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Abstract. This paper describes the general concept of Route Graphs,
to be used for navigation by various agents in a variety of scenarios.
We introduce the concept of an ontology and describe the modelling of
general graphs as an example. This approach is then applied to define a
“light-weight” ontology of Route Graphs in an indoors environment, giv-
ing at first just a taxonomy of (sub)classes and relations between them,
as well as to other (spatial) ontologies. Finally, we show how to formalise
ontologies using a First Order Logic approach, and give an outline of
how to develop actual data structures and algorithms for Route Graphs.

1 Introduction

Route Graphs have been introduced as a general concept ([1]), to be used for nav-
igation by various agents in a variety of scenarios such as humans using railway,
underground, road or street networks, as travellers, car drivers or pedestrians,
resp. Each application scenario or kind of Route Graph will introduce special
attributes on the general structure in a hierarchy of refinements.

While the concept was originally introduced to mediate terminology between
artificial intelligence and psychology in spatial cognition, scenarios are not re-
stricted to human users. Route Graphs are also intended for interaction be-
tween service robots, such as the Bremen autonomous wheelchair Rolland (cf.
Fig. 1), and their users, as well as between robots, for example as a compact
data structure for on-line communication in an exploration scenario. Moreover,
a bare-bones Route Graph representation is easily constructed from pre-existing
map-like representations (at least for floor plans of buildings) or by robot explo-
ration, and we hope that cognitively (more) adequate maps can be constructed
from it when the semantic interrelation can be taken into account.

As we are dealing with abstract concepts and interrelations between them
and want to standardise or mediate between different uses of terminology, we
are using an ontology as the central definitional approach and data structure
for Route Graphs. We intend to show that an ontological approach is suitable
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Fig. 1. Rolland following a Route Graph

for both: to define the generic concept of Route Graphs and to instantiate it for
a particular scenario in detail, leading eventually to a concrete data structure.
Moreover, the example of Route Graphs is suitable for demonstrating that ade-
quate formalisation of ontologies can be introduced step by step in this process.

In this paper, we will show the application to an indoors scenario for Rolland.
Thus we have to model detailed information for navigation at the “robot level”
as well as more abstract concepts of space at the “user level”, and the relation-
ship between these and “common sense” concepts in the environment, such as
rooms, doors or windows as route marks (cf. [2]). For a dialogue between user
and wheelchair, we want to relate the concepts of Route Graphs to linguistic
ontologies; this is described e.g. in [3, 4].

The paper is structured as follows: We first sketch the general concept of
Route Graphs in Sect. 2. In Sect. 3 we introduce the concept of an ontology
and describe the modelling of general graphs as an example. This approach is
then applied to define a “light-weight” ontology of Route Graphs in an indoors
environment, giving at first just a taxonomy of (sub)classes and relations between
them, as well as to other (spatial) ontologies, in Sect.4. Finally, we show in Sect.5
how to formalise ontologies using a First Order Logic approach, and give an
outline of how to develop actual data structures for Route Graphs.

2 Route Graphs

2.1 Sample Scenarios

Figure 2 shows some sample navigation scenarios. We may distinguish between
navigation in systems of passages (e.g. road networks or corridors) or in areas of
open space (e.g. on a lake; on a market place, surrounded by buildings; in a hall);
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Fig. 2. Examples of routes

Fig. 3. Two routes and their union

in the former, our course is more or less centred within enclosing borders (e.g.
curbstones, walls) and guided by routemarks along the way, in the latter the
course is given by a vector to the target and we are guided by global landmarks
(e.g. a lighthouse, the sun or a church’s spire), cf. [5].

While Route Graphs should apply to all such scenarios (cf. [1]), we will con-
centrate on the indoors scenario here, for Rolland and its user as in Fig. 1, as an
example for service robot applications. We briefly introduce the basic concepts
of Route Graphs here; more detail will follow in Sect. 3.2 and Sect. 4.

