
M.W. Barley and N. Kasabov (Eds.): PRIMA 2004, LNAI 3371, pp. 193–205, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Distributed Workflow System
with Autonomous Components

Maryam Purvis, Martin Purvis, Azhar Haidar, and Bastin Tony Roy Savarimuthu

Information Science Department, University of Otago, Dunedin, New Zealand
{tehrany,mpurvis,tonyr}@infoscience.otago.ac.nz

Abstract. This paper describes the architecture of a distributed workflow man-
agement system in a dynamic environment. The system features autonomous
agent components that can adapt to both structural changes in business proc-
esses and changes in system parameters, such as the number of available re-
sources. This adaptation could be a permanent adjustment that should be re-
flected in all the incoming work cases, or be associated with a particular
instance of a work case. In addition, parts of the system can be modified by ob-
serving the behaviour of the system for possible shortcomings due to a non-
optimal distribution of resources or faulty inter-process dependencies which
could result in bottlenecks. Because of the autonomous nature of subsystem
components, the workflow system can adapt to changes without the necessity of
centralized control. The architecture of the system is described in the context of
a distributed workflow example.

Keywords: dynamic workflow, autonomous components, interaction protocols,
coloured Petri nets, adaptability

1 Introduction

Workflow management systems (WfMS) [1-3] are increasingly being used to manage
business processes associated with distributed global enterprises. Some of the benefits
of using a WfMS are

• ability to visualize the overall process and interdependencies between various
tasks,

• automation of the processes, and
• coordination and collaboration between various business entities.

Traditionally, however, most WfMSs have had centralized control architectures
along with fixed process model specifications. The current research trend is in the
direction of (a) more distributed architectures which can reduce potential bottlenecks
with respect to particular system components and (b) more flexible process model
specifications, which can accommodate dynamic and changing requirements that
occur in today’s business environment [4,5].

It is often desirable to have the capability of modifying the existing process model
due to changing external influences or of dealing with exceptional cases in which the
normal processes may not be appropriate. In the past WfMSs were used in well-
defined activities, such as manufacturing, where the processes tend to be more estab-
lished and stable. But in the current climate WfMS may be used in connection with
more fluid business processes, such as e-commerce, or in more complicated processes

194 Maryam Purvis et al.

involving human interactions, such as the software development process. In such
situations, at times, it is not always possible to predict in advance all parameters that
may be important for the overall processes. In addition, it is often appropriate for
certain groups within a distributed organisation to be autonomous and not always
under centralized control. Consequently it would be helpful if we could design WfMS
systems that could cope with these dynamic requirements and provide some level of
process modification. It is important to make the workflow system dynamic and
adaptable, since workflows of multi national companies span across countries. For
example the main workflow might be present in New Zealand and the sub processes
could be distributed in countries like India and Germany.

One of the benefits of using a WfMS is to be able to streamline processes associ-
ated with an organization and be able to visualize some of the interdependencies be-
tween various tasks or various processes in a larger context. It is desirable to represent
these processes in a formal way that could be used for further analysis and at the same
time have a graphical and intuitive representation. The coloured Petri net (CPN) nota-
tion [6] meets this requirement. In the past, the CPN formalism has been used suc-
cessfully to model the dynamic behaviour associated with particular processes repre-
senting various activities of a complex system, such as business processes. In the
context of the WfMS, CPNs have been used to specify the process model of a WfMS
component [2,7], and CPNs have been used to model processes generally, since they
offer a well-established modelling technique that combines expressiveness, simplicity
and formal semantics. However, in the present work we are extending this idea so that
the various sub-processes associated with a large enterprise could be distributed on
different hosts, while at the same time being interconnected with one another accord-
ing to the overall process model associated with a given organization.

An advantage of having a formal representation that is executable is that one can
examine the behaviour of the system according to various what-if scenarios that may
be considered as a result of potential changes to the process or some of the model
parameters such as the various constraints that might affect the outcome. By simulat-
ing the model for typical scenarios, it is possible to analyse the outcome of the simu-
lation and fine-tune the specified resources or constraints so that more favourable
results can be achieved; and this is also possible with coloured Petri nets.

2 Architecture of the System

To accommodate this level of adaptability, the system should be flexible and made of
loosely coupled modules. Our workflow system uses JFern [8], a Java-based tool for
the enactment and simulation of coloured Petri nets. We are also using the Opal agent
framework [9], which conforms to the Foundation for Intelligent Physical Agents
(FIPA) specifications [10] and which provides an agent-based infrastructure for the
support of distributed, adaptable computing.

