
Debugging Agent Behavior in an Implemented
Agent System

Dung N. Lam and K. Suzanne Barber

The Laboratory for Intelligent Processes and Systems,
Electrical and Computer Engineering,
The University of Texas at Austin,

Austin, TX 78712, USA
{dnlam, barber}@lips.utexas.edu

http://www.lips.utexas.edu

Abstract. As agent systems become more sophisticated, there is a grow-
ing need for agent-oriented debugging, maintenance, and testing methods
and tools. This paper presents the Tracing Method and accompanying
Tracer tool to help debug agents by explaining actual agent behavior in
the implemented system. The Tracing Method captures dynamic run-
time data by logging actual agent behavior, creates modeled interpre-
tations in terms of agent concepts (e.g. beliefs, goals, and intentions),
and analyzes those models to gain insight into both the design and the
implemented agent behavior. An implementation of the Tracing Method
is the Tracer tool, which is demonstrated in a target-monitoring domain.
The Tracer tool can help (1) determine if agent design specifications are
correctly implemented and guide debugging efforts and (2) discover and
examine motivations for agent behaviors such as beliefs, communications,
and intentions.

1 Introduction

There are several agent-oriented software design methodologies (e.g. GAIA [1],
MaSE [2], and OMNI [3]) and development environments (e.g., JADE [4], ZEUS
[5], and FIPA-OS [6]), but there are few agent-oriented methods and tools that
have been created for debugging, maintaining, or testing the resulting imple-
mented system. This paper presents the Tracing Method and accompanying
Tracer tool whose purpose is to help better comprehend actual agent behavior
in the implemented agent system in terms of familiar agent concepts. The objec-
tive is to ensure that an agent is performing actions for the right reasons and, if
an unexpected action occurred, to help explain why an agent decided to perform
the action. Due to the increasing sophistication of agent software (in particu-
lar, the autonomy, proactivity, and social features of agents) and the number
of factors to consider when understanding or explaining agent behavior, com-
paring the implementation’s actual behavior with expected behavior can be an
intensive task, requiring time and knowledge about the design, implementation,
and application domain. In more general terms, “concurrency, problem-domain

R.H. Bordini et al. (Eds): PROMAS 2004, LNAI 3346, pp. 104–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

.

Debugging Agent Behavior in an Implemented Agent System 105

uncertainty, and non-determinism in execution together conspire to make it dif-
ficult to comprehend the activity in a distributed intelligent system” [7]. Despite
its difficulty, the task of comprehending agent behavior in the implemented agent
system helps to identify undesired agent behaviors (bugs) and to gain insight on
how the agents can be improved (for maintenance and testing). In addition to
helping developers test and improve implementations produced by themselves
or by others (e.g., open-source agent systems), the Tracing Method can help the
end-user better understand the agents, and thus increase the end-user’s confi-
dence on agent decisions.

A motivation for applying agent-oriented techniques is to make the problem
and solution easier to understand (i.e., by localizing beliefs and goals into au-
tonomous agents), but after the agent system has been implemented as source
code, distinguishing agent concepts (e.g., beliefs, goals, and intentions) in the
implementation can become difficult as the complexity of the implementation
increases. The design is specified in terms of agent concepts; however, the imple-
mentation is often specified in terms of the programming language structures,
such as variables, classes, and flow-control statements. There are agent-oriented
tools to generate the implementation from the design (e.g., Doi et. al.’s work
on generating source code from AUML diagrams [8]), but there are few agent-
oriented tools to extract the design concepts (i.e., agent concepts) from the
implementation. This research aims to extract agent concepts from the imple-
mentation and to regain the advantages of conceptualizing the implementation
in terms of agent concepts. To complement the high-level agent concepts, low-
level details (e.g., belief values and communication message contents) related to
the agent concepts are required for debugging the implemented agent system.
Such details are made accessible by the Tracer tool, which aims to alleviate the
largely manual task of comprehension during software maintenance.

This paper describes the Tracing Method to observe and interpret actual
agent behaviors in terms of agent concepts, the same agent concepts that are
used to describe expected agent behaviors in the design. Because agent behaviors
in both the design and implementation are understood in terms of agent con-
cepts, establishing the set of agent concepts is central to this research. Section 2
presents the proposed set of agent concepts used for describing agent behaviors.
Section 3 outlines the Tracing Method for observing and extracting actual agent
behaviors from the implementation’s execution so that those actual behaviors
can be compared with expected (or designed) agent behaviors. Section 4 demon-
strates the Tracer tool in a UAV (Unmanned Aerial Vehicles) target-monitoring
domain, where the implemented agents use MDPs (Markov Decision Processes)
to decide their actions. The Tracer tool was found to be useful for quickly identi-
fying and understanding the reasons for agent actions in terms of agent concepts.
Section 5 describes how this research relates to existing work.

A demonstration of the Tracer tool applied to the UAV domain and to a
simple multiagent system (along with example Java source code) is available for
download at the website http://www.lips.utexas.edu/~dnlam/tracer.html.

http://www.lips.utexas.edu/~dnlam/tracer.html

106 D.N. Lam and K.S Barber

2 Agent Concepts

Agent concepts are used in software designs to describe expected agent structure
(e.g., an agent encapsulates localized beliefs, goals, and intentions) and behavior
(e.g., an agent performs an action when it believes the event occurred). During
and after development, agent concepts are used to abstract away from the details
of the implementation and to understand and explain actual agent behavior
(i.e., to answer the question “Why did agent a1 perform action α”). A desirable
explanation could be “Action α was performed by agent a1 because a1 believed
belief b1, which was due to the occurrence of event e in the environment, which
was an expected consequence of agent a1 performing intention i, which was
created based on belief b2 as communicated in a message from agent a2 about
a2’s goal g.” Other agent concepts that may be of interest include the roles the
agents played during the interactions. An objective of this research is to automate
some of the currently-manual tasks that a human must do to comprehend the
implemented agent system.

