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Abstract. This paper establishes an explicit connection between formal
argumentation and Bayesian inference by introducing a notion of argu-
ment and a notion of defeat among arguments in Bayesian networks.

First, the two approaches are compared and it is argued that argu-
mentation in Bayesian belief networks is a typical multi-agent affair.

Since in theories of formal argumentation the so-called admissibil-
ity semantics is an important criterion of argument validity, this paper
finally proposes an algorithm to decide efficiently whether a particular
node is supported by an admissible argument. The proposed algorithm is
then slightly extended to an algorithm that returns the top-k of strongest
admissible arguments at each node. This extension is particularly inter-
esting from a Bayesian inference point of view, because it offers a compu-
tationally tractable alternative to the NPPP-complete decision problem
k-MPE (finding the top-k most probable explanations in a Bayesian net-
work).

1 Introduction

Bayesian inference and formal argumentation are two important forms of reason-
ing. Both address the problem of how to reason with uncertain information, and
both have developed into major and mature research disciplines. Bayesian in-
ference and argumentation also have strong application areas. Argumentation is
slightly biased towards legal applications and Bayesian inference has a tendency
towards applications in the medical domain.

Both disciplines share a common goal, but they start from different research
hypotheses. The most famous technical difference is that Bayesian inference as-
sumes the availability of a large number of numerical probabilities, while argu-
mentation assumes the opposite, namely, that information on rules and evidence
is scarce and qualitative. Besides the technical differences, there is also some sort
of cultural gap. On the one hand, proponents of argument systems indicate that
realistic problems are often under-specified and ill-formulated. For such problems
almost all information is expressed in qualitative terms—provided such informa-
tion is available at all. Accordingly, proponents of formal argumentation systems
argue that argument systems are the best logical means to cope with such prob-
lems. On the other hand, proponents of probabilistic reasoning often emphasize
that Bayesian inference is the only mathematically correct way to reason with
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uncertain information. Of course both camps are right, it is just that they start
from different principles.

Several initiatives have been undertaken to combine Bayesian inference and
argumentation [6, 7, 10, 17, 25]. Some of these initiatives use Pearl’s probabilistic
propagation algorithm as the fundamental notion of support. Other approaches
such as [17] propose argumentation features on top of Bayesian networks. Fi-
nally, there is a recent paper in which an attempt is made to combine Toulmin’s
argument structures with Bayesian belief networks [1, 20]. However, as far as I
know no attempt has been made to import dialectic notions to Bayesian net-
works, and run true argumentation algorithms on them. This is not done yet,
perhaps because argumentation often thwarts probability.

In this paper I try to bridge a part of the gap rather than trying to extend
existing formalisms. This means that there is no new theory but rather a proposal
to look at Bayesian belief networks from the perspective of argumentation. More
specifically, I propose an algorithm that enables users to start an argumentation
process within the context of an existing Bayesian belief network. The algorithm
possesses a component that is responsible for finding arguments and a component
that is responsible for comparing and selecting among the various competing
arguments it finds. The corresponding computer program is able to read input
files of existing BBN tools (such as Genie) and argue with them in a sensible
way.

With the help of the algorithm, I illustrate how one can argue according to
conventional argumentation concepts in a Bayesian network, and still be faithful
to fundamental probabilistic and dialectic principles.

The algorithm proposed is not a solution to the problem how to translate
a defeasible knowledge base into a Bayesian belief network. This is the other
direction and will not be discussed here. This paper takes care of the “easy” half
of the translation.

The rest of the paper is organized as follows. First some relevant aspects of
Bayesian inference and argumentation are reviewed, partially with the help of a
simple running example. Then notions of argument and defeat are proposed that
have meaning in the context of Bayesian belief networks. Finally, these notions
are applied in an algorithm. This algorithm is demonstrated with the help of the
earlier example.

2 Bayesian Inference

Bayesian inference is a complex area. This section does not aim to cover this
area but discusses only those issues that are relevant here.

Bayesian inference is reasoning within a Bayesian belief network. A Bayesian
belief network (BBN) is a finite and directed acyclic graph (DAG) where nodes
represent random variables and edges represent probabilistic dependencies among
those variables. Most Bayesian belief networks are discrete, in the sense that all
random variables can assume only a finite number of states.
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2.1 An Example Network

Some of the ideas presented in this paper can best be presented with the help of
an example. I have chosen to use a Bayesian network that is made by Gerardina
Hernandez in a class homework exercise at the University of Pittsburgh. This
network is meant to assess the credit worthiness of an individual (Fig. 2.1). The
network is for demonstrational purposes only and is unlikely to be used in real
credit assessments. (At least in its present form.)

