
Rewrite and Decision Procedure Laboratory:
Combining Rewriting, Satisfiability Checking,

and Lemma Speculation

Alessandro Armando1, Luca Compagna1, and Silvio Ranise2,�

1 DIST – Università degli Studi di Genova, Viale Causa 13 – 16145 Genova, Italia
2 LORIA & INRIA – Université Henri Poincaré-Nancy 2,

615, rue du Jardin Botanique, BP 101, 54602 Villers les Nancy Cedex, France

1 Introduction

The lack of automated support is probably the main obstacle to the application
of formal method techniques in the industrial setting. A possible solution to this
problem is to combine the expressiveness of general purpose reasoners (such as
theorem provers) with the efficiency of specialized ones (such as decision pro-
cedures). This is witnessed by the fact that many theorem provers developed
for verification purposes (such as Acl2 [11], PVS [17], Simplify [9], STeP [14],
and Tecton [10]) have integrated procedures for ubiquitous theories such as the
theory of equality, decidable fragments of arithmetics, lists, and arrays. Unfortu-
nately, designing an effective integration is far from being a trivial task and the
solutions available in the verification systems listed above are not completely
satisfactory for two main reasons. First, the schemes designed to incorporate
decision procedure in larger systems are not flexible enough to allow developers
to easily incorporate new procedures. Second, only a tiny portion of the proof
obligations arising in many practical applications falls exactly into the domain
the specialized reasoners are designed to solve. Thus, in many cases, available
decision procedures are of little help if they are not combined with mechanisms
for widening their scope.

1.1 RDL

RDL [1] is the acronym for Rewrite and Decision procedure Laboratory. It pro-
vides an extension of rewriting to a powerful simplification mechanism exploiting
satisfiability procedures for conjunctions of literals (i.e. reasoners specialized to
solve the satisfiability problems for certain theories). The interplay between the
satisfiability procedure and the other modules of RDL is parametric in the theory
in which the procedure works. As a consequence, the reasoning activity imple-
mented by the system can be easily extended by plugging-in new satisfiability

� The last author is also partially supported by Università degli Studi di Genova under
the program “Finanziamenti a progetti di singoli e/o giovani ricercatori (D.R. 226
del 25.10.2000)”.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 30–45, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Rewrite and Decision Procedure Laboratory 31

procedures. In turn, incorporated satisfiability procedures can be extended to
handle larger classes of formulas by instantiating a generic lemma speculation
mechanism. This mechanism is parametric in the satisfiability procedure being
extended.

Our main motivation to develop RDL is to experiment with different combi-
nations of rewriting and possibly extended satisfiability procedures. The focus of
the system is on simplification of quantifier-free clauses and corresponding ap-
plications in the area of verification supported by automated theorem proving.

RDL features the following characteristics.

1. It is based on Constraint Contextual Rewriting (CCR) [2, 3]. CCR is a pow-
erful simplification mechanism in which contextual rewriting [20] is comple-
mented by a specialized reasoner, a procedure capable of establishing formula
satisfiability w.r.t. a fixed theory of interest. The key feature of CCR is that
the context of rewriting (i.e. the literals assumed true during rewriting) are
manipulated and checked for consistency by the satisfiability procedure.

2. RDL is an open system which can be modularly extended with new sat-
isfiability procedures provided these offer certain interface functionalities.
As underlying theories currently available there are the universal theory
of equality (UTE), the universal theory of linear arithmetic over integers
(ULAI), and the theory obtained as the combination of the previous two
(UTELAI).

3. RDL implements instances of a generic extension schema for decision pro-
cedures [4]. The key ingredient of such a schema is a lemma speculation
mechanism which ‘reduces’ the satisfiability problem of a given theory to
the satisfiability problem of one of its sub-theory for which a satisfiability
procedure is already available. The current version of the system provides
implementations of this schema which enable the satisfiability procedure for
ULAI to handle properties of user-defined functions as well as a fragment of
arithmetic with multiplication.

RDL is implemented in (SICStus) Prolog and it is freely available via the
Constraint Contextual Rewriting Project home page at

http://www.mrg.dist.unige.it/ccr

1.2 Related Systems

In Acl2 [11] (as in its predecessor, nqthm [6]), a sophisticated schema to in-
corporate a decision procedure for linear arithmetic in the simplification activity
is implemented. Unfortunately, the design of such a schema heavily depends on
the particular characteristics of the host system [7]. As a result, it is not easy
to incorporate new decision procedures. Both Simplify [9] and pvs [17] feature
a bunch of cooperating decision procedures, following the paradigm proposed in
[16] and in [19], respectively. In both systems, while it is easy to plug-in new
procedures, an insufficient degree of automatization is provided for some classes
of proof obligations which frequently arise in practical verification efforts such as

32 Alessandro Armando, Luca Compagna, and Silvio Ranise

some sub-theory of the theory of arithmetic with multiplication. In both systems,
the user is forced to supply appropriate lemmas encoding the properties of the
interpreted functions (e.g. multiplication). The version of STeP described in [5]
implements a rational based version of the Fourier-Motzkin method, extended
to handle multiplication by (partial) quantifier elimination and reasoning about
the sign of multiplicands. Although STeP offers a high degree of automation
for a significant sub-theory of arithmetic with multiplication, it is not flexible
enough to provide similar degrees of automation for other theories.

