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1 Introduction

This is the first of a new series of papers on the temporal dynamics of Support
and Attack networks. These are graphs with a basic situation described in Fig-
ure 5 below. We have nodes a1, . . . , an connected by arrows to a node b. The
nodes have some values attached to them and these values are transmitted by
the arrows, and revise the value at b. This series of papers studies the tempo-
ral dynamics of such networks. The topic, in this generality, has emerged from
our previous research into argumentation frameworks (Gabbay and Woods [14,
13, 10, 12] and Woods [21]). Our starting point is therefore a generalisation of
abstract argumentation networks.

Abstract argumentation frameworks were put forward by Dung [5] following
the realisation that in real life every argument has a counter argument and no
argument is conclusive. An argumentation network has the form (AR, Attack),
where AR is a set of arguments and Attack ⊆ AR2 is an irreflexive binary re-
lation on AR, indicating which argument attacks which arguments. We should
emphasise that our approach here is dialectical rather than normative. When
we say that every argument has a counterargument it is not our view that ev-
ery argument deserves a counter, but rather than every argument, whatever its
merits, lies open to a counter, whatever its merits. We say that no argument
is conclusive, we intend that every argument is susceptible to challenge, again
notwithstanding its presumed merits. And when we say (just below) that any
argument that attacks an argument is a refutation of it, we intend only that the
attacking argument is presented as a refutation and that the attacked argument
is, on that argument, put under challenge. Our purpose in emphasising descrip-
tive factors in Support and Attack networks is twofold. We have reservations
about the speed with which some argumentation theorists rush to normative
judgement; and, in any event, we take description to have an expository priority
over normative considerations in theoretical accounts of argumentative practice.
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Example 1. Figures 1 to 3 are three examples of such networks.

a b c

Fig. 1.

a

b

c

Fig. 2.

a

d

c

b

Fig. 3.

(a) The situation in Figure 1 is straightforward. a is not attacked by anything,
so it is in (or active) as an argument. Since it attacks b, b is out (or is a
refuted argument) and so c is in. So the net result of Figure 1 can be written
as {+a,−b, +c}.

(b) The situation in Figure 2 is a complete loop. No argument can definitely be
said to be in or out. We write this as {?a, ?b, ?c}.

(c) The situation in Figure 3 is more interesting. Here a and b attack each other;
so we have ?a, ?b. Because of that, we can also put it that ?c and ?d. However
we can observe that both a and b attack c; so no matter which of a or b are
in (i.e. whether we have {+a,−b} or {−a, +b}), we always have −c, and so
the net result could be taken to be {?a, ?b,−c, +d}. On the other hand, we
might adopt the view that a, b cancel each other, in which case the net result
would be {−a,−b, +c,−d}.
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Since circularity, loops and mutual attacks of arguments are very common
in real life, it is obvious that much attention is required to resolving loops in
argumentation networks. Abstract argumentation networks were generalised by
Bench-Capon [4], where a colouring (representing the type of argument) was
added to the network. The colours are linearly ordered by strength. A weaker
coloured node cannot successfully attack a stronger coloured node. So a network
with colours (or with valuations) has the form (AR, Attack, V) where, as before,
Attack ⊆ AR × AR and V is a function giving, say, numbers to nodes: V :
AR �→ Numbers, and the numbers represent strength.

Thus in Figure 2 suppose V (b) = r and V (a) = V (c) = s. Clearly if r < s,
then the net outcome of the network is {+b, +c,−a}. If r > s, then the result is
{+b, +a,−c}. If r = s, we get, as before, {?a, ?b, ?c}.

Note that technically the colouring function V is an instrument for cancelling
attacks from some nodes to others. However, it is an instrument that requires re-
strictions. Not every proposed list of attacks to be cancelled can be implemented
by a function V . Consider Figure 2. Suppose that we want to cancel all attacks.
To cancel the attacks of a on b and of b on c we must have V (a) < V (b) < V (c).
By transitivity V (a) < V (c), so the attack by c on a cannot be cancelled by V .

The main rationale behind the introduction of V is not necessarily the reso-
lution of loops or cancellation of attacks, but the modelling of the intuition that
arguments can be divided into kinds, and that some kinds of arguments are more
important than others.

This paper generalises argumentation networks in several directions.

1. It allows for nodes in argumentation networks not only to attack other nodes
but also for support of other nodes. Moreover, we allow for varying strengths
of attack and support. We further generalise the model such that strengths
of attacks or support are themselves subject to attack or support. See Figure
4 for example.

2. It allows for the strengths of attack or support to be time dependent.
This enables us to model the phenomenon of ‘Let’s lie low and wait for the
argument to blow away’.

3. This paper also examines loop-resolution in argumentation networks, and
explores similarities between such loops and predator–prey models in math-
ematical biology.

The plan of the paper is as follows:
Section 2 will discuss “attack only” networks. There are three problems to

be addressed in such networks.

1. The formal definition and motivation of a variety of attack networks.
2. The modes of attack, a discussion of various option as to how to calculate

the result of attacks.
3. The resolution of attack loops, such as Figures 2 and 3.

Section 3 is devoted to various methods for the resolution of attack loops.
In the course of deciding how to handle loops, we explore formal connections of
networks with loops in networks occurring in mathematical biology. In biology
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the main emphasis is on a variety of ecology loops. The connection is simple;
argument a attacking argument b can also be understood as species a preying
on species b. Connections are also explored with the general theory of network
modalities.

Section 4 deals with networks that allow for both attack and support arrows.
We quickly ascertain the need to redefine the way in which attack and support
are (numerically) carried out, and our considerations lead us to a surprising con-
nection with the Dempster–Shafer rule and with the cross-ratio and projective
metrics in geometry.

Section 5 deals with time-dependent attack and support of arguments. Here
a connection with artificial intelligence time–action models is established, as well
as a connection with dynamical systems and general temporal logics.

2 Attack-Only Networks with Strength

We begin this section with an example motivating and explaining the idea of
strength of a node and strength of attack on a node.

Example 2. Consider the election for Governor of California and the then can-
didate, actor Arnold Schwarzenegger. Let

a = The candidate is alleged to have a certain attitude
towards women, and to have behaved towards them
accordingly.

b = The candidate will run California very well.

These arguments may have different strengths based on evidence for case a
and training and experience for case b. There is also another argument concerning
the question of to what extent can a attack b. Is a relevant at all to b and to
what degree? We represent this situation by the network in Figure 4

The node ε : (ab), where (ab) is the attacking arc from a to b, represents
the strength of the argument that a is relevant to b. It therefore can also be
attacked, since one can argue against any connection between a and b.1

Consider the situation described in Figure 5 where argument a has strength
x. It attacks argument b, which initially has strength y.

1 The model also allows several attacks to emanate from the same argument, as in the
figure below.

ε2

ε1

ba

The idea here is that there are several different kinds of arguments as to why
a is an attack upon b. This makes sense especially if a is a fact (see below). Such
networks exist in the literature as transition systems, and the different arrows from
a to b represent different actions, leading from state a to state b.
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x : a y : b

ε(ab)

•

Fig. 4.

x : a

z : c w : d

y : b

•

•

•

•
α

ε

η β

Fig. 5.

ε is the transmission factor, weakening b in a way that takes account of x : a.
b is also attacked by d with factor β.
However, factor ε is attacked by argument c, which is itself attacked by d,

with transmission factor α.
This model has two innovations.

1. The strength of nodes and the transmission factor.
2. The idea that the transmission factor can itself be attacked.

What kind of network does Figure 5 represent? First, note that the strength
of nodes is actually a colouring of them. One might expect us to introduce a
transmission factor between colours, then in Figure 4 ε could depend only on x
and y. We choose to make ε depend on the nodes, taking into consideration that
the transmission factor depends on the nature of the argument and not just on
their strengths.

The option of attacking transmission factors enables us to delete attacks, one
by one, by attacking (lowering) their transmission factor.