Sample Route: to the Secretary’s Office. Consider Fig. 3: two separate
routes are united into a simple Route Graph. Let us take the first route as an
example. It can be described by directions in natural language as follows:

– Leave Room MZH 8210 into the corridor
– Turn right, go straight ahead to the window
– Turn left, follow the corridor until the last door on the right-hand-side
– Face it, enter Room MZH 8080
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Fig. 4. Layers and transfers

Sample Route Segments. The first two lines can then be translated into the
following two route segments (taking additional information about doors, lifts,
windows into account, see Sect. 4.4):

Source: room MZH 8210
Entry : turn towards the door
Course: go through the door
Exit : [turn to face the lift]
Target : corridor, facing the lift

Source: corridor, facing the lift
Entry : turn right
Course: follow corridor to the window
Exit : [turn to face the window]
Target : T-crossing, facing the window

Segments. An edge of a Route Graph is directed from a source node to a
target node. We call an edge a (route) segment ; it always has three additional
attributes: an entry, a course and an exit. Exactly what information is associated
with these attributes is specially defined for each Route Graph instantiation of
a particular kind. For example, an entry to a highway may denote a particular
ramp, an exit another, while the course is just characterised by a certain length.
Additional information may be added, e.g. that the course has three lanes. As
another example, the entry and course for a boat route segment may be given as
a vector in geo-coordinates, while the exit into a harbour may specify a particular
orientation along a quay.

Places. A node of a Route Graph, called a place, has a particular position and
orientation, its origin. Thus each node has its own “reference system”; it may,
but need not, be rooted in a (more) global reference system, such as a 3D geo-
system. The origin becomes particularly important in a union of routes or Route
Graphs, when place integration is required (see Sect. 4.3).

2.2 Homogeneous Route Graphs, Transfers

Fig. 4 shows, on the right hand side, an example where various Route Graphs
have been united to one heterogeneous Route Graph. We say a Route Graph of
a particular kind is homogeneous, if all its segments are of the same kind. In the
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Fig. 5. Two levels and lift

Fig. 6. Voronoi representation for levels 8 and 3

example, the routes depicted by fat arrows might correspond to underground
train lines, those with fine arrows to a network of pedestrian passages; both are
homogeneous. There is then a need to introduce transfer segments for connection,
or indeed transfer Route Graphs that have transfer segments at their fringes. In
the example they would correspond to a pedestrian transfer passage between
two underground stations, or several exits from an underground station to the
pedestrian network above (note that these might be connected to other exit or
entry routes underground). Fig. 5 shows a transfer between a Route Graph at
level 8 of our office building, the lift system, and level 3.
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Fig. 7. Abstraction to place

2.3 Layers and Abstraction

We may wish to separate Route Graphs into layers at different levels for con-
ceptual reasons, possibly unconnected. One reason might be that we want to
represent route and overview knowledge (cf. [1]). The left hand side of Fig. 4
sketches a route in an urban block scenario, and the target designated by an
arrow. When circumnavigating a road blockage, for example, we are likely as
humans to use such an arrow as a “sense of direction” while negotiating our way
in the block maze – we are using and combining two layers of knowledge at the
same time; it is well known that other animals are much better in this respect.

Abstraction. Another reason is abstraction from a more concrete and detailed
lower layer to a higher one, as in the abstraction from the robot level to the
user level (see also Sect. 4.1). Fig. 5 refers to the user level, while Fig. 6 shows
a Voronoi diagram as a representation of space at the robot level (cf. also Sect.
4.2) which corresponds directly to a detailed Route Graph, if we replace the
trajectories between places by straight directed edges, in both directions.

What is required here is a relation abstractsTo between graphs (in fact a
graph morphism), more specifically from a route to a segment, or a graph to a
node as in Fig. 7 (cf. also Fig. 16). When a set of nodes SN on the fringe of
the graph G at the lower layer is abstracted to a single node N, some obvious
conditions must hold, e.g. all incoming/outgoing edges to a node in SN must
correspond to incoming/outgoing edges for N; for each pair of incoming and
outgoing edges for N there must be a corresponding connecting path in G; etc.

3 Modelling Via Ontologies

Ontologies provide the means for establishing a semantic structure. An on-
tology is a formal explicit description of concepts in a domain of discourse [6].
Ontologies are becoming increasingly important because they also provide the
critical semantic foundations for many rapidly expanding technologies such as
software agents, e-commerce, or the “Semantic Web” [7]. In artificial intelligence,
ontologies have been used for knowledge representation (“knowledge engineer-
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Fig. 8. Subclasses of EnvironmentSpace and relations

Fig. 9. Various ontology specification formats

ing”). The general idea is to make knowledge explicit by expressing concepts and
their relationships formally with the help of mathematical logics.

