
M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 206–216, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evaluation of a Multi-agent Based Workflow
Management System Modeled Using Coloured Petri Nets

Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

Department of Information Science, University of Otago,
P O Box 56, Dunedin, New Zealand

{tehrany,tonyr,mpurvis}@infoscience.otago.ac.nz

Abstract. Workflow management systems (WfMS) should address the needs of
rapidly changing business environments. We have built a multi-agent based
framework, JBees, which addresses these needs. We evaluate our agent-based
workflow system, which employs coloured Petri net workflow modeling, with
the proposed standards for various workflow patterns and communication pat-
terns. The coloured Petri net models support the workflow patterns and the
agent-based framework supports the communication standards developed by the
Foundation for Intelligent Physical Agents (FIPA). The agent-based communi-
cation technology patterns along with the workflow patterns equip the work-
flow management system with a comprehensive set of capabilities, such as
adaptability and distribution.

1 Introduction

Most of the commercially available workflow management systems do not offer suf-
ficient flexibility for distributed organizations that participate in the global market.
These systems have rigid, centralized architectures that do not operate across multiple
platforms [8]. Employing a distributed network of autonomous software agents that
can adapt to changing circumstances would result in an improved workflow manage-
ment system technology. In the past, workflow management systems (WfMS) were
used in well-defined activities, such as manufacturing, where the processes tend to be
more established and stable. But in the current climate WfMS may be used for more
fluid business processes, such as e-commerce, or in processes involving human inter-
actions, such as the software development process. In such situations it is not always
possible to predict in advance all the parameters that may be important for the overall
processes. This gives rise to the need for adaptive WfMS. Our previous work ([2] and
[17]) describes issues addressed by our agent-based framework JBees.

In this paper we evaluate our agent based workflow system, JBees, in two ways.
We first evaluate our system for various workflow patterns. Secondly we compare the
communication patterns supported by our system. These comparisons are made with
reference to the patterns described in previous work by van der Aalst ([10], [11], [12],
[13], [14] and [15]). The paper is organized as follows. Brief descriptions of various
notations used and our agent-based framework are given in Section 2. The third sec-
tion describes how we evaluate our system using various workflow and communica-
tion patterns. The concluding remarks are presented in the fourth section.

Evaluation of a Multi-agent Based Workflow Management System Modeled 207

2 System Technology Background

In this section we discuss system technologies on which our work is based, which
includes (a) the use of coloured Petri nets, which are used to design the process mod-
els and (b) the multi-agent system on which our workflow system has been built.

2.1 Coloured Petri Nets

The sound mathematical foundation behind Coloured Petri nets (CPN) [16] offers
advantages for modelling distributed systems. Petri nets consist of four basic ele-
ments. The tokens which are typed markers with values, the places that are typed
locations that can contain zero or more tokens, the transitions which represent actions
whose occurrence can change the number and value of tokens at the places, and the
arcs that connect places and transitions. When a transition occurs (fires), the place-
ment and values of tokens can be changed depending on expressions specified on the
arcs connected to that transition. Some reasons for preferring Petri net modeling to
other notations used for workflow modeling are given by [20]:

– They have formal semantics, which make the execution and simulation of Petri net
models unambiguous.

– It has been shown that Petri nets can be used to model workflow primitives identi-
fied by the Workflow Management Coalition (WfMC) [21]

– Unlike some event-based process modeling notations, such as dataflow diagrams,
Petri nets can model both states and events.

– There are many analysis techniques associated with Petri nets, which make it pos-
sible to identify ‘dangling’ tasks, deadlocks, and safety issues.

2.2 Agent Systems

Sycara [25] identifies several benefits associated with using multi-agent systems for
building complex software. For example, multi-agent systems can offer a high level
of encapsulation and abstraction. Some commonly accepted characteristics of agents
are listed in [22, 23, 24]. Because agents are independent, every agent can have its
own strategy for solving a particular problem. Different developers can build agents
and as long as these agents understand each other through agent communication, they
can work together. A second important benefit is that multi-agent systems offer dis-
tributed and open platform architecture. Agents can support a dynamically changing
system without the necessity of knowing each part in advance. This requires, however
a matchmaking infrastructure. Our system is based on the Java-based agent platform
Opal [7], developed at the University of Otago since 2000. It meets the standards of
the Foundation for Intelligent Physical Agents (FIPA) [6] for agent platforms and
incorporates a modular approach to agent development [26].