Plan of the Paper

In Section 2, we describe how RDL solves a typical verification condition arising
in the proof of termination of a function normalizing expressions. This serves
the twofold purpose of introducing the concept of (theorem proving) problem
solved by RDL and of giving a brief overview of the main reasoning activities
implemented in the system. In Section 3, we describe how to specify a theorem
proving problem to RDL. Then, in Section 3, we describe the reasoning activities
implemented in the system and their interplay. Finally, in Section 5, we report
an excerpt of the experimental results of the system on some typical problems
and we compare RDL with other state-of-the-art validity checkers.

2 An Example

Consider the problem of showing the termination of the function to normalize
conditional expressions in propositional logic as described in [6].

The expressions of the logic are built over propositional constants (denoted in
the following with pl(N), where N is an integer) and the ternary connective “if A
then B else C” (denoted in the following with if(A, B, C), where A, B, and C are
variables ranging over the set of expressions of propositional logic). Informally,
the function norm for normalizing conditional expressions (recursively) remove
all the if’s occurring as the first argument of another if by pushing them into
the other two arguments of the external if.

The argument in the proof of termination of norm is based on exhibiting a
measure function that decreases (according to a given well-founded ordering) at
each function’s recursive call. For example, ms (reported in [18]) is one such a
function:

ms(pl(N)) = 1
ms(if(A, B, C)) = ms(A) + ms(A) ∗ ms(B) + ms(A) ∗ ms(C)

where + and ∗ denote addition and multiplication over integers. It is easy to
check that ms enjoys the following property:

ms(A) > 0 (1)

for each expression A of the logic. The definition of ms and property (1) are
stated in RDL by asserting the following Prolog facts:

Rewrite and Decision Procedure Laboratory 33

fact(bm,msbase,[],ms(pl(N))=1).

fact(bm,msstep,[],ms(if(A,B,C))=ms(A)+ms(A)*ms(B)+ms(A)*ms(C)).

fact(bm,msfact,[],ms(A)>0).

where msbase, msstep, and msfact are the unique identifiers of the facts in the
system and [] indicates that the facts are unconditional.

One of the proof obligation expressing the decrease argument is

ms(if(u, if(v, y, z), if(w, y, z))) < ms(if(if(u, v, w), y, z)), (2)

where < denotes the ‘less-than’ relation over integers and u, v, w, y, and z are
expressions of the logic. In RDL we can specify the clause (in this case a unit
clause) to be checked for validity as follows:

input(bm,
[ms(if(u, if(v,y,z), if(w,y,z))) < ms(if(if(u,v,w), y, z))]).

There are still two missing ingredients to complete the specification of our prob-
lem to RDL. First, we need to provide an informal description of the problem
under consideration:

description(bm,
’Silvio Ranise’,
’Problem taken from the paper
"Proving Termination of Normalization Functions
for Conditional Expressions"

by L C Paulson.’).

Second, we need to tell RDL what satisfiability procedure to use in order to
check the validity of the formula:

expected_output(bm, aug_aff(eq_la), rpo, [true]).

where aug aff(eq la) tells RDL to use the satisfiability procedure for UTELAI
extended with lemma speculation techniques which allow to use the definition of
ms and its property as well as some properties about multiplication; rpo is the
recursive path ordering that is going to be used by the system for rewriting1.

Now, we are in the position to run the system on the specified problem by
simply typing

run(bm).

RDL’s output is reported in Figure 12. Lines 1–8 provide the user with a brief
summary of the problem that RDL is going to simplify. Line 9 gives the formula
obtained by the simplification process implemented by the system. Line 22 shows
1 To simplify the presentation, we omit the precedence over function symbols needed

to completely specify the ordering and, in the following, we assume that such a
precedence has been defined so that the rewriting steps described below are possible.

2 The original output of the system has been slightly edited in order to simplify the
discussion that follows.

34 Alessandro Armando, Luca Compagna, and Silvio Ranise

1 Problem: bm

2 Reasoning Specialist: combination of the theory of ground

3 equality and Linear Arithmetic with

4 a combination of augmentation and

5 affinization enabled.

6 Ordering: Recursive Path Ordering.

7 Input Formula: [ms(if(u,if(v,y,z),if(w,y,z)))<ms(if(if(u,v,w),y,z))]

8 Expected Formula: [true]

9 Simplified Formula: [true]

10 Status: ok!

11 Reduction:

12 cl simp:

13 [id,

14 crew>(crew>(crew>(crew>(crew>(crew>(crew>

15 (normal>

16 cxt entails true:[

17 augment affinize:

18 [crew:[

19 augment affinize,

20 cs extend]>

21 (augment affinize>augment affinize)]])))))))]

22 Time (Elapsed-Theorem Proving): 610-600 msec

Fig. 1. Sample output of RDL.

the time used by the system to perform the simplification (600 msec) and the
total time (610 msec), i.e. the time to perform simplification as well as the other
instructions such as input-output. Lines 11 to 21 describe the simplification
steps undertook by the system. First of all, RDL initializes the simplification
of the clause (2) (cl simp at 12). This consists of building up the context of
simplification and of selecting a literal to be simplified (id at 13); in this case,
the simplification context is empty and the literal being simplified is the only
literal in the clause. Then, the simplification process can start.

