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Abstract. Around 1990 the work on the first-order theorem prover
MKRP stopped after a development going on for more than a decade.
Instead a new system has been developed since then, the mathematical
assistant Ωmega. In this contribution I try to summarise some of the
discussions and decisions that led to this shift in focus and to the de-
velopment of the Ωmega system, and I attempt in retrospect to give a
tentative evaluation of some of the decisions.

1 Introduction

In the late 1980’s the MKRP-project came to an end, after a development of
more than ten years in which a couple of millions of Deutschmark were spent
(a Deutschmark is roughly half a Euro or half a US-Dollar). A new project on
a new system started, the Ωmega system1. In the preceding discussions many
decisions were taken and paradigms discussed. Now more than 10 years later it
may be worthwhile firstly to document some of the discussions – also since the
whole endeavour was a significant step in Jörg Siekmann’s work in Mechanised
Theorem Proving, and secondly to try a cautious first evaluation of some of the
decisions.

The MKRP-project started in Karlsruhe when Jörg Siekmann was a research
fellow at the University of Karlsruhe and was continued when he took up there
a professorship for artificial intelligence at the University of Kaiserslautern. In
this paper some details about MKRP and the MKRP-project are discussed, but
only insofar as they are relevant for the transition from MKRP to Ωmega. It is
not a description of the development of MKRP (neither of Ωmega), but a report
on the transition period.

In order to understand the transition let’s first take a look at the context
in which the decisions were made, then take a closer look at the MKRP system
itself and discuss shortcomings of the system in the intended applications and
means to overcome these.

1 Initially the new system was called Ω-MKRP, later only Ω or Omega and at a time
the logo Ωmega was introduced.
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2 The Context

Preceding the birth of Ωmega a major shift in the work of Jörg Siekmann and
his group as well as their working conditions took place. Jörg was at that time
an (associate) professor (C3) for artificial intelligence at the Computer Science
department of the University of Kaiserslautern and headed a group of around
ten active teaching and research assistants mainly financed by the German Na-
tional Science Foundation (Deutsche Forschungsgemeinschaft, DFG), mainly, in
the Sonderforschungsbereich 314 on Artificial Intelligence and European Union
Esprit projects. Only the DFG financed projects were directly related to MKRP.
In Germany, research assistants and teaching assistants typically work towards
their PhD alongside their project work, only the professor has a permanent posi-
tion. At the end of the 1980’s most researchers in Jörg Siekmann’s group were in
the final stages of their PhD theses. Some had already left the group, some were
about to leave, or looking for different activities which went beyond MKRP. To
a large degree the work in the final phase of the MKRP-project and the potential
extensions can be described by the work done by the people working on it. I will
briefly mention some of these results of people working in the core of MKRP.

MKRP was built on the so-called clause graph procedure, originally proposed
by Robert Kowalski [Kow75]. In this approach, a graph is used to store all
possible resolution steps, detect redundancies and simplification possibilities. A
difficult question is whether the procedure is actually complete and confluent,
that is, whether if one starts with an unsatisfiable clause set, from any interme-
diate state it is still possible to derive the empty clause, and – assumed a fair
strategy is employed – the empty clause will eventually be derived.

Norbert Eisinger [Eis91] studied the theoretical properties of clause graph
procedure like completeness and confluence. Already during the Karlsruhe phase,
Christoph Walther [Wal83] developed the order-sorted logic2 on which MKRP is
based. In Kaiserslautern, Manfred Schmidt-Schauß [SS89] worked on extensions
of this logic with term declarations. Hans-Jürgen Bürckert [Bür90] worked on
constraint resolution, Alexander Herold [Her87] on the combination of unification
algorithms, and Christoph Lingenfelder [Lin90] on the presentation of resolution
proof in natural deduction. Karl Hans Bläsius [Blä86] and Axel Präcklein [Prä92]
worked on different approaches to equality reasoning from human-oriented to
traditional rewrite oriented ones. Hans Jürgen Ohlbach (but also many others)
were very involved in the MKRP project or related projects. They played a crucial
rôle in the development of MKRP and of extensions to MKRP. Hans Jürgen in the
end chose a PhD topic on modal logic rather than MKRP-related issues [Ohl88].

