
A Toolkit for the Realization of
Constraint-Based Multiagent Systems

Federico Bergenti

Consorzio Nazionale Interuniversitario per le Telecomunicazioni
AOT Lab

bergenti@ce.unipr.it
http://www.ce.unipr.it/people/bergenti

Abstract. Autonomy is largely accepted as a major distinctive charac-
teristic of agents with respect of other computation models. This is one of
the main reasons why the agent community has been investigating from
different perspectives constraints and the tight relationship between au-
tonomy and constraints. In this paper, we take the software engineering
standpoint and we exploit the results of the research on constraint pro-
gramming to provide the developer with a set of tools for the realization
of constraint-based multiagent systems. In detail, the purpose of this
paper is twofold. In the first part it presents a model that regards multi-
agent systems in terms of constraint programming concepts. This model
comprises an abstract picture of what a multiagent system is from the
point of view of constraint programming and a language for modeling
agents as solvers of constraint satisfaction and optimization problems.
The second part of this paper describes an implemented toolkit that ex-
ploits this model to support the developer in programming and deploying
constraint-based multiagent systems. This toolkit consists of a compiler
and a runtime platform.

1 Introduction and Motivation

Autonomy is largely considered a characteristic feature of agents that differenti-
ate them from other computation models [13]. Many researchers claim that au-
tonomy is the one and only distinctive features of agents [3] and the large amount
of work about goal-directed behavior [2] or, more generally, about rationality [9]
has the ultimate goal of providing a scientific understanding of autonomy. Along
these guidelines, the research that motivates the results described in this paper
has been devoted to study the opposite side of the coin: if we accept that agents
are inherently autonomous, then we need to face the engineering problem of
constraining this autonomy in a reasonable way. Even if some researcher have a
radically different opinion, see, e.g., [14], we believe that a major step we need
to undertake to regard agents as applicable abstractions in the engineering of
everyday software system is to find a reasonable way to constraint the autonomy
of agents.

R.H. Bordini et al. (Eds.): PROMAS 2004, LNAI 3346, pp. 89–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:bergenti@ce.unipr.it


90 F. Bergenti

Rationality can be regarded as one way to achieve this purpose, but facts
have already proven extensively that the use of rationality in real system is still
remote. Nevertheless, we need some way to guarantee (at least) some very basic
properties of engineered systems, e.g., safety and liveness, and we cannot simply
accept that something, which is not under the control of the developer, might
emerge and damage the system.

In this paper we consider a method for constraining the autonomy of agents
that exploits the direct intervention of the developer in defining what are the
boundaries of an acceptable behavior for an agent. This method relies on the
results of the research on constraint programming because of two very basic rea-
sons. The first is that constraint programming treats constraints, and therefore
autonomy, as a first class metaphor. This allows the developer to manipulate
constraints directly. Moreover it offers the great advantage, over other forms
of management of the autonomy, of being independent of any grand principle,
like rationality. Such principles are elegant and they permit to treat a large
set of different problems homogeneously. Nevertheless, they often become subtle
and difficult to manage for the developer because of their inherent problem-
independence. Rather, constraint programming puts the focus on the problem
at hand and it uses only the constraints that are embedded in the problem itself,
and no other grand principle is required.

The second reason for choosing constraint programming for managing the
autonomy of agents is that it is sufficiently powerful to allow the description of
another very basic characteristic of agents: goal-directed behavior. The success
of constraint programming in problems like scheduling [10] and planning [12]
demonstrates that it can provide good results in supporting the desired goal-
directed behavior of agents.

This paper presents the results of the work that we have been doing during
last year, and that is based on the guidelines that we have just stated. The
aim of this project is to deliver a set of constraint-based tools that everyday
developers could adopt for the realization of their multiagent systems. We did
not choose any reference application domain for such tools because we intended
to provide an enabling technology capable of providing its benefits in many
cases. Actually, we believe in the position that Freuder stated in its celebrated
truism [4]: “Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming: the user states
the problem, the computer solves it.”