The system architecture (shown in Figure 1) is based on a framework that was de-
veloped by the NZDIS research group [11]. In this framework various agents are
responsible for performing their tasks by executing a model of their activity specified
with Petri nets. The open and dynamic nature of the agents facilitate the incorporation
of adaptable process models. Each model is associated with a sub-process associated
with the overall workflow.

A Distributed Workflow System with Autonomous Components 195

Fig. 1. Architecture of the agent system.

Each agent runs an instance of JFern for Petri net protocol enactment. The agents
interact by sending messages to other agents as specified in their protocol model.
When an agent receives a message, the appropriate information is deposited in an In
place in its Petri net, and this may enable transitions to be fired that are associated
with the protocol model. Similarly any message going to another agent is deposited in
the Out place. All these nodes are fused with the out place of the process manager.
The process manager dispatches the messages to the appropriate agents as specified in
the message content.

An agent can receive a proposal for a new or modified interaction protocol, associ-
ated with its participation in the overall workflow, from another agent by means of a
FIPA-specified propose message. The content of this message contains the proposed
interaction protocol encoded in XML format. The interaction protocol actually com-
prises a coloured Petri net and the associated ontology, which describes the terms
used in the model and their relationships. The ontology is represented in UML, and
both the Petri net and the UML-encoded ontology information are encoded in XML
and sent together as the overall interaction protocol. Because the agents are autono-

196 Maryam Purvis et al.

mous, they may not agree to the new proposed protocol and may inform the proposing
agent of their refusal to agree. Under certain circumstances, such as in loosely-
organised confederations of service providers that are distributed across the Internet,
this option of refusing the newly proposed protocol may be appropriate. The system
architecture described here provides support for this kind of semi-autonomous work-
flow structure.

The agent-based architecture also supports the notion of incorporating new agents
appearing on the scene (joining the agent group) and offering new services on the fly.
These new agents will be informed on arrival of current interaction protocols for the
group by means of the same propose message mentioned above.

The governance of the interaction protocols is handled by one or more ‘manager’
agents, which maintain a model repository. At the present stage of technology, such
manager agents are expected to be interfaces to human managers. Thus if it is deter-
mined during the middle of workflow execution that a new model is required, the
manager or workflow designer would have the opportunity to create a new model and
register it with the ‘manager’ agent’s model repository which can then be distributed
to the appropriate agent that may require an alternative protocol.

A separate workflow designer component can exist on different hosts. The work-
flow administrator of a branch of an organisation can design the process associated
with that particular office and send the model and the associated work cases to a spe-
cific agent.

The system architecture comprises several components including the workflow en-
gine, workflow modeller, and various services such as an XML-to-Petri net (in Java)
translator, and generic service provider agents that can locate a resource and provide a
service for a particular task.

This architecture allows for monitoring of the system based on a set of predefined
conditions such as availability of resources, which could be used as a feedback
mechanism for human administrators.

2.1 The Workflow Modeller

This workflow modeller component is used to specify the processes associated with
performing a particular activity. Coloured Petri nets are used to model workflow sys-
tems, due in part to their sound mathematical foundation and to the fact that they have
been used extensively for modelling of distributed systems [12]. Coloured Petri nets
consist of the following basic elements:

tokens which are typed markers with values - the type can be any Java class.
places (circles), which are typed locations that can contain zero or more tokens.
transitions (squares), which represent actions whose occurrence (firing) can change

the number and/or value of tokens in one or more of the places connected to them.
Tokens may have guards which must evaluate to TRUE in order for the transition to
fire. In a workflow model a transition may represent a task.

arcs (arrows) connecting places and transitions. An arc can have associated
inscriptions, which are Java expressions whose evaluation to token values affects
the enabling and firing of transitions.

Some reasons for preferring Petri net modelling in connection with workflow
modelling to other notations are:

A Distributed Workflow System with Autonomous Components 197

They have formal semantics, which make the execution and simulation of Petri net
models unambiguous.

It can be shown that Petri nets can be used to model workflow primitives identified
by the Workflow Management Coalition (WfMC) [13]

Typical process modelling notations, such as dataflow diagrams, are event-based,
but Petri nets can model both states and events.