Example 3 (Modes of attack). Consider a simple numerical model. Assume all
values are between 0 and 1. If a is an argument of strength x which is attacking
an argument b of strength y, and the transmission rate is ε, then we get εx as
the value transmitted. The question now is how does this value εx reduce the
value y of b to a new value y′? We have two options. The first is that the attack
reduces the value y of b in proportion, i.e. by εx. Thus the new value of b is
y(1− εx). The second option is that the new value of y is y′ = εxy. This second
option makes sense if we view the attack of a on b as a pre-emptive protective
measure, reducing a possible attack of b on a. If a is strong (x = 1) and ε = 1
then 1 − xε = 0 whereupon a destroys b. This is the previous option, being a
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genuine attack. However εxy = y when ε = 1 and x = 1; so b is not affected. But
if x is small, then y′ = εxy is small. So if b attacks a with transmission rate η,
the value of this attack would be 1 − ηy′ and the attack would not be effective.
Hence the second option can be used as a pre-emptive attack.

We now address the problem of combining attacks. In Figure 5, b is also
attacked by d and this attack alone will reduce the value of b to y(1− βw). How
do we combine them?

Here too there are two options:

1. Perform the operation of reduction consecutively (and commutatively), so
that the new value of b after the joint attack is y(1 − βw)(1 − εx).

2. Add the two reductions, in which case the new value for b is the value
y − yεx − yβw = y(1 − εx − βw).

The advantages of option 1 are that we are assured that the new value remains
between 0 and 1 no matter how many attacks there are, and that the combination
is independent of how the attack is calculated. For example, this can give as the
new value of b the combination εx(1 − βw).

Example 3 above has put forward just one mode of attack. There are many
other possible modes. Additional possibilities will be examined in Section 4, in
conjunction of models with both attack and support.

In general, we have the situation shown in Figure 6. In this case, we require
the following function: If b has value y and if x1 : a1, . . . , xn : an attack y : b with
strengths ε1, . . . , εn resp., then we need a function f such that the new value of
node b is y′ = f(y, xi, εi).

x1 : a1 xn : an. . .

ε1 εn

y : b

Fig. 6.

This situation is reminiscent of Bayesian networks, where f is the conditional
probability of b on a1, . . . , an.2

2 In Bayesian nets there are no ε1, . . . , εn. xi are the probabilities associated with the
nodes ai and f is the conditional probability of node b relative to all the ai. Thus
the probability y of b can be calculated.
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We adopt option 1 as our mode of attack. So the new value y′ = V (b) in
Figure 6 is

y′ = y(1 − ε1x1) . . . (1 − εnxn)

= y
∏

i(1 − εixi).

The magnitude ∆−y which y decreases is

∆−y = y − y′ = y(1 −
∏

(1 − εixi)).

Example 4. We calculate the transmission of values in Figure 5.

Step 1: The final value V of node d is w, as it is not attacked by anything. Write
V1(d) = w. Similarly V1(a) = x. We write V1 because this is the value
obtained as final at Step 1.

Step 2: The new value V2 of nodes c and b are V2(c) = z(1 − αw), V2(b) =
y(1 − βw). Of course since nodes a and d have already obtained their
final value, we can write: V2(a) = V1(a), V2(d) = V2(d) . Node a cannot
transmit because we know from the figure that ε is being attacked, and
so we need to wait for its value to change. Only when ε gets its final
value will a be able to transmit.

Step 3: The new value V3 of the transmission connection (ab) is

V3(ab) = ε(1 − ηV2(c))

= ε(1 − ηz(1 − αw)).

Of course, V3(a) = V2(a), V3(d) = V2(d), V3(c) = V2(c), and V3(b) =
V2(b).

Step 4: Now a can transmit to node b. This gives

V4(b) = V2(b)(1 − V3(ab) · x)

= y(1 − βw)(1 − εx(1 − ηz(1 − αw))).

Of course, V4(a) = V3(a), V4(d) = V3(d), V4(c) = V3(c) and V4(ab) =
V3(ab).
Note that node b has had its value changed in bits and pieces. First, it
was changed at Step 1 and then at Step 4. This is all right for the cur-
rent way of changing values, because it is commutative and cumulative.
However, the general definition will now allow for this!

This kind of model contains the traditional one as a special case, where all
values are taken to be 1 and there are no attacks on transmissions. Let us see
what Figure 5 becomes in this case. Consider Figure 7 and note that it reduces
to Figure 8.

We can now give a definition of value propagation for acyclic networks. Cycles
will be addressed in the next section.
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1 : a 1

1

1

1

1 : c

1 : b

1 : d

Fig. 7.

d

ba

c

Fig. 8.

To give a definition we need to agree on the representation of the network.
Let’s do it for the case of Figure 5. We need a set of atomic nodes A. In the case
of Figure 5, A = {a, b, c, d}.

To represent the attack of atomic x on y, i.e. the arrow from x to y, we write
the expression x � y (called a torpedo)3. In Figure 5, we have the torpedoes
a � b, d � c and d � b.

These torpedoes represent the attacks from a to b, d to c and d to b re-
spectively. One of these attacks, namely a � b, is itself attacked by c. This is
represented by the torpedo c � (a � b).

Note that we cannot write an expression of the form (x � y) � z. This
would mean that the fact that there is an attack from x to y is in itself an attack
on z. We are not saying that such reasoning does not exist. In due course we
shall deal with it in the context of fibring networks. In other words, a whole
network can be embedded as a node and attack another node.

Figure 5 can be represented by the set of nodes and torpedoes:

T = {a, b, c, d, a � b, d � b, d � c, c � (a � b)}.

Note that this set T has the property that if x � y ∈ T , then x ∈ T and
y ∈ T . What we still need are the numbers (valuations) in the figure. This we
can represent by a function V : T → R, where R is the set of real numbers.

We are now ready for a formal definition.

3 When the arrow is an attack we call it a torpedo. When it is a support (see Section
4) we call it a booster. When it is both we call it an actor.
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Definition 1. Let A be a set of atomic nodes.

1. Define the notion of a torpedo based on A as follows:
– a � b is a torpedo if a, b ∈ A.
– a � x is a torpedo if a ∈ A and x is a torpedo

2. Let T be a set of torpedoes and atomic nodes. We say that T is an attack
network if the following holds
– x � y ∈ T implies x ∈ T and y ∈ T .

We say that T is finitely branching (in the outgoing direction) if for every
t ∈ T {a|(a � t) ∈ T } is finite.

3. A valuation function on T is a function V : T → R.
4. An attack network with a valuation is a triple N = (A, T, V ), where A is a

set of atomic nodes, T is an attack network based on A and V is a valuation
on T .

5. Let f be a functional giving for each string of real numbers of the form
(y, x1, . . . , xn, ε1, . . . , εn) a new real number y′ = f(y, x̄i, ε̄i) (where z̄i ab-
breviates z1, . . . , zn, for z = x or z = ε). Note that n is arbitrary. We
assume f to be continuous and generally nice4.
This will allow us more freedom in Definition 6 below.
For example, let f(y, x̄i, ε̄i) = y

∏n
i=1(1 − εixi). See Section 4.2 for more

options.
6. An argumentation attack model is a pair (N, f), where N and f are as above.

Definition 2. Let us look at some examples. Consider Figure 9 in which a at-
tacks b but also attacks its own attack. This is a case of a self defeating attack
of a on b.

We have T = {a, b, a � b, a � (a � b)} and

V (a) = x, V (b) = y,

V (a � b) = α and

V (a � (a � b)) = β

x : a y : b
α
�

β

Fig. 9.

4 By restricting f to finite sequences, we are forced to impose the condition of finitely
branching on T in Definition 4 below. However, f can be more general, for example,
we can take

f ′(y, S) = inf{f(y, x̄, ε̄) | (x̄, ε̄) ∈ S},
where S can now be an infinite set. This will allow us more freedom in Definition 6
below.
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x : a y : b
α
�

γ

Fig. 10.

We can compare Figure 9 with Figure 10. In Figure 10 we can interpret γ as
a feedback loop, attacking and reducing α. The weaker the argument b is the less
we want to spend effort attacking it.

Definition 3 (Cycles). Let T be an attack network. Define RT ⊆ A2 as fol-
lows:

aRT b iff a � b ∈ T or for some x ∈ A, a � (x � b) ∈ T.

Let R∗
T be the transitive closure of T . We say T is syntactically acyclic iff

there is no x ∈ A such that xR∗
T x.

If N = (A, T, V ), we say N is syntactically acyclic if T is such.

Example 5. Figure 11 is cyclic while Figure 12 is acyclic and finitely branching.