The description of our tools starts, in the following section, with an introduc-
tion to what constraint-based multiagent systems are for us. Then, in section 3
we present a programming language that exploits the model of constraint-based
multiagent systems to provide the developer with a direct means for implement-
ing agents as solvers of constraint satisfaction and optimization problems. This
language is the core of the development toolkit that we present in section 4. This
toolkit consists of a compiler and a runtime platform and it allows for a seamless
integration of constraint-based multiagent systems with everyday applications.
This work is summarized in section 5, where we outline some conclusions and
we present some future direction of research.



A Toolkit for the Realization of Constraint-Based Multiagent Systems 91

2 Constraint-Based Multiagent Systems

The interplay between autonomy and constraints has been the subject of a large
work in various research communities and under various points of view, e.g.,
classic works about this are [6, 7, 8]. In our work we take the point of view
of software engineering and we see agent-oriented constraint programming as a
particular approach to realize multiagent systems, rather than, e.g., a distributed
approach to solve constraint satisfaction problems.

In order to give a more precise meaning to these words, and to show the
advantages of this approach, we start from the foundations of constraint pro-
gramming and we show how these can be used as guidelines for the realization
of multiagent systems. It is worth noting that even if some objectives are in
common, our approach differs significantly from concurrent constraint program-
ming [11] because we decided to start from a more operational, and more modern,
approach to constraint programming.

A constraint satisfaction problem (CSP) [1] is a tuple < X, d, C >, where X
is a set of n variable names, X = {x1, . . . , xn}, d : X → D ⊆ R is a mapping
between a variable name and the domain of its possible real values, and C is a
collection of m constraints C = {C1, . . . , Cm}. Each constraint is a proposition
over a subset of the available variable names S ⊆ X, called the scheme of the
constraint.

In this definition we consider only real variables because all other sets we
need to deal with, e.g., sets of strings enumerated extensively, can be mapped
bi-directionally to subsets of real numbers.

A solution to a CSP is an assignment of values that maps all variable names
in X with a value compatible with d that satisfies all constraints in C.

An interesting property of this definition of CSP is that it allows for an easy
definition of sub-problem. This feature is of singular importance in our agent-
oriented approach because we will exploit it in treating goal-delegation.

We say that CSP1 is a sub-problem of a CSP2 if X1 ⊆ X2, and all constraints
in CSP2 whose scheme is a subset of X2 are in CSP1.

For the sake of simplicity, in this paper we do not take into consideration the
serious problem of possible mismatches between the representations of different
problems. If two problems contain the same variable name, we assume that these
names are two appearances of the same variable, which is then shared between
the two problems.

In order to exploit these ideas in an agent-oriented fashion, we need to intro-
duce some notion supporting the embodied nature of agents and their inherent
goal-directed behavior. This is the reason why CSPs are not sufficient and we
need to rely on a well-known extension of them.

A constraint satisfaction and optimization problem (CSOP) [1] is a CSP with
an associated targets T , i.e., it is a tuple < X, d, C, T > where T : S ⊆ X → R.

A solution of a CSOP is a solution of the underlying CSP that maximizes
the target T .



92 F. Bergenti

We say that CSOP1 is a sub-problem of CSOP2 if the CSP associated with
CSOP1 is a sub-problem of the CSP associated with CSOP2 and any solution
of CSOP1 is a partial solution of CSOP2 for the set of variables of CSOP1.

This definition of sub-problem relies on a very demanding condition and we
need to alleviate it with the introduction of the notion of weak sub-problem. We
say that a CSOP1 is a weak sub-problem of CSOP2 if the CSP associated with
CSOP1 is a sub-problem of the CSP associated with CSOP2, and nothing is
said on the two targets. This definition allows decomposing a problem into sub-
problems and to solve the various sub-problems independently, without requiring
the decomposition of the target of the original problem.

The approach that we propose to exploit these ideas for the realization of
multiagent systems is to state that an agent is nothing but a solver of a particular
CSOP and that each agent in a constraint-based multiagent system may have a
different CSOP to solve.

Agents acquire from their sensors:

1. Constraints, that are inserted or removed from the set of constraints of their
problems; and

2. Values for the variables of their problems, that can be asserted or retracted,
i.e., particular constraints of the form X = x.

