
Specification and Design
of Multi-agent Applications Using Temporal Z

Amira Regayeg1, Ahmed Hadj Kacem1, and Mohamed Jmaiel2

1 Faculté des Sciences Économiques et de Gestion de Sfax,
B.P. 1088, 3018 Sfax, Tunisia

{Amira.Regayeg,Ahmed}@fsegs.rnu.tn
2 École Nationale d’Ingénieurs de Sfax,

B.P.W., 3038 Sfax, Tunisia
Mohamed.Jmaiel@enis.rnu.tn

Abstract. This paper proposes a formal approach, based on stepwise
refinements, for specifying and designing multi-agent applications. This
approach provides a specification language which integrates temporal
logic in the Z notation allowing, in this way, to cover static, behavioural,
as well as dynamic aspects of multi-agent systems. Moreover, it proposes
a methodology giving a set of hints and principles which help and guide
the design process. Indeed, this methodology enables the user to develop
step by step, in an incremental way, an implementation starting from
an abstract requirements (goal) specification. Finally, we illustrate our
approach by developing an agent based solution for the pursuit problem.

1 Introduction

A multi-agent system is defined as a set of autonomous and distributed enti-
ties which cooperate in order to reach a common objective. This cooperation
is essentially based on the exchange of data between these entities, on the one
hand, and on the coordination of their activities particularly when they access
to shared resources, on the other hand. In order to handle these aspects, auton-
omy, communication and coordination, the development of a multi-agent system
should follow two ways diametrically opposite but closely dependent. The first
focuses on the internal structure of agents (intra-agent), whereas the second
concentrates only on the interactions between them (inter-agent). Considering
intra-agent as well as inter-agent aspects makes the development of multi-agent
systems an intricate task. Hence, mastering this complexity requires the appli-
cation of rigourous approaches of software engineering.

In this paper we propose an approach which aims to facilitate the devel-
opment of multi-agent applications while mastering its complexity. In order to
achieve this objective, we follow two complementary principles of formal software
design. The first principle stresses the need of a requirements specification phase.
This phase makes use of formal specifications in order to perform rigourous rea-
soning. The second principle puts the emphasis on the formal design, in order
to ensure the correctness of the design specification with respect to the require-
ments one. Our design process is based on stepwise refinements enabling us to

M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 228–242, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Specification and Design of Multi-agent Applications Using Temporal Z 229

construct a detailed design specification, step by step, starting from an abstract
requirements one. Doing so, we will be able to better follow the evolution of the
design specification. In this context, refining a specification means enriching it,
in the sense that it becomes closer to the implementation. An abstract speci-
fication may leave some design decisions open, which will be resolved in later
refinement steps [8]. In order to guarantee the correctness of the design specifi-
cation the refinement steps should preserve the properties of the applications to
be developed. Accordingly, it is very important to define a refinement relation
which states if a specification implements another.

In our approach, we suggest a formal specification language which allows
to cover individual (static and behavioural) aspects of agents such as knowl-
edge, goal, and role, as well as collective aspects of a multi-agent application
like interaction protocols, organization structure and planning activities. This
language is an integration of a first order temporal logic [5] in the framework
of the Z notation [7]. In order to provide a formal interpretation for our tempo-
ral operators we suggest an operational semantics for multi-agent applications
in terms of sequences of system states. The definition of this temporal model
within the Z notation enables us to make use of tools supporting pure Z no-
tation, such as Z/EVES [6]. These tools allowed us to perform syntax, type,
and domain checking of our specifications as well as to reason about them by
proving interesting properties. In the context of Z notation, a specification of
a data structure includes two types of schemas in order to describe data and
the operation on them. Generally, the refinement of such a specification requires
data refinement as well as operation refinement respectively for data schema
and operation schema. Since we do not use operation schemas (called also ∆
schemas), we are only interested in refining Z schemas including data as well as
behavioural description in terms of temporal properties. Accordingly, we define
an appropriate data and behavioural refinement relation which extends the data
one presented in [9].

This paper is organized as follows. Section 2 defines the specification language
and its semantics. Then, in section 3 we present our development methodology.
Thereafter, we illustrate our approach by developing a multi-agent solution for
the pursuit problem. Finally, we conclude this paper with some future perspec-
tives.