Example 6. Figure 13 is cyclic syntactically, but is acyclic semantically using V .
Note that although the network is syntactically cyclic, since V (β) = 0, it is

as if b � a does not exist in T .
We shall deal with semantic acyclicity later.

a b

c

Fig. 11.

a b

c

Fig. 12.
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x : a y : b

α

β

V (β) = 0

Fig. 13.

Definition 4 (Value propagation). Let (N, f) be a model, where N is acyclic
and finitely branching. We shall propagate the values V through the model using f.
We do this in waves.

Wave 0
An element a ∈ T is said to be syntactically free of attack if for every e ∈ A we
have (e � a) �∈ T . Let it be said that the updated elements of Wave 0 are the free
of attack elements and let the updated value V0 be V0(a) = V (a), for an updated
a of wave 0.

Wave n + 1
Assume we have defined the updated elements of waves k ≤ n and their updated
value Vk. Let b be any element and let a1, . . . , am be all, if any, elements of T
such that (ai � b) ∈ T . Assume for each i, that ai, as well as ai � b, were
updated at some earlier wave ki ≤ n and li ≤ n respectively.

Define
Vn+1(b) = f(V (b), V̄ki(ai), V̄li(ai � b)).

When the network is finite, the algorithm terminates in quadratic time5.

Example 7 (Figure 5). Let us examine the network of Figure 5 again. We are
listing the updated elements. Compare with Example 3.

Wave 0
w : d, x : a, β : d � b,

α : d � c, η : c � (a � b).

Wave 1
z(1 − αw) : c

Note that the only updated element in this wave is c. b is not updated because
not all of its attackers (namely a) have been updated. In our earlier computation
we did attack b at this stage, but we cannot do that under our current definition.
We will not get a different result because our function f launches the attacks from
separate nodes independently, cumulatively and commutatively.

Wave 2
ε(1 − ηz(1 − αw)) : a � b.

Here a � b is being updated.
5 Consider a linear network of n nodes with the following connection structure. Label

the nodes from 1 to n. Node i attacks all nodes numbered > i. Wave 0 will have to
search n nodes. Wave i < n will have to search n − i nodes. The sum of all waves is
n(n − 1)/2.
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Wave 3
Now we can update b. We get

y(1 − βw)(1 − εx(1 − ηz(1 − αw))) : b

Definition 5. Let (N, f) be a finite model. Propagate V using f in waves as
defined above. Let the new valuation V ′(a)a ∈ T be the updated value of a. We
call V ′ the result of the waves of attack in the network. Note that the propagation
is executed only once.

3 Handling Loops; Ecologies of Arguments

This section will discuss networks with loops. We have encountered loops in
Example 1 (b) and (c). In Figure 2 of (b), we need to resolve the loop {?a, ?b} in
order to propagate values to c. So technically all we need is some assignment of
values to a and to b, and then the algorithm of Definition 4 can be invoked. The
values we give to the loop depend on our interpretation of it. Hints for possible
interpretations can be obtained from other possible interpretations of the entire
network regarded as a mathematical entity. We shall therefore open this section
by putting forward several points of view as to the meaning of labelled networks
and their internal loops, which will then lead to ways of dealing with their loops.

To begin our discussion, consider the following Figure 14.

x : a y : b

ε(ab)

η(ba)

Fig. 14.

Let f1(y, x, ε), f2(x, y, η) be the two transmission functions. We observe the
following:

1. Figure 14 describes a syntactical loop.
2. Depending on the values x, y, ε, η and depending on the functions f1 and f2,

Figure 14 might not be a loop semantically. For example, if x : a is much
stronger than y : b or if ε = 0 then this might not be a loop.

3.1 Interpretation of Loops

There are various interpretations for the situation in Figure 14 besides our ar-
gumentation networks interpretation.

The Ecology Interpretation
The figure can be interpreted as an ecology. Species a feeds on species b and
species b feeds on species a. The functions f1 and f2 give the success rates. This
is a predator-prey situation.
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Let Vn be the population of some species at generation n. We assume pop-
ulation growth is a discrete process taking place in cycles. Such biological ex-
amples are provided by many temperate zone arthropod populations, with one
short-lived adult generation each cycle. One possible recurrence equation is the
following

Vn+1 = Vn(1 + r(1 − Vn

K )), where r and K are constants.
K is the maximum size for the population and r is a factor measuring depe-

nence on the density of the population. The reader should compare this equation
with the equation Vb = f1(Va, x, ε) arising from Figure 14. See [17, p. 324].

This equation is called the non-linear logistic equation which has the standard
form

Un+1 = rUn(1 − Un), r > 0

This equation can exhibit chaotic behaviour depending on the value r, see [18].
A slightly different pair of equations has to do with parasitic life forms. Here

we have, besides the population Nn, a parasitic population Vn. The recursive
equations look like the following:

– Vn+1 = Nn − Nn+1/F

– Nn+1 = FNnf(Nn, Vn).

F is a factor indicating the proportion of those who escape the parasite. The
difference between this equation for Vn+1 and a direct recursion for Vn+1 is that
it is more complex. We get

– Vn+1 = Nn(1 − f(Nn, Vn))
– Nn+1 = FNnf(Nn, Vn)

See [17, pp. 338].
Let us look at another example from biology. This is a model by M. P. Hasssell

(1978) of two parasitoids (P and Q) and one host (N) model. The equations are
(see [2, p. 295])

Nt+1 = λNtf1(Pt)f2(Qt)

Pt+1 = Nt[1 − f1(Pt)]

Qt+1 = Ntf1(Pt)[1 − f2(Qt)]

where N, P and Q denote the host and two parasitoid species in generations t
and t + 1, λ is the finite host rate of increase and the functions f1 and f2 are
the probabilities of a host not being found by Pt or Qt parasitoids, respectively.
This model applies to two quite distinct types of interaction that are frequently
found in real systems. It applies to cases where P acts first, to be followed by
Q acting only on the survivors. Such is the case where a host population with
discrete generations is parasitized at different developmental stages. In addition,
it applies to cases where both P and Q act together on the same host stage, but
the larvae of P always out-compete those of Q should multi-parasitism occur.
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The functions f1 and f2 are:

f1(Pt) =
[

1 +
a1Pt

k1

]−k1

f2(Qt) =
[

1 +
a2Qt

k2

]−k2

where k1 and k2, a1 and a2 are constants.
To compare the biological model with the argumentation model, we put a1 =

a2 = 1, λ = 1 and k1 = k2 = −1.
This gives

f1(Pt) = 1 − Pt

f2(Qt) = 1 − Qt

and therefore
Nt+1 = Nt(1 − Pt)(1 − Qt)

Pt+1 = PtNt

Pt+1 = QtNt(1 − Pt)

giving us the appropriate functions for attack and counterattack for the situation
in Figure 15:

P : a N : c

Q : b

Fig. 15.

In Figure 15, a and b attack c. c counterattacks a and b and a attacks b.
The transmission rates are 1. Since c is attacked by a and b, the new value for
c is N(1 − P )(1 − Q). Since a is counterattacked by c, the new value for a is
PN .6 Since b is counterattacked by c and attacked by a the new value for b is
QN(1 − P ).

To give Figure 15 some meaning, think of a, b, c as follows:

c = The US President has a strong case for re-election.
a = A deteriorating situation in Iraq (US soldiers killed) (attacks his chances).
b = Lack of success in combatting Al-Qaeda.
6 See Example 3 as to why the counterattack value is PN and not (1 − P )N .
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Clearly, if the value of c is low, less effort is required in attacking it from a and b.
This explains the counterattack loop.

a attacks b by the argument that the situation in Iraq has diverted Al Qaeda
away from US territory proper.

To sum up, we have shown a connection with biological models. In view of
this connection we would like to refer to loops as ecologies (of arguments).
Modal Interpretations
We can read the nodes as possible worlds in a Kripke model and read the values
as fuzzy truth values. ε is the fuzzy value of the accessibility of a to b (i.e. a
arrow b means a is a posible world for b (i.e. bRa holds), while x is the fuzzy
value of a being a possible world in the first place. So if Ve(ϕ) gives a fuzzy value
to the wff ϕ at world e, then Vb(�ϕ) = f(Vb(ϕ), V̄ai (ϕ), εi), where ai are all the
nodes leading with an arrow into b.

It is worth giving a formal definition. See [3] for full details.