Agents act in accordance of the solution, even partial, they find for their prob-
lems. Once an agent has definitely found a partial solution to its problem, i.e.,
once it comes to know that it will not backtrack the partial assignment of its
variables if nothing changes in its internal state, then it can act on the environ-
ment or it can perform communicative actions in the direction of other agents.
The selection of the action to perform depends only on the partial solution it
found.

The multiagent system as a whole is not associated with any CSOP, rather
its behavior emerges from the interactions of all agents. Such interactions can
occur through the environment, i.e., through shared variables, or though com-
munication.

Communication between agents is represented in our model using the stan-
dard approach of communicative acts. But, differently from many other ap-
proaches, we largely reduce the problems of communicative acts because we
take a minimalist approach to agent communication languages. We say that an
agent communicates with another agent only to ask to this agent to perform
some action, whether communicative or not, whose outcome would help it solv-
ing its problem. Basically, we say that an agent communicate with another agent
only to delegate a weak sub-problem of its CSOP to it.

Exploiting this simple model of communication we have the advantage of
decoupling the problem of actually choosing what to say and to who from the
CSOP the agent solves. If we work under the assumption that all agents provide
to a central repository the (true) list of problems they can solve, then an agent
A1 communicate with an agent A2 only if:



A Toolkit for the Realization of Constraint-Based Multiagent Systems 93

1. The problem that A2 solves is a weak sub-problem of the problem of A1;
and

2. A1 cannot, or does not want, to solve this sub-problem on its own.
From a rather superficial point of view, this approach to communication seems
too poor with respect of the standard approaches that one may expect from
an agent model. This is only partially true, because this approach is a direct
implementation of goal-delegation, which is largely considered the ultimate ra-
tionale of communication between agents. Moreover, this model is not limited
to cooperative agents only, because agents are associated with different CSOPs
and optimal solutions to such problems may be conflicting. In particular, the
target of the CSOP of each agent can be assimilated to the utility function of
that agent, and each agent has potentially a different target for its problem.

The model that we have just outlined is obviously ideal for a number of
reasons. First, it does not include time as a first-class concept. Time can be
modeled as a variable in the CSOP of an agent, but the tight coupling between
such a variable and the resolution process, through the time spent for actually
solving the problem, can cause severe problems. Moreover, our model allows
actions only in result of a partial solution of the problem of an agent. This
implies that an agent cannot perform actions for a part of the duration of the
resolution process, which inherently depends on the problem the agent is facing.
This is a classic inconvenience found in many other agent models and it raised
crucial problems like belief and intention revision [5].

Such limitations of ourmodel are significant, but for themomentwe decided not
to take them into consideration because we adopted the standard approximation of
quasi-stationaryenvironments. If thetimeneededtosolvetheproblemissufficiently
small with respect of the expected time of reaction of the agent to a change in the
environment, then the agent would behave as expected. We decided to adopt this
assumption because our experience suggests that it is applicable in many realistic
situations, especially ifwe target commonsoftware systemswhere, if it is sufficiently
reactive for the user, then performances is not an issue.

Our model of agents as CSOP solvers has many resemblances with more tra-
ditional agent models, especially with rational agents. Anyway, we put a strong
focus on the internals of the agent, rather than on its behavior seen from the
outside, and therefore the ascription of a mental state to such agents seems a
difficult problem. This difficulty justifies the assumption that our agents are not
easily framed into other agent models and therefore we decided to find a new
nickname for them capable of capturing their nature of atomic computational
entities whose interaction animates the multiagent system as a whole. This is
the reason why we use to refer to this particular sort of agents as quarks.

3 A Language for Agent-Oriented Constraint
Programming

The model of quarks that we outlined in the previous section has a number of
interesting properties. Among them, it is worth noting that it does not depend



94 F. Bergenti

on any particular (and possibly implicit) restriction that a specific language
for constraint programming might impose. Therefore, it offers a good level of
generality and expressive power. Moreover, it is a good approach for studying
the algorithms capable of controlling the behavior of the quark.