2.3 Related Work

In the context of WfMSs, agent technology has been used in different ways [27]. In
some cases the agents fulfill particular roles that are required by different tasks in the
workflow. In these cases the existing workflow model is used to structure the coordi-

208 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

nation of these agents [28, 29]. An example of this approach is the work by M. Nissen
in designing a set of agents to perform activities associated with the supply chain
process in the area of e-commerce [29].

In other cases, the agents have been used as part of the infrastructure associated
with the WfMS itself in order to create an agent-enhanced WfMS [30, 31]. These
agents provide an open system with loosely coupled components, which provides
more flexibility than the traditional system architectures. Some researchers have com-
bined both of these approaches [32], where an agent-based WfMS is used in conjunc-
tion with specialized agents that provide appropriate application-related services. We
have taken the latter approach, which provides sufficient flexibility required for a
dynamic and adaptive system.

Adaptive workflows have been discussed for some time, and many people have
discussed the problem [10, 32]. Only a few have proposed techniques to manage
adaptability and only a small number of actual implementations have been made that
tackle some aspects of adaptability [32]. Transferring running work cases to a new
model is still a difficult issue. The work done in the paper [32] describes a prototype,
which provides some adaptability by manual transfer of tokens in the new process
model, as indicated in a comparison of current WfMS done by Van der Aalst et al
[13].

2.4 Architectural Overview

Our research is focused on developing an agent-enhanced WfMS, where the work
associated with running a WfMS has been partitioned among various collaborating
agents that are interacting with each other by following standard agent communica-
tion protocols. JBees is based on Opal [7] and uses the CPN execution tool JFern [5].
A first description of JBees can be found in the previously published papers [2] and
[17]. Our enhanced system consists of seven Opal agents, which provide the function-
ality to control the workflow. Figure 1 shows these seven agents and their collabora-
tion.

The manager agent provides all functionality the workflow manager needs, such as
creation and deletion of tasks, roles and process definitions, instantiation of new proc-
ess instances, and creation of resource agents. The process agent executes a process
instance. Each resource in the system has its own resource agent. Every resource in
the system gets registered to one of the broker agents that allocate the resources to the
process. The storage agent manages the persistent data that is needed. The monitor
agent collects all the process-specific data and sends them to the storage agent. The
control agent continuously looks for anomalies to the criteria specified by the human
manager and reports the violations to these criteria to the manager agent. The man-
ager agent provides information to the human manager, which can be used as a feed-
back mechanism.

2.5 Flexibilities of Our Workflow System

The flexibilities of our workflow system enable us to provide the support for distribu-
tion, adaptability, monitoring, and controlling of processes. JBees supports inter-
organizational co-operation through the distribution of processes. For example, the

Evaluation of a Multi-agent Based Workflow Management System Modeled 209

main process could be present in Germany and the sub-process could be present in
New Zealand. The use of multi-agent technology facilitates the distribution of such
processes. Also, the persistent data can be distributed. The user of the system can
decide to modify or change a running process [1]. Our system has also been endowed
with the monitoring and controlling of processes. The process data is stored and the
controlling agent constantly checks for anomalies for the criteria entered by the proc-
ess manager.

3 Evaluation

Workflow systems are driven by the process models, which describe the workflow
process. A sample process model for ordering a book is shown in figure 2. The activi-
ties associated with the process include order entry, inventory check, credit check,
evaluation, approval, billing, shipping, archiving and the activity associated with
writing a rejection letter. Evaluation of workflow systems are carried out on the basis
of 20 workflow patterns described by Van der Aalst[13]. We evaluate our system for
these workflow patterns (and also the communication patterns) and explain the fea-
tures of the agent framework, which provide support for these patterns.