While all these people finished their PhDs, two things crucial for the fur-
ther development happened around the same time, firstly the German Research
Centre for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) was founded in Saarbrücken and Kaiserslautern, and secondly
Jörg Siekmann was offered and accepted a full professorship (C4) in Saarbrücken,
jointly with the post of a director at the DFKI. This meant not only that a shift
2 The idea of sorts is to replace particular unary predicate symbols by sort symbols.

This has the advantage to shorten clauses and prevent meaningless unifications.
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in the focus of his work was necessary, but also that senior people were needed
to head the new research areas in the DFKI.

Initially, the Ωmega-group (in addition to Jörg Siekmann himself) consisted
of Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Ne-
smith, and Jörn Richts. While Xiaorong and Manfred had worked in the group
for a couple of years already, Xiaorong on the verbalisation of natural deduction
proofs, and Manfred on human-oriented theorem proving, the others recently
joined. Michael had just met Jörg Siekmann at a seminar of the prestigious
Studienstiftung. His special interest was to develop a logic close to the mathe-
matical representation found in mathematical practice, concretely this meant to
develop a sorted higher-order logic and its mechanisation. Erica had worked on
analogy and related questions in a general context at the Humboldt University
in Berlin; she joined the group after she met Manfred just before the fall of the
wall at a conference on analogy in East Germany. Dan came – a short while
after the others – from Peter Andrews’ group to Saarbrücken. He brought in his
tremendous experience in the implementation of the TPS system. This way TPS
strongly influenced the style of the logical core of Ωmega. Dan was to become
the main developer of the Keim implementation system, which has provided the
implementational base for Ωmega [HKK+94]. Jörn had just finished his master
thesis on MKRP and had a general interest in the new paradigm of Ωmega.

3 Paradigms of the MKRP System

As mentioned MKRP [MGR84,EO86,OS91,Prä92a] is a traditional theorem prov-
er based on resolution and paramodulation for sorted first-order logic. In prac-
tice, the MKRP-system is a traditional first-order theorem prover; in spirit, how-
ever, Jörg Siekmann had from the very start of the project in mind to build a
theorem prover following a human-oriented approach of reasoning. The original
idea was to have a so-called logic engine, that is, the graph-based resolution
engine, which is guided by a so-called “supervisor,” that is, a module which tells
the logic engine what to do next (see Fig. 1). Jörg Siekmann’s idea was that
the logic engine should be supplemented by a human-oriented component that
guides the logic engine. However, more and more effort was put into the logic
engine itself and the “supervisor” was never realised nor was there a serious at-
tempt to design it. Many people started to work on it, but switched to work on
the core system since there was concrete work to be done, which also was easier
to sell to a community that is up to now not very interested in human-oriented
theorem proving. At a time Axel Präcklein built an interactive component as an
extension to MKRP which visualised all possible resolution steps and allowed to
run MKRP in an interactive mode. Using this component, Axel Präcklein and
Manfred Kerber tried to find patterns in the clause graph which allow to select
the next resolution possibility heuristically. However, it turned out that it was
already very difficult to find proofs at all this way and virtually impossible to
detect any usable structure. Usually MKRP performed these steps much better
than humans. From this it was concluded that automating a human-oriented
selection module for resolution steps would be very difficult (it wouldn’t have
been very human-oriented anyway).
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Fig. 1. A bird’s eye view for the intended interplay between MKRP and the control
component the “supervisor”, taken from Jörg Siekmann’s lecture notes.

The motivation force in the MKRP project was to prove a mathematical
textbook fully using MKRP. The only ever fully proved mathematical textbook
is Edmund Landau’s “Grundlagen der Analysis” [Lan30]. This book was inter-
actively proved in the Automath system see [NGdV94] by L.S. van Benthem-
Jutting [Jut79]. It was a major attempt to prove a full mathematical textbook
and it took van Benthem-Jutting five years to do it, although Landau’s book
is very formalised with 301 theorems on 134 pages. The effort needed indicates
that Automath seems not to have been the right tool to prove textbooks. While
it is a proof checker, MKRP is an automated theorem prover. The hope was
that this would make it much easier to prove a book with MKRP. The textbook
chosen was Peter Deussen’s “Halbgruppen und Automaten” (Semi-groups and
Automata) [Deu71]. The first 5 of 17 sections were actually proved with MKRP.
As will be seen in the following, there were, however, severe problems with us-
ing MKRP for this task. When we formed plans for a new project, Ωmega, we
naturally wanted to take into account all the lessons learned from the attempt
to prove the text book. In the following the most important insights will be
summarised which strongly influenced the further development (see also [Ker92]
and [HKK+92]).