Nevertheless, we cannot simply give to the developer the notions of variable,
domain and constraint. It is not a reasonable approach for a developer that is
already familiar with the sophisticated modeling techniques that object orien-
tation has promoted in the last twenty years. The basic problem is that the
effort required for mapping a reasonably complex application domain into a set
of variables, domains and constraints seems excessive. We definitely need to de-
fine a language supporting higher level abstractions and the rest of this section
addresses this problem.

The Quark Programming Language, or QPL (pronounced kju:pl), was designed
to provide the developer with a user-friendly approach to realizing quarks. We de-
fined an abstract model of it and then we mapped this model to a concrete syntax.
Exploiting this syntax we realized a compiler, with an associated runtime plat-
form, for a concrete use of QPL in running systems. The compiler and the runtime
platform are described in next section and what follows is an informal description
of QPL. It is worth noting that the semantics of QPL has already been formal-
ized with two different approaches. The first is an operational mapping between
a QPL program and a CSOP. This is a crucial step because it allows mapping
a quark written QPL with an algorithm for controlling its behavior. The second
approach is based on a description logic and it is useful for understanding the ex-
pressive power of the language. For the sake of brevity, none of these semantics
is presented here and the subject is left for a future paper.

The realization of a quark in QPL requires to define the class of quarks
it belongs to. This class defines the common characteristics of each quark it
comprises and it provides a means for the developer to instantiate quarks. A
class of quarks is composed of:

1. A name;
2. An import section;
3. A public problem description section;
4. A private problem description section;
5. A targets section; and
6. An actions section.

The name of the class is used to support the creation of new quarks: the developer
uses it when he/she wants to instantiate new quarks. The import section declares
the external components that the quark will use. Such components are non-
agentized, third-party software that a quark may need to exploit in its lifetime.

These two sections of the program of a quark provide a bi-directional link
between the quark and the rest of the non-agentized software of the system. This
is why they are (intentionally) described vaguely in the specification of QPL. Any
possible implementation of QPL has to deal with its own means for instantiating
quarks and with its interface with external components. In the implementation
of QPL that the following section describes, quarks can be instantiated by means



A Toolkit for the Realization of Constraint-Based Multiagent Systems 95

of an API available through a .NET and a WSDL interface. Similarly, external
components are imported and accessed through a .NET and a WSDL interface.

After the import section, QPL requires the developer describing the problem
that the quark will solve. Such a description deals only with the CSP part of the
CSOP that the quark will solve. This description is split into a public section and
a private section. The public section provides a description of the problem that is
suitable for a publication in the central repository of the system. This description
can be used to tell other quarks what this quark is capable of doing, i.e., what
are the problems it can solve. This part of the description of the problem is used
to support communication and goal delegation. The private section refines what
the developer declared in the public section with an additional set of details that
he/she needs to introduce to make the quark fully functional. Such details are
not essential for other quarks to reason about the problem this quark solves, and
these can be assimilated to implementation details that the good old principle
of information hiding suggests to keep private.

Both the public and the private sections of the description of the problem
are then split into the following sections:

1. A structure section; and
2. A constraints section.

The structure section describes the domain of the problem the quark will solve.
This description is based on a classic process of classification that closely re-
sembles the one we commonly use in object-oriented modeling. This section of a
QPL program has the ultimate goal of defining a vocabulary for describing the
constraints and for naming the variables of the CSOP of the quark. The con-
straints section uses the vocabulary identified in the structure section to define
the constraints of the CSOP of the quark.

The structure section of a class of quarks is described in terms of:

1. A set of classes of objects of the domain of the problem;
2. A set of relations between such classes;
3. A set of catalog objects;
4. A set of enumerative types; and
5. A set of constrained predefined types.

A class of objects is composed of a set of attributes, each of which is described as a
name and a type. The type of an attribute is one of the types that the developer
defines when he/she declares its enumerative or constrained predefined types
(points 4 and 5 in the previous list). An enumerative type is a set of elements
expressed extensionally that belongs to one of the predefined types that QPL
provides, i.e., string, double, integer, and boolean. All elements of this list belong
to the same predefined type.