RDL rewrites the l.h.s. and the r.h.s. of (2) with the definition of ms (the
sequence of crew at 14) and it obtains the following literal:

ms(u) + ms(u) ∗ ms(v) + ms(u) ∗ ms(v) ∗ ms(y)+
ms(u) ∗ ms(v) ∗ ms(z) + ms(u) ∗ ms(w)+
ms(u) ∗ ms(w) ∗ ms(y) + ms(u) ∗ ms(w) ∗ ms(z) <
ms(u) + ms(u) ∗ ms(v) + ms(u) ∗ ms(w)+
ms(u) ∗ ms(y) + ms(u) ∗ ms(v) ∗ ms(y) + ms(u) ∗ ms(w) ∗ ms(y)+
ms(u) ∗ ms(z) + ms(u) ∗ ms(v) ∗ ms(z) + ms(u) ∗ ms(w) ∗ ms(z)

(3)

RDL then performs all the possible cancellations in (3) (normal at line 15) and
it obtains:

ms(u) ∗ ms(y) + ms(u) ∗ ms(z) < 0. (4)

Rewrite and Decision Procedure Laboratory 35

In order to prove the validity of (2), RDL checks the unsatisfiability of its nega-
tion (cxt entails true at line 16). To do this, it factorizes (4) to ms(u) ∗
(ms(y) + ms(z)) < 0 and then it considers the following instance of a trivial
property about the sign of multiplicands:

(ms(u) > 0 ∧ ms(y) + ms(z) > 0) =⇒ ms(u) ∗ (ms(y) + ms(z)) > 0 (5)

(this is identified by augment affinize at line 17). In order to make the con-
clusion of (5) available to the system (cs extend at line 20), it is necessary to
relieve its hypotheses (crew at line 19). This is easy since RDL readily instanti-
ates (1) three times, namely to ms(u) > 0, ms(y) > 0, and to ms(z) > 0 (the
three augment affinize at lines 19–21). At this point, it is trivial to detect the
unsatisfiability of (4) and the conclusion of (5).

3 Specifying a Problem to RDL

The basic concept underlying RDL’s user interface is that of problem. Intuitively,
a problem provides a specification of the clause to be simplified as well as the sat-
isfiability procedure to be used during simplification and the facts that the user
wants to assume valid. Formally, a problem determines a (first-order) language
and a (first-order) theory. In particular, a problem specifies which predicate and
function symbols are interpreted since either they are known to the satisfiability
procedures or they are taken into account by the lemma speculation mechanism.
The specification of a problem in RDL involves a number of information that
must be specified by asserting certain facts (in Prolog parlance) to the system.

description(TagPb, Author, Descr). The first argument TagPb is the unique
label of the problem the user wishes to solve. In RDL, each problem must be
uniquely identified by a Prolog term, e.g. the Prolog constant bm in Figure 1. The
other two arguments of the predicate are Prolog strings. In particular, Author
specifies the name of the author of the problem and Descr gives an informal
description of the problem.

input(TagPb, Clause). The first argument TagPb is the unique identifier of
the problem. The second argument Clause specifies the (ground) clause to be
simplified. RDL represents clauses as Prolog lists of literals. First-order literals
are represented by ground Prolog literals.

fact(TagPb, TagFact, Conds, Concl). The first argument TagPb is the
unique label of the problem. The second argument TagFact is the unique la-
bel of the fact within the name space of the problem. The last two arguments
specify the hypotheses and the conclusion of a conditional fact. In particular,
Conds is a list of literals and Concl is a single literal. In this case, RDL rep-
resents first order literals as Prolog literals. In particular, first order variables
are represented by Prolog variables which can occur only in this position of the
specification of a problem. As an example, consider the following Prolog fact:

fact(pb,label,[g(X)>0, f(Y,c)=g(Z)],h(X,Y)=Z).

36 Alessandro Armando, Luca Compagna, and Silvio Ranise

It encodes the following formula:

∀x y z ((g(x) > 0 ∧ f(y, c) = g(z)) =⇒ h(x, y) = z),

where x, y, and z are variables (represented by the Prolog variables X, Y, and Z
respectively), c is a constant, g is a unary function symbol, f and h are binary
function symbol, = is the equality symbol, and > is an infix binary predicate.
The formula specified by fact is assumed valid during the simplification activity.

expected output(TagPb, RS, Ord, Clause). The first argument TagPb is the
unique label of the problem. The second argument RS specify the (possibly ex-
tended) satisfiability procedure to be used in order to support the simplification
activity. In the actual implementation of RDL, RS can be one of the following
Prolog term:

– eq identifies a satisfiability procedure for UTE. The implementation of this
procedure is based on the congruence closure algorithm described in [19];

– la identifies a satisfiability procedure for ULAI based on the version of
Fourier-Motzkin algorithm described in [7];

– eq la identifies a combination of the above two satisfiability procedures
based on Nelson and Oppen’s combination paradigm [16];

– aug(SatProc) (where SatProc is either eq, la, or eq la) identifies the ex-
tension of the satisfiability procedure SatProc by means of the augmentation
mechanism [2, 3], i.e. the capability of making available to the satisfiability
procedure selected instances of available lemmas (specified by fact);

– aff(SatProc) (where SatProc is either la or eq la) identifies the extension
of the satisfiability procedure SatProc by means of the affinization mecha-
nism [4], i.e. the capability of making available selected properties of multi-
plication;

– aug aff(SatProc) (where SatProc is either la or eq la) identifies a com-
bination of the two extension mechanisms outlined above [4].