Fig. 2.1 does not display a general BBN, but a specific case in which there
is evidence on Assets, Profession, and Age (bold nodes in the figure). Thus, for
this situation we might imagine an applicant of which we only know that his
(or her) assets are on the average, that he has a medium-income profession, and
that he is aged 28. The dashed node indicates a so-called query node. A query
node is simply a node that we are interested in. Here, the query node indicates
that we are interested in the credit worthiness of this particular applicant, based
on the evidence that we have at hand.

Fig. 1. A sample Bayesian belief network: loan assessment

In other cases, i.e., with other applicants, the evidence may be with other
nodes. Sometimes, evidence is complete, in the sense that all prior (i.e., non-
conditional) probabilities are overridden by evidence. A simple example of com-
plete evidence is when all leaf nodes are clamped to a particular state. But
evidence can also be placed at internal nodes in the network. To exclude trivial
cases it is often assumed the set of evidence nodes and the set of query nodes
are disjoint.

2.2 Conditional Probability Tables

Probabilistic dependencies among variables is encoded in so-called conditional
probability tables (CPTs). Each node possesses such a CPT. The CPT of leaf
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Table 1. Conditional probability table for future income in decision tree format

High:
High income:

Promising: 0.99
Not promising: 0.01

Low income:
Promising: 0.6
Not promising: 0.4

Medium income:
Promising: 0.8
Not promising: 0.2

Medium:
High income:

Promising: 0.85
Not promising: 0.15

Low income:
Promising: 0.4
Not promising: 0.6

Medium income:
Promising: 0.6
Not promising: 0.4

Low:
High income:

Promising: 0.8
Not promising: 0.2

Low income:
Promising: 0.01
Not promising: 0.99

Medium income:
Promising: 0.4
Not promising: 0.6

nodes are in fact ordinary probability tables (PTs), since such tables encode
prior probabilities.

To save space, it is convenient to represent a CPT in a decision tree format
(Table 1). In this table, future income can take one of two values: “promising”
and “not promising”. These two values depend on parent nodes “profession,”
which takes values “high income,” “low income,” and “medium income”, and
“worth” which assumes values “high,” “medium,” and “low”. From the last
entry, for instance, we can read that

P ( Future income = Promising |
Worth = Low ∧ Profession = Medium Income ) = 0.4

While CPTs are responsible for representing explicit conditional dependen-
cies, the topology of a BBN itself represents a number of conditional
independencies. One of the consequences of this assumption is that the so-called
joint probabilitiy of all nodes of a BBN can easily be computed by means of the
formula

P (x1, . . . , xn) = Πn
i=1P (xi | π(xi)) (1)

where x1, . . . , xn are all nodes of the network in topological order, and where
π(xi) are the parents of node xi.

Although (1) is a well-known and basic result in BBN-theory, the joint prob-
ability is generally considered uninteresting, because it chops the probability
space into the useless little pieces. For example, to compute P (x1) in a network
with five nodes that each have two states (e.g., true and false), we have to add
25/2 = 24 = 16 probabilities, which is a computationally intensive task, at least
in the general case. There are algorithms to tackle this task, however, such as
the variable elimination algorithm [24].

The reason why joint probabilities are mentioned nevertheless is that they
play an important role in the definition of argument strength when arguments
are formed in BBNs.
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2.3 Evidence Nodes and Query Nodes

In a nutshell, evidence is where reasoning begins and query nodes is where rea-
soning ends. Evidence is the ultimate stopping place–the things that we think
we know, while the query nodes are one or more nodes that we are interested in
and from which we want to know their probabilities.

In probabilistic reasoning, a random variable is considered evidence if we
know its state. In argumentation, a proposition is considered evidence if it is
true. In an argumentation context, evidence is often indicated as a “set of current
facts,” a “base set” or a “knowledge base”.

Thus, each BBN possesses the following node classification.

1. A set of of evidence nodes E. These are nodes that are clamped to a partic-
ular state.

2. A set of query nodes X. Often, |X| = 1.
3. A set of leaf nodes with a priori probabilities.
4. A set of internal nodes of which the probabilities depend on the node’s CPT

and the node’s parents.

This classification is important because Algorithm 1 below is based on it.

2.4 Bayesian Inference

A recurring task in BBNs is to compute the probability of a collection of query
nodes X, given the probabilities that are encoded in the the network by means
of CPTs, and given exact values of some observed evidence variables E. The aim
of this section is give a brief overview of the complexity of this task.

There are two types of BNN inference tasks: belief updating and belief re-
vision [8]. Many belief updating algorithms can be used for belief revision with
just minor modifications, and vice versa.