In cases where an extensive enumeration of values is not practical, the devel-
oper can define a subset of the values of a predefined type through a constrained
predefined type. This is a predefined type plus a constraint that restricts its pos-
sible values. For the moment, QPL allows constraining only doubles and integers



96 F. Bergenti

and it provides only three constraints: one for setting a minimum value, one for
a maximum value and one for a step in the series of values.

A class of objects in QPL can be a:

1. Catalog class;
2. Configurable class; or
3. Abstract class.

A catalog class is a class of objects whose elements are extensively enumerated
in the program of the quark. These enumerated values are called catalog objects
and they are listed as point 3 of the features that the developer uses in the
structure section of a class of quarks. In the concrete implementation of QPL
that the following section describes, catalog objects can be enumerated directly
in the program of a quark, or they can be imported from the tables of a relational
database.

A configurable class is a class of objects whose elements are described in-
tensionally. These classes are modeled only in terms of their attributes: each
attribute has a set of valid values as it is associated with an enumerative type
or with a constrained predefined type. The characteristic feature of these classes
is that we do not provide any restriction on the values that various attributes
might take in a single instance. The constraints that we will introduce later, in
the constraint section of the class of quarks, will provide the conditions that the
values of the attributes of a single instance of a configurable class must respect.
This should make clear that the quark regards the attributes of configurable
classes as variables of its CSOP. The ultimate goal of the quark is to assign a
value to any attribute of any instance of any configurable class in its current
solution.

The third type of class we can define in the structure section of a quark is
that of abstract classes. An abstract class is a class that we use to collect a set
of attributes common to a set of catalog classes into one single container. An
abstract class is modeled only in terms of its attributes (just like a configurable
class) but we need to subclass it with another abstract class, or with a catalog
class, in order to give a meaning to it. Abstract classes are useful to provide an
abstract view of (a superset of) a set of catalog classes. Moreover, they allow
structuring the domain of the problem and expressing constraints on attributes
shared by a set of catalog classes.

QPL supports the assembly of classes of objects though relations. Such rela-
tions between classes can be of three types:

1. Generalization/specialization, that expresses a superset/subset relation be-
tween the objects of two classes;

2. Association, that expresses a shared composition of the objects belonging to
two different classes: each object of the container class is made of a number
of objects of the contained class, and such objects can be shared among a
number of relations; and

3. Containment, that expresses a private composition of the objects belonging
to two different classes: each object of the container class is made of a number



A Toolkit for the Realization of Constraint-Based Multiagent Systems 97

of objects of the contained class, and such objects cannot be shared among
relations.

The latter two relations are qualified with a cardinality that models the number
of objects of the contained class that take part of the relation.

The structure section of a QPL program provides all features we need in
order to define the variables and the domains of the variables of the CSOP. Each
attribute of any instance of a configurable class is a variable of the CSOP. The
domains of such variables equal the domains of the corresponding attributes.
Such domains are specified using enumerative types of constrained predefined
types.

In order to complete the description of the CSOP of the quark, we need to
declare a set of constraints and a target. QPL provides two ways for describing
a constraint:

1. Compatibility/incompatibility tables; and
2. Rules.

A compatibility/incompatibility table is a list of tuples that enumerates the
possible values of a group of attributes. If the list contains permitted tuples, we
talk of a compatibility table, otherwise we talk of an incompatibility table. The
two representations are identical and the choice depends only on the number of
entries in the two possible lists.

Compatibility/incompatibility tables offer an extensional means for modeling
a constraint. On the other hand, rules provide an intensional form of describing
a constraint. A rule is a proposition that must hold for any possible solution to
the CSOP of the agent. QPL provide only one type of rule: if/then/else clauses.
The building blocks that the developer can use to compose the three expressions
of an if/then/else clause are:

1. The set of standard operators over integers, doubles, booleans and strings;
and

2. A set of attribute terms that are found in the vocabulary defined in the
structure part.

The attribute terms allow the developer to identify variables that the quark will
use to validate the rule. The general form of an attribute term in a rule is:

class[#id](.relation[#id])*.attribute

If we forget about #id for a moment, this form simply allows navigating classes
and relations to reach an attribute from an initial class called class. From
this class we can exploit association and composition relations to reach other
classes. Once we reached the class that comprises the attribute we are addressing,
we identify the attribute through its name.