An ontology consists of (a hierarchy of) concepts and relations between these
concepts, describing their various features and attributes. Classes and relations
are used for defining the abstract semantical level; they provide a vocabulary and
properties to characterise the concrete entities corresponding to these concepts.
Once the abstract notions are declared in terms of classes, objects can be used
to denote entities of semantic concepts. As a simple example for an ontology
consider Fig.8. On the left, it depicts a hierarchy of subclasses of the class
EnvironmentSpace – an extract of a taxonomy as it might appear in a “Common
Sense Ontology” of space1, cf. [2]. The relation is a subclass of (or “is a”) is
depicted by a fat arrow with a hollow tip. For example, an Office is a Room
which is in turn an EnvironmentSpace.

A class represents a set of objects; for example Office8210 is an object
(depicted with leading and trailing underscores in the diagrams below) of class
Office, or Office8210: Office.

On the right, we see declarations of relations depicted by pointed arrows,
with classes as domains and co-domains, to be formalised (see Sect.5) and used
eventually for the definition of relations between objects. containedIn , for ex-
ample, relates the class Node_IndoorsK of our RouteGraph ontology (to be de-

1 We refer to different ontologies separately here although they are in fact parts of one
combined ontology; for the structuring of ontologies see Sect.4.8.
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fined below) to EnvironmentSpace in the “Common Sense Ontology”; moreover,
Node_IndoorsKs in the RouteGraph ontology are related by locatedIn to (a
separate ontology for) a calculus of Regions. Thus we should eventually be able
to deduce, given
Place8210: Node_IndoorsK, Region8210: Region, and Office8210: Office,
then
Place8210 locatedIn Region8210 and Region8210 covers Office8210
implies Place8210 containedIn Office8210

3.1 Various Ontology Specification Languages

Description Logic in OWL. Ontologies may come in various specification
formats, cf. Fig.9 (or [8]). We adhere to the OWL standard [9]. Its description
logic DL has been primarily defined to be decidable for the Semantic Web.

Lightweight Ontologies in LATEX. For lightweight ontologies, just
(sub)classes, objects and relations as in the example above, we use a special
LATEX format that can be translated to OWL and vice-versa (a tool [10], based
on the generic graph visualisation tool daVinci [11], supports incremental pre-
sentation of and navigation in such graphs, as in the examples shown in this
paper). It allows the specification of ontologies for documents to enable their
semantic interrelation, enabling much more advanced document management
facilities ([12, 13]).

First Order Logic in CASL. In contrast, Casl, the Common Algebraic
Specification Language approved by IFIP WG1.3 ([14, 15]), covers full First Or-
der Logic, plus predicates, partial and total functions, and subsorting; more-

Fig. 10. Path and route
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Fig. 11. Simple graph ontology (extract)

over, features for structuring, or “specification in the large”, have been included
(cf. Sect.4.8). Thus full formalisation of ontologies becomes possible, (as in the
DOLCE framework [16, 17]), needed eventually here, see Sect.5. A sublanguage,
Casl-DL, has been defined to correspond to OWL DL [18] such that the map-
pings/embeddings of Fig.9 between the various representations can be realized.

3.2 Ontology of Graphs

As an example, consider a simple ontology of graphs. Fig.10 shows the core in
MMiSSLATEX: A Graph has (one ore more) Nodes and Edges. The MMiSSLATEX
operation Class declares these classes: the first parameter denotes the semantics
term, the second a default textual phrase (for use in LATEX documents), the
third the superclass.The operation Relation is analogous, but contains as an
additional first parameter an indication of the kind of relation, e.g. “*-*” to
denote “many to many”, “->” to denote “onto” (a function), or “<” to denote
“strict partial order”. With the operation RelType relations may be “typed” by
source and target classes to allow (static) checking of conformance when objects
are related. Thus each Edge has exactly one source and one target Node.

Note that, at the level of an ontology specification, we do formalise differently
than in mathematics or a classical modeling in a specification or programming
language: in the latter case, we would introduce a graph as a pair for a set of
nodes and edges; here, a Graph contains both sets – the abstraction from the
pair is perhaps even more natural and definitely adequate as a first go. We show
in Sect.5.1 how a more “data structure” oriented design may come back in.