Belief updating is also called probabilistic inference, or PR. The objective
of PR is to compute P (X|E), that is, the posterior probability of query nodes
X given evidence E. A simple form of it results when X is a single node. PR
typically involves a marginalization operation over query nodes.

The task of belief revision amounts to finding the most probable configuration
of some hypothesis variables X, given evidence E. The resulting output is an
optimal list of instantiations of X. Almost always X ∩ E = ∅, and in this case
the problem is known as computing the Most Probable Explanation, or MPE.
A variant of MPE, known as k-MPE, is finding the top-k highest explanations
[11]. In the cases when X is a proper subset of all non-evidence nodes, the task
is called finding the Maximum a Posteriori Hypothesis, or MAP [3, 11, 18].

Computing PR, MPE and MAP are all NP-hard [3]. However, they still
belong to different complexity classes. MPE is a combinatorial optimization
problem of which its decision version is NP-complete. PR is harder. It is a
counting problem and its complexity is #P-complete [11]. Its decision version is
PP-complete. MAP combines both counting and optimization and it is NPPP-
complete.
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Several algorithms have been proposed to compute the posterior probabilities
of query nodes. In the light of the above discussion it should come as no sur-
prise that these algorithms are intrinsically complex. The proposed algorithms
have no problems with trees and collections of trees (called polytrees) but if the
underlying graph contains multiple paths then some tricks have to be pulled of
in order to be able to apply the original algorithm. One of the first Bayesian in-
ference algorithms is Pearl’s message passing algorithm [8, 12]. Today, the most
commercial tools (such as Genie or Hugin) work with Spiegelhalter junction
tree algorithm [4, 9]. For educational purposes the so-called variable elimination
method is often used [24].

3 Argumentation

As opposed to Bayesian network theory, the research paradigm of argumentation
is less clearly defined. There exist various theories of argumentation and various
semantics to interpret a constellation of competing arguments [2, 16].

Nonetheless, a generally accepted view on formal argumentation is Phan
Minh Dung’s notion of an argument system [5]. Dung’s system is an abstract
framework that is often used as a stepping stone to define more elaborate systems
of argumentation. On the other hand, it is general enough to function as a
common divisor of different views on argumentation.

Definition 1 (Argument system, after Dung). An argument system is a
directed graph in which the nodes represent arguments, and the arcs between
the nodes represent an attack relation among arguments. If a and b are two
arguments and a← b, we say that a is attacked by b.

Note that the definition says nothing about finiteness of the graph and the
absence of cycles or loops (1-cycles).

To design a full-blown argument system, it suffices to specify what an argu-
ment looks like and when one argument attacks another argument. Once these
two concepts are defined, the argumentation system is defined in its entirety.
(We will actually do that in Sec. 5.)

On a more abstract level, Dung’s argument system leaves open which argu-
ments we consider valid. (Recall from above that argumentation does not possess
a uniform semantics.) One popular and generally accepted notion of argument
validity is that of admissibility . A set of arguments A is called admissible if it
satisfies two conditions:

1. Consistency. No two arguments in A attack each other.
2. Self-defence. Every attacker of an argument in A is attacked itself by an

argument in A.

Further, an argument is admissible if it is in at least one admissible set. In
this way, an admissible argument might be seen as an argument that belongs to
a consistent and complete (read: self-defending) world-view (read: constellation
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of admissible arguments).1 Another view on admissibility is to see it as victory
in the competition with other arguments.

Currently, admissibility is the state-of-the-art semantics in theories of formal
argumentation.

3.1 An Algorithm to Decide Admissibility

Since the purpose of this work is to present an algorithm to argue in a Bayesian
network, I will conclude this section by indicating how a set of admissible ar-
guments can be computed. This information will be used when we define an
argumentation algorithm for Bayesian networks.

An algorithm to decide whether an argument a is admissible is relatively
simple. It comes down to maintaining a list of arguments L, initially equal to
[a], together with an index 1 ≤ i ≤ length(L), initially set to 0, that indicates
up to which index arguments in L are defended by other arguments in L. If a is
admissible, then an admissible set can be constructed around a recursively. The
algorithm can with one or two modifications in the code (i.e., extremely easily)
be cast into a dialectic form, with PRO defending the main thesis and CON
trying to hinder PRO’s attempt to establish the main thesis [22].

For Dung-type argument systems in which the underlying graph is a-cyclic
(most if not all practical systems), the situation is somewhat simpler.

Definition 2 (Defeat). In a-cyclic and finite argument systems, an argument
is defeated if it is attacked by an undefeated argument. An argument is unde-
feated if it is not defeated.