3.1 Workflow Patterns

Since we use coloured Petri nets [16] as the process-modeling tool, we satisfy the
basic workflow patterns such as sequence, parallel split, synchronization, exclusive
choice and simple merge [13]. Table 1 shows the categorization of patterns and
shows the level of support that our system provides. The notation “++” is used when

Fig. 1. Showing the architecture of JBees

210 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

the pattern is supported by Petri nets, and “+” notation denotes that the pattern is not
supported by Petri nets but can be achieved by using our agent-based framework.
Van der Aalst categorizes workflow patterns into the following.

1. Advanced branching and synchronization patterns
2. Structural patterns
3. Patterns involving multiple instances
4. State-based patterns
5. Cancellation patterns

Out of these categories of patterns, the coloured Petri net formalism supports pat-
terns described by categories 1, 2 and 4 [13].

3.1.1 Advanced Branching and Synchronization Patterns
The patterns in this category include the multiple-choice pattern, synchronization
merge pattern, multiple merge pattern and the discriminator pattern. All the four of
the above-described patterns can be achieved by examining the colour of the token.
The token can have attributes, which can be evaluated so that the transition could be
fired and one of the possible paths (branching or merging) can be chosen.

3.1.2 Structural Patterns
Structural patterns include the Aribitrary cycles pattern, which describes the point in a
workflow process where one or more activities can be done repeatedly. This can be
implemented in Petri nets.

The Implicit termination pattern occurs when the given sub-process should be ter-
minated when there is nothing else to be done. Our framework supports implicit ter-
mination (refer to the example given in figure 4). The user can interact with the sys-
tem to indicate the occurrence of an external event, which could trigger the
termination of the process.

3.1.3 Patterns Involving Multiple Instances (MI’s)
Patterns involving multiple instances are not directly supported through Petri nets[13].
But the same can be achieved by the combination of other patterns or through the
agent framework. MI without synchronization is possible by using the arbitrary cycles
pattern. In this case instead of having multiple instances of the same activity, the
process is repeated for a certain number of cycles. Figure 3 shows a process (Case A),
the MI described by Aalst (Case B), and the arbitrary cycles (Case C). It can be seen
that the Case B described by Aalst can be modified into Case C, which uses the arbi-
trary cycles. This can be achieved by the arc expression, which would check the at-
tribute of the token representing the number of times the task has to be repeated.

3.1.4 State Based Patterns
The deferred choice pattern describes the execution of one of the two alternatives
paths. The choice of which path is to be executed should be determined by some envi-
ronmental variables. The interleaved parallel routing pattern describes execution of
two activities in random order, but not in parallel. The milestone pattern enables an
activity until a milestone is reached. These patterns are inherently supported by col-
oured Petri nets [13].

Evaluation of a Multi-agent Based Workflow Management System Modeled 211

Fig. 2. Process model of ordering a book Fig. 3. Showing processes with a single
instance activity, multi instance activity and
multi instance activity achieved through
arbitrary cycles (iteration)

3.1.5 Cancellation Patterns
The cancel activity pattern is cancellation or disabling of an activity. The CPN will
not be able to cancel an activity because, in CPN, we only have local control around a
transition. Depending upon the value of tokens in the input places, the tokens on the
output place can be generated. But this can be achieved using the higher-level lan-
guage support that executes the process model.�The agent-based framework can pro-
vide a user interface such as a stop activity button so that the activity can be can-
celled. This is possible since a separate process agent executes every case.

The cancel case pattern is the cancellation of the entire case of a process. The
same argument for the previous case holds good. The user interface of the agent
framework can support it. Figure 4 shows how the framework can support the cancel-
lation patterns. Activity2 is the active activity. The user can now decide to cancel the
activity or the entire case. There might be a few activities, which would need to be
undone as the case is cancelled. Those activities which are to be undone can be mod-
eled as compensation activities.