We notice that each satisfiability (implicitly) declare a set of interpreted predi-
cate symbols by means of the predicate pred sym(TagPb, PredSpec). The first
argument TagPb is the unique identifier of the problem. The second argument
PredSpec is a Prolog term of the form p(, , ...,), where p is a predicate symbol
together with its arity, namely (, , ...,). For example, the predicate < is auto-
matically declared as interpreted by asserting pred sym(, <).. This is done
each time the satisfiability procedure for ULAI is used during the simplification
process, i.e. the constant la is given as the second argument of expected output.

The third argument Ord is the ordering to be used while rewriting. Two
possible ordering can be used in RDL: the Knuth-Bendix ordering [12] (identified
by the Prolog constant kbo) and the recursive-path ordering [8] (identified by
the Prolog constant rpo). For kbo, we need to specify the weight of the symbol
by means of the predicate symbol weight(TagPb, FSym, N), where TagPb is
the unique label of the problem, Fsym is a function (or predicate) symbol, and
N is a positive natural number (i.e. the weight of the symbol). Furthermore, for
both ordering we can specify a precedence relation over function (and predicate)

Rewrite and Decision Procedure Laboratory 37

symbols by means of the predicate ord gt(TagPb,F1,F2), where TagPb is the
unique label of the problem, F1 and F2 are function (or predicate) symbols s.t.
F1 is bigger than F2 in the precedence relation used to define either kbo or rpo.

Finally, the last argument Clause of expected output specifies the clause
which the user thinks RDL is going to produce as the result of the simplification
activity. This last parameter is not strictly required (it can be left unspecified
by using a Prolog variable) and it is mainly used for validating the corpus of
problems shipped with the system.

4 The Reasoning Activities of RDL

RDL features a tight integration of three reasoning activities: contextual rewrit-
ing, satisfiability checking, and lemma speculation. The sophisticated interactions
between these reasoning activities are the key ingredients of the effectiveness of
RDL’s simplification mechanism. In the following, the various functionalities
will be modeled by means of relations whereas the interplay between the various
functionalities is specified by an inductive definition by using a set of inference
rules.

4.1 Contextual Rewriting

In RDL, the rewriter implements (a variant of) contextual rewriting [20]. It
manipulates two data structures. The former is the set of literals which can be
assumed true during the rewriting activity; the conjunction of these literals is
called the (rewriting) context. The second data structure is a set of conditional
rules which are added to RDL’s database of valid facts by asserting Prolog facts
of the form

fact(pb, name, [h1, ..., hn], l=r).

where h1, ..., hn, and l=r are RDL’s representation of some first-order literals,
which are denoted in the following with h1, ..., hn, and l = r (respectively).

Now, we are in the position to give a high-level description of the rewriting
algorithm implemented in RDL. In the following, we assume that ≺ is a well-
founded ordering on ground terms which allows for a suitable mechanization in
RDL.

Without loss of generality, assume rσ ≺ lσ for a ground substitution σ.
Otherwise, swap l with r (if lσ is different from rσ). Given a literal p[lσ], RDL’s
rewriter returns p[rσ] if the following two conditions are satisfied: (i) the ground
literals h1σ, ..., hnσ, and p[rσ] are smaller than p[lσ] according to ≺; and (ii)
each hiσ (for i = 1, ..., n) can be simplified to true by recursively invoking the
activity of contextual rewriting. Checking for the entailment of an instantiated
condition can be done in three ways. The first is to recursively invoke the RDL’s
rewriter on the literal under consideration with the aim of rewriting it to true.
This informal description can be formalized by means of the following inference
rule named crew:

38 Alessandro Armando, Luca Compagna, and Silvio Ranise

C :: h1σ−−→
ccr

true · · · C :: hnσ−−→
ccr

true

C :: p[lσ]u−−→
ccr

p[rσ]u

where h1 ∧ · · · ∧ hn =⇒ l = r is one of the available (possibly conditional)
rewrite rules and C :: p−−→

ccr
p′ is a sequent which denotes the mechanization of

the one-step contextual rewriting relation, i.e. it takes a literal p in context C
and returns the literal p′.

4.2 Satisfiability Checking

In RDL, a satisfiability procedure for a given (first-order) theory Tc works on
a data structure (called constraint store) representing a conjunction of ground
literals to be assumed true during RDL’s simplification activity. The constraint
store is built by interning the literals in the rewriting context. As it will be
discussed below, the particular data structure used to implement the constraint
store depends on the theory Tc.

There are four functionalities manipulating the constraint store: cs init(C),
cs unsat(C), P :: C−−−−−→

cs extend
C′, and C :: p−−−−−→

cs normal
p′, where C and C′ are con-

straint stores, p and p′ are ground literals, and P is a set of ground literals.
The functionalities cs init and cs unsat manipulate a constraint store and

are invoked by RDL’s rewriter so to synchronize the content of the rewriting
context and of the constraint store. More precisely, cs init(C) sets C to the
“empty” constraint store and cs unsat(C) is a boolean function recognizing
a subset of unsatisfiable (in Tc) constraint stores whose unsatisfiability can be
checked by means of a computationally inexpensive (syntactic) check.