Note that this definition only makes sense in a sub-class of Dung-type argu-
ment systems, viz. those argument systems that are a-cyclic and finite.

Since it follows from this definition that arguments without attackers are
undefeated, Def. 2 can easily be translated into a simple recursive algorithm.
Further, it is a well-known result in the theory of nonmonotonic reasoning and
formal argumentation that various different semantics (such as admissibility)
reduce to Def. 2 in case the attack graph is a-cyclic. Since BBNs are a-cyclic this
is a strong indication for the fact that BBN-type argument systems are a-cyclic
(we still have to verify this, of course). Therefore it is reasonable to expect on
the basis of the above observations that admissibility in a BBN-type argument
systems boils down to Def. 2.

4 Differences

This section lists a number of differences between Bayesian inference and argu-
mentation. Since the two approaches are technically as well as culturally rather

1 Actually, there exist two versions of admissibility. viz. credulous and skeptical ad-
missibility. An argument is credulously admissible iff it is contained in at least one
admissible set. An argument is skeptically admissible iff it is contained in all admis-
sible sets.
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different, there are of course a lot of differences to be mentioned. Therefore, this
listing is not meant to be exhaustive but instead tries to highlight the differences
that are relevant to the algorithm that is going to be proposed.

The most important difference in the light of the forthcoming argumentation
algorithm is that BBNs are, what I call, antecedent-complete (AC). This means
that all evidence for and against every network variable is present in the CPT
of the parents of that variable. (Note the words “all” and “every”.) Thus, if for
example P (¬A|¬B,C) is known, then antecedent-completeness guarantees that
P (¬A|B,C), or P (A|¬B,C) are also known. AC has even more impact if nodes
have more than two states (as in the example is the case).

Antecedent-completeness lies at the root of many differences between the two
approaches. First, their is the phenomenon of synergy and anti-synergy among
parent nodes. There is synergy among two nodes if we can deduce from the
knowledge representation that they reinforce each other’s support of the child
node. For example, two independent witness testimonies typically reinforce the
support of the claim that they underpin. Similarly, there is anti-synergy among
two nodes if we can deduce from the knowledge representation that they weaken
each other’s support of the child node. For example, drug A may be a good
medication to disease D, drug B may be a good medication to disease D, but
their combination may be a less favorable medication to disease D. The fact
that BBNs are complete in their antecedents makes them deal correctly with
synergy and anti-synergy among parent nodes [12]. This phenomenon is less well
mastered in argumentation, where it is called accrual of reasons, or accrual of
arguments [15, 21]. There, the question is whether, or under what conditions,
reasons should accrue, and if there are general principles behind the accrual of
reasons. I maintain that accrual of reasons cannot be modelled in argumentation,
because rule bases of argumentation systems are typically antecedent-incomplete
and therefore contain insufficient information as to decide whether there should
be synergy or anti-synergy among rules that share consequents.

Another relevant difference between the two approaches is that they have a
different view on dealing with new information. A major goal of Bayesian infer-
ence is to recompute the probability of all query nodes if evidence is entered into
the network. This is a holistic goal, without interest for identifying connections
within the network that span multiple nodes. At least Bayesian inference is not
interested in explicating such connections. Argumentation, on the other hand, is
interested in making such connections explicit. The approach of argumentation
is to build a case, a “train of reasoning” in support of a claim. This case will do
until someone else with other interests builds a case to the contrary.

The latter brings us to another important difference. Within BBNs all evi-
dence is present before an inference is performed. With argumentation, evidence
is often produced or retrieved on demand during the argumentation process.

Finally, Bayesian inference often is a one-agent affair. Argumentation, on
the other hand, is best performed in a dialogical setting. Arguments are formed
not because new evidence comes in (information push) but because parties that
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have interest in forming arguments on pain of losing their position in a dispute
(information pull).

In conventional argument systems, the question is whether a propositions is
defensible, so that a dispute more or less automatically involves two parties, viz.
one agent that is trying to defend a claim, and one agent that is trying to punch
holes in the defence. In Bayesian networks the situation is somewhat different.
There, random variables typically have more than two states so that a scenario
is thinkable in which every state (of the same node) is defended by a different
agent. Agents do not have to be probabilistically omniscient. CPTs and variables
can easily be synchronized along with the queries and query-updates that are
sent. In some way this distribution of tasks seems to be remarkably natural, and
thus it appears as if argumentation in BBNs is more amenable to multi-agent
processing.

5 Argumentation in a Bayesian Belief Network

In this section we will try to interpret elements of BBNs in argumentation-
theoretic terms, so as to be able to run an argumentation algorithm on a BBN.