This section describes agent concepts, focusing on their relationship with
each other. The proposed set of agent concepts includes goal, belief, intention,
action, event, and message. These agent concepts have a general definition or
understanding in the agent community, but due to the variety of approaches and
applications, there is no definitive representation for the agent concepts. Figure
1 illustrates the relationships among these agent concepts, and Table 1 presents
the representation of agent concepts used in this research.

Table 1. Agent concept structure declarations

Agent Concept Constituent attributes
event name, preconditions, postconditions
action agent, name, preconditions, postconditions

message sender agent, receiver agent, subject, value
belief agent, subject, value
goal agent, name

intention agent, name, goal names, belief subjects, action names

Agents are distributed, goal-oriented entities situated in an environment and
encapsulate decision-making capabilities. Agents need their own goal(s) in order
to be proactive (i.e., take initiative to achieve some goal) and autonomous (i.e.,
make decisions on their own based on their goals). In addition to localized be-
liefs about itself, agents also maintain beliefs about the environment, including
objects situated in the environment. Beliefs are subjective representations of the
state of the agent or the system and can affect many other aspects of the agent,
including its goals. Using its current beliefs, an agent achieves a goal by gener-
ating an intention (or plan), which prescribes actions that the agent(s) intend
to perform. Actions performed by agents and other entities can cause events in
the environment, which agents may sense and use to update their beliefs. For

.

Debugging Agent Behavior in an Implemented Agent System 107

Fig. 1. Agent concepts and their relationships

explaining agent behavior, an agent’s goals, beliefs, and intentions, in addition
to its actions, must be considered because agents may act as expected but for
undesirable reasons.

For multi-agent systems, communication is often an important factor to sys-
tem performance. An agent may send messages to others during belief main-
tenance (for knowledge-sharing), during planning (for collaboration), or during
schedule execution (for coordination). In terms of agent concepts, a communi-
cated message can (directly or indirectly) affect an agent’s goal, belief, intention,
and/or action. Thus, an explanation of an agent action should include commu-
nicated messages that contributed to that action.

This research declares general structures for each agent concept as shown in
Table 1. Unlike formal representations (e.g., goal representations for BDI agents
[9]), the agent concepts are generalized so that they can be used in any imple-
mentation and to minimize the amount of effort required to apply the Tracing
Method, (i.e., the effort in adding logging code). With the aim of generalizing
the agent concepts, the set of attributes composing each agent concept is min-
imal. The attributes declared for each agent concept in Table 1 are needed to
relate agent concepts with each other as illustrated in Fig. 1. For example, the
attributes of a goal are the agent that wants to achieve the goal and a name
for the goal. Other details about the goal (e.g., reward value) are not needed to

108

relate the goal to the intention created to achieve that goal. Of course, the goal’s
name must be distinct from names of non-equivalent goals. Other constituent
attributes of an intention include references to the beliefs that were used in the
process of creating the intention and actions to be performed as prescribed by
the intention. Note that the values for the constituent attributes are set when
an agent concept is observed, or logged (this is further discussed in Section 3).

By comparing the values of the attributes constituting each agent concept,
relations between agent concepts during implementation execution can be au-
tomatically formed. For example, to relate an event to an action causing that
event, the action’s postconditions must be equivalent to the event’s precondi-
tions. Additionally, the name attribute of events, actions, goals, or intentions
can be compared to the subject attribute of messages or beliefs to denote that
a message or belief can be about an event, action, goal, or intentions. Section 4
demonstrates some application-specific relations in the UAV domain. For flexi-
bility in the Tracer tool, the structure of each agent concept can be appended for
application-specific relations that are not possible with the proposed structure
(i.e., there is an implicit user object attribute for each agent concept).

Agent concepts and their relationship with each other establish the foun-
dation for work in automated analysis of agent system implementations. For
example, in Section 4, the Tracer tool analyzes observations about an agent (in
terms of agent concepts) to explain agent actions.

3 Tracing Method and Tracer Tool

Due to the inherent unpredictability of autonomous agents in an uncertain en-
vironment and the possibility of emergent behavior, Jennings stresses a need
for a better understanding of how agent interaction affects an individual agent’s
behavior [10]. The idea of the Tracing Method is to capture uncertain, dynamic
run-time data (e.g., environmental events and communicated beliefs), to observe
each agent’s behavioral response, and to help explain this behavior. The Trac-
ing Method can be used repeatedly throughout the software life-cycle from the
first skeleton code to the final system. Using the Tracing Method shown in Fig.
2, interpretations (models or diagrams that represent the actual agent behav-
ior in terms of agent concepts) are created using observations resulting from
the implementation’s execution. These interpretations can be the same models
and diagrams that result from reverse engineering (e.g., flow control, compo-
nent dependence, and class inheritance models or state-chart and process-flow
diagrams), or the interpretations can be relational graphs linking observations
together (as is the case in this paper).

The Tracing Method and Tracer tool is being developed for agent systems
that are implemented in a procedural programming language (e.g., Java, C, and
C++), but they can also be used in declarative agent-oriented programming
languages (e.g., AF-APL [11] and Suna et. al.’s mobile agent language [12])
to visualize and clarify agent behavior in the system. Currently, the Tracer tool

D.N. Lam and K.S Barber.

Debugging Agent Behavior in an Implemented Agent System 109

Fig. 2. Tracing Method process diagram

includes Tracing clients that allow Java and Lisp implementations to sends logs
to the Tracing server.