Definition 6.
1. Let L be a propositional language with atoms {q1, q2, . . .}, a modality � and

possibly other connectives C. To fix our thoughts, say C = {⇒,¬}, where ⇒
can be thought of as the �Lukasiewicz many-valued implication (with truth val-
ues in [0,1] and 0 = true and truth table value (A ⇒ B) = max(0, value(B)−
value(A)) and ¬ is a negation (with truth table value (¬A) = 1−Value(A)).

2. A modal network model m is a family of models mq = (A, T, Vq, f), q an atom
of L, such that each mq is a finitely branching attack network model in the
sense of Definiton 1. Thus in m A, T and f are fixed and Vq varies with q We
assume that f , Vq give values in [0, 1]. We take f(y, xi, εi) = Sup

i
(εi ⇒ xi) =

Sup
i

Max(0, xi − εi).

3. For each t ∈ T and each wff ϕ we define the value V n
ϕ (t), (for n = 0, 1, 2, . . .)

as follows:
(a) V 0

q (t) = Vq(t), for atomic q, and t ∈ T .
(b) V n+1

q (t) = f(V n
q (t), V̄ n

q (ai), V̄ n
q (ai � t)), where a1, . . . , an are all the

nodes such that ai � t ∈ T .
(c) V n

A⇒B(t) = Max(0, V n
B (t) − V n

A (t)).
(d) V n

¬A(t) = 1 − V n
A (t).

(e) V n
�A(t) = V n+1

A (t).7
4. We say m is stable iff for any wff A and any t ∈ T there exists an n such

that for all m ≥ n we have V n
A (t) = V n

A (t). For stable models we can let
V ∞

A (t) = Lim
i

V n
A (t).

5. We call a stable model (A, T, V ∞
A , f), a fuzzy modal model for L.

7 The reader should carefully note that we have huge scope here for defining a mul-
titude of different modalities by choosing the dependence of V n

�A(t) on the set
{V m+n

A (t), m = 0, 1, . . .}. What we here define is a K-type modality. We can also
define the hypermodality of [7] by letting:

V n
�A(t) =






V n+1
A (t), for n odd

Max(V n+1
A (t), V n

A (t)), for n even
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Example 8 (Ordinary modal logic).

1. Let (S, R, h) be a traditional Kripke model for the language with {→,¬, �},
with S the set of possible worlds, R the accessibility relation and h the
assignment to the atoms, (i.e. for each atomic q, h(q) ⊆ S). We assume that
(S, R) is finitely branching, i.e. for each t the set St = {s|tRs} is finite. Note
that many modal logics are complete for a class of finitely branching models.

2. Let A = S, T = S ∪ {a � b|bRa}.
3. Let Vq(a � b) = 1 for all atomic q and let Vq(t) = 1 iff t ∈ h(q), for t ∈ S.
4. Let f(V (t), V̄ (ai), V̄ (ai � t)) = 1, where a1, . . . , an are all nodes such that

tRai holds, iff V̄ (ai) = 1 for all 1 ≤ i ≤ n.
5. We claim this model is stable. This can be proved by induction on the wff ϕ.
6. Note that we can get a new variety of modal logics by changing f from point

to point, or by making V n
�A(t) dependent on {V n+m

A (t) | m = 0, 1, 2 . . .} in
a variety of ways.

Feedback Interpretation
We can consider the figures as a control-feedback situation. Say node b is a
feedback for node a.

3.2 Unfolding Loops

There are various ways of treating loops.

– We can unfold them as done in, say, modal logic.
– We can let node a attack b, calculate the new value and then let b attack a,

calculate the new value and then let a attack b and so on. This we call the
parasite way of unfolding a loop.

– We can let a and b attack each other simultaneously, calculate the new values
and then let them attack again and again. This is the predator-prey way of
unfolding a loop.

Let us now turn to Figure 14 and see what are our options for dealing with
this loop.

Our first attempt at a solution is to regard (ab) and (ba) as the same channel
and read the loop as feedback loops. So a pushes εx towards b and b pushes ηy
towards a. The net result is (εx − ηy) in the direction of the positive value. So
assuming εx ≥ ηy we get that Figure 14 is essentially reduced to Figure 16.

The solution is not satisfactory. It cannot deal with cases like Figure 2 unless
we further commit the model to be a proper network flow model with various
capacities, as studied in operational research. So let us try another approach.
Assume in Figure 14 that we have x = η = ε = y.

x : a y : b

εx − ηy

Fig. 16.
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λ : a λ : b

λ

λ

Fig. 17.

Call the common value λ. We now get Figure 17.
Let V0(a) = V0(b) = λ, the initial value, and let us transmit from a to b and

back from b to a in cycles and see what presents itself. This is the modal logic
approach.

We treat Figure 17 as equivalent to Figure 18 below:

λ λ λ λ

λ λ λ λ
e1 e2 e3

e4

Fig. 18.

In Figure 18, nodes e1, e3 . . . represent node a of Figure 17 and needs e2, e4 . . .
represent node b. So we start from V1(e1) = λ and transmit to the right getting
Vn(en), n = 2, 3, . . ..

Step 1: Transmit λ2 to e2 to get V2(e2) = λ(1 − λ2) = λ − λ3.
Step 2: Transmit from e2 to e3 the value λV2(e2) and get V3(e3) = λ(1 −

λV2(e2)) = λ − λ3 + λ5.

We can continue by induction.

Lemma 1. Suppose we have a node e with V (en) = Vλ,n = λ − λ3 + λ5 − . . . +
(−1)nλ2n+1 and suppose we are transmitting to a node λ : en+1 with value λ
then we get V (en+1) = Vλ,n+1.

Proof.
V (en+1) = λ(1 − λV (en))

= λ − λ3 + λ5 · · · − λ2(−1)nλ2n+1

= λ − λ3 + λ5 . . . + (−1)n+1λ2(n+1)+1

We now observe that when n goes to infinity, we get Vλ,∞ =
λ

1 + λ2
.8

This means that Figure 17 stabilises into Figure 19. Note that the transmis-
sion rates in Figure 19 are all 0. This is because the values Vλ,∞ obtained have
already taken into account all recursive transmissions.

8 Note that if we solve the fixed point recursion equation Vλ,∞ = λ(1 − λVλ,∞), we
get Vλ,∞ = λ

1+λ2 .
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0

0

λ
1+λ2 : a λ

1+λ2 : b

Fig. 19.

Note that Figure 18 represents one way of going through the cycle of Fig-
ure 17, i.e. the fuzzy modal logic approach. Another approach is what we called
the parasite model, where we apply the transmission on Figure 17 directly, start-
ing from node a to b with V1(a) = λ, (corresponding to V1(e2)) we would get
V2(b) = λ(1 − λ2), same as V2(e2) and then transmit back to node a and get
V3(a) = V1(a)(1−λV2(b)) (corresponding to V3(e2)). So far the values agree, but
now there is a difference. Working directly on Figure 17 we transmit 1−λV3(a) to
node b whose last value is V2(b) = λ(1−λ2) and get V4(b) = λ(1−λ2)(1−λV3(a)).
While in Figure 18, the value of node e4 (which corresponds to b) is λ and so we
get in Figure 18 V4(e4) = λ(1 − λV3(e3)). So the question is, as we go through
the cycle a → b → a → b . . ., do we use the new value or follow Figure 18 and
keep the value at λ, the initial value!

Another possibility for dealing with Figure 17 is to adopt the predator-prey
model and transmit simultaneously from node a to node b and from node b to
node a, and then repeat the cycle. If V0(a) = V0(b) = V0 = λ is the initial value,
then symmetry is maintained through the cycles and for step n + 1 we get

Vn+1(a) = Vn+1(b) = Vn+1 = Vn(1 − λVn).

So we end up with a recursive equation

– V0 = λ, 0 ≤ λ ≤ 1
– Vn+1 = Vn(1 − λVn)

which for 0 ≤ λ ≤ 1 gives V∞ = 0, meaning that a and b cancel each other9.
The above considerations can be applied to other loops. The net result of

Figure 2 will be similar to that of Figure 17.
Consider Figure 20. Similar considerations using the Lemma indicate that

Figure 20 stabilises as Figure 21
We can make one more move now. To resolve Figure 2, we consider Figures

20 and 21 and let λ approach 1. Thus we get the value 1
2 . Hence the net reults

of Figure 2 is Figure 22 below.
A similar net result obtains for Figure 23 below.
Note that now we can resolve the loop in Figure 3. We get V (a) = V (b) = 1

2
and therefore V (c) = 3

4 and hence V (d) = 1
4 .

