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Abstract. This paper proposes a new method of building information
extraction rules for Web documents by exploiting a user interface agent
that combines the manual and automatic approaches of rule generation.
We adopt the scheme of supervised learning in which the interface agent
is designed to get information from the user regarding what to extract
from a document and XML-based wrappers are generated according to
these inputs. The interface agent is used not only to generate new ex-
traction rules but also to modify and extend existing ones to enhance the
precision and the recall measures of Web information extraction systems.
We have done a series of experiments to test the system, and the results
are very promising.

1 Introduction

Information extraction is the task of obtaining a particular fragment of a doc-
ument that is relevant to the user interest. In general, information extraction
is difficult mainly due to the heterogeneity inherent in different information
sources. For example, Fig. 1 shows two different display styles of conference
CALL FOR PAPERS pages, one with the list style and the other with the table
style.

In order to cope with structural heterogeneity, the information-extraction sys-
tems usually rely on extraction rules tailored to a particular information source,
often called the wrappers. In the previous methods of information extraction
for semi-structured Web documents, wrappers are generated manually or auto-
matically. In the manual wrapper generation method, the wrapper is written
by a human expert who analyzes documents and builds rules. ARANEUS [1]
and TSIMMIS [3] are the example systems that adopt the manual approach.
The manual method reveals highly precise performance, but generally it is not
scalable and effective.

On the other hand, the automatic method is known as the wrapper induc-
tion [4] in which the agent program analyzes a set of example documents and pro-
duces a wrapper through learning. Automatic wrapper induction can be based
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Fig. 1. Example of heterogeneous information sources.

on either heuristics or domain knowledge. Heuristic wrapper induction uses sim-
ple heuristics, e.g. a dollar sign followed by a digit such as $250 denotes the price
information, to recognize the pattern of the target information. This approach
has been adopted by most traditional wrapper-based information extraction sys-
tems such as SHOPBOT [2], STALKER [5], WHISK [6], and MORPHEUS [8].
Knowledge-based wrapper induction tries to solve the ineffectiveness of naive
heuristics by defining and applying the domain knowledge during wrapper gen-
eration. Knowledge-based approach is expected to extract more features from the
document than the heuristic approach. We have implemented knowledge-based
information extraction systems named XTROS [9] and XTROS+ [10]. Overall,
the automatic wrapper-generation method is scalable and effective than the man-
ual one, but it also has difficulty in generating correct rules due to the diversity
and the heterogeneity of Web information structures. Also, the generated rules
are sometimes unreliable.

To take advantage of both the preciseness of manual extraction-rule con-
struction and the scalability of wrapper induction, this paper proposes a new
method of building information extraction rules for Web documents through the
user interface agent. This method combines manual and automatic approaches
of rule generation. We adopt the scheme of supervised learning in which a user
interface agent is designed to get information from the user regarding what to
extract from a document and XML-based wrappers are generated according to
these inputs. The interface agent is used not only to generate new extraction
rules but also to modify and extend existing ones to enhance the precision and
the recall measures of Web information extraction systems.

This paper is organized as follows. Section 2 presents our approach of in-
formation extraction system based on the interface agent. Section 3 defines the
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format of XML-based extraction rules. The algorithms of rule learner and rule
interpreter are described in Section 4. Section 5 assesses the system with some
experimental results. Finally, Section 6 concludes with the summary and future
direction.

2 Interface Agent

The system architecture of the information extraction system we are proposing
is shown in Fig. 2. In this system, the user inputs are obtained and converted
into training examples through the interface agent. The rule learner, also called
the wrapper generator, analyzes the training data and produces information
extraction rules. These rules play the role of the wrapper and stored in the
rule repository. The rule interpreter executes the learned rules for real Web
documents to extract the target information.

The interface agent acts as a mediator between the user and the rule learner
in the task of recognizing the category of each data fragment to be extracted.
In order to do this, the interface agent provides an environment in which the
user can easily assign a category to a user-selected data item. As a result of a
series of interactions via the interface agent, training examples are produced and
supplied to the rule learner. The interaction between the user and the interface
agent is accomplished by the drag-and-click action of the mouse and the popup
menu, which enables the user to select a data item to be extracted and assign a
category to it.

Fig. 2. The architecture of an information extraction system with an interface agent.
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Fig. 3. Interface agents with popup menus.