The Tracing Method involves logging agent behavior during execution, trans-
forming the log entries and run-time data into interpretations, and comparing
those interpretations with the models of expected agent behavior. As a result,
the agent concepts (e.g., beliefs about the current state of the environment)
are instantiated with actual run-time data. By comparing the interpretations
with the models of expected behavior, actual behavior can be verified against
expected behavior. Expected behavior may be formally specified as models in
design documents or informally understood and modeled by the developer(s).
In either case, if there are inconsistencies between the interpretations and the
expected behavior, the implementation or the expected behavior may need to
be corrected. Currently, comparisons are manually performed because a formal
specification for expected agent behavior has yet to be developed. However, ex-
planations of particular observations (i.e., the observations that are inconsistent
with expectations) can be generated upon user request. Details about the in-
consistencies are presented to the user so that the implementation or expected
behavior can be corrected. Since each observation can be traced back to a loca-

110

Fig. 3. Components of the Tracer tool

tion in the source code where the log entry was created (using a stack trace),
correcting the inconsistency is facilitated.

Each step of the Tracing Method in Fig. 3 is described in the following sub-
sections, accompanied by examples from the Tracer tool. To clarify which tasks
in the Tracing Method have been automated and where additional features or
tools can be integrated, Fig. 3 illustrates each component of the Tracer tool. The
Tracer tool aims to automate the developer’s task of analyzing run-time data,
creating interpretations of actual agent behavior, and relating those interpreta-
tions to models of expected agent behavior. Essentially, the Tracer tool trans-
lates the procedural execution of the implementation (resulting in log entries)
into declarative statements about what and when the agent believes, intends,
and performs (called observations). To accommodate other analyses of the im-
plementation, additional interpreters and analyzers can be added to the Tracer
tool. The current products of the Tracer tool include behavioral and structural
models (representing interpretations of the logged data based on order, dura-
tion, and other run-time attributes) and explanations of particular observations
requested by the user. Since the interpretations are similar to design models,
the interpretations can be compared to the original design models to ensure im-

D.N. Lam and K.S Barber.

Debugging Agent Behavior in an Implemented Agent System 111

portant aspects of the agent design have been traced. The comparison task can
be performed by other automated tools that can analyze the observations or
interpretations.

3.1 Step 1: Add Logging Code

The first step of the Tracing Method is to insert code that logs run-time data
about agent concepts into the source code. Unlike traditional reverse engineering
tools (e.g., Gen++ [13] and DESIRE [14]), this method does not analyze code in
detail, thus, it is not dependent on any specific language. Instead, run-time data
about the implementation’s execution is acquired by explicitly logging the data
that is desired. The logging code should be added at points in the source code
where an agent concept is updated or occurs, such as when an agent (1) changes
a belief that can affect decision-making, (2) decides about its intention (e.g.,
generates a plan of action), (3) modifies its goal, (4) performs an action, and
(5) sends and receives a communication message, as well as (6) when an event
occurs that can affect an agents behavior. To clarify this step, the demonstration
in Section 4 identifies every agent concept that is logged for the UAV domain.
Currently, this step is a manual process performed by the developer, tester, or
end-user, assuming the implementation is organized and structured enough so
that agent concepts can be identified in the source code.

Listing 1: Example logging code in Java for an agent

TraceLogger logger =
Tracer Client.getLogger("uav.Bot"+agentID);

public void handleNewScan(DetectedTarget target){
logger.logBelief("Target"+target.getID(), target);
// remaining implementation . . .

}

Listing 1 shows an example of logging code for a belief being updated in the
source code. From Table 1, the constituent attributes of a belief are the agent
holding the belief, the subject the belief is about, and the value of the subject.
In Listing 1, the constituent attributes of the belief are "uav.Bot"+agentID,
"Target"+target.getID(), and target, respectively.

In addition to inserting logging code for agent concepts, logging code can be
inserted at the beginning and end of code segments to denote the agent’s cur-
rent state or the current task (or activity) the agent is performing. Such logging
code denoting the agent’s tasks provides more information and context for the
logged agent concepts. For example, in the first five rows shown in Fig. 4, the
flyToTarget action and uavScan event occur within the internalHandleScans
task because they appear between its START TASK and STOP TASK. For more de-
tails about logging agent tasks, an earlier paper [15] describes how such con-

112

Fig. 4. Log entries for agent Bot15 in the UAV domain

textual logging code can result in state-chart and process-flow diagrams (other
representations of software behavior), which are then verified.

Since only agent concepts are logged, this logging approach requires only
high-level functional and structural knowledge of the implementation. If there is
insufficient or erroneously-placed logging code, these errors will manifest them-
selves as specific inconsistencies between the interpretations and the models of
expected behavior in the fourth step in Fig. 2. The developer can use the iden-
tified inconsistency to determine if logging code should be added or modified.

3.2 Step 2: Run Agent System

The second step of the Tracing Method is to execute the agent system so that the
Tracer tool can collect run-time data, such as when and where the logging code
was executed. A logging mechanism based on the Java Logging Framework [16]
has been implemented. When the logging code executes, log entries are created
from run-time data (e.g., what the agents believe and intend, what actions are
being performed, and what events are occurring in their environment) and are
sent by the Tracing Client to the Tracing Server locally or across a network (see
Fig. 3).

Log entries for agent concepts and task activities are transformed into generic
log entries so that they can all be handled by the same tools. For example, Fig.
4 displays all types of log entries on a single display. Figure 4 shows log entries
as rows and the corresponding run-time data (e.g., timestamp and process id) as
columns for an agent in the UAV domain. Each column is described as follows:

Loggername : context of the log entry identifying an agent or the simula-
tor (e.g., uav.Bot15 or uav.Sim) or a subcomponent within an agent (e.g.,
uav.Bot15.planner);

ID : unique identifier for the log entry;
Time : simulation time at which log entry was created;

D.N. Lam and K.S Barber.