3.3 Paths and Routes

The last lines of Fig.10 show an extension of the basic graph specification. A
Path is (a subclass of) a Sequence of Edges (Sequence is a basic concept with
additional relations, instantiated here), where the target of the first edge is the
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source of the second, and so on. Note that a Path corresponds to some graph
traversal, possibly with cycles. In contrast, a Route contains no repetition of
Edges. Such properties will have to be formally specified by additional axioms
on the subclasses, successively refined from Sequence_Edge over Path to Route,
cf. Sect.5.1. The visualisation in Fig.11 shows a few more relations, sometimes
with multiple relation arrows, e.g. hasSource and hasTarget from Edge to Node.

4 A Route Graph Ontology for an Indoors Scenario

4.1 Instantiation to Particular Route Graphs

We assume that the general properties of (labelled) directed graphs are specified
along the outline above; similarly, abstract route planning algorithms could be
specified at this level without knowing (much) more about Nodes or Edges.

Indoors Instantiation and Kinds. We instantiate this general graph ontol-
ogy here for an indoors application of Route Graphs, see Fig.13 (cf. also Sect.4.8
for the instantiation aspect). Thus Graph becomes Graph_IndoorsK, Node be-
comes Node_IndoorsK, and so on. KindRG denotes the kind of Route Graph,
where IndoorsK may be refined later on as shown in Fig.12; other kinds might
denote RailwayK, UndergroundK or RoadK Route Graphs, for example.

User Level and Robot Level. Our IndoorsK instantiation refers to the (in-
doors) operating environment of a robot. Note that we do a particular modelling
for Route Graphs here which is separate from, but related to, the “Common
Sense Ontology” for EnvironmentSpace in Fig.8; we have to expect that they
are structured differently. As we shall see below, a Graph_IndoorsK may refer to
a rather detailed description at the level of a robot, e.g. the wheelchair Rolland,
or its abstraction at the level of an operator, e.g. a Rolland user. User and robot

Fig. 12. Ontology of KindRG
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interact at this abstract level, while robots may interact among themselves at
the detailed level, for example during a multi-robot exploration phase.

4.2 Edges and Route Segments

With the transition from graphs to Route Graphs, an Edge_IndoorsK (with
source and target) is refined to a Segment_IndoorsK (see Fig.14), with an ad-
ditional entry, course and exit, see Fig.15. Each KindRG of Route Graph will
introduce its special aspects, in particular (relations to) components.

Vectors and Voronoi Diagrams. In the specialisation of IndoorsK Route
Graphs, a segment is essentially modelled as a vector in polar coordinates: the
entry gives the angle from (the origin of) the source place, the course the distance
to the target , and the exit the angle to the target, to assume the orientation
of (the origin of) the target place (cf. Sect.4.3). In addition, we attach informa-
tion derived from a Voronoi diagram representation (see also [19]): each point
has a maximal circle of available free space around it, represented by its di-
ameter or Width. Thus each Place_IndoorsK has a Width, and the Width of a
Course_IndoorsK denotes the minimal width of the points along its course.

Abstraction of Segments. Fig.16 shows a Voronoi diagram at the bottom
corresponding to a detailed Route Graph for the route in the corridor which has
been abstracted to a single segment at the top, showing the CorridorWidth.

Consider also the example in Fig.17, corresponding to that in Fig.3 and
given verbally in Sect.2.1: Segment1 represents a passage through a doorway, of
DoorWidth; SegmentCorridor2 represents (part of) the corridor, of
CorridorWidth. The entry and exit angles are depicted by fat little (angular)
arrows. Fig.15 and Fig.18 show the ontology of segments and the objects related
to the particular segment SegmentCorridor2. Note that the entry angle and the
distance of the course denote the direct vector to the target place thus defining
a spatial relation between the two nodes; the actual Voronoi trajectory (cf. e.g.
Segment1) and its length (which may be larger than the distance) are not repre-
sented here; they could be added to the course as additional information, but are

Fig. 13. Indoors Graph ontology
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Fig. 14. Ontology of indoors edge subclasses

Fig. 15. Ontology of indoors segment subclasses

Fig. 16. Abstraction of route in corridor to route segment

probably not necessary since the construction of the actual navigation trajectory
from the Route Graph has to take e.g. dynamic obstacles into account.