A running example of the interface agent with the popup menu is shown in
Fig. 3. The user first selects a data fragment from a Web document displayed in
the interface by dragging it with the mouse. (In our example, a phone number
is selected.) Then, the user clicks the right mouse button to bring up a special
menu that enables the user to assign a category to the data item by selecting
the Slot-Name menu and typing in a proper slot name in a dialog box. (In our
example, phone number would be an appropriate slot name.) Finally, when the
user selects the Target-Data menu, the data item is automatically associated
with the slot name and stored as a training example. The interface agent also
delivers the trigger information to the rule learner. A trigger is the symbol or
word that helps to recognize the role of the target data item. In this example,
the trigger for the phone number slot might be TEL, Tel, or Telephone. Triggers
and slot names are determined according to specific application domains.

In short, the interface agent is required to have the following capabilities:
recognition of mouse events initiated by the user, convenient display of Web



An Interface Agent for Wrapper-Based Information Extraction 295

Fig. 4. Format of information extraction rules.

documents, and acceptance of user feedback. To facilitate these functions, the
interface agent is implemented by extending popup menus of a Web browser(in
our paper, the Microsoft Internet Explorer) and by employing a proxy server.
Extending popup menus to the browser is realized by adding new events to
the context menu of the Internet Explorer in the MS Windows registry. Once
extending the popup menus, the user input committed to the interface agent is
delivered to the proxy server that relays information to the rule learner. Likewise,
all the menu handling events are processed in the proxy server.

3 IE Rule Format

Information extraction rules are written in XML for readability and maintain-
ability. The format of rules used in this paper is shown in Fig. 4.

An extraction rule corresponds to a single domain. A rule consists of a set
of slots with different slot names, and each slot consists of a set of information
patterns. An information pattern, denoted by the <pattern> element, is the
smallest unit of a rule, and is obtained from the user input. Patterns are incre-
mentally added to a slot as more user inputs come, and the learning is performed
based on this pattern information.

The <pattern> element consists of several subelements including <id>,
<type>, <trigger>, and <format>. Among these, the value for <trigger> is
obtained from the user input, and other values are determined automatically by
analyzing the data. The <id> element denotes the identifier of a pattern. The
<type> element indicates the structural type of the target data, and is defined as
either TOKEN or PHRASE. Here, TOKEN means the target data must be separable as
a single token in the document sentence, and PHRASE means the target consists of
multiple words and the correct data can be extracted by partial matching. The
<trigger> element plays the role of delimiter to determine whether the current
rule should be applied to the target sentences. Only one trigger is assigned for
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Fig. 5. An example rule for job advertisement.

each pattern, but each slot may be associated with several triggers. This phe-
nomenon handles the situation where particular information can be expressed
differently with various terms. The <format> element describes the position of
the target data and its structural characteristics. Here, [TRIG] is the reference
to a <trigger> element in a pattern, TARG is the target information to be ex-
tracted, and {String} is a string that should be included in the target data or
in the sentence. <format> is used in analyzing strings in the rule interpreter,
and the system is able to extract the right information from a wide range of
documents by defining multiple <format> elements.

Figure 5 is an example of information extraction rules generated from a real
Web site for job advertisement. In this rule, the first pattern is related to the
company name, and the second pattern is for the application submission period.
As you can see in this rule description, the <trigger> element acts not only
as the initiator of sentence analysis, but also as a delimiter that indicates the
existence of a particular slot data by redescribing it in the <format> element.

4 IE Rule Learner and Rule Interpreter

The rule learner produces patterns of information extraction rules from the user
inputs obtained through the interface agent. The information provided by the
interface agent includes slot names, target data, and trigger information. By
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Fig. 6. Pattern learning algorithm by using the covering algorithm.

analyzing these data, the rule learner first determines whether the type of target
data is TOKEN or PHRASE, and sets the value of the <type> element accordingly.
Then, the rule learner finds the trigger and input data, identifies the relationship
between the two, and sets the value of the <format> element. For example, in
a document sentence TEL: 031-400-5666, if the target data is 031-400-5666 and
the trigger is TEL, the value of <format> should be [TRIG]: TARG.

Basically, the rule learner uses a covering algorithm. In this algorithm, a set
of training documents are collected, and every time a new pattern is produced,
the learner calculates the covering value of the pattern. Here, the covering value
of a pattern is the number of training documents from which the system can ex-
tract the target information successfully by using the pattern. According to this
covering value, the learner decides whether the new pattern should be accepted
or rejected. In our system, the threshold of covering value for accepting a new
pattern is set to 2. Figure 6 describes the pseudo-code of pattern learning by
using the covering algorithm.