The remaining two interface functionalities (i.e. P :: C−−−−−→
cs extend

C′ and C ::

p−−−−−→
cs normal

p′) must satisfy some requirements in order to allow the “plug-and-

play” incorporation of new satisfiability procedures in the system. As said above,
the constraint store is the result of interning the literals in the rewriting context
by invoking the functionality

P :: C−−−−−→
cs extend

C′

which denotes the computation performed in order to intern the literals in the
input set P , (possibly) deriving new literals entailed by the conjunction of the
literals in P and C, and adding them to the actual state C of the procedure so
to obtain the new state C′. The last functionality

C :: p−−−−−→
cs normal

p′

provided by the satisfiability procedure computes a normal representation p′ of a
given literal p w.r.t. the theory Tc and the literals stored in the constraint store C.
In order to simplify the integration with the RDL’s rewriter, we require that (i)
the literal p′ returned by this functionality is entailed by Tc and the conjunction
of literals in C, and that (ii) p′ is smaller (according to the rewriting ordering
≺) than p.

Rewrite and Decision Procedure Laboratory 39

Example 1. The satisfiability procedure for ULAI in RDL. Consider the
first-order language consisting of the numerals ...,−2, −1, 0, 1, 2, ..., variables,
the function symbol +, the (infix) binary predicate symbols <, ≤, =, ≥, and
>, and the usual logical connectives. The intended structure of this language
(whose theory is ULAI) interprets numerals as integers3, variables range over
integers, + is interpreted as addition, <, ≤, ≥, and > are interpreted as the
usual ordering relations, and = is interpreted as the identity relation.

Let Tc be the first-order theory containing ULAI and n-ary function symbols
(other than +) interpreted as arbitrary functions from n-tuples of integers to
integers.

The Fourier-Motzkin elimination method [13] is based on the idea of elimi-
nating one variable at a time in the hope of obtaining a ‘trivially’ unsatisfiable
inequality such as, e.g., 0 ≤ −1. It can be straightforwardly adapted to obtain a
proof procedure for Tc.

Although the exponential worst-case complexity seems to discourage its us-
age for checking the unsatisfiability of conjunctions of inequalities, the Fourier-
Motzkin method can be made usable in practice (as observed e.g. in [7]) by
using the simple trick of choosing the variable to eliminate according to a given
ordering.

We assume that <, =, ≥, and > (in the language of ULAI) are preliminary
eliminated in favor of ≤ (e.g. x < 0 can be rewritten to x ≤ −1 by exploiting
the integral property of integers). The inequalities in the constraint store are put
into the following (normal) form

c1 · m1 + · · · + cn · mn ≤ c (6)

where n ≥ 0 (if n = 0, then (6) stands for 0 ≤ c), c, c1, ..., cn are relatively prime
integers (called coefficients), m1, ..., mn are (first-order) terms (called multipli-
cands) whose top-most function symbols are different from + s.t. mi+1 ≺ mi

(where ≺ is the ordering used for rewriting which is required to be total over
ground terms), and ci · mi (i = 1, ..., n) abbreviates the term mi + · · · + mi in
which mi occurs ci times.

A constraint store is a data base of inequalities of the form (6) indexed by
the key multiplicands. More precisely, each key multiplicand points to two lists
of inequalities: one contains inequalities where the coefficient of the key multi-
plicand is positive whereas the other contains inequalities where the coefficient
of the key multiplicand is negative. If we derive an inequality of the form 0 ≤ c,
where c is a negative integer, we stop the exhaustive elimination of variables and
we set a flag signaling the unsatisfiability of the constraint store. The function-
ality cs init(C) is defined so to set up the empty data base of inequalities and
cs unsat(C) returns true when the flag of the unsatisfiability of the constraint
store is true.

Let ι and ι′ be two inequalities of the form (6) both having m as their heaviest
multiplicand, k (k′) be the coefficient of m in ι (ι′, resp.), k and k′ be of opposite
3 In the following, to simplify the discussion, we will use the term ‘integer’ in place of

‘numeral’.

40 Alessandro Armando, Luca Compagna, and Silvio Ranise

sign, and elim(ι, ι′) be the normal form of the linear combination of ι and ι′ not
containing m. Now, we are in the position to describe an implementation of the
functionality P :: C−−−−−→

cs extend
C′. First of all, put the literals of P into inequalities

of the form (6) and insert them into C at appropriate positions. Then, close the
resulting data base under the operation elim so to obtain C′, i.e. C′ is that for
any ι1, ι2 in C′ we have that elim(ι1, ι2) is in C′ (if elim is defined).

Finally, we notice that it is possible to extend the Fourier-Motzkin algorithm
in order to derive equalities entailed by inequalities [13] (stored in the constraint
store). A set of entailed equalities is created as soon as an inequality of the form
0 ≤ 0 is derived; all the inequalities which contributed to create this inequality
are turned into equalities (see, e.g. [13] for more details). It is natural to exploit
these equalities to simplify the literal which is currently rewritten. This observa-
tion offers an immediate implementation of C :: p−−−−→

cs norm
p′. In fact, if we extend

the data base C of inequalities to store also the entailed equalities, we can use
them as rewrite rules since we are always capable of orienting them; the entailed
equalities are ground and the ordering ≺ is assumed to be total on ground terms.

Another example of implementation of C :: p−−−−→
cs norm

p′ is given by the alge-

braic manipulation required to perform the cancellation in (3) to derive (4) in
Section 2.