Debugging Agent Behavior in an Implemented Agent System 113

Thread : execution thread id of the process in which the log entry occurred;
Class, Method : class and method in which the logging code executed (a full

stack trace with source code line numbers is also available but not shown in
the figure);

Message : additional free-form details about the log entry for human readabil-
ity;

Realtime : real time at which log entry was created;
Taskname : name for observation or task;
Type : type of observation (e.g., action, event, belief) or task.

Most of the data (e.g., time, thread, class, method, and realtime) are acquired
at run-time and appended to the log entry.

Due to the large amount of data, the log files need to be pre-processed and
organized before they are analyzed. Log file utilities within the Tracing Server
were created to sort, splice, and merge the log files so that log entries are orga-
nized correctly and interpretations accurately represent the implementation. To
organize the log files, the loggerName can refer to an entire agent or a component
within the agent. For each unique loggerName, there is a single log file. Thus, a
thread that operates across several agent components may write to several log
files. Since there may be several execution threads logging to a single file, the
log file needs to be spliced into separate log files for each execution thread. For
instance, in Fig. 4, the log entry with ID 94 was logged by thread 12, while most
of the other entries were logged by thread 13.

3.3 Step 3: Interpret Observations

The third step is to construct interpretations that can be compared with mod-
els of expected behavior. There are several ways to automatically interpret the
observations listed in Fig. 4, depending on what type of information is desired
and what is being analyzed. For example, using the timestamp of observations,
a state-transition diagram can be generated by one of the Tracer tool’s inter-
preters (see [15] for an example). Additional interpreters can be added to produce
other types of interpretations, including a time-plot of agent activities, data flow
graphs, and message sequence charts. Each type of interpretation can be used
to verify certain aspects of the agent system implementation as described in
the next step. Given the desired interpretation type (in this case, it is a rela-
tional graph), the Tracer tool can generate the interpretation by processing the
observations during run-time or after the execution has completed. Being able
to monitor the agents during run-time offers an additional visualization of the
running agent system.

To generate relational graphs used in the UAV demonstration, rules to relate
agent concepts to each other are applied to the observations. The purpose for the
rules is to form the relations illustrated in Fig. 1. For example, one rule states
that if a message m from agent a contains the same information as belief b, then
that message m is causally linked to that belief b. Another rule states that if
intention p has belief b’s subject in its list of belief subjects, then belief b affects

114

p. The resulting directed graph of these two rules implies that intention p was
affected by belief b, which was a result of agent a sending message m.

To reduce the effort of applying the Tracing Method, the idea behind the
interpreter is to automatically generate informative representations of agent be-
haviors from simple, reusable rules. Essentially, the rules compare the constituent
attributes of agent concepts (e.g., name, subject, preconditions, and postcondi-
tions) in order to associate one agent concept with another. Because the agent
concept structures were designed to be general, the rules can be reused in other
agents with similar behaviors. Application-specific rules can be created by hand
or generated by a pattern discovery mechanism. Future work will consider au-
tomatically generating the rules based on patterns in the list of observations.

3.4 Step 4: Verify Interpretations

The fourth step is to verify the interpretations against the models of expected
agent behavior. There are several ways to verify the interpretations depending
on the interpretation type. For example, state-transition diagrams and mes-
sage sequence charts can be directly compared to expected behavior expressed
as state-chart diagrams and communication protocol diagrams in design doc-
uments. Currently, due to the lack of a formal specification of agent behavior,
verifying the interpretations is a manual step – a human must determine whether
the interpretations are consistent with expectations. However, the Tracer tool’s
Explainer can assist the user in identifying the causes of unexpected behavior.
Given the relational graph from Step 3, an explanation describing the observa-
tions relating to an agent action (or any observed agent concept) can be examined
to ensure that an agent is performing the action for the right reasons. Section 4
demonstrates how an explanation is created.

To allow for other analyses of different interpretation types, additional analy-
sis tools can be plugged into the Tracer tool (see Fig. 3). Possible analyses include
checking safety and liveness properties about the execution trace, verifying that
the agents are following communication protocols, and locating computational
bottlenecks.

If the interpretations are inconsistent or seem erroneous with respect to ex-
pectations, (1) logging code may need to be added or corrected due to missing or
misplaced observations, (2) the agent system may need to be executed multiple
times to verify interpretation variations due to nondeterminism, (3) an imple-
mentation bug may need to be corrected, and/or (4) expected agent behavior
may need to be updated. This is why there are arrows pointing from interpre-
tations to previous steps or objects in Fig. 2. Since each high-level observation
contains a low-level stack trace denoting where and in what context the logging
code was executed in the source code, correcting inconsistencies is facilitated.
The result of the Tracing Method is a set of verified interpretations of the imple-
mented agents’ behaviors in terms of agent concepts. As a side effect, the source
code is sparsely documented with logging code that identifies important points
in the code for understanding the implemented agents’ behaviors.

D.N. Lam and K.S Barber.

Debugging Agent Behavior in an Implemented Agent System 115

4 Tracing the UAV Domain

To demonstrate the Tracing Method, the Tracer tool will be used to trace agents,
each controlling a UAV (Unmanned Aerial Vehicle), in an implemented agent
system for the UAV target-monitoring domain. The agents’ overall objective is to
ensure that all mobile targets are being scanned (by flying to the target’s believed
location and finding the target) with minimal time from when the target was last
scanned. Each agent shares with other agents its own preferences about which
targets it prefers to monitor. Each agent individually decides which targets it
intends to scan (referred to as its committed targets) so that all targets are being
scanned as frequently as possible using a Markov Decision Process (MDP) with a
value function that considers distances from targets, targets’ last scan times, and
other agents’ target preferences and commitments. Each agent’s MDP model is
updated as the agent receives new information about targets and other agents,
thus affecting the agent’s decision about which targets to monitor. Since there
are a lot of factors for each agent to consider and the decision-making process
occurs frequently, checking agent behavior would be facilitated by using the
Tracing Method and Tracer tool.

