
14 Phagotrophy in Harmful Algae

D. Stoecker, U. Tillmann, and E. Granéli

14.1 Introduction

The contributions of phagotrophy to bloom formation and toxicity of harm-
ful algae have not received much attention, although phagotrophy is common
among toxic and/or red-tide dinoflagellates and haptophytes (Figs. 14.1 and
14.2). Ingestion of prey can dramatically increase the growth rate of some
harmful algae (Li et al. 1999; Jeong et al. 2004, 2005a, 2005b). Predation on
competitors or potential grazers may contribute to the ability of some HAB
species to form dense, mono-specific blooms (Legrand et al. 1998; Granéli and
Johansson 2003b). In some species, grazing may be related to toxicity (Till-
mann 2003; Skovgaard and Hansen 2003).

Some toxic dinoflagellates are strict heterotrophs (Protoperidinium cras-
sipes) or heterotrophs with a limited capacity for mixotrophy (Pfiesteria pisci-
cida, P. shumwayae) (Jeong and Latz 1994; Burkholder et al. 2001; Glasgow et
al. 2001). Most harmful dinoflagellates are plastidic, bloom-forming species
that traditionally have been regarded as photoautotrophs, but evidence is
accumulating that many can ingest other cells. Some are harmful because they
contain toxins and others because they form high-biomass blooms that dis-
rupt food webs. There is evidence for phagotrophy in many toxic and/or red-
tide planktonic dinoflagellates including Akashiwo sanguinea (=Gymno-
dinium sanguineum) (Bockstahler et al. 1993; Jeong et al. 2005a), Alexandrium
ostenfeldii and A. tamarense (Jacobson and Anderson 1996; Jeong et al.
2005a), Ceratium furca (Smalley et al. 2003), Cochlodinium polykrikoides
(Jeong et al. 2004), Dinophysis acuminata, D. norvegica (Jacobson and Ander-
sen 1994; Gisselson et al. 2002), Gonyaulax polygramma (Jeong et al. 2005b),
Gymnodinium catenatum, G. impudicum, (Jeong et al. 2005a), Heterocapsa tri-
quetra (Legrand et al. 1998; Jeong et al. 2005a), Karlodinium micrum (=Gyro-
dinium galatheanum) (Li et al. 2000), Lingulodinium polyedra (Jeong et al.
2005a), Prorocentrum donghaiense, P. triestinum, P. micans and P. minimum
(Jeong et al. 2005a), Protoceratium reticulatum (Jacobson and Anderson 1996)
and Scrippsiella trochoidea (Jeong et al. 2005a). There is also evidence for
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Fig. 14.1. Sequence showing a cell of Karlodinium micrum feeding on a cryptophyte alga

Fig. 14.2. Three Prymne-
sium parvum cells catch-
ing and preying on a cell
of the larger species Het-
erocapsa triquetra. Scale
bars 10 µm

phagotrophy in the toxic benthic dinoflagellates Gambierdiscus toxicus, Ostre-
opsis lenticularis, O. ovata, O. siamensis, and Prorocentrum arenarium and P.
belizeanum (Faust 1998) (Table 14.1).

Among the toxic haptophytes, phagotrophy is known in Chrysochromulina
leadbeateri, C. polylepis and Prymnesium parvum (including P. parvum f.
patelliferum) (Johnsen et al. 1999; Jones et al. 1993; Tillmann 1998, 2003)
(Table 14.2). In addition to Chrysochromulina leadbeateri and C. polylepis,
whose toxic potential seems to be well established, three other species of
Chrysochromulina (C. brevifilum, C. kappa, C. strobilus) were found to be toxic
to the bryozoan Electra pilosa when given as the only food source (Jebram
1980). All these, at least potentially toxic species, have been shown to be
phagotrophic as well (Parke et al. 1955, 1959; Jones et al. 1993). Other families
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Table 14.1. Evidence for phagotrophy in harmful dinoflagellate species

Species Evidence for Phagotrophya References

Alexandrium ostenfeldii Obs. of food vacuoles with electron microscopy Jacobsen and Anderson
1996

Alexandrium tamarense Uptake of radio-labeled bacteria; Obs. of bacte-
ria and flagellates inside cell; Observations of
food vacuoles containing algal cells