The use of #ids allows narrowing the number of variables that this pattern
matches. If we do not use any #id, all instance of all classes met during the traver-
sal from class to attribute are used in the rule. For example, PC.type ad-
dresses the value of the attribute type of all instances of the class PC. The use of



98 F. Bergenti

#id allows choosing a particular instance of a relation or of a class and restricting
the application of the rule only to such instance, e.g., PC#0.hardDrive#1.speed
matches the attribute speed of the second hard drive of the first PC only.

QPL allows using #ids in conjunction with two general purpose operators:
sum and product. These operators have the standard meaning of repeated sums
and products and they can contain expressions where #id is replaced with a
variable term.

The grammar that QPL provides for rules is completed with two shortcuts
for expressing common constraints:

1. always, meaning if true then; and
2. never, meaning if true then not.

As an example, the following is a very simple rule in QPL that states that if the
type of PCs is games, then any hard drive in the needs to be at least 20GB.

if PC.type = ‘Games’ then HardDrive.size > 20

Each rule in QPL can be relaxable and relaxable rules are assigned a priority
that drives the CSOP solver in deciding which rule to relax in order to find
a solution. In the standard semantics of QPL, rules are relaxed only to find
a solution and no rule is relaxed if a solution is already available, e.g., in the
attempt to find a better solution.

The definition of the CSOP of a quark is completed with the definition of
a target. This is done in QPL through a list of expressions that evaluate to a
number. Each one of these expressions is assigned a priority and a direction, that
can be maximize or minimize. The standard semantics is that the quark tries to
maximize/minimize the target expression with a given priority only if all other
target expressions with greater priority are already maximized/minimized.

The expressions used to indicate targets are composed with the same building
blocks that QPL allows for the expressions of an if/then/else clause, with the
sole restriction that they must evaluate to a number.

A quark can act on the outside world when it finds a partial solution to the
problem it is managing. QPL allows the developer to specify actions in terms
of a fire condition and a concrete act. The fire condition is an expression that
evaluates to a boolean value and that exploits the vocabulary and the grammar
used for rules and targets. When a fire condition holds, i.e., when a partial
solution that verify a condition is found, the quark performs the associated act.
Fire conditions are prioritized and the quark performs the act associated with
the fire condition with the topmost priority that currently holds.

The concrete description of acts is kept out of the language specification be-
cause it relies on the concrete implementation of QPL and on how quarks are
enabled to interact with non-agentized, third party software. In the implemen-
tation presented in the following section, acts can be invocations of methods
of .NET components (previously imported), or they can be invocations of Web
services (previously imported). In both cases, the partial solution found can be
used to supply the arguments to the invocation.



A Toolkit for the Realization of Constraint-Based Multiagent Systems 99

The definition of actions closes the definition of a class of quarks in QPL. This
definition allows enumerating all building blocks that the quark needs to know
which problem to solve and what to do during the resolution process. Only two
aspects seems missing: some means to allow quarks sensing the environment, and
some other means to allow quarks communicating. The problem of sensing the
environment is intentionally left out of the specification of the language because
of the same reason we mentioned for concrete acts. Quarks does not sense the
environment actively, they come to know of any change in the environment
because of changes in their problem. How external software, e.g., the manager
of a sensor, can actually achieve this is part of the concrete implementation of
QPL. In the implementation presented in the following section, a QPL program
is compiled to a .NET class or to a WSDL interface and both provide an API
for pushing information directly in the problem of the quark.

The problem of communication is basically the same as the problem of sens-
ing. As we briefly mentioned in the previous section, our model uses a minimalist
approach to communication that allows hiding the process of information ex-
change from the developer. Each concrete implementation of QPL will have its
own way to exchange weak sub-problems between quarks. In the implementa-
tion presented in the following section, the runtime platform provides the central
repository for publicizing the capabilities of quarks, and it exploits .NET and
WSDL interfaces for concretely exchanging messages in the multiagent system.