5.1 Arguments

To start with, the CPTs of a BBN contain information that must somehow be
reflected in a corresponding argumentation system. Conversely, an argumenta-
tion system assumes at the very least a set of rules of inference, because with
rules of inference arguments can be formed. A rule of inference can have different
forms [13, 14, 16, 19] but with some imagination, the CPTs of the above Bayesian
network can be translated into the rule-base and evidence that is displayed in
Fig. 2. In this translation, a priori nodes are represented as rules to distinguish
them from evidence.

Fig. 2. Rule-base and evidence corresponding to the loan assessment example
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The translation from CPTs to a rule base is conceptually simple and is in
fact performed by a small script that rips the CPTs according to the convention
that conditional probabilities in XDSL are enumerated such that the rightmost
index of the parent state vector runs fastest.

A next step towards argumentation is to chain rules into arguments. In this
way, arguments become trees of rules such that roots of trees are query nodes
and leaves of trees are evidence or else coincide with the leaves of the network.
For example, an argument for the creditworthiness of this particular applicant is

Numbers indicate conditional probabilities, taken directly from a BBN’s CPTs.
Evidence, such as “Assets(average)” is incorporated as unconditional premises
of an argument. Similarly, other arguments may be constructed.

The next definition is needed for Def. 4 [attack].

Definition 3 (Sub-argument). We say that argument a′ is a sub-argument
of argument a if a′ is a sub-tree of a such that all leaves of a′ are leaves of a.

One way of looking at sub-arguments is to see them as snapshots of earlier
phases in the creation of arguments bottom-up. In particular all premises of an
argument a are sub-arguments of a.

5.2 Attack

What remains to be done to obtain a full-fledged argument system, is to define
an attack relation between pairs of arguments. To this end, I choose to define
the notion of attack on the basis of two notions that are more elementary and
(therefore) fall beyond the scope of a Dung-type argument system, viz. the notion
of counterargument and the notion of strength of an argument. First I will discuss
counter-arguments, and then I will discuss argument strength.

A Definition of Counter-Argument. In argumentation, the idea is that
counter-arguments deny the conclusion of the argument they oppose. In this case,
any argument that ends in “¬CreditWorthiness(positive)” would be a counter-
argument for the above argument for “CreditWorthiness(positive)”. Since nodes



Argumentation in Bayesian Belief Networks 121

in a BBN are not negated, this is not possible. However, nodes do have differ-
ent states so we might consider every argument for “CreditWorthiness(x)” with
x �= “positive” as an argument against “CreditWorthiness(positive)”.

A Definition of Argument Strength. Sometimes, argumentation is described
as “making your case,” and this is precisely what happens when one constructs
an argument. Thus, an argument might be seen as a description of a concrete
case.

To assess the strength of an argument, we will have to look at the likelihood
of the entire case supporting the claim in question. This is the joint probability
of all argument nodes, except the conclusion. The conclusion is excluded because
the degree of belief of the conclusion (the joint probability of the entire argument,
including the conclusion) may be close to zero, which indicates a strong argument
against that conclusion. Such an argument is of informational use only (e.g., can
be presented to the user) and will in particular not play a role as a counter-
argument in the further defeat among arguments, as such an argument will
most likely not be selected as sub-arguments of larger arguments.

In the case that is made in support of “CreditWorthiness(positive)” (cf. the
above argument), we end up with a support of 0.00076. This seems to be a dispro-
portional small number. However, the strength of an argument is the probability
that the entire case as described by the argument by means of variable instan-
tiation, is realized. This probability is often very small indeed. But since all
arguments by definition model specific cases, the competition among arguments
remains fair.

A Definition of Attack. On the basis of the notions of counter-argument and
argument strength, it is now possible to define a binary attack relation among
arguments. The definition that we are going to give is common in the literature
of defeasible argumentation [2, 16].

Definition 4 (Attack). We say that argument a is attacked by argument b,
written a← b, if it satisfies the following two conditions:
1. Argument b is a counterargument of a sub-argument a′ of a.
2. Argument b is stronger than argument a′.

The present notion of attack is defined in terms of counter-argument and
argument strength and can thus be implemented in an algorithm.

5.3 Towards an Algorithm

This section discusses the ideas behind the algorithm and utilizes the result that
admissibility reduces to defeat in BBN-type argument systems (Sec. 3).

In Sec. 3 it was indicated that there exists a simple algorithm to decide
whether an argument is admissible. This suggests that a subroutine to enumer-
ate all arguments for a particular conclusion (preferably in descending order of
strength) would suffice to conduct an argumentation process in Bayesian belief
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networks. With such a subroutine all arguments and all attackers of all argu-
ments can be found and, once found, conveyed to the algorithm that computes
admissible sets. From an argumentation-theoretic point of view, this would be
the most logical approach.