Nygaard and Tobiesen
1993; Sorokin et al. 1996;
Jeong et al. 2005

Cochlodinium
polykrikoides

Obs. of feeding and measurement of ingestion of
small cryptophytes and other small phytoflagel-
lates 

Jeong et al. 2004

Dinophysis acuminata Obs. of food vacuoles with light and electron
microscopy

Jacobsen and Andersen
1994

Dinophysis norvegica Obs. of food vacuoles with light and electron
microscopy

Jacobsen and Andersen
1994; Gisselson et al. 2002

Gambierdiscus toxicus Obs. of food vacuoles with light microscopy Faust 1998

Gymnodinium catena-
tum

Observations of food vacuoles containing algal
cells 

Jeong et al. 2005

Karlodinium micrum
(syn.=Gyrodinium
galatheanum, Gymno-
dinium galatheanum)

Obs. of feeding on cryptophytes and feeding and
growth experiments

Li et al. 1999

Lingulodinium
polyedrab

Obs. of feeding and of food vacuoles containing
algal cells, feeding and growth experiments

Jeong et al. 2005

Ostreopsis lenticularis,
O. ovata, O. siamensis

Obs. of food vacuoles with light microscopy Faust 1998

Pfiesteria piscicida.
P. shumwayae

Primarily heterotrophic; obs. of feeding on cryp-
tophytes, other protists and fish tissues; grazing
and growth experiments

Burkholder et al. 2001,
Lin et al. 2004

Prorocentrum arenar-
ium,
P. belizeanum,
P. hoffmannianum 

Obs. of food vacuoles with light microscopy Faust 1998

Prorocentrum minimum
(syn.=P. cordatum)

Obs. of food vacuoles with ingested cryptophyte
material; feeding experiments; obs. of food vac-
uoles containing algal cells

Stoecker et al. 1997, Jeong
et al. 2005

Protoceratium reticula-
tum (syn.=Peridinium
reticulatum, Gonyaulax
grindleyi)

Obs. of food vacuoles Jacobson and Anderson
1996

Protoperidinium cras-
sipes

Heterotroph; preys on other dinoflagellates Jeong and Latz (1994)

a Obs. = observation(s)
b Not on IOC Taxonomic Reference List of Toxic Algae (Moestrup 2004) but toxic (Stei-

dinger and Tangen 1997)



containing harmful eukaryotic phytoplankton are the diatoms, raphido-
phytes, and pelagophytes. The ability to ingest other cells is probably lacking
in vegetative cells of diatoms due to their valve structure. Nygaard and
Tobiesen (1993) measured uptake of radio-labeled bacteria by the toxic raphi-
dophyte, Heterosigma akashiwo, but this is the only report of phagotrophy in
this family. Phagotrophy has not been reported in the pelagophytes responsi-
ble for brown tides. The prokaryotic cyanobacteria also cause harmful
blooms, but are not phagotrophic.

Feeding may go undetected in many species because it is sporadic and
because the presence of plastids can make food vacuoles difficult to observe.
Most, but not all, mixotrophic flagellates can be grown in the absence of prey,
and thus their capacity to ingest other cells is often overlooked. More harmful
algal species will probably be added to the list of phagotrophs.

14.2 Phagotrophy and its Advantages

Ingestion of prey supports the growth of harmful heterotrophic dinoflagel-
lates, including Protoperidinium crassipes (Jeong and Latz 1994) and Pfieste-
ria spp. (Burkholder et al. 2001; Glasgow et al. 2001). P. crassipes feeds on other
dinoflagellates, including toxic Lingulodinium polyedra (Jeong and Latz
1994). Although Pfiesteria spp. can retain cryptophyte plastids for short peri-
ods, they are mostly heterotrophic and use a peduncle to feed on prey ranging
in size from bacteria to fish tissues (Burkholder et al. 2001). The maintenance
cost for such a feeding apparatus is calculated to be low compared to the costs
for maintaining photosynthetic apparatus (Raven 1997), which may explain
the relatively high growth rates of small heterotrophic harmful algae such as
Pfiesteria compared to their more autotrophic relatives.
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Table 14.2. Evidence for phagotrophy in harmful haptophyte species