4.3 Combining Rewriting and Satisfiability Checking

Now, we are in the position to describe how the functionalities provided by the
satisfiability procedure are exploited by the rewriting activity of RDL.

A given literal can be rewritten to true in a given context if it is entailed by
the context. In turn, the check for entailment of a literal l by a conjunction of
literals C can be performed by checking the unsatisfiability of C ∧ ¬l. In RDL,
this can be easily done by invoking cs unsat on the constraint store obtained
by adding the negation of the literal being rewritten. Similarly, we can rewrite
to false a literal if its negation is entailed by the context. This kind of reasoning
can be formalized by the following two inference rules, named cxt entails true
and cxt entails false (read from left to right):

{¬p} :: C−−−−−→
cs extend

C′

C :: p−−→
ccr

true
if cs unsat(C′)

{p} :: C−−−−−→
cs extend

C′

C :: p−−→
ccr

false
if cs unsat(C′)

In RDL, there is another mechanism of rewriting realized by simply invoking
the functionality for normalization provided by the satisfiability procedure. This
can be formalized by the following inference rule, named normal:

C :: p−−−−−→
cs normal

p′

C :: p−−→
ccr

p′

We notice that the inference rules cxt entails true, cxt entails false, and
normal extends the definition of the relation C :: p−−→

ccr
p′ modeling the activity

of contextual rewriting as introduced in Section 4.1.

Rewrite and Decision Procedure Laboratory 41

4.4 Lemma Speculation

Three instances of the lemma speculation mechanism described in [4] are im-
plemented in RDL. All the instances share the goal of feeding the satisfiability
procedure with new facts about function symbols which are otherwise uninter-
preted in the theory in which the satisfiability procedure works. More precisely,
they inspect the context C and return a set of ground facts entailed by C. The
lemma speculation activity of computing a set S of ground facts given a con-
straint store C can be modeled by the following relation:

C 	→ 〈C′, S〉,
where C′ is a constraint store which differs from C in the fact that some literals
are marked as already used (this is useful to avoid infinite looping by reconsid-
ering infinitely often the same literals for deriving new facts).

Augmentation. It extends the information available to the satisfiability pro-
cedure with selected instances of lemmas encoding properties of symbols the
decision procedure does not know anything about. For example, by devising a
suitable set of lemmas about multiplication, it is possible to enable a procedure
for ULAI to handle formulas whose satisfiability depends on properties of mul-
tiplication (e.g. multiplying two positive integers we obtain a positive integer).

The crucial step for the success of augmentation is the selection of suitable in-
stances of the available formulas. This is an instance of the more general problem
of choosing suitable instances of lemmas for guiding a generic prover to a suc-
cessful proof. Unfortunately, for such a problem no general satisfactory solution
does exist. In RDL, for our particular instance, we implemented the heuristics
of finding instances of the conclusions of the available conditional lemmas pro-
moting further computations (e.g. further Fourier-Motzkin elimination steps in
the case of the procedure for ULAI) when added to the current state of the
satisfiability procedure.

A further problem is the presence of extra variables in the hypotheses (w.r.t.
the conclusion) of lemmas. RDL avoids this problem by requiring that the conclu-
sion contains all the variables occurring in the lemma and that all the variables
get instantiated by matching the conclusion of the lemma against the largest
(according to ≺) literal in C.

We notice that augmentation critically depends on the shape of the available
lemmas and the algorithm implemented by the satisfiability procedure. If a suit-
able set of lemmas is defined, then augmentation dramatically widens the scope
of a satisfiability procedure. Unfortunately, devising such a suitable set is a time
consuming activity. This problem can be solved in some important special cases
such as some fragments of arithmetics with multiplication.

Affinization. In the actual version of RDL, affinization implements the ‘on-the-
fly’ generation of lemmas about multiplication over integers. We emphasize that
the user is no more required to provide suitable lemmas about properties of
multiplication since instances of some classes of properties are automatically
generated.

42 Alessandro Armando, Luca Compagna, and Silvio Ranise

To understand how affinization works, consider the non-linear inequality x ∗
y ≤ −1 (where x and y range over integers). By resorting to its geometrical
interpretation, it is easy to verify that (over integers) x ∗ y ≤ −1 is equivalent to
(x ≥ 1∧y ≤ −1)∨ (x ≤ −1∧y ≥ 1). To avoid case splitting, we observe that the
semi-planes represented by x ≥ 1 and x ≤ −1 as those represented by y ≤ −1
and y ≥ 1 are non-intersecting. This allows to derive the following four lemmas:
x ≥ 1 =⇒ y ≤ −1, x ≤ −1 =⇒ y ≥ 1, y ≥ 1 =⇒ x ≤ −1, and y ≤ −1 =⇒ x ≥ 1.
This process can be generalized to non-linear inequalities which can be put in
the form x ∗ y ≤ k (where k is an integer) by factorization [15]. The generated
(conditional) lemmas are used as for augmentation.

A Combination of Augmentation and Affinization. On the one hand affinization
can be seen as a significant improvement over augmentation since it does not re-
quire any user intervention. On the other hand it fails to apply when inequalities
cannot be transformed into a form suitable for affinization. RDL combines aug-
mentation and affinization by considering the function symbols occurring in the
constraint store C, i.e. the top-most function symbol of the largest (according
to ≺) literal in C triggers the invocation of either affinization or augmentation.