2 The Specification Language

We consider a multi-agent application as a collection of components which evolve
in a continuously changing environment containing active agents and passive ob-
jects. Accordingly, the specification of a multi-agent application includes descrip-
tions of the environment, the behaviour of individual agents (intra-agent), and
the communication primitives as well as the interaction protocols (inter-agent).
In addition, we may add to the collective part a description of the organizational
structures and planning activities.

For the specification of multi-agent applications, we use an integration of
temporal logic in Z schemas.



230 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

2.1 The Z Notation

The Z notation, as presented in [7], is a model oriented formal specification
language which is based on the set theory and the first order predicate logic.
This language is used to describe an application in terms of states which may
change. A basic type is defined using one or several basic types. The definition
of a composed type, with a collection of objects, needs a schema language. The
latter is used to structure and to compose such specifications: collecting objects,
encapsulating them, and naming them for reuse. A schema consists of two parts:
a declaration part and a predicate part constraining the values of the declared
variables. A Z schema has the following form:

SchemaName
Declaration

Predicate, . . . , Predicate

2.2 The Temporal Logic

The linear temporal logic, as presented by Manna and Pnueli [5], is suitable
for the specification and the verification of concurrent and interactive systems.
Actually, there is a variety of temporal operators that can be used to express
agents behavioural properties. However, all these operators can be defined in
terms of two basic operators. In this paper, we make use only of the necessary
operators for development of our multi-agent applications. In the following, we
briefly present these operators with an intuitive explanation. Let P be a logical
or a temporal formula:

�P P holds “now”1 (� may be omitted);
� P “always P”, i.e. P holds for the present and for all future points in time;
♦P “eventually P”, i.e. P holds at some present or future point in time;◦P “nexttime P”, i.e. P holds at the next point in time.

In order to integrate these temporal operators in the framework of the Z lan-
guage, we give the following definition of temporal formulas according to the
syntax of Z. We distinguish simple predicate formulas (formula), which are
closely related to the application to specify, and temporal formulas (Tempfor-
mula) which connect predicate formulas with temporal operators.

Tempformula ::= 〈〈formula〉〉 | ◦ 〈〈Tempformula〉〉 | � 〈〈Tempformula〉〉 |
♦ 〈〈Tempformula〉〉 | � 〈〈Tempformula〉〉

We will see later that these operators are sufficient to express interesting prop-
erties of multi-agent applications.

1 We explain the operators while being based on a concept of “time”, but really the
fundamental notion is the one of causality.



Specification and Design of Multi-agent Applications Using Temporal Z 231

2.3 The Time Model

The basic unit of the underlying time model is the agent state. Let [State] be
the set of possible agent states. We define an entity state (Entstate) as a pair
of a state and a point of time, where the time is specified as the set of natural
numbers (Time == {x : N}):

Entstate
time : Time
state : State

A system state (Syststate) is defined as the union of all agents states:

Syststate
syststate : FEntstate

A time structure (StrTime) is defined as an axiomatic function that associates
to each point of time the corresponding system state:

StrTime : Time → Syststate

∀ t : Time • ∃ s : Syststate • ∀ e : Entstate | e ∈ s .syststate •
StrTime(t) = s ⇔ e.time = t

Based on this time structure we will be able to interpret any temporal formula.

2.4 The Semantics of Temporal Formulas

In this section, we define an evaluation function that associates the value true
or false to any temporal formula. This step is very significant since it enables to
translate temporal formulas into the pure Z notation2. In this way, it becomes
easy to use the verification tools, such as Z/EVES or Isabelle, which accept
the standard syntax of Z. First, we provide an axiomatic function (Eval) which
evaluates a simple formula in a given system state:

Eval : formula × Syststate → bool

Next, we define a similar axiomatic function for temporal formulas. This func-
tion gives a formal interpretation for the temporal operators � , � , ♦ , and ◦
with respect to a given time structure. For each operator, the recursive function
TempEval defines a predicate which matches its intuitive meaning. In the fol-
lowing Z schema we present only the predicate defining the “always” operator.
The predicates defining the other operators are similar.

2 It should be stressed that temporal operators do not extend the expressive power of
the Z notation based on the first order predicate logic.