There are many analysis techniques associated with Petri nets, which make it pos-
sible to identify ’dangling’ tasks, deadlocks, and safety issues.

Other standardization protocols do not cater to expressiveness, simplicity and for-
mal semantics. The comparison of high-level Petri nets with other proposed stan-
dardization protocols can be found in [15].

The Petri net models created using the JFern engine are instantiated as workflow
components in our system.

2.2 Workflow Engine

The workflow engine is the component that executes the interaction protocol that has
been modelled using Petri nets. The JFern tool can be used as a process modeller and
also the execution engine.

2.3 Conversation Manager

The conversation manager is the component that organizes the interaction between
various interaction protocols. It is responsible for dispatching the messages from the
“in” and “out” places and the ontology component which defines the terms that ap-
pear in the model (the places, transitions and the arc expressions). The conversation
manager plays the role of the resource manager. It identifies the list of resources that
can perform a certain task. These resources can be chosen from a pool of resources
available in the form of ‘agent societies’ [17]. The conversation manager can choose a
service provider agent that is less flexible and less expensive than some other provider
that offers more expensive services. Each agent in the society has certain capabilities
inscribed as attributes.

3 Example Scenario

In order to show the operational aspect of the system, as well as how it can adapt to
changes, an example scenario is described. In this scenario, various sub-nets associ-
ated with different sub-processes of the system are discussed. This model has been
adapted from a travel agent model example discussed by Van der Aalst [2].

3.1 A Distributed Process Model

In this scenario the interactions involving a customer, a travel agent, a transport ticket
seller (travel service provider) are described. Figure 2 depicts a simplified version of
the interaction protocol for the travel agent. The protocol is initiated when a cus-
tomer’s request has been submitted to the travel agent, indicated in the model by the
placement of a token at the In place of the net. The travel agent then searches some

198 Maryam Purvis et al.

external database (not shown in the diagram) to come up with some possible trip
options (the Prod Opts transition). The result of the search is placed in the Opts place.
These options are then placed in the Out place so that they can be sent back to the
customer. At this point the customer is contacted (the customer interaction is not
shown in this diagram). When the customer responds, the travel agent’s Get Cus Res
transition will fire. Either the customer will select an option for purchasing a ticket
(an external travel service provider will have to be contacted for the purchase of such
a ticket) or the customer will not be satisfied with the options he was sent and will
need more options (Need More Opts). Assuming that the customer does select one of
the options for purchase (as indicated by the value of the token in the Cus Res place),
the Res Tick transition is enabled, causing the travel agent to send a ticket reservation
request to a travel service provider, such as a bus company or sightseeing operation.
A copy of the customer’s ticket reservation request is kept in the Res Sent place for
later consultation. The travel service provider will either send back a notification that
a reservation has been made (enabling the Get Tick Res transition) or send back noti-
fication that there are no tickets available (enabling the Get Rej transition, which will
cause a notification of that fact to be sent back to the customer). If the travel service
provider does return a confirmed ticket reservation, it is matched with the ticket res-
ervation request stored in the Res Sent place and then deposited in the Tick Res place.
This will, in turn, enable the Send Bill transition, causing a bill to be sent to the cus-
tomer for payment. After payment is received, the travel agent will send the payment
to the service provider, get the ticket from the service provider, and then forward the
ticket on to the customer.

 In
Get

Request

Get
Cus
Res

Get
Tick
Res

Get
$$

Out

Req

Prod
Opts

Opts

Send
Opts

Cus
Res

Res
Tick

Tick
Res

Send
Bill

$$

Pay for
Tick

Get
Tick

Tick

Res
Sent

Opts
Sent

Bill
Sent

Tick
Paid

Send
Tick

Need
More
Opts

Get
Rej

Fig. 2. Interaction protocol for the travel agent.

A Distributed Workflow System with Autonomous Components 199

Note that information is stored in the Opts Sent, Res Sent, Bill Sent, and Tick Paid
places for matching up with later messages that arrive. This enables the travel agent to
conduct activities with many customers and travel service providers concurrently.