4.5 Combining Rewriting and Lemma Speculation

The main obstacle to using the facts resulting from the lemma speculation ac-
tivity is that such facts are conditional. Hence, we should preliminary relieve
their hypotheses in order to be entitled to make their conclusions available to
the satisfiability procedure. In RDL, we solve this problem by rewriting each
hypothesis to true (if possible) by invoking the rewriter. (Notice that this im-
plies that the rewriter and the satisfiability procedure are mutually recursive.)
The above reasoning activity can be formalized by the following inference rule,
named either augment, affinize, or augment affinize depending on which
lemma speculation mechanism is specified:

C′ :: g1−−→
ccr

true · · · C′ :: gn−−→
ccr

true {c1, ..., cm} :: C−−−−−→
cs extend

C′

P :: C−−−−−→
cs extend

C′ if C 	→ 〈C′, S〉

where (g1 ∧ · · · ∧ gn) =⇒ (c1 ∧ · · · ∧ cm) is in S and it is ground (for n ≥ 1 and
m ≥ 1).

5 Experiments

RDL must be judged w.r.t. its effectiveness in simplifying (and possibly checking
the validity of) proof obligations arising in practical verification efforts where de-
cision procedures play a crucial role. Although standard benchmarks for theorem
provers such as TPTP can be (partially) tackled by RDL, we prefer to evaluate
RDL’s performances on proof obligations extracted from real verification efforts.
To do this, we are building a corpus of proof obligations taken from the literature

Rewrite and Decision Procedure Laboratory 43

Table 1. Experimental Results.

Problem RDL

1
f(A) = f(B) =⇒ (r(g(A,B), A) = A) �

r(g(y, z), x) = x ∨ ¬(g(x, y) = g(y, z)) ∨ ¬(y = x)
26

2
A ∗ B = B ∗ A, (¬(C = 0)) =⇒ (rem(C ∗ D, C) = 0) �

rem(y ∗ z, x) = 0 ∨ ¬(x ∗ y = z ∗ y) ∨ x = 0
109

3 (A > 0) =⇒ (rem(A ∗ B, A) = 0) � rem(x ∗ y, x) = 0 ∨ x ≤ 0 12

4
min(A) ≤ max(A) �
¬(k ≥ 0) ∨ ¬(l ≥ 0) ∨ ¬(l ≤ min(b)) ∨ ¬(0 < k) ∨ l < max(b) + k

12

5

(memb(A,B)) =⇒ (len(del(A, B)) < len(B)) �
¬(w ≥ 0) ∨ ¬(k ≥ 0) ∨ ¬(z ≥ 0) ∨ ¬(v ≥ 0) ∨ ¬(memb(z, b))

∨¬(w + len(b) ≤ k) ∨ w + len(del(z, b)) < k + v

17

6
(0 < A) =⇒ (B ≤ A ∗ B), 0 < ms(C) �
ms(c) + ms(d)2 + ms(b)2 < ms(c) + ms(b)2 + 2ms(d)2 ∗ ms(b) + ms(d)4

72

7 A ≥ 4 =⇒ (A2 ≤ 2A) � ¬(c ≥ 4) ∨ ¬(b ≤ c2) ∨ ¬(2c < b) 14

8

(max(A,B) = A) =⇒ (min(A, B) = B), (p(C)) =⇒ (f(C) ≤ g(C)) �
¬(p(x)) ∨ ¬(z ≤ f(max(x, y))) ∨ ¬(0 < min(x, y)) ∨ ¬(x ≤ max(x, y))∨
¬(max(x, y) ≤ x) ∨ z < g(x) + y

114

9
0 < ms(C) �
ms(c) + ms(d)2 + ms(b)2 < ms(c) + ms(b)2 + 2ms(d)2 ∗ ms(b) + ms(d)4

63

10 � x ≥ 0 =⇒ x2 − x + 1 �= 0 40

and from the examples available for similar systems. The problems in our corpus
are representative of various verification scenarios and are considered difficult for
current state-of-the-art verification systems.

Table 1 reports a selection of the results of our computer experiments. Prob-
lem lists the available lemmas4 (if any) and the formula to be decided.
 is the
binary relation characterizing the deductive capability of RDL (we have that

is contained in |=T , where T is the theory decided by the decision procedure
extended with the available facts). The last column records the time (expressed
in msec) used by RDL to solve a problem5.

RDL solves problems 1 and 2 with the procedure for UTE. In the former, the
procedure is used to derive equalities entailed by the context which are used as
rewrite rules and enable the use of the available lemma. The ordered rewriting
engine implemented by RDL is a key feature to successfully solve problem 2
since this form of rewriting allows to handle usually non-orientable rewrite rules
such as A ∗B = B ∗A. RDL solves problem 3 with a satisfiability procedure for
ULAI extended with augmentation. Infact, the available lemma is applied once
its instantiated condition, namely x > 0, is relieved by the decision procedure (it
is straightforward to check the inconsistency of x > 0 and the literal x ≤ 0 in the

4 Capitalized letters denote implicitly universally quantified variables.
5 Benchmarks run on a 600 MHz Pentium III running Linux. RDL is implemented in

Prolog and it was compiled using SICStus Prolog, version 3.8.