The problem with an alternating approach, however, is that such an approach
turns out to be extremely wasteful, because BBNs are antecedent-complete
(Sec. 4). Antecedent-complete rule-sets make it pointless to search arguments
and counter-arguments in separate processes. An approach that better respects
the antecedent-completeness of BBNs is to combine the search for arguments
and counter-arguments, rather than to conduct search in separate processes. In
non-Bayesian argumentation scenario’s the latter approach would be intuitive
and defensible, but here it is a waste of resources.

The following proposition utilizes the fact that BBNs are a-cyclic and shows
that searching for arguments and counter-arguments in parallel still yields ad-
missible arguments. Hence the simpler criterion of Def. 2 can be applied safely.

Proposition 1. In BBN-type argument systems, an argument a is admissible
if and only if

1. All immediate sub-arguments of a (i.e., all top-subarguments of a) are un-
defeated.

2. Argument a is the strongest argument for its conclusion node (modulo states)
such that (1) holds.

Proof. First we prove that BBN-type argument systems are are finite and a-
cyclic. Finiteness follows from the finiteness of the corresponding BBN. Suppose
that there exists an argument system with a cycle a1 ← a2 ← . . . an ← a1. If
this were the case, then a1 ≤ a′

1 < a2 ≤ a′
2 < . . . < an ≤ a′

n−1 < a1, where a′
i are

the sub-arguments of ai that are countered by ai+1 “<” and means “stronger
than”. This clearly is impossible. The upshot is that we may change the word
“admissible” by the word “undefeated,” since BBNs are finite and a-cyclic, and
from Def. 4 it then follows that argument systems derived from BBNs are finite
and a-cyclic.

To prove the proposition, first suppose a is undefeated. We will have to prove
that it (1) and (2) hold. To prove the first condition, suppose a′ is an immediate
sub-argument of an undefeated argument a. [We use a reductio ad absurdum
argument because defeat is defined in terms of the existence of defeating argu-
ments.] If a′ were defeated, there would be an undefeated argument b against a
sub-argument a′′ of a′. But in this case b would be a defeater of a as well, which
contradicts our earlier assumption. The claim for non-immediate sub-arguments
now follows with a simple induction argument. To prove the second condition,
suppose that b would be an argument that satisfies (1) but is stronger than a.
Then b would fulfill all conditions of being an attacker. Further, since all sub-
arguments of b are undefeated, and b is the strongest argument for the conclusion
of a (modulo states), b is undefeated. But this would mean that a is defeated by
b, which contradicts our earlier assumption.
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Conversely, suppose that a is an argument satisfying (1) and (2). We will
have to prove that a is undefeated. To this end, let us assume the contrary.
Since we may assume that all sub-arguments of a are undefeated by induction,
a’s defeater must be a counter-argument of a itself. This would imply that this
defeater is stronger than a (modulo states). But this would contradict (2). ��

The proposition ensures that searching admissible arguments in a BBN
amounts to searching for arguments and counter-arguments in parallel, and then
simply selecting the strongest argument found.

6 Algorithm

This section explains the algorithm, and finally the algorithm is listed in pseudo-
code.

The routine is called recursively at line 4. In order to form the Cartesian
product of all sub-arguments, all A1, . . . , Ap must be known before the iteration
can start at line 6. This implies a considerable memory-overhead. On the other
hand, the iteration itself can be executed in an on-demand fashion by means of
lazy evaluation. This is what actually has been done in the implementation.

The original algorithm is obtained if k = 1 (Alg. 1, line 12). In fact, the
algorithm then performs a so-called beam search with beam width k = 1. An
interesting variation on the original algorithm is obtained if k > 1. In that case,
the k strongest arguments for each node survive and may act as sub-arguments of
possibly larger arguments. The thus obtained variant is an interesting alternative
problem statement to the k-MPE problem of finding the top-k most probable
explanations in a Bayesian network, because the corresponding decision problem
is known to be NPPP-complete [3, 8].

In this context, it is interesting to determine the time complexity of our
argumentation algorithm. We will now do this.

Proposition 2. The time complexity of Algorithm 1 is O(nskp).