Figure 3 shows the interaction protocol1 for the customer. This protocol has a Start
place that has a token placed in it (specifying the customer’s travel interests) when the
customer wants to initiate a conversation with the travel agent. The Send Request
transition causes the request to be placed in the Out place for sending a message to the
travel agent and a copy of the request is stored in the Req Sent place. Later, the cus-
tomer expects to receive a set of options for selection from the travel agent, and these
options should match his or her travel request. After an option is selected, this is
placed in the Out place for sending back to the travel agent, and a copy of the reserva-
tion selected is stored in the Res Sent place. Subsequently, the customer expects to get
a bill, pay it, and ultimately get tickets matching what he or she has paid for.

 In
Get
Opts

Get Bill

Out

Opts

Select
Opt

Bill

Send
Request

Res
Sent

Start
Send $$

Opt

Send
Res

$$ Sent

Get Prod

Req
Sent

Fig. 3. Interaction protocol for the Customer.

Figure 4 shows the interaction protocol for the travel service provider. The travel
service provider might supply any kind of travel service, such as boat passage, tramp-
ing guides, etc. The travel service provider initially receives a message from the travel
agent indicating that a reservation has been requested for his or her service, such as a
transport ticket. The service provider must then see if the requested resource (usually
a ticket booking) is available. So both the Prep Prod and Send Reject transitions ex-
amine the single token located in the Available Resources place. The single token in
the Available Resources place contains a list of available resources, and information

1 At times we use the term protocol to refer to the activities of individual participants and at

other times to the collection of activities of all participants. The context should make clear
the difference.

200 Maryam Purvis et al.

for the list in this token is maintained by access to an external database. The Prep
Prod transition is enabled if the relevant information (i.e. what is desired, for exam-
ple, a bus ticket) on the reservation request token in the Res place matches up with
one of the resources listed on the token in the Available Resources place. On the
other hand, the Send Reject transition is enabled if the information on the token in the
Res place fails to match up with an item listed on the token in the Available Re-
sources place. In the case where there are tickets available, the service provider then
prepares the product (a ticket, say) and sends the bill back to the travel agent and
keeps a copy of it in the Bill Sent place. When payment is received later, the service
provider will send the product that has been stored in Prod Ready. In the simplified
scenario described here, there is only a single generic protocol for a travel service
provider shown, but there could be many such protocols that are used for particular
service providers. There could also be more complicated interactions with the cus-
tomer. In our example, payment is made directly to the travel agent. But there could
be other options available, including having the travel agent act as a broker, with
payment transactions ultimately taking place directly between the customer and the
travel service provider.

Fig. 4. Interaction protocol for the service provider.

Figure 5 shows how all the interaction protocols are created and executed. The
human manager can create interaction protocols using the JFern process modeller and
store them in the system using the storage agent. The stored protocols can be viewed
querying the storage agent. When sets of interaction protocols are to be executed, the
protocols are selected and submitted to the workflow engine.

 In

Get
Res

Get $

Out

Res

Prep
Prod

$$

Send
Bill

Prod
ready

Prod

Send
Prod

Bill
Sent

Available
Resources

Send
Reject

A Distributed Workflow System with Autonomous Components 201

Fig. 5. Creation and execution of the interaction protocols.

The conversation manager plays the important role of the co-ordinating agent be-
tween various interaction protocols. It is responsible for matching the “in” and “out”
tokens from various agents. Figure 6 shows the interaction between a customer agent,
travel agent, service provider and the conversation manager.

The customer agent executes the interaction protocol and places a request for re-
serving a ticket to the travel agent through the conversation manager. The conversa-
tion manager transfers the requests to the travel agent from the customer agent. This
corresponds to the transfer of a token from the out place of the customer agent to the
in place of conversation manager. The token is then placed at the out place of the
conversation manager which is appropriately moved to the travel agent’s in place by
the conversation manager.

The travel agent could then get the appropriate service provider to perform a par-
ticular task from the resource agent. All these interactions are co-ordinated through
the conversation manager.

Fig. 6. Interaction protocol for the service provider.

202 Maryam Purvis et al.

3.2 Adaptive Workflow Process Operation

Consider now an international travel agency with individual travel agents spread
across the globe (or region). The individual agents may be using an interaction proto-
col associated with customers and service providers such as we have described in
Figures 2-4. These sets of interaction protocols represent the workflow cases for the
travel agents of the agency. Suppose, now, that a health crisis emerges in some re-
gions of the world, and that the global manager of the travel agency decides to rec-
ommend a new interaction protocol for some of his or her travel agents.