We can also deal with an argument attacking itself. It will get 1
2 .

There is still work to be done on resolving loops. We need to show the fol-
lowing.
9 The fixed point recursion equation for this case is V = V (1 − λV ), yielding V = 0.
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λ : a λ : c

λ : b

λ

λ
λ

Fig. 20.

λ
1+λ2 : a λ

1+λ2 : c
0

00

λ
1+λ2 : b

Fig. 21.

1
2

: a

1
2

: b

1
2

: c

0

0

0

Fig. 22.

1. How the results we get for the loop depend on the choice of numbers we
assign to the nodes and for the transmission rates (we gave λ to all!).

2. What happens when loops can be resolved but we use our method anyway,
as in Figure 24.
In Figure 24, the net result is

{+c,−b, +a}.

What do we get if we assign λ everywhere and get Figure 25?
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a b

Fig. 23.

a b

c

Fig. 24.

λ : a

λ

λ

λ : b

λ : c

λ

Fig. 25.

Here is the calculation: We start with V0(a) = V0(b) = V0(c) = λ. Transmit
from c to b and get V1(b) = λ − λ3. Transmit from b to a and get V1(a) =
λ(1 − λV1(b)) = λ − λ3 + λ5.
Obviously if we follow the loop we get as before V∞(a) = V∞(b) = λ

1+λ2 and
the net result is {1 : c, 1

2 : a, 1
2 : b}. This is not satisfactory.

It makes more sense to try to give c value 1 transmitting at rate 1, since c is
not in a loop. This will give b value 0 and a value λ. When λ approaches 1
we get the right answer.
Perhaps we might follow the procedure of giving λ only to nodes in a loop?

3. Consider, however, the following loop in Figure 26.
d is attacked twice and is attacking once, while a is attacking twice and is
attacked once. Should we give them λ in the same way?

Example 9 (Resolving Figure 26). Let us try the fixed point approach on
Figure 26. We begin with V0(a) = V0(b) = V0(c) = V0(d) = y and with
transmission λ.
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b

d

a

c

Fig. 26.

(a) We start propagating from node a. We get

V1(b) = V1(c) = y(1 − λy).

V1(d) = y(1 − λy(1 − λy)2)

and therefore
V1(a) = y(1 − λV1(d)).

We need a fixed point solution to V1(a) = V0(a). Hence

y(1 − λV1(d)) = y.

Excluding y = 0, we get

1 − λV1(d) = 1.

Hence
V1(d) = 0.

This means
y(1 − λy(1 − λy)2) = 0.

Hence
λy(1 − λy)2 = 1.

Let x = λy. We get x(1−x)2 = 1. This has a solution, x0 of approximate
value

x0 ≈ 1.755.

If we want 0 ≤ λ ≤ 1 then there is no way 0 ≤ y ≤ 1. Hence the only
fixed point solution is y = 0.

(b) Let us start at node d of Figure 26

V0(d) = y

V1(a) = y(1 − λy)

V1(b) = V1(c) = y(1 − λV1(a))

V1(d) = y(1 − λV1(b))2
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and try to solve the fixed point equation:

y = y(1 − λV1(b))2.

Hence if we insist on y �= 0,

1 = (1 − λV1(b))2.

Hence
1 − λV2(b) = ±1.

So either
i. V1(b) = 0

or
ii. V1(b) = 2λ.

For V1(b) = 0 we get, if y �= 0, that V1(a) = 1/λ.
Hence λy(1−λy) = 1. It is clear that this equation has no real solution.
Let us now try the case in which V1(b) = 2λ.
Hence

y(1 − λy(1 − λy)) = 2λ

y − λy2(1 − λy) = 2λ

y − λy2 + λ2y3 − 2λ = 0

Does this have solutions? Remember 0 ≤ λ ≤ 1, 0 ≤ y ≤ 1.
If we choose λ = 0.133 and y = 0.275, the value of the polynomial is 0.0006.
Since we are dealing with continuous functions, we can find proper solutions.
Let us now try another way of tackling Figure 26, which can be rewirtten as
Figure 27 below, where ai represent a, bi represent b, ci represent c and di

represent d.

The neural net approach gives us an additional dimension. We can run the
cycles in the loop but also transmit to the rest of the network, and possibly
stop after so many cycles (say n = 100) and examine the values in all nodes
of other network. If the time involved in the cycles has meaning in terms of
the network itself changing in time (as modelled in Section 4 below), then
we have added a new and interesting dimension to loops in these networks.

b1

a1

c1

d1 a2

b2

c2

d2 a3 . . .

λ

λ
λ

λ

λ
λ

λλ

λ

λ

λ
λ

λ

λ

λ
λλ

λ
λ

Fig. 27.
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In other words, we are saying that attacks take time to be executed, a loop
of the form “a attacks b and b attacks a” also takes time to unfold, and
meanwhile the network can change.
To give an example of such a loop, think of contradicting witnesses and
circumstantial evidence, one supporting a and one supporting b = ¬a. So
the loop is as in Figure 28

∆ : a Γ : ¬a

Fig. 28.

where ∆, Γ are themselves argument structures which are time dependent.
This loop certainly takes time to unfold! There may be some facts in ∆ or
Λ that take time to verify or refute!

The general treatment of loops should be done in the context of neural net-
works (see [8]), not because of a conceptual connection, but because these nets
can technically reach equilibrium and resolve loops of the kind that arise there.

Note that every graph can be presented as an acyclic graph of nodes which
are themselves maximally connected cycles. So when we are dealing with cycles
we can make use of that.

4 Attack and Support Networks

This section discusses the addition of support arrows to argumentation networks.
We will see that in order to have equal attack and support cancel each other, we
need to reconsider the way we calculate the values of attacks (and supports). We
offer a new definition and establish a connection between the new definition, the
Dempster–Shafer rule, and surprisingly, the Cross-Ratio and projective metric
distance from geometry.

4.1 Discussion of Support

Consider a connection from a to b in Figure 29.
The double arrow indicates support. The simplest way to do it is to attack

(1 − y) which is the distance of b from 1.10 Thus the new value of b is

1 − (1 − y)(1 − λx) =

1 − [1 − λx − y + λxy]

= λx + y − λxy = y + (1 − y)λx

If we have several supports, then (1 − y) shrinks to

(1 − y)(1 − λ1x1)(1 − λ2x2) . . . (1 − λkxk)
10 This is Bernouli’s rule of combination, see [19, pp. 75–76].
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y : b
λ

x : a

Fig. 29.

and the new value y′ becomes 1 − (1 − y)
∏

i(1 − λixi). The difference y′ − y
becomes

∆+y = 1 − (1 − y)
∏

i(1 − λixi) − y

= (1 − y)(1 − ∏
i(1 − λixi))

and we have
y′ = y + ∆+y.

How do we deal with both attack and support? Consider Figure 30. In this
figure x : a attacks y : b and z : c supports it. So the new value for b is

y − λxy + µz(1 − y).

It is not clear what to do with several simultaneous attacks and supports.
The model must be commutative in the order of application.

Our solution is simple. b is at a distance y from 0 and distance 1 − y from
1. Let the attackers attack y to get it nearer to 0 and let the supporters attack
(1 − y) to get b nearer to 1. Thus if xi : ai attack y : b with transmission λi and
zi : ci support y : b with transmission µi we get y′ as the new value at b, where

y′ = y − ∆−y + ∆+y

= y − y(1 − ∏
i(1 − λixi))

+(1 − y)(1 − ∏
i(1 − µizi))

= y
∏

i(1 − λixi) + (1 − y)(1 − ∏
i(1 − µizi))

Note that there is something numerically wrong with our proposal. In Fig-
ure 29, if we let z = x and µ = λ, i.e. the attack and support have the same
values, then, we would have expected that they cancel each other. However, this
is not the case. The new value is y′ = y − 2λxy + λx.

This should not surprise us. The closer y is to 1, the less is the numerical
value of an attack on 1 − y, and the more numerical value we get for an attack
on y. So, for example, assume y = 0.9 in value. Then a support of 50% of y will

y : b

x : a z : c

µλ

Fig. 30.
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half the distance of y from 1, i.e. will yield ∆+ = 0.005 in numerical value, while
in comparison, a 50% attack on y will half the distance of y from 0 and will yield
∆− = 0.45. The net result of simultaneous attack and support will yield the new
value 0.9 − 0.45 + 0.05 = 0.50.