4 A Toolkit for Agent-Oriented Constraint Programming

In this section we introduce the Quark Toolkit, or QK (pronounced kju:k), a
toolkit we realized to support the developer in implementing multiagent systems
based on the ideas we described in the previous sections. QK is made of two parts:

1. A compiler, that compiles the QPL program of quarks to executable modules;
and

2. A runtime platform, that provides all facilities we need to deploy a multiagent
systems.

The compiler of QK is a command-line tool that takes a set of QPL programs, one
file for each single class of quarks, and generates a set of .NET classes and a set
of WSDL interfaces. These classes and interfaces are dual and classes implement
the relative interfaces. This approach allows using quarks in two ways:

1. As .NET components exposing a fairly simple API for two-way communica-
tion with the rest of the .NET system;

2. As Web services that can be integrated in any system capable of exploiting
their WSDL interface.

Both approaches are equally valid from the point of view of the developer and
the pros and the cons of them have already been discussed largely after the
introduction of .NET.



100 F. Bergenti

The QK compiler produces one .NET class for each single class of quarks. The
interface of these classes does not depend on the problem a quark is designed to
face, but it simply enables a bi-directional communication between the quark and
an external .NET object. In particular, this interface provides a set of methods
for informing the quark of new values for a variable or of new constraints in the
problem. Then, it exposes a listener interface, together with a set of management
methods, to allow an external component to observe the state of the reasoning
process. Finally, this interface provides a few management methods that the QK
runtime platform uses to manage the lifecycle of quarks and to interface a quark
with the central repository of the platform.

The compiler of QK produces a .NET Intermediate Language (IL) source
code, i.e., a source code of .NET IL mnemonics. This compilation is direct and
it does not need to pass through a higher level language, e.g., C# or Java. The
produced .NET IL is then translated into its executable form exploiting an IL
assembler. The system has been tested with the two most popular IL assemblers:

agents ShopAssistant {
uses webservice PriceManager = ‘http://...’;

...define what a PC is
via composition, aggregation and inheritance...

target minimize PC.delivery

rule SOLO9100SE
if PC.code = ‘SOLO9100SE’ then

// Constraint on processor
Processor.type = ‘Pentium’ and
Processor.clock => 300 and
Processor.clock <= 366 and
// Constraint on RAM memory
RAM.type = ‘SO-DIMM’ and
RAM.size >= 16 and RAM.size <= 384 and
...

action EstimatePrice
if PC.code = ‘SOLO9*’ then

PC.price = PriceManager.
EstimatePrice9XXX(PC, Customer);

}

Fig. 1. A simple QPL source code



A Toolkit for the Realization of Constraint-Based Multiagent Systems 101

Fig. 2. The visual quark modeler

the one available in Mono (http://www.go-mono.org) and the one available in
the .NET Framework (http://www.microsoft.com/net).

The compilation process is straightforward because it is basically a simple
mapping between the QPL program and the equivalent IL source code that
exploits the reasoning engine that the runtime platform provides.

The runtime platform is a container capable of hosting a number of quarks
that can be loaded and started programmatically or from the command line.

The core of runtime platform is a reasoning engine we developed to efficiently
solve constraint satisfaction and optimization problems. The discussion of the
techniques we used to implement this engine is out of the scope of this paper, but
it is worth mentioning that it uses a mixture of standard constraint programming
algorithms, e.g., AC-2001.

The reasoning engine is multi-threaded and all quarks hosted in the same
container share the same engine. This is particularly useful because the engine
can handle a number of problems concurrently, with the possibility of sharing
many internal structures that are possibly common to many problems. This is
the reason why the CSOP solver that quarks exploit is not embedded in quarks
themselves, rather the runtime platform provides it.

Figure 1 shows selected pieces of a QPL source code that can be compiled
with QK compiler. The class of agents implements shop assistants for a Web-shop
that can manage the configuration of PCs for customers.