Logic. The representation of the mathematical concepts in the sorted first-
order input language of MKRP is often clumsy and unnatural, also the
representation was often ad hoc. The concepts and constructs of a typi-
cal mathematics textbook are quite rich and much better approximated
by a higher-order language, we were forced to use sophisticated encoding
techniques to translate them manually into the MKRP first-order input
language. While the availability of sorts and the built-in equality predicate
allow for a tolerably adequate translation, it is not always obvious what
the theorems proved by MKRP have to do with the textbook theorems and
hence what is actually proven. As a minimal requirement one would want
an automatic translation technique from higher-order to first-order logic to
support a user in the encoding task.
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Knowledge Base. The MKRP-system, as most other automated theorem
provers, has no integrated mathematical knowledge. Each time definitions
and lemmas, which are used as preconditions for the actual theorem, must
be coded and re-input. This is not only rather boring, but is also a serious
source of error. Often (slightly) different formulations are chosen in different
contexts, with the consequence that the correctness of the whole procedure
of machine verification of textbooks is no longer assured. Moreover, the user
may insert lemmas that cannot be proven in the given context. Discipline
may be helpful, but as practice shows, automated assistance is indispens-
able. In short, a system that supports human mathematicians in proving
theorems must include a database of mathematical knowledge that can be
accessed and updated in a controlled way. This in itself is a major research
task, still not fully solved.

Structuring in Subproblems. More often than not, real mathematical
theorems are too hard to be proven automatically. This state of affairs can
be ameliorated by strengthening the deductive power of the prover in vari-
ous ways (and since then considerable progress has been made in the field,
of course). For every system, however, there exist theorems that cannot
be shown automatically. In order to be useful, the user must be given the
opportunity to guide the proof process interactively. In a classical theorem-
proving system this is almost impossible: the cycle of interaction consists
of a complete restart with a different setting of the parameters or a refor-
mulation of the clauses. The main influence the user has, consists in the
appropriate choice and formulation of the problem. The way the precondi-
tions of a theorem are selected, for instance, is of paramount importance
for the performance of the system. An additional necessary facility is one
for splitting the problem manually into subproblems, so that they can be
proved separately and then used as lemmas later in the proof of the original
theorem. Traditional theorem provers lack such support and the situation
is far from satisfactory, as all structuring decisions and all proof plans are
hand-crafted. In short, all of this requires too much care and skill from the
user, and not surprisingly there are fewer than a handful of well-known
experts who are renowned for their skill in proving difficult theorems with
the help of a machine. Since it is always possible to break down difficult
theorems into digestible subproblems, there is also the question to which
degree this procedure can be called automatic.

All these points showed us that we needed a new system which should be de-
veloped from scratch and that there was no point in attempting to extend the
existing MKRP system. However, we were also very reluctant to throw away more
than ten years of development work and dozens of person years’ work. This led to
the idea to build an open system, in which it is possible to add external systems
to solve subproblems. The first external system would be MKRP, others could
then easily follow.
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4 Discussions and Decisions

The principles for the Ωmega system were developed in many meetings, seminars
and discussions, a picture of one of the blackboard summaries can be found in
Fig. 2. These discussions were influenced by many people, who either came to
the group to give presentations or with whom we were in intensive discussions.
To mention just a few: Jörg Denzinger (with whom we had intensive discussions
on proof planning), Christoph Kreitz (who explained to us the details of Nuprl),
Wolfgang Reif (on the reuse of proof attempts), William Farmer (on the IMPS
system). In addition, we had numerous discussions with Dieter Hutter, Claus
Sengler, Jürgen Cleve and others, who just arrived in Saarbrücken at the same
time as we, to work on Jörg Siekmann’s verification project. Furthermore we read
many articles outside the main paradigm of the MKRP system, such as papers
on Automath [Bru80,NGdV94], Isabelle [Pau90], and proof planning [Bun88].