 In Get
Request

Get
Cus
Res Get

Tick
Res

Get
$$

Out

Req

Prod
Opts

Opts

Send
Opts

Cus
Res

Reserve
Ticket

Tick
Res

Send
Bill

$ for
Tick

Pay
Tick

Get
Tick

Tick Tick
Res
sent

Opts
sent

Bill
Sent

Tick
Paid

Send
Tick+Ins

Res
Ins

Get
Ins
Res

Tick+Ins
Res

Ins
Res
Sent
(+TR)

$ for
Ins

Pay
Ins

Get
Ins

Ins
Paid

Ins

Need
More
Opts

Get
rej

Fig. 7. New interaction protocol for travel agent involving two coupled service providers (for
tickets and insurance).

The newly proposed protocol is to require that all ticket transactions must be bun-
dled with a health insurance policy that is offered by some recommended health in-
surance agents. This new interaction protocol is now recommended for those travel
agents in parts of the world that are affected by the health crisis, and the new travel
agent protocol is shown in Figure 7. The entire protocol is sent to all travel agents in
the organisation in the form of an encoded XML expression in the body of a FIPA
propose message. Those travel agents that are dealing with customers in affected

A Distributed Workflow System with Autonomous Components 203

areas would be urged to adopt the new protocol. For a resilient and adaptive global
organisation, this kind of autonomy may be essential for success in a competitive
environment.

In the new protocol, there is now a ticket selling travel service provider and an in-
surance service provider. For this new scenario, we assume that the customer and both
service provider protocols remain as shown in Figures 3 and 4, respectively. Both of
the service provider agents use the interaction protocol depicted in Figure 4: they
prepare a product when requested by the travel agent, and that product is delivered to
the travel agent when payment is received. The protocol for the travel agent is modi-
fied, though, as shown in Figure 7. When the initial request comes in from the cus-
tomer, the early stages of interaction are as before in Figure 2. However after the
ticket reservation request is confirmed by receipt of a message from the ticket selling
service provider, the travel agent proceeds to request purchase of insurance from an
insurance provider (a message to the insurance provider is prepared in connection
with the Res Ins transaction, and a token for the message is placed in the Out place).
Information about the insurance request and the confirmed ticket reservation is stored
in the Ins Res Sent (+TR) place. Later when the bill is sent to the customer and pay-
ment is received, the travel agent arranges to pay both the ticket selling service pro-
vider and the insurance provider. After the travel agent receives authorisation from
both the ticket selling agent (in the form of tickets) and the insurance provider (possi-
bly just some authorisation number) these vouchers are bundled together and for-
warded on to the customer.

4 Discussions and Future Work

The ability to design and update interaction protocols that, together, represent work-
flow scenarios enables an organisation of semi-autonomous entities or agents to re-
spond and adapt to changing conditions in a distributed environment. For illustrative
purposes, we have described a distributed example involving travel agents. This is an
appropriate example, because the conditions and available service providers are con-
stantly changing in the travel and tourism industry, and it can be difficult to maintain
an organised sense of workflow activities under these conditions. As new types of
service providers become available, there can be new types of interaction protocols
that are appropriate for those service providers, and all the agents that interact with
them would need to be informed about those interactions protocols.

Another application domain can be in the area of distributed software development,
where many independent, autonomous software developers are working together on a
large, possibly open-source, development project. Integration, testing, and acceptance
activities can be adapted to deal with changing scheduling requirements, customer-
imposed constraints, or preferences among the distributed collection of team mem-
bers.

This work is also applicable in those areas that are less human-dominated and in
which electronic agents are performing most of the work. In these environments, it is
essential to be able to monitor and coordinate the activities of groups of autonomous
agents. Facilities such as those we are developing can offer more choice in the organi-
sation of distributed enterprises, because they can provide coordination facilities
while, at the same time, allowing individual entities to retain more autonomy.

204 Maryam Purvis et al.

The following enhancements to the existing system are planned for future work in
this research.

Provide more explicit facilities for resource management so that conventional
workflow models can be incorporated.

Provide a direct interface to one of the exiting analysis tools so that process mod-
els can be analysed on the spot. The resulting analysis can lead to improved sys-
tem performance.

Improve the monitoring capability so that various performance statistics and
throughput information is available graphically.

Improve the visualization of linked and hierarchical models.
We are in the process of extending the proposed prototype and evaluating various

process model scenarios. In particular we are examining the integration of the web
services as discussed by Paul et al [16].