Species Evidence for phagotrophy Reference

Chrysochromulina Ingestion of FLA Johnsen et al. 1999; Legrand 
leadbeateri pers. com

Chrysochromulina Ingestion of bacteria, small Manton and Parke 1962;
polylepis particles and small protists Jones et al. 1993;

Nygaard and Tobiesen 1993

Prymnesium parvum Feeding measurement of Nygaard and Tobiesen 1993;
f. parvum bacteria, observation and Tillmann 1998;
f. patelliferum measurements of ingestion of Legrand et al. 2001;

various protists Skovgaard et al. 2003 



The advantages of phagotrophy for photosynthetic algae are diverse
(Stoecker 1998, 1999). Most dinoflagellates and haptophytes can grow strictly
autotrophically, but some species of dinoflagellates (for example, Karlodinium
micrum, Cochlodinium polykrikoides, Gonyaulax polygramma, Lingulo-
dinium polyedra) grow much faster with prey than strictly autotrophically (Li
et al. 1999; Jeong et al. 2004, 2005a, 2005b). Phagotrophy can make an impor-
tant contribution to C, N and P budgets in these species. In contrast, although
some haptophytes ingest prey when light and inorganic nutrients are suffi-
cient (Skovgaard et al. 2003), growth rates with and without prey are usually
similar (Larsen et al. 1993; Pintner and Provasoli 1968). An exception to this
generalization is that the simultaneous addition of small diatoms and bacte-
ria can enhance the growth of Prymnesium parvum even in nutrient-replete
media (Martin-Cereceda et al. 2003).

Some phagotrophic dinoflagellates only feed (or feed at higher rates) when
they are P or N limited, but not when they are C or light limited (Li et al. 1999,
2000; Smalley et al. 2003). In the bloom-forming dinoflagellate Ceratium
furca, internal nutrient ratios (C:P and N:P) regulate feeding, which is induced
when cellular ratios deviate from optimum due to N or P limitation (Smalley
et al. 2003). In many haptophytes, phagotrophy is also stimulated by nutrient
limitation. Both Prymnesium parvum and Chrysochromulina polylepis have
been shown to ingest more bacteria under phosphate deficiency than nutri-
ent-replete conditions (Nygaard and Tobiesen 1993; Legrand et al. 2001).
However, ingestion of algal prey (Rhodomonas baltica) by P. parvum was
equally high when the haptophyte was grown under nutrient-replete or N- or
P-limiting conditions (Skovgaard et al. 2003).

In mixotrophic dinoflagellates, feeding does not appear to be a response to
light limitation and most, but not all, mixotrophic dinoflagellates will not sur-
vive or feed in prolonged darkness (reviewed in Stoecker 1999). For example,
feeding by Karlodinium micrum decreases at low irradiance and is highest at
irradiances optimal for autotrophic growth (Li et al. 2000). In contrast, in
some haptophytes ingestion is inversely proportional to light intensity, indi-
cating that mixotrophy can be stimulated by both low nutrient and low light
conditions (Jones et al. 1995). However, Chrysochromulina and Prymnesium
parvum are not able to survive or grow in the dark, even when bacteria are
added as prey (Pintner and Provasoli 1968; Jochem 1999). In contrast, inges-
tion of fluorescent-labeled bacteria (FLB) by C. polylepis has been shown to be
higher under high light conditions and with the addition of humic sub-
stances, and these differences were explained by greater quantities of bacteria
being found in these treatments (Granéli and Carlsson 1998). This indicates
that in the presence of abundant bacterial prey, C. polylepis ingests prey inde-
pendent of the light regime.

It is also possible that some harmful algae acquire organic growth factors
from ingestion of prey. The photosynthetic dinoflagellate Gyrodinium
resplendens (not known to be toxic) feeds on other dinoflagellates and can
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only be cultivated when provided with prey (Skovgaard 2000). Investigators
have not been able to successfully cultivate toxic Dinophysis spp. (Nishitani et
al. 2003). Food vacuoles containing ciliates and other protists have been
observed (Jacobson and Andersen 1994; Gisselson et al. 2002) and it is possi-
ble that toxic Dinophysis spp., although they are photosynthetic, are obligate
phagotrophs requiring specific prey. For toxic haptophytes there is no evi-
dence of obligate phagotrophy; Prymnesium and toxic Chrysochromulina
species have been successfully grown in axenic culture (Edvardsen and
Paasche 1998).