These discussions were about almost all aspects of a system, from the high-
level philosophy of the system to the implementation language and the data
structures employed. In the remainder of this section I want to summarise some
key questions and decisions. Let us first take a look at the philosophy of the
system. In this we took up the experience gathered in the work of proving the
first third of [Deu71].

4.1 Automated Versus Interactive

Certainly a mathematician wants to guide the process of proving mathematical
theorems. A system that puts you before an “all or nothing” approach seems
highly unsatisfactory. Ideally you want a system that is as automatic as possible
in order to support a user, but leave as much room for interaction as possible at
the same time.

Fig. 2. A Blackboard Summary of Discussions in 1991 written by Jörg Siekmann.
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A quote from [HKK+94a]:

On account of this, we believe that significantly more support for proof
development can be provided by a system with the following two features:

– The system must provide a comfortable human-oriented problem-solving
environment. In particular, a human user should be able to specify the
problem to be solved in a natural way and communicate on proof search
strategies with the system at an appropriate level.

– Such a system is interesting only if it relieves the user of non-trivial
reasoning tasks and provides the foundation for a practicable increased
reasoning power. We are convinced that this requires not only task-
specific tactics but also the strong reasoning power of a general logic
engine.

As a consequence we decided to build a system that on the one hand allows
for tactical theorem proving, which allows to influence the proof search by call-
ing tactics, and on the other hand has integrated strong external components
like automated theorem provers which can be called as black boxes to solve sub-
problems (see Fig. 3). In summary we tried to find a viable compromise between
automatic and interactive theorem proving. In retrospect, the decision to follow
an automatic and interactive approach at the same time seems to have been the
right one. The full strength of this synthesis seems to be coming to the fore only
recently in work on agent-oriented theorem proving as developed by Christoph
Benzmüller and Volker Sorge [BS01] and multi initiative proof planning by An-
dreas Meier and Erica Melis [MM00].

strength:-deductive power

- restricted logic
- fixed strategies
- no interaction

- no math. knowledge

weakness:
strength:-environment

-powerful language
- automatic support
- expensive
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& heuristics

- HOL
- Nat. Deduction
- Interactive
- Taktics &

Methods

MKRP

INTERACTION

AUTOMATION

Proof Checkers
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Theorem Provers

Fig. 3. Motivation Diagram for the Ωmega system.
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4.2 Paradigm

Related to (but independent from) the question whether to follow an automated
or an interactive theorem proving style, was the question what the type of the
system should be, should it follow traditional machine-oriented theorem proving
or human-oriented theorem proving.

Here again, we followed the approach that we wanted to include different
paradigms. We wanted to include theorem provers like MKRP and Otter, but
wanted also to take the original idea of a human-oriented approach very seriously
(see Fig. 3). Some work on analogical theorem proving [Ker89] was done at that
time. Around the same time we understood the significance of Alan Bundy’s
approach to use planning techniques in theorem proving in the form of proof
planning [Bun88]. It was at the same time when the last proposal to reimplement
MKRP and to bring it up to the most recent developments in resolution style
theorem proving was discussed. We decided against this and started concrete
work on the Ωmega system instead. We decided to make use of fast existing
first-order theorem provers like Otter rather than to bring MKRP to speed.

The approach of proof planning looked very attractive since it allows – unlike
MKRP – to include domain-dependent reasoning knowledge in form of proof
planning methods [MS99]. Around this time we also adopted the idea that for
automation incomplete approaches can be stronger than complete ones.