Modelling Precision. All measurements above (distances, angles, etc.) are
intended to be qualitative; in fact no units have been specified so far. Precision
can be introduced by an additional attribute, for example an interval of tolerance.
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Fig. 17. Segment1 and SegmentCorridor2

Fig. 18. Ontology of object instantiations representing SegmentCorridor2

Fig. 19. Overlapping regions

4.3 Nodes and Places

A Node_IndoorsK is refined to a Place_IndoorsK; each place has its own origin,
i.e. a well-defined position and orientation with a zero angle. For example (cf.
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Fig.18), Place8210 faces the office door, PlaceIFOLift faces the lift, and
TCrossWestWindow faces the west window. We might wish to define an origin
to coincide with such a faces relation, but in fact it does not matter much as
it is only important to have a well-defined origin at all.

Place Integration. How is this origin preset? When a node has just one seg-
ment attached, its entry angle is zero for an outgoing segment, or its exit angle is
zero for an incoming segment.2 When adding an additional segment, this origin
will have to be adhered to. When integrating two routes or in a union of Route
Graphs, place integration has to be performed for all segments with common
places: for any two places to be integrated, a common origin will have to be
chosen and the entries/exits of the segments re-computed, if necessary. This is
the price to pay for the fact that a place has now become a position of choice
for outgoing segments, with different entries in general.

Regions. Places are contained in regions. Recall Fig.8: If a Place is locatedIn
a Region and this Region covers an EnvironmentSpace, say an Office, then
we may conclude that this Place is containedIn this Office.

Fig.19 shows overlapping and nested regions, where the regions can be clas-
sified according to the KindRGs in Fig.12.

4.4 Relation to “Common Sense Ontology”

The relations locatedIn, covers and containedIn are examples of relations
between different ontologies (or parts of one big joint ontology); this issue is
taken up further in [2]. For example, there are various calculi for regions or
other spatial configurations (e.g. [20, 21]); the ontology of such calculi, formally
specified as suggested in Sect.5, could be associated here.

Facing Windows. is another example. Consider Fig.20 (also the objects in
Fig.18): a place can be classified (as a subclass of Place_IndoorsK) as a
Place_InFrontOfWindow, a Place_InFrontOfLift, etc.; it may then be related
by faces to an object in the “Common Sense Ontology”, e.g. a Window or Lift.

Routemarks. In such a situation, we may wish to attach an actual pointer to
such an object, i.e. a Vector_Mark_IndoorsK having a Node_IndoorsK, e.g. a
Place_InFrontOfWindow, as source and a Routemark as target; this Routemark
is then a Point that marks a Window (e.g. in its centre). As examples, consider
the dotted arrows in Fig.17. Routemarks help self-localisation during navigation
using such vectors for triangulation.

4.5 Reference Systems

Analogously, a place may be rooted in a global reference system by a vector from
its origin; this could also be a 3D Cartesian vector, of course. In fact, it is quite
likely that such reference systems correspond to nested regions (Sect. 4.3).

2 A origin has to be set before a pointer to a routemark is specified, cf. Sect.4.4.
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Fig. 20. Places facing a window, and routemarks

Fig. 21. Entries with dynamic predicates

4.6 Multi-robot Exploration

Multi-Robot Exploration may require additional information to be attached to
places, for example a tag marking it as a fringe node for an explored region, to
be extended. When various robots co-operate during exploration, place integra-
tion becomes of utmost importance, i.e. a criterion for matching two places, to
become the same when “closing the loop” (cf. [22, 23, 21]). In such as case, dif-
ferent co-existing Route Graphs denote different possible worlds, with a certain
probability attached; identical sub-graphs may of course be shared. We hope
that the Route Graph representation will prove to be sufficiently compact for
interaction between robots in such situations.
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Fig. 22. MMiSSLATEX source of generic Graph ontology

4.7 Modelling Dynamic Information

So far, all the information associated with Route Graphs was static. For use in
navigation, it would be very convenient to be able to model dynamic information
as well. Consider Fig.21: entries are guarded by dynamic predicates,3 to check
whether a door is open or a lift is arriving. This way, Rolland may for example
choose among segments to several lifts, depending on which is about to arrive.
Thus status information is modelled; our graph can be regarded as a kind of
state transition graph.