102 F. Bergenti

QK has already been used in a number of experiments, mostly for research
purposes. It has been recently adopted as the basis of a product that the company
FRAMeTech S.R.L. (http://www.frame-tech.it) will deliver to their customer
later this year. Figure 2 shows a snapshot of this product. The purpose of this
product is to provide a user-friendly approach to fast developing product and
service configuration systems. Such systems are meant to provide final users
with a self-service mechanism for doing the configuration of complex product
and services. Examples of such systems are typically used by large hardware
shops to provide their customers with a Web application for configuring and
then buying personalized PCs and peripherals. Another typical example regards
travel agencies giving the possibility to their customers to have a fine-grained
configuration of their trips. This system is basically a graphical front-end for
realizing QPL programs. It allows modeling the domain of the problem using
an UML class-diagram editor. Then, it allows defining all features available in
a QPL program in terms of tables and expressions. Finally, it makes a GUI
designer available to provide quarks with simple GUIs that final users will exploit
for easily managing the problems of their quarks.

5 Conclusion

In this paper we described a set of tools that we realized to support the developer
in the realization of constraint-based multiagent systems. These systems are a
subset of ordinary multiagent systems because we require agents composing the
system to be ascribable to CSOP solvers. This requirement was the starting point
of defining a general-purpose programming language to realize agents as CSOP
solvers, and a toolkit supporting the deployment of such agents in running sys-
tems. This language concentrates on modeling the problem an agent is in charge
of and any other meta-level issues, e.g., governing the process of resolution, or
orchestrating interactions between agents, are intentionally left implicit.

This language is concretely supported by a toolkit that provides a compiler
and a runtime platform. Moreover, this toolkit supports a seamless integration
of such agents with legacy systems.

Interesting future research directions regards understanding the relationship
between the agent model that we propose and mentalistic agents. It is quite
obvious that constraints plays a crucial part also in mentalistic agents, but a
clear mapping between basic concepts of such models is still missing.

Another interesting development of this research is in the direction of under-
standing how inheritance of quarks can be exploited as a software engineering
tool.

References

1. F. Bartak. Constraint programming – What is behind? Procs. Int’l. Workshop on
Constraint Programming in Decision and Control, 1999.



A Toolkit for the Realization of Constraint-Based Multiagent Systems 103

2. C. Castelfranchi. Guarantees for autonomy in cognitive agent architecture. Intel-
ligent Agents. Springer-Verlag, 1995.

3. S. Franklin and A. Graesser. Is it an agent, or just a program? Procs. ECAI’96
Workshop on Agent Theories, Architectures, and Languages, pages 21–36. Springer-
Verlag, 1997.

4. E. C. Freuder. In pursuit of the holy grail. Constraints, 1(2), 1999.
5. S.-O. Hansson. A Textbook of Belief Dynamics. Kluwer Academic publishers, 1997.
6. M. Henz, G. Smolka, and J.Würtz. Oz – A programming language for multi-

agent systems. R. Bajcsy (Ed.) Procs. 13th Int’l. Joint Conference on Artificial
Intelligence, volume 1, pages 404–409. Morgan Kaufmann Publishers, 1993.

7. A. Mackworth. Quick and clean: Constraint-based vision for situated robots. Procs.
Int’l. Conference on Image Processing, 1996.

8. M. J. Maher. Logic semantics for a class of committed-choice programs. Procs.
4th Int’l. Conference on Logic Programming, pages 858–876, 1987.

9. A. Newell. The knowledge level. Artificial Intelligence, 18:87–127, 1982.
10. C. L. Pape. Implementation of resource constraints in ILOG Schedule: A library

for the development of constraint-based scheduling systems. Intelligent Systems
Engineering, 3(2):55–66, 1994.

11. V. A. Saraswat and M. Rinard. Concurrent constraint programming. Procs. 7th

Annual ACM Symposium on Principles of Programming Languages, 1990.
12. P. van Beek and X. Chen. CPlan: A constraint programming approach to planning.

AAAI/IAAI, pages 585–590, 1999.
13. M. J. Wooldridge. Intelligent agents. G. Weiss (Ed.) Multiagent Systems: A Modern

Approach to Distributed Artificial Intelligence, pages 27–77. The MIT Press, 1999.
14. F. Zambonelli and V. Parunak. Towards a paradigm change in computer science

and software engineering: A synthesis. The Knowledge Engineering Review, 2004.


	Introduction and Motivation
	Constraint-Based Multiagent Systems
	A Language for Agent-Oriented Constraint Programming
	A Toolkit for Agent-Oriented Constraint Programming
	Conclusion