The overall architecture of Ωmega as discussed then and realised later can
be seen in Fig. 4. Centred around the structure of Natural Deduction proofs,
different components and the user can manipulate partial proofs to complete a
proof, this can be done by inserting information from a knowledge base, by proof
planning, by external components, or proof transformation.

modify

add lineslookup

apply

start

check

direct
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call
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Data

Verifier

MKRP

Proof
Transform
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Fig. 4. Architecture of Ωmega.
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4.3 The Logic Language – First-Order Versus Higher-Order

MKRP is a first-order theorem prover. For all theorems we tried to prove we
found a representation in first-order logic. Also there has been work by Robert
Boyer et al. [BLM+86] (later taken up by Art Quaife [Qua92]), which shows how
first-order logic can be effectively used to prove large chunks of mathematics in
some form of set theory. This is also the approach taken in Mizar [Rud92]. The
advantage is that a few axioms suffice to build up all of the relevant mathematics.
The disadvantage is that the approach seems to be far away from mathematical
practice and a human-oriented approach. When you want to represent a func-
tion in mathematics, a function symbol in logic seems to be much closer to the
informal notion than a left total and right unique relation.

The argument was strongly supported by the plan to build on existing sort
systems (like that used in MKRP) to extend it to higher-order logic, so that it
would be possible to speak about unary functions on real numbers, continuous,
and differentiable ones and so on. Here two different aspects had to be considered.
Firstly we wanted to use the language as the representation language, that is,
we wanted it to be as strong as possible (including dependent sorts, to be able
to encode structures like groups very naturally as a set G : set with an operation
+ : G×G → G, where the operation depends on G). Secondly Michael Kohlhase
wanted to (and later did in collaboration with Christoph Benzmüller) build a
theorem prover based on higher-order logic with sorts which should form the
Logic Engine for Omega, Leo [Koh94,BK98]. Since this is a very difficult task,
dependent sorts (as well as partiality as discussed in [KK96]) were not included
for the time being.

4.4 Explicit Proofs, Proof Presentation, and Interface

The importance of an adequate presentation of proofs has always played a signif-
icant rôle in the MKRP as well as the Ωmega project. This started by the work
of Christoph Lingenfelder [Lin89,Lin90,LP91] and Xiaorong Huang [Hua96] and
has been continued by Armin Fiedler since. From the work to present proofs to
humans it was a short step to arrive at the philosophical position that proofs
must be checkable [HKK+94c]. This solved a major problem of the structure of
the Ωmega system, namely, how is it possible to ensure correctness of proofs in
the presence of many – quite heterogeneous black box components – which may
contribute to a proof.

The Ωmega system went first with an Emacs interface only. In the initial
discussions we discussed already the importance of a high-level user interface,
but in the implementation we had to focus on the kernel of the system. Only
later LOUI [SHB+99] was developed to provide a graphical user interface to
Ωmega.

4.5 Knowledge Representation

The representation of mathematical knowledge was considered of great impor-
tance from the very beginning [SK93]. It was considered as a central question and
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attempted even in days when there were still discussions to build a so-called “su-
pervisor” for MKRP. In discussions between Norbert Eisinger, Jörg Siekmann,
and Manfred Kerber it was decided to start the work on a knowledge based
reasoning system with the representation of knowledge. It has been considered
important to represent mathematics not only as mathematical formulae, but
also to attribute to a formula a semantic status, whether it is an assumption,
a precondition, a definition, a conjecture, or a theorem. Furthermore a context
should be provided, problems can build up on each other, which makes inheri-
tance of concepts possible. A particular interest was also put in re-representation
issues [KP96], however, the question is still mainly unanswered.

4.6 External Systems

As external system to include we started with MKRP, also to justify that all the
work that went into MKRP was not in vain. This led then to the next step to
include other first-order theorem provers, which are much faster than MKRP,
like Otter [McC90]. While this approach was criticised by reviewers, since we
didn’t follow a seamless approach of user-oriented theorem proving which em-
ploys human-oriented theorem proving like proof planning throughout, it made
it possible to further extend the system later on. For instance, Leo [BK98] was
anticipated as a loosely coupled and not tightly integrated system. Computer
algebra systems followed [KKS98] as well as constraint solvers [MZM00]. This
diversified the type of systems included. A generalisation of such a flexible inte-
gration was never anticipated in the early days, but the high flexibility needed
can be viewed in retrospect as a seed which helped to generate the ideas of
Mathweb [FK99] and OMDoc [Koh01] by Michael Kohlhase and others.

