent within the basic class
to which belong the individual that falsifies the rule). When using α-extents,
the flying-squirrel is removed from the antecedent part of the rule. Here, a small
value of α is sufficient to obtain an α-implication rule expressing that flying
animals have wings. Of course greater values of α, namely close to 100, also
preclude falsifying the rule. However in the latter case α-implication rules express
something different: they apply to individual whenever the antecedent part is
common to most individuals of the same basic class. In our example, only birds
would be concerned with such a rule, as most of them fly, but not insects.

5.3 Theoretical Issues

A first question concerns what happens if we allow the basic classes to over-
lap. A natural modification of definition 5 consists then to require that at least
one of the basic classes to which belong the instance α-satisfies the term. Al-
pha membership is then defined as follows: : i isaα T iff i isa T and there
exists a basic class BC such that i ∈ BC and BC satα T . By accordingly
modifying the mapping projα (for each individual i in e there must be at least
one basic class BC such that i ∈ BC and | e ∩ BC |≥ |BC|.α

100 ) we again ob-
tain an extensional projection, and so a Galois connection and a Galois lattice.
The partial and total orders mentionned in section 3.2 are also preserved. A
second question concerns the relationship between Alpha Galois lattices and
formal concept analysis. To obtain a representation formal context [5] for an
Alpha Galois lattice Gα, i.e. a formal context whose concept lattice is isomor-
phic to an Alpha Galois lattice, we consider as objects particular subsets of the
basic classes. More precisely, for each basic class BCi we consider the small-
est elements of projα(P(BCi)) strictly greater than ∅. We denote as Iα the
set of all these subsets. For instance, when considering our example 1, we obtain
I60 = {{i1, i2}, {i3, i4}, {i4, i5}, {i3, i5}, {i6, i7}, {i7, i8}, {i6, i8}}. The incidence
relation Rα between the set Iα of objects and the set A of attributes is then de-
fined as follows : oRαa iff o ⊆ ext({a}). Let us denote as extIα and intIα the map-
pings of this formal context. In example 1 we have ext60({a8}) = {i3, i5, i6, i7, i8}
and ext60({a4}) = {i3, i4} and so ext60({a8, a4}) =proj60({i3})=∅. We also have
extI60({a8})= {{i3, i5}, {i6, i7}, {i7, i8}, {i6, i8}} and extI60({a4})= {{i3, i4}}
and so extI60({a8, a4}) = extI60({a8}) ∩ extI60({a4}) = ∅. Note that I0 is then
made of the singletons of I and I100 is the set of prototypes of the basic classes.
We refer to Iα as the set of the α − prototypes of BC. Clearly, we have for any
α-prototype o, intIα({o}) = int(o) and more generally intIα({o1, o2, ..., on}) =
int(o1 ∪ o2 ∪ ... ∪ on).

6 Related Work and Conclusion

Recent work in Knowledge Representation and Machine Learning investigates
Galois connections and lattices based on languages of terms more sophisticated
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than those used in concept lattices, so modifying the notion of intent of a con-
cept [4, 3, 9, 5]. We have shown here that by restricting the notion of extent of
a term with respect to a given partition of the instance set I, we also modify
the lattice of extents which is no longer P(I) and we obtain a new family of
Galois lattices. As mentioned above Iceberg concept lattices [17, 14] formally are
Alpha Galois lattices in which all individuals belong to the same basic class. Be-
sides, the implication rules related to Alpha-Galois lattices simply correspond to
inclusion of α-extents, and such α-implication can be extracted from the Alpha-
Galois lattices in the same way as implication rules are extracted from Iceberg
concept lattices. Note that α-implication rules inherit from the Galois lattice
structure properties (as transitiviy) unusual when dealing with “approximate”
rules. About the construction of Alpha Galois lattices, it should be interest-
ing to adapt efficient algorithms (e.g. [8]). Furthermore, as a consequence of
property 3, another way [16] to build Alpha Galois lattices is to first build the
iceberg lattices corresponding to each basic class and then combine them using
a subposition operator as previously proposed by [15] to efficiently build concept
lattices Note that this is the basis of the basic class incrementality of Alpha Ga-
lois lattices. We have also seen in 5.3 that the objects of a representation formal
context for an Alpha Galois lattice are the minimal subsets of the basic classes
that satisfy a cardinality constraint (we call them the α-prototypes of each basic
class). As a conclusion there is still much work to experiment and to investigate
theoretical issues and practical use of Alpha Galois lattices and corresponding
α-implication rules. However they represent a flexible tool to investigate data
and handle exceptions that are relative to a preliminary view of the data.
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matique et Sciences Humaines, 29(113):35–55, 1991.

11. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

12. N. Pernelle, M-C. Rousset, H. Soldano, and V. Ventos. Zoom: a nested Galois
lattices-based system for conceptual clustering. J. of Experimental and Theoretical
Artificial Intelligence, 2/3(14):157–187, 2002.

13. Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal. In-
telligent structuring and reducing of association rules with formal concept analysis.
Lecture Notes in Computer Science, 2174:335–349, 2001.

14. Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi Lakhal.
Computing iceberg concept lattices with titanic. Data and Knowledge Engineering,
42(2):189–222, 2002.

15. P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards
building Galois (concept) lattices. Discrete Mathematics, 256(3):801–829, 2002.

16. V. Ventos and H. Soldano. Les treillis de Galois alpha ou De l?influence d?une
partition a priori des donneés. Revue d’Intelligence Artificielle, to appear, 2005.

17. K. Waiyamai and L. Lakhal. Knowledge discovery from very large databases using
frequent concept lattices. In 11th Eur. Conf. on Machine Learning, ECML’2000,
pages 437–445, 2000.

18. M. J. Zaki. Generating non-redundant association rules. Intl. Conf. on Knowledge
Discovery and DataMining (KDD 2000), 2000.


	Introduction
	Preliminaries and Definitions
	Alpha Galois Lattices
	Alpha Definitions
	Alpha Galois Lattice Order

	Experiments
	Issues Related to the Alpha View of Data
	Combining Global and Local Frequency Constraints: Frequent Alpha Lattices
	Alpha Implication Rules
	Theoretical Issues

	Related Work and Conclusion