Proof. First, choose a fixed k ≥ 1. From this point on we may assume that,
for every node, at most k arguments are selected as the top-k of undefeated-
arguments-for that node. Suppose a BBN possesses n nodes, and that each node
possesses maximally s states and p parents. Let N be a fixed node. At this node
the Cartesian product A1, . . . , Ap contains at most kp elements. Since N itself
possesses at most s states, at most skp arguments need to be considered to de-
termine the top-k of undefeated-arguments-for N . Thus, at worst the strength
of at most nskp arguments need to considered overall. Since arguments are com-
pared with respect to their strength at every node, and since argument strength
is computed once for every argument, the complexity of the entire algorithm is
O(nskp). ��

Thus, the complexity of Algorithm 1 depends linearly on all graph attributes,
except on p. In other words, the complexity of Algorithm 1 is acceptable as long as
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Algorithm 1 computing the top-k of undefeated-arguments-for(N)
Require: A node N , a desired state d of N , and an agent X that is interested in

strong arguments for N = d
1: if N is clamped to sevidence ∈ states(N) then
2: R := the singleton set consisting of

Argument.new(
conclusion → N ,
conclusion-state → sevidence,
degree-of-belief → 1.0,
degree-of-support → 1.0,
sub-arguments → ∅,
stakeholder → party

)
3: else
4: A1, . . . , Ap = { Undefeated-arguments-for(P ) | P is a parent of N}
5: R := ∅
6: for each argument-vector (a1, . . . , ap) ∈ A1 × . . . × Ap do
7: DOS := Πp

i=1degree-of-belief(ai)
8: parent-states := { si | si is the state of the conclusion of ai}
9: for each state s of N do

10: DOB := DOS × CPTN (s1, . . . , sp, s)
11: a = Argument.new(

conclusion → N ,
conclusion-state → s,
degree-of-belief → DOB,
degree-of-support → DOS,
sub-arguments → (a1, . . . , ap),
stakeholder → party

)
12: Extend R with a, removing R’s weakest, or one of R’s weakest arguments,

if |R | > k
13: end for
14: end for
15: end if
16: return R

we maintain an upper bound on the number of parents. In practice this is always
the case, since the number of entries in a CPT also exponentially depends on p.

Based on the above observations, I think it it safe to claim that the above
algorithm is useable for all practical BBNs.

7 Experiments and Results

This section describes how existing case files from the Bayesian network domain
are processed. Then, one such file will be run through the argumentation program
and the results will be displayed and discussed. Finally, some observations of a
more general nature will be made.
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<?xml version="1.0" encoding="ISO-8859-1"?>
<smile version="1.0" id="Credit assesssment" numsamples="1000">

<nodes>
<cpt id="PaymentHistory">

<state id="Excellent" />
<state id="Aceptable" />
<state id="NoAceptable" />
<state id="Without_Reference" />
<probabilities>0.25 0.25 0.25 0.25</probabilities>

</cpt>
<cpt id="Reliability">

<state id="Reliable" />
<state id="Unreliable" />
<parents>PaymentHistory WorkHistory</parents>
<probabilities>

0.99 0.01 0.7 0.3 0.7 0.3 0.5 0.5 0.7 0.3 0.55 0.45 0.6
0.4 0.4 0.6 0.196429 0.803571 0.01 0.99 0.1 0.9 0.01
0.99 0.7 0.3 0.3 0.7 0.5 0.5 0.2 0.8

</probabilities>
</cpt>

...

Fig. 3. Start of an XDSL input file

The algorithm has been implemented in Ruby 1.8.2, which is an object-
oriented scripting language particularly suitable for rapid prototyping. The re-
sulting program has been extended with an XML interface to import Genie 2.0
XDSL files. Genie is a leading software package to create and manipulate decision
theoretic models using a graphical user interface. Genie 2.0 stores its networks
in a dedicated XML format, named XDSL (Fig. 3).

Besides the network itself (Fig. 3) the argumentation program needs to know
which nodes are considered as evidence, and it needs to know the states to
which these evidence nodes are clamped. This is specified in the program as an
associative array, but we can read this of from Fig. 2. Further, a query node
must be specified. This is a node tied to a particular state. In our case the query
node is “CreditWorthiness(positive)”.

When this program is run on the input as displayed in Fig. 3, we obtain
an output as displayed in Fig. 4. From this output, we see that evidence nodes
create only one argument, while leaf nodes generate as many arguments as there
are states for that node. Since k = 3, the algorithm proceeds with at most three
strongest arguments at every node and eventually ends up with three arguments
in all. The strongest argument supports conclusion “CreditWorthiness(positive)”
with sttrength 0.00077 and degree of belief 0.00062. The second strongest argu-
ment supports an opposite conclusion with equal support but with less DOB.
The second argument is relevant to the main claim but will typically not be used
as a sub-argument in further reasoning (if that would happen—here the second
argument one of the top arguments).
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Parsing ’Credit.xdsl’ ... done