232 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

TempEval : Tempformula × StrTime → bool

∀ f : Tempformula • ∀ t : Time • ∀ tt : Time | tt ≥ t • ∀S ,SS : Syststate •
TempEval(� f , (t ,S )) = T ⇔ SS = StrTime(tt) ∧

TempEval(f , (tt ,SS )) = T

Finally, in order to integrate the temporal operators in their usual notations (i.e.
� for always) in the Z schema it is necessary to introduce them as axiomatic
functions defined with the help of the interpretation function TempEval. In this
way, we establish a logical equivalence between a temporal operator and the cor-
responding predicate specified in the above function TempEval. This equivalence
is described for the � operator as follows:

[Tempformula]
� : Tempformula → bool

∀ f : Tempformula • ∃ present : Time • ∀ t : Time | t > present •
∃S : Syststate • � f = T ⇔ S = StrTime(t) ∧
TempEval(� f , (t ,S )) = T

The other temporal operators are introduced with similar axiomatic functions.

3 Formal Design Approach

In order to be useful, a formalism or a set of tools have to be supported with a
specification approach. This approach should provide some principles that help
and guide the specification process. In this section, some of those principles are
clarified.

Indeed, our approach is based on three principal phases. The first one is a
specification phase in which we describe, in an abstract way, the user require-
ments. The second one is a design phase based on a succession of refinements
in terms of collective behaviours (inter-agents) as well as individual behaviours
(intra-agent). The requirements specification is thus presented by Z schemas
which language is extended by temporal logic. The third phase consists of per-
forming verification tasks by formulating and reasoning about the main proper-
ties of the multi-agent application to be developed.

3.1 Specification Phase

Generally, in this first phase we specify the requirements which correspond, in
the context of multi-agent, to the common objective they have to achieve. It
should be stressed that we are not interested, at this stage, in the manner of
achieving this goal. In our approach, this stage includes also the description of the
environment in which the agents evolve. This environment includes, generally,
the work area, the passive objects, and the active entities representing the agents
to be employed. The requirements specification is thus presented by a set of Z
schema which properties language is extended by temporal logic.



Specification and Design of Multi-agent Applications Using Temporal Z 233

1. Specification of theActiveEntities: The description of an active entity (agent),
at specification phase, consists in presenting, in terms of temporal formula, its
static and dynamic original properties. These properties are the information
acquired on the agents at the beginning. This description is given by a Z
schema which declares the entity attributes, defines its static properties, in
term of predicate logic, and its behavioural properties, in term of temporal
logic.

Entity
atr1 : Type1, atr2 : Type2 . . . atrm : Typem

Spr1, . . . , Sprn
Cpr1, . . . , Cprn′

Where atri corresponds to an attribute, Spri represents a static property and
Cpri represents a behavioural property.

2. Specification of the Environment: The environment includes active entities
(agents) as well as passive entities belonging to the operating field. This
specification is given by a set formulas making in relation passive entities
with those which are active. Generally, this leads to Z schema of the form:

Environment
obj1 : TypeObject1, obj2 : TypeObject2, . . . , objk : TypeObject1
Entities : set of Entity

Pr1, Pr2, . . . , Prl

Where obji corresponds to a passive entity, Entities represents a set of entities
where cardinality is unknown at the beginning, and Pri represents a temporal
formula.

3. Specification of the Requirements: This specification describes what we require
from the system to develop. In the context of multi-agent, this corresponds
to formulate, in term of temporal formula, a future environment state to be
reached. According to the Z approach, such a specification is well expressed
by a specialization of the schema specifying the environment. Generally, re-
quirements specifications have the following form:

Spec
Environment

Tpr1, Tpr2, . . . , Tprn

Where Tpr1 represents a temporal formula.

3.2 Refinement Phase

The basic idea consists in performing a succession of refinements in terms of
specializations of Z schemas (data refinement) and deriving of temporal formulas
(behaviour refinement).