From a puristic point of view, this modelling is adequate for a data structure,
but violates the idea of an ontology. However, the ontology (and the “data base”
of its associated objects) should be the central source of information, the basic
knowledge representation. It will yet have to be seen how these two views can be
reconciled better, perhaps by representing dynamic information in a completely
separate part of the ontology.

4.8 Structuring Ontologies

Finally, a word about structuring ontologies. Ontologies, as all descriptions or
formal specifications, may become quite large and unwieldy; structuring becomes
a necessity. We have learned a lot from structuring formal specifications or the-
ories in the context of Casl, cf. [14, 15]: composite specifications may e.g. be
constructed by (conservative) extension or union, items may be re-named, mor-
phisms (“views”) may be applied, (remote) libraries may be organised as nested
folders.

We suggest to apply similar structuring mechanisms to ontologies. One way
to do this is the approach of the MMiSS project, where general documents
are structured along these lines, and change management supports sustainable
development (cf. [12, 13]).

3 Boolean valued binary relations to emphasise the dynamic query rather than unary
predicates represented e.g. as subclasses.
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Generic Ontologies. A particularly important structuring mechanism is pa-
rameterisation, or abstraction to generic modules, generic (sub)ontologies here.
Fig.22 shows a generic graph ontology, as a generalisation of Fig.10: the (only)
parameter “#1” may then be instantiated to different specialisations of KindRG,
e.g. IndoorsK, RailwayK or RoadK. Note that, in its body, GenSequence is in-
stantiated, a similarly generalised version of sequences.

5 Formalisation in Casl

This section contains the formalisation of the Route Graph ontology and the
RouteGraph data type specification. There are several advantages for using Casl
for the entire development of a data structure, together with its functions, from
an ontology (see [14, 15, 16, 17], cf. Sect. 3.1, Fig. 9):

Casl covers full First Order Logic, predicates, partial and total functions, and
subsorts. Tools in Hets (see below) are available for strong (sub-)type check-
ing, overloading resolution, and interfaces to verification tools.

Casl-DL is a sublanguage of Casl, restricted to the Description Logic under-
lying OWL DL. It offers precise concepts and definitions together with a
translation from and to OWL DL, cf. Fig. 9 and [18]. Thus a variety of tools
developed for OWL DL become available for Casl-DL. The LATEX ontol-
ogy representation of ??FirstOrderLogic can be translated to Casl-DL (or
Casl) to provide a bare-bones specification.

Fig. 23. Generic Graph ontology in Casl
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Fig. 24. Design specification in Casl

Hets – the Heterogeneous Tool Set – provides support for heterogeneous spec-
ification in various different logics (e.g. ModalCasl) and associated tools,
most notably the interactive verification system Isabelle [24] and an increas-
ing number of (semi-)automatic theorem provers, e.g. SPASS [25]. Transla-
tors to some target programming languages such as Haskell or Java are
under development. Moreover, Hets will support re-use of proofs with the
Development Graph Manager MAYA [26].

We illustrate the development process proposed here with the example of
generic (Route) Graphs.4 It starts with an ontology stating only classes, relations
and their axioms in a very loose fashion. This gives a top-level overview of the
intended concepts and their interrelation.

5.1 Generic Graph Ontology in CASL

Fig. 23 shows the ontology of Route Graphs of a specific kind, given as parameter;
cf. also Sect. 3.2 and Fig. 22. It starts with the declarations of the basic sorts
and relations, and an axiom stating that no dangling edges are allowed.

4 The formal specification of other parts of the ontology such as parts of the “Com-
mon Sense Ontology” or various spatial calculi (cf. Sect. 4.4) would also be quite
interesting from the point of view of spatial cognition; we defer this to another paper.
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Fig. 25. Haskell implementation of Edge

Sequences of Edges. For the relation of a graph to sequences of edges, the
parameterized specification GenSequence is instantiated. It provides some ba-
sic relations (omitted here) such as hasHead and hasTail and some auxiliary
functions for specification purposes, such as sources, yielding the sources of all
edges in a graph as a sequence, or freq for counting the number of elements in
a sequence. Note that parameterized specifications often use compound names
which are to be instantiated, e.g. Edge[Kind ] or Sequence[Edge[Kind ]].

Paths and Routes. Path[Kind ] is defined as a subsort of Sequence[Edge[Kind ]]
with the auxiliary predicate connected, then Route[Kind ] as a subsort of
Path[Kind ] without duplicate branches or edges (this implies no cycles).