44 Alessandro Armando, Luca Compagna, and Silvio Ranise

context). RDL solves problems 4, 5, 6, and 7 with a procedure for ULAI extended
with the augmentation mechanism. In particular, the formula of problem 6 is a
non-linear formula whose validity is successfully established by RDL in a similar
way of the example in Section 2. RDL solves problem 8 with the combination of
procedures for ULAI and UTE. RDL solves problems 9 and 10 with the procedure
for ULAI, extended with both augmentation and affinization. The lemma about
multiplication (i.e. 0 < I =⇒ J ≤ I ∗ J) is supplied in problem 6 but it is not
in problem 9. Only the combination of augmentation and affinization can solve
problem 9. Finally, problem 10 shows the importance of the context in which
proof obligations are proved (since RDL does not case-split). In fact, without
x ≥ 0 augment and affinize would not be able to solve problem 10.

As a matter of fact, the online version of STeP fails to solve all of the prob-
lems reported in Table 1. However, most of them are successfully solved by the
improved version of STeP described in [5]. This version solves problems 9 and 10
by resorting to a partial method for quantifier elimination (see [5] for details).
Instead, our affinization mechanism is capable of proving the formula with sim-
pler mathematical techniques. The comparison is somewhat difficult since the
method used by STeP works over the rationals and our affinization technique
only works over integers. Simplify successfully solves problems 1 to 8 thanks to a
Nelson-Oppen combination of decision procedures and an incomplete matching
algorithm which is capable of instantiating (valid) universally quantified clauses.
However, it does not solve problems 9 and 10 since it is unable to handle non-
linear facts without user-supplied lemmas (such as 0 < I =⇒ J ≤ I ∗ J in
problem 6). Finally, SVC fails to solve all the problems involving augmentation
and affinization since it does not provide a mechanism to take into account facts
which partially interpret user-defined function symbols.

References

1. A. Armando, L. Compagna, and S. Ranise. System Description: RDL—Rewrite and
Decision procedure Laboratory. In Proc. of the International Joint Conference on
Automated Reasoning (IJCAR2001), pages 663–669. LNAI 2083, Springer-Verlag,
2001.

2. A. Armando and S. Ranise. Constraint Contextual Rewriting. In Proc. of the 2nd
Intl. Workshop on First Order Theorem Proving (FTP’98), 1998.

3. A. Armando and S. Ranise. Termination of Constraint Contextual Rewriting. In
Proc. of the 3rd Intl. W. on Frontiers of Comb. Sys.’s (FroCos’2000), volume 1794,
pages 47–61. Springer-Verlag, 2000.

4. A. Armando and S. Ranise. A Practical Extension Mechanism for Decision Pro-
cedures: the Case Study of Universal Presburger Arithmetic. Journal of Universal
Computer Science, 7(2):124–140, February 2001. Special Issue on Tools for System
Design and Verification (FM-TOOLS’2000).

5. N. S. Bjørner. Integrating Decision Procedures for Temporal Verification. PhD
thesis, Computer Science Department, Stanford University, 1998.

6. R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
7. R.S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic Theorem

Provers: A Case Study of Linear Arithmetic. Machine Intelligence, 11:83–124, 1988.

Rewrite and Decision Procedure Laboratory 45

8. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Hand. of Theoretical Comp. Science, pages 243–320. 1990.

9. D. L. Detlefs, G. Nelson, and J. Saxe. Simplify: the ESC Theorem Prover. Technical
report, DEC, 1996.

10. D. Kapur, D.R. Musser, and X. Nie. An Overview of the Tecton Proof System.
Theoretical Computer Science, Vol. 133, October 1994.

11. M. Kaufmann and J S. Moore. Industrial Strength Theorem Prover for a Logic
Based on Common Lisp. IEEE Trans. Soft. Eng., 23(4):203–213, 1997.

12. D. E. Knuth and P. E. Bendix. Simple word problems in universal algebra. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297, Ox-
ford, 1970. Pergamon Press.

13. J.-L. Lassez and M.J. Maher. On Fourier’s Algorithm’s for Linear Arithmetic
Constraints. J. of Automated Reasoning, 9:373–379, 1992.

14. Z. Manna and the STeP Group. STeP: The Stanford Temporal Prover. Technical
Report CS-TR-94-1518, Stanford University, June 1994.

15. V. Maslov and W. Pugh. Simplifying Polynomial Constraints Over Integers to
Make Dependence Analysis More Precise. Technical Report CS-TR-3109.1, Dept.
of Computer Science, University of Maryland, 1994.

16. G. Nelson and D.C. Oppen. Simplification by Cooperating Decision Procedures.
Technical Report STAN-CS-78-652, Stanford Computer Science Department, April
1978.

17. S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of LNAI, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

18. L. C Paulson. Proving termination of normalization functions for conditional ex-
pressions. J. of Automated Reasoning, pages 63–74, 1986.

19. R.E. Shostak. Deciding Combination of Theories. J. of the ACM, 31(1):1–12, 1984.
20. H. Zhang. Contextual Rewriting in Automated Reasoning. Fundamenta Informat-

icae, 24(1/2):107–123, 1995.

	1 Introduction
	1.1 RDL
	1.2 Related Systems

	2 An Example
	3 Specifying a Problem to RDL
	4 The Reasoning Activities of RDL
	4.1 Contextual Rewriting
	4.2 Satisfiability Checking
	4.3 Combining Rewriting and Satisfiability Checking
	4.4 Lemma Speculation
	4.5 Combining Rewriting and Lemma Speculation

	5 Experiments
	References