The authors would like to acknowledge the technical support and consultation pro-
vided by Mariusz Nowostawski and Peter Hwang of the University of Otago.

References

1. Schael, T.: Workflow Management Systems for Process Organisations. Springer-Verlag.
(1998)

2. Van der Aalst, W., Van Hee, K., Schmidt, J. W.: Workflow Management: Models,
Methods, and Systems. MIT Press. (2002)

3. Meilin, S., Guangxin, Y. , Yong, X. , Shangguang, W.: Workflow Management Systems:
A Survey. In: Proceedings of IEEE Intl. Conf. On Communication Technology, Beijing,
(1998)

4. Borghoff, U.M. , Bottoni, P. , Mussio, P., Pareschi, R.: Reflective Agents for Adaptive
Workflows. In: Proc. 2nd Conf. on the Practical Application of Intelligent Agents and
Multi_Agent Technology (PAAM’97), London, U.K., (1997) 405-420

5. Stormer, H.:A Flexible Agent-Based Workflow Systems. In: Workshop on Agent-Based
Approaches to B2B, Fifth International Conference on Autonomous Agents, Montreal,
Canada (2001)

6. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use,
Vol. 1: Basic Concepts. Springer-Verlag, Berlin (1992).

7. van der Aalst, W.M.P.: The application of Petri nets to workflow management. In: The
Journal of Circuits, Systems and Computers vol. (1998) 8(1), 21-66.

8. Nowostawski, M.: JFern, version 1.2.1,
http://sourceforge.net/project/showfiles.php?group_id=16338 (2002).

9. Purvis, M., Cranefield, S., Nowostawski, M., and Carter, D.: Opal: A Multi-Level Infra-
structure for Agent-Oriented Software Development. In: Information Science Discussion
Paper Series, No. 2002/01, ISSN 1172-6024, University of Otago, Dunedin, New Zealand.

10. FIPA. Foundation For Intelligent Physical Agents (FIPA). FIPA 2001 specifications,
http://www.fipa.org/specifications/ (2003)

11. Purvis, M. K., Huang, P., Purvis, M. A., Cranefield, S. J., and Schievink, M.: Interaction
Protocols for a Network of Environmental Problem Solver. In: Proceedings of the 2002
iEMSs International Meeting: Integrated Assessment and Decision Support (iEMSs 2002),
Volume 3, Andrea E. Rizzoli and Anthony J. Jakeman (eds.), The International Environ-
mental Modelling and Software Society, Lugano, Switzerland (2002) 318-323

A Distributed Workflow System with Autonomous Components 205

12. van der Aalst, W.M.P.: Three good reasons for using a Petri-net-based workflow manage-
ment system. In: Navathe, S., Wakayama, T. (eds.): Proc of International Working Con-
ference on Information and Process Integration in Enterprises (IPIC’96),. Massachusetts
Institute of Technology, Cambridge, Massachusetts, (1996) 179-201.

13. Workflow Management Coalition: The Workflow Reference Model, Document No. TC00-
1003, Issue 1.1. (1995)

14. Theoretical Foundations Group and Distributed Systems Group of the Department of
Informatics, University of Hamburg. Renew – The Reference Net Workshop, Release 1.2,
(2000)

15. van der Aalst, W.M.P.: Don’t go with the flow: Web Services composition standards ex-
posed, Jan/Feb 2003 issue of IEEE intelligent systems.

16. Paul Buhler and José M. Vidal. Enacting BPEL4WS specified workflows with multiagent
systems. In Proceedings of the Workshop on Web Services and Agent-Based Engi-
neering, 2004.

17. B.T.R Savarimuthu and M.Purvis, A Collaborative mulit-agent based workflow system.
In: M. G. Negoita, R. J. Howlett, L. C. Jain (eds.), Knowledge-Based Intelligent Informa-
tion and Engineering Systems, 8th International Conference, KES2004, Wellington, New
Zealand, September 2004, Proceedings, Part II, Springer LNAI 3214, pp. 1187-1193,
2004.

	1 Introduction
	2 Architecture of the System
	2.1 The Workflow Modeller
	2.2 Workflow Engine
	2.3 Conversation Manager

	3 Example Scenario
	3.1 A Distributed Process Model
	3.2 Adaptive Workflow Process Operation

	4 Discussions and Future Work
	References