234 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

Refinement Relation. First of all we define a refinement relation between
specifications telling if a specification implements another. In the context of Z
notation, we adopt the � relation defined in [9] with some restrictions. Concern-
ing the data refinement, a schema Sj refines another schema Si (written Si � Sj )
if and only if the attributes of Si are included in the declaration part of Sj . This
inclusion of attributes can appear following a schema inclusion (Sj schema) or
by a new declaration of these attributes (S ′

j schema):

Si

Att1 : Type1

Att2 : Type2

Operations

Sj

Si (schema inclusion)
Att3 : Type3

Operations

S ′
j

Att1 : Type1 (attribute of Si)
Att2 : Type2 (attribute of Si)
Att3 : Type3

Operations

Concerning the behavioural part which is specified in terms of temporal for-
mulas the refinement relation is defined between temporal specifications. For
this purpose, we adopt the refinement relation applied in [3] for designing com-
municating protocols using algebraic and temporal specifications. A temporal
specification (set of temporal formulas) TSpec = {F1, F2, . . . , Fn} refines an-
other one TSpec′ = {F ′

1, F ′
2, . . . , F ′

m}, written TSpec′ � TSpec, if every formula
F ′

i in TSpec′ could be derived from TSpec, denoted TSpec � F ′
i , that is the

validity of F ′
i could be inferred from the validity of the formulas in TSpec using

the calculus of the first order temporal logic.

Refinement Process. The refinements are carried out at two complementary
levels. The first, is the environment level which will be augmented by properties
referring, primarily, to collective aspects (inter-agent) characterizing, in particu-
lar, organization and communication structures. The second level rather stresses
on the individual aspects (intra-agent) by extending the specifications of the
active entities provided in the first phase. The extensions of individual speci-
fications have to remain consistent with the extensions made at the collective
level.

Collective Level: Here we invent a suitable organization structure as well as a
communication topology for the system to be developed. An organization struc-
ture assigns a role for each active entity belonging to the system. Furthermore,
it implicitly defines a control strategy to be respected by these entities. This
structure is, generally, defined in terms of temporal formulas referring to several
entities at the same time. A sequence of Z schemas will be then generated:

Implementation1, Implementation2, . . . , Implementationn



Specification and Design of Multi-agent Applications Using Temporal Z 235

The first schema corresponds to a direct refinement of the environment specifi-
cation. It is of the form:

Implementation1

Environment

Org1, Org2, . . . , Orgk

Where Orgi is a temporal formula that assigns roles to one or many entities.
These formulas correspond to design decisions describing an organization struc-
ture. Each Z schema implementationi (i > 1) is a refinement (specialization) of
the previous one implementationi−1. These intermediate schemas may contain
design decisions related to the communication topology and actions. It is obvi-
ous that the last schema implementationn is, by transitivity, a refinement of the
initial environment schema.

Individual Level: Here we make use of the choices made at the collective level
in order to refine, step by step, the internal structure and the behaviour of each
agent. For each entity, we develop a succession of refinements as follows:

EntityImpl1, EntityImpl2, . . . , EntityImplm

The first schema is an immediate refinement of the retained one at the specifi-
cation phase. This schema is of the form:

EntityImpl1
Entity

Behav1, Behav2, . . . , Behavl

Where Behavi is a property describing a design decision related to the behaviour
of the considered entity. These properties are given by individual temporal for-
mulas referring to only one entity. Hence, each intermediate schema Entityimpli
is a refinement of the diagram Entityimpli−1. The design phase leads to a de-
tailed specification of the environment and detailed behaviours of the active
entities. The refinement specification corresponds to the schema for the environ-
ment (Environment) extended with the union of the properties added at both
collective and individual levels.

3.3 Verification Phase

This phase allows to reason, according to the Z notation combined with temporal
logic, about the schemas developed during the specification phase. Essentially,
we are interested in proving the consistency and the completeness of the global
specification resulting from the composition of the agent’s individual specifica-
tions. On the basis of a set of abstract properties, which are specific to the
application to be developed, we try to check the mentioned properties of consis-
tency and the completeness of the global specification. Generally, we develop a
schema Z which gathers a set of global and abstract properties:



236 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

Spec
Environment

Tpr1, Tpr2, . . . , Tprn

Where Tpr1 represents a temporal formula. It is very important to use automatic
tools which support the proof of the desired theorems. The temporal logic model
that we proposed in the previous section makes possible the use of automatic
tools, such as Z-Eves [6], while integrating temporal formulas in our specifications
and theorems.