The rule interpreter executes the rules obtained by the rule learner to ex-
tract the target information from real documents. The rule interpreter works
as follows. First, the test documents are reconstructed as a set of sentences.
Next, each sentence is analyzed to determine whether the trigger words occur in
the sentence. Only the sentences that contain the triggers are selected, and by
applying the value of the <format> element, it is determined if the structural
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Fig. 7. A running screen of the rule interpreter.

characteristics of the target data is matched with the rule. If the matching is
successful, TARG part which indicates the correct target data is extracted as a
result.

The rule interpreter is implemented by using the XML DOM parser and
the Java language. Figure 7 shows a running screen of the rule interpreter. In
this figure, the left pane of the window shows the hierarchical structure of the
generated XML rule, and the right pane shows the preprocessed document at
the top and the result of information extraction at the bottom.

Rules are verified and refined by using the WEKA module [7] that uses the
decision tree method. The rules are reconstructed by using the decision tree, and
by this way, new rules can be generated. Adding new rules generated from the
decision trees to the rule repository enhances the precision and recall measures.
Also, the original rules can be verified by re-generating them by decision trees.
Furthermore, learned rules can be modified by WEKA if they are not matched
with the newly generated rules.

Figure 8 shows the input data including rules and sample data used by the
WEKA module to produce decision trees. The attributes are those used in ex-
tracting slot values from learned patterns, and the data is produced by the rule
interpreter.
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Fig. 8. Rules and data used by the WEKA module.

5 Experimental Results

Performance of our system is evaluated for a collection of documents in three
domains: online bookstores(Book), job advertisements(Job), and conference call
for papers(CFP). For the Book domain, we choose 32 bookstores in the Internet,
and collect five search-result pages from each store. Collected documents are
divided evenly into training and test sets. For this domain, we extract the author,
the publisher, and the price information. A similar document-collecting process
is done for the Job domain, and we extract four kinds of target information
including the company’s name, phone number, and email address, and the job
application deadline. For the CFP domain, we select the first 100 documents from
the search results of Google for the conference call for papers, and divide them
into 50 training documents and 50 test documents. The target information in this
domain includes the submission deadline, the date for acceptance notification,
and the date for camera-ready version submission.

Figure 9 shows the precision and recall measures for the three domains. For
the Job domain described in Fig. 9(a), the precision and recall values are both
over 80 percent in average. In particular, the measures are over 90 percent for
the email address attribute, since there are only a few number of trigger words
and also the format of the target data is limited, which makes the recognition
easier. Since a single trigger exists for each pattern, the precision and recall
measures get higher as there are more patterns. In the case of the phone number
which is mostly represented in digits, the chances are that it can be mistakenly
recognized as the submission deadline. In this case, the triggers play crucial role
in distinguishing the two kinds of data.

Fig. 9(b) depicts the result for the CFP domain. Here, the measures for the
paper submission deadline are good, so are the date for acceptance notification.
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Fig. 9. Experimental results for three domains.

But, the recognition of the date for camera-ready submission is not done well,
since the word final version which rarely occurred in the training documents
appeared frequently in the test documents. This is the result of overfitting of
learning algorithm to the training data. To remedy this, we have used the WEKA
module that performs the learning processing again to enhance the extraction
performance of the system. In this case, by adding the word final as a new trigger
in WEKA, the measures for the camera-ready attribute get better while the
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Fig. 10. Experimental results by using the WEKA module.

results for other attributes remain unchanged. This is reflected in the up-camera
part of the figure, whereas camera-re indicates the original result.

To evaluate the effect of rule refinement by using the WEKA module more
specifically, we test the system by adding new patterns obtained from the decision
tree structure of WEKA to the original learned rules. The result is shown in
Fig. 10. We found that in average only one or two new patterns are added to
the original rule, which are effective enough to contribute to the improvement
of 6% in recall and 1% in precision.
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6 Conclusion

We have presented a new method of building information extraction rules for
Web documents through the user-interface agent. This method combines the
manual and automatic approaches of rule generation, and adopts the scheme of
supervised learning in which a user interface agent is designed to get information
from the user regarding what to extract from a document, and XML-based
wrappers are generated according to these inputs.

In a prototype system that we have implemented, the user inputs are ob-
tained and converted into training examples through the interface agent. The
rule learner analyzes the training data and produces information extraction rules,
and the rule interpreter executes the learned rules for real Web documents in
order to extract the target information. Our prototype system shows good per-
formance for a collection of documents in three different domains.

One of the limitations of our approach is that the triggers have to be rigour-
ously handled, which means that the word comprising the trigger must be exactly
matched to activate it. To resolve this, we are working on managing a semantic
ontology for each domain to facilitate the semantic matching of trigger words.
Also, we plan to employ a learning method that uses both positive examples and
negative examples to avoid overfitting.
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