1. Searching evidence for CreditWorthiness=Positive
2. | Searching evidence on both sides for Reliability
3. | | Searching evidence on both sides for PaymentHistory
4. | | Search for PaymentHistory=ALL, returns 3 argument(s):

. . PaymentHistory(excellent) 0.25 1

. . PaymentHistory(aceptable) 0.25 1

. . PaymentHistory(noaceptable) 0.25 1

[snip -- rest of search omitted]

26. Search for CreditWorthiness=Positive, returns 3 argument(s):
CreditWorthiness(positive) 0.00062 0.00077
. Reliability(reliable) 0.062 0.063
. . PaymentHistory(excellent) 0.25 1
. . WorkHistory(stable) 0.25 1
. RatioDebInc(favorable) 0.089 0.11
. . Debt(a0_11100) 0.33 1
. . Income(s30001_70000) 0.33 1
. FutureIncome(not_promissing) 0.14 0.23
. . Worth(low) 0.23 0.33
. . . Income(s0_30000) 0.33 1
. . . Assets(average) 1 1
. . Profession(medium_income_profession) 1 1
. Age(a22_65) 1 1

CreditWorthiness(negative) 0.00015 0.00077
. Reliability(reliable) 0.062 0.063

[snip -- rest of argument in output omitted]

CreditWorthiness(positive) 0.00043 0.00054
. Reliability(reliable) 0.044 0.063

[snip -- rest of argument in output omitted]

27. Ended with 3 arguments.

Fig. 4. Output

8 Related Work

Related work falls apart in two categories: probabilistic argumentation systems,
such as PAS and hybrid argumentation, and approaches that try to convey
dialectic concepts to Bayesian belief networks.

J. Kohlas et al. (Fribourg U. Switzerland) work on Probabilistic argumenta-
tion systems (PASs). According to their creators, PASs are a form of assumption-
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based reasoning for obtaining arguments that support hypotheses [7, 6]. PASs
are obtained from propositional logic by considering two disjoint sets P =
{p1, . . . , pn} and A = {a1, . . . , am} of propositions. The elements of A are called
assumptions. LA∪P denotes the corresponding propositional language. If η is a
propositional sentence in LA∪P , then a triple AS = (η, P, A) is called propo-
sitional argumentation system and η is called the knowledge base of AS. The
knowledge base η is often given as a conjunctive set Σ = ϕ1, . . . , ϕr of clauses
ϕi ∈ DA∪P , where DA∪P represents the set of all possible clauses over A ∪ P .
The authors claim that PASs are applicable public-key cryptography and so-
called webs of trust, which are essentially holistic and cyclic. Unlike BBNs, the
Kohlas et al. claim that PASs are able to deal with such cyclic graphs, which is
for example essential in the domain of public-key cryptography.

Between 1997-2000, work has been reported on the NAG (“The Nice Argu-
ment Generator”), Monash U. Australia [25, 10]. The NAG is an architecture to
enable the generation of natural language arguments from BBNs, so that users
can argue with the NAG about the implications of various BBN scenario’s. Be-
cause the NAG is not only concerned with logics but also with user interaction,
it consists of several components, such as an argument generator, a strategist,
an analyzer, a presenter, an attentional mechanism and an interface. Since the
formation of arguments takes place within the NAG’s analyzer, only this part of
the NAG seems to be relevant within the context of the present paper. Work in
which the NAG is reported is not very detailed about the argument formation
algorithm. It is mentioned that “the Analyzer performs BN propagation on the
portions of the normative and user models which correspond to the Argument
Graph and are connected to the goal”. Further on in [25], it is mentioned that
the NAG applies a Pearl-type propagation algorithm [12]. In [10] a “Generation-
Analysis Algorithm” is given in rather detailed terms, but not detailed enough
to see how it exploits Pearl’s propagation algorithm.

The NAG is partially influenced by Vreeswijk’s interactive argumentation
system IACAS [23]. Like IACAS, the NAG allows the user to manipulate un-
derlying scenarios. In addition, the NAG is also able to model attentional focus
and tailor its arguments to the user in the course of a dialogue.

Finally, there is recent work on modelling argumentation with belief net-
works, in which an attempt is made to convey Toulmin’s argument structures
(claim, datum, reason, warrant, backing) to BBNs [1, 20]. This work still is in
its preliminary stages but the initial results look promising and demand further
research.

9 Conclusion

We have introduced an algorithm with which it is possible to conduct an argu-
mentation process within existing Bayesian belief networks.

The extended algorithm with bean size k is particularly interesting from a
Bayesian inference point of view, because it offers a computationally tractable
alternative to the NPPP-complete decision problem k-MPE.
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