Can we remedy the situation? Perhaps we should attack by changing the
ratio r(y) of y to 1 − y, (i.e. r(y) = y/(1 − y), and then calculate the new y′

which will give the new ratio. So suppose the transmitted value (of attack or
support) is 0 ≤ θ ≤ 1.

If θ is an attack we want to reduce r(y) and so we let r′(y) = θr(y). If θ is a
support, we want to increase y, so the new ratio is r′(y) = r(y)/θ.

We now solve the equation

y′

1 − y′ = r′(y)

and therefore we get

y′ =
r′(y)

1 + r′(y)
.

We must now decide on what value θ to use. Let us use the same value we used
before, as agreed in Example 3. In Figure 29, we have x : a attacking y : b with
transmission rate λ and we therefore have θ = (1 − λx).

Let us calculate the values of attack and support with θ.

Case of Attack

r′(y) =
y(1 − λx)

1 − y

y′ =
y(1 − λx)

(1 − y)(1 +
y(1 − λx)

1 − y
)

=
y(1 − λx)

(1 − y + y − λxy)

=
y(1 − λx)
(1 − λxy)

Case of Support

r′(y) =
y

(1 − y)(1 − λx)
.

y′ =
y

(1 − y)(1 − λx)(1 + y/(1 − y)(1 − λx))

y′ =
y

(1 − y)(1 − λx) + y

=
y

(1 − λx + yλx)

=
y

1 − λx + yλx

=
y

1 − λx(1 − y)
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Let us now assume as before that the attack is 50%, e.g. x = 0.5, λ = 1.

We get θ = 0.5. Assume as before y = 0.9. Hence r′(y) =
0.9
0.1

.0.6 = 4.5 and

y′ =
4.5

1 + 4.5
=

4.5
5.5

=
9
11

.

This should be compared with the previously attained value 0.45 =
9
20

.
For the support we get

r′(y) =
0.9

0.1.0.5
= 18

So
y′ =

18
1 + 18

=
18
19

This should be compared with the value 0.05 we got previously.
How do we handle simultaneous attacks and supports? We follow the same

principle as before. If θ1, . . . , θn are attacking values and θ′1, . . . , θ
′
m are the sup-

porting values then the new r′(y) is

r′(y) = r(y)
∏

i θi∏
i θ′i

.

It is worthwhile comparing the recursion results we obtained with the kind
of recursion one gets in mathematical biology. We use the table (Table 3.1) on
[20, p. 53].

1. Old attack formula
yn+1 = yn(1 − λx)

This can be compared with exponential population growth.
2. New attack formula

yn+1 =
yn(1 − λx)
1 − λxyn

This can be compared with the Beverton–Hort formula in the table of [20,
p. 53].
Let us also examine what happens in case of loops. Consider Figures 17
and 18 again. We have v1(e1) = λ and the recursion equation, according to
Figure 18 is

Vn+1(en+1) =
λ(1 − λVn(en))
1 − λ2Vn(en)

.

The recursion fixed point equation for this case is

V =
λ(1 − λV )
1 − λ2V

or

V − λ2V 2 = λ − λ2V

λ2V 2 − λ2V − V + λ = 0

V 2 − (1 + λ2)
λ2

V +
1
λ

= 0
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Let λ approach 1, we get

V 2 − 2V + 1 = 0

and so V∞ = 1.
If we do the recursion proper, as in Figure 17, we get

Vn+1 =
Vn(1 − λVn)

1 − λV 2
n

The fix point equation becomes

V (1 − λV 2) = V (1 − λV ).

If we discard the solution v = 0, we get

1 − λV 2 = 1 − λV

hence
V 2 = V

and hence V = 1.

4.2 Connection with Metric Projective Geometry
and the Dempster–Shafer Rule

In the previous subsection, we agreed that in the situation of Figure 30, node a
attacks node b by attacking the ratio:

r(y) =
y

1 − y

We proposed that the attack value θ be θ = 1−λx. We want in this subsection
to re-examine our decision and see whether we want to use a different attack
value. First to simplify our qualitative consideration, assume λ = 1 and µ = 1.
Second, let us focus on node c, which is supporting node b, with value z. Assume
that z is very small, almost 0. One may feel that in many real applications, a
very limited support is worse than nothing. It implies an attack on argument b,
the hidden implication is that if b were any good why isn’t c’s support of it a bit
stronger? This way of thinking would integrate the support and attack together.
So if a node supports another node with value z then it simultaneously attacks
it with value 1 − z. If z = 1, then the support is complete. If z ≈ 0 then the
support is insulting and really accomplishes an attack to the value of 1 − z.

Let us look at Figure 30 again. There are two ways to look at this figure
(with λ = µ = 1). One way is that we have two nodes, x : a and z : c, the first
attacking the node y : b and the second supporting it.

The other way is that there is a single node z : c supporting the node y : b,
but simultaneously attacking it to the value 1−z, as discussed above. Figure 30,
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with x = 1−z is a representation of this new point of view through the additional
node x = (1 − z) : a.

Of course it is nicer to represent this new point of view directly, and indeed,
Figure 32 represents this new point of view of support/attack mode by a double
arrow.

Let us now calculate the new value y′ of the attack and support configuration
of Figure 30. We have:

r′(y) =
y(1 − x)

(1 − y)(1 − z)

Hence

y =
r′(y)

1 + r′(y)

=
y(1 − x)

(1 − y)(1 − z) + y(1 − x)

=
y(1 − x)

1 − y − z + y(z + 1 − x)

In order to compare with a later formula, let us rename the values. Let
z2 = 1 − x and let z1 = z. We get the equation (DS1) below:

(DS1) y′ =
yz2

1 − y − z1 + y(z1 + z2)

This equation means that a node y : b is simultaneously supported by z1 : c
and attacked by (1 − z2) : a. Alternatively, we can say that the node is being
[Support, Attacked] by the pair [z1, z2]. If z1 ≤ z2 (i.e. z + x ≤ 1), we can say
we have a [Support, Attack] interval [z1, z2], 0 ≤ z1 ≤ z2 ≤ 1.11

We adopt this terminology in preparation for the Dempster–Shafer point of
view, yet to come. See item 3 of Example 10.

Let us now examine the case where x = 1 − z, i.e. z = 1 − x. We can view
this as a [Support, Attack] pair [z1, z2] = [z, z].12

We can view Figure 30 again and see that we are getting a situation of
support value z from node c and attack value 1 − z from node a.

We have already calculated the new ratio r′(y) for node b, it is

r′(y) =
y(1 − (1 − z))

(1 − y)(1 − z)
=

yz

(1 − y)(1 − z)

11 Actually the intervals involved are [0, z1], [1 − z2, 1].
12 Beware some possible confusion in notation. In Figure 30, the attack of a node is with

value x = 1−z and the support is with value z. If we regard Figure 30 as representing
the [Support, Attack] double arrow of Figure 32, we write it as [z, 1−x] = [z, z] and
not as [z, x]. This is because z2 = (1 − x) appears in (DS1).
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Let us write this equation as

(∗) r′(y) =
y/(1 − y)

(1 − z)/z

We now calculate the new value y′, it is

(∗∗)
y′ =

r′(y)

1 + r′(y)

=
yz

(1 − y)(1 − z) + yz

We thus get that a node z : c supporting a node y : b yields the new value y′ : b,
where:

(DS2)
y′ =

yz

1 − y − z + 2yz

provided, of course, that y + z − 2yz �= 1.

Let us say that (∗) and (DS2) represent a combined [Support, Attack] result
of a node to a value [z, z], attacking a node with value y.

We now connect (DS2) to the Dempster–Shafer rule (see [19, 15]), and to the
Cross-Ratio and projective metric from geometry (see [1, 6]).

Example 10 (Dempster–Shafer rule). The range of values we are dealing with is
the set of all subintervals of the unit interval [0,1]. The Dempster–Shafer addition
on these intervals is defined by

[a, b] ⊕ [c, d] = [
a · d + b · c − a · c

,
1 − k

b · d
1 − k

]

where k = a · (1 − d) + c · (1 − b), where ‘·’, ‘+’, ‘−’ are the usual arithmetical
operations. The compatibility condition required on a, b, c, d is

ϕ([a, b], [c, d]) ≡ k �= 1.