4 Case Study: The Pursuit Problem

We illustrate our approach by specifying a multi-agent solution for the pursuit
problem. This application includes one prey and four predators. The prey moves
randomly on a grid without perception of its environment. The predators coop-
erate to capture the prey using their perception and communication abilities.

Initially, each predator moves independently of the others. As soon as one
predator perceives the prey, it follows the prey until its capture from the nearest
side. This predator, which will play the supervisor role, will regularly inform the
others about the current prey position. From this moment and based on the re-
ceived information, each predator tries to capture the prey from the appropriate
side, according to its position on the grid.

4.1 Specification Phase

Specification of the Environment: A box on the grid is defined by its ab-
scissa and ordinate.

Box
abs : N

ord : N

abs ≥ 0 ∧ ord ≥ 0

The basic concept, Entity, is characterized by its state (Entstate). So, we specify
formally the entity state by the position (pos) that it occupies on the grid at a
given time point.

Entstate
time : Time
pos : Box

A system state (Syststate) is defined as the union of the states of all agents:



Specification and Design of Multi-agent Applications Using Temporal Z 237

Syststate
syststate : FEntstate

An Entity is able to move randomly (ChangePos) on the grid. However, it can
make at most one step (to the left, the right, the south, or the north) at a
moment. This ability is formally specified in the following schema:

Entity
state : Entstate
ChangePos : Box × Box → bool

∀ s1, s2 : Box | s1 = state.pos • ∃ i , j : N | i ∈ {0, 1,−1} ∧ j ∈ {0, 1,−1}
∧ (i = 0 ∨ j = 0) • ChangePos(s1 , s2) = T ⇔ s2.abs = s1.abs + i ∧

s2.ord = s1.ord + j
∀ s1, s2 : Box | s1 = state.pos • nextChangePos(s1, s2) = T

As mentioned in the previous section, atomic formulas are, generally, specific
for the application to specify. So, we define, in the following, the set of atomic
formulas relating to our application. An atomic formula may be a predicate
describing an entity state. Formally:

formula == {predicate : bool} (1)

A Prey is a simple entity, whereas a Predator is able to perceive other entities.

Predator
Entity
Perception : F Entity

Perception = {e : Entity |
(state.pos .abs − 2 ≤ e.state.pos .abs ≤ state.pos .abs + 2) ∧
(state.pos .ord − 2 ≤ e.state.pos .ord ≤ state.pos .ord + 2)}

An environment is composed of a grid, a prey and four predators. It has to
meet two conditions. First, two entities cannot occupy the same box on the grid.
Second, an entity should not leave the grid. Formally:

Environment
X : N

Y : N

prey : Entity
pr1, pr2, pr3, pr4 : Predator

∀ e : Entity • (e.state.pos .abs ≤ X ) ∧ (e.state.pos .ord ≤ Y )
∀ e1, e2 : Entity • (e1.state.pos = e2.state.pos) ⇔ (e1 = e2)



238 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

Useful Definitions: In order to simplify our specifications and make them
more readable, we provide some useful abbreviations. First, we define the Side
type including exactly four values corresponding to the sides from which the
prey can be captured.

Side ::= North | South | East | West

Second, we define an axiomatic function SideCaptured testing if the prey is
captured by a predator from a given side. The following definition presents only
the predicate relating to the South side. The predicates for the other sides are
similar.

SideCaptured : Entity × Predator × Side → bool

∀ a : Entity • ∃ b : Predator •
SideCaptured(a, b,South) = T ⇔ b.pos .abs = a.pos .abs ∧
b.pos .ord = (a.pos .ord + 1)

The axiomatic function Captured abbreviates the fact that the prey is captured
from all sides by the four predators.

Captured : Entity × PPredator → bool

∀ a : Entity • ∃ b1, b2, b3, b4 : Predator •
Captured(a, {b1, b2, b3, b4}) = T ⇔ SideCaptured(a, b1 ,North) = T ∧

SideCaptured(a, b2,South) = T ∧ SideCaptured(a, b3,East) = T ∧
SideCaptured(a, b4,West) = T

Agent Actions: Before presenting the detailed specifications of the individual
and collective aspects of our application, we introduce the set of possible actions
which may be performed by a predator. We distinguish two kinds of actions:
internal and external. Internal actions are instructions enabling a predator to
update its mental state by revising its knowledge base or changing its local goal.