Fig. 4. Showing the user interface for cancellation of running case/activity of the Petri net
process model

212 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

Table 1. Showing the categorization of workflow patterns and their support in JBees

Categorization of workflow patterns Workflow Patterns Support in JBees
 (++ or +)

Sequence ++
Parallel Split ++
Synchronization ++
Exclusive Choice ++

Basic Patterns

Simple Merge ++
Multi Choice ++
Synchronizing Merge ++
Multi Merge ++

Advanced branching and synchroniza-
tion patterns

Discriminator ++
Arbitrary Cycles ++ Structural patterns
Implicit Termination +
MI without Synchronization +
MI with a Priori Design Time Knowledge +
MI with a Priori Runtime Knowledge +

Patterns involving multiple instances

MI without a Priori Runtime Knowledge +
Deferred Choice ++
Interleaved Parallel Routing ++

State based patterns

Milestone ++
Cancel Activity + Cancellation patterns
Cancel Case +

Table 2. Showing the categorization of communication patterns and their support in JBees

Categorization of communication patterns Communication Patterns Support in JBees
(++ or +)

Request/Reply ++
One-way ++

Synchronous

Synchronous Polling ++
Message Passing ++
Publish/Subscribe +

Asynchronous

Broadcast +

3.2 Communication Patterns

Communication is realized by the exchange of messages between different processes.
Our agent-based system is designed for sending and receiving messages based on the
FIPA [6] protocols. In this section we evaluate JBees for the various communication
patterns. An example (shown in figure 5) of the communication is how the sub-
processes are executed. To execute a sub-process, the process agent of the parent
process instantiates another process agent. The process-related communication takes
place between the parent process agent and the sub process agent. Table 2 shows the
categorization of communication patterns and shows the level of support that our
system provides. The notation “++” is used when the pattern is supported by FIPA
specification that our framework is built upon and “+” notation denotes that the pat-
tern is not supported by FIPA but can be achieved by using our framework.

3.2.1 Synchronous Communication
The request/reply pattern is the communication pattern in which the sender sends a
request and waits for a reply. The communication scenario shown in Figure 5 is an

Evaluation of a Multi-agent Based Workflow Management System Modeled 213

example of this pattern. The one-way pattern is the pattern where a sender makes a
request to a receiver and does not wait for response. The receiver sends the acknowl-
edgement message but not the actual reply. Our FIPA compliant framework supports
these patterns. The synchronous polling pattern occurs when the sender communi-
cates a request to a receiver, but instead of blocking it continues processing and con-
stantly checks for response. If a resource is not available at a point of time, the proc-
ess agent continuously keeps checking with the resource broker whether any resource
is available after a fixed interval of time. Figure 6 shows the communication between
the process agent and the resource broker agent.

Fig. 6. Showing the communication between the process agent executing a process model and
the resource broker agent

3.2.2 Asynchronous Communication
The message passing pattern is an asynchronous communication pattern in which the
sender receives no response. When the request reaches the receiver, it processes the
message and performs appropriate actions. Though our FIPA-compliant framework
supports this form of communication, it is not used in the context of workflows, since
the feedback from agents about the starting and completion of tasks/activities should
have a reply/response. The publish/subscribe pattern is the asynchronous communica-
tion pattern in which the sender sends the message to those who have already ex-
pressed their interest in receiving the messages when an event has occurred. This
pattern is not supported by FIPA yet, but it can be implemented in the framework by
maintaining the list of all agents that would express their interest in receiving certain
kinds of messages. The broadcast pattern is the form of communication in which all

Fig. 5. Showing the communication between the parent process agent and the sub process agent
executing the main and sub process respectively

214 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

the participants receive a message. Though this has not been supported by the FIPA
protocol, it can be achieved in our framework by sending messages to all agents that
collaborate in a particular platform. The list of all collaborating agents can be ob-
tained and the message can be sent to all agents individually.

3.3 Support for Workflow and Communication Patterns in JBees

It can be observed form sections 3.1, 3.2 and figure 7 that sixty five percent of the
workflow patterns are supported directly by Petri nets, and the agent-based frame-
work can support the rest of the patterns. We have also described the communication
patterns that our system supports. Four out of the six communication patterns are
supported directly by our agent-based framework and the other two can be supported
with few changes.

Fig. 7. Graph showing the support for workflow and communication patterns in JBees

4 Conclusion

We have evaluated the capability of our workflow system, both from a process mod-
eling point of view, as well as the inter-process communication viewpoint. Through
these patterns, the CPN models executed by the multi-agents have addressed issues on
flexible workflow systems by supporting distribution and adaptability of processes.
We agree with the viewpoints of van der Aalst [14] that Petri nets could be considered
as a standard for modeling workflows, but they should be aided by multi-agents to
provide the additional flexibilities associated with adaptability and the distribution of
processes. Owing to the support of distributed and adaptive processes, workflow sys-
tems modeled using CPNs and managed by multi-agents have started emerging ([18]
and [19]). Our described system is available under the GNU Lesser General Public
License [3] on the Internet [9].