In addition to the physiological advantages of prey ingestion, phagotrophy
can also be an ecological strategy for eliminating or reducing predators and
competitors. The dinoflagellate Pfiesteria piscicida, when actively toxic, can
kill and often consume many of its protistan grazers (Burkholder and Glas-
gow 1995; Stoecker et al. 2002). Many of the non-thecate mixotrophic dinofla-
gellates consume cryptophytes and other phytoflagellates, their potential
competitors for light and nutrients (Li et al. 1999; Jeong et al. 2005a, 2005b).
For example, the estimated grazing impact of dense Cochlodinium poly-
krikoides blooms on cryptophyte populations is high, with the dinoflagellate
populations having the potential to remove the entire cryptophyte standing
stock within a day (Jeong et al. 2004).

Toxic haptophytes cause negative effects on a range of other planktonic
organisms. Field observations during the Chrysochromulina polylepis bloom
in 1988 in Scandinavian waters led to the hypothesis that C. polylepis toxins
severely affect other protists (Nielsen et al. 1990) and subsequent laboratory
experiments confirmed both allelopathy of C. polylepis (Schmidt and Hansen
2001) as well as negative effects on protistan grazers (John et al. 2002). Unfor-
tunately, in these studies on C. polylepis, phagotrophy was not addressed. Like
C. polylepis, Prymnesium parvum is known to severely affect other plankton
organisms, as has been shown using algal cultures (Granéli and Johansson
2003b), heterotrophic protists (Granéli and Johansson 2003a; Rosetta and
McManus 2003; Tillmann 2003) and natural communities (Fistarol et al.
2003).

14.3 Relationship of Phagotrophy to Toxicity

It is interesting that many toxic algae are phagotrophic or closely related to
known phagotrophs.Is there a relationship between phagotrophy and toxicity?
In the case of the heterotrophic Protoperidinium crassipes, it is possible that the
toxin or its precursor is derived from prey. P. crassipes feeds on other dinofla-
gellates including toxic red-tide species (Jeong and Latz 1994). However, most
mixotrophic toxic algae can be grown strictly autotrophically and retain their
toxicity, thus it is unlikely that prey are a source of toxin for these species.
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It is also possible that some toxins are involved in prey capture. Dinoflagel-
lates have been observed to “trap” or “paralyze” motile prey before they are
ingested (reviewed in Hansen and Calado 1999). Mechanical contact between
the dinoflagellate and the prey appears to usually be necessary for the prey to
be subdued. It is possible that trichocysts involved in prey capture contain
toxins as well as “sticky” material. Interactions between Pfiesteria piscicida
zoospores and their predators are interesting. Many ciliate species readily
consume non-toxic zoospores and grow well, but many types of ciliates die if
they are fed toxic zoospores (Stoecker et al. 2002). In some cases, the
zoospores then consume the ciliates (Burkholder and Glasgow 1995).

Among the haptophytes, there is good evidence that toxins are involved in
prey capture and defense against predation. The feeding frequency of Prym-
nesium parvum on motile prey is positively correlated with toxicity (Skov-
gaard and Hansen 2003). Non-motile prey is ingested at high rates irrespec-
tive of toxin concentration. Moreover, the addition of filtrate of a toxic
Prymnesium culture to a dilute (and low toxic) P. parvum culture with an ini-
tial low feeding frequency also results in an increase of feeding frequency on
motile prey. Toxicity has also been shown to be a key factor in determining the
interaction of P. parvum with protistan grazers (Granéli and Johansson 2003b;
Tillmann 2003). Whereas low toxicity P. parvum is a suitable prey for the het-
erotrophic dinoflagellate Oxyrrhis marina, the dinoflagellate is rapidly killed
by P. parvum at high toxicity levels. Moreover, under these conditions the for-
mer predator (O. marina) is ingested by P. parvum, thus reversing the normal
direction of grazing interactions (Tillmann 2003).