5.2 Design Specification in Casl

A Casl specification of Graph2 based on predefined basic data types such as
List and NonUniqueEdgesGraph is presented in Fig. 24. It povides the same
sorts as the ontological definition of GenGraph in Fig. 23 and is the first “design
specification” in a software engineering sense. We can prove rather straightfor-
wardly that this specification satisfies the requirements set out in Fig. 23.

5.3 Implementation of Inheritance in Haskell

We now turn to an operational implementation in the functional programming
language Haskell and demonstrate some of the subtleties in the translation.
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Fig. 25 shows the polymorphic implementation of the predicates connected
and noBranches based on the type class Edge. The implementation of connected
uses the same recursive definition as in Fig. 24. The existential data types Path
and Route require type classes Eq and Edge as minimal context. All this, includ-
ing constructor functions for Path and Route (not shown), can be implemented
without knowledge about the actual structure of later instantiations.

The Route Graph specialisation of class Edge to class Segment is shown in
Fig. 26. Note that providing special information for entry, course and exit is
optional and yields a safe Nothing when e.g. an instance does not need an exit.

Fig. 26. Haskell implementation of SegmentIndoor

For the instantiation to indoors navigation, the data type SegmentIndoorsD
is defined with the constructor SegInd (with special components/selector func-
tions); it instantiates the classes Edge and Segment. The subsorting relation of
Segment and Edge in Casl is translated to a class hierarchy in Haskell, where
the data type includes all the information needed for all classes of the hierarchy.

Functions in class Segment are only accessible for data stored as Path or
Route if we add the context Segment to the existential data types. Thus, we have
to use the lowest class in the hierarchy that provides access to all information
we need when we introduce existential types to hold heterogenous data.
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6 Conclusion

We have presented the generic concept of Route Graphs, modelled by an on-
tology, and its step by step formalisation. We hope that the introduction of a
“light-weight” ontology first, restricted to (sub)classes and relations only, will
appeal to those who are not so interested in formalisation, and provides a general
overview to those who are. Such an ontology specification can be done rather
quickly in the special LATEX format, and ontology visualisation tools (e.g. [10])
can already be applied. Moreover, such an ontology is already suitable for the
semantic interrelation of documents (cf. [13]), as e.g. in the repository for a joint
interdisciplinary research project such as the SFB/TR8 “Spatial Cognition”.

The subsequent formalisation of the Route Graph ontology in Casl will
appeal to those who emphasise the need for complete formalisation of ontologies,
as in the DOLCE approach [16, 17]; here the structuring concepts of Casl and
the availability of verification tools are perhaps the primary advantage.

The development of an actual data structure from a top-level ontology in
Casl is a new experiment in Software Engineering since this first (loose) require-
ment specification is tailored to ontologies and not to software. Nevertheless, we
believe that the approach works quite well, and the process will hopefully be
further automated as much as possible. In the context of cooperation among
and integration between a large interdisciplinary diversity of research and ap-
plication areas (such as AI, Cognitive Science, Linguistics, and Psychology) we
see it as a definite advantage to have a common “language”, viz. semantic de-
scription formalism, to start from, the central (joint) ontology. We hope that
those who are only interested in the result, e.g. a data structure for interaction
in the robotics domain, will be patient with this “interdisciplinary definitional
overhead”, and happy with the outcome. We expect tools for the (formalised)
ontology and interfaces to the data structure, with appropriate operations to
simulate access “as an ontology”, to coexist peacefully in the running system.

Finally, we hope to have made a contribution to clarifying concepts and
providing a data structure for human–robot and robot–robot interaction for the
indoors scenario. In particular, the (indoors) Route Graph ontology shall serve
as a basis for linguistic augmentation to enable a dialogue between user and
wheelchair, as outlined in [3, 4].

The approach presented in this paper will have to be extended, at the “user
level”, by a relation to spatial calculi, e.g. for treating “right” and “left”, and
nested overlapping regions. Formalisation of these calculi in Casl, at the ontol-
ogy level, should be rather straightforward. The challenge will be the choice and
combination of suitable calculi, and the transition between them.

We are looking forward to other instantiations of the generic Route Graph
ontology (and data structures) in application domains such as geo-information
systems or location-based service scenarios.
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