The operation ⊕ is commutative and associative. Let e = [0, 1].
The following also holds:

– [a, b] ⊕ e = [a, b]
– For [a, b] �= [1, 1] we have [a, b] ⊕ [0, 0] = [0, 0]
– For [a, b] �= [0, 0] we have [a, b] ⊕ [1, 1] = [1, 1]
– [a, b] ⊕ [c, d] = ∅ iff either [a, b] = [0, 0] and [c, d] = [1, 1] or

[a, b] = [1, 1] and [c, d] = [0, 0].

In this algebra, we understand the transmission value [a, b] as saying that the
actual transmission value lies in the interval [a, b].
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Let us make three comments:

1. Let x denote [x, x]. We get for 0 ≤ a ≤ 1 and 0 ≤ c ≤ 1 the following

a ⊕ c =
[ ac + ac − ac

1 − a(1 − c) − c(1 − a
,

ac

1 − a(1 − c) − c(1 − a)

]

=
[ ac

1 − a − c + 2ac
,

ac

1 − a − c + 2ac

]

=
ac

1 − a − c + 2ac

provided (a + c − 2ac) �= 1.
We note immediately that (DS2) is y⊕z. This is also the propagation method
used by the MYCIN expert system. See [16].

2. Let us check for what values of a, c can we have equality, i.e. when can we
have a + c − 1 = 2ac?
Assume a ≤ c.
We claim the only solution to the equation a + c − 2ac = 1 is a = 0, c = 1
for a ≤ c and a = 1, c = 0 for the case c ≤ a. There is no solution for c = a.
To show this, let c = a + ε, 0 ≤ ε ≤ c − a.
Then assume

a + a + ε = 1 + 2a(a + ε)

2a + ε = 1 + 2a2 + 2εa

ε − 2εa = 1 + 2a2 = 2a

ε(1
2 − a) = a2 − a + 1

2

= (a − 1
2 )2 − (1

2 )2 + 1
2

= (a − 1
2 )2 + (1

2 )2

Hence
(a − 1

2 )2 + ε(a − 1
2 ) + (1

2 )2 = 0

[(a − 1
2 ) + ε

2 ]2 − ( ε
2 )2 + (1

2 )2 = 0

(a − 1
2 + ε

2 )2 = ( ε
2 )2 − (1

2 )2

= (( ε
2 − 1

2 )( ε
2 + 1

2 )

Hence ε = 1 and since 0 ≤ c = a + ε ≤ 1 we must have a = 0 and c = 1.
In particular, we get that for a = c = x, x⊕x is always defined and we have

x ⊕ x =
2x2

(x − 1
2 )2 + (1

2 )2
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For example, we have

0 ⊕ 0 = 0

1 ⊕ 1 = 1
1
2 ⊕ 1

2 = 1

3. Let us check what happens when c = d.
We get

[a, b] ⊕ c =
bc

1 − a(1 − c) − c(1 − b)

=
bc

1 − a + ac − c + bc

=
bc

1 − a − c + c(a + b)
The reader should compare this equation with the formula (DS1) obtained
before.

Example 11 (Cross-Ratio). Consider the interval [0, 1] and two points y and 1−z
in this interval. Let A = 0, B = 1, C = y and D = 1−z. Taking AC, CB, AD, DB
as directed intervals, we have it that AC = y, CB = 1 − y, AD = 1 − z and
DB = z.

The projective Cross-Ratio between these points, denoted traditionally by
(A, B; C, D) is calcualted as the ratio of ratios of the directed intervals.

(A, B; C, D) =
AC/CB

AD/DB
=

y/(1 − y)

(1 − z)/z
=

yz

(1 − y)(1 − z)

Note that this is formula (∗).
Note that this measures distance. In the Cayley–Klein metric, log(AB; CD)

is used to describe the distance between points C and D. Figure 31 shows how
it is done.

C and D are inside the unit circle. The chord connecting them meets the
circle at A and B. See [1, Sections 4.10 and 11.7] and [6, Chapter 6].

Returning to Figure 30, we have

(∗) r′(y) = (0, 1; y, 1 − z)

We can now define a new kind of support/attack arrow (with value z/1− z)
in a network, as displayed in Figure 32 by double arrow

We have for 0 ≤ y, z ≤ 1

(1) r(y) =
y

1 − y
(2) r′(y) = (0, 1; y, 1− z)

(3) y′ =
yz

1 − y − z + 2yz
= y ⊕ z

(4) Furthermore, a formula (DS1) for a combined support to value z1 and
attack to value z2, as in Figure 30 gives the result y′ = y ⊕ [z1, z2].
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•
• •

• •
B

D
C

A

Fig. 31.

provided y + z − 2yz �= 1.

z : c y : b

Fig. 32.

Equations (2) and (3) and (4) open new opportunities for us.

1. Allow for values to be intervals because of the connection with Dempster–
Shafer.

2. Allow for a connection with a more general non-Euclidean metric, using
complex numbers.

3. Attack and support values need not be in [0, 1].

We shall investigate these further.

Example 12 (Cross-Ratio for intervals). This example will try to extend the no-
tion of Cross-Ratio for intervals, i.e. we look for Cross-Ratio for
(0, 1; [y1, y2], 1 − z), 0 ≤ y1 ≤ y2; 0 ≤ z ≤ 1.

We saw that the situation in Figure 33 can be described as follows:

0 1
y 1 − z

A C D B

Fig. 33.
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1. r(y, z) = (0, 1; y, 1− z)

=
yz

(1 − y)(1 − z)

2. We also know that the Dempster–Shafer rule for the case of y ⊕ z = [y, y]⊕
[z, z] gives the value

y ⊕ z =
r

1 + r
=

yz

1 − y − z + 2yz

3. Our aim is to define Cross-Ratio (0, 1; [y1, y2], 1 − z). We use (2): Consider

[y1, y2] ⊕ z =
y2z

1 − y1 − z + z(y1 + y2)

4. Define by analogy with (2):

(∗1) [y1, y2] ⊕ z =
r([y1, y2], z)

1 + r([y1, y2], z)

we do not know what r∗ = r([y1, y2], z) means. However, using (∗1) and
solving for r∗ we get:

r∗ =
[y1, y2] ⊕ z

1 − [y1, y2] ⊕ z

Fortunately, the expressions in the right-hand side are all numbers: Hence
we get

r∗ =
y2z

1 − y1 − z + z(y1 + y2)(1 − y2z

1 − y1 − z + z(y1 + y2)
)

=
y2z

1 − y1 − z + zy1 + zy2 − y2z

=
y2z

1 − y1 − z + zy1

=
y2z

(1 − y1)(1 − z)

=
y2

y1
·

y1z

(1 − y1)(1 − z)
=

y1
r(y1, z)

y1

We therefore have

(∗2) r([y1, y2], z) =
y2

y1
r(y1, z).
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We can therefore define

(∗3) (0, 1; [y1, y2], 1 − z) =def

y1

y1
(0, 1; y1, 1 − z)

or more generally:

() (A, B; [C1, C2], D) =def

AC2

AC1

(A, B; C1, D).

Let us check whether () is invariant under some projective transformations.
Let us consider y2

y1
. Think of it as a cross ratio as in the figure below

0
y1

y1+y2

z
y2

y2 − 0

y1 − 0
/
(y2 − y1 + y2

2
)

(y1 − y1 + y2

2
)

=
y1

y1
/
y2 − y1

y1 − y2

=
−y2

y1

Thus
y2

y1

= −(0,
y1 + y2

2
, y1, y2).

This Cross Ratio uses the midpoint between y1 and y2. Midpoints E between
points A and B can be characterised as the Harmonic conjugate of the point
at infinity relative to A and B.
So any transformation of the line leaving the point at infinity fixed will also
preserve midpoints, i.e. if A goes to A′, B to B′ and E to E′ and ∞ to ∞,
then if E is the midpoint of AB then E′ is the midpoint of A′B′.

5. Since r(y, z) is commutative it stands to reason to define

r∗∗ = r([y1, y2], [z1, z2]) = def
y2

y1

·
z2

z1

r(y1, z1).