4.7 Application

As intended application for the Ωmega system we took over the old project of
MKRP to prove a mathematical textbook without any discussion. In hindsight
this is too narrow a view what such a system can be used for. Although we
never explicitly excluded other potential applications, it might have been better
to positively keep other potential applications – like the recently emerging ap-
plications in education (see Erica Melis’ contribution in this volume) – in sight
at an early stage already.

4.8 Programming Language

Different programming languages were discussed when we started the Ωmega
project, to mention some, C (for efficiency), Prolog (for rapid prototyping), Lisp
(as a compromise, which stood in the tradition of the MKRP project), and ML
(viewed as a typed variant of Lisp). The decision against C or C++ was in
retrospect good, since our ideas were not clear enough when we started with
Ωmega that we could exactly specify it, Prolog may not have been flexible
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enough, ML with its type system might have been the better choice and some
people favoured it when we started, but in the end tradition prevailed and we
decided for Lisp, because of the knowledge, the hardware, and the software
available. Lisp proved to be a powerful, flexible language which allowed for many
developments in the sequel, functional, object-oriented and concurrent system
development. It was a good choice (although ML might have been a better).

Ωmega was not directly implemented in Lisp (Common-Lisp to be more pre-
cise), but in the Keim environment, which was a programming environment built
on top of Lisp (in the German Focal Programme on Deduction, financed by the
Deutsche Forschungsgemeinschaft). Its philosophy is (quote from [HKK+94]):

..., those who wish to apply techniques developed by the theorem-proving
community face the choice of either learning this ‘black art’ themselves by
developing their own prover from scratch, or jury-rigging available provers
to get some kind of result.

While Keim greatly facilitated the development of Ωmega, it remained still a
‘black art’ to build and extend Ωmega. Keim turned out to be a complex system,
which is difficult to handle. Furthermore there are performance problems. In
retrospect I think these are due to the attempt to build with Keim a system
which is very general and construed to enable the implementation of a wide
range of deduction systems. The question whether to build a system as general
as possible versus to build a system as simple as possible was answered in favour
of generality. This seems to me now to have been a mistake.

5 Conclusion

Most decisions turned out to be fruitful although they might not all have been
optimal. As already mentioned an earlier focus on a different application domain
and a different approach to the programming might have been beneficial. But by
far not all developments were foreseen. In some aspects we were too optimistic
what could be achieved in ten years – for instance, we thought that it would be
much easier to formalise standard mathematics in sorted higher-order logic. In
other aspects we didn’t dare to hope for a state like the one achieved today –
for instance, we didn’t hope that the work would be applicable now already in
education.

There are developments we did not anticipate, but which were made pos-
sible by Ωmega. I want to mention agent-oriented theorem proving [BS01],
knowledge-based proof planning [MS99], Mathweb [FK99], and OMDoc [Koh01].
In my view this shows that Ωmega has been a flourishing project.

Ωmega meant a change of direction in Jörg Siekmann’s theorem proving
group, a change in area, in approach, and in paradigm. This was of course very
risky, since it meant a reduced possibility for publications for a significant amount
of time and the potential knock-on effect on funding. Fortunately referees in the
German funding organisations were very positive and supportive (I just want to
mention Wolfgang Bibel and Michael M. Richter here). I think that Ωmega has
been a scientific success and a worthwhile enterprise. Jörg Siekmann was already
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an established scientist who could have rested on his laurels and continued with
what he always did, when Ωmega started. He, however, actively initiated this
major change in direction, which considerably deviated from the path originally
envisaged in the MKRP project, when he was convinced that only in this way
we would come closer to making the old dream true to automate mathematics.
Leibniz had a dream, “Calculemus”, namely to mechanise mathematics (actually
he wanted to mechanise not only mathematics but all of human thought, we never
were so ambitious in the Ωmega project). There are many problems in detail
still to be solved to provide a powerful useful tool for mechanised mathematics.
In the past there have been too many promises/predictions about what will be
achieved in the near future. I don’t want to add another one, but although we
have not yet realised the dream, I feel that we are significantly closer to its
realisation.

This paper is not a survey on the Ωmega system, but just on the discussions
during the transition from MKRP to Ωmega. Many exciting developments have
taken place since then and without doubt will take place in the future. They
have to be reported somewhere else.
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