Acknowledgements

The authors wish to acknowledge the work of Lars Ehrler and Martin Fleurke in the
implementation of the agent-based workflow system.

Evaluation of a Multi-agent Based Workflow Management System Modeled 215

References

1. Martin Fleurke, JBees, an adaptive workflow management system – an approach based on
Petri nets and agents, Master’s thesis, Department of Computer Science, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, 2004.

2. Martin Fleurke, Lars Ehrler, and Maryam Purvis, ‘JBees - an adaptive and distributed
framework for workflow systems’, in Workshop on Collaboration Agents: Autonomous
Agents for Collaborative Environments (COLA), Halifax, Canada, eds., Ali Ghorbani and
Stephen Marsh, pp. 69–76, http://www.cs.unb.ca/˜ ghorbani/cola/proceedings/NRC-
46519.pdf, (2003). National Research Council Canada, Institute for Information Technol-
ogy.

3. Free Software Foundation. GNU Lesser General Public License, 2000.
4. S. Meilin, Y. Guangxin, X. Yong, and W. Shangguang,‘ Workflow Management Systems:

A Survey. ’, in Proceedings of IEEE International Conference on Communication Technol-
ogy, (1998).

5. Mariusz Nowostawski. JFern – Java based Petri Net framework , 2003.
6. FIPA, FIPA Communicative Act Library - Specification. 2002.

http://www.fipa.org/specs/fipa00037
7. Martin K. Purvis, Stephen Cranefield, Mariusz Nowostawski, and Dan Carter, ‘Opal: A

multi-level infrastructure for agent-oriented software development’, The information sci-
ence discussion paper series no 2002/01, Department of Information Science, University of
Otago, Dunedin, New Zealand, (2002).

8. J.W. Shepherdson, S.G. Thompson, and B. Odgers, ‘Cross Organisational Workflow Coor-
dinated by Software Agents’, in CEUR Workshop Proceedings No 17. Cross Organisa-
tional Workflow Management and Coordination, San Francisco, USA, (1998)

9. Department of Information Science University of Otago. JBees.
http://jbees.sourceforge.net, 2004.

10. W.M.P van der Aalst, ‘ Exterminating the Dynamic Change Bug: A Concrete Approach to
Support Workflow Change ’, Information Systems Frontiers, 3(3), 297–317, (2001).

11. W.M.P van der Aalst and K. van Hee, Workflow Management: Models, Methods, and Sys-
tems , MIT Press, 2002.

12. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Jour-
nal of Circuits, Systems and Computers, 8(1):21–66, 1998.

13. W.M.P. van der Aalst and A.H.M. ter Hofstede Workflow Patterns: On the Expressive
Power of (Petri-net-based) Workflow Languages. In: Kurt Jensen (Ed.): Proc. of the Fourth
International Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, Aar-
hus, Denmark, August 28-30, 2002, pages 1-20. Technical Report DAIMI PB-560, August
2002.

14. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards ex-
posed, IEEE Intelligent Systems, Jan/Feb 2003.

15. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. Hofstede. Pattern Based Analy-
sis of BPEL4WS. QUT Technical report, FIT-TR-2002-04, Queens-land University of
Technology, Brisbane, 2002.

16. Jensen, K., Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use,
Vol. 1: Basic Concepts. EATCS Monographs on Theoretical Computer Science. 1992,
Heidelberg, Berlin: Springer Verlag GmbH. 1-234.

17. Savarimuthu, B.T.R., Purvis, M. and Fleurke, M. (2004). Monitoring and Controlling of a
Multi-agent Based Workflow System. In Proc. Australasian Workshop on Data Mining and
Web Intelligence (DMWI2004), Dunedin, New Zealand. CRPIT, 32. Purvis, M., Ed. ACS.
127-132.