The first step is to add logging code to the source code for each agent concept.
To demonstrate that a low-level understanding of the implementation was not
necessary, the person adding the logging code was not intimately familiar with
the source code for the simulation or the agents and asked the developer only
high-level questions concerning the abstractions from code to agent concepts.
Note that the simulation was provided by Metron, Inc., as a contribution to the
DARPA TASK project, the agents were programmed by a developer in our lab,
and the logging code was added to the simulation and the agents by the author
of this paper. The following lists specific instances for each agent concept in the
UAV domain:

Message : messages about preferences, commitments, and scanned targets;
Belief : beliefs about an agent’s own preferences, commitments, and scanned

targets and, via communicated messages, beliefs about other agents’ prefer-
ences, commitments, and scanned targets;

Desire : (static) minimize time between scans for all targets;
Intention : ordered list of committed targets;
Action : fly to target, spiral (to search for target), and stop;
Event : a target is scanned (if the agent is within range as determined by the

simulation).

Once logging code was inserted for each of these agent concepts, the second
step is to execute the implementation. The simulation was executed with fifteen
targets (0 to 14) and three agents (Bot15, Bot16, and Bot17). During execution,
the Tracing Clients send log entries (see Fig. 4) to the Tracing Server, which
translates the log entries into observations. Table 2 partially lists the observations
for agent Bot15 in human readable format.

For each observation, the table shows the type of observation, the simulation
time the log occurred, a unique identifier for the observation, and run-time data

116

Table 2. Partial list of observations for agent Bot15

Type Time ID Run-time data
Belief 0 18 initTargets (3 7 2 0 14 6 1 10 5 13 9 11 4 8 12)

Belief 0 19 initTargetLocations ((151.26 203.46)
(536.57 517.74) ... (55.01 77.03))

Action 1 31 stop
Event 1 33 uavScan ()
Belief 1 42 myPreferences (1 13 6 9 5 10 2 3 12 8 4 11 0 14 7)

Intention 2 67 addCommitment (target 1), intention=(1)
Action 2 92 flyToTarget (1)
Event 2 93 uavScan ()
Belief 2 103 myPreferences (1 13 6 9 5 10 2 3 12 8 4 11 0 14 7)

Intention 2 115 addCommitment (target 13), intention=(1 13)

Message 3 160 messageReceived from Bot16 sentAtTime 2
(about Bot16 preferences (10 1 6 5 8))

Belief 3 166 otherPreferences Bot16 (10 1 6 5 8)

Message 3 172 messageReceived from Bot17 sentAtTime 2
(about Bot17 preferences (1 6 5 10 9))

Belief 3 174 otherPreferences Bot17 (1 6 5 10 9)

Message 3 180 messageReceived from Bot16 sentAtTime 2
(about Bot16 commitments (10))

Belief 3 183 otherCommitments Bot16 (10)

Message 3 189 messageReceived from Bot17 sentAtTime 2
(about Bot17 commitments (1))

Belief 3 192 otherCommitments Bot17 (1)
Event 4 207 uavScan ()
Event 4 228 uavScan ()

Message 4 241 messageReceived from Bot17 sentAtTime 4
(about Bot17 preferences (9 3 6 2 5))

Belief 4 244 otherPreferences Bot17 (9 3 6 2 5)

Message 5 291 messageReceived from Bot16 sentAtTime 4
(about Bot16 preferences (8 10 11 3 2))

Belief 5 293 otherPreferences Bot16 (8 10 11 3 2)

Message 5 307 messageReceived from Bot17 sentAtTime 4
(about Bot17 commitments (1 9))

Belief 5 309 otherCommitments Bot17 (1 9)

Message 5 316 messageReceived from Bot16 sentAtTime 4
(about Bot16 commitments (10 8))

Belief 5 318 otherCommitments Bot16 (10 8)
Event 5 323 uavScan ()
Event 7 353 uavScan ()
Event 7 361 uavScan ()
Event 8 393 uavScan ()
Event 9 415 uavScan ()
Event 10 440 uavScan ()
Event 11 460 uavScan ()
Event 12 484 uavScan (1)
Belief 13 510 scannedTarget (1)
Action 14 520 flyToTarget (13)
Belief 15 566 myPreferences (13 10 5 12 4 0 1 7 14 3 2)

Intention 15 594 addCommitment (target 10), intention=(13 10)
...

pertaining to the observation. The run-time data offers details such as what
was believed, what action occurred, or what commitments were made by agent
Bot15. Note that the observations are chronologically ordered by the simulation
time and that the ID coincides with this temporal ordering. In this agent im-
plementation, only messages received by Bot15 are listed for conciseness, since
messages sent by Bot15 do not directly affect its own decisions. Also, no goal
type observations are listed because all agents have a static goal of minimizing
the time between scans for each target.

D.N. Lam and K.S Barber.

Debugging Agent Behavior in an Implemented Agent System 117

A glance through the table shows an unexpected (or at least undesired) be-
havior. The uavScan event, which signifies that an agent scans its current lo-
cation for targets, was found to occur more than once per simulation timestep
(e.g., observation 207 and 228 in timestep 4). Since the simulation only provides
new scans once per timestep, the duplicate event is unnecessary. After consult-
ing with the developer, this repetition occurs because the simulation’s execution
thread is running faster than the agent’s execution thread. As a result, to make
up for missed scans in previous timesteps, the agent performs multiple scans per
timestep. For example, in Table 2, the agent does not scan in timestep 6, so the
scan event is repeated in timestep 7. This undesired behavior does not adversely
affect the overall performance of the agents with respect to its goal. However,
this identified inefficiency may affect real-time performance as the number of
agents increase or as the agents become slower than the simulation.