– Updating the knowledge base: updateBase 〈〈Predator × Box 〉〉
It consists in updating the knowledge base after receiving a new prey posi-
tion.

– Updating the goal: updateGoal 〈〈Predator × Side〉〉
Corresponds to updating the goal after receiving the information telling that
the prey has been already captured from the envisaged side.

– Updating the destination: updateDest 〈〈Predator × Box × Side〉〉
It consists in updating the attribute destination following the reception of a
captured side.

In our context, the communication actions which are considered as external are
very essential. We identified three communication actions: send, receive, and
broadcast.



Specification and Design of Multi-agent Applications Using Temporal Z 239

– Send action: send 〈〈Predator × Predator × Message〉〉
This action enables a predator to send some information to another predator.

– Diffusion action: broadcast 〈〈Predator × P Predator × Message〉〉
This action allows to broadcast the same information to a set of predators.

– Receipt action: receive 〈〈Predator × Predator × Message〉〉
This action enables a predator to receive an information sent by another
predator.

A message may inform about the prey position (Pos), it may be a request made
by a predator to the supervisor (Request), or it may be an assignment of a local
goal made by the supervisor to a predator (Assign).

Message ::= Pos〈〈Box 〉〉 | Request〈〈Box 〉〉 | Assign〈〈Entity × Side〉〉
It is very important to note that we consider in our approach synchronous com-
munication between agents. Moreover, we suppose that communication mediums
are absolutely reliable. This is formally described by the following equivalences:

∀ a, b, b1, ..., bn : Predator • ∀message : Message •
broadcast(a, {b1, ..., bn},message) = T ⇔∧

i∈{1,...,n}
receive(bi , a,message) = T

send(a, b,message) = T ⇔ receive(b, a,message) = T

4.2 Refinement Phase

In this section, we propose to design, in a first level, the individual aspect of the
application and in a second level, the collective aspect. These two levels will be
described by axioms that will be added to the schema of the predator.

Individual Aspect. During the game, the possible scenarios as well as the
different acts of communication determine the agent mental state (knowledge
base) and its future behaviour. This is represented in the different refinements
that follow:

– The predator updates its knowledge base as soon as it perceives the prey:

Predator0
Predator

∃ prey : Entity •
updateBase(prey.state.pos) = T ⇒ posprey = prey.state.pos

∀ prey : Entity • ∃ s : Syststate | prey.state ∈ s .syststate •
prey ∈ Perception ⇒◦ (updateBase(prey.state.pos), s) = T

– others updates of the knowledge base, the destination or the goal are done
due to:
• the receipt of an information about the prey position: Predator1
• the receipt of an affectation of capture side: Predator2



240 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

– Another conceptual decision concerns the speed of predator displacement.
The predator speed must be superior to the prey speed: Predator3

– Once a predator comes to capture the prey on one side, it is going to remain
there always.

Predator4
Predator3

∃ prey : Entity • ∃ side : Side •
∃ s : Syststate | prey.state ∈ s .syststate •
SideCaptured(prey, side) = T ⇒ � (SideCaptured(prey, side)), s) = T

These refinements constitute the description of the individual aspect of the
MAS. This aspect concerns the properties referring to one agent whereas the
proprieties in the collective aspect, subject of the next section, refer to many
agents.

Collective Aspect. Our methodology consists in refining, step by step, the
initial specification.
So, we give some modifications to Environment where we use the Preda-
tor4 and where we describe the Captured predicate and the communication
equivalence between send and receive actions.
• Definition of the organizational structure: In our example, we can distin-

guish between a supervisor predator (the first that perceives the prey)
and the other predators. We define, then, a supervisor schema:

Supervisor == {pr : Predator | ∃ e : Entity • e ∈ pr .Perception}
The supervisor is charged to capture the prey of the nearest side and
to distribute a request of information about the current positions of the
other predators in order to affect the remaining sides. Thus, in this stage,
a first implementation of the game is:

GameImpl0
Environment0

pr1 ∈ Supervisor

• In order to describe the communication structure, we will define the
communication acts that could take place between the different predators
referring to the following property:

a, b, b1, ..., bn : Predator
message : Message
broadcast(a, {b1, ..., bn},message) = T ⇔∧

i∈{1,...,n}
receive(bi , a,message) = T

send(a, b,message) = T ⇔ receive(b, a,message) = T



Specification and Design of Multi-agent Applications Using Temporal Z 241

We can, further, refine the conception of the game : GameImpl1 and
GameImpl2.
Finally, the receipt of the capture side, by each predator, guarantees the
sides affectation:

GameImpl3
GameImpl2

∀ pr : Predator4 | pr ∈ {pr2, pr3, pr4} • ∃ side : Side •
∃S : Syststate • pr1.receive(pr ,Pospr .state.pos) = T ⇒

♦ (pr1.send(pr ,Affect(prey, side)),S ) = T

4.3 Verification

In the verification phase, starting from a requirements specification, we try to
prove the set of the theorems that may be generated from it. The requirements
specification of the pursuit problem requires that the four predators eventually
capture the prey from all sides. This is given by the following schema:

ReqSpec
Environment

♦� Captured(prey, {pr1, pr2, pr3, pr4}) = T

To this schema leads the following theorem those we are charged to reduce to
true:

Theorem 1. axiomGameSpecFin
PreyPredSpec ⇒ ♦� Captured(prey, {pr1, pr2, pr3, pr4}) = T

The proof of these theorems has been accomplished with the Z/EVES tool.

5 Conclusion

In this paper we proposed a formal approach for the development of multi-agent
applications. Our contribution concerns, first, the definition of a formal language
which covers the static and the behavioural aspects of agents by integrating tem-
poral operators within Z notation. Then, we defined a methodology that permits
to develop, step by step, in an incremental way, a design from an abstract specifi-
cation. The investigation of the pursuit problem allowed a first illustration of our
approach. Other case studies are under realization (e.g. the conflicts control in
the air-traffic). However, it is necessary to point out that these first results, even
original and promising, constitute a modest contribution to the problematic of
multi-agent formal development. In a short term, we will proceed to automate
the syntactic verification and the semantic validation of the well constructed
specifications as well as the formal reasoning on these latest. Further, we plan to
implement a tool-kit to deal with the steps of the proposed methodology. It is
obvious that such tools must be coupled up with an environment that provides
verification and reasoning about specifications such as Z/EVES [6] or Z-Hol [4].



242 Amira Regayeg, Ahmed Hadj Kacem, and Mohamed Jmaiel

References

1. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of
dMARS. In Intelligent Agents IV: Proceedings of the Fourth International Workshop
on Agent Theories, Architectures and Languages, 1998.

2. A. El Fallah. Représentation et manipulation de plans à l’aide des réseaux de Petri.
Actes des 2èmes Journées Francophones IAD-SMA, 1994.

3. M. Jmaiel and P. Pepper. Development of communication protocols using algebraic
and temporal specifications. Computer Networks Journal, 42:737–764, 2003.

4. R. Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in
isabelle-Hol. In J. von Wright, J. Grundy, and J. Harrison, editors, 9th International
Conference on Theorem Proving in Higher Order Logics, LNCS 1125, pages 283–298.
Springer Verlag, 1996.

5. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

6. I. Meisels and M. Saaltink. The Z/EVES 2.0 reference manual. Technical Report
TR-99-5493-03e, ORA Canada, Canada, 1999.

7. M. Spivey. The Z notation (second edition). Prentice Hall International, 1992.
8. V. Von. An Integration of Z and Timed CSP for specifying Real-Time Embedded

Systems. PhD thesis, 2002.
9. J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice

Hall, 1996.


	1 Introduction
	2 The Specification Language
	2.1 The Z Notation
	2.2 The Temporal Logic
	2.3 The Time Model
	2.4 The Semantics of Temporal Formulas

	3 Formal Design Approach
	3.1 Specification Phase
	3.2 Refinement Phase
	3.3 Verification Phase

	4 Case Study: The Pursuit Problem
	4.1 Specification Phase
	4.2 Refinement Phase
	4.3 Verification

	5 Conclusion
	References