In contrast to Prymnesium with its short and stiff haptonema, species of
Chrysochromulina have a longer and mostly flexible haptonema that may be
involved in the feeding process by capturing and transporting prey to the
cytostome positioned in the posterior end of the cell (Kawachi et al. 1991;
Kawachi and Inouye 1995). In addition, in some species of Chrysochromulina,
spine scales may have a functional role in food capture (Kawachi and Inouye
1995). The potential role of Chrysochromulina toxins in phagotrophy, how-
ever, is unknown. Both Chrysochromulina and Prymnesium species have
organelles that can quickly discharge mucus, but the chemical composition of
the mucus is not known (Green et al. 1982; Estep and MacIntyre 1989). It is
tempting to speculate that muciferous bodies may be involved in phagotrophy
as discharge was observed when certain other protist species were added to
cultures of the phagotrophic Chrysochromulina ericina (Parke et al. 1956). It is
not known if toxicity is related to mucus discharge in some species.

It seems likely that phagotrophy and the need to “trap” or “paralyze” prey is
related to the evolution of toxicity in at least some toxic phytoplankton. Pro-
duction of toxin by Pfiesteria spp. and immobilization of fish may be an
extreme example of this phenomenon (Hansen and Calado 1999), but it may
also occur with more subtlety and routinely during predation on protistan
prey. A possibly related observation is that toxicity of some, but not all,
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dinoflagellates and haptophytes increases when they are nutrient limited (see
Chap. 18 Granéli and Flynn, this book). In many mixotrophic dinoflagellates
and haptophytes, nutrient limitation stimulates feeding (Li et al. 2000; Smalley
et al. 2003; Legrand et al. 2001). A connection between toxicity and feeding
might explain the link between toxicity and nutrient limitation. However, in
some cases, toxicity and feeding are not linked; for example, Karlodinium
micrum grown as an autotroph in the absence of prey or as a mixotroph with
prey do not differ in toxicity (Deeds et al. 2002).

14.4 Significance of Phagotrophy

The recognition that many toxic phytoplankton are phagotrophic challenges
traditional approaches to investigating the physiological ecology and com-
munity ecology of harmful algal blooms. Most of our estimates of the maxi-
mum growth rate of harmful algae are based on laboratory studies using
monocultures. Phagotrophy can more than double the growth rates of some
harmful algae. For many taxa we have probably underestimated their poten-
tial growth rates in nature. Phagotrophy is also important to consider in
regard to inorganic nutrient acquisition—phagotrophs can acquire elements
from prey under conditions that would appear limiting based on uptake
kinetics for dissolved N, P and Fe. Some toxic algae may be obligate
phagotrophs, and perhaps by providing suitable prey we may be able to culti-
vate them, and thus be able to investigate toxin production and other aspects
of their physiological ecology.

It is also important to take phagotrophy into account in order to under-
stand toxicity and its variability. Toxicity often declines in culture. If toxins
are involved in prey capture or defense against predators, then it is likely that
growth in monoculture should select against toxicity. In some cases, it is pos-
sible that toxic algae acquire their toxins (or the precursors) from prey and
this needs further investigation, particularly for heterotrophic species.

The phagotrophic tendencies of dinoflagellates and haptophytes also may
partially explain some of the puzzling aspects of their bloom dynamics and
population ecology. Many different types of phytoplankton grow rapidly in
response to a combination of light and nutrients, but most do not form mono-
specific blooms. The ability of some phagotrophic mixotrophs to eat their
competitors must contribute to their ability to monopolize resources. The
dynamics of some harmful algal blooms are unusual in that high cell densities
tend to persist after nutrients are exhausted. Phagotrophic mixotrophs may
survive because they are able to eat to obtain limiting elements.

Phagotrophy is not an isolated aspect of the physiological ecology of phy-
toplankton; in many taxa it may have coevolved with other capabilities such
as the ability to use dissolved organic material and allelopathic tendencies.
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Several authors, perhaps beginning with Estep and MacIntyre (1989) have
suggested that some algal toxins may immobilize, make “leaky” or kill other
types of cells in the plankton as part of a nutritional strategy. Allelochemicals
may reduce competition or predation, but they can also make resources avail-
able. Phagotrophy is one of the elements in the interconnected bag of tricks
that lets certain species of phytoplankton dominate resources in the plankton
and form toxic or high biomass harmful blooms.
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