The third step is to interpret the observations by generating relational graphs.
Rules, including the general rules mentioned in Section 3, were applied to the ob-
servations in order to create directed graphs. The general and application-specific
rules that were used are listed below. The algorithm applies the appropriate rules
to each new observation that appears and searches backward (temporally) to find
the latest previous observation that satisfies the rule antecedent.

General rules:
– If belief b occurs after message m and their subjects and values are equivalent,

then m affected b.
– If message m occurs after belief b and their subjects and values are equivalent,

then b’s occurrence caused m to be sent.
– If event e occurs after action a and e’s precondition is equivalent to a’s

postcondition, then a caused e.
– If belief b occurs after event e and b’s subject is equivalent to e’s name and

b’s value is equivalent to e’s postcondition, then e caused b.
– If an action a’s name is contained in a previously observed intention i’s action

names, then i prescribed a.
– If intention i occurs after belief b and i’s belief subjects includes b’s subject,

then belief b influenced the intention i.
– If message m occurs after an action, intention, or goal o whose name is

equivalent to m’s subject, then o influenced m.

Application-specific rules:
– If intention i2 occurs after intention i1, then i1 influenced i2.
– If a belief b2 occurs after the last myPreferences belief b1 and before a

myPreferences belief b3, then b2 affects myPreferences belief b3.
– If a flyToTarget action a occurs after a scannedTarget belief b for different

targets, then a is cause by b (i.e., the agent believes it has scanned its previous
target and is pursuing its next target as prescribed by its intention).

More complicated application-specific rules can be created to relate more than
two observations together, but for the general rules, straightforward rules are
preferred for better reuse. The rules represent the background knowledge used

118

Fig. 5. Relational graph for agent Bot15

by the users to generate explanations. Such background knowledge needs to
be represented in the Tracer tool in order to automate explanation generation.
Currently, these rules are manually defined and given as input to the Tracer
tool. For future work, the tool will discover patterns in the observations and
suggest to the user rules that relate agent concepts to each other; thus, further
automating the comprehension tasks.

Figure 5 illustrates the relational graph generated from the observations in
Table 2. Each node in the graph is labeled with the first letter of the observation
type (i.e., B=belief, I=intention, A=action, E=event, and M=message) and the
unique id of the observation, so it can be referenced in Table 2. Each edge
represents a source node causing (or influencing) the destination node. The belief
nodes B:18 and B:19 show that agent Bot15 processes initial data about the
targets and their locations. Based on only those beliefs, Bot15 creates its initial
target preferences labeled B:42.

The shaded belief nodes represent myPreferences that have been calculated
using Bot15’s current beliefs about the targets and other agents’ target pref-
erences and commitments. For the target preferences in B:42 and B:103, only
the initial beliefs were used since the other agents have not yet communicated
their preferences or commitments. However, in B:566, Bot15 takes advantage
of several beliefs (about other agents’ preferences and commitments) that were
created from communicated messages (i.e., M:160, M:172, M:180, etc.) as shown
in Fig. 5 and detailed in Table 2.

The fourth step is to analyze actual agent behavior to insure agents are
behaving as expected. In doing so, an end-user can gain a better understanding
of what the agent is doing and why. A description of what the agent is doing is
described below, followed by a description of how explanations are generated by
the Tracer tool’s Explainer.

Based on preferences in B:42, the agent makes a commitment represented
by the intention node I:67 (i.e., Bot15 adds commitment to scan target 1).
Next, based on intention I:67, the agent performs an action A:92 (i.e., Bot15

D.N. Lam and K.S Barber.

Debugging Agent Behavior in an Implemented Agent System 119

Fig. 6. Relational graph from Tracer tool

flies to target 1’s believed location). This series of observations can be easily
followed in Table 2. Before event E:484 (i.e., Bot15 scans target 1) occurs at
timestep 12, the agent recalculates its preferences to create B:103 (i.e., Bot15’s
new preferences are (1 13 6 9 ...)) at timestep 2, which is not different
from B:42 (as seen in Table 2) because there were no new beliefs to consider
between B:42 and B:103. The reason the agent recalculates its preferences is to
add its next target, which is target 13 as shown by intention I:115 in the table.
Reasonably, the agent does not perform action A:520 (i.e., Bot15 flies to target
13’s believed location) until it believes B:510 (i.e., Bot15 has scanned target
1) as shown in the graph.

A relational graph can present important information that may not be as
obvious when presented as a list or table. The Tracer tool’s Explainer can assist
the user in analyzing the relational graph by generating explanations of speci-
fied observations. Given some observation to explain (e.g., an agent action), the
explanation is generated by following the incoming edges of the node that repre-
sents the given observation. For example, the graph in Fig. 5 clearly shows that
action A:520 is prescribed by the intention I:115, created before communication
with other agents. In the table, however, since A:520 chronologically occurs af-
ter the communications with other agents, the action A:520 can be misconstrued
to be influenced by those communications. Such information can save time and
effort in trying to debug the implemented system. Figure 6 and Figure 7 show
snapshots of the relational graph and an example explanation from the Tracer
tool.

120

Fig. 7. Explanation of action A:4111 in Fig. 6

As demonstrated, the graph provides a quick way to understand (and ask
questions about) the operations of the agent without having to understand the
implementation in-depth. The graph can also help answer questions, such as
“Why did Bot15 intend I:594”, by narrowing down the set of beliefs that influ-
enced the agent to decide on I:594. Additionally, some patterns of behavior are
more easily discovered by the human user in graph form. For example, in Fig.
5, the nodes with dotted outline represent subsequent observations that relate
action A:520 and intention I:594 (namely, the post-conditions of A:520 must be
true before the next action A:1320 in I:594 can be performed), completing the
pattern of behavior. More high-level behavioral patterns can be seen in Fig. 8,
where there are clusters of belief and message nodes surrounding intention nodes
and the clusters are connected by action nodes. Not surprisingly, such a pattern
resembles the classical sense-reason-act cycle used in artificial intelligence.