18. Vidal, J.M Buhler, P and Stahl, C (2004), Multi agent systems with workflows. IEEE com-
puter society, Jan-Feb, 76-82

216 Maryam Purvis, Bastin Tony Roy Savarimuthu, and Martin Purvis

19. K. Palacz and D.C. Marinescu. An agent-based workflow management system. In Proc.
AAAI Spring Symposium Workshop "Bringing Knowledge to Business Processes", Stand-
ford University, CA

20. W.M.P. van der Aalst. Three Good reasons for Using a Petri-net based Workflow Man-
agement System. In S. Navathe and T. Wakayama, editors, Proceedings of the International
Working Conference on Information and Process Integration in Enterprises (IPIC’96),
pages 179– 201, Cambridge, Massachusetts, 1996.

21. The workflow management coalition. The workflow reference model, 1995.
22. J. Bradshaw. An Introduction to Software Agents . In J. Bradshaw, editor, Software Agents,

pages 3–46. MIT Press, 1997.
23. M.J. Wooldridge. Intelligent Agents . In G. Weiss, editor, Multiagent Systems, pages 27–

77. MIT Press, 1999.
24. Y. Shoham. An Overview of Agent-Oriented Programming. In J. Bradshaw, editor, Soft-

ware Agents, pages 271–290. MIT Press, 1997.
25. K.P. Sycara. Multiagent Systems . AI magazine, 19(2):79–92.
26. Mariusz Nowostawski, Geoff Bush, Martin K.Purvis, and Stephen Cranefield. A Multilevel

Approach and Infrastructure for Agent-Oriented Software Development. In International
Work-shop on Infrastructure for Agents, MAS and Scalable MAS,
http://www.umcs.maine.edu/˜wagner/workshop/01_nowostawski_bush_purvis_etal.pdf,
2001.

27. G. Joeris. Decentralized and Flexible Workflow Enactment Based on Task Coordination
Agents. In 2nd Int’l. Bi-Conference Workshop on Agent-Oriented Information Systems
(AOIS 2000 @ CAiSE*00), Stockholm, Sweden, pages 41–62. iCue Publishing, Berlin,
Germany.

28. N.R. Jennings, P. Faratin, T.J. Norman, P. O’Brien, and B. Odgers. Autonomous Agents
for Business Process Management. Int. Journal of Applied Artificial Intelligence, 14(2):
145–189, 2000.

29. M.E. Nissen. Supply Chain Process and Agent Design for E-Commerce. In 33rd Hawaii In-
ternational Conference on System Sciences, 2000.

30. M. Wang and H. Wang. Intelligent Agent Supported Flexible Workflow Monitoring Sys-
tem . In Advanced In-formation Systems Engineering: 14th International Conference,
CAiSE 2002, Toronto, Canada, 2002.

31. H. Stormer. AWA - A flexible Agent-Workflow System . In Workshop on Agent-Based
Approaches to B2B at the Fifth International Conference on Autonomous Agents
(AGENTS 2001), Montreal, Canada, 2001.

32. Q. Chen, M. Hsu, U. Dayal, and M.L. Griss. Multi-agent cooperation, dynamic work ow
and XML for e-commerce automation. In fourth international conference on Autonomous
agents, Barcelona, Spain, 2000.

33. Purvis, M. K. and Purvis, M. A. and Lemalu, S., "A Framework for Distributed Workflow
Systems", Proceedings of the Hawai`i International Conference on System Sciences
(HICSS-34), (CD-ROM) IEEE Computer Society Press, Los Alamitos, CA (2001).

	1 Introduction
	2 System Technology Background
	2.1 Coloured Petri Nets
	2.2 Agent Systems
	2.3 Related Work
	2.4 Architectural Overview
	2.5 Flexibilities of Our Workflow System

	3 Evaluation
	3.1 Workflow Patterns
	3.1.1 Advanced Branching and Synchronization Patterns
	3.1.2 Structural Patterns
	3.1.3 Patterns Involving Multiple Instances (MI’s)
	3.1.4 State Based Patterns
	3.1.5 Cancellation Patterns

	3.2 Communication Patterns
	3.2.1 Synchronous Communication
	3.2.2 Asynchronous Communication

	3.3 Support for Workflow and Communication Patterns in JBees

	4 Conclusion
	References