We now have a candidate definition for a Cross-Ratio for intervals.

r∗∗ =
y2

y1

z2

z1

y1z1

(1 − y1)(1 − z1)

Hence

(∗3) r∗∗ =
y2z2

(1 − y1)(1 − z1)
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Let ȳ = [y1, y2], z̄ = [z1, z2]. Therefore we can define a new � using a similar
connection as (∗2):

ȳ � z̄ =
r∗∗

1 + r∗∗

=
y2z2

(1 − y1)(1 − z1) + y2z2

Hence we summarise:

(∗4) ȳ � z̄ =
y2z2

1 − y1 − z1 + z1y1 + z2y2

Let us compare � with ⊕
We have

ȳ ⊕ z̄ =
[ y1z2 + y2z1 − y1z1

1 − y1 + y1z2 − z1 + y2z1

,
y2z2

1 − y1 + y1z2 − z1 + y2z1

]

=
[ y1z2 + y2z1 − y1z1

1 − y1 − z1 + y1z2 + y2z1

,
y2z2

1 − y1 − z1 + y1z2 + y2z1

]

They are not the same, unless z1 = z2 or y1 = y2.
To see this let us ask when do we get a point interval? We equate the nu-
merators of the interval endpoint and we get

y1z2 + y2z1 − y1z1 = y2z2

hence
z1(y2 − y1) = z2(y2 − y1)

i.e. either y1 = y2 or z1 = z2 i.e. one has to be a point

Summary
We have extended the Cross Ratio to a case of one interval, and it agrees with
the Dempster–Shaver ⊕. We can also extend the Cross-Ratio to the case with
two intervals, giving it the value

r∗∗(ȳ, z̄) =
y2z2

(1 − y1)(1 − z1)

but it does not agree with the Dempster–Shaver ȳ ⊕ z̄.
We note, however, that since

r∗∗(ȳ, z̄) =
y1

y1
,
z1

z1

r(y1, z1),

if we assume y1 = 1 − y2, z1 = 1 − z2 we get

r∗(ȳ, z̄) = r(y2, z2)r(y1z1)

We need to check what benefit this gives us!
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Example 13 (Using Dempster–Shafer for attack and support). Consider again
the basic situations depicted in Figures 30 and 32, or perhaps consider the more
fundamental situation of Figure 4. Let us focus on the following Figure 34.

α : c β : b
ε(a, b)

Fig. 34.

The new kind of arrow can stand in for attack, support or any combination
transmitted from node c to node b. Our aim in this example is to review our
options for the kind of values α, β, ε can take and the options available for the
mathematical formulas for their combination and transmission.

Our previous discussion allows for the following Dempster–Shafer option

1. ε = 1, α = [z1, z2], β = y, 0 ≤ y ≤ 1, 0 ≤ z1 ≤ z2 ≤ 1 and y′ = y ⊕ [z1, z2]
and the arrow is interpreted as [Support, Attack] connection as in formula
(DS1). We saw the connection with the Cross Ratio as well.

2. To maintain symmetry, we must also allow β to be of the form [y1, y2], 0 ≤
y1 ≤ y2 ≤ 1 and we must write a formula for the [support, attack] on β : b.
The obvious answer is to let

β′ = α ⊕ β = [z1, z2] ⊕ [y1, y2].

3. Another possibility is to take �, i.e. let β′′ = α�β (as in (∗4) of the previous
example) but then β′′ is a number not a proper interval.

4. Next let us ask what values can we give to ε? Again the simplest and most
general value can be ε = [u1, u2]0 ≤ u1 ≤ u2 ≤ 1. We need to say how to
combine it with α to get a value transmitted? Again in analogy with expert
systems in AI we can let the transmitted value to be α ⊕ ε. Thus the new
value β′ would be

β′ = α ⊕ ε ⊕ β.

5 Temporal Dynamics (in Outline)

We devote this section to briefly outline some intuitive motivation for temporal
dynamics. We assume that our model has attack arrows only. The reader should
be aware that the temporal dynamic aspect of networks is central to the subject
and will receive extensive study in our projected series of papers.

Consider the simple network of Figure 35.
In this figure t is a time parameter. So the strength and transmission param-

eters of the net from a to b depends on time t.
The value of b is y′(t) = y(t)(1 − λ(t)x(t)).
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x(t) : a y(t) : b
λ(t)

Fig. 35.

Assume that at time t = 0 we have x(0) = 1, λ(0) = 1. In this case y′(0) = 0.
However if x(t) and λ(t) decrease quickly, while y(t) changes slowly, then at time
ε we get

y′(ε) ≈ y(0)(1 − ε2 · λ̇(0)ẋ(0))

where ẋ is
dx

dt
, i.e. the speed (time derivative) of x and similarly λ̇ =

dλ

dt
.

So if we are anxious to keep argument b, we might choose to wait a little
(wait ε) for argument a and its transmission to weaken considerably.

Consider that we have
a = sex scandal

b = Governor to resign.
The chances are that public opinion will change quickly.
These time changes should be studied in the context of a time-action model.

Suppose we have action e with precondition b and postcondition c. We want to
take action e but if b is successfully attacked, we cannot do so. So we wait a bit.
Conversely, suppose that we have d attacks a. Since d attacks a, b is available
as +b and so action e can be taken. But if d is weakening with time, we may
choose to take action e immediately, while a is still ‘saving’ b by attacking a.

So a more sophisticated time–action–argument model will look at the speed
of changes and will give values for actions to be taken.

We need to say more about what actions do in the model. We need to define
the notion of a fact. We agree that syntactical facts e (as opposed to arguments),
can be identified in our model by two properties:

1. V (e) = 1
2. e is not attacked by anything.

Of course there may be some arguments that have properties 1 and 2 above, but
then for all practical purposes they are like facts.

There may be examples where it looks like some facts can be attacked by
other facts. The fact that data is available on the computer may be attacked by
the fact that a password was irretrievably lost. However, we can also look at the
attack as focussing on the transmission rate of the fact and not the fact itself. We
further accept that a node e is considered a semantical fact if V (e) = 1 and no
attack arrows with positive transmission rate go into e. In a temporal dynamics
model, these properties must hold at all times. If they hold only at some of the
time, then e is not a fact but a commonly accepted truth which may sometime
be attacked or doubted.

What do actions do? Actions create or destroy facts (see Gabbay and Woods
[11]). So if at time t an action e is fired then the result is that some facts get



96 Howard Barringer, Dov Gabbay, and John Woods

deleted from the network and some new facts are added. We can also assume
that all values V change as the result of the action.

For simplicity, let us assume that an action adds only one fact or deletes only
one fact. Since we can formally delete by attacking we will only allow adding
facts. By adding a fact we mean either a new fact or turning an existing argument
into a fact. So an action has the form e = (preconditions, post conditions), where
the precondition is a sequence of arguments ((xi : ai)) and the postcondition is
a sequence ((a → yi → bi)). This means that we add the fact a and let it attack
bi with transmission rate yi, i = 1, . . . , n. In a given network if a is not a node
then we add it as a node with value 1 and let it attack any node bi which is in
the network.

If a is already in the network, then “disconnect” all attacks on a by giving
them value 0. Give a the value 1 and let a attack all existing bi in the network. If bi

is already attacked by a with transmission rate ui, then let the new transmission
rate be max(ui, yi).

Note that e is stated independently of the network. To be activated we need
the net final value of ai to be at least xi and then the postconditions act on the
available bi.

Example 14. Consider the network of Figure 5. Consider the action e with pre-
condition ((x : a), (w : d)) and postcondition ((b → u → c), (b → y → g)). This
action can be applied to the network of Figure 5.

The result is Figure 36 below. Note that since there is no g in the network,
b → y → g is not implemented.

This is equivalent to Figure 37. The next question for us to answer in a
temporal network is the following. If action e is activated at time t, when do we
see the result? If the network operates in discrete time, then the result is at time
t+1. Otherwise we have to treat the action like an impulse in a physical system,
as when a ball hits another ball and gets it moving, and assume the result of the
action e at t manifests itself immediately at all times s such that t < s. We have
to give a reasonable definition of how the result of the action manifests itself.
A good example for initial consideration is that if a new argument e is created
by an action at time t then it shows up at all times s > t and its strength at

x : a

z : c w : d

1 : b•
0

• η • u • 0

•
α

Fig. 36.
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x : a

z : c w : d

1 : b

• u

•
α

Fig. 37.

time s > t decays slowly as s increases, say it has the form Vs(e) =
k

1 + s − t
, k

a constant ≤ 1. Similarly we can ask for a decay of the transmission rates.
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