Given patterns of behavior for an agent, anomalous behavior can be quickly
identified as subgraphs that are not similar to the pattern. For example, Fig. 9
shows anomalies (visualized as dangling nodes on the right side of the figure)
in behavior for an earlier version of the agent. Such anomalies can identify pos-
sible bugs in the system or unexpected changes in agent behavior. Given this
information, the user can investigate the cause of the bug at that anomalous
observation or add a new rule (to the background knowledge) to account for
the new behavior. A future feature in the Tracer tool will be automated graph
pattern discovery and anomalous behavior detection.

D.N. Lam and K.S Barber.

Debugging Agent Behavior in an Implemented Agent System 121

Fig. 8. Patterns in relational graph

Fig. 9. Anomalies (on right-side) in relational graph for a different agent

5 Related Work

This section discusses the limitations of two popular approaches for verifying
software behavior (model-checking and reverse engineering) when applied to
agent-based implementations. This research addresses the limitations in using
these verification approaches.

Model-checking performs a thorough search through a high-level model of
an implementation to find undesired behaviors and to ensure desired behaviors
as specified by the user. To verify agent behaviors using model-checking, (1)

122

observed agent behavior (as understood by the user) and properties to be verified
are translated into a format suitable for a model-checking tool, (2) the model is
checked by the tool (provided the state space size is manageable), and (3) results
from model-checking are interpreted and related back to the actual system (i.e.,
mapping a property violation back to the implementation).

For software developers who are not experts in model-checking, the trans-
lation and interpretation steps may be particularly challenging, and even for a
seemingly trivial system, the large state space may be unmanageable. To re-
duce the learning curve associated with model-checking, software engineering
researchers have focused on tools and methods to enable model-checking of high-
level models (e.g., Petri-nets [17], UML diagrams [18], and architecture repre-
sentations [19]). While these approaches have helped reduce the translation and
interpretation barriers, they do not leverage software models that incorporate
agent-related abstractions (i.e., agent concepts) and do not facilitate translating
actual agent behavior from the implementation to models to be checked.

Bordini et. al. applied model-checking to reactive-planning agents imple-
mented in the BDI logic programming language AgentSpeak by translating the
implementation into a finite-state model that can be verified using the Spin
model-checker [20]. Though promising for agent systems implemented in logic
or for applications requiring formal verification, the use of model-checking in
the numerous procedural (infinite-state) implementations requires effort in ab-
stracting and translating the source code into a checkable model and may not
be practical.

Edmunds points out the insufficiency of formal methods and the need for
an experimental approach for understanding multi-agent systems [21]. This re-
search offers the Tracing Method as an experimental approach to analyzing agent
behavior, unlike model-checking. First, to minimize translation errors due to mis-
understanding the implementation, agent behavior is constructed from the log
of actual agent beliefs, intentions, and actions. Additionally, the user is only
required to know where agent concepts are updated in the source code so that
logging code can be added. Second, to avoid the large state space representing
the aggregate behavior of an agent-based system, the Tracing Method analyzes
agent behavior scoped by the set of scenarios through which the implementation
is executed. The scope of scenarios for tracing can be iteratively modified as the
typical development effort is iterative. Third, relating the analysis results back
to the implementation is facilitated because each observation of agent behavior
can be traced to an exact location in the implementation. There are a number of
possible points of failure, but future work hopes to provide guidelines or (fully
or partially) automate some of the steps in the Tracing Method.

Traditional software reverse engineering tools (e.g., Gen++ [13] and DESIRE
[14]) analyze the implementation at the source code level and produce models
of the implementation (e.g., flow control, component dependence, and class in-
heritance models) that are detailed representations of what is happening in the
implementation. With the increase in complexity of agent systems, it becomes
very difficult to get a comprehensive system view of the implementation using

D.N. Lam and K.S Barber.

Debugging Agent Behavior in an Implemented Agent System 123

traditional tools due to the number of software components and low-level inter-
actions involved. Without having to analyze the source code in detail, the Tracer
tool automates the analysis of what is happening and helps to explain why such
behavior is happening using high-level agent concepts (e.g., beliefs, goals, and
communication messages). Since an agent system is conceptualized and designed
using agent concepts, comprehension and verification of agent behaviors in the
implemented system for debugging, testing, and maintenance should also use
agent concepts.

6 Summary

As agent systems become more complex and sophisticated, there is a growing
need for agent-oriented methods and tools to debug, maintain, and test agent
software. This paper presents the Tracing Method and accompanying Tracer tool
to help (1) verify actual agent behavior in the implemented system against ex-
pected (or designed) agent behavior and (2) understand the implemented agent
system in terms of the same agent concepts used in the software design. Agent
concepts are used to describe agent structure (e.g., an agent encapsulates lo-
calized beliefs, goals, and intentions) and behavior (e.g., an agent performs an
action when it believes the event occurred). The Tracing Method captures dy-
namic run-time data during implementation execution, interprets the data as
observations of actual agent behavior, and analyzes those interpretations.

The Tracer tool facilitates the ability (1) to determine if agent design specifi-
cations are correctly implemented and guide debugging efforts and (2) to examine
and discover motivations, such as beliefs, intentions, and communicated messages,
for agent behaviors. As demonstrated in the target-monitoring UAV domain, the
Tracer tool assists in gaining insight into agent behavior by automating the process
of generating interpretations of the implementation execution and presenting ob-
served agent behavior in terms of agent concepts. In addition, the Tracing Method
establishes general structures for agent concepts that can be used in most agent
system implementations, thus, moving away from ad hoc debugging techniques.

This research proposes a method and tool to create models of agent behavior
that not only describe what is occurring in the implementation but also why a
respective agent behavior occurred (e.g., agent X took action a because of belief
b). To enable such explanations, the Tracing Method requires only a high-level
understanding of where agent concepts are modified in the implementation. In
this regard, the behavior of agents in unfamiliar agent systems can be quickly
understood. Overall, the Tracing Method and Tracer tool sheds light on how
agents actually behave and how agent behavior in the implementation can be
improved.

Acknowledgements

This research was funded in part by the Defense Advanced Research Projects
Agency and Air Force Research Laboratory, Air Force Materiel Command, USAF,

124

under agreement number F30602-00-2-0588. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusions herein are those of
the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed on implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Laboratory, or the
U.S. Government.

References

1. Wooldridge, M., Jennings, N.R., Kinny, D.: The GAIA methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (2000) 285–312

2. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering. In-
ternational Journal of Software Engineering and Knowledge Engineering 11 (2001)
231–258 World Scientific Publishing Company.

3. Dignum, V., Vazquez-Salceda, J., Dignum, F.: OMNI: Introducing social structure,
norms and ontologies into agent organizations. In: Second International Workshop
on Programming Multi-Agent Systems at the Third International Joint Conference
on Autonomous Agents and Multi-Agent Systems, New York, NY (2004) 91–102

4. JADE: Java agent development framework. http://sharon.cselt.it/projects/jade/
(2000)

5. Nwana, H.S., Ndumu, D.T., Lee, L.C., Collis, J.C.: ZEUS: A toolkit for building
distributed multi-agent systems. In Etzioni, O., Muller, J.P., Bradshaw, J.M., eds.:
Third International Conference on Autonomous Agents, Seattle, WA, ACM Press
(1999) 360–361

6. Poslad, S., Buckle, P., Hadingham, R.: The FIPA-OS agent platform: Open source
for open standards. In: Fifth International Conference and Exhibition on the
Practical Application of Intelligent Agents and Multi-Agents, Manchestor, UK
(2000) 355–368

7. Gasser, L., Braganza, C., Herman, N.: MACE: A flexible testbed for distributed
AI research. In Huhns, M.N., ed.: Distributed Artificial Intelligence. Morgan
Kaufmann, San Mateo, CA (1987) 119–152

8. Doi, T., Yoshioka, N., Tahara, Y., Honiden, S.: Bridging the gap between AUML
and implementation using FOPL. In: Second International Workshop on Pro-
gramming Multi-Agent Systems at the Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems, New York, NY (2004) 69–78

9. Braubach, L., Pokahr, A., Lamersdorf, W., Moldt, D.: Goal representation for BDI
agent systems. In: Second International Workshop on Programming Multi-Agent
Systems at the Third International Joint Conference on Autonomous Agents and
Multi-Agent Systems, New York, NY (2004) 9–20

10. Jennings, N.R.: Agent-oriented software engineering. In: Lecture Notes in Com-
puter Science: Proceedings of the 9th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World : Multi-Agent System Engineering
(MAAMAW-99). Volume 1647. (1999) 1–7

11. Ross, R., Collier, R., O’Hare, G.M.: AF-APL – bridging principles & practice in
agent oriented languages. In: Second International Workshop on Programming
Multi-Agent Systems at the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems, New York, NY (2004) 21–33

D.N. Lam and K.S Barber.

Debugging Agent Behavior in an Implemented Agent System 125

12. Suna, A., Fallah-Seghrouchni, A.E.: A mobile agents platform: Architecture, mo-
bility and security elements. In: Second International Workshop on Programming
Multi-Agent Systems at the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems, New York, NY (2004) 57–66

13. Devanbu, P.T.: GENOA- a customizable, language- and front-end independent
code analyzer. In: Fourteenth International Conference on Software Engineering,
Melbourne, Australia (1992) 307–319

14. Biggerstaff, T.J., Mitbander, B.G., Webster, D.: Program understanding and the
concept assignment problem. Communications of the ACM 37 (1994) 72–83

15. Barber, K.S., Lam, D.: Enabling abductive reasoning for agent software compre-
hension. In: 18th International Joint Conference on Artificial Intelligence Workshop
on Agents and Automated Reasoning, Acapulco, Mexico (2003) 7–13

16. Sun Microsystems, Inc.: Java Logging API.
http://java.sun.com/j2se/1.4/docs/guide/util/logging (2002)

17. Grahlmann, B., Pohl, C.: Profiting from SPIN in PEP. In: SPIN ’98 Workshop.
(1998)

18. Bose, P.: Automated translation of uml models of architectures for verification and
simulation using SPIN. In: IEEE International Conference on Automated Software
Engineering. (1999) 102–109

19. Barber, K.S., Graser, T.J., Holt, J.: Providing early feedback in the development
cycle through automated application of model checking to software architectures.
In: 16th International Conference on Automated Software Engineering, San Diego,
CA (2001) 341–345

20. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentS-
peak. In Rosenschein, J.S., Sandholm, T., Michael, W., Yokoo, M., eds.: Second
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
Melbourne, Australia, ACM Press: New York (2003) 409–416

21. Edmonds, B., Bryson, J.: The insufficiency of formal design methods. Third
International Joint Conference on Autonomous Agents and Multi-Agent Systems
(2004) 938–946

	Introduction
	Agent Concepts
	Tracing Method and Tracer Tool
	Step 1: Add Logging Code
	Step 2: Run Agent System
	Step 3: Interpret Observations
	Step 4: Verify Interpretations

	Tracing the UAV Domain
	Related Work